
MIT Open Access Articles

Software Comes to Matter: Toward a
Material History of Computational Design

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Llach, Daniel Cardoso. “Software Comes to Matter: Toward a Material History of
Computational Design.” Design Issues 31, no. 3 (July 2015): 41–54. © 2015 Massachusetts
Institute of Technology

As Published: http://dx.doi.org/10.1162/DESI_a_00337

Publisher: MIT Press

Persistent URL: http://hdl.handle.net/1721.1/100540

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/100540

DesignIssues: Volume 31, Number 3 Summer 2015 41
© 2015 Massachusetts Institute of Technology

Software Comes to Matter:
Toward a Material History
of Computational Design
Daniel Cardoso Llach

Introduction
A metaphor of weightlessness and immateriality dominates
computational discourses about design. Digital information, it is
often assumed, travels seamlessly through invisible networks in its
disembodied binary form—existing merely as a symbolic entity.
Despite recent appeals to design’s materiality, particularly in
discourses about digital fabrication in architecture, material for-
mations are generally considered an effect of these ethereal transac-
tions. Thus, the materiality of digital information, its (often messy)
substrates—such as wires, voltages, disks, and drives, as well as
the socio-technical processes involved in their definition and pro-
duction—are black-boxed: hidden from view. This article explores
the intellectual and material history of numerically controlled
machines, and of the software that drove them, and shows that a
new theoretical understanding of materials and geometry as com-
putable, linked to the emergence of software and numerically
controlled machines, emerged from the Cold War era entangle-
ment of military, industrial, and academic interests. I show how
in their quest to automate machine tools, the first numerical con-
trol researchers at the Massachusetts Institute of Technology (MIT)
codified the cognitive and bodily roles of machine tool operators,
as well as the properties of materials and machines, thus uncover-
ing new questions of data storage, management, and exchange.
Confronting these questions, numerical control researchers devel-
oped new languages for geometric and material inscription—soft-
ware—that were crucially informed by the physical constraints
imposed by available storage media, such as punched paper tape.
From this negotiation between symbolic abstractions and material
systems, new programming techniques and, crucially, the first the-
ory of computer-aided design emerged.1 Thus, software started to
become both a vehicle for and an expression of a technical and
conceptual reconfiguration of design, linked to the manipulation
of materials, engineering efficiency, and militaristic control. I
intend to show that software, understood as an organized set of
declarative statements with both semantic and operational values,
can itself be seen as a design theory encoding this reconfiguration.

doi:10.1162/DESI_a_00337

1	 The problem of the materiality of digital
information is explored in Jean-François
Blanchette, “A Material History of Bits,”
Journal of the American Society for Infor-
mation Science and Technology 62, no. 6
(June 1, 2011): 1042–57.

DesignIssues: Volume 31, Number 3 Summer 201542

Within this context, software’s cultural significance for design is to
embody a new kind of intermediary space between the messy
worlds of materials and machines (metal sheets, dies, spindles, tol-
erances, speeds), and the clean, symbolic worlds of mathematically
definable geometry. Being able to construct within the constraints
of this intermediary space was the skill developed by a new social
actor: the software engineer—a craftsman of abstraction. In the con-
vergence of materials, bodies, machines, and geometry in the
abstract worlds of computation, software literally comes to matter.

Software as Design Theory: The Origins of Numerical Control
Let’s briefly consider what conventional histories of computing
consider a key predecessor of software and numerical control.
Long before the development of numerically controlled machinery,
eighteenth century French engineer Joseph Marie Jacquard created
a programmable loom controlled by sequences of punched boards
(See Figure 1). The machine was able to produce complex fabrics by
conditionally threading the pattern depending on whether each

Figure 1
The Jacquard Loom. Rights: This image is in
the public domain. From: The Popular Science
Monthly (New York: Popular Science Pub. Co.,
etc., 1891), http://archive.org/details/popular-
sciencemo39newy.

DesignIssues: Volume 31, Number 3 Summer 2015 43

of a series of needles encountered a hole (the needle goes in) or
not (the needle doesn’t go in). The fabric resulting from this binary
conversation was as complex as the patterns inscribed in the cards.
The material and physical limitations of both processor (loom) and
sequential access storage media (punched cards) delineated the
machine’s “making” space.
	 The first numerically controlled milling machine—demon-
strated at MIT in 1952—operated under the same principle; the
programs driving the machine were stored in punched paper tape.
In both the loom and the milling machine, materiality and physi-
cal constraints in the storage media determined both the kind of
information stored and the range of material actions they were
able to prescribe (see Figure 2).
	 The lively relationship between the symbolic system and its
material substrate is best understood in contrast with the cogni-
tive, manual, and embodied practices such technologies were
meant to replace. Before machine tool automation, producing com-
plex parts (e.g., airframe shapes or rotary wings) required that
machine tool operators mark regularly spaced holes along a
desired tool path on a two-dimensional surface (typically a sheet
of metal) and then manually guide the machine to cut the part. To
accurately mark the reference points, an operator had to visually
obtain the numerical value of the X and Y coordinates of each
point from a drawing and then calibrate the machine to the draw-
ing’s reference origin point.
	 By manually turning cranks, the operator could iteratively
place the machine’s tool head at each point, marking the points as
references on the metal sheet before cutting. The process was cum-
bersome, and the need for repeating it led operators to use traces—
templates of the desired contour of the part—to “codify” the
machine’s movements. Then, during production, an operator
would follow the trace with a mechanical stylus (a “follower”) to

Figure 2
Punched Paper Tape. Rights: MIT Libraries,
Institute Archives and Special Collections,
Cambridge, Massachusetts, Douglas T. Ross
papers, MC 414, box 213. Photograph by the
author. Fair Use.

