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Abstract

Machine learning algorithms used for natural language processing (NLP) currently

take too long to complete their learning function. This slow learning performance

tends to make the model ineffective for an increasing requirement for real time

applications such as voice transcription, language translation, text summarization

topic extraction and sentiment analysis. Moreover, current implementations are run

in an offline batch-mode operation and are unfit for real time needs. Newer machine

learning algorithms are being designed that make better use of sampling and

distributed methods to speed up the learning performance.

In my thesis, I identify unmet market opportunities where machine learning is not

employed in an optimum fashion. I will provide system level suggestions and

analyses that could improve the performance, accuracy and relevance.

Thesis Supervisor: Dr. Abel Sanchez
Title: Senior Lecturer, Engineering Systems Division
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Introduction

Over the last two decades, machine learning has emerged as a requisite in many

software applications. The availability of cheap computing and peta-scale data sets

coupled with the focus on statistical research in natural language processing (NLP)

has ordained a unique marriage that has resulted in many real-world applications

such as voice transcription, automatic summarization, machine translation,

information extraction.

However, these applications are not optimized at a system level. This lack of system

optimization can spawn severely limited systems that fail miserably when there is

significant variation in expected dataset size. Research at Microsoft showed that

systems that are performant at 1 million words fail miserably at 1 billion words.

Conversely, a poor performing system at 1 million words was a strong performer at

1 billion words (Banko and Brill 2001a). These failures translate into unreasonably

long processing times for model training completion. These failures also could result

in a drop in model relevance or accuracy. To the user of a voice transcription system

based on NLP and machine learning, these failures translate into high rates of

transcription errors and misrecognition of the user. This culminates in a

systematically ineffective voice recognition system for the user.

Additionally, there are system limitations in current NLP implementations. A

majority of model learning functions is set up to run in an overnight batch fashion.
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The overnight or off-hours nature of this system limitation manifests into an archaic

solution. This solution now becomes chronologically imbalanced when compared to

the real-time nature of other solutions. For example, current implementations of

automatic summarization functionality employed by eDiscovery software requires a

batch run mode, where the learning function can vary from taking hours to days.

In the later sections, I will point out these system architectural flaws that have

resulted in missed market opportunities in creating a fully featured enterprise

Knowledge Management system. This new Knowledge Management system will

benefit from system optimizations that will allow it to scale easily to peta-scale data

sets. Furthermore, it will be able to train the model via online-learning utilizing

streaming and in-place model updates. These methods circumvent the slowness of

batch mode model training.

This real-time and high-performing Knowledge Management system has immediate

business impact. It has applications in powering eDiscovery legal software,

enterprise search, enterprise content management systems, etc. Additionally, this

new improved system will realize the untapped market potential in being able to

integrate across other enterprise systems such as customer relationship

management systems (CRM), cyber security and enterprise workflow systems.

In a testament to this missed potential, Microsoft is ambitiously planning to invest in

and launch an upcoming product called Office Graph that will collect behavior and
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social metadata from all Office 365 applications to enrich the search, discovery,

navigation, and filtering of all knowledge among these components.

10



Literature Review

The prevalence and increasing commercial applicability of machine intelligence is

made more evident by looking at the number of firms and startups that are in the

field of artificial intelligence, machine learning or big data. Figure 1 depicts this

landscape. Shivon Zilis, a Venture Capitalist at the Bloomberg Beta fund, has termed

machine intelligence, in an investment context, to be a unifying term for machine

learning and artificial intelligence. (Zilis 2014)

Figure 1 Machine Intelligence Landscape, Source: (Zilis 2014)
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There are a number of reasons that can explain the dizzying array of companies that

seek to be involved in the machine intelligence landscape. There could be a number

of contributing factors but the following at the very least provide some insight into

this.

- Lowering of computational barriers

- Abundant sources of rich data

- Increasing need for intelligent solutions

These companies are working to deliver complex systems that utilize machine

learning implementations. Gartner Research has categorized these benefactor

machine learning systems as Smart Machines, a rapidly emerging set of technologies

that pose great risk and reward to business. The use cases for these smart machines

span consumer, enterprise, public-sector and vertical industry markets. (Brant and

Austin 2014)

These complex smart machines are expected to

- Understand problems and their context

- Mimic human reactions to questions in natural language

- Make decisions using probabilistic models

- Predict future states
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Gartner Research expects the product cycle for these smart machines to mimic the

industry hype cycle graph depicted in Figure 2. The goal of Natural Language

Processing (NLP) smart technology is linguistic competence comparable or superior

to humans. NLP technologies in its current state fall far short of that goal, but have

undergone significant advancement in research since 1950.

