
OPM Model-Based Integration of Multiple Data
Repositories

Greg Wilmer

SUBMITTED TO THE SYSTEM DESIGN AND MANAGEMENT PROGRAM IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE IN ENGINEERING AND MANAGEMENT
AT THE

MASSACHUTSETTS INSTITUTE OF TECHNOLOGY
JANUARY 2015 [Febmr' Os1v]

2015 Greg Wilmer. All rights reserved.

The author hereby grants to MIT permission to reproduce
and to distribute publicly paper and electronic

copies of this thesis document in whole or in part
in any medium now known or hereafter created.

Signature of Author:

Certified By:

Accepted By:

ARCHVES
MASSACHUSETTS INSTITUTE

OF TECHNOLOLGY

AUG 06 2015

LIBRARIES

Signature redacted
I Greg Wilmer

Systems Design and Management Program
January 2015

_____Signature redacted
Dov Dori

Visiting Professor at Engineering Systems Division
Thesis Supervisor

Signature redacted
iatrick Hale

Executive Director
Systems Design and Management Program



This page intentionally left blank.

2



OPM Model-Based Integration of Multiple Data
Repositories

Greg Wilmer

Submitted to the System Design and Management Program
on November 30, 2014 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in
Engineering and Management

ABSTRACT

Data integration is at the heart of a significant portion of current information system
implementations. As companies continue to move towards a diverse, growing set of
Commercial Off the Shelf (COTS) applications to fulfill their information technology
needs, the need to integrate data between them continues to increase. In addition, these
diverse application portfolios are becoming more geographically dispersed as more
software is provided using the Software as a Service (SaaS) model, and companies
continue the pattern of moving their internal data centers to cloud-based computing.

As the growth of data integration activities continues, several prominent data
integration patterns have emerged, and commercial software packages have been
created that covers each of the patterns below:

1. Bulk and/or batch data extraction and delivery (ETL, ELT, etc.)
2. Messaging / Message-oriented data movement
3. Granular, low-latency data capture and propagation (data synchronization)

As the data integration landscape within an organization, and between organizations,
becomes larger and more complex, opportunities exist to streamline aspects of the data
integrating process not covered by current toolsets including:

1. Extensibility by third parties. Many COTS integration toolsets today are
difficult if not impossible to extend by third parties.

2. Capabilities to handle different types of structured data from relational to
hierarchical to graph models

3. Enhanced modeling capabilities through use of data visualization and
modeling techniques and tools

4. Capabilities for automated unit testing of integrations

3



5. A unified toolset that covers all three patterns, allowing an enterprise to
implement the pattern that best suites business needs for the specific scenario

6. A Web-based toolset that allows configuration, management and deployment
via Web-based technologies allowing geographical indifference for application
deployment and integration

While discussing these challenges with a large Fortune 500 client, they expressed the
need for an enhanced data integration toolset that would allow them to accomplish such
tasks. Given this request, the Object Process Methodology (OPM) and the Opcat toolset
were used to begin design of a data integration toolset that could fulfill these needs. As
part of this design process, lessons learned covering both the use of OPM in software
design projects as well as enhancement requests for the Opcat toolset were documented.

Thesis Supervisor: Dov Dori
Title: Visiting Professor at Engineering Systems Division

4



Acknowledgements

I would like to thank Dov Dori for his guidance and support during the thesis process.
His experience and insights were invaluable.

I would also like to thank Pat Hale and all of the staff at SDM for their support and
guidance throughout the SDM program.

Last but definitely not least I would like to thank my wife and children for allowing me
to spend countless hours behind the computer and six months in my two hundred and
fifty square foot dream house on the MIT campus. I couldn't have done this without
your love and support.

5



Table of Contents

ABSTRACT ............................................................................................................................................................. 3
Acknow ledgem ents ........................................................................................................................................... 5
Table of Contents................................................................................................................................................ 6
Table of Figures................................................................................................................................................... 8
Research Objectives ........................................................................................................................................ 10
Introduction........................................................................................................................................................11
Requirem ents and Opportunities for Im provem ent..................................................................... 13

Extensibility by Third Parties ................................................................................................................ 13
Different Types of Structured M odels.......................................................................................... 17
Enhanced M odeling Capabilities...................................................................................................... 20
Autom ated Unit Testing ........................................................................................................................... 21
A unified toolset that covers all three patterns.......................................................................... 27

Data Integrating M odel..................................................................................................................................31
System Diagram ........................................................................................................................................... 31
System Set - unfolded................................................................................................................................32
Data Set - unfolded.....................................................................................................................................33
Data Integrating System - unfolded.....................................................................................................34
Data Integrating in-zoom ed....................................................................................................................35
Integration Com ponent Repository unfolded............................................................................. 37
Configuration / Operational Repository - unfolded............................................................... 38
Integration Defining - in-zoom ed ................................................................................................... 39
Connection Set Defining - in-zoom ed .......................................................................................... 41
Connection Com ponent Set - unfolded........................................................................................ 42
Connection Definition - unfolded .................................................................................................. 42
Connection Type - unfolded...................................................................................................................43
Connection Definition Setting Set - unfolded............................................................................ 44
Connection Defining - in-zoom ed................................................................................................... 45
Connection Definition Setting Set Defining - in-zoom ed ....................................................... 46
DAS/NAS Connection Definition Setting Set - unfolded ...................................................... 47
SSH Connection Definition Setting Set - unfolded .................................................................. 47
Database Connection Definition Setting Set - unfolded....................................................... 48
Data M odel Set Defining - in-zoom ed .......................................................................................... 48
Data M odel Com ponent Set - unfolded........................................................................................ 49
Data M odel Definition - unfolded .................................................................................................. 50
Data M odel Defining - in-zoom ed................................................................................................... 51
Relational M odel Definition - unfolded........................................................................................ 53
Graph M odel Definition - unfolded ................................................................................................ 55
Relational M odel Defining - in-zoom ed ....................................................................................... 56
Graph M odel Defining - in-zoom ed................................................................................................ 57
Integration DAG Com ponent Set - unfolded ............................................................................... 57
Integration DAG Definition - unfolded .......................................................................................... 58
Com ponent Definition Node Set - unfolded ............................................................................... 60
Integration DAG Defining - in-zoom ed........................................................................................ 60

6



Component Definition Node Set Defining - in-zoomed .......................................................... 62
Component Definition Set Defining - in-zoomed .................................................................... 62
Reader Component Set - unfolded ................................................................................................ 64
Reader Definition Set - unfolded......................................................................................................64
Reader Set Defining - in-zoomed ................................................................................................... 64
R eader D efinition - unfolded ................................................................................................................. 65
R eader D efining - in-zoom ed ................................................................................................................. 67
Data Model Defining or Selecting - in-zoomed .......................................................................... 68
Form at D efinition - unfolded ................................................................................................................. 68
Form at T y p e - u n folded ........................................................................................................................... 6 9
Format Setting Set - unfolded ........................................................................................................... 70
Entity Format Setting Set - unfolded............................................................................................. 71
Attribute Format Setting Set - unfolded .................................................................................... 71
Form at D efining - in-zoom ed ................................................................................................................ 73
Reader Definition Setting Set - unfolded..................................................................................... 74
Database Reader Definition Setting Set - unfolded..................................................................74
File Reader Definition Setting Set - unfolded ............................................................................ 75
Reader Definition Setting Set Defining - in-zoomed............................................................... 76
Processor Component Set - unfolded........................................................................................... 77
Processor Definition Set - unfolded............................................................................................. 80
Processor Definition - unfolded ..................................................................................................... 80
Processor Definition Setting Set - unfolded ............................................................................... 81
Integration Processor Set Defining - in-zoomed.................................................................... 83
Integration Processor Defining - in-zoomed ............................................................................ 84

Future Extension of the Model ..................................................... Error! Bookmark not defined.
Use of OPM in Software Design Projects ............. Error! Bookmark not defined.
Opcat Additional Requirements / Enhancement Requests ................. Error! Bookmark not
defined.
Future Research Opportunities.................................................... Error! Bookmark not defined.
B ib lio g ra p h y ....................................................................................................................................................... 9 0

7



Table of Figures

Figure 1 - Generic Settings Pattern - Thing Definition ............................................................... 14
Figure 2 - Generic Settings Pattern - Thing Setting Set............................................................ 14
Figure 3 - Generic Settings Pattern - Thing Type 1 Setting Set Unfolded ........................... 15
Figure 4 - Generic Settings Pattern - Connection Definition Unfolded ................................ 15
Figure 5 - Generic Settings Pattern - Connection Definition Setting Set Unfolded.........16
Figure 6 - Generic Settings Pattern - SSH Connection Definition Setting Set Unfolded.....17
Figure 7 - Structured Models - Data Model Definition Unfolded ........................................... 18
Figure 8 - Structured Model - Relational Model Definition Unfolded....................................19
Figure 9 - Structured Model - Graph Model Definition unfolded ........................................... 20
Figure 10 - Automated Unit Testing - Data Integrating In-Zoomed ..................................... 21
Figure 11 - Automated Unit Testing - Test Case Defining & Executing In-Zoomed.............22
Figure 12 - Automated Unit Testing - Test Case Defining In-Zoomed................................. 23
Figure 13 - Automated Unit Testing - Component Node Set Data Set Defining In-Zoomed

........................................................................................................................................................................ 2 4
Figure 14 - Automated Unit Testing - Component Node Data Set Defining In-Zoomed....25
Figure 15 - Automated Unit Testing - Test Case Definition Unfolded .................................. 26
Figure 16 - Unified Toolset - Message Unfolded ............................................................................. 28
Figure 17 - Unified Toolset - Integration Executing In-Zoomed............................................ 29
Figure 18 - Unified Toolset - Component Node Set Executing ................................................ 30
Figure 19 - Data Integrating - System Diagram............................................................................. 31
Figure 20 - System Set unfolded ................................................................................................................ 33
Figure 2 1 - D ata Set unfolded ..................................................................................................................... 34
Figure 22 - Data Integrating System Unfolded ................................................................................ 35
Figure 23 - Data Integrating in-zoomed........................................................................................... 36
Figure 24 - Integration Component Repository - unfolded ...................................................... 37
Figure 25 - Configuration / Operational Repository - unfolded..............................................38
Figure 26 - Integration Defining - in-zoomed............................................................................... 40
Figure 27 - Connection Set Defining - in-zoomed .......................................................................... 41
Figure 28 - Connection Component Set - unfolded........................................................................42
Figure 29 - Connection Definition - Unfolded ................................................................................ 43
Figure 30 - Connection Type - unfolded........................................................................................... 43
Figure 31 - Connection Definition Setting Set - unfolded ......................................................... 44
Figure 32 - Connection Defining - in-zoomed ............................................................................... 45
Figure 33 - Connection Definition Setting Set Defining - in-zoomed................................... 46
Figure 34 - DAS/NAS Connection Definition Setting Set - unfolded ..................................... 47
Figure 35 - SSH Connection Definition Setting Set - unfolded ................................................. 47
Figure 36 - Database Connection Definition Setting Set - unfolded ...................................... 48
Figure 37 - Data Model Set Defining - in-zoomed .......................................................................... 49
Figure 38 - Data Model Component Set - unfolded........................................................................50
Figure 39 - Data Model Definition - unfolded................................................................................ 51
Figure 40 - Data Model Defining - in-zoomed............................................................................... 52
Figure 41 - Relational Model Definition - unfolded..................................................................... 54
Figure 42 - Graph Model Definition - unfolded ............................................................................ 55

8



Figure 43 -
Figure 44 -
Figure 45 -
Figure 46 -
Figure 47 -
Figure 48 -
Figure 49 -
Figure 50 -
Figure 51 -
Figure 52 -
Figure 53 -
Figure 54 -
Figure 55 -
Figure 56 -
Figure 57 -
Figure 58 -
Figure 59 -
Figure 60 -
Figure 61 -
Figure 62 -
Figure 63 -
Figure 64 -
Figure 65 -
Figure 66 -
Figure 67 -
Figure 68 -
Figure 69 -
Figure 70 -
Figure 71 -
Figure 72 -

Relational Model Defining - in-zoomed .................................................................... 56
Graph Model Defining - in-zoomed............................................................................. 57
Integration DAG Component Set - unfolded ............................................................ 58
Integration DAG Definition - unfolded ....................................................................... 59
Component Definition Node Set - unfolded ............................................................ 60
Integration DAG Defining - in-zoomed.......................................................................61
Component Definition Node Set Defining - in-zoomed...................................... 62
Component Definition Set Defining - in-zoomed ................................................... 63
Reader Component Set - unfolded ............................................................................... 64
Reader Definition Set - unfolded..................................................................................64
Reader Set Defining - in-zoomed..................................................................................65
Reader Definition - unfolded ....................................................................................... 66
Reader Defining - in-zoom ed........................................................................................... 67
Data Model Defining or Selecting - in-zoomed.......................................................68
Form at Definition - unfolded........................................................................................... 69
Form at Type unfolded ...................................................................................................... 69
Form at Setting Set unfolded .......................................................................................... 70
Entity Format Setting Set - unfolded..........................................................................71
Attribute Format Setting Set - unfolded ................................................................. 72
Format Defining - in-zoomed ....................................................................................... 73
Reader Definition Setting Set - unfolded .................................................................. 74
Database Reader Definition Setting Set - unfolded..............................................75
File Reader Definition Setting Set - unfolded ......................................................... 76
Reader Definition Setting Set Defining - in-zoomed............................................ 77
Processor Component Set - unfolded....................................................................... 79
Processor Definition Set - unfolded ............................................................................. 80
Processor Definition - unfolded................................................................................... 81
Processor Definition Setting Set - unfolded ............................................................ 82
Integration Processor Set Defining - in-zoomed....................................................83
Integration Processor Defining - in-zoomed ............................................................ 84

9



Research Objectives

The intent of this research is to utilize and assess OPM modeling and the OPCAT toolset
to aid in the design of a systems data integration framework for a Fortune 500 client.
Through the process we will use OPM and OPCAT to brainstorm, document and
communicate design elements for the requested system with all team members. We will
also document observations made while utilizing these tools to fulfill design
requirements in a predominantly software environment. Lastly we will evaluate the
process and propose future research topics.