DesignIssues: Volume 31, Number 3 Summer 201544

drive the machine through the metal sheet. Remarkably, after
decades of refining this analog process, machine tool operators
in the United States had achieved precision levels within fractions
of a thousandth of an inch.2 The engineers at the Servomechanisms
Laboratory at MIT sought to replace these traces and trace opera-
tors with machine-readable numerical data. The scope and intent
of these efforts are concisely illustrated in Servo Lab director
Gordon S. Brown’s notes, scribbled on yellow paper at the onset
of the project:
	 The objective of the present investigation is the design
	 of a milling machine capable of producing specific curved 	
	 or irregularly contoured machined surfaces automatically 	
	 without the use of models, contour cams, or other manufac-
	 tured reference surfaces. In lieu of such fabricated reference 	
	 surfaces, it is desired that numerical data representing the 	
	 desired surface in terms of the machine coordinates will be 	
	 used to guide the machine.3

Their course of action involved the modification of an existing
milling machine so that its three basic axial motions could be con-
trolled automatically through servo-mechanisms—a technology
the eponymous laboratory had mastered during its wartime effort
on gunfire control applications. They developed a system of sym-
bols that did not simply capture the trace operator’s work, but
re-interpreted it.
	 While in the earlier, trace-controlled manufacturing
processes, operators specified a series of points along the cut path
to guide the machine, in the new process, the engineers—James O.
McDonough and William M. Pease—developed a new “incremen-
tal-coordinate continuous-path system” describing the machine
tool path as a sequence of straight segments in three-dimensional
space. With this new approach, a straight cut of any length could
be described by a concise dataset: two sets of spatial coordinates,
direction, tool geometry, and spindle speed for each of the
machine’s three axial motors. In practice, the change meant that
the amount of information specifying a shape was proportional to
the shape’s geometric complexity, and not to its size (see Figure 3).
The system enabled by the new notational unit (called “com-
mand”) and algorithm reinterpreted the trace operator’s bodily
and cognitive roles both through the incremental coordinate sys-
tem and by encoding geometric, material, and mechanical con-
straints in a concise, mathematically precise and machine-readable
notation. A small digital processor would then translate the paper
tape instructions into analog signals to control the machine.4

	 This new notation was neither immaterial, nor abstract—
it was shaped by material constraints in two important and dis-
tinct ways. First, tool size, material, tolerance, and spindle speed,
among other parameters, had to be taken into account, therefore

2	 J. Francis Reintjes, Numerical Control:
Making a New Technology (New York:
Oxford University Press, 1991), 142.

3	 Servomechanisms Laboratory, “Parsons
Milling Machine: Tentative Proposal,”
September 16, 1949, AC 151, Series II,
Box 27, MIT Archives.

4	 The engineers labeled this component a
“director”: a small, custom-designed,
special-purpose digital processor that
accepted machining instructions stored
on paper tape in numerical form and pro-
vided analog signals to drive the machine
tool. (Reintjes, Numerical Control, 48.)
However, the incremental approach
developed by the MIT researchers has
been criticized as over-complicated by
critics like David Noble. See David F.
Noble, Forces of Production: A Social His-
tory of Industrial Automation (New York:
Oxford University Press, 1986).

Figure 3
Author’s reconstruction of an original drawing
produced by the Whirlwind Computer. Author
owns rights to this image.

DesignIssues: Volume 31, Number 3 Summer 2015 45

5	 Parsons had initially proposed a card-
controlled Snyder milling machine for
the project. However, as the Servo Lab
researchers gained influence on the
project, they chose to use a recondi-
tioned government-surplus three-axis
Cincinnatti Hydro-Tel milling machine
provided (at no cost) by the Air Force.

prompting the development of further abstractions and program-
ming techniques. Second, the limitations in the information-
storage medium—particularly tape width—demanded an efficient
descriptive protocol.5 Economy of information was crucial because
each command had to fit into the width of the paper tape. Geomet-
ric, material, and machine constraints were realized as a unitary
symbolic description—a “command.”
	 As suggested, the cultural significance of numerical control
for design is its illustration of an inchoate convergence of geome-
try, bodies, tools, materials, and machines, in the language of com-
putational abstraction. This convergence is fundamentally linked
to the laborious definition—by a new social actor, the software
engineer—of a new notation, a code, shaped by very concrete con-
straints: the size and materiality of the punched tape, the mechan-
ics of milling, the geometric languages of part manufacturing, and
the cognitive and bodily roles of machine-tool operators. Gradu-
ally, these commands and subroutines consolidated into increas-
ingly abstract symbolic languages as the engineers sought greater
efficiencies in machine-tool automation (see Figure 4).