NLP is an umbrella category for many different capabilities. Many IT-based

linguistic uses are already practical, powerful and commonplace (such as semantic

analysis). Its uses go beyond enhanced human-computer interaction to include the

ability to "understand" (draw inferences based on) large bodies of ever-changing

content. (Brant and Austin 2014)
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Figure 2 Smart Machines Hype Cycle for 2014 (Source: Gartner)
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Architectures for NLP Machine Intelligence

In this section, I will provide an overview of some of the commonly available NLP

Machine Intelligence architectures. These architectures involve the use of open

source packages and frameworks. They also vary in their use of data ingestion

patterns.

Private Cloud

Most vendors in the NLP Machine Intelligence space opt for an on premise setup of

their environment. This option provides the most flexibility and additionally has the

highest potential for an optimally tuned and performant system. The disadvantages

for a private cloud setup are that the vendor will have to in-house many auxiliary

functions requisite for managing this cloud - functions such as security and

authentication management, network operations, operating system updates and

firewall management. These auxiliary functions require appropriate staffing levels

and can prove distracting for a vendor that is just starting up in the NLP Machine

Intelligence space.
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API Layer

Database Layer ETL

Sentiment Engine NLP Engine

Figure 3 Typical Architecture Setup

In Figure 3, 1 provide an example of a typical private cloud setup. The reference to

NLP and Sentiment engine in the diagram can be any number of currently available

open source packages such as MALLET, Stanford NLP and Sentiment engine, Vowpal

Wabbit, Apache Mahout.

Additionally, it is easy to glean from Figure 3 the dependence on common plumbing

techniques such as the ETL (Extract, Transform, Load) systems that are required for

the transfer of data from the application into the NLP/Machine Learning systems for

appropriate processing. The ETL system may be used in back propagation if we are

to use the results from the NLP/Machine Learning processing back into application

logic. This plumbing technique of ETL suffers from not being realtime, as these data
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transformation processes typically run in batch mode during off-peak hours so as to

not stress the systems.

Hybrid Cloud

To alleviate the pressures of needing auxiliary teams to manage a private cloud, a

cost-efficient approach is to use a Hybrid Cloud strategy. In this strategy, we employ

the NLP and Machine Learning cloud offerings from vendors like Google, Amazon

Web Services, IBM Watson.

API Layer

Database Layer

Firewall

Figure 4 Hybrid cloud Example using AWS

In Figure 4, I depict a sample hybrid cloud setup using components from Amazon

Web Services such as AWS Elastic Map Reduce framework along with AWS Data

16
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pipeline, CloudWatch Alarms and Identity Access Management. These components

can easily be spun up and down as per demand and is very elastic to the nature of

the needs.

IBM Watson, Google Cloud and Microsoft Azure have similar offerings that allow for

this API based invocation of NLP and machine learning processing.

This hybrid cloud approach offers the benefits of elasticity and low maintenance,

which is particularly advantageous for startups with small engineering teams.
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General Problems with current NLP Machine Intelligence

Machine learning offers immeasurable benefits and aids in building complex

systems. However, there is a dangerous precedent that is played out with the rapid

adoption of machine learning for existing systems. This precedent is that machine

learning enabled systems are not scalable, run too slow, consume too much memory

and are not built to handle even minute variations outside their operating range.

These issues with machine learning systems can be categorized (Sculley et al.)

- boundary erosion

- entanglement

- hidden feedback loops

- undeclared consumers

- data dependencies

- changes in the external world

- system level anti-patterns.

One example of a problematic implementation is a current state of the art NLP

classifier technology that works very well on a limited tree bank, typically less than

a million words, but begins to fail when the same machine learning system is scaled

up to a 1 billion word training corpus.

Michele Banko and Eric Brill at Microsoft Research conducted a series of

experiments to evaluate the performance of confusion set disambiguation machine
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learning algorithms for a simple English grammar checker. Confusion set

disambiguation is one of a class of natural language problems involving

disambiguation from a relatively small set of alternatives based upon the string

context in which the ambiguity site appears (Banko and Brill 2001b).

