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Abstract 

In this thesis I describe the design and implementation of Spoke, a JavaScript framework 
for building interactive speech-enabled web applications. This project was motivated by the 
need for a consolidated framework for integrating custom speech technologies into website 
backends to demonstrate their power. Spoke achieves this by providing a Node.js server-side 
library with a set of modules that interface with a handful of custom speech technologies 
that can perform speech recognition, forced alignment, and mispronunciation detection. In 
addition, Spoke provides a client-side framework enabling some audio processing in the 
browser and streaming of the user’s audio to a server for recording and backend processing 
with the aforementioned integrated speech technologies. Spoke’s client-side and server-side 
modules can be used in conjunction to create interactive websites for speech recognition, 
audio collection, and second language learning, as demonstrated in three sample 
applications.  

Though Spoke was designed with the needs of the MIT Spoken Language Systems 
group in mind, it could easily be adopted by other researchers and developers hoping to 
incorporate their own speech technologies into functional websites. 
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Chapter 1 

Introduction 

 
Speech recognition tools have a wide range of applications, from informational discourse for 

checking the weather, to multimodal interfaces for playing a language learning game. Many 

such applications were developed by the MIT Spoken Language Systems group (SLS) [1,2] 

as part of a larger movement towards enabling a broad range of computer interaction 

through natural spoken language. To this end, the group regularly builds both new speech 

recognition tools and new applications demonstrating the power of these tools. 
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1.1 Motivation 

For example, Ann Lee, a Ph.D. student in the group, is developing a mispronunciation 

detection system that discovers patterns of mispronunciation made by a speaker in a set of 

multiple utterances [3]. Her backend work needs a frontend application to highlight its true 

potential in the domain of language learning. An application for this system will crucially 

need to be able to record audio from a live speaker for immediate processing on the 

backend, but audio recording on the web, our preferred application domain, is nontrivial 

and unstandardized. 

Within SLS there is high demand for live audio recording on the web—particularly 

to gather custom audio training data by creating an audio collection task on Amazon 

Mechanical Turk—but currently there is no in-home support for this feature after the 

previous outdated framework was phased out [4]. There are also many researchers seeking 

to build small demo websites using their own tools or those built by others in the lab, but 

in general there is no standard way of incorporating one’s speech recognition tools into a 

website. Setting up this interaction independently for each project in the lab is inefficient 

and makes it harder to share and reuse tools on other people’s sites. Thus we need a 

consolidated, reusable, and modern solution to using and sharing internal speech recognition 

tools for sites throughout the lab. 

The group also seeks to expand into new areas for fluid speech interactions. With the 

near ubiquity of mobile devices, we strive to bring our speech recognition demos to mobile 

browsers and native apps on phones and tablets. With increasing demand for responsive, 

real-time applications, we strive to create our own continuous speech recognition system 

that outputs recognition hypotheses even as audio is still being streamed and processed.  

Both of these goals will benefit from a consolidated framework, while adding their own 

challenges to its development. 
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1.2 Purpose 

The purpose of this thesis is to develop Spoke, a framework for the Spoken Language 

Systems group to build spoken language enabled websites. This framework leverages modern 

web technologies such as the Web Audio APIs, WebSockets, and Node.js to provide a 

standardized and streamlined way to build website demos in the lab featuring our own 

spoken language research. Spoke is implemented entirely in Javascript. 

Spoke has two overarching components, one for the client (the browser) and one for 

the server, and it provides a decoupled server library that can be used independently of a 

website. The client-side framework provides a set of tools for building front-end speech 

recognition websites: 

• recording audio to the server for processing 

• playing audio from the server 

• visualizing audio information in a volume meter 

• speech recognition (e.g. using Google’s SpeechRecognition, available in the Chrome 

browser, or custom backend recognizers) 

• speech synthesis (e.g. using Google’s synthesizer, or custom synthesizers) 

 