Figure 4
Author’s reconstruction of an original image
showing the mathematical notation of
three-dimensional forms. Author owns
rights to this image.

DesignIssues: Volume 31, Number 3 Summer 201546

	 As these languages became more general and versatile,
turning general-purpose computers into special-purpose
machines, the engineers’ decisions concerning the representation
of geometric, material, and machine constraints prompted the first
theoretical formulations of the computer’s role in design. The
proto-software of paper tape for numerical control was indeed an
embryonic theory of design, framing material, machine, and
human operations—and, implicitly, a space of design possibilities.
Thus, in contrast to the popular perception that computer-aided
manufacturing is an offspring of computer-aided design, the oppo-
site is true. The technologies, ethos, and vocabulary of manufac-
turing underlies the development of the first CAD systems.6
However, with the subsequent focus on design automation as a
research goal for the MIT engineers, and the pervasiveness of the
metaphor of the digital as weightless and immaterial, most traces
of the material and embodied origins of software automation
would soon be forgotten. This needs addressing.7

Academy, Industry and Military Vectors Converging
into Design
The project to automate a milling machine illustrates the entangle-
ment of military, industrial, and academic interests in the U.S.
Fueled by the awe-inspiring wartime advances in electronics,
sensors, actuators, and cathode-ray tube monitors, a narrative of
technological progress became prominent in the fabric of the U.S.
identity during the Cold War era. As observed by historian Paul
Edwards, during this period, a hegemonic view of technology
optimistically portrayed computers as key to the U.S. national
project of global supremacy and competitiveness, casting technol-
ogy itself as a patriotic endeavor. Although computers were still
unique, expensive artifacts—the privilege of an academic and
government elite—the notion of widespread personal computing
was already part of the popular imagination. The largest recipient
of federal research funds during the post-war period—and the epi-
center of a vibrant culture of technological research and develop-
ment—MIT came to epitomize a spirit of engineering prowess of
patriotic dimensions.
	 With this landscape of technological optimism as a back-
ground, the concept and technologies of numerical control—and
later those of computer-aided design—emerged from army-spon-
sored research at MIT research laboratories. During and after the
war, the U.S. Air Force was willing to fund projects to improve the
production of components for military applications, such as air-
plane wings and helicopter rotaries. The Air Force motto, “MORE
AIRFORCE PER DOLLAR”8—which was present in many of the
research reports of this time—is powerful evidence of the milita-
ristic roots of these efforts.

6	 The precedence of numerical control over
Computer-Aided Design is indisputable in
light of the chronologies of the APT and
CAD Projects at MIT, but links between
the CAD Project at MIT and industry
partners—such as Boeing and General
Motors—through industry partnership
programs, and the dynamics of adoption,
may explain alternative views. Different
views regarding the CAD-CAM lineage
have been reported. For instance, a
CAD/CAM instructor interviewed by
Gary Downey contends that CAD did
not originate from numerical control
research, but from the need to manipu-
late very large amounts of drawings at
Boeing. “In order to make the Boeing
747, they needed ten football fields of
E-size [36 x 48 in] drawings. So CAD
developed as a way of simplifying the
drawing process.” See Gary Lee Downey,
The Machine in Me: An Anthropologist
Sits Among Computer Engineers (New
York and London: Routledge, 1998), 161.

7	 For an extended discussion about the
intellectual origins and institutional
history of Numerical Control and Com-
puter-Aided Design, see Daniel Cardoso
Lach, Builders of the Vision: Software
and the Imagination of Design (New York:
Routledge 2015).

8	 The all-capitals design appears in the
original. Douglas Taylor Ross, Investiga-
tions in Computer-Aided Design for
Numerically Controlled Production:
Interim Engineering Progress Report,
December 1, 1963–May 30, 1964, M.I.T.
Report ESL-IR 221 (Cambridge, MA: Elec-
tronic Systems Laboratory, MIT, 1964), i.

DesignIssues: Volume 31, Number 3 Summer 2015 47

	 The vision for numerical control did not come from MIT, but
from John T. Parsons, then the vice president of the Parsons Corpo-
ration, Aircraft Division—an aircraft manufacturing company
based in Michigan. Parsons sought the Servomechanisms Labora-
tory at MIT as a subcontractor to an Air Force contract he had
obtained to produce a working prototype of the technology.9 The
Servomechanisms Laboratory occupied MIT’s Building 32, a now
demolished vast single-story warehouse building on Vassar Street.
It was established by Gordon Brown in 1940, and housed in the
Department of Electrical Engineering. In 1959 the laboratory
changed its name to Electronic Systems Laboratory (ESL).10 During
the Second World War, the Servo Lab had focused on the applica-
tion of servomechanisms for guided missile control and gunfire
applications, and its personnel were key in the development of
Project Whirlwind—a U.S. Navy effort resulting in the first interac-
tive computer in 1946. Before contacting Brown, Parsons had
secured Air Force funding to develop feasibility studies for an
automated milling machine controlled by punched cards that was
capable of producing aircraft parts; he had the idea of using servo-
mechanisms to control the machine’s movements along its three
axes. An agreement was signed, and the collaboration between
Parsons and MIT began formally in 1949, but Parsons’s influence
over the project diminished as the MIT researchers gradually took
control of it. While Parsons, wary of costs, sought to fulfill his Air
Force contract and develop a problem-specific application—a
proof-of-concept device capable of producing wing panels for
supersonic aircraft, the researchers sought to re-cast the project
into a universal technology, promising a revolutionary transforma-
tion of manufacturing “applicable to any process which may be
described in terms of code numbers.”11 As observed by historian
David Noble, MIT’s prestige, technical skill, connections with gov-
ernment, and proximity to Air Force sponsors were crucial for
Servo Lab members to gradually displace Parsons’s authority, to
propose a course of action that exceeded the specifications of the
original contract, and to ultimately secure a new contract directly
with the Air Force (without Parsons’s participation) in 1951 for the
development of the numerically controlled milling machine.
Changes in the language of the project’s reports reflect this shift.
While the first documents refer to “The Parsons Milling Machine,”
the final report, issued in 1952, refers simply to “The M.I.T. numer-
ically controlled milling machine.”12 According to Noble, upon the
project’s completion, and despite multiple requests, Parsons was
denied the project’s technical details.13