In all the machine learning approaches studied by Banko and Brill for this

experiment, the confusion disambiguation problem is described as follows: Given a

specific confusion set (e.g. {to,two,too}), all occurrences of confusion set members in

the test set are replaced by a marker; everywhere the system sees this marker, it

must decide which member of the confusion set to choose. (Banko and Brill 2001b)

Problems in Classification Accuracy

In these experiments, the learning curves for various machine learning algorithms

were studied. The machine learning algorithms employed were

- winnow

- perceptron

- naive Bayes

- simple memory-based learner
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Figure 5 Learning Curves for Confusion Set Disambiguation, Source: (Banko & Brill, 2001)

Figure 5 clearly depicts what is described as non-ideal for a scalable algorithm. With

increase in training corpus size from less than a million words to a 1 billion words,

the accuracy increases for each implementation. This is non-ideal because in log-

linear graph like we this, we should expect to see asymptotic increase in accuracy, as

depicted in Figure 6, which we clearly do not see.
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Figure 6 Ideal Learning Curve for scalable Confusion Set Disambiguation

This shows us that these machine learning implementations suffer from being

optimized for a narrow training corpus range (- 1million words) and are not able to

cope with any increase in training corpus size. This represents a significant

complexity in being able to find real world applicability for these algorithms.

Problems with Memory bounds

Ignoring the problems in classification accuracy, it was also demonstrated by Banko

and Brill that these machine learning implementations also suffered from memory

bound issues when scaling to very large data sets.
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Figure 7 Memory Size vs Training Corpus Size, Source: (Banko and Brill, 2001)

In Figure 7 we see the bounds we hit in memory when trying to increase the corpus

size for the afore mentioned machine learning implementations for confusion set

disambiguation. This again represents a departure from real world applicability of

these machine learning approaches in systems where RAM comes at a premium. To

answer this issue, we would need to look into enabling compression on these

machine learning algorithms.

Problems with CPU performance

A popular tool used for machine learning is Weka (Waikato Environment for

Knowledge Analysis). Weka is a popular suite of machine learning written in Java,

and was developed at the University of Waikato in New Zealand and is free software

available under the GNU license. (Hall et al. 2009)
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The ease of Weka is apparent in its GUI implementation, however, when attempting

to use it for larger data sets, there are limitations that require tweaking of the Java

VM heap. Even after making these tweaks, there are still limitations in expanding the

data sets to larger sizes.

An NLP implementation test using Weka was conducted where a Webdocs dataset

with 1.7 million transactions over 5.2 million unique items was processed. The

Weka Apriori algorithm finds sets of items that appear frequently in transactions. To

achieve 10% support, Weka continued processing for 3 days at which point the

implementation was terminated. An unverified implementation of the Apriori

algorithm by a StackOverflow.com user "mvarshney" claims to have achieved

processing in 4hr 24 min. In this implementation, the user "mvarshney" attributed

this massive speedup by use of Tries data structures instead of Weka's

implementation in hashtables (Mvarshney). Additionally, "mvarshney" s

implementation claims to have achieved a CPU-bound improvement by taking 39

minutes to run on a single 8-core machine and taking 6min 30sec on 8 machines,

representing a 400% improvement.

This example is one of many problems that can be found when attempting to apply

stock machine learning algorithms and toolset against much larger data sets than

what they were intended for before running into processor and memory limitations.
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Current State of Machine Learning Optimizations

Machine learning has benefited from increased research both from academia and

from industry. These two approaches represent different angles of optimization that

can be combined together to manifest in powerful and pragmatic applications.

In the next few sections, I will evaluate these optimizations.

Distributed Deep Networks

Google has a vested interest in furthering industry research on Natural Language

Processing, Machine Learning and Text Analytics. Google introduced the Google

Search Appliance (now labeled "Google Search for Work") in 2002 in its first foray

into the Enterprise Search and Enteprise Content Management (ECM) sector.

State of the art performance in text processing traditionally has been achieved

through the use of deep learning and unsupervised feature learning. It has been

observed that increasing the scale of deep learning by increasing the number of

training examples, the number of model parameters, or both, can drastically

improve the classification accuracy. (Dean et al. 2012)

Until very recently, the use of GPUs provided a significant advance in boosting

computational power needed for crunching through unsupervised feature learning
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and deep learning implementations. However, a theoretical limit was reached when

attempting to use GPUs with modestly sized data sets. A known limitation of the

GPU approach is that the training speed-up is small when the model does not fit in

GPU memory (typically less than 6 gigabytes). To get around this limitation,

researches often reduced the size of the training data or parameters so that CPU-to-

GPU transfers are not a bottleneck. (Dean et al. 2012)

However, reducing the size of the training data or parameters to get around the

CPU-to-GPU transfer limitation worked well for small problems (ex: for acoustic

modeling for speech recognition), they are less attractive for problems with a large

number of examples and dimensions (ex: high resolution images or paragraph

inference). (Dean et al. 2012)