10



Introduction

Data integration is at the heart of many current information system projects. As
companies continue to move towards a diverse, growing set of Commercial Off the Shelf
(COTS) applications to fulfill their information technology needs, the need to integrate
data between them continues to increase. In addition, these diverse application
portfolios are becoming more geographically dispersed as more software is provided
using the Software as a Service (SaaS) model, and companies continue the pattern of
moving their internal data centers to cloud-based computing.

As the number of applications within an organization continues to rise, so does the
number of integration operations required to implement applications within the context
of the organization. This results in an increased percentage of information system
implementation cost being attributed to data integration activities. In addition, as
different applications are implemented over time within an organization, the needs and
approaches to implement those integrations inevitably varies, resulting in a broad,
overly complex data integration landscape that must be managed and maintained.
Bernstein and Haas (2008) (Bernstein & Hass, 2008) noted that information integration
is frequently cited as the largest and most expensive challenge that information-
technology shops face, and that information integration amounts to 40% of those shops'
budgets. Akbay (Akbay, 2004) provided similar thoughts and statistics around
expenditures. Lawson and Sharma (2014) (Lawson & Sharma, 2014) stated that
"Integration is key to most of today's big tech trends, including the Internet of Things,
mobile, cloud adoption and digital business... There's a lot of integration work, so
enterprises will be keen to adopt agile approaches to integration".

As the growth of data integration activities continues, several prominent data
integration patterns have emerged, and corresponding commercial implementation
software packages have been created. Patterns have been categorized slightly
differently, but most have the same gist. Bernstein and Haas (2008) delineate them as
Data Warehouse Loading through the use of Extract-Transform-Load (ETL) tools, Virtual
Data Integration through the use of query mediation or Enterprise Information
Integration (ElI) system via Web Services or other services, and Message Mapping
through Message Oriented Middleware (MOM) (2013) (Moradi & Bahreininejad, 2013).
Hohpe and Woolf (Hohpe & Woolf, 2004) have categorized the major patterns as File
Transfer, Shared Database Remote Procedure Invocation, and Messaging (2004). We
group these patterns into the following three categories:

1. Bulk or batch data extraction and delivery,

2. Messaging or message-oriented data movement, and

3. Granular, low-latency data capture and propagation

11



While Bulk or batch data extraction and delivery is most synonymous with Data
Warehousing, this integration pattern is used in many organizations today for a
multitude of different business scenarios. More commonly known as Extract,
Transform, Load (ETL) or Extract, Load, Transform (ELT), this pattern consists of
extracting and batching a set of data from a source system on a periodic basis,
transforming it, and then loading it to a destination system. The difference between ETL
and ELT is simply the system on which transformations are completed. In essence, do
you extract and transform the data before being loaded into the target system, or do you
extract and load to the target system, and then transform. ELT has become popular as
organizations started purchasing large, powerful data warehouse hardware and found
that by loading legacy data directly into the data warehouse in staging tables or data
sets, they could leverage the more powerful data warehouse equipment to transform
that legacy data into new formats and models. Kimball and Caserta (Kimball & Caserta,
2004) provided an excellent overview of ETL in their book "The Data Warehouse ETL
Toolkit". While ETL and ELT have been around for quite a while, they still continue to
play a major role in data integration today.

Message Oriented Data Movement or Message Oriented Middleware (MOM) is a pattern
by which data is integrated between disparate applications by passing messages
between them. Cambell, Coulson and Kounavis (Campbell, Goulson, & Kounavis, 1999)
defined it as "message-passing and message-queuing middleware, in which information
is passed in the form of a message from one program to one or more other programs.".
Hohpe and Woolf (Hohpe & Woolf, 2004) described it as an architecture that facilitates
applications publishing or sending data in the form of a message to a central message
channel that can be read by one or more applications that desire that data (2004).
Publish / Subscribe or Pub / Sub and Enterprise Service Bus architectures are variants
of MOM. A good example of MOM is real time inventory management integration
between systems. Consider, for example, a company that has a centralized inventory
management system, which must be accessed and updated in real time by brick and
mortar stores and a Web site. Each application at each physical location must be able to
access inventory information in real time and update it as inventory is sold and
returned. Batch ETL or ELT processing simply wouldn't work in this scenario. Zhai, Guo
and Li provide an overview of some of the different MOM middleware (2011) (Zhai, Guo,
Cui, & Li, 2011).

Data Synchronization is similar to MOM in that it typically has low latency (i.e., it is real-
time or near real-time fashion), but synchronization tools have more focus on like to like
schemas (minimal transformation). Examples include database primary / backup for
failover, and consolidation / deconsolidation such as when a retail central office or
master database must synchronize data to a replica database physically located at a
store.

As the data integration landscape within an organization, and between organizations,
becomes larger and more complex, opportunities exist to streamline aspects of the data
integrating process not covered by current toolsets, including:

12



1. Extensibility by third parties. Many COTS integration toolsets today are
difficult if not impossible to extend by third parties,

2. Capabilities to handle different types of structured data models from
relational to hierarchical to graph models,

3. Enhanced modeling capabilities through use of data visualization and
modeling techniques and tools,

4. Capabilities for automated unit testing of integrations,

5. A unified toolset that covers all three patterns, allowing an enterprise to
implement the pattern that best suites business needs for the specific scenario,
and

6. A Web-based toolset that allows configuration, management and deployment
via Web-based technologies allowing geographical indifference for application
deployment and integration

Regardless of the pattern and business scenario, all have similar traits, mainly reading,
processing, and writing of data from one source to another. These similarities are
described in more detail in the accompanying OPM model, which is presented in the
following section.

Requirements and Opportunities for Improvement

Extensibility by Third Parties

To attain better integration toolsets, we need an approach that allows multiple entities
or parties to contribute to the effort of the integration toolset. Open sourcing of the
integration toolset is one way to allow multiple parties to be involved in its creation,
enhancement and maintenance. However, simply providing source code isn't enough.
The architecture and data model of the toolset must be made such that extensibility can
be accomplished easily and with minimal risk to the existing code base.

One mechanism by which the integrating toolset can be made more extensible by third
parties is to make the underlying data model for the integration toolset as generic as
possible. By making the underlying data model generic in nature, code changes and
additions can be made without changing the underlying data model, thus minimizing the
need to refactor existing code. One pattern used consistently throughout the data
integrating system model is the generic "settings" pattern. This pattern is shown in
Figure 1.

13



Thing
Typ e Att

pecifi Specifi Thin_
nbute 1 Attribute n Setting Bet

Figure 1 - Generic Settings Pattern - Thing unfolded

Thing exhibits Specific Attribute 1, Specific Attribute n, and Thing Type.

Thing consists of Thing Setting Set.

In the example above, a Thing is described by a type (Thing Type) and a set of specific
attributes (Specific Attribute 1 to Specific Attribute n). It is also described by a generic
set of attributes defined and stored by the Thing Setting Set. The Thing Setting Set is a
collection of key/value pairs that can be used to generically define and collect other
attributes for the Thing.

Each Thing Setting Set is defined for a specific type of Thing as shown in Figure 2.

Thing
Setting Set

Figure 2 - Generic Settings Pattern - Thing Setting Set unfolded

Thing Type 1 Setting Set is a Thing Setting Set.

Thing Type n Setting Set is a Thing Setting Set.

Each Thing Type Setting Set can have a unique set of attributes for that specific Thing
Type, as shown in Figure 3.

14



Se ng Set

Thing Type Thing Type 1 Thing Type I
Attnbue 1 Attnbuta 2 Attribite n

Figure 3 - Generic Settings Pattern - Thing Type 1 Setting Set unfolded

Thing Type 1 Setting Set exhibits Thing Type 1 Attribute 1, Thing Type 1 Attribute

2, and Thing Type 1 Attribute n.

Concrete examples of this can be found throughout the Data Integrating Model. One
specific example is creating and storing Connection Definitions. A Connection Definition
in the Data Integrating Model is used to store information about a connection that is
utilized to connect to a System to read or write data. There will likely be many different
Connection Types including DAS/NAS Connection Types, SSH Connection Types, SMTP
Connection Types, Queue Connection Types, Database Connection Types, etc. All
Connection Definitions might have common attributes such as a Connection Name, but
other attributes vary depending on the Connection Type. Figure 4 shows the model for a
Connection Definition.

Connection Ir",* >fg FldeDefinition 1PFle

Connecton Connection Connecton Defiiton

Type FcName Setting Set

Figure 4 - Generic Settings Pattern - Connection Definition unfolded

Connection Definition exhibits Connection Type and Connection Name.
Connection Definition consists of Connection Definition Setting Set.
Connection Definition organized within Folder.

Each Connection Type has a specific Connection Definition Setting Set as shown in
Figure 5.

15



Con n ection D efiniti on
Setting Set

DASMAS Connection
Definition Setting Set

SSH Connection
Definition Setting Set

SMTPConnection
Definition Setting Set

Queue Connection
Definition Setting Set

Database Connection
Definition Setting Set

Figure 5 - Generic Settings Pattern - Connection Definition Setting Set unfolded

Database Connection Definition Setting Set is a Connection Definition Setting Set.
DAS/NAS Connection Definition Setting Set is a Connection Definition Setting Set.
Queue Connection Definition Setting Set is a Connection Definition Setting Set.
SMTP Connection Definition Setting Set is a Connection Definition Setting Set.
SSH Connection Definition Setting Set is a Connection Definition Setting Set.

An example Setting Set for the SSH Connection Setting Set contains the following as
shown in Figure 6.

16



SSH Connection
Definition Setting Set

Password Relative User Id Port Host
Path

Figure 6 - Generic Settings Pattern - SSH Connection Definition Setting Set unfolded

SSH Connection Definition Setting Set exhibits Port, Relative Path, User
Id, Password, and Host.

By applying the generic settings pattern to Connection Definitions, third parties can add
additional Connection Types and Definition Capabilities without the need to change the
underlying Data Integration System data model.

Different Types of Structured Models

The second opportunity to streamline integration activities is to allow for the
integration of different types of structured data. Three common types of data models
are the relational, hierarchical and graph-based models. Many integration toolsets allow
two databases modeled in the same data model to be integrated (e.g., relational with
relational), but additional work needs to be done for integrating data with disparate
model types. Allowing data that is modeled in a graph-based format to be integrated
with data that is modeled using a relational model format is increasingly important as
companies desire to mix legacy relational data from COTS applications with big data or
other graph-based modeled data from the World Wide Web.

In order to allow for integrating different data model types, a generic Data Model
Definition will be supported. Each model type will have common attributes, such as a
Model Name, Model Type and whether that Model can be shared across integrations.
Initial supported Data Model Definition types will include Relational Models, such as
Relational database structures, Graph Models, such as RDF structures, and Hierarchical
Models, such as XML-based structures. Figure 8 shows the general Data Model
Definition structure.

17



organizd ithrn

Dadta Modelniolde
RFrmn M

Definition

Figue 7- SrucuredModls Daa Moel etiitinDufolded o

Hierarchical Model ei

Model Definition Name

Graph Model Model
DefSttion Type

. Relational Model Sharability

h can b non-sharableable

Figure 7 - Structured Models - Data Model Definition unfolded

Format Definition references Data Model Definition.
XML Attribute Setting Set exhibits XPath Expression.
Fixed Length Attribute Setting Set exhibits Start Position and End Position.
Delimited Attribute Setting Set exhibits Position.
Data Model Definition exhibits Model Name, Model Type, and Sharability.

Sharability can be non-sharable or sharable.
Data Model Definition organized within Folder.

Graph Model Definition is a Data Model Definition.
Relational Model Definition is a Data Model Definition.
Hierarchical Model Definition is a Data Model Definition.

The Relational Model Definition is a meta-model that supports description of a generic
relational model, including its entities, attributes and the relationships among them.
Figure 9 depicts the Relational Model Definition.

18



Relational Model Entity
Definition Relationship

Definition

Source

Entity 
Ett

Definition

EEntity

Name

Entity Entity Relationship

Settin Set Attribute

Attribute , erem"s Source
Definition AtiAttribute

Ta Aet
Atri bute Attrib ute

Name

Attdbute
Type

Attribute
SettingSet

Figure 8 - Structured Model - Relational Model Definition unfolded

Entity Relationship Definition exhibits Source Entity and Target Entity.
Source Entity references Entity Definition.
Target Entity references Entity Definition.

Entity Relationship Definition consists of Entity Relationship Attribute.
Entity Relationship Attribute exhibits Source Attribute and Target Attribute.

Source Attribute references Attribute Definition.
Target Attribute references Attribute Definition.

Relational Model Definition consists of Entity Definition.

