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Abstract

In this thesis, I designed and implemented Confuzzer, a system that fuzzes certain
classes of closed source binaries using Concolic Execution techniques in order to find
vulnerable inputs into programs that could be leveraged by attackers to compromise
systems that the binary might be running on. The design of this system allows
improved performance on fuzzing programs that have a large branching factor or
are heavily based on complex conditionals determining control flow. The system
is designed around a Taint/Crash Analysis tool combined with a Path Exploration
system to generate symbolic representations of the paths, generating a new set of
inputs to be tested. These are implemented using a combination of Intel PIN for the
Taint Analysis and Python/z3 for the Path Exploration. Results show that while this
system is very slow in instrumenting each run of the binary, we are able to reduce the
search space to a manageable level compared to other existing tools.
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Chapter 1

Introduction

Finding bugs in existing software and computer systems is difficult, and while man-

ually finding bugs can be effective to a limited extent, a large part of Computer

Security has moved to using automated methods for finding bugs within a program.

This paper presents Confuzzer, a system that helps find bugs in a specific class of

closed-source binaries which other existing systems tend to have trouble with. Many

existing systems fail to perform well with programs that have a large branching factor

and depend on complex conditionals to determine the control flow of the program,

and as a result end up exploring only a small part of the program. This can result

in vulnerabilities in other parts of the program being completely missing. While the

system described is more specialized than existing tools, the goal is to create a sys-

tem that allows security engineers to look for and attack bugs in programs that have

previously been difficult to explore using automated methods.

Automated methods of bug finding are necessary, since even with systems like

Bug Bounties and Vulnerability Reward Programs, where bug hunting is distributed

among many security researchers with prizes of up to several tens of thousands, the

number of bugs in existing systems makes it infeasible to find all of them and prevent

attackers from exploiting them [6]. This means that we need automated methods

of generating and testing inputs against our target binary, in the hopes that one of

the generated inputs will result in a bug being discovered. This method of randomly

testing inputs to cause programs to behave incorrectly is called Fuzzing and was
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invented as early as 1988 as part of a graduate class [9]. Since those early days, the

art of Fuzzing has advanced to a great degree, with advancements in how test cases

are actually generated.

Fuzzing systems tend to be divided into 2 main categories. The first is black-box

fuzzing, where the fuzzing is performed independently of the program that is being

analyzed, and thus tends to result in random inputs being sent to the binary, and

results in many inputs that hit the same code path within the binary. As can be

imagined, black-box fuzzing is fairly inefficient and can’t completely test non-trivial

binaries. The second main form of fuzzing is white-box fuzzing, where the fuzzer has

knowledge of the binary being run, and can create test inputs based on this knowledge.

If source code isn’t available, this is sometimes known as grey-box fuzzing since the

feedback to the fuzzer is from the machine code that makes up the program, rather

than the original higher-level code. The system developed for this thesis falls into the

realm of white-box/grey-box fuzzing since the inputs are very much determined by

the program execution though we don’t require source code.

However, while most existing black-box fuzzing systems work off the idea of using

code coverage and input mutation to generate new test cases, the system used in

this thesis is based on Concolic Execution. Concolic Execution is a specific form of

more general Symbolic Execution that was created as part of the CUTE system [10].

Symbolic Execution is a method of evaluating a program, either at the higher-level

source code level, or in our case the assembly level, where each operation performed

on the input data we are testing is stored as a symbolic expression and whenever we

hit some sort of branch we store the branch as a place where different paths might

be taken, and then at the end we use all the constraints and symbolic expressions to

generate new paths through the program execution. The difference between ordinary

Symbolic Execution and Concolic Execution is how we handle branches. In Symbolic

Execution, whenever we reach a branch, we create a new thread that continues ex-

ploring down each path in the branch, and eventually all the threads complete and we

have a massive series of constraints for all possible executions. Meanwhile in Concolic

Execution, we initially start with some concrete values for the input and just explore
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down the path of execution that those values end up taking, and then we try running

the program again with new values.

By exploring the program state and building up constraints for each possible exe-

cution path, we can solve the constraints for different inputs that should travel down

different parts of the program, allowing us to thoroughly test large swaths of the

program with fewer inputs. By combining these two ideas together, we hopefully will

have a system that can more efficiently test closed source programs and find vulner-

abilities in them without having to wait until an attacker starts actively exploiting

the vulnerability.

Our implementation of the Confuzzer design uses the Intel PIN Dynamic Binary

Instrumentation (DBI) tool to do Taint Analysis and then uses z3 and the Python z3

bindings to actually solve the constraints for the various inputs to explore different

paths in the binary. In order to run the system at a reasonable speed, and take advan-

tage of the parallelizability of the system, we also need to distribute the taint analysis

over multiple machines. While the final design of the system was fairly straightfor-

ward, I had a lot of issues in implementing the Intel PIN tool since we didn’t have

a good Intermediate Representation so we had to handle each individual assembly

instruction manually, which resulted in a lot of bugs during the implementation. PIN

also didn’t have the cleanest memory and API model, resulting in many memory

issues while trying to implement the system. In order to avoid these problems in

future systems, while still maintaining our goals of closed-source fuzzing, using an al-

ternative DBI or even moving to a emulator such as the User-Mode Emulation might

result in an easier implementation.

When testing our implementation compared with other similar systems, we found

that the versus other similar systems, execution of the binary was significantly slower

than the other fuzzers we had, running at about 3 executions per second on our test

cases, versus about 10k executions per second using some of the high end fuzzers we

were testing. However our evaluations also shows how we have orders of magnitude

fewer test cases that we need to run in order to fully explore the test cases. Overall,

from these test cases we see that while the executions are factors slower, the speed-up
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from the smaller set of test cases needed greatly counteracts these issues, and as a

result this fuzzer succeeds at the class of programs we are trying to analyze with this

system.