	 Beyond its militaristic applications, a key objective of the
project to automate machine tools was to disseminate the new
technology to the manufacturing industry. Thus, MIT operated not
only as a research powerhouse, but also as a broadcasting agency

9	 According to several accounts, Parsons’s
interest in the MIT Servo Lab was
spurred by one of his engineers, Robert
H. Marsh, who was an MIT graduate and
played an important role as a mediator
between Parsons and MIT. See Robert H.
Marsh, An Evaluation of the Progress and
Future Planning of the Parsons Milling
Machine Project (Parsons Corporation,
January 31, 1950), AC 151, Series II, Box
28, MIT Archive. See also Noble, Forces
of Production, 119, and Reintjes, Numeri-
cal Control, 16.

10	 In 1978, the Laboratory changed again its
name to Laboratory for Information and
Decision Systems (LIDS). For a detailed
history of the Servomechanisms Labora-
tory, see David A. Mindell, Between
Human and Machine: Feedback, Control,
and Computing before Cybernetics (Balti-
more: The Johns Hopkins University
Press, 2002).

11	 Servomechanisms Laboratory, Final
Report on Construction and Initial Opera-
tion of a Numerically Controlled Milling
Machine, Part I (Draft Copy), Research
Report (Cambridge, MA: MIT, 1952), 7.

12	 Servomechanisms Laboratory, “Numeri-
cally Controlled Milling Machine Demo
Announcement – Sep. 15, 1952,” Sep-
tember 15, 1952, AC 151, Series II, Box
37, Demonstration September 1952, MIT
Archives. Parson’s exclusion has also
been documented via interviews and
additional archival materials by historian
David Noble in Noble, Forces of Produc-
tion, 109. A contrasting view is offered
by MIT Professor J. Francis Reintjes, who
was himself a member of the project in
its later stage. Prefacing a detailed his-
tory of the numerical control research
project, Reintjes argues that MIT’s more
general approach simply aligned better
with the army’s intent. He also posits that
his account of this history has no drama
because “there was none.” See Reintjes,
Numerical Control, xii.

13	 Noble, Forces of Production, 131.

DesignIssues: Volume 31, Number 3 Summer 201548

disseminating and promoting publicly funded technology. From
MIT’s perspective, this role aligned entirely with the Institute’s
educational mission. This alignment is illustrated by the public
demonstration of the technology at MIT in a series of presenta-
tions in early Fall 1952. The three-day event was far from merely
academic. James O. McDonough, one of the project’s leading engi-
neers, extended invitations to multiple army, aircraft, machine
tool, and general industry actors. The attendance list was a “who’s
who” of Cold War-era corporate America, including executives,
technical personnel and administrators from General Electric, the
Munitions Board of the Department of Defense, Lockheed Aircraft
Corp., Harvard College, and many others.14 In addition to the live
demonstrations and talks, hundreds of information packages
were delivered to members of industry at large, and dozens of
other organizations submitted letters of interest to gain access to
the project’s final report, which described the new technology as
“a milling machine capable of manufacturing machined parts
automatically by obeying a series of numerical instructions intro-
duced into the machine on punched paper tape.”15 The program
lasted all day and included discussions about “modern informa-
tion processing, and numerical control,” as well as demonstrations
of the different stages of the new workflow: machine operation,
tape preparation, and numerically controlled milling.
	 The 1940s and 1950s project of numerical control illustrates
the convergence of military ideology and design discourse that
persists to this day. The military’s encouragement of an image of
creativity and innovation linked to technologies of numerical
control is clear enough. The Defense Advanced Research Projects
Agency (DARPA) slogans—“to innovate we must make, to protect
we must produce” and “Democratize Design” (italics mine)—illus-
trate the collapse, in public military discourse, of design and
manufacturing technologies with national security imperatives.16
The support is materialized in the agency’s sponsorship of numer-
ous civil initiatives, such as its funding of hundreds of “Maker-
spaces” in schools across the country, “Hackathons,” as well as in
its support of different “DIY” initiatives at both high schools and
universities. This support is also explicit in mainstream political
slogans—including presidential remarks—in support of the
“maker” trope, and of specific technologies, such as 3-D printing.17
With the ongoing promotion of these technologies through exten-
sive programs of industry collaboration, academic publications,
political discourses, and popular media, the boundaries of this
technological enterprise become harder and harder to trace.