Google's research scientists and engineers were able to combat this limitation by

using large-scale clusters of machines to distribute training and inference in deep

networks. They developed a software framework called DistBelief that enables

model parallelism within a machine via multithreading and across machines via

message passing. The DistBelief framework manages the details of parallelism,

synchronization and communication. (Dean et al. 2012)

In addition to model parallelism, the DistBelief framework also supports data

parallelism where multiple replicas of a model are used to optimize a single
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objective. The Google engineers also implemented two new methods for large-scale

distributed feature learning: (Dean et al. 2012)

- Downpour SGD

- Sandblaster L-BFGS

Distbelief Framework

DistBelief supports distributed computation in neural networks and layered

graphical models. The user defines the computation that takes place at each node in

each layer of the model, and the messages that should be passed during the upward

(alternatively forward or feedforward) and downward (alternatively backward or

backprop) phases of computation. In the case of a neural network, 'upward 'is

synonymous with 'feedforward' while 'downward' is synonymous with 'backprop'.

In a Hidden Markov Model, they are alternatively called 'forward' and 'backward'

(Dean et al. 2012)

26
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G =r

Figure 8 Model Parallelism in DistBelief fr-amework

Error! Reference source not found. depicts the model parallelism with a five layer

deep neural network with local connectivity partitioned across 4 machines. Only

those nodes with edges that cross partition boundaries will need to have their state

transmitted between machines. Even in cases where a node has multiple edges

crossing a partition boundary, its state is only sent to the machine on the other side

of that boundary once. Within each partition, computation for individual nodes will

be parallelized across all available CPU cores.

Downpour SGD

Stochastic Gradient Descent (SGD) is perhaps the most commonly used optimization

procedure for training deep neural networks. Unfortunately, the traditional
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formulation of SGD is inherently sequential making it impractical to apply to very

large data sets where the time required to move through the data in an entirely

serial fashion is prohibitive. (Dean et al. 2012)

Downpour SGD is a variant of asynchronous stochastic gradient descent that uses

multiple copies of a single DistBelief model. The idea is to divide the training data

into a number of subsets and run a copy of the model on each of these subsets. The

models communicate updates through a centralized parameter server that keeps

the current state of all parameters for the model, sharded across many machines. An

example is if we had 10 parameter server shards, each shard is responsible for

storing and applying updates to 1/10th of the model parameters. (Dean et al. 2012)

Parameter Server W I= W - ?7AW

// II \\
Model m m

Replicas ID10D [ED]

Data
Shards

Figure 9 Downpour SGD System. Source (Dean et al. 2012)

The asynchronous and parallel aspect of this implementation arise from two

features
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- the model replicas run independently of each other

- the parameter server shards also run independently of one another.

The model parallelism results in significant speed up as described in the

performance section. These parallelism features also bring robustness to this

implementation that is not present in the synchronous implementation.

The synchronous implementation however was bound to a single point of failure

where if one machine failed, the entire training process is delayed. However, in

Downpour SGD, this robustness in parallelism prevents it from having a single point

of failure.

The learning rate is further improved by the use of the Adagrad adaptive learning

rate procedure. This adaptive learning rate procedure is implemented in each

parameter server which offers advantages in robustness over using a single fixed

learning rate. The use of Adagrad extends the maximum number of model replicas

that can productively work simultaneously. Through a practice known as

"warmstarting" model training, where only a single model replica is used for the

training before introducing the other model replicas, stability concerns are virtually

eliminated. (Dean et al. 2012)

Sandblaster L-BFGS

Sandblaster is an optimization framework especially applicable to batch methods

for training in deep networks. Jeff Dean, and others at Google introduced this
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framework and implemented Limited Memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) on this framework.

The central idea to the Sandblaster optimization framework is distributed

parameter storage and manipulation. The core of the L-BFGS algorithm resides in a

coordinator process, which does not have direct access to the model parameters.

The coordinator issues commands drawn from a small set of operations (dot

product, scaling, coefficient-wise addition, multiplication) that can be performed by

each parameter server shard independently, with the results being stored locally on

the same shard. The history cache of L-BFGS is also stored on the parameter server

shard on which it was computed. This allows running large models in the range of

billions of parameters, without incurring the overhead of sending all the parameters

and gradients to a single central server.
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Figure 10 Sandblaster L-BFGS System. Source: (Dean et al. 2012)

Some implementations of L-BFGS attempt to parallelize the training step by

distributing data to many machines and by having each machine compute the

gradient on a specific subset of data examples. The gradients are then sent back to

the central server. These typical implementations suffer from having to wait for the

slowest machine in the farm to respond back with the computed gradient. This

bottleneck thus makes it impossible for such an implementation to scale well to

large shard clusters.