In Chapter 2, we’ll give an overview of existing systems in the space, as well as

the similarities and differences with the Confuzzer system. Next in Chapter 3, we’ll

talk about the design of the Taint Analysis and Concolic Execution system. Chapter

4 talks about our actual implementation of the system and some of the issues we’ve

had during implementation. Then Chapter 5 will be our evaluation of the system

and its performance on some test programs. Chapter 6 will be about future work

and improvements that can be made to the system. Finally, Chapter 7 concludes

the discussion on our system. We also include an appendix showing the execution of

Confuzzer on one of our larger test cases.
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Chapter 2

Existing Work

Most of the existing work in the area of fuzzers tend to focus on using code coverage

and similar metrics in order to direct the test inputs that are being generated. We’ll

take a look at other metrics that are used by Fuzzers first, before looking at systems

that use Concolic Execution to do Path exploration to assist in fuzzing and other

similar systems.

We’ll also review these existing systems to see the differences between these sys-

tems and our design and implementation of the Confuzzer system. As well as their

respective advantages and disadvantages.

2.1 Existing Fuzzers

Most of the notable fuzzers that are in use nowadays that don’t use symbolic execution

systems tend to use some form of evolutionary/genetic mutation to generate new test

cases. EFS is an example of such a system, first published in 2007 [3]. Since then,

a number of other systems have been designed, including AutoFuzz a fuzzer aimed

at trying to determine network protocol information from an initial example of the

interaction between Client and Server and then through additional fuzzing to generate

mutations of these initial samples [5]. Some systems even go as far as being designed

with zero information about the user-input and binary to allow even more general

fuzzing [8].
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Most of these systems share a similar design in which an initial “seed file” is created

with examples of an input to the program, and the system then runs by mutating

the inputs to generate new related inputs that might hit other parts of the program

execution. Fuzzers tend to have this design since otherwise a lot of the test inputs

would fail to gain any useful information as they get blocked by the initial checks

that a program might make looking for specific magic numbers or file structures.

While this does limit fuzzers to be more adept at fuzzing certain classes of program

or requiring external seed files, the advancements in evolutionary/mutation based

fuzzers have allowed for a wide variety of commonly used libraries and programs to

be thoroughly fuzzed. We’ll take a look at one of the better non-commercial fuzzers

to see what sorts of design decisions were made and how it compares to a fuzzer based

on symbolic execution principles.

2.1.1 american fuzzy lop

One of the most well-known fuzzer is “american fuzzy lop”, a fairly effective fuzzer

developed using compile-time instrumentation and genetic algorithms to generate

additional test cases to check against the application [13]. Due to some of the opti-

mizations made over other fuzzers, and its use of optimizations at the instrumentation

level, it is one of the fastest binary-only fuzzers available [14]. It has found bugs in

over 75 different pieces of software and has multiple CVEs dedicated to bugs found

by AFL.

In fact, while the software was explicitly designed to not use static analysis or

symbolic execution for performance reasons, it was still able to generate input that

included unseeded magic values by using the basic path exploration techniques that

are included as part of afl-fuzz [12]. The one downside to afl-fuzz is that many of its

features and optimizations do require compile-time instrumentation to function and

are thus less effective with closed-source binaries.

However afl-fuzz still accomplishes a great deal while staying true to its original

design goals of being fast, usable and reliable for the general use [11]. As afl-fuzz is

improved, so to are the optimizations and performance hacks that can be used by
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System Fuzzer Source Code Execution Description
Required Layer

Confuzzer Yes No Binary Fuzzing system using binary-level
concolic execution.

KLEE Yes Yes System LLVM Extension to provide
fuzzing through concolic execu-
tion.

SAGE Yes No Binary Windows tool for fuzzing pro-
grams using concolic execution.

S2E No No System Path Exploration tool to analyze
binaries.

Table 2.1: Comparison of Symbolic Execution Systems

other Fuzzing systems aimed at fuzzing primarily closed-source binaries.

2.2 Symbolic/Concolic Execution Systems

There are also a number of Symbolic Execution systems that use Symbolic Execu-

tion to perform path exploration for the purpose of fuzzing or doing other sorts of

analysis on the program. While almost all the Symbolic Execution systems have a

significantly slower run-time than other Fuzzers (sometimes up to 1000x slowdown),

they do provide a significant advantage to other fuzzers, as they can find fewer test

cases that cover more of the possible execution paths through the program. Some

notable ones are KLEE, SAGE, and S2E. We’ll briefly go over each of these to see

how they compare to Confuzzer. Table 2.1 also provides an overview of these systems

and their features. While many of the systems that we’re looking at have some of

the properties that we are aiming for in the Confuzzer system, none of them have

all the properties we are lookiing for. The closest one is SAGE, however SAGE is

mostly focused on Windows binaries and has a different set of limitations in the way

it handles taint propogation.
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2.2.1 KLEE

KLEE is a symbolic execution tool that uses source code and the LLVM compiler

to generate tests that attain a high coverage throughout program execution [1]. The

general design of KLEE is using LLVM to create an Intermediate Representation (IR)

of the program that can be used to easily build up constraints and symbolic formulas

throughout the program execution, which can later be solved to generate new test

cases that explore other branches.

Unlike the other systems we talk about that don’t require source code, KLEE

is able to use the source and generated IR in order to create complete constraints

for each instruction without any approximations. This allows almost perfect taint

analysis in exchange for the source code requirement allowing further optimizations

to be performed and tighter constraints when calculating new test cases. However,

even with the generated IR, there are still some classes of code that can’t be easily

instrumented by KLEE, including floating point computation and inline assembly

code. KLEE performs fairly well as a Symbolic Fuzzer and is able to handle many

programs with available source-code.

2.2.2 SAGE

Moving on, we look over SAGE, a system designed at Microsoft that performs sym-

bolic fuzzing without the need for source code [4]. Between all the existing Fuzzers

and Symbolic Execution systems, SAGE ends up being one of the closest in design

and performance to Confuzzer, though primarily tested as a Fuzzer targeting Win-

dows executables and environments. SAGE starts with a seed file in order to initially

figure out the first path through the binary, and during each iteration it generates new

inputs by looking for new paths that can be explored. In order to actually generate

the necessary path information and constraints, SAGE uses a combination of iDNA

and TruScan which are tools that allow offline analysis of the trace of a program,

allowing SAGE to separate the process of Taint Analysis from the actual execution

of the program.
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While this design does allow for more efficient Taint Analysis, it does suffer some

issues when dealing with maliciously written programs which violate the assumptions

of stack/heap space made by the Trace programs and might result in incorrect values

being stored in the program trace. In addition, this results in SAGE having to effec-

tively run each program execution twice, once to generate the original program trace,

and a second time to actually build up the constraint and concrete value equations.