19



Entity Definition exhibits Entity Name.
Entity Definition consists of Attribute Definition and Entity Setting Set.

Attribute Definition exhibits Attribute Name and Attribute Type.
Attribute Definition consists of Attribute Setting Set.

Figure 10 depicts the Graph Meta Model.

Graph Model
Dfinition

Subject Predicate Object
Definition Definition Definition

Figure 9 - Structured Model - Graph Model Definition unfolded

Graph Model Definition consists of Subject Definition, Predicate Definition, and Object
Definition.

In the Data Integrating System, entities and attributes of a relational model can be
mapped to and from any Object Definition with a Graph Model as well as any Entity or
Attribute of the Hierarchical Model.

Enhanced Modeling Capabilities

The third opportunity to streamline integration activities is by utilization of advanced
data visualization techniques to assist in the modeling process of structured data. Much
research has been done on the role of ontologies (global and local) in integrating data
between disparate systems (2014) (Zhang, 2014), (2013) (Varughese, 2013), (2014)
(Xu, Yan, Wang, & Gong, 2014) amongst others. The most time consuming and difficult
part of these approaches is the definition of the ontologies, especially when this is done
in conjunction with COTS packages. Brands (Brands, 2014) discusses the role of data
visualization and discovery in making business decisions, suggesting 90% of the people
in a decision making survey agreed that the use of data visualization to present
information significantly reduces the time to make decisions. Regardless of whether
those decisions are business oriented or technically oriented, visualization clearly helps
individuals more quickly understand what they are looking at. The same could be
argued for visual data modeling in the context of ontology definition for integration
purposes.

20



Automated Unit Testing

The concept of unit and system automated testing has been largely ignored in the field of

data integration. While many understand the value of automated testing as it pertains to

application development, its use in data integration scenarios has been lacking. Moradi

and Bahreininejad provide a framework for evaluating core features of Enterprise
Integration Middleware technologies. In this framework, they specify several functional

criteria including Messaging, Semantic Transformation (modeling and transformation),
Bulk Data Movement (ETL and ELT), etc. but the concept of a testing framework for the

integrating process is missing. (Moradi & Bahreininejad, 2013).
Kabiri and Chiadmi also express the need for testing capabilities associated with ETL

processes in their suggested research opportunities in the article Survey of ETL

Processes. "Tests are fundamental aspects of software engineering. In spite of this

importance, and regarding ETL, they are neglected. Thus, an automatic or even a semi-

automatic approach for validating or getting data for tests is very hopeful" (Kabiri &

Chiadmi, 2013).

As part of the Data Integrating process, a specific sub-process will be created for Test

Case Defining and Executing, as shown in Figure 10. This step will be optional
depending on desire from the User.

Data Integrating

Integration'
Component
Repository

user Group

Test Case Test Case Configuration/
Desire Defning & Operational

SExecutin Repository

Run-time Integration
Agent Executing

System Set Integration Integration
Monitoring Execution

Information

Figure 10 - Automnated Unit Testing - Data Integrating in-zoomied

21



System Set is physical.
System Set can be not integrated or integrated.

not integrated is initial.
integrated is final.

User Group is environmental and physical.
User Group can be uninformed or informed.

uninformed is initial.
informed is final.

Data Integrating requires Data Integrating System.
Data Integrating changes User Group from uninformed to informed and System
Set from not integrated to integrated.

The Test Case Defining and Executing process is further broken down in Figure 11 to the
subsequent Test Case Defining and Test Case Executing processes.

Test Case
Integration Defning &
Component Executing
Repository

Test Case Test Case
Dening Dnenotn

System Set

Run-time Test Case Test Case
Agent Executing Results

Figure I1I - Automated Unit Testing -,Test Case Defining & Executing in-zoomned

System Set is physical.
User Group is environmental and physical.
User Group handles Test Case Defining & Executing.
Test Case Defining & Executing consists of Test Case Defining and Test Case Executing.
Test Case Defining & Executing requires System Set and Integration Component

Repository.
Test Case Defining & Executing zooms into Test Case Defining and Test Case Executing.

Test Case Defining yields Test Case Definition.
Test Case Executing requires Test Case Definition and Run-time Agent.
Test Case Executing yields Test Case Results.

22



Test Cases for an integration typically come in the form of pre-defined input data set(s)
for a given test scenario. The validation for a given test is pre-defined output data set(s)
that results from the processing of the input data set(s).

The Data Integrating System model is centered on an Integration Directed Acyclic Graph
or DAG of components that read, process and write data, with data being passed
between components (see Figure 50 - Component Definition Set Defining in-zoomed).
Thus, a test case is linked to an Integration DAG Definition and can cover one or more
nodes within that DAG. For each node within the DAG, input and/or output (validation)
data is provided for that node. Figure 12 shows a portion of the Test Case Defining
process that includes selecting the Integration DAG, as well as creating the node data
sets for each node that will participate in the test.

Inte ration DAG
Definition

Test Ca Test Cas

User Group
Int aation DAG

t efinition Interation
Selecting EA

Integration
Component
Repository

NTe Sea C e nent
Data Set Node Set
Defining Data Set

System Set

Component Node
Data Set

Figure 12 - Automated Unit Testing - Test Case Defining in-zoomed

System Set is physical.
User Group is environmental and physical.
User Group handles Test Case Defining.
Test Case Definition exhibits Integration DAG.

Integration DAG references Integration DAG Definition.
Test Case Definition consists of many Component Node Data Sets.

Component Node Set Data Set consists of Component Node Data Set.
Test Case Defining consists of Integration DAG Definition Selecting and Component Node

23



Set Data Set Defining.
Test Case Defining requires Integration Component Repository and System Set.
Test Case Defining zooms into Integration DAG Definition Selecting and Component
Node Set Data Set Defining.

Integration DAG Definition Selecting yields Integration DAG.
Component Node Set Data Set Defining yields Component Node Set Data Set.

Component Node Set Data Set Defining is the process of creating one or more
Component Node Data Sets for one or more nodes of the DAG, as expressed in the OPD in
Figure 13).

Component
Node Set
Data Set

Component Node
Data Set I

Figure 13 - Automated Unit Testing - Component Node Set Data Set Defining in-zoomed

System Set is physical.
User Group is environmental and physical.
User Group handles Component Node Set Data Set Defining.
Component Node Set Data Set consists of Component Node Data Set.
Component Node Set Data Set Defining consists of Component Node Data Set Defining.
Component Node Set Data Set Defining requires System Set and Integration Component
Repository.
Component Node Set Data Set Defining zooms into Component Node Data Set Defining.

Component Node Data Set Defining yields Component Node Data Set.

Component Node Data Set Defining is the process of defining a test data set for a single
node within the DAG. It consists of creating the input and output (validation) data sets
for a single node, as shown in Figure 14.

24

Integraton Component
ComponentNd St
Repositor Ndet Set

Defining

User Group Component Node
Data Set
Defining



igur14A utoC om onent Nod e Co onent Node

SystemrtonBt Set ist phsial

Component Defining
Repository

Componnt Nod Data et Defnin om noCmonn eiiinNd

Dtin e de Test Case
Selecting Component Node

User Group

Input Test Case
Data Set Input
Defining Data Set

Validation Test Case
Data Set Vaidation
Debning Data Set

Figure 14 - Automated Unit Testing - Component Node Data Set Defining in-zoomled

System Set is physical.
User Group is environmental and physical.
User Group handles Component Node Data Set Defining.
Component Node Data Set exhibits Test Case Input Data Set, Test Case Validation Data

Set, and Test Case Component Node.

Component Node Data Set Defining consists of Input Data Set Defining, Validation Data

Set Defining, and Component Definition Node Selecting.
Component Node Data Set Defining requires System Set and Integration Component

Repository.
Component Node Data Set Defining zooms into Component Definition Node

Selecting, Input Data Set Defining, and Validation Data Set Defining.
Component Definition Node Selecting yields Test Case Component Node.

Input Data Set Defining requires Test Case Component Node.

Input Data Set Defining yields Test Case Input Data Set.
Validation Data Set Defining requires Test Case Component Node.

Validation Data Set Defining yields Test Case Validation Data Set.

The resultant Test Case Definition, defined in Figure 15, includes the following elements:

*Integration DAG - The Integration DAG Definition for which this test case is
being created

25



* Component Node Data Set - A collection of data sets that can be used as input
data to the nodes of the DAG and output data sets that can be used to validate the
output of the DAG.

* Test Case Component Node - An individual node in the DAG that will be tested

* Test Case Input Data Set - The input data set for a specific Test Case Component
Node. This data will be fed to the component as part of the execution of the test.

e Test Case Output (Validation) Data Set - The output data set for a specific Test
Case Component Node that will be used to validate the output of that node.
Output data from execution of the node with input data provided that equals the
supplied output data set will indicate success, while a mismatch in the generated
output compared to the supplied output will indicate failure of the test.

Test Case
Defintion

Ak

nteraton DA

int Gion
I0-- P

-4
Component Node

Data Set

Figure 15 - Automated Unit Testing - Test Case Definition unfolded

26

Test Case refe*"** Component Definition
Component Md

Nde Nd

Component
Definition

Test Case gews to

Data Set Model

Test Case a&*m to Output
Validation Moe

iData Set

I I



Component Definition exhibits Input Model and Output Model.
Component Definition Node references Component Definition.
Test Case Definition exhibits Integration DAG.

Integration DAG references Integration DAG Definition.
Test Case Definition consists of many Component Node Data Sets.

Component Node Data Set exhibits Test Case Input Data Set, Test Case Validation
Data Set, and Test Case Component Node.

Test Case Input Data Set adheres to Input Model.
Test Case Validation Data Set adheres to Output Model.
Test Case Component Node references Component Definition Node.

A unified toolset that covers all three patterns

Streamlining integration activities can be achieved by providing an integration toolset
that covers the three patterns surveyed above for different business scenarios. The
proliferation of toolsets was indicated by Stonebraker who recognized the need for
consolidation early on in his article "Too Much Middleware" (2002) (Stonebraker,
2002). Bernstein & Hass discuss the plethora of tools provided to reduce the effort and
cost of data integrating activities, but note that since data integrating tasks are complex
and have many different scenarios, many of those tools are very specialized (2008)
(Bernstein & Hass, 2008). Halevy, Rajaraman and Ordille state "As a community, our
goal should be to create tools that facilitate data integration in a variety of scenarios"
(2006) (Halevy, Rajaraman, & Ordille, 2006). A search of papers on the topics seems to
validate that people are researching these topics in silos versus together as there are
tens of thousands of articles on ETL and MOM individually but very few that reference
them together.

The Data Integrating System is fundamentally message-based. An Integration DAG
defines a set of Component Definition Nodes linked by Component Definition links to
form a graph of readers, processors, and writers that form the basis of an integration.
Data Sets are transferred between nodes of the DAG via messages as in any message
oriented middleware. This results in the Data Integrating System being highly capable
of handling message-oriented scenarios. However, an ETL process can also be designed
and defined as a graph. The Integrating System Supports several types of special
command messages, including Startup Messages and Shutdown Messages, as depicted in
Figure 16.

27



Me9ssage

Startup
Message

Shutdown
Message

Content
Message

Figure 16- Unified Toolset - Message unfolded

When an Integration DAG is executed via the Integration Executing process, the
following occurs:

* Component Nodes are created for every Component Definition Node defined in
the Integration DAG Definition

* Each of the Component Nodes created above is started in a separate executable
thread

e A Startup Message is sent to any Component Node in the DAG that does not have
an inbound Component Definition Link. This Startup Message will begin
processing of the Components in the DAG as depicted in Figure 17.

28



Integration DAG
Definition

I

'ntegrationExecut ng

Compont Dfnton

.....Component Definition
LUnk Set

Run-imeCopnt

System Set Startu MessageCopnt
Sending Executing

Startup
Message

Figure 17 - Unified Toolset - Integration Executing in-zoomed

System Set is physical.
Integration DAG Definition consists of Component Definition Node Set and Component
Definition Link Set.
Integration Executing exhibits Component Node Set and Message.
Integration Executing consists of Component Node Set Creating, Component Node Set
Starting, Startup Message Sending, and Component Node Set Executing.
Integration Executing requires System Set and Run-time Agent.
Integration Executing zooms into Component Node Set Creating, Component Node Set
Starting, Component Node Set Executing, and Startup Message Sending, as well
as Component Node Set and Message.

Component Node Set Creating requires Component Definition Link
Set and Component Definition Node Set.

Component Node Set Creating yields Component Node Set.
Component Node Set Starting affects Component Node Set.
Component Node Set Starting invokes Component Node Set Executing.
Component Node Set Executing affects Component Node Set.
Component Node Set Executing consumes Message.
Startup Message Sending affects Component Node Set.
Startup Message Sending yields Message.

29



In an ETL or ELT scenario which may consist of a Reader (extract), Transformer and
Writer (load), the Reader component is kicked off by a Startup Message, reads data from
a Data Set, sends that data in messages to its linked Component Nodes, then sends a
Shutdown Message to its linked Component Nodes and shuts itself down. Once the
Transformer processes all inbound message data and sends the transformed data to its
linked Component Nodes, it receives the Shutdown message from the Reader
Component and shuts itself down. The Writer Component does the same. This results in
an Integration DAG that executes very similarly to an ETL or ELT job that begins and
ends with a specific set of tasks being completed.