14	 Servomechanisms Laboratory, “Numeri-
cally Controlled Milling Machine Demo
Attendance List,” September 15, 1952,
AC 151, Series II, Box 37, Demonstration
September 1952, MIT Archives.

15	 Servomechanisms Laboratory, “Numeri-
cally Controlled Milling Machine Demo
Announcement – Sep. 15, 1952,” 2.

16	 Dale Dougherty, “Makerspaces in Educa-
tion and DARPA,” Makezine.com, April 4,
2012, http://makezine.com/2012/04/04/
makerspaces-in-education-and-darpa/
(accessed August 6, 2014); Maker Faire
Bay Area 2012, “How DARPA Democra-
tizes Design - FORA.tv,” Fora.tv, 2012,
http://fora.tv/2012/05/19/The_Next_
Generation_How_DARPA_Democra-
tizes_Design (accessed August 6, 2014);
Anya Kamenetz, “Lasers, 3-D Printers,
and Robots: The New Shop Class,”
Fastcoexist, September 18, 2012, http://
www.fastcoexist.com/1680549/lasers-3-
d-printers-and-robots-the-new-shop-class
(accessed August 6, 2014). For insight
into aspects of militarism in contempo-
rary civil U.S. society, see Bryan Finki,
Nick Sowers, and Javier Arbona,
“DEMILIT,” Nick, http://demilit.tumblr.
com/ (accessed August 6, 2014).

17	 Barack Obama, “Remarks by the
President in the State of the Union
Address,” The White House,
February 12, 2013, http://www.white-
house.gov/node/197846 (accessed
January 31, 2015).

DesignIssues: Volume 31, Number 3 Summer 2015 49

The Rise of the Gentleman Technologist
The builders of this vision of a manufacturing revolution via
numerical control—the MIT engineers Douglas Ross, Gordon S.
Brown, Jay Forrester, James O. McDonough, and others—are
representative of the twentieth century emergence of a new social
figure in the United States. I call this figure the “gentleman tech-
nologist.” His command over technological systems grants him a
special place of authority in society—away from the toil of the
machine shop and closer to the spheres of power. The gradual dis-
placement of authority from Parsons to the MIT engineers signals
the arrival of this new, typically male, figure on the stage. While
John T. Parsons had the idea of controlling machine tools with
punched media, control of the project—and many of its benefits—
went to the MIT engineers who developed, implemented, and later
patented the system based on his idea.18

	 This aura of technology did not shelter those who, merely
a century or so earlier, were invested in the mechanical arts—
technology’s cultural and historical predecessor. To understand
this shift we can compare the Parsons-MIT conflict with another,
earlier conflict in the history of technology: that of nineteenth
century computing pioneer Charles Babbage with his engineer,
Joseph Clement, over the intellectual ownership of the Difference
Engine—a mechanical predecessor to modern computers that
normative histories of computing attribute solely to Babbage.
Clement, a talented engineer and draftsman who built the
machine, bitterly and unsuccessfully disputed Babbage’s author-
ship of the device. As observed by historian of science Simon
Schaffer, in the Babbage-Clement dispute the place of intelligence
itself was at stake: Is it located in technology’s “conception,” or is it
in its “making”?19 The design of modern computing technologies
indexes a shift in this long-standing struggle for authority and con-
trol. Notably, in contrast to Clement’s unsuccessful claim to credit
for building the machine, the engineers at the Servomechanisms
Laboratory succeeded in obtaining most of the reputational and
commercial benefits derived from making numerical control tech-
nologies.
	 Leaving the politics of technological authorship aside, we
can usefully focus on the specific nature of these gentlemen tech-
nologists’ achievements. As we shall see, the invention of the tech-
nology of numerical control, based on the codification of
geometric, material, and machine constraints, was fundamentally
shaped by the materiality of available substrates and by a new set
of skills required for their manipulation. Computational abstrac-
tions are in essence material and their development requires a spe-
cial kind of craftsmanship.

18	 The MIT engineers, headed by Jay For-
rester, filed a patent in 1952 for their
punch card system. It was awarded in
1962.

19	 Simon Schaffer, “Babbage’s Intelligence:
Calculating Engines and the Factory Sys-
tem,” Critical Inquiry 21, no. 1 (October 1,
1994): 203–27.