2.2.3 S2E

S2E is a system that provides automatic path exploration to allow other programs

and plugins to perform tests across all paths that a program might traverse down [2].

It provides this path exploration using a symbolic execution system that analyzes the

program and generates new inputs so that the program travels down new paths. While

it isn’t primarily a Fuzzer, it would take little effort to add the necessary selectors

and analyzers to S2E to create a fuzzing system. Unlike most of the other Symbolic

Execution systems we’ve discussed, S2E doesn’t actually instrument the application

being analyzed, but rather instruments the entire system to control inputs at all levels

of the machine. While this does allow for more general control of the environment,

it does come at the cost of having to instrument an entire machine and therefore is

theoretically slower than equivalent binary instrumentation.

Unlike the other symbolic execution systems, this system also primarily uses Sym-

bolic Execution, where it attempts to explore all paths simultaneously, and then gen-

erates valid test cases once the paths have all been explored. While this works for

small programs and limited tainted inputs, this can result in a combinatorial explosion

in paths that might prevent the execution from finishing in any reasonable time-frame.

S2E also has a focus on plugins/analyzers that look for specific states or conditions

being violated, rather than more general problems in the program execution, making

it difficult to get the full benefits of a fully symbolic system.
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Chapter 3

Design

This section details the overall design of the Confuzzer system. We’ve split the design

into two major parts, the Taint System design and the Concolic System design, as

well as an additional section that covers the design of the smaller components of the

Confuzzer system.

Figure 3-1: Confuzzer Design Overview

Figure 3-1 shows how the various pieces of the design interact and work together.

In the following sections we’ll cover details about each of these parts. In general, the
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Concolic System first generates a default test case that is fed into the distributed

Taint System, and as we get results from the Taint System, the Concolic System

keeps on generating new constraints and inputs that are repeatedly sent back to the

Taint System. In addition, the Concolic System also displays the current explored

branches through the UI to give the user an idea of the state of fuzzing and to allow

them to prioritize different sections of the program execution.

3.1 Taint System Design

One of the major parts of this system is the system that keeps track of the spread

of Taint through a program from the tainted input that we are testing. While many

Taint Analysis systems of various sorts exist, most have to do with doing analysis

in the Intermediate Representation of a program that is represented as part of the

compilation process. Due to the lack of source code for most programs, we have to

design the system to do Taint Analysis on the final running assembly. This presents

a lot of complications since x86 assembly doesn’t provide nice semantics for figuring

out what registers are tainted by an operation or categories to separate the various

assembly instructions.

Figure 3-2: Taint Propagation Example
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The basic design of the taint system is that we initially capture any reads from the

file descriptor referencing our “tainted input”. We can then keep track of any memory

addresses or locations that this “tainted input” is stored in. We also mark each of

the original reads from the tainted file with a special marker that is then used by the

Concolic System. Then, we analyze each instruction in the program and if its a read

from a tainted location (memory or register), we create a new constraint representing

the instruction and taint the resulting location. In this way, as the program executes

the set of tainted registers and addresses slowly changes at each instruction. Finally,

we can keep track of any branches that occur in the program and check whether they

are controlled by the “tainted input” by seeing if the values the branch is depended

on is tainted at that time. Figure 3-2 shows an example of how this system works.

Figure 3-3: Register Chunks Example

However this design doesn’t deal with the fact that we have instructions that move

registers of differing lengths. In order to deal with this, we instead keep track of each

register as chunks of 8 bits. Therefore most registers, which tend to be 64-bit, are

made of 8 chunks numbered 𝑅N𝑋0 through 𝑅N𝑋7. Depending on the size of the

operation that moves data around, we copy over a certain series of register chunks

over, keeping the previous values for the uncopied registers. Figure 3-3 shows the

layout described and how the various register chunks are related.

Each tainted operation we encounter then generates the constraints depicted in

Figure 3-4, which while more than the original design doesn’t add that much com-

plexity for z3 to solve against, since most of the constraints are under constrained or
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Tainted: RAX0_1, RAX1_1

Instructions:
mov bx, 0x2020
xor ax, bx

Tainted: RAX0_1, RAX1_1, RAX0_2, RAX1_2
Tainted Instructions:

RAX_AX_2: xor ax, bx ::: 0x2020 + RAX_AX_1 -> RAX_AX_2

New Constraints:
RAX_AX_1 = {RAX1_1, RAX0_1}

RAX_AX_2 = OP(RAX_AX_1 + 0x2020)

RAX1_2 = RAX_AX_2[1]

RAX0_2 = RAX_AX_2[0]

Figure 3-4: Register Constraints Example

simple substitutions.

Once the Taint Analysis system has finished generating the list of tainted instruc-

tions and a semantic for how the registers are altered, it produces a text file listing

all the tainted branches that were encountered, along with the list of tainted instruc-

tions/constraints. While the instructions are separated into separate registers and

rough constraints at the taint analysis stage, it isn’t until the generated file enters the

Concolic system that the constraints are parsed and turned into a form more suitable

for our constraint solver.

3.2 Concolic System Design

The Concolic System has many components working together to generate new inputs

and to call out to the Taint Analysis system. It first generates an initial blank input

which is sent to the Taint Analysis system. Then, for each input it has sent off it first
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parses the response, generating SMT constraints representing the state of the program

and each branching point. Then it proceeds to attempt to solve the constraints for

new inputs that can once again be sent off to the Taint Analysis system. If we have

already observed an input, we skip it since we’ve already parsed it, and once we are

unable to generate new inputs that traverse unexplored parts of the program, we

conclude the fuzzing. We’ll discuss each of these stages in turn.