Meanwhile the server-side component of Spoke provides a library of speech recognition 

technologies built in the lab and a utility-belt of audio tools. The library’s utilities enable 

recording raw or wav audio, transcoding audio files or live audio streams, and playing back 

streaming audio from a file. The library also provides standardized access to and usage of 

technologies built in the lab, such as  

• domain-specific speech recognizers 

• forced alignment of an audio sample to expected text 

• mispronunciation detection on a set of utterances from the same speaker 
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This is a subset of technologies built in the lab, and it is easy to add new tools to the Spoke 

library so that everyone in the lab can use them. One technology we expect to add to Spoke 

within the next year is continuous streaming speech recognition, which will benefit from the 

current utilities for streaming audio recording and streaming audio transcoding. This library 

is decoupled from client interactions, allowing the developer to use the speech recognition 

and audio tools for batch processing and scripting in Javascript on the backend. 

Creating Spoke with the goals of SLS in mind meant confronting a few big 

challenges. The ideal of incorporating the broad range of speech technologies built in the 

lab, and those soon to be built, requires a framework with great modularity and 

extensibility. Making our demos work on mobile devices, and more generally in limited 

bandwidth conditions, encourages reducing data usage by using a small client side 

framework and by downsampling the audio before streaming, but ultimately robust 

handling of communication errors on both sides is still necessary. Later in this thesis we will 

explore these challenges and others further. 

 

 

1.3 Outline 

In Chapter 2 I discuss some related work in the area of building speech-enabled websites 

and provide some background about modern technologies for building web pages and web 

servers with JavaScript. Chapter 3 gives a high-level overview of Spoke before detailing the 

design and implementation of its client-side and server-side components. Chapter 4 

describes three sample applications built with Spoke, highlighting our ability to enable 

interactivity with custom backend speech technologies. Chapter 5 presents areas for future 

work and specific suggestions for their undertaking. Chapter 6 concludes this thesis. 
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Chapter 2 

Background 

 

2.1 Related Work 

Enabling speech recognition on the web is far from a new idea, but it is also far from a 

solved problem. The variety of available solutions do not fully meet our needs, either 

because they are outdated (WAMI) or they clash with using our own spoken language 

systems (CMU Sphinx). After all, we want to demonstrate the power of the tools we 

ourselves researched and developed. At times, other solutions could be used alongside our 

technologies, such as the Web Speech APIs, but at other times it makes more sense to build 

our own solution to have full control over it. 
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2.1.1 WAMI 

The WAMI (Web-Accessible Multimodal Interfaces) toolkit was developed in 2008 with the 

goal of enabling multimodal interfaces, particularly speech interfaces, on the web [4]. WAMI 

importantly provided speech recording and speech recognition as a service to simplify and 

thus encourage development of speech-enabled websites. An important component of WAMI 

was the AudioController, which was responsible for recording the user’s audio from the 

browser and transmitting it to a remote recognizer, and also playing back audio. Although 

these two features are in high demand in the lab, the technology underpinning the 

AudioController is outdated and we no longer use WAMI.  

Initially the AudioController was built as an embedded Java applet, but it was later 

rebuilt with the Flash browser plugin [5]. Aside from the poor performance and poor user 

experience of Java applets, they have lost support from most major browsers, and Flash, 

though still supported widely, is quickly becoming outdated. Flash has limited access to the 

browser’s technologies, and also enforces the use of an ugly, un-customizable security panel 

for granting audio permissions. The drawbacks and workarounds implemented in order to 

use Flash are now unnecessary given the state of the modern browser APIs for accessing a 

user’s audio, and the ability to stream binary audio data over WebSockets from the browser 

to a backend server. 

 

2.1.2 CMU PocketSphinx 

The CMU Sphinx speech recognition toolkit provides a few different packages for different 

tasks and speech applications, including a distribution called PocketSphinx built in C for 

use on computers and mobile devices [6].  In 2013, they ported PocketSphinx to JavaScript, 

empowering developers with a way to run a real-time recognizer for their websites 
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completely on the client-side [7]. This project is a great boon to web developers, but to 

other speech technology researchers, it is less useful. It necessarily utilizes CMU’s own 

speech recognition technologies, making it irreconcilable with our goal of building websites 

to demonstrate our own technologies. 