The Sandblaster framework distinguishes itself from this scalability issue by

employing a load-balancing scheme. The coordinator assigns each of the N model

replicas a portion of work, that is much smaller than 1/Nth the total size of a batch,

and assigns model replicas new portions whenever they are free. In this approach,
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faster model replicas do more work than slower replicas. To further manage slow

model replicas at the end of a batch, the coordinator schedules multiple copies of

the outstanding portions and uses the result from whichever model replica finishes

first. (Dean et al. 2012)

Performance

The team at Google conducted a series of experiments to validate the parallelism

benchmark. Here they measured the mean time to process a single mini-batch for

simple SGD training as a function of the number of machines used in a single model

instance. The average training speed up is measured as the ratio of the time taken

using only a single machine to the time taken using N. (Dean et al. 2012)

-- Speech: 42M parameters
- -Images: 80M pararmeters
vImages: 330M parameters

-C- Images: 1.7B parameters

10

077
1 16 32 64 128

Machines per model instance

Figure 11 Training Speedup for DistBelief framework, Source: (Dean et al. 2012)
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Figure 11 shows the DistBelief framework impact on training speed up for four

different networks (speech and three image deep network) as a function of

machines allocated to a single DistBelief model instance. Models with more

parameters benefit more from the use of additional machines that do models with

fewer parameters.(Dean et al. 2012)

Additional experimentation for gauging performance in the speedup of the

DistBelief framework using Sandblaster L-BFGS and Downpour SGD were

conducted. The improvements were benchmarked for the two following criteria

- Training Accuracy Speed Up

- Classification Accuracy Speed up

Accuracy on Training Set

E
UL

--- DownpourSGD [201
-0- DownpourSGD [2001 wlAoagrad
-4- Sandblaster L-BFGS (20001

20 4 s Wi 100 120

Time (hours)

Figure 12 Classification Accuracy on training data as a function of training time,

Source: (Dean et al. 2012)
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Figure 12 shows improvement in classification accuracy for each of the four deep

networks. The ideal scenario involves obtaining the maximum test set accuracy in

the minimum amount of training time, regardless of computing resources. For this

experiment, the team at Google, kept the computational resource requirements

stable. We do not consider the impact of computation requirements such as run on a

20 core machine versus an 8 core machine, or whether the training was conducted

on a vanilla server or on a GPU using CUDA.

Accuracy on Test Set

SGD (I
- -GPUDi]

5 -0-DownpourSGD (20)
DownpourSGD (201 w:Adagrad

-0- DownpourSGD (200 wJAdagrad
-0- Sandblaster L-BFGS 12000_

20 40 60 so '00 12C

Time (hours)

Figure 13 Classification accuracy on test data as a function of training time, Source:

(Dean et al. 2012)

Figure 13 depicts classification performance for a test data set. Conventional single

replica SGD (black curves) is the slowest to train. Downpour SGD with 20 model
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Error! Reference source not found. depicts classification performance for a test

data set. Conventional single replica SGD (black curves) is the slowest to train.

Downpour SGD with 20 model replicas (blue curves) shows a significant

improvement. Downpour SGD with 20 replicas plus Adagrad (orange curve) is

modestly faster. Sandblaster L-BFGS using 2000 model replicas (green curves) is

considerably faster yet again. The fastest, however, is Downpour SGD plus Adagrad

with 200 model replicas (red curves). Given access to sufficient CPU resourses, both

Sandblaster L-BFGS and Downpour SGD with Adagrad can train models

substantially faster than a high performance GPU.

Application within Google

Google was successfully able to use this DistBelief system to train a deep network

30x larger than previously reported, and achieves state-of-the-art performance on

ImageNet, a visual object recognition task with 16 million images and 21,000

categories. Google was also able to demonstrate that these same techniques

dramatically accelerate the training of a more modestly- sized deep network for a

commercial speech recognition service. Google's focus is primarily on large neural

networks, however, the framework and underlying algorithms are applicable to any

gradient-based machine learning algorithm.
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Distributed Asynchronous Online Learning

In the previous section, I evaluated Google's distributed framework with adaptive

learning optimizations. In this section, I will highlight research that has combined

distributed computing with asynchronous or "online" learning.