3.2.1 Taint Analysis Parsing

This stage turns the Taint Analysis output from something like “RFLAGS_0_1: cmp

al, 0x6c ::: RFLAGS_0_1 = OP(RAX_0_1, 0x6c)” into a SMT equation of the form

“RFLAGS_0_1 == 0x6C - RAX_0_1”. We don’t generate the actual SMT form

until this stage in order to allow the Taint Analysis system to be disconnected from the

format of the SMT system we are using. This stage is actually split into two parts, one

to handle the parsing of the actual branches that have been encountered and another

to parse the general instructions/constraints that we’ve picked up throughout the

execution of the program.

For each branch, we also need to figure out whether the branch was taken during

this execution so that the Path Exploration system can determine what branches

haven’t been visited. Since almost all branches are based on the state of RFLAGS,

we also have the Taint Analysis provide the concrete values of RFLAGS so that we can

determine whether the path has been taken depending on the opcode of the branch

instruction.

For general instructions/constraints, we parse each instruction to convert the op-

code into an actual operation between the arguments of the instruction. There are

three categories of instructions, those that take a single argument, those that take

two arguments, and finally those that also modify RFLAGS. Using both the seman-

tics of the arguments and the opcode, we can determine the appropriate operation to

perform between the operations.

Once we’ve gathered a series of SMT equations representing all the steps of the

program execution, as well as a separate series of equations representing each of the
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branches we’ve taken, we pass this onto the Path Exploration system to generate

subsets of the branch equations for Input Generation.

3.2.2 Path Exploration

Once we’ve generated the initial SMT equations, we need to start generating the

various different sets of branch paths we want to explore in subsequent tests. The

way we generate each of these new branch paths is by going through each of the

branches we’ve hit, and keeping all previous branch constraints while we negate the

current branch constraint. Figure 3-5 shows the initial path that we’ve explored, as

well as the additional paths we’ll try exploring in the new inputs. We don’t worry

about de-duplicating paths at this point since we’ll de-duplicate repeated inputs as

part of the input generation phase.

Figure 3-5: Path Exploration Example

Once we’ve figured out which branch constraints to keep and which to negate,

we can simply add a new constraint of “AND(branches[:i], NOT(branches[i]))”. Once

we have all the constraints, we send them to the SMT solver to solve and generate

concrete values for all the variables. Once this step is done, the result can be passed

to the Input Generation phase to create new test cases.
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3.2.3 Input Generation

Once we’ve solved the SMT equations to find concrete values for each of the variables

in the constraints, we actually have to generate an input using these concrete values.

While normally straightforward, we have to deal with parts of the tainted file that

may never have been read by the current execution of the program or other edge

cases. Instead what we do is first find the size of the tainted file that we need to

create, by finding the largest value for which a symbol is defined representing the

tainted input file and creating an initial array representing the file defaulting to using

the null byte. Once we’ve generated the array, we replace the values that we have

concrete values for from the SMT solver and generate a file.

While using null bytes as the default could have problems since some code stops

parsing a file at the null-byte, we would have a constraint representing this case in

the list of constraints from the program execution, so we don’t need to add a special

exception for that case.

Its at this stage that we deal with de-duplicating inputs that we already have

seen. This prevents us from revisiting paths that we have already analyzed. Another

way with dealing with duplicate inputs is to keep track of the sets of paths that have

been explored and then checking our new path against that list.

3.3 Minor Component Design

In addition to these major components of Confuzzer, we also have a number of other

smaller components that are used to help make the system more efficient and to allow

greater usability.

3.3.1 Distributed Nodes

One of the first optimizations made to the design is the ability to distribute the

workload from a single machine to many. We achieve this by creating workers running

on various servers that accept tasks that detail the value that should be used for the
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Figure 3-6: Distributed Nodes for Taint Analysis

tainted input, as well as the file name to execute. To prevent malicious use of this

system, we require that the binary being tested be uploaded to the servers through a

separate channel. Figure 3-6 shows the overall design of the distributed system.

On the worker side, there is a loop while it waits for a task, and once it receives

a task, it creates a new directory with a copy of the binary and all files accessed by

the binary. It then runs the Taint Analysis tool on the binary in that directory, and

upon completion returns the result of the Taint Analysis to the master. This design

is done so that different executions of the binary don’t interfere with each other, and

to keep a log of all binary executions on disk in case further study of a particular test

case might be necessary at a later time.

Meanwhile, on the master side, there are threads for each worker, that pull a task

off the synchronized queue (filled by the Input Generation phase) and send them over

RPC calls to the various workers. The queue is prioritized based on metrics from the

Concolic Execution system and the Graph Viewer (described below). Once a worker

has completed its task, the results are stored in another queue to be returned to the

Concolic system.
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This design allows us to run a lot of tests at the same time without having to wait

for each one to complete. Since the slowest part of the system is the Taint Analysis

system, this distributed system greatly improves the time it takes to run lots of tests.

For larger programs, the Concolic Execution system can also be distributed across

multiple nodes when the SMT solving stage takes a considerable amount of time.

3.3.2 Graph Viewer

In addition to the other components, we also generate a graph for each new path

that is discovered, and use that to allow a user to prioritize certain branches when

performing further tests.

The graph viewer works by creating a separate node for every branching point

and an edge for both the TRUE and FALSE paths from each branch. Since we are

branching forward from the initial root node, this setup creates a tree structure that

represents all possible branches that we know about so far.

In order to build up the tree, we iterate through each path we’ve visited and

create a new node for any new branching points and new edges for the direction that

the path travels down. Since the program may sometimes loop back to the same

branching point, we need to keep track of the visited path prefix and create a new

node whenever the new branch happens with a different prefix than the nodes that

we’ve already drawn, joining paths that have the same prefix and branch.