 

2.1.3 Recorder.js 

A small, independently built project, Recorder.js provides a library for recording audio 

using the modern Web Audio APIs (discussed later) and exporting that recording as a wav 

file [8]. As it is available on GitHub under the MIT License, it is frequently referenced as a 

demonstration of how to use the Web Audio APIs for audio recording on the client, though 

the library stops short of sending that audio to a server. Given this shortcoming, this 

library barely scratches the surface of the capabilities we need for our own websites. This 

makes the library an instructive example, but ultimately we built audio recording into 

Spoke, giving us full control over that process. 

 

2.1.4 The Web Speech APIs 

The Web Speech API was introduced in late 2012 with the ambition of integrating speech 

technologies into the HTML5 standard and ultimately providing web developers with tools for 

speech recognition and speech synthesis directly in the browser [9]. So far, only the Chrome 

browser has implemented this API (full support starting in version 33), though support for 

Firefox seems to be underway. These APIs empower web developers with a black box recognizer 

or synthesizer, with options for finer control over their capabilities if desired. For example, the 

SpeechRecognition API can recognize a single utterance after it completes, or you can configure 

the recognizer to perform continuous recognition and output intermediate recognition results as 

the user speaks. Though the Web Speech APIs are not sufficient for all of our needs, they have 
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proven to be useful in the lab and can easily be used alongside our own audio tools for the 

browser, so they have been integrated into the Spoke client-side framework.  

 

 

2.2 Kaldi 

Kaldi is a free speech recognition toolkit written in C++ available under the Apache 

License [10]. Many, if not most, of the core speech technologies being developed in SLS use 

the Kaldi toolkit for its state-of-the-art capabilities and extensible design. The end result of 

developing speech technologies with Kaldi is usually a bash script that runs a bunch of 

other scripts with the right inputs, and this makes interfacing with Kaldi-built systems very 

flexible. The Spoke server-side library was designed with this executable script paradigm in 

mind, and with future extensions to Kaldi in sight. Though Kaldi provides support for 

“online decoding” in some fashion [11, 12], we have not yet set up our own instance of their 

online decoders operating on audio streams. However, within the next year the lab hopes to 

build a continuous speech recognizer on top of Kaldi and this tool can be incorporated into 

Spoke in much the same way as existing Kaldi tools. 

 

 

2.3 Challenges 

Creating a framework for integrating speech technologies into web applications meant 

confronting a few big challenges. Ideally we would want all speech technologies built in the 

lab to be easily incorporated into Spoke, allowing anyone else in the lab to discover and use 

that technology, either for offline processing or for a website backend. To this end, it is 

important to pick a simple, flexible interface between the Spoke library and non-JavaScript 

tools developed in the lab. Many of these tools are built using Kaldi, which lends itself to 
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command line usage. This prompted a command line script interface with Spoke, which 

should be generic enough to extend to tools built in other languages and on other 

frameworks, so long as the tool can be used from the command line.  

With mobile devices and slow Internet connections comes the need for reducing data 

usage to likewise reduce latency.  When a webpage is first opened, it usually needs to fetch 

some extra JavaScript and CSS files, and how these files are provided can have a significant 

effect on the load time of the page. External libraries should be loaded from a CDN, a 

Content Delivery Network that distributes static content, meaning you only have to load 

each file once and then it is cached in the browser. The website’s custom files, on the other 

hand, have to be loaded every time, so to reduce latency we must minify the JavaScript and 

CSS files and even then we should try to load them asynchronously if possible. After the 

webpage is ready, we expect audio streams to consume the most bandwidth, so this is the 

next area for improvement. We can reduce the size of the audio stream by downsampling 

and/or compressing the audio before transmission. On the server-side, we use the SoX audio 

processing command line tool to accomplish this, but on the client-side we will later have to 

implement our own downsampling since it is not built into the Web Audio API.  