Modern NLP models are notoriously difficult and expensive to train. Two recent

developments have led to major improvements in NLP models. (Gimpel, Das, and

Smith 2009)

- Online learning algorithms

These algorithms update the parameters of a model more frequently,

processing only one or a small number of training examples, called a "mini"

batch between updates.

- Distributed computing

Training of the model is divided among multiple CPUs for faster processing

between updates.

Online learning algorithms are optimized to offer fast convergence rates and

scalability to large datasets. Distributed computing however is a more natural fit for

algorithms that require a lot of computation to be done between updates. Typically,
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distributed online learning has been done in a synchronous setting, meaning that a

mini-batch of data is divided among multiple CPUs, and the model is updated when

they have all completed processing. (Gimpel, Das, and Smith 2009)

Synchronous frameworks have the drawback that they are only able to benefit from

parallelism within one mini-batch iteration. Additionally, empirical research seems

to suggest that online methods only converge faster than batch algorithms when

using very small mini-batches. Thus using a synchronous framework for online

learning will not offer much benefit. (Gimpel, Das, and Smith 2009) *

In Gimpel, Das and Smith's paper on distributed asynchronous online learning, they

focused on asynchronous algorithms, where multiple mini-batches are processed

simultaneously, each using potentially different and stale parameters. The key

advantage of an asynchronous framework is that it allows processors to remain in

near constant use, preventing them from wasting cycles awaiting other processors

to complete their portion of the current mini-batch. In this way, asynchronous

algorithms allow more frequent parameter updates, which speeds up convergence.

Natural Language processing tasks such as named entity recognition and

unsupervised parts-of-speech tagging have been evaluated with in Gimpel, Das and

Smith's research, and have shown to converge much faster when using a distributed

asynchronous framework with online learning. (Gimpel, Das, and Smith 2009)
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Streaming for large scale NLP

In the earlier sections, I discussed some challenges with current machine learning

implementations where an explosion in data sets has caused issues with CPU

performance as well as memory bounds that slow down the learning rate of a

machine learning model, or render the model ineffective.

In research by Goyal, Daume and Venkatasubramanian, a streaming algorithm

paradigm was explored to be able to handle large amounts of data for NLP

applications such as speech recognition, spelling correction and information

extraction for use within eDiscovery, Enterprise Search and Enteprise Content

Management (ECM) solutions.

Traditional approaches for NLP tasks have involved long computational times along

with large memory requirements. For example, one traditional experiment required

1500 machines for a day to compute the relative frequencies of n-grams from 1.8TB

of web data (Goyal, Daum6 III, and Venkatasubramanian 2009). The resulting

language model comprised 300 million unique n-grams. This memory requirement

for 300 million unique n-grams along with the computational horsepower required

to compute this model is a missed opportunity in current eDiscovery, Enterprise

Search and ECM applications.
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Some optimization techniques have been proposed in the past that involved

applying either entropy pruning or count pruning to reduce the memory

requirement for a large language model, such as the 300 million unique n-gram

model. However, employing these pruning approaches to reduce the size of the

language model results in two difficulties when the order of the language model

increases, say from 1.8TB to 1.8PB of web data. (Goyal, Daum6 III, and

Venkatasubramanian 2009)

- The computation time to build the database of counts increases rapidly.

- The initial disk storage required to maintain these counts, prior to applying

the pruning for compression is enormous.

The streaming method solves both these problems. Instead of estimating a large

model and then applying pruning to compress it, the approach directly estimates a

small model. This is done by using a deterministic streaming algorithm that

computes the approximate frequency counts of frequently occurring n-grams.

Experiments have shown that directly storing approximate counts of frequent 5-

grams compared to using pruning gives equivalent business application

performance, while dramatically reducing the memory usage and avoid the pre-

computation of a large model. (Goyal, Daum6 III, and Venkatasubramanian 2009)
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Other Optimizations

There are many other optimizations well suited to the specific type of

implementation of NLP machine learning algorithms.

Latent Dirichlet allocation is a machine learning technique that is used for text

summarization in NLP. In Latent Dirichlet Allocation, we can use Gibbs sampling as

an approximation to representing a collapsed Dirichlet distribution. This sampling

method is advantageous as it reduces the computing time in needing to keep this

distribution updated, and additionally reduces the overall memory footprint,

allowing it to be embedded into applications easier. (Porteous et al. 2008)
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Applications to Missed Opportunities

The above system improvements to machine learning have immense business

applicability to the realm of eDiscovery, enterprise Search and Enterprise Content

Management(ECM). In the following sections, I posit how applying these

optimizations can result in huge upside potential for current vendors in the ECM

and eDiscovery markets.