Experienced users can use the branching pattern and assembly code dis-assembly

to select parts of the code to prioritize when generating new paths, allowing the

system to explore all the paths in specific critical sections of the code that the user

might have reason to believe are more vulnerable to malicious inputs.
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Chapter 4

Implementation

The Confuzzer system was implemented with a combination of the Intel PIN tool to

do binary instrumentation and Taint Analysis, and the z3 Python bindings to actually

perform the Concolic Execution step. The current version of the system is available

online at https://github.com/dvorak42/confuzzer. The rest of this chapter will

discuss the implementation of each of these parts, as well as the distributed and

graphing components.

4.1 PIN Taint Analysis Tool

In order to do the Taint Analysis on the binary, we ended up implementing an exten-

sion for PIN, an Dynamic Binary Instrumenter, to keep track of the tainted state of

memory and registers, and to build up a list of all the instructions that operated on

tainted locations.

Instead of using a full-system emulator, we ended up choosing to use an application-

specific Dynamic Binary Instrumenter (DBI), since it should have a lower overhead

than emulating an entire system. Of the popular choices, we ended up using PIN

since it was one of the few DBI tools that worked without any need for compile-time

injection and allowed us to fully instrument the program with easy access to the state

of the registers and memory throughout the program [7]. Another option was Dy-

namoRIO, another similar DBI, however there were fewer systems built on top of it,
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and had less support at the time.

The PIN plugin takes in the binary that is being analyzed, as well as the names

of the tainted inputs to the binary. In order to keep track of tainted values, we first

use PIN to instrument any syscalls. Before each syscall, we check the type of the

syscall and if it is an “open”, we check whether the argument is one of the tainted

files that was passed in, and if so keep track of the file descriptors referencing these

tainted files. Once we have an open tainted file, we need to check for “read” syscalls

and label and taint any memory that is written by the “read” syscall.

Once we have a tainted memory location, we need to start instrumenting all

instructions to check whether they are reads from either tainted memory or registers.

Since we need to parse the actual registers and memory locations that are being

affected by the we have different instrumentation functions based on the number of

operands for each operation, and whether they affect registers or memory locations.

The one special case we need to deal with separately is adding an additional

“branch” point before predicated instructions. This way, every time that the predi-

cated instruction, we create a new branch point dependent on the state of the RFLAG

register. The one problem with this approach is that every instruction will end up in-

strumented, since we also need to keep track when the taint on registers and addresses

are cleared.

In order to keep track of registers and addresses, we create separate lists for

each. However, since we have instructions that move different size operands, for each

register, we need to separately keep track of each chunk in a register. While we can

do bit-level chunking, x86 primarily affects registers at a byte level, so the current

implementation uses byte-sized chunks. We also normalize all registers to the largest

size (𝑅𝐷𝐼,𝑅𝑆𝐼,𝑅𝐴𝑋,𝑅𝐵𝑋, . . .) when keeping track of the registers. We also need

to keep track of the ID of each register, so that as we parse new operations that

modify the value of the register, we store it in a newly named variable.

Figure 4-1 shows the pseudocode for actually spreading taint around the various

registers and addresses the program accesses. For any operations that use tainted

registers and addresses, we increment the ID of the registers being written and then
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taintRegToReg(instruction, srcReg, dstReg):
chunkStart, chunkEnd = instruction.offset, instruction.size
affectReg = []
for(i in sizeof(dstReg)):

r1 = {dstReg, i, dstReg.id}
r2 = {dstReg, i, dstReg.id+1}
if i < instruction.offset or i > instruction.size + instruction.offset:

taintEquations.append({’=’, r1, r2})

if isTainted(srcReg):
s1s = srcReg[chunkStart:chunkEnd]
s1c = {srcReg, chunkEnd-chunkStart}
d1s = dstReg[chunkStart:chunkEnd]
d1c = {dstReg, chunkEnd-chunkStart}
taintEquations.append({’=’, s1s, s1c})
taintEquations.append({instruction, s1c, d1c})
taintEquations.append({’=’, d1c, d1s})

else:
for(i in [chunkStart, chunkEnd]):

removeTaint(dst)

Figure 4-1: Taint Spread Pseudo-code

taint them, as well as adding a constraint representing the assembly instruction. Since

we don’t want to create constraints for all registers, we also need to get the value of

operands that aren’t tainted. We do this by copying the memory from the source

operand, or by using the Register context that we have to get the current value of an

address.

We also need to clear the tainted flag on register and addresses whenever we have

an instruction that moves non-tainted values into a register. Without clearing the

taint flags, we would end up with almost all the registers and addresses accessed by

the program after the original tainted file is read.

Finally we need to keep on propagating any parts of the register that weren’t

affected by the current instruction. This is actually a simplification of the actual

code since we need to cast the register chunks together so that the instruction can

operate on them, and then cast it back into separate chunks for further instructions

to interact with.
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Whenever we encounter a branching point in the program execution, we check

whether the RFLAGS register is currently tainted, and if so we add the branch to

the list of tainted branches, along with the current value of the RFLAGS register.

This allows us to keep track of which direction each branch was taken in. While we

could keep track of this by checking what the next executed instruction is, that would

require extra bookkeeping.

Separate from the Taint Analysis, we also instrument exception handling in order

to deal with the case of segfaults and other crashes. Since we can’t trust that standard

file descriptors for user input and output are still available at this point, we have to

wait until the end of the program’s execution to record the crash/segfault.

At the end of the program’s execution, we store all the branching points and taint

constraints in a file for the Concolic Execution System to parse and use to determine

new constraints. In addition, if we recorded a crash or overflow issue, we also update

the execution log with that data. Once we’ve finished with the current execution, the

Concolic System then takes over to generate new test cases.

4.2 Concolic System

The Concolic System is implemented using a combination of Python and z3 bindings

to parse the file received from the Taint Analysis system. Every time we receive the

analysis, we parse it in two stages. The first stage parses the taint constraints into

formulas, and the second stage creates the z3 equations.

The first stage parses out the opcode from the assembly instruction and turns it

into symbolic notation. We have to do the parsing in two stages since we need to build

up the set of variables that will be used by the SMT solver. Some of the assembly

opcodes don’t have a direct translation to a symbolic equation since we have a limited

set of operations we can use with the SMT solver.