 

 

2.4 The Modern Web 

In the past few years the web community has seen dramatic improvements in the 

functionality of modern web browsers, the power of JavaScript, and the interactivity of 

communication between a client and server through WebSockets. 
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2.4.1 JavaScript 

JavaScript is a cross-platform, object-oriented scripting language that is incredibly flexible but 

sometimes tricky. Its flexibility comes from being a dynamically typed language that supports 

both the functional paradigm and object-oriented programming without classes. The core 

language includes an impractically small standard library of objects, from Array to Date to 

String. Most of its power, then, comes from its host environment and how properties and 

methods can be added dynamically to objects [13]. Inside a host environment, JavaScript can be 

connected to the objects of its environment to provide programmatic access and control over 

them, while the core libraries themselves are frequently extended to provide more utility.  

On the client side, this translates to an extended language with new objects for some 

complex interactions with the browser and servers. Far beyond the basic objects for interacting 

with a browser and its DOM (Document Object Model), browsers now extend JavaScript to 

provide powerful APIs ranging from server communication to audio processing. For example, an 

XMLHttpRequest allows you to send asynchronous HTTP requests to a server, while 

WebSockets enable a persistent TCP connection to the server for bidirectional communication. 

Moreover, the Web Audio API  [14] provides a powerful interface for controlling audio sources, 

effects, and destinations, enabling web developers to record audio from the browser with no 

hacks or plugins.  With the rise in server-side JavaScript implementations, and the increasing 

power of JavaScript in the browser, we can now use the same language in both places to great 

effect.  

 

2.4.1.1 Node.js 

Server-side JavaScript has been around since 1994, but has recently seen a huge resurgence with 

frameworks like Node.js. Node is a platform for building and running fast, scalable JavaScript 

applications [15]. The platform is built on Chrome’s JavaScript runtime, allowing you to run 

JavaScript outside of a browser environment, and it extends the core language with full-fledged 

modules for interacting with the server’s file system and for creating and controlling child 
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processes, just to name a few. With Node, you can easily develop command-line tools or full-

featured dynamic HTTP and HTTPS servers, and I hope that members of SLS soon use it for 

both.  

The two central themes of Node are event-driven, non-blocking I/O and Streams [16].  

JavaScript itself does not have a built-in way to do I/O, but web developers were already 

familiar with asynchronous callback-based I/O in the browser (AJAX is a good example of this). 

So Node built out I/O support following this same single-threaded asynchronous, non-blocking 

model using a library called libuv [17]. This makes Node very well suited for data-intensive real-

time applications where the limiting factor is I/O, but not appropriate for CPU-intensive 

operations. So performing speech recognition in Node.js is out of the question, but we can create 

a web server in Node capable of handling thousands of concurrent connections, and then spin up 

other processes for performing speech recognition upon request, which is what Spoke does.  

The Stream module provided by Node.js is also central to their evented asynchronous 

model. Stream instances are very reminiscent of Unix pipes, and they can be readable, writable, 

or duplex (both readable and writable). The ReadableStream interface allows you to process a 

large stream of data a chunk at a time by subscribing to the “data” event, where you can add a 

function to read, process, and even emit some transformation of that data. Additionally, you 

can pipe readable streams into writable streams with “pipe”, allowing you to chain together a 

processing pipeline, and you can pipe one readable stream into two separate writable streams. 

This proves useful for dealing with readable streams of audio data, allowing us to handle 

incoming raw audio in two different ways at once: saving the raw audio directly, and performing 

streaming downsampling of the audio using SoX [18]. 