Co u 1onent
Ned e Set
Starting

Component
Node Set
Executing4

Me sge
Listening

Message

Process
Starting

Component

Message
Type ,,Message

Processing

Process
Terminating

Figure 18 - Unified Toolset - Component Node Set Executing in-zoomned

Web-based Toolset

Integration can also be achieved by providing a Web-based integration platform that
works over standard Internet protocols to allow configuration, management and

30



execution of integrations in the cloud over standard web protocols. Most legacy
integration platforms continue to use thick clients for configuration and management of
integration jobs, and few have seamless remote agent capabilities that allow interaction
of agents over web protocols. While much research calls for using Web Services to
facilitate this type of integration (Pahl & Zhu, 2012), strict service-based integration is
often not feasible when COTS software is used if that package and vendor do not provide
a service base as an option.

The OPM model presented next defines an integration platform that attempts to address
some of these needs. The model is in its early stages and will most likely evolve over the
next several years. Yet, it has been the driving force of design discussions around a
better integration toolset for the future in a large scale data integration project. This
project entails creation of a master data management (mdm) solution and re-
architecture of all inbound and outbound integrations to and from the mdm system to all
other operational systems within the enterprise. In all, hundreds of integrations across
systems will be based on the integrating architecture and system defined.

Data Integrating Model

This model describes a Data Integrating System that integrates Data Sets between
Systems in a System Set. As part of the Data Integrating process, a User Group is kept
informed about the data that is integrated and the status of the Data Integrating process.

System Diagram

System Set

not integrated inert J

User Group

Data Integrating
System

Figure 19 - Data Integrating -System Diagram

31



System Set is physical.
System Set can be not integrated or integrated.

not integrated is initial.
integrated is final.

User Group is environmental and physical.
User Group can be uninformed or informed.

uninformed is initial.
informed is final.

Data integrating requires Data Integrating System.
Data integrating changes User Group from uninformed to informed and System
Set from not integrated to integrated.

The System Diagram specifies that the process of Data Integrating changes a s et of
systems-the System Set-from not being integrated to being integrated. This is done
by the Data Integrating System, which is the instrument for this process, and the User
Group is informed about the process.

System Set unfolded

The System Set consists of one or more software Systems, each containing a Data
Storage & Retrieval System that hosts a Data Set. The Data Storage and Retrieval System
may be as simple as a File System which contains flat files, or may be more complex such
as a Database Management System. Note that Database Management System doesn't
restrict to relational database management systems, but may be a non-relational store
as well such as a NoSQL database, column store, or other.

32



j System S et

Data Stora e &
RetSieval System

System File System

Database D
Manageme nt 

D ate e d

Figure 20 - System Set unfolded

System Set is physical.
System Set consists of many Systems.

System is physical.
System consists of Data Storage & Retrieval System and Data Set.

Data Set leverages Data Storage & Retrieval System.
File System is a Data Storage & Retrieval System.
Database Management System is a Data Storage & Retrieval System.

Data Set unfolded

A Data Set can be either Structured or Unstructured. Some integrations may be tasked
with moving unstructured binary data from one location to another, while others may
be tasked with moving all, or parts of, structured data sets. Many existing toolsets allow
for only the movement of one type or the other. By consciously defining different types
of Data Sets, we can ensure the Data Integrating System allows for movement of both
types of data.

If the Data Set is structured, it is defined by a Data Model and Format. The Data Model
describes entities an attributes of the data while the Format describes the layout of the
data within the Data Set itself.

33



Dat a Set

Structured Unstructured
Data Set Data Set

Dato Forma
Model

Data Model Format
Definition Definition ]

Figure 21 - Data Set unfolded

Data Integrating System unfolded

The Data Integrating System is comprised of four main components, the Integration
Component Repository, the Configuration / Operational Repository, the Graphical User
Interface and the Run-time Agent.

* Integration Component Repository is a code-based repository that contains
Integration Components the User Group uses to define an integration. Sample
components include things like Connection Components, Database Reader and
Writer Components, File Reader and Writer Components, Translator
Components, etc. See Integration Component Repository unfolded for details.
For clarity on naming conventions, all things within the Integration Component
Repository have names ending in "Component."

* Configuration / Operational Repository is a database management system that
will be used to store component definitions that are defined by the User Group.
Component definitions are configured instances of the components available in
the Integration Component Repository. As an example, a Database Connection
Component is utilized by the User Group to define a Connection Definition which
is stored in the Configuration / Operational Repository. The Connection
Definition contains the details about a specific connection to a System.

34



e Graphical User Interface is the interface between the User Group and the
System which allows creation of Component and Integration DAG Definitions.

* Run-time Agent is a code-based agent that will be used to run or execute
integrations that are defined by the User Group. It is utilized in the Integration
Executing process.

Data Integrating
System

Integration Configuration I Graphical User Run-tine
Component Operational interface Agent
Repository Repository

Figure 22 - Data Integrating System unfolded

Data Integrating System consists of Integration Component Repository, Configuration /
Operational Repository, Run-time Agent, and Graphical User Interface.

Data Integrating in-zoomed

The data integrating process is broken down into four major sub-processes, Integration
Defining, Integration Test Case Defining & Executing, Integration Executing, and
Integration Monitoring. The defining process allows a User in the User Group to define
the integration. The definition of the integration is stored within the Configuration /
Operational Repository for use by the subsequent processes. The Integration Test Case
Defining & Executing process allows the user to define a set of integration unit test
scenarios and the associated data sets that go along with them. It then allows execution
of the test case scenarios on a repeated basis for automation of unit testing. The
Integration Executing process allows the defined integration to be run or executed, and
the Integration Monitoring process allows a User in the User Group to monitor the status
of an executing or executed integration.

35



Data Integrating

Integrati on IOrpon
Component adh ical.
Repository

User Group

Test Case Test Case Congurabon
Desire Defining & Operational

nonevent_ a Executing Repository

Ruo n me IntegraDeon
Oertin Execuing

system Set ing Integration tingntegration
Monitoting Executon -

Informaton

Figure 23 - Data Integrating in-zoomed

System Set is physical.
User Group is environmental and physical.
User Group exhibits Test Case Desire.

Test Case Desire can be non-existent or existent.
User Group handles Data Integrating.
Configuration / Operational Repository consists of Integration Execution Information.
Data Integrating consists of Integration Defining, Integration Executing, Integration
Monitoring, and Test Case Defining & Fwecuting.
Data Integrating requires Configuration / Operational Repository and System Set.
Data Integrating zooms into Integration Defining, Test Case Defining &
Executing, Integration Executing, and Integration Monitoring.

Integration Defining requires Integration Component Repository.
Integration Defining affects Configuration / Operational Repository.
Test Case Defining & Executing occurs if Test Case Desire is in existent.
Test Case Defining & Executing requires Run-time Agent and Integration

Component Repository.
Test Case Defining & Executing affects Configuration / Operational Repository.
Integration Executing requires Run-time Agent.
Integration Executing affects Configuration / Operational Repository.
Integration Monitoring yields Integration Execution Information.

36



Integration Component Repository unfolded

Components in the Integration Component Repository are grouped into three
categories, Connection Component Set, Data Model Component Set and Integration DAG
Component Set.

* Connection Components are used to define Connection Definitions to Data Sets
that need to be read or written as part of the integration. Note that a Connection
Definition is generic in nature. It can be used to define the connection
information for a file system, a relational database, or a NoSql data store. The
separate and distinction of Connection Components from other DAG components
is described in more detail in the Connection Set Defining in-zoomed process.

* Data Model Components are used to define the structure of a structured data
set.

* Integration DAG Component Set - When an integration is defined in the Data
Integrating System, it is defined as a directed acyclic graph (DAG) of Components.
As described previously, those Integration Components can be Readers
connected to Translators connected to Writers, or any other combination of
components assembled in a graph of processing elements. The Integration DAG
Component Set consists of all Components that can be used within the
Integration DAG.

Integration
Component
Repository

Connection Data Model Integration DAG
Component Component Component

Set Set Set

Figure 24 - Integration Component Repository unfolded

Integration Component Repository consists of Integration DAG Component
Set, Connection Component Set, and Data Model Component Set.

37



Configuration / Operational Repository unfolded

The Configuration / Operational Repository is the data store which houses all of the
Connection, Data Model, Integration DAG and Test Case Definitions created within the
Integration Defining process. It also stores Integration Execution information from the
Integrating System.

Configuration /
Operational
Repository

Defi nition SetSet

Data Model
Definition Set

Componaen
Defintion Set

IntegrationDA
eiition

einiomtionSe

Figure 25 - Configuration / Operational Repository unfolded

Configuration / Operational Repository consists of Integration DAG
Definition, Connection Definition Set, Data Model Definition Set, Integration Execution
Information, Component Definition Set, and Test Case Definition Set.

38



Integration Defining in-zoomed

The integration defining process allows a user in the User Group to define an
integration. An integration is created by defining a Connection Definition Set, an
optional Data Model Definition Set and an Integration DAG Definition.

* Connection Definition Set - The Connection Definition Set consists of a set of
Connection Definitions that will be used for the integration. These Connection
Definitions are used in conjunction with other Integration DAG Definitions to
provide access to a Data Set that resides on a System. An integration can have
many connections associated with it.

- Data Model Set Defining - Data Model Set Defining is an optional step in the
Integration Defining process. A Data Model Definition is created at this point if
there are common Data Model Definitions that the User would like to use in this,
and other integrations. A common integration approach between disparate
systems is often to create a common canonical model or global ontology between
the systems. This global ontology serves as a common data model definition
between the systems. In a global ontology pattern, each system exchanging data
maps its internal data model or local ontology to the global ontology and
exchanges data with other systems through that global ontology. No system
maps its local ontology directly to another system's local ontology. By taking this
approach, each system only needs to map its local ontology once, to the global
ontology, regardless of the number of systems to which the system is sending
data (Zhang, A Query Driven Method of Mapping from Global Ontology to Local
Ontology in Ontology-based Data Integration, 2014). Not every integration
should be forced down a local/global ontology approach. For integrations where
only a local ontology is desired, the local ontology can be created at during the
Integration DAG Defining process as part of one or more Component Definitions
used for reading data.

* Integration DAG Defining - Integration DAG Defining is the process by which
the individual Integration DAG Definitions (i.e. readers, translators, writers, etc.)
are defined and connected together to form an integration flow. The input of that
flow is one or more Data Sets from the source systems, and the output of the flow
is one or more Data Sets to the target systems resulting in a Data Set being
integrated. Note the Integration DAG Defining creates the definition of the flow;
it does not execute the flow.

39



Cnert on n tinCn Clo Configution
Com onent Syste Setn peration al

ShIe Mradio

CentonnDecionnetnCneto

Data Model Dat2 Model - -

DaaMdlSet Defining Definition Set

Component

Figure 26 - Integration Defining in-zoomed

System Set is physical.
User Group is environmental and physical.
User Group exhibits Shared Model Definition Desire.

Shared Model Definition Desire can be existent or non-existent.
User Group handles Integration Defining.
Integration Component Repository is physical.
Integration Component Repository consists of Integration DAG Component
Set, Connection Component Set, and Data Model Component Set.
Configuration / Operational Repository is physical.
Configuration / Operational Repository consists of Integration DAG
Definition, Connection Definition Set, and Data Model Definition Set.
Integration Defining consists of Integration DAG Defining, Connection Set
Defining, and Data Model Set Defining.
Integration Defining requires System Set.
Integration Defining zooms into Connection Set Defining, Data Model Set
Defining, and Integration DAG Defining.

Connection Set Defining requires Connection Component Set.
Connection Set Defining yields Connection Definition Set.
Data Model Set Defining occurs if Shared Model Definition Desire is existent.
Data Model Set Defining requires Data Model Component Set.

40

i



-~ ~

Data Model Set Defining yields Data Model Definition Set.
Integration DAG Defining requires Configuration / Operational

Repository and Integration DAG Component Set.
Integration DAG Defining yields Integration DAG Definition.

Connection Set Defining in-zoomed

A connection definition defines a connection to a Data Set on a System. A conscious
decision was made to separate the definition of a Connection from the Integration
Components within the Integration DAG itself. Most integration toolsets combine the
definition of the connection with the component that uses that connection. For example,
if you are defining a file reader or a database reader, most tools force you to define the
connection information in combination with the database or individual file being
accessed as part of that component. Separating the Connection Definition from the
Component Definition allows Connection Definitions to be reused across a set of
components. It also allows for easier maintenance of changes to the connection
information

Connecton
Definition Set

ConnecDnon

System Set Set Definpig

Connection Donections.
Definig Defintnin

Connection
Component

Set

Figure 27 - Connection Set Defining in-zoomed

System Set is physical.
Connection Definition Set consists of many Connection Definitions.
Connection Set Defining zooms into Connection Defining.

Connection Defining requires Connection Component Set and System Set.
Connection Defining yields Connection Definition.

41



Connection Component Set unfolded

The Connection Component Set consists of a variety of types of Component Connections
that can be used to create Connection Definitions. From databases to direct and network
attached storage to FTP, queues and other, the Connection Component Set allows for
creation of any connection used in conjunction with other Integration DAG Definitions.

Connection
Comnent

Database DASINAS H FTP Queue SMTP
Connecton Connecton Connec on Connecton Connecton Connecion
Component Component Component Component Component Component

Figure 28 - Connection Component Set unfolded

Connection Component Set consists of Database Connection Component, DAS/NAS
Connection Component, SSH Connection Component, Queue Connection
Component, SMTP Connection Component, and FTP Connection Component.