The second stage is where we actually create the z3 variables and the constraints

are actually added to the system. We mark the z3 variables representing the tainted

file inputs differently so that we can later build up the new input file.
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We also have a third stage for our actual branch conditions where we use the

branch opcode and the value of the RFLAGS register at that time to figure out

whether we actually took the TRUE or FALSE path.

Once we’ve finished parsing all the branches and taint constraints, we can start

iterating through each of them and building up a new path constraint using the

branches we select for this loop and the rest of the taint constraints. Since we don’t

have any circular dependencies, and most of the constraints are fairly straightforward,

z3 works fairly well at solving the constraints for satisfiable sets of constraints, while

converging to unsatisfiability for the paths that are unreachable.

In order to maximize the parts of the program we are exploring early on, we

iterate through each branch on the path and keep the previous branch directions,

while flipping the direction we are exploring on the current branch. So we create

𝑁 new paths for every path with 𝑁 branching points. We then de-duplicate the

repeated paths/inputs once we’ve converted the solutions from the SMT solver into

actual input files. A good number of paths will end up being unsatisfiable since

there are no inputs to reach that path, or there are contradictory branches from

non-optimized or dead code.

Once we’ve solved the constraint equations, we generate a new test input and

place it into a test input queue. Its during this phase that we check whether the

input and paths match any of our prioritized branches and if so, we increase their

priorities in the Taint Analysis stage. We keep on parsing outputs and generating

new paths until we work through our queue of inputs and are unable to generate new

unique paths. We also keep track of any paths which result in crashes/segfaults and

mark those as interesting inputs.

4.3 Additional Components

While the previous parts are sufficient to actually run the fuzzer, there are a few ad-

ditional components to improve the system. We also have implemented a distributed

system and graph visualization to help with the usability and efficiency of the system.
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Figure 4-2: Example Execution Graph

We use xmlrpclib and synchronized Queues in order to communicate between the

master and each of the workers. The system is designed to allow each server to support

multiple workers per machine. Each worker can run in separate threads, listening for

the master using different ports. Additionally, each worker thread can run multiple

PIN Taint Analysis processes simultaneously. This allows us to run about 64 analysis

operations at the same time, with 8 threads per machines on 8 servers.

To prevent security issues with the RPCs being maliciously used, we require that

the binaries that are being used are uploaded to each server through a separate

channel. We also have a script that separately fetches all the log files from each run

through of the taint analysis in order to store any additional information that the

user might want to look over for the crashing test cases.

We use pyplot and graphviz to actually generate the graph of the program execu-

tion. Figure 4-2 shows the graph that is generated as part of the execution of binary.

In order to give the user an idea of which branch each node represents, we also include

the assembly instruction that actually represents the branch.

The user can then input the name of a branch from the graph image into the main

thread in order to prioritize it. Since each node is uniquely identified, the name of the
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branch also includes the prefix branches. The user can prioritize multiple branches in

the same part of the program in order to have the system focus on a specific section

of the binary.

While these components don’t change the correctness of the system, it does make

the system faster and allow for the user to prioritize parts of the program that they

believe to be vulnerable or critical. There are some additional optimizations that

could be made that will be mentioned in the Future Work section in Chapter 6.
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Chapter 5

Evaluation

Since our goal for this system is to create a Fuzzer that works well with programs that

have complicated control flow conditionals or many branches, we are evaluating our

system using test cases with these properties. To evaluate Confuzzer, we compare

its performance on the test cases against both AFL, one of the most popular and

successful Fuzzers, as well as against a generic Blind Fuzzer that generates inputs with

no feedback information from the binary we are evaluating. Due to the amount of

time needed for running the latter tests, we end up calculating expected performance

based on testing on a slice of the input space.

We first look at the number of test cases that our fuzzers generate, since programs

of similar complexity will have roughly the same branching amounts, giving us a better

picture of how each system scales. Our rough results are in Figure 5.1. The estimate

for blind fuzzing is based on the number of possible inputs before we are likely to hit

a crashing input. We weren’t able to make measurements for AFL, since it wasn’t

Test Case Confuzzer Blind Fuzzing AFL Description
test1 8 1.10e12 ??? Simple magic value test
test2 6 1.10e12 ??? Keygen test using xored value
test4 40494 1.84e19 ??? Toy shell example without over-

flow
test4 40494 1.84e19 ??? Toy shell example with overflow

Table 5.1: Test Cases per Fuzzing System
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Test Case Confuzzer Confuzzer (Distributed) Blind Fuzzing AFL
test1 0.21 runs/sec 3.2 runs/sec 2513 runs/sec 9850 runs/sec
test2 0.20 runs/sec 3.1 runs/sec 2497 runs/sec 9879 runs/sec
test3 0.18 runs/sec 2.7 runs/sec 2454 runs/sec 10.8k runs/sec
test4 0.17 runs/sec 2.7 runs/sec 2434 runs/sec 11.3k runs/sec

Table 5.2: Fuzzing Speed

able to determine sufficient information to prioritize certain kinds of input, even with

a basic set of example inputs for the test application. One of the advantages of AFL

is that it is able to notify the user of crashing inputs while still running, compared to

the current implementation of Confuzzer.

We then measure the amount of time each fuzzing system takes to run test cases,

to show how the speed of the Confuzzer compares to the other systems. Figure 5.2

shows that the speed of the Confuzzer system is orders of magnitudes slower than

the other systems. We actually end up having better timing from AFL than Blind

Fuzzing since it forks the binary instead of creating a new process for every test case.

This shows how the Concolic Fuzzer system is able to hone in on specific interesting

inputs without having to hit a ton of unnecessary inputs, however the process of

finding inputs takes a long time and is heavily dependent on the size of paths in the

binary being fuzzed.

While the test cases we are using for the system are a bit artificial, there are

many existing programs that have similar constructs, including parsers that search

for magic values in order to figure out whether a file is valid, key verification systems

that check whether an input is valid to detect some key file is valid, and even network

protocols that expect a certain class of inputs.