DesignIssues: Volume 31, Number 3 Summer 201550

From Shop to Code
In automating machine tools, numerical control researchers
sought to replace an individual’s embodied engagement with a
machine—the trace operator’s—with a repeatable and controllable
digital process akin to a symbolic calculation. Reinventing mate-
rial manipulation itself as computation was aligned with an
ideology of automation and total control seeking to precisely man-
age—and reduce—the involvement of humans in processes of pro-
duction. These researchers, and their military sponsors, imagined
that reducing the steps between design and manufacturing would
result in a cleaner, more efficient process. Again, the U.S. Air Force
motto, “More Airforce Per Dollar,” comes to mind. However, the
technologists’ attempt to codify the manual craft of operating a
milling machine through traces resulted in a complex socio-techni-
cal system that demanded different skills, and in a different kind
of craft that, instead of reducing work, transformed it and relo-
cated it from the shop to the programmer’s desk.
	 When the engineers at the Servomechanisms Laboratory
completed the construction of the first numerically controlled
milling machine in Spring 1952, they hailed the new development
with claims of efficiency, freedom of human error, and announce-
ments of a manufacturing revolution. However, producing the
information and punching it into tape was still an arduous manual
process involving long hours of complex calculations to encode a
part’s geometry in mathematical form, to calculate the movements
of the machine’s three axes, and to account for variables such as
cutter type, size, speeds, and the sequence of cut operations. When
done manually, or with the help of electro-mechanical desk calcu-
lators, this planning stage could take several hours for a very sim-
ple shape. Once the machine instructions were ready, the “part
programmer” would give them to the “keypuncher,” who used an
eponymous device to produce the machine-ready paper tape. A
Servo Lab insider, Professor J. Francis Reintjes, recalls that
“machining efficiency came at the expense of time consumed in
programming for that efficiency.”20
	 Confronting this problem, the engineers sought to automate
the production of machine instructions, first by writing subrou-
tines encoding commands for particular profiles, thus saving time,
and later by creating higher-level problem-oriented languages
allowing for more flexibility in the “job planning” process. The
earliest attempts to automate the production of machine instruc-
tions can be traced to the work of John H. Runyon and Arnold
Siegel, who worked on the Whirlwind computer.21 But the engi-
neers quickly realized that job planning demanded higher-level
abstractions. To address this need, the engineers sought to build a

20	 As the director of the then-Servomecha-
nisms Laboratory beginning in 1953,
Professor Reintjes participated in the
development, led by Douglas T. Ross, of
the APT. Although Reintjes left the ESL
in 1960, an important part of the project
evolved within the context he helped
to create, and thus his accounts are of
great value. Reintjes, Numerical Control,
54. Under his direction, the laboratory
became a melting pot for graduate
students, faculty, and researchers in a
diverse array of fields, including “hard”
sciences like mathematics, physics, and
electrical and mechanical engineering, as
well as seemingly distant fields, such as
chemical engineering and food science.
MIT News Office, “Professor Emeritus J.
Francis Reintjes Dies at 96,” MIT’s News
Office, March 5, 2008, http://web.mit.
edu/newsoffice/2008/obit-reintjes-
tt0305.html (accessed March 12, 2014).

21	 See John H. Runyon, Whirlwind I Rou-
tines for Computations for the M.I.T.
Numerically Controlled Milling Machine
(Cambridge, MA: MIT Servomechanisms
Laboratory, 1953).

DesignIssues: Volume 31, Number 3 Summer 2015 51

scalable language for machine tool path specification that would
allow users with no programming skills to use numerically con-
trolled machine tools. The development of this language began in
1956 under the leadership of Douglas T. Ross, a young mathemati-
cian who had worked on a flight simulator in the Servomecha-
nisms Laboratory—but who had no experience in either design or
manufacturing. “From the computer application’s point of view,”
he wrote years later, “the primary problem is not how to solve
problems but how to state them.”22 Through an aggressive program
of dissemination and industry collaboration, this language, named
Automated Programming Tool (APT), would become a worldwide
standard for the aircraft industry in 1978. The following list is an
excerpt from the APT dictionary from 1958, illustrating some of
the language’s key commands:

APT WORD	 MEANING

ALL 			 Plot all cutter coordinates.
AT ANGL	 At a specific angle from the positive X-axis.
AUTO			 Automatic.
CENTER	 Center of a conic section or sphere.
CCLW			 Counter clock-wise.
CLW			 Clockwise.
CROSS		 Cross product of two vectors.
ENDARC	 Defines the end angle in degrees.
FULL			 Full Plot.
FUNOFY	 Function of Y.
INTOF		 Intersection of.
LEFT			 Designates the left hand side, looking in
			 the direction specified by method of
			 geometric definition.

While his predecessors at the Servomechanisms Laboratory had
been concerned with spindle speeds, data commands, and part
geometry, Ross pondered how to represent points, lines, problems,
and even complex artifacts, such as houses and circuits, and even
language itself. A trained mathematician, Ross’s fundamental con-
cern was representation. His ambition was to seek a general codifi-
cation system—a universal language. This ambition reaches its
apex in the plex, a theoretical construct he defined, esoterically, as
“an interweaved combination of parts in a structure… [with the
purpose of representing a] thing, be it concrete or abstract, physi-
cal or conceptual.”23 Ross imagined the plex as an all-purpose rep-
resentational unit—in fact, with philosophical implications. To
represent a line, for example, a plex had to be defined as that which
contained sub-entities for its starting and ending points; each

22	 Douglas T. Ross and John Erwin Ward,
“Investigations in Computer-Aided
Design for Numerically Controlled
Production: Final Technical Report”
(Electronic Systems Laboratory, Electrical
Engineering Dept., Massachusetts
Institute of Technology, May 3, 1967),
175, MIT Archives.