Enterprise Content Management

The worldwide market for ECM software grew by 8.6% in 2013, to a revenue total of

$5.1 billion, which indicates that ECM technologies continue to attract more users

and deliver value to enterprises. (Gilbert et al. 2014)

Creative and varied uses of ECM tools and services abound as organizations move

well beyond basic uses, such as for secure file storage in organized libraries, to

tackle deeper business challenges that need strong and flexible process capabilities.

This has led organizations increasingly to regard ECM as an environment for

solutions that meet a range of business needs, from departmental requirements to

more complex enterprise requirements. In addition to focusing on solutions to meet

this demand, more ECM vendors are offering cloud-based environments, mobile

interfaces and social capabilities to meet the market's needs. (Gilbert et al. 2014)
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Gartner Research expects to see a generational "makeover" with ECM moving

further away from its roots in networked back-office environments. Gartner

Research posits the concept of "content in context" which will be key to the ECM

market's evolution as enterprises increasingly need content to be delivered in a

personalized fashion - to the right people, at the right time, on the right devices,

and in the context of particular business processes or needs.

This "content in context" market opportunity represents the biggest blind spot for

the leading vendors in the ECM space such as Microsoft, IBM, EMC and others.

By applying the optimizations for large scale Streaming NLP, as discussed earlier,

these ECM solutions can easily be extended to ingest multiple corpuses of

information such as Customer Experience Data. Additionally, the distributed

asynchronous online learning optimizations, also discussed earlier, allow for these

ECM solutions to continually update their learning models in real time. These

combinations provide easy extensibility for ECM solutions to fill this untapped

market void for "content in context" type solutions.
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eDiscovery

Gartner forecasts that revenue in the enterprise e-discovery software market will

grow from $1.8 billion in 2014 to $3.1 billion in 2018. Double-digit revenue growth

of approximately 15% is expected because of increasing volumes of litigation and

regulatory investigation, and the ever-expanding amount of ESI that must be

searched in support of these activities. Corporations continue to move from relying

on service providers for the identification, preservation, collection and processing of

data to managing the discovery process themselves, in-house. (Zhang, Logan, and

Landers 2014)

According to Gartner, there are a number of adjacent software markets, including

information governance, EIA, enterprise content management, file analysis,
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enterprise search and data analytics. Gartner expect that vendors in these areas will

extend their offerings to include e-discovery functions and that vendors already in

the e-discovery market will add further capabilities, for example, from the content

analytics or workflow sectors. (Zhang, Logan, and Landers 2014)

However, an unaddressed need by current eDiscovery software vendors is true

integration with enterprise cyber security solutions. Such an integrated solution

would offer real time event trigger based data collection and review.

This is a missed opportunity in the eDiscovery market because of the technical

complexity that this integrated solution would need to overcome. Aside from the

challenge of real time scanning of every definable event (emails, texts, chats, web

page views, access requests), this solution would also have to contextualize

associated content with this event, such as relevant body of the text, chat, voicemail;

relevant content in the web page, attachment and relevant documents in stored in

the ECM solution.

All this complexity becomes a great fit for the machine learning optimizations

discussed in earlier sections. Use of distributed deep networks along with the large

scale streaming capabilities, this solution could easily tap into any source of these

events and additionally contextualize using the less expensive memory

representations of models using sampling and other optimizations. Additionally, the
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machine learning models could easily be updated in a distributed, online and

asynchronous fashion.

This cyber security incident triggered eDiscovery solution now becomes all too

realizable technically, and is sure to gain a large slice of the $3.1 billion eDiscovery

market.
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Summary

In this research I have identified unmet market opportunities in the Enterprise

Content Management and eDiscovery market space. I have also identified where

most of today's NLP applications fall short of being an optimal and scalable system

solution. I have also evaluated recent improvements in machine learning

approaches to NLP. These optimizations provide the missing link to be able to fill

the void of unmet market opportunities.

46



The Future

In the past few years there has been an increasing number of NLP applications to

ameliorate communication between human and machine. This communication is

increasingly required to be further refined and enhanced and to emulate human

conversational patterns. The big data phenomenon has also created a rising

demand for robust NLP technologies that can extract and process human

conversation on a real time basis. Certain verticals such as healthcare and the

financial capital markets have seen increased demand for these technologies.

Furthermore, the rising amounts of social media content having rich unstructured

information about customer's perception and brand value has further encouraged

the use of NLP technologies in various applications. (Marketsandmarkets.com 2013)

Currently, rule based NLP, statistical NLP and hybrid NLP solutions are leading

forms of NLP solutions. There is a much stronger need for innovation in this market.