From the timing results, we could probably end up with a more efficient system by

using a combination of Confuzzer to generate inputs that pass through taint checks,

and then using AFL or another Fuzzer in order to look for alternate inputs past

the initial checks in the program. Unfortunately doing this sort of merged Fuzzing

requires either some amount of user input to determine when to switch between the

systems, or some sort of heuristic to deal with moving between the fuzzers.

42



The results for AFL also show that its possible that moving from a PIN instru-

menter to something using QEMU User Mode Emulation might offer an improvement

in the running time of the system. Most of the slowness in running the Confuzzer

system comes from the context switching and instrumentation of the binary code.

We can increase the speed of the Fuzzer using our distributed system to run multiple

instances of the binary and Taint Analysis system. Some of the additional improve-

ments we can apply to Confuzzer are covered in the Future Work section in Chapter

6.

From the evaluation, we see that this system is able to hit the goals of the system

and succeed at beating out other Fuzzers on these special class of difficult binaries

that other Fuzzers have failed to get useful/complete results on in a timely manner.
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Chapter 6

Future Work

While we currently have a working system, there is still a lot of work that can be done

to improve the overall system and create a more efficient and useful system. Similar

to the Design, we can split this into two major categories of work, work for the Taint

system and work for the Concolic Execution system.

6.1 Taint Analysis Improvements

One of the major improvements to the Taint Analysis system is to switch from using

Intel PIN to another instrumentation tool. Some options to explore, given other Taint

Analysis and fuzzing tools are using DynamoRIO as its support improves, using full-

system emulation, and finally using QEMU’s user mode emulation. The final option

seems to be most likely to give improved results, given the success that AFL has had

with it.

In addition to switching the Taint Analysis to a different system, we can also

reduce the set of instructions that we have to examine by detecting standard functions

that we trust and instead of instrumenting the function execution, we add special

constraint equations to the Taint log. One example is being able to detect strcmp

and other related functions, and replacing them with constraints that represent the

possible return values from the functions, rather than having tons of branching points

and constraints within the library function itself. There are a couple ways of doing
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this, from using some heuristic to detect known functions, or actually stubbing out

the real library we are optimizing with one that has markers that the Taint Analysis

tool would be able to detect and choose to pause instrumentation.

Another improvement that needs to be made to the Taint Analysis system is

support for additional types of tainted input, either more general user input from

the console, to actual data packets through network sockets. Having these additional

forms of tainted input would allow us to test more parts of the code without having

to have artificial wrappers that convert a file input into a network or user input.

Finally, the last major improvement to the Taint Analysis system that would be

useful is the addition of more ways to detect “bad” or potentially troublesome states,

some can be as simple as invalid memory access detection (which already can be done

with PIN) or even so far as detecting unintentional control flow hijacking or policy

violation. These would allow the system to detect a wider array of potential issues

all at once.

6.2 Concolic Execution Improvements

On the Concolic Execution end, one improvement is to the way we handle constraints.

If we are able to reduce the number of variables we create when parsing the tainted

assembly instructions, we could reduce some of the work z3 has to do when solving the

equations. Similarly, if we are able to detect more compound data structures, such

as strings, we would be able to combine many of the generated constraints together

and use things like z3str for string computations.

Additionally, if we were able to do better path and loop detection, we could

improve the search algorithm we use to search more interesting parts of the program

space without spending a bunch of time repeatedly working on the same looping

structure. Generally, having an improved search algorithm and prioritization would

allow us to reach interesting test cases much earlier.

Another overall improvement to the system that should be done in the future

is adapting it to work together with other existing Fuzzers. While Confuzzer has a

46



advantage on some test cases that other fuzzers have trouble with, the existing fuzzers

also have their own advantages on other parts of the program execution. Allowing

multiple fuzzers to work together would allow a wider search of the program input

space without having all the test cases take as long as the Confuzzer test cases take.
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Chapter 7

Conclusion

In this thesis, we presented Confuzzer, an implementation of a Concolic Execution

Fuzzer to help with finding inputs to the program that can cause malicious behavior.

Unlike most existing Fuzzers, Concolic Execution allows us to get through sections

of the binary that require matching certain values and allowing us to get past sec-

tions that would otherwise cause other Fuzzers to take a long amount of time. In

implementing this system, we’ve aimed to design the system to allow the analysis

of as many binaries as possible, without requiring source code to perform the anal-

ysis. While this prevents us from constructing Intermediate Representations to use

in doing the taint analysis, we are still able to parse x86 instructions sufficiently to

determine how to spread taint through the program.

While there are still many improvements that could make to the system, the initial

prototype is already able to test a class of programs that are difficult to test with the

existing systems. Being able to programatically generate test cases is an important

step in better securing existing code and doing in-depth testing fast enough to be

effective against determined attackers.
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Appendix A

Example Program

In order to demonstrate the success of the Confuzzer system, we’ve included the code

for a simple test application as well as excerpts from its execution under the Confuzzer

system. Using a single execution node, this test took about 14 hours and generated

a total of around 40500 unique inputs, without pruning, to the program.

Listing A.1: test4 Source Code

#include <s td i o . h>

#include <f c n t l . h>

int main (void )

{

int NC = 8 ;

char buf [NC] ;

char* f i l e s [ 2 5 6 ] = {0} ;

int fd = 0 ;

int indx = 0 ;

int i , j = 0 ;

char * r = buf ;

fd = open ( " s c r i p t . txt " , O_RDONLY) ;

read ( fd , r , NC) ;
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c l o s e ( fd ) ;

for ( i = 0 ; i < NC; i++) {

i f ( buf [ i ] == ’ l ’ ) {

for ( j = 0 ; j < indx ; j++) {

p r i n t f ( " f i l e%d\n" , j ) ;

}

} else i f ( buf [ i ] == ’w ’ ) {

f i l e s [256* indx ] = "WRITTEN" ;

indx += 1 ;

} else i f ( buf [ i ] == ’d ’ ) {

for ( j = 0 ; j < indx ; j++) {

p r i n t f ( " f i l e%d : \ n\ t%s \n" , j , f i l e s [256* j ] ) ;