23	 Ross defined the plex as the combination
of three key components: data, structure,
and algorithm. The data are “units or
indivisible entities in terms of which
the ‘thing’s’ properties are described or
measured.” The structure refers to the
relationships between the data, and the
algorithm is “the capstone that allows
the data in the structure to be inter-
preted, manipulated and filled with
meaning.” The algorithm relates to the
behavior and the interpretation of the
whole: a sort of logical rule set for opera-
tion and assembly. With the plex, Ross
sought to create a general theory of rep-
resentation for describing (and computing
solutions to) any problem. Whether the
artifact to be designed was a servomech-
anism or a house was irrelevant. See
Douglas Taylor Ross, Investigations in
Computer-Aided Design for Numerically
Controlled Production, Report ESL-FR 351
(Cambridge, MA: Electronic Systems Lab-
oratory, Electrical Engineering Dept.,
Massachusetts Institute of Technology,
1968), 13–15. http://dspace.mit.edu/bit-
stream/handle/1721.1/755/FR-0351-
19563962.pdf.txt;jsessionid=3469E7BE37
80EDAF65F833757A012AF4?sequence=2
(accessed July 17, 2014).

DesignIssues: Volume 31, Number 3 Summer 201552

point sub-entity would in turn contain values for its x and y coor-
dinates (see Figure 5). Another sub-entity would describe the line
itself as an independent element with pointers to the other two
sub-entities.24 Aligned with contemporary interest in artificial
intelligence, Ross imagined plexes as user-definable, interpretable,
and computable. An interpretive system would transform the
user’s verbal or graphic representations into “internal models”
with which the system could compute—a self-consistent universe
of interacting “meanings,” opaque to an external observer—a black
box.25 Crucially, the purpose of this representational and interpre-
tive apparatus was to enable the automation of aspects of design.
In a 1959 letter to a Ford Motors executive, Ross makes this desire
explicit: “One of our main interests will be to attempt to increase
the language capability for communicating with automatic pro-
gramming systems of this type, and also to attempt to automate
some of the design process itself.”26

	 The engineers at Servo Lab not only thought that design
could be represented symbolically through code, but also auto-
mated. Ross sought to implement aspects of this theory in what
arguably is the first attempt to automate aspects of design—the
Automated Engineering Design (AED) programming language.
The AED effort, as well as its APT and plex predecessors, shows
how these technologists viewed design as a problem of representa-
tion and codification—a question for which language building was
an appropriate answer. AED was in fact the language of choice for
a pioneering work of CAD. MIT Professor Emeritus of Architecture
William L. Porter used it in his 1968 dissertation to create a system
for generating urban design alternatives in a variety of scenarios.
Porter recalls that, unlike other available languages, AED seemed
to offer the possibility of “declaring meaningful statements about
design.”27

	 More generally, despite its esoteric formulation, Ross’s plex
exposed a theoretical commitment to the idea that computational
descriptions, because of their capacity to index data, can be com-
puted with (and bear structural resemblances with) the artifacts
they are meant to depict. If we can compute using abstractions of
real-world design situations, the plex logic goes, then design prac-
tice itself could be routinized. Engineers, then, did not merely

24	 The dissociation between data, structure,
and algorithm, explicit in the plex, is in
a way essential for the programming of
graphic representation systems. From
this perspective, the plex theory suggests
the imminent appearance of object-ori-
ented programming (OOP). MIT doctoral
student Ivan Sutherland’s Sketchpad,
widely recognized as the first interactive
computer graphics system, is also widely
considered the first example of OOP—an
achievement for which Ross would claim
credit afterward. See Sutherland, Ivan
Edward, Sketchpad, a Man-Machine
Graphical Communication System,
Massachusetts Institute of Technology,
(Cambridge, MA: Massachusetts Institute
of Technology 1963).

25	 In computing, the expression “black box”
refers to a system whose workings are
opaque to an observer. In computation,
it’s a common expression used to refer
to aspects of a system that are beyond
the reach of a user. The following quote,
from a paper titled “Theoretical Founda-
tions for the Computer-Aided Design
System” illustrates these notions of
self-containment and opacity: “Since the
entire process is based ultimately upon
the interactions between the meanings
of the many elements involved, and
since the sorting out of what things go
together is handled automatically by the
‘natural laws’ of behavior which are built
in, the designer on the outside has no
conception of the chaotic activity inside
the system, but sees only external effects
appropriate to his mode of understand-
ing.” See Douglas T. Ross and Jorge E.
Rodriguez, “Theoretical Foundations for
the Computer-Aided Design System,” in
Proceedings of the May 21–23, 1963,
Spring Joint Computer Conference, AFIPS
’63 (Spring) (New York: ACM, 1963), 318.

26	 Douglas T. Ross, Letter from D.T. Ross
to G. Pascoe, January 22, 1959, AC 151,
Series II, Box 36, Project 683, Correspon-
dence AIA, 1959, MIT Archives.

Figure 5
Douglas Ross’ Plex. Rights: Permission
granted by Massachusetts Institute
of Technology.

DesignIssues: Volume 31, Number 3 Summer 2015 53

27	 From an e-mail conversation with the
author. William Lyman Porter, “Re: Ques-
tion about DISCOURSE and the AED Lan-
guage,” June 29, 2014. For the complete
thesis, see William Lyman Porter, “The
Development of DISCOURSE: A Language
for Computer Assisted City Design,” The-
sis, (1969), http://dspace.mit.edu/han-
dle/1721.1/39037 (accessed August 18,
2014).