Connection Definition unfolded

A Connection Definition has the following elements:

e Folder - A Connection Definition is organized within a Folder. This Folder
structure is used in the user interface to allow a User in the User Group to
categorize and organize Connection Definitions in any way they see fit.

e Connection Type - The type of connection this Connection Definition represents.
See Connection Type unfolded for additional details.

e Connection Name - A user defined name for this connection

* Connection Definition Setting Set - Different attributes must be defined and
stored for each Connection Type. For example, a Database Connection Definition
needs to store information about the server on which the database resides, the
TCP/IP port on which the database is listening, a username and password, etc.
For a DAS/NAS connection, the attributes that must be stored are quite different.
Instead of hardcoding the model for these different attributes, a generic
Connection Definition Setting Set is used. The Setting Set is a set of developer
defined key/value pairs that go along with each Connection Type. For example
key = database-port, value = 3307. Utilizing a generic mechanism for unique
settings for each Connection Type allows for greater flexibility in creating new

42



Connection Types in the future without modifying the underlying structure of
how a Connection Definition is stored within the Data Integrating System. This
would also allow easier extension by other third parties including other vendors
or users in an open source community setting.

Cnnecin Folder

Connection Connection Connection Definition
Type Name Setting Set

Figure 29 - Connection Definition unfolded

Connection Definition exhibits Connection Type and Connection Name.
Connection Definition consists of Connection Definition Setting Set.
Connection Definition organized within Folder.

Connection Type unfolded

There are currently five Connection Types defined. As discussed earlier, this will be
extended greatly over time both by the original creators of the Data Integrating System
as well as by other third parties.

SConnectionType :

DAS/NAS Database SMTP Queue SSH
Connection Connection Connection Connection Connection

Figure 30 - Connection Type unfolded

Database Connection is a Connection Type.
DAS/NAS Connection is a Connection Type.
SSH Connection is a Connection Type.

43

.. A 11 == - - - , - WWA 11 1 1 - 1 11- . I I 1 1 !.1 . .1. 1



Queue Connection is a Connection Type.
SMTP Connection is a Connection Type.

Connection Definition Setting Set unfolded

The Connection Definition Setting Set can currently be of one of the types described
below. Each type of Connection Definition Setting Set has different key/value pairs
associated with it.

Connection Definition
Setting Set

SSH Connection
Definition Setting Set

I
DAS/NAS Connection
Definition Setting Set

mumarnrnmminininin a

I
I

-na--n-n-."

SMTP Connection
Definiton Setting Set I

I1Queue Connection
Definition Setting Set I

Database Connection
Definition Setting Set

Figure 3 1 - Connection Definition Setting Set unfolded

Database Connection Definition Setting Set is a Connection Definition Setting Set.
DAS/NAS Connection Definition Setting Set is a Connection Definition Setting Set.
Queue Connection Definition Setting Set is a Connection Definition Setting Set.
SMTP Connection Definition Setting Set is a Connection Definition Setting Set.
SSH Connection Definition Setting Set is a Connection Definition Setting Set.

44

I
A
-4
-1
H

WNW ON



Connection Defining in-zoomed

The Connection Defining process allows each attribute of the Connection Definition to be
set by the User.

system Set
Cnit onl RiConsguration

Defining 01WkRpository

ConnctinDfinto exhibit CConnection n onnection

Cor ,oentSettn Definitionse

Fg2-ConnectionfinoN Connectioniniin

ConcinnstinConfiguration / Operational Repository.

Conetin efntin xhisConnection Tp Connection Nm.

~~~~~~Connection Definitiontsf Connection Definition StigSt
onnection Dfinition stDein Cniatg prainlReoioy

Connection Definition organized within Folder.
Connection Defining consists of Connection Type Setting, Connection Definition Settings
Set Defining, Testing, Name Setting, and Folder Setting.
Connection Defining requires Connection Component Set and System Set.
Connection Defining zooms into Folder Setting, Name Setting, Connection Type
Setting, Connection Definition Settings Set Defining, and Testing.

Folder Setting affects Connection Definition.
Name Setting yields Connection Name.
Connection Type Setting yields Connection Type.
Connection Definition Settings Set Defining requires Connection Type.
Connection Definition Settings Set Defining yields Connection Definition Setting

Set.
Testing requires Connection Definition.

45



Connection Definition Setting Set Defining in-zoomed

As described previously, defining of the Connection Definition Setting Sets depends
directly on and results in a different Connection Definition Setting Set by Connection
Type.

Connection
ComQonent Connection Decnition Connection Definition

De set Setting Set

DAStAS Connection DASNAS Connection
Definition Setting Set Definition Setting SetDefining

Connection
Type SSH Connection SSH Connection

Fi ASgu 3 n Definition Setting Set Definition Setting SetDefinng

SMTP typo
SMTP Connection DgTP Connection

quSy tte Denition Setting Set Definition Setting SetDenning

Queue Connection Queue Connection
Dennition Setting Set Definition Setting SetDeining

U Gtabasu Connection inDatbase Connection
DeUnition Setting Set befunnform ed o rmDeining initial.

Figure 33 - Connection Definition Setting Set Defining in-zooed

Data Integrating System is physical.
System Set is physical.
System Set can be not integrated or integrated.

not integrated is initial.

integrated is final.
User Group is environmental and physical.
User Group can be uninformed or informed.

uninformed is initial.
informed is final.

Data Integrating requires Data Integrating System.
Data Integrating changes User Group from uninformed to informed and System
Set from not integrated to integrated.

46

I - .. - '. - --go- -



DAS/NAS Connection Definition Setting Set unfolded

The Relative Path of the DAS/NAS Connection Definition Setting Set allows a root path to
be set for the connection. Any Integration DAG Definition that utilizes this DAS/NAS
Connection will begin looking for things starting at the Relative Path defined in this
setting.

I DASMAS Connection
Definition Setting Set I

Relatie
Path

Figure 34 - DAS/NAS Connection Definition Setting- Set unfld~ed

DAS/NAS Connection Definition Setting Set exhibits Relative Path.

SSH Connection Definition Setting Set unfolded

An SSH Connection Definition Setting Set is described by the following:

* Host - The server name or IP address on which the SSH server resides
* Port - The port on which the SSH server is listening for connections
* Relative Path - The relative path on which the connection will begin looking for

things
e User Id - The user id with which to log into the SSH server
e Password - The password with which to use to log into the SSH server

I SSH Connection
Definition Setting Set

4
I

Relative
Pat h

Figure 35 - SSH Connection Definition Setting Set unfolded

47

Password [ Ser I I Pot I



SSH Connection Definition Setting Set exhibits Port, Relative Path, User
Id, Password, and Host.

Database Connection Definition Setting Set unfolded

A Database Connection Definition Setting Set is described by the following:

* Host - The server name or IP address on which the database server resides
* Port - The port on which the database server is listening for connections
* Drive - The JDBC driver used to connect to the database server
e User Id - The user id with which to log into the database server
e Password - The password with which to use to log into the database server

Database Connection
Definition Setting Set

Figure 36 - Database Connection Definition Setting Set unfolded

Database Connection Definition Setting Set exhibits Port, Driver, User
Id, Password, and Host.

Data Model Set Defining in-zoomed

After connections have been defined for the integration, the next step is to define
optional Data Model Definitions needed for the integration. As described earlier, the
Data Model Definitions can be defined globally at the integration layer or when defining
an individual Integration DAG Component Definition. Regardless of definition location,
the steps in defining the Data Model Definition are the same.

For each integration, a number of different Data Models can be used, thus when defining
models for integration the results is a set of Data Model Definitions.

48



Data Model
Definition Set

Data Model oe

System Set Set efining

Data Model Data Model
Defining Definition

Data Model
Component

Shared Model
Definition Desire

Figure 37 - Data Model Set Defining in-zoomned

System Set is physical.
Data Model Definition Set consists of many Data Model Definitions.
Data Model Set Defining consists of Data Model Defining.
Data Model Set Defining zooms into Data Model Defining.

Data Model Defining requires Shared Model Definition Desire, Data Model

Component Set, and System Set.
Data Model Defining yields Data Model Definition.

Data Model Component Set unfolded

The Data Model Component Set consists of Components used to create Data Model
Definitions. Support for three types of models are provided.

* Relational Model - A relational model used in a relational database

* Hierarchical Model - A hierarchical or tree model - commonly used in xml
structures

* Graph Model - A graph model consisting of subject, object, and predicate,
commonly used in the semantic web (2014) (Khamis, Zhong, & Gon, 2014).

49



Data Model
Com onent

Hierarchical Model Graph Model Relational Model
Component Component Component

Figure 38 - Data Model Component Set unfolded

Data Model Component Set consists of Hierarchical Model Component, Graph Model
Component, and Relational Model Component.

Data Model Definition unfolded

A Data Model Definition can be one of three types, a Hierarchical Model Definition, a
Graph Model Definition or a Relational Model Definition. Regardless of the type, all Data
Model Definitions have the following attributes:

* Folder - A Data Model Definition is organized within a Folder. This Folder
structure is used in the user interface to allow a User in the User Group to
categorize and organize Data Model Definitions in any way they see fit

e Model Name - A user defined name for this Data Model Definition

e Model Type - The type of Data Model Definition

e Sharability - Whether this Data Model Definition can be shared amongst other
Integration DAG Definitions (sharable) or not (unsharable)

e Format Definition - The Data Model Definition may also reference a Format
definition. See Figure 57 - Format Definition unfolded

50



~L2~'-, - - ~ - - -

Data Model Folder
Definition

Format
DeinMD on

Hierarchical Mndel
Model Definition Name

Graph Model Model
Denition Type

Relational Modexe Shared
Definition

Figure 39 - Data Model Definition unfolded

Format Definition references Data Model Definition.
XML Attribute Setting Set exhibits XPath Expression.
Fixed Length Attribute Setting Set exhibits Start Position and End Position.

Delimited Attribute Setting Set exhibits Position.

Data Model Definition exhibits Model Name, Model Type, and Shared.

Data Model Definition organized within Folder.

Graph Model Definition is a Data Model Definition.
Relational Model Definition is a Data Model Definition.

Hierarchical Model Definition is a Data Model Definition.

Data Model Defining in-zoomed

The Data Model Defining process describes the steps in creating a Data Model Definition.
This process is utilized from within the Integration Defining process as well as other
processes such as Reader Defining and Writer Defining.

51



Data 
ModelDeiinftion Set

System Set Data Model
Do-fning

Folder
Folder o many Data Mode

~~~~~~~~~~~~~~~Data Moe eiiinehbt oe ae oe ye n hrd

i 

gaini DewinitFion
Data Model

Compnent

RN a me Model
Setting Mo

Dnd a St

es TieMode

DaaMdlDeiigzom noFldrStigNm etig hrdSetting, Model

T Set , Relationa
odeD Deenii

Connection Hierarchical Relational Model
Definition Set Model Defining Definition

HierarchiC21
Grp oel Model Definition

Graph Mdel

Figure 40 - Data Model Defining in-zoomed

System Set is physical.
Data Model Definition Set consists of many Data Model Definitions.

Data Model Definition exhibits Model Name, Model Type, and Shared.
Model Type can be relational, hierarchical, or graph.

Data Model Definition organized within Folder.

Graph Model Definition is a Data Model Definition.
Relational Model Definition is a Data Model Definition.
Hierarchical Model Definition is a Data Model Definition.
Data Model Defining consists of Folder Setting, Name Setting, Model Type
Setting, Relational Model Defining, Hierarchical Model Defining, Graph Model
Defining, and Shared Setting.
Data Model Defining requires not integrated System Set and Data Model Component Set.
Data Model Defining zooms into Folder Setting, Name Setting, Shared Setting, Model

Type Setting, Relational Model Defining, Hierarchical Model Defining, and Graph Model
Defining.

52



Folder Setting affects Data Model Definition.
Name Setting yields Model Name.
Shared Setting yields Shared.
Model Type Setting yields Model Type.
Relational Model Defining occurs if Model Type is relational.
Relational Model Defining requires Connection Definition Set.
Relational Model Defining yields Relational Model Definition.
Hierarchical Model Defining occurs if Model Type is hierarchical.
Hierarchical Model Defining requires Connection Definition Set.
Hierarchical Model Defining yields Hierarchical Model Definition.
Graph Model Defining occurs if Model Type is graph.
Graph Model Defining requires Connection Definition Set.
Graph Model Defining yields Graph Model Definition.

Relational Model Definition unfolded

The Relational Model Definition is used to store the structure of a relational model and is
one of the outcomes of the Data Model Defining process. This metamodel allows a User
in the User Group to create Entity Definitions (tables), Attribute Definitions (columns),
and Entity Relationship Definitions (relationships / constraints / foreign keys). From
this metamodel, data can be read from and written to relational data sources.

53



Relational Model REni
Definition RelationshipE1 Definition

Source
EnEntity

Entity
Definition a

Tagt

Enntity

Name

Entity
Setting Set

Entity Relationship
Attribute

A

Attribute
Type

Attribute
Setting Set

Figure 41 - Relational Model Definition unfolded

Entity Relationship Definition exhibits Source Entity and Target Entity.
Source Entity references Entity Definition.
Target Entity references Entity Definition.

Entity Relationship Definition consists of Entity Relationship Attribute.
Entity Relationship Attribute exhibits Source Attribute and Target Attribute.

Source Attribute references Attribute Definition.
Target Attribute references Attribute Definition.