}

}

}

return 0 ;

}

This program works by taking in 8 instructions as part of a text file, each of which

could either “[l]ist” the files that have been created, “[w]rite” a new file, or “[d]ump”

the contents of the files. Due to an implementation bug, this code has a memory

corruption error if too many files are written. Since this was compiled on a 64-bit

system, this tends to occur when more than 4 files are written to memory. Below is a

part of the output from the fuzzer, showing the test cases that were sent to the Taint

Analyzer, as well as the newly generated test cases from each execution:

Testing ./test4 with:

Tainted input ’script.txt’

Left: 1

1 l

1 w

1 d
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1 t

1 $l

1 $w

1 $d

1 $ï£¡

1 $_l

1 $_w

1 _ï£¡

1 $_d

Left: 12

2

Left: 12

3 wl

3 ww

3 wd

3 wt

3 w$l

3 w$w

3 w$d

3 w$ï£¡

3 w$_l

3 w$_w

3 w$_d

3 w$_t

3 w$__l

3 w$__w

3 w$__d

3 w$_cï£¡

3 w$ï£¡__l

3 w$ï£¡__w

3 w$ï£¡__d

3 w$Pï£¡Cï£¡

3 w$O_?_l

3 w$O_?_w

3 w$O_?_d

3 w$__c‘ï£¡

3 w$_____l

3 w$_____w

3 w$_____d

3 w$___ï£¡?_

Left: 39

4 ï£¡

Left: 39

5 $_t

5 $__l

5 $__w

5 $__d

5 $_cï£¡

5 $ï£¡__l

5 $ï£¡__w

5 $ï£¡__d

5 $Pï£¡Cï£¡

5 $O_?_l

5 $O_?_w

5 $O_?_d

5 $__c‘ï£¡

5 $_____l

5 $_____w

5 $_____d

5 $_X_c_ï£¡
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5 $___ï£¡?_l

5 $___ï£¡?_w

5 $___ï£¡?_d

5 $‘______

Left: 59

...

Left: 5

Left: 4

Left: 3

Left: 2

Left: 1

40481 wwwwwwl

40481 wwwwwww

40481 wwwwwwd

40481 wwwwwwt

40481 wwwwww$l

40481 wwwwww$w

40481 wwwwww$d

40481 wwwwww$_

Left: 8

40482 wwwwwwll

40482 wwwwwwlw

40482 wwwwwwld

40482 wwwwwwl$

Left: 11

Left: 10

Left: 9

Left: 8

40486 wwwwww$l

40486 wwwwww‘

Left: 9

Left: 8

40488 wwwwwwd

Left: 8

Left: 7

Left: 6

Left: 5

40492 wwwwwwl^D

Left: 5

Left: 4

40494 wwwwwwl$

Left: 4

Left: 3

Left: 2

Left: 1

A subset of the crashing inputs that were discovered is below:

Crashing Inputs:

$_wwwwdw

$_wwwwlw

$wdwwwdw

$wdwwwwl
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$wldwwww

$wlw_www

$wlwdwww

$wlww_ww

$wlwwww

...

This along with the remaining crashing inputs covers most of the space of inputs

that should crash the program, showing that even with a program that has a com-

binatorial explosion of paths 48, Confuzzer is still able to function in a reasonable

amount of time. The 14 hours for 40000 paths matches closely with the results ob-

served by the SAGE system [4]. With the use of N nodes, the time needed to run

this test could be reduced by about a factor of 𝑁 , since the majority of the time was

spent in the actual execution of the programs with different inputs.
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Appendix B

Example Execution Graphs

Attached is the code and execution graphs for some of the simpler test cases we’ve

been using.

Listing B.1: test1 Source Code
#include <std i o . h>

#include <s t r i n g . h>

#include <sys / types . h>

#include <s t d l i b . h>

#include <f c n t l . h>

int strcmp2 (char* a , char* b) {

while ( (* a == *b) && (*a != ’ \0 ’ ) ) {

a++;

b++;

}

return *a − *b ;

}

int strcmp3 ( const char* s1 , const char* s2 )

{

while (* s1 && (* s1==*s2 ) )

s1++,s2++;

return *( const unsigned char*) s1−*(const unsigned char*) s2 ;

}

int main (void )

{

char key [ ] = "magic" ;

char key2 [ ] = "cigam" ;

int fd = 0 ;

char buf [ 1 6 ] = {0} ;

char * r = buf ;

fd = open ( "key . txt " , O_RDONLY) ;

read ( fd , r , 1 6 ) ;

c l o s e ( fd ) ;

i f ( strcmp ( key , r ) == 0) {
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p r i n t f ( " Success ! \ n" ) ;

return 0 ;

// pr in t f ("Correct !\n");

} else {

i f ( strcmp2 ( key2 , r ) == 0) {

char ptr [ 1 ] = {0} ;

s t r cpy ( ptr , " cigamcigamcigam" ) ;

i f ( strcmp2 ( ptr , r ) == 0) {

return 2 ;

}

}

// pr in t f ("Wrong %d . %s\n" , strcmp3(key , r ) , ptr ) ;

return 1 ;

}

return 0 ;

}

Listing B.2: test2 Source Code
#include <std i o . h>

#include <sys / types . h>

#include <s t d l i b . h>

#include <f c n t l . h>

int main (void )

{

char key [ ] = "\ x4f \x43\x45\x4b\x41" ;

int fd = 0 ;

int i = 0 ;

char buf [ 1 6 ] = {0} ;

char * r = buf ;

fd = open ( "key . txt " , O_RDONLY) ;

read ( fd , r , 1 6 ) ;

c l o s e ( fd ) ;

while ( i < 5) {

i f ( (* r ^ 0x22 ) != key [ i ] )

return 1 ;

r++;

i++;

}

p r i n t f ( " Success ! \ n" ) ;

return 0 ;

}
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Figure B-1: Example Execution Graphs for test1
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Figure B-2: Example Execution Graphs for test2
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