28	 Lucy Suchman, Human-Machine Recon-
figurations: Plans and Situated Actions,
2nd ed. (New York: Cambridge University
Press, 2006).

automate the manual work of trace-controlled machine operators;
they transformed it, uncovering new problems and opportunities.
The incremental-coordinate continuous-path notation system
developed by McDonough and Pease embodies not only an appro-
priation but also an algorithmic re-interpretation of manual work
(see Figure 6). As these examples show, software does not merely
re-create sites of practice, but actually transforms them—and in
the process generates new difficulties, as well as necessities for
new forms of labor and skill: Notations had to be devised so that
machine tool commands fit efficiently in the paper tape; the pro-
cess of planning a part for automated machining had to be made
less laborious than the trace-controlled operations of the past.
Beyond their partial implementation into operable software sys-
tems, the plex and the APT and AED efforts synthesize a fledgling
philosophy of design and manufacturing linked to software con-
struction; it sought to take problems from the messy worlds of
materials into the “clean” worlds of symbolic abstraction—from
shop to code.

The Place of Design
Technological systems index their makers’ theories of action, thus
modeling users, machines, and their interactions. As anthropolo-
gist of science and technology Lucy Suchman notes, technologies
can be seen as “propositions for a geography where relevant sub-
jects may claim their place.”28 If we are to use this lens to interro-
gate the MIT project or machine tool and design automation, what
are the notions of making, of designing, and of the human that it
indexes? Where does it (re)locate design’s people and practices?
Servo Lab engineers clearly pondered the role of human interven-
tion in the new automated environments for design and material
production. Their new languages and devices demanded new
skills and literacies, shifting the social and technical place of
design. We can see this shift in the new design and manufacturing
workflows envisioned by numerical control researchers.
	 Drawing inspiration from then-contemporary cybernetic
discourses, which construed human–machine interaction as a
symbiosis between two organisms, numerical control engineers re-
imagined the designer’s role in relation to what they perceived to

Figure 5
Reconstruction of an APT drawing.
Author owns rights to this image.

DesignIssues: Volume 31, Number 3 Summer 201554

be the machine’s capacities.29 In their cybernetic theories of design-
ing and making, they assigned complementary roles to each part
of the human–machine assemblage, defining the boundaries of
what constitutes creative work.30 Key to these workflows was the
idea that the distance between design and production could be
reduced—collapsed, even—through automation. The laboratory’s
reports and memoranda are rich with diagrams and rhetoric
depicting design-to-manufacturing scenarios where humans are
progressively replaced by technologies. Here, the replacement of
the human is presented not only as the optimization of an indus-
trial process, but also as a form of emancipation: a way to “free”
humans from the toil of dealing with materials and to “liberate”
them as creative agents. Computers became, in the imagination of
these gentlemen technologists, humans’ perfect slaves.
	 Taking this image of gradual automation to its natural
conclusion, design and manufacturing are to be performed by an
individual human mind that directly and disembodiedly com-
mands machines to materialize designs—a desire that resonates in
current discourses of digital fabrication centered on the presumed
immediacy and seamlessness of rapid prototyping and 3-D print-
ing. Freed from the toil of manufacturing and calculations, this
image suggests, humans could devote their time to “creative”
endeavors. And yet, as we have seen, the laborious design, devel-
opment and maintenance of the symbolic languages and socio-
technical infrastructures that support these digital transactions,
the demand for new skills and social roles, and the often-messy
operation of machines, complicates this dominant image of tech-
nology in design. Contrary to pervasive narratives of the digital,
computational transactions are not invisible, nor weightless. They
are socially and materially constituted. As theory and contract of
such transactions, software—its history, its design, its irreducibly
material dimension—must be approached as a crucial subject of
discussion and debate in design.

29	 The science of cybernetics, first formu-
lated by the mathematician Norbert Wie-
ner, conceptualized biological,
mathematical, social, and mechanical
systems as flows of messages and feed-
back loops, susceptible to control. Stem-
ming from the wartime advances in
servomechanisms and control, this new
scientific paradigm framed the efforts of
numerical control and computer-aided
design researchers. Licklider’s article,
“Man–Computer Symbiosis,” and Shan-
non and Weaver’s information theory
were particularly influential. See J.C.R.
Licklider, “Man–Computer Symbiosis,”
1960, http://groups.csail.mit.edu/medg/
people/psz/Licklider.html (June 3, 2014)
and Claude E Shannon and Warren
Weaver, The Mathematical Theory of
Communication (Urbana and Chicago:
University of Illinois Press, 1998). See
also Norbert Wiener, Cybernetics, or Con-
trol and Communication in the Animal
and the Machine, 2nd ed. (Cambridge,
MA: The MIT Press, 1965).

30	 Ross explains: “The synergetic integra-
tion of the creative abilities of the human
with the immense capacity of hardware
and software in the computer, in a man–
machine problem-solving team.” Ross,
Investigations in Computer-Aided Design
for Numerically Controlled Production.