Relational Model Definition consists of Entity Definition.
Entity Definition exhibits Entity Name.
Entity Definition consists of Attribute Definition and Entity Setting Set.

Attribute Definition exhibits Attribute Name and Attribute Type.
Attribute Definition consists of Attribute Setting Set.

54

6

Attnibute < a Source
Definition Attribute

Attribute Atiute



Graph Model Definition unfolded

Graph Model Definitions can be defined and are represented as follows.

Subject
Definition

Predicate
Definition

fbject
Defin~ion

Figure 42 - Graph Model Definition unfolded

Graph Model Definition consists of Subject Definition, Predicate Definition, and Object
Definition.

55



Relational Model Defining in-zoomed

For each of the Data Model Definition types described above, the subsequent processes
are used to define them.

Relational Model

Relational Definition
Model Denning

etion on

Definition Set
Reaioa Mdl einn zo noEntityDeingAtrbeDfnnad Entity

Entity DefiningsEty Definition

AttArbute Attbute
Detning Definition

~~EntityReainhpDfnnreursAtiueDfnoad EntityDeiton

Relationshi p RelationshipDefining Definition

Data Model
Component

Figure 43 - Relational Model Defining in-zoomed

Relational Model Definition consists of Entity Definition.
Entity Definition consists of Attribute Definition.

Relational Model Defining consists of Entity Defining, Attribute Defining, and Entity
Relationship Defining.
Relational Model Defining requires Data Model Component Set and Connection
Definition Set.
Relational Model Defining zooms into Entity Defining, Attribute Defining, and Entity
Relationship Defining.

Entity Defining yields Entity Definition.
Attribute Defining requires Entity Definition.
Attribute Defining yields Attribute Definition.
Entity Relationship Defining requires Attribute Definition and Entity Definition.
Entity Relationship Defining yields Entity Relationship Definition.

56



Graph Model Defining in-zoomed

Graph Model
Connection Grap Model Deinition

Definition Set Definiag

DeDnn Definition

Graph Model Definitn consists of Subject Definitn, Predicate Definig, and Object

Defining.
Graph Model Defiinng requires Data Model Component Set and Connection Definition
Set.
Graph Model Defining zooms into Subject Defining, Predicate Defining, and Object
Defining.

Subject Defining yields Subject Definition.
Predicate Defining requires Subject Definition.
Predicate Defining yields Predicate Definition.
Object Defining requires Predicate Definition.
Object Defining yields Object Definition.

Integration DAG Component Set unfolded

Once Connection Definitions and Data Model Definitions are constructed, the next step
in the process is to define the Integration DAG Definition. This DAG represents the steps
needed for integration processing.

The Integration DAG Component Set is a set of components used in defining the DAG. It
consists of:

57



* Reader Component Set - Set of components used to define readers which read
data from a Data Set on a System

* Processor Component Set - A set of components used to define processing
steps such as translating, aggregating, routing, etc.

e Writer Component Set - A set of components used to define writers which write
data to a Data Set on a System

* Format Component Set - A set of components that allows definition of a Format
Definition (how data is laid out) for a given Data Set

Integration DAG
Com onent

Reader Processor Writer Format
Compnent Con Component Set Component

Set setset

Figure 45 - Integration DAG Component Set unfolded

Integration DAG Component Set consists of Reader Component Set, Processor
Component Set, Writer Component Set, and Format Component Set.

Integration DAG Definition unfolded

The Integration DAG Definition represents an integration defined by a User in the User
Group. It contains the following elements:

* Folder - An Integration DAG Definition is organized within a Folder. This Folder
structure is used in the user interface to allow a User in the User Group to
categorize and organize Integration DAG Definitions in any way they see fit

* Name - A user defined name for this Integration DAG Definition

e Component Definition Node Set - A set of Component Definitions (nodes)
belonging to that Integration DAG.

58



* Component Definition Link Set - A set of Component Definition Links that tie
the Component Definitions (nodes) together in the Integration DAG.

Inti ratNo oeAG Fonin

it~tp

Component Definition
Link Set

Name

Component Denition
Link

Target Component Source Component
Definition Node Definition Node

IComponent Denition ComNament
Node Set D fn ition

Component Definition
Node

Figure 46 - Integration DAG Definition unfolded

Component Definition Link exhibits Source Component Definition Node and Target
Component Definition Node.

Source Component Definition Node references Component Definition Node Set.

Target Component Definition Node references Component Definition Node Set.

Integration DAG Definition exhibits Name.

Integration DAG Definition consists of many Component Definition Node Sets.

Component Definition Node Set references Component Definition.

Integration DAG Definition organized within Folder.

59

a A



Component Definition Node Set unfolded

Each Integration DAG Definition (integration) has a Component Definition Node Set. A
Component Definition Node Set is a collection of Component Definition Nodes. Each
Component Definition Node represents a Component Definition in context to the
Integration DAG Definition that it resides within. As an example, a Component
Definition may represent a database reader that reads data from a relational database.
The Component Definition is referenced by a Component Definition Node when that
Component Definition is placed on or used within an Integration DAG. The context of
the Component Definition within the integration as a whole is represented by the
Component Definition Node.

Component Definition
Node Set

Component Definition **""" Cmmnen
Node oomponn

Figure 47 - Component Definition Node Set unfolded

Component Definition Node Set consists of Component Definition Node.
Component Definition Node references Component Definition.

Integration DAG Defining in-zoomed

In defining the Integration DAG and producing the Integration DAG Definition, the User
completes the following activities:

* Set the Folder - An Integration DAG Definition is organized within a Folder. This
Folder structure is used in the user interface to allow a User in the User Group to
categorize and organize Integration DAG Definitions in any way they see fit

* Set the Name - A user defined name for this Integration DAG Definition

e Create a Component Definition Node Set - A set of Component Definitions
(nodes) belonging to that Integration DAG. Each action the Users wants
completed with the Integration DAG will be defined as a Node within the graph

60

__ - - -- .1 1 1 1.



* Component Definition Link Set - A set of Component Definition Links that tie
the Component Definitions (nodes) together in the Integration DAG.

- - --- -nto tation
User Group DAG eining

dgur 48 /Ai

SCetting Definition

System Set is physical.
User Group is environmental and physical.
User Group handles Integration DAG Defining.
Configuration / Operational Repository is physical.
Integration DAG Definition exhibits Name.
Integration DAG Definition consists of many Component Definition Node
Sets and Component Definition Link Set.
Integration DAG Definition organized within Folder.
Integration DAG Defining consists of Component Definition Node Set
Defining, Component Definition Link Set Defining, Folder Setting, and Name Setting.
Integration DAG Defining zooms into Folder Setting, Name Setting, Component
Definition Node Set Defining, and Component Definition Link Set Defining.

Folder Setting affects Integration DAG Definition.
Name Setting yields Name.
Component Definition Node Set Defining requires System Set, Configuration /

Operational Repository, and Integration DAG Component Set.
Component Definition Node Set Defining yields Component Definition Node Set.
Component Definition Link Set Defining requires Component Definition Node Set.
Component Definition Link Set Defining yields Component Definition Link Set.

61

f



Component Definition Node Set Defining in-zoomed

Defining a set of nodes for the Integration DAG can be done by creating the Component
Definitions from scratch, by selecting previously created Component Definitions, or
both.

Conent Daefno
ntegration NAG Set Defining

Com onent Systei c Set

Coont DCCom onent DefinitionNo

Component Defini~ti NDefernesCmpnniDfniin
CopgutonetDfntoSecosssf CotComponent Definition
OpoetDfnto oeeiigonsst ofCoponet DfNito Set

Repository
Comfini Dointion

Figure 49 - Compoent Definition Node Set Defining in-zooUed

System Set is physical.
User Group is environmental and physical.
Configuration / Operational Repository is physical.

Component Definition Node Set consists of Component Definition Node.

Component Definition Node references Component Definition.
Component Definition Set consists of Component Definition.

Component Definition Node Set Defining consists of Component Definition Set
Defining and Component Definition Set Selecting.
Component Definition Node Set Defining requires User Group.
Component Definition Node Set Defining zooms into Component Definition Set
Defining and Component Definition Set Selecting.

Component Definition Set Defining requires System Set and Integration DAG
Component Set.

Component Definition Set Defining affects Configuration / Operational Repository.

Component Definition Set Defining yields Component Definition Set.

Component Definition Set Selecting affects Configuration / Operational

Repository.
Component Definition Set Selecting yields Component Definition Set.

Component Definition Set Defining in-zoomed

When creating Component Definitions for a DAG, a User in a User Group must create or
select at least one Reader Definition and at least one Writer Definition. An integration
must read from at least one source and write to another. Processing steps such as
translating data between models are likely but not necessarily required. The output of

62



the Component Definition Set Defining is a set of Component Definitions that will be
referenced by Component Definition Nodes in the Integration DAG Definition.

IData Model

SDeinition 
Set

CG] Eofitn Di tii

Integratio DAGrtinPocso

Co inet einiin S

Co____nt Rader Set Reader
C pa ntset Defining Definition t

Figure 50 - Component Definition Set Defining in-zoomed

System Set is physical.
User Group is environmental and physical.
User Group exhibits Processing Need.

Processing Need can be existent or non-existent.
Integration DAG Component Set consists of Reader Component Set, Processor
Component Set, and Writer Component Set.
Component Definition Set consists of Processor Definition Set, Reader Definition
Set, and Writer Definition Set.
Component Definition Set Defining consists of Integration Processor Set
Defining, Reader Set Defining, and Writer Set Defining.
Component Definition Set Defining zooms into Reader Set Defining, Integration
Processor Set Defining, and Writer Set Defining.

Reader Set Defining requires System Set, Data Model Definition Set, and Reader
Component Set.

Reader Set Defining yields Reader Definition Set.
Integration Processor Set Defining occurs if Processing Need is existent.
Integration Processor Set Defining requires Processor Component Set.
Integration Processor Set Defining yields Processor Definition Set.

63

t



Writer Set Defining requires Writer Component Set.
Writer Set Defining yields Writer Definition Set.

Reader Component Set unfolded

The Reader Component Set, used in the Reader Defining process allows a User to define
a Reader Definition that allows reading data from a relational or file data source. Two
initially supported readers will be Database and File readers. Other readers will be

added over time including queue readers, etc.

Reader
Corn nent

Database File
Reader Reader

Figure 51 - Reader Component Set unfolded

Reader Component Set consists of Database Reader and File Reader.

Reader Definition Set unfolded

A Reader Definition Set is simply a collection of Reader Definitions used within an
Integration DAG Definition.

Reader
Definition

set

Reader
Definition

Figure 52 - Reader Definition Set unfolded

Reader Definition Set consists of Reader Definition.

Reader Set Defining in-zoomed

One or more Reader Definitions may be created when creating an Integration DAG
Definition.

64



Reader
Definition

System Set Reader Set
Defining

Data Model ? Reader Reader
Definition Set Defining Definition

Reader
Comoonent

Figure 53 - Reader Set Defining in-zoomed

System Set is physical.
Reader Definition Set consists of Reader Definition.
Reader Set Defining consists of Reader Defining.
Reader Set Defining zooms into Reader Defining.

Reader Defining requires System Set, Data Model Definition Set, and Reader

Component Set.
Reader Defining yields Reader Definition.

Reader Definition unfolded

A Reader Definition is comprised of the following attributes:

* Folder - A Reader Definition is organized within a Folder. This Folder structure
is used in the user interface to allow a User in the User Group to categorize and
organize Reader Definitions in any way they see fit

e Reader Component Type - The type of reader (currently database of file)

* Shared - Whether this Reader Definition can be shared amongst other
Integration DAG Definitions

* Output Model - The Output Model references a Data Model Definition that
describes the output model of the data provided by the reader

* Output Format - The Output Format references a Format Definition that
describes the output format of the data provided by the reader

* Reader Definition Setting Set - Similar to a Connection Definition Setting Set,
the Reader Definition Setting Set allows key/value pairs of reader specific

65



S~ ~

attributes to be saved without hardcoding a set of definition tables for each
reader. This will allow extensibility readers without changing the underlying
Data Integrating System model.

Reader WVWO Wo
Definition

Reader Na Sd Out Output Connection Reader Definition
Component Typ char Boolea Mode'l Format efgSt

Data Model Format Connection
Definition Dednition Definition

Figure 54 - Reader Definition unfolded

Reader Definition exhibits Name, Shared, Output Model, Output
Format, Connection, and Reader Component Type.

Name is of type char.
Shared is of type Boolean.
Output Model references Data Model Definition Set.
Output Format references Format Definition.
Connection references Connection Definition.

Reader Definition consists of Reader Definition Setting Set.
Reader Definition organized within Folder.

66



Reader Defining in-zoomed

The Reader Defining process allows each attribute of the Reader Definition to be set by
the User.

Figur 55 Readr Deiningin-zonie

notDfiito inertdisiiil

Dtgaeifia

er Guponent and phsial

User~~~am GruNaabmnnoreerinomd

a Ineat q es Data g em

DataItegratngtchne Usrerop fro ininfome toifomdt System 
Set frm notintegated teinterated

Repository

FormatFormat
Definition Defig S'

Data Model
Dofnftin Sot Forat output

Setig F aren at

Reader Dwfinmn Reader Definition-
ow~ns Set ODfling setting Sot

Figure SS - Reader- Defining in-zoomied

Data Integrating System is physical.
System Set is physical.
System Set can be not integrated or integrated.

not integrated is initial.

integrated is final.
User Group is environmental and physical.
User Group can be uninformed or informed.

uninformed is initial.
informed is final.