Organizations are increasingly spending on building far more effective and

innovating processing engines that can be used with new technologies, such as

machine to machine communication and multimodal data

receptions.(Marketsandmarkets.com 2013)

The healthcare industry is seeing an emergent need for NLP applications, with the

most dominant need being computer assisted bill coding in healthcare. The usage of

NLP can also be customized based on functionality types, response requirements
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and business language followed in the industry. For example, the healthcare sector

has already established standards such as ICD-9 and ICD-10.
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Figure 15 NLP Market and Y-o-Y Growth (Source: MarketsAndMarkets.com)

Recently there have been mergers and acquisitions of newer companies in the NLP

market. Google's $500 million purchase of Al company DeepMind in January of

2014, Facebook announcing the set up of its new Artificial Intelligence lab, IBM's

Watson supercomputer now working on deep learning and Yahoo's recent

acquisition of photo analysis startup LookFlow to lead its new deep learning group

(Shu 2014). Many emerging players are also entering into the market with unique

capabilities and innovative products and solutions. With a focus on providing

solutions via the cloud as a Software as a Service platform, these emerging players

are responsible for the growing adoption of acceptance of NLP technologies in the

market. (Marketsandmarkets.com 2013)
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The future for NLP technologies is bright and can be generalized into categories for

growth.

- Recognition technologies such as Interactive Voice Response (IVR), Optical

Character Recognition (OCR) and pattern and image recognition

- Operational technologies such as auto bill coding for healthcare,

categorization and classification technologies

- Analytics such as speech and text analytics

Figure 15 depicts the projected year on year forecast according to

MarketsAndMarkets.com for NLP technologies. The market is expected to grow

from $3,787.3 million in 2013 to $9,858.4 million in 2018, which represents a

compound annual growth rate of 18% from 2013 to 2018.

(Marketsandmarkets.com 2013)
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Appendix A - Downpour SGD Client PseudoCode

Source - (Dean et al. 2012)

Algorithm 1.1: DOWNPOURS GDCLIENT(a, af tch, nysh)

procedure STARTASYNCHRONOUSLYFETCHINGPARAMETERS(parameters)

parameters +- GETPARAMETERSFROMPARAMSERVERO

procedure STARTAS YNCH RONOUSLYPUSHINGGRADIENTS(accruedgradients)
SENDGRADIENTSTOPARAMS ERVER(accruedgradients)
accruedgradients +- 0

main
global parameters, accruedgradients
step +- 0
accruedyradients +- 0
while true

if (step mod nfctch) == 0
then STARTASYNCHRONOUSLYFETCHINGPARAMETER(parameters)

data +- GETNEXTMINIBATCH()
gradient +- COMPUTEGRADIENT(parameters, data)

do accrued gradients +- accruedgradients + gradient
parameters +- parameters - a * gradient
if (step mod nsh) == 0

then STARTASYNCHRONOUSLYPUSHINGGRADIENTS(accruedgradients)
step +- step + 1
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Appendix B - Sandblaster L-BFGS Pseudocode

Source = (Dean et al. 2012)

Algorithm 1.2: SANDBLASTERLBFGSO

procedure REPLICA.PROCESSPORTION(portianf)
if (!hasParametersForStep)

then parameters +- GETPARAMETERSFROMPARAMSERVERQ
data +- GETDATAPoRTION(pOrtion)
gradient <- COMPUTEG RADIENT(parameters, data)
localAccruedGradients +- localAccruedGradients + gradient

procedure PARAMETERSERVER. PERFORMOPERATION(operation)
Per f ormOperation

main
step +- 0
while true

r comment: PS: ParameterServer

do

PS.accruedgradients 4- 0
while (batchProcessed < batchSize)

for all (modelReplicas)comment: Loop is parallel and asynchronous

if (modelfReplicaAvailable)

then REPLICA.PROCESSPORTION(modelReplica)
do I batchProcessed 4- batchProcessed + portion

if (modelReplicaWorkDone and timeToSendGradients)

then SENDGRADIENTS(modelReplica)
I heI PS.accruedGradients +- PS.accruedGradients + gradient

COMPUT ELBFG DIRECTION(PS.Gradients, PS.History, PS.Direction)
LINES EARCH(PS.Parameters, PS.Direction)
PS.UPDATEPARAMETERS(PS.pararmeters, PS.accruedGradients)
step <- step + 1
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