Data Integrating requires Data Integrating System.
Data Integrating changes User Group from uninformed to informed and System
Set from not integrated to integrated.

67



Data Model Defining or Selecting in-zoomed

As part of the Reader Defining process, an Output Model must be specified. This Output
Model can be created when defining the Reader Definition, or earlier in the Integration
Defining process (as a global ontology) as described above. The Data Model Defining or
Data Model Selecting process simply allows the user to select an existing Data Model
Definition or create a new one.

Repoaftorty

Data Modeloe

SystemSyte SeSiehyicl

Configuration I Data Model efiit
Operational Selecting
Repository

Data Mode i Data Model Reader
Definition Defining Cmnn

Figure 56 - Data Model Defining or Selecting in-zoo Daed

System Set is physical.
Configuration / Operational Repository is physical.
Configuration / Operational Repository consists of Data Model Definition.
Data Model Defining or Selecting consists of Data Model Defining and Data Model
Selecting.
Data Model Defining or Selecting requires System Set.
Data Model Defining or Selecting zooms into Data Model Selecting and Data Model
Defining.

Data Model Selecting requires Configuration / Operational Repository.
Data Model Selecting yields Data Model Definition.
Data Model Defining requires Reader Component Set.
Data Model Defining yields Data Model Definition.

Format Definition unfolded

A Data Set on a System may be laid out in a given format. As an example, a flat file may
adhere to a Data Model Definition and be laid out in a given format (possibly fixed length
or delimited). When defining a reader a Format Definition is defined. A Format
Definition consists of:

e Format Type - The type of format. Initially supported will be XML, Delimited
and Fixed Length Formats. Others may be added in the future.

68



* Format Setting Set - Key / Value pairs of settings that apply to the entire Format
Definition. Examples include the delimiter in a Delimited Format definition. I.E. a
'' or ',' or tab.

* Entity Format Setting Set - Key / Value pairs of settings that apply to entities in
the Format Definition. As an example, in a Fixed Length or Delimited Format, the
file might have multiple record types (entities) that are designated by different
record type identifiers in the file.

* Attribute Format Setting Set - Key / Value pars of settings that apply to
attributes in the Format Definition. As an example, in a Fixed Length Format, the
attribute will have a start and end character position with the line. In a Delimited
Format, the attribute will have a position number within the line, etc.

Format
Definition

Format Format Entity Format Attribute Format
Type Setting Set Setting Set

Figure 57 - Format Definition unfolded

Format Definition exhibits Format Type.
Format Definition consists of Format Setting Set, Entity Format Setting Set, and Attribute
Format Setting Set.

Format Type unfolded

Format Type can be one of XML Format, Delimited Format or Fixed Length Format.

Format
Type

XML Delimited Fixed Length
Format Format Format

Figure 58 - Format Type unfolded

69



XML Format is a Format Type.
Fixed Length Format is a Format Type.
Delimited Format is a Format Type.

Format Setting Set unfolded

The Format Setting Set is a generic way to store information about different format
types without hard coding the Data Integrating System database design, allowing for
additional Format Types in the future. The XML Format Setting Set is described by an
XML template that describes the desired XML format. The Delimited Format Setting Set
is described by a Delimiter ("," or "I" or tab, etc.) that defines the delimiting character
that delineates the fields.

Format
Setting Set

XML Format Delimited Format
Setting Set Setting Set

Template Delimiter

Figure 59 - Format Setting Set unfolded

XML Format Setting Set is a Format Setting Set.
XML Format Setting Set exhibits Template.
Delimited Format Setting Set is a Format Setting Set.
Delimited Format Setting Set exhibits Delimiter.

70

-'*.OA6-.AA



Entity Format Setting Set unfolded

The Entity Format Setting Set is used to describe Entity formats and is used in all three
Format Types. The Delimited and Fixed Length Entity Setting Sets have a Record Type
Pattern that describes the pattern for different record types within a delimited file (if the
file contains more than one record type). The XML Entity Setting Set has an Xpath
expression that defines how that instance of an entity can be paired with the previously
defined XML Format Setting Set Template.

E ty Format

Delimited Entity Fixed Length Entity XML Entity
StigSetting Set Setting Set

Record Type Record Type XPath
Pattern Paftem- Expression

Figure 60 - Entity Format Setting Set unfolded

XML Entity Setting Set is an Entity Format Setting Set.
XML Entity Setting Set exhibits XPath Expression.
Fixed Length Entity Setting Set is an Entity Format Setting Set.
Fixed Length Entity Setting Set exhibits Record Type Pattern.
Delimited Entity Setting Set is an Entity Format Setting Set.
Delimited Entity Setting Set exhibits Record Type Pattern.

Attribute Format Setting Set unfolded

The Attribute Format Setting Set is used to describe Attribute formats and is used in all
three Format Types. The Delimited Attribute Setting Set contains a Position (i.e. the
ordinal position of the field within that delimited record). The Fixed Length Attribute
Setting Set contains a Start and End Position that describes the start and end character
position for the field within that fixed length record, and the XML Attribute Setting Set
contains an XPath Expression that defines how that instance of a column can be paired
with the previously defined XML Format Setting Set Template.

71



Attebute FoArtat
Setting Set

Setting Set

Position

.1.
Fixed Length Attribute

Setting Set

Start
Position

Positon

I1XML Attribute
Setting Set

XPath
Expression

Figure 61 - Attribute Format Setting Set unfolded

XML Attribute Setting Set is an Attribute Format Setting Set.
XML Attribute Setting Set exhibits XPath Expression.
Fixed Length Attribute Setting Set is an Attribute Format Setting Set.
Fixed Length Attribute Setting Set exhibits Start Position and End Position.
Delimited Attribute Setting Set is an Attribute Format Setting Set.
Delimited Attribute Setting Set exhibits Position.

72

1



Format Defining in-zoomed

The Format Defining process allows each attribute of the Format Definition to be set by
the User.

Format Format
Format DeDeniin DefinitionCom n int

Model

Forma Defiitionconsits ofFormttStigStiEttnomtgetn e, n trbt

F t iFormat
9.') ON Type

Settings Format
Deinig Settg Set

Entity
SForma EntDfi FoFt

Deinng ad ttibteSetigDefining.S g e

M eSia F atDAttrbutetFormat
SettingSetting Set

Figure 62 - Format Defining in-zoomed

Format Definition exhibits Format Type.
Format Definition consists of Format Setting Set, Entity Format Setting Set, and Attribute
Format Setting Set.
Format Defining consists of Model Setting, Type Setting, Settings Defining, Entity Setting
Defining, and Attribute Setting Defining.
Format Defining requires Format Component Set.
Format Defining zooms into Model Setting, Type Setting, Settings Defining, Entity Setting
Defining, and Attribute Setting Defining.

Model Setting affects Format Definition.

Type Setting yields Format Type.
Settings Defining yields Format Setting Set.
Entity Setting Defining yields Entity Format Setting Set.
Attribute Setting Defining yields Attribute Format Setting Set.

73



Reader Definition Setting Set unfolded

Similar to the other Setting Set patterns, the Reader Definition Setting Set is used to
store configuration information about a generic Reader. Each Reader Type can define
different settings that must be configured for the type of reader. Currently the Reader
Definition Setting set can be one of Database Reader Definition Setting Set or File Reader
Definition Setting Set.

Re ader Definition
Setting Set

Database Readertse Reader
Definition Setting Set

File Reader
Definiin Setting Set

Figure 63 - Reader Definition Setting Set unfolded

Database Reader Definition Setting Set is a Reader Definition Setting Set.
File Reader Definition Setting Set is a Reader Definition Setting Set.

Database Reader Definition Setting Set unfolded

The Database Reader Definition Setting Set contains the following:

* Query - The query to be run to select data for the database reader

* Trim Columns on Reader - Whether columns read from the database should be
trimmed of blank spaces at the end of the column

e Rows Per Message - The number of rows that should be packaged into a single
message before that message is sent to the next node in the Integration DAG.

74



Database Reader
Definition Setting Set

Trim Columns
On Read

Rows Per
Message

Figure 64 - Database Reader Definition Setting Set unfolded

Database Reader Definition Setting Set exhibits Trim Columns On Read, Query, and Rows
Per Message.

File Reader Definition Setting Set unfolded

The File Reader Definition Setting Set contains the following:

* Line Terminator - The character of set of characters that denotes the end of a
line in the file

e Number of Header Lines To Skip - The number of lines to skip at the beginning
of the file specifying these lines are not data but header lines

e Trim Columns on Reader - Whether columns read from the file should be
trimmed of blank spaces at the end of the column

* Quote Character - The character that should be used to quote a string within the
file (important for delimited files in cases where a string contains the delimiter
character)

* Relative Path - The relative path and file where the file resides in context of the
absolute path provided by the Connection

75

- - ; a , -1-1- -1-- IWANNUI-



File Reader
Definition Setting Set

Line
Terminator

Number of Header
Lines To Skip

Trim Columns
On Read

Quote
Character

Relative
Path

Rows Per
Message

Figure 65 - File Reader Definition Setting Set unfolded

File Reader Definition Setting Set exhibits Quote Character, Line Terminator, Number of
Header Lines To Skip, Absolute Path, Trim Columns On Read, and Rows Per Message.

Reader Definition Setting Set Defining in-zoomed

The Reader Definition Setting Set Defining process allows each attribute of the Reader
Definition Setting Set to be set by the User.

76



Reader
Cormponent Reader Definition Re

Setting Set Defining

Reader DeiiinStigSet
Component Type Defrving

File Reader
Definition Settng Set File Reader

Definition Setting Set

I

H

Figure 66 - Reader Definition Setting Set Defining in-zoomed

Reader Component Type can be database reader type or file reader type.
Database Reader Definition Setting Set is a Reader Definition Setting Set.
File Reader Definition Setting Set is a Reader Definition Setting Set.
Reader Definition Setting Set Defining consists of Database Reader Definition Setting Set
Defining and File Reader Definition Setting Set Defining.
Reader Definition Setting Set Defining requires Reader Component Set.
Reader Definition Setting Set Defining zooms into Database Reader Definition Setting Set
Defining and File Reader Definition Setting Set Defining.

Database Reader Definition Setting Set Defining occurs if Reader Component
Type is database reader type.

Database Reader Definition Setting Set Defining yields Database Reader Definition
Setting Set.

File Reader Definition Setting Set Defining occurs if Reader Component Type is file
reader type.

File Reader Definition Setting Set Defining yields File Reader Definition Setting
Set.

Processor Component Set unfolded

There are many types of processors being considered for inclusion into the Integration
System Product. They include:

* Record Translator - Translates or maps an Entity and all of its Attributes from
one Data Model to another.

* Message Router - While the Component Definition Link Set of an Integration
DAG inherently defines the flow of a message through DAG, there may be times
where dynamic routing based on data is desired. The Message Router is a

77

ader Definition
Setting Set

Database Reader
Definition Setting Set



mechanism to facilitate this functionality. It dynamically sends a message from
one Component Definition Node to one or more other Component Definition
Nodes based on a routing rule and the message data itself.

* Message Aggregator - The Message Aggregator allows multiple messages to be
aggregated into a single message.

* Message Splitter - The Message Splitter allows a single message to be split into
multiple messages

* Record Enricher - The Record Enricher allows a record or Entity within a
message to be enriched with additional data from other sources

- Message Sequencer - The Message Sequencer allows a set of messages to be
sequenced into a different order

- Transformer - A Transformer allows transformation functions to be applied to
Attributes of an Entity within a message

- Joiner - A Joiner allows Entities from disparate messages to be joined together
into a single message

78



Processor
Cornponent

1 z

Record
Translator

Message
Router

Message
Aggregator

Message
Splitter

Record
Enricher

Message
Sequencer

Transformer

Joiner

Figure 67 - Processor Component Set unfolded

Processor Component Set consists of Record Translator, Message Router, Message
Aggregator, Message Splitter, Record Enricher, Message
Sequencer, Auditor, Transformer, Record Appender, and Joiner.

79



Processor Definition Set unfolded

A Processor Definition Set contains one or more Processor Definitions

FProcessor
Deintion Set

Processor
Definition

Figure 68 - Processor Definition Set - unfolded

Processor Definition Set consists of Processor Definition.

Processor Definition unfolded

Processor Definition will most likely be broken down into two different types, Message
Processor Definitions which will modify a set of Messages, and Record Processor
Definitions will affect Entities and Attributes within a Message.

The Processor Definition represents a processing component defined by a User in the
User Group. It contains the following elements:

e Folder - A Processor Definition is organized within a Folder. This Folder
structure is used in the user interface to allow a User in the User Group to
categorize and organize Processor Definitions in any way they see fit

* Processor Component Type - The type of processor

* Shared - Whether this Processor Definition can be shared amongst other
Integration DAG Definitions

* Input Model - The Input Model references a Data Model Definition and describes
the input model of the data provided to the processor

* Output Model - The Output Model references a Data Model Definition and
describes the output model of the data provided by the processor

* Processor Definition Setting Set - The Processor Definition Setting Set is a
generic way to store information about different processor types without hard

80



coding the Data Integrating System database design, allowing for additional
Processing Types in the future

Figure 69 - Processor Definition tnfolded

Processor Definition exhibits Name, Shared, Input Model, Output
Model, Connection, and Processor Component Type.

Name is of type char.
Shared is of type Boolean.
Input Model relates to Data Model Definition.
Output Model relates to Data Model Definition.
Connection relates to Connection Definition.
Connection relates to Connection Definition.

Processor Definition consists of Processor Definition Setting Set.
Processor Definition organized within Folder.
Message Processor Definition is a Processor Definition.
Record Processor Definition is a Processor Definition.

Processor Definition Setting Set unfolded

Each of the Processor Types will have its own set of settings that can be set via a
processor specific setting set.

81



Processor Definition
Setting Set I

Record Translator
Definition Setting Set

Record Enricher
Definition Setting Set

Record Aggregator
Definition Setting Set

Message Router
Definition Setting Set

Message Splitter
Definition Setting Set

Message Sequencer
Definition Setting Set

I
I
I

~1
I

Message Aggregator
Definition S ting Set

Message Filter
Definition Setting Set

Figure 70 - Processor Definition Setting Set unfolded

Processor Definition Setting Set exhibits Message Router Definition Setting Set, Message
Splitter Definition Setting Set, Message Sequencer Definition Setting Set, Message
Aggregator Definition Setting Set, Message Filter Definition Setting Set, Record
Translator Definition Setting Set, Record Enricher Definition Setting Set, and Record
Aggregator Definition Setting Set.

82

I I

I

O

I

I

I



Integration Processor Set Defining in-zoomed

The Integration Processor Set Defining allows all Integration Processing components to
be defined for the Integration DAG. The output is a Processor Definition that will be
used with the DAG.

Processing Need Integration Processor
Processor Definition Set

(no-exeatSet Defning

Processor ntegration Processor Processor
Com nent Defiinng Defnition

Figure 71 - Integration Processor Set Defining in-zoomed

Processor Definition Set consists of Processor Definition.
Processing Need can be existent or non-existent.
Integration Processor Set Defining consists of Integration Processor Defining.
Integration Processor Set Defining occurs if Processing Need is existent.
Integration Processor Set Defining zooms into Integration Processor Defining.

Integration Processor Defining requires Processor Component Set.
Integration Processor Defining yields Processor Definition.

83



Integration Processor Defining in-zoomed

Integration Processing Defining will be specific to the processor being defined.

Processor
Definition

Procnssor o
Component Type

Figure 72 - Integration Processor Defining in-zoomed

Processor Definition exhibits Processor Component Type, Record Translator
Definition, Record Enricher Definition, Record Aggregator Definition, Message Router
Definition, Message Splitter Definition, Message Sequencer Definition, Message
Aggregator Definition, and Message Filter Definition.

Processor Component Type can be message router, message splitter, message

84

Co anentt

Type Setting

*card Translator Record Translator
Defining Defilniton

#cord Enricher Record Enricher
Defining Definition

ecard Agg gVata Raeor Aeao

msag Router Mesg Router
Defining Dfnition

mag splitter Mesa 0 sitter

ama e Sequencer Mesap Sequencer

tssave Ag gato Moage Agregator

Defining Definition

fuiwsow



sequencer, message aggregator, message filter, record translator, record
enricher, or record aggregator.
Integration Processor Defining consists of Component Type Setting, Message Router
Defining, Message Splitter Defining, Message Sequencer Defining, Message Aggregator
Defining, Message Filter Defining, Record Translator Defining, Record Enricher
Defining, and Record Aggregator Defining.
Integration Processor Defining requires Processor Component Set.
Integration Processor Defining zooms into Component Type Setting, Record Translator
Defining, Record Enricher Defining, Record Aggregator Defining, Message Router
Defining, Message Splitter Defining, Message Sequencer Defining, Message Aggregator
Defining, and Message Filter Defining.

Component Type Setting yields Processor Component Type.
Record Translator Defining occurs if Processor Component Type is record

translator.
Record Translator Defining yields Record Translator Definition.
Record Enricher Defining occurs if Processor Component Type is record enricher.
Record Enricher Defining yields Record Enricher Definition.
Record Aggregator Defining occurs if Processor Component Type is record

aggregator.
Record Aggregator Defining yields Record Aggregator Definition.
Message Router Defining occurs if Processor Component Type is message router.
Message Router Defining yields Message Router Definition.
Message Splitter Defining occurs if Processor Component Type is message splitter.
Message Splitter Defining yields Message Splitter Definition.
Message Sequencer Defining occurs if Processor Component Type is message

sequencer.
Message Sequencer Defining yields Message Sequencer Definition.
Message Aggregator Defining occurs if Processor Component Type is message

aggregator.
Message Aggregator Defining yields Message Aggregator Definition.
Message Filter Defining occurs if Processor Component Type is message filter.
Message Filter Defining yields Message Filter Definition.

85



Summary

As part of this thesis, systems thinking, the Object-Process Methodology and OPCAT
were used to analyze, define and document opportunities for improvement for data
integrating software including:

1. Extensibility by third parties
2. Different types of structured data models
3. Enhanced modeling capabilities
4. Automated unit testing
5. Unified toolset that covers multiple integration patterns
6. Web-based toolset

In addition an OPM model was created and described, which is being used to facilitate
design and implementation of a data integrating system for a large client that will use
the system to integrate data between their central master data management solution
and all other operational systems within their business.

Lessons Learned

In addition to the lessons learned from above surrounding opportunities for
improvement in data integrating systems, there were also lessons learned centered
around the use of modeling, OPM and OPCAT in a custom software building project.

* Modeling was extremely valuable in facilitating design discussions throughout
the project, especially as the software was incrementally designed over time.
With agile methodologies focuses on design and construction in a rapid and
iterative fashion, design decisions can be lost and rehashed over the period of
evolution of the project. Having the model to constantly refer back to was
extremely helpful

e With OPM's one consistent syntax and diagram type, it was quick and easy to
get a team of people up to speed on the modeling syntax. None of the other
team members had been exposed to OPM, and within a very short timeframe the
team was able to understand and read the models.

- OPM and OPCAT's single integrated model helped facilitate efficient design
discussions. Being able to drill up and down throughout the entire model for
viewing purposes without flipping back and forth between diagrams and diagram
types made it easier to keep train of thought on the problem domain versus
navigability between diagrams and diagram types.

e Model starting point, from top or bottom - As the Data Integrating System
model was being defined, there were a couple of times I wanted to model a
component or sub-component from the bottom up, and I struggled as OPCAT

86



seems to guide you down a path and more easily navigate from the top down. I
believe both approaches are appropriate depending on the situation. There are
times I wanted to build a bottom up model and then tie it into existing top down
model, and it wasn't easy to do so.

" Model boundaries - It would be helpful for me to define a list of criteria for what
to model and what not to. I think it would be theoretically possible to model
every aspect of a software system down to the nitty-gritty detail; however, this
probably isn't an efficient use of time, unless code base is truly generated from
the model itself.

* Ease of refactoring -There were a couple of times as I was using OPM to think
through the problem domain, that I reversed directions and needed to do some
fairly extensive refactoring of the model. This was more difficult than anticipated
as each of the model diagrams is coupled to the diagrams above and below it (i.e.
in-zoomed or unfolded). The coupling between the diagrams is excellent for
consistency and discipline, but provides additional challenges when refactoring.

* Use of OPM to document an existing system - There are many times I have
been thrown into a situation where the need existed to understand a system that
someone else put together. In many cases there is no documentation, and the
initial designer or developer are no longer available. Having the ability to reverse
engineer existing code into an OPM model would be an extremely valuable tool in
understanding existing systems.

* Data Modeling - complexities in the level of abstraction - When defining a
relational model with OPM and OPCAT, I found myself struggling with the level of
abstraction at times. When defining a relational model in an Entity-Relationship
diagram or within a database system itself, I know exactly what the database
structure will look like. When defining that same relational model in OPCAT, I
found myself struggling to determine how OPCAT would translate the model into
a relational structure. The level of indirection / abstraction added complexity to
the task.

" Data modeling - required vs. optional - When creating a data model in OPM,
how do you define optional or required, field lengths, etc. These can be done in
OPL but not necessarily generate the correct SQL. Same thing with indexes,
constraints, etc. A complete meta model for data modeling would be most
beneficial.

e Visualization from a granularity perspective - There is an inherent
contradiction between simplicity and being able to see the big picture of a
system. When creating several of my model diagrams, I struggled with whether
to include multiple levels of aggregation - participation in a single diagram or
whether to in-zoom or unfold each level. I tended to stick with seven to ten

87



things on a diagram for simplicity sake, but found this does prohibit the ability to
get a better big picture look at a topic or set of items.

e Nomenclature for things with the same name but under different things or
contexts - What should be done about nomenclature for items that are named
the same, but have different things or contexts? In a programming language this
could be resolved by providing package names for the things that would fully
qualify the thing and its attribute.

Future Work and Research Opportunities

Future work can be grouped into three categories. The first is to continue working on
the existing integrating system project. The model for the integrating system will
continue to be defined and refined in the context of the project with product
development happening concurrently. The Integration Executing and Integration
Monitoring processes will be flashed out in detail, and items will continue to be added to
the Integration Defining process, including additional reader, writer and processing
component types.

In addition to the integrating project activity, there is a second body of work centered
around enhancements to OPCAT that would be interesting and beneficial, including:

e Web-based version of OPCAT - With the advancements in web technology, it
would be possible to create a web based version of OPCAT that could be utilized
over the internet and with a web browser. This would provide opportunity for
enhanced group based work and review of a model over a geographically
dispersed audience.

* Additional refactoring capabilities - As discussed in the lessons learned,
refactoring is possible with OPCAT, but there are opportunities to enhance the
refactoring process to make it more efficient.

" Ability to create an OPM model from code and vice versa - The ability to
reverse engineer a model from a code base would be extremely valuable. While
this is a complex task, it would be a good future research opportunity as well as
body of work to enhance the OPCAT toolset.

e Ability to create an OPM model from an SQL database and vice versa -
Currently OPCAT has rudimentary capabilities to turn a model into SQL, but no
capabilities to reverse engineer a model from a database. This would be another
opportunity for improvement.

88



Enhancements to printing and exporting of an existing model (to pdf, etc.) -
Ability to provide a printable version of a model or sections of a model would
also be extremely helpful in facilitating design sessions.

Future research in many cases could fall in line with the future work listed above. Of
particular interest is the ability to reverse engineer a model from an existing code and
database structure. In addition, the definition of metamodels for relational databases,
graph databases and other could lay down a foundation for common OPM models that
could be used across projects and models.

89



Bibliography
Akbay, S. (2004, June). Model-Driven Data Integration. DM Review, 65-66.
Bernstein, P., & Hass, L. (2008). Information Integration in the Enterprise.
Communications of the ACM, 51 (9), 72-79.
Brands, K. M. (2014, December). TECH Practices - Data Visualization and Discovery.
Strategic Finance, 56-57.
Campbell, A., Goulson, G., & Kounavis, M. (1999, October). Managing Complexity:
Middleware Explained. IT Pro, 22-28.
Halevy, A., Rajaraman, A., & Ordille, J. (2006, September). Data Integration: The Teenage
Years. Proceedings of VLDB, 9-16.
Hohpe, G., & Woolf, B. (2004). Enterprise Integration Patterns. Boston, San Francisco,
New York: Addison-Wesley.
Kabiri, A., & Chiadmi, D. (2013, August). Survey on ETL Processes. Journal of Theoretical
and Applied Information Technology, 219-229.
Khamis, A.-l., Zhong, L., & Gon, H. (2014). Study on Digital Content Representation from
Direct Label Grph to RDF/OWL Langue into Semantic Web. Applied Mechanics and
Materials, 3304-3309.
Kimball, R., & Caserta, J. (2004). The Data Warehouse ETL Tookit: Practical Techniques
for Extracting, Cleaning, Conforming, and Delivering Data. Indianapolis, IN: Wiley
Publishing, Inc.
Lawson, L., & Sharma, S. (2014, 12 12). Round-up: 2015's Top Integration Trend, In One
Word. Retrieved 12 13, 2014, from IT Business Edge:
http://www.itbusinessedge.com/blogs/integration/round-up-2015s-top-integration-
trend-in-one-word.html
Moradi, H., & Bahreininejad, A. (2013, March 1). Toward a Comprehensive Framework
for Evaluating the Core Integration Features of Enterprise Integratin Middleware
Technologies. Journal ofSystems Integration, 13-29.
Pahl, C., & Zhu, Y. (2012). Data Integration in Mediated Service Compositions. Computing
and Informatics, 31, 1129-1149.
Stonebraker. (2002). Too Much Middleware. ACM SIGMOD Record, 97-106.
Varughese, D. D. (2013). Optimising Ontology Integration Through Intermediate
Ontologies. Journal of Theoretical and Applied Information Technology, 57 (3), 441-451.
Xu, Z.-y., Yan, Y., Wang, G.-x., & Gong, L. (2014). Research on the Integration Method for
Heterogeneous Database Based on Ontology. Advanced Materials Research, 933, 675-
681.
Zhai, L., Guo, L., Cui, X., & Li, C. (2011). Research on Real-time Publish/Subscribe System
supported by Data-Integration. Journal ofSoftware, 6 (6), 1133-1139.
Zhang, H. (2014). A query Driven Method of Mapping from Global Ontology to Local
Ontology in Ontology-based Data Integration. Journal ofSoftware, 9 (3).
Zhang, H. (2014, March). A Query Driven Method of Mapping from Global Ontology to
Local Ontology in Ontology-based Data Integration. Journal ofSoftware , 738-742.

90