 

2.4.1.2 Asynchronous JavaScript: Callbacks and Promises 

Asynchronous callbacks in JavaScript are great for simple operations, but they can get 

messy very quickly when callbacks are nested inside of other callbacks. In Node, this type of 

nesting is especially common since all I/O is asynchronous. Luckily the continuation passing 
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style of callbacks can be subverted by using Promises, a new pattern for representing the 

results of an asynchronous operation [19]. Instead of an asynchronous function taking a 

callback parameter, it can return a Promise object, which can be in one of three states: 

• pending—the initial state of a promise before the operation has completed 

• fulfilled—the state of a promise indicating a successful operation 

• rejected—the state of a promise indicating a failed operation 

 

Promises can easily be composed using their “then” and “catch” methods to take action on 

the fulfillment or rejection of a promise, respectively. There are many JavaScript 

implementations of the Promise API for both the client and server, and the most 

comprehensive ones also build out support for “promisifying” callback-based functions, 

including those for I/O in Node.js [19, 20]. 

Figure 2-1: Promise States: This diagram depicts the three possible states of 
a Promise object – pending (where the operation has yet to be completed), fulfilled 
(where the operation has completed successfully), and rejected (where the 
operation has completed unsuccessfully). An asynchronous function can return 
this type of Promise object instead of taking a callback parameter, enabling easier 
handoffs of information with other asynchronous functions. 

Pending 

Fulfilled 

Rejected 

fulfill 

reject 
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2.4.1.3 Managing Module Dependencies: CommonJS and RequireJS 

Modularity is critical in software design, but it is not built into the core JavaScript 

language. Currently there are two main flavors of modularization for JavaScript: 

CommonJS and RequireJS. CommonJS is the standard for Node.js development, but it is 

not well suited for the browser environment [22]. In the CommonJS style, every file is given 

a module.exports object to fill with that module’s contents; the exports object can be a 

function, a value, or a plain JavaScript object containing a plethora of other functions, 

values, and objects. When you require another module with mod	   =	  

require(‘otherModule’) you get back its module.exports object. This model is simple and 

easy to use on the server-side, and though it can be used on the client-side, there is a better 

option. 

Though browsers themselves provide no way to manage JavaScript module 

dependencies on the client side, RequireJS is optimized for exactly this [23]. In the earlier 

days of web development, script dependencies were managed by just loading scripts in a 

particular order, which is a fragile sort of modularity. RequireJS allows you to explicitly list 

module dependencies in a file with the “define” function, and then at runtime it 

asynchronously loads those dependencies for you. Besides the asynchronous module loading, 

lower latency can be achieved by using the r.js optimizer for packaging your main 

JavaScript file and all its dependencies into one minified file [24, 25]. Spoke uses CommonJS 

for the server side code and RequireJS for the client side code. 

 

2.4.2 Express.js, Ractive, Socket.io, and WebSockets 

Part of the success of Node.js and its revival of server-side JavaScript can be attributed to 

its large and active ecosystem, which allows anyone to develop and publish a Node.js 
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module through NPM, Node’s package manager [26]. Express.js and Socket.io are two high-

quality projects born out of this open ecosystem that are geared towards building great 

websites.  

Express.js is a Node.js web application framework with support for routing, 

middleware, RESTful APIs, and template engines [27]. It is a core component of the now 

popular MEAN stack for web development, which includes MongoDB, Express.js, 

Angular.js and Node.js, but you can use it just as effectively with other database and 

templating solutions. Express supports a vast array of templating solutions, and it can be 

hard to find the right one to use, balancing the features you need with ease of use and 

current maintenance of the project. For my web applications, I chose to use Ractive, a 

Mustache-based templating engine featuring a simple but powerful templating syntax, two-

way data binding, and template partials [28]. 

Socket.io is a JavaScript library for building real-time web applications with event-

based bidirectional communication between the client and server [29]. Traditionally the 

client initiates communication with the server through a single request, and receives a single 

response; but the bidirectional model means either side can initiate communication, so the 

server can push data updates to the client when they are available instead of the client 

asking for updates periodically. WebSockets [30] provide the underpinnings for Socket.io, 

enabling a persistent TCP connection to the server for the bidirectional communication, but 

Socket.io can also fallback to AJAX longpolling if a WebSocket connection cannot be 

established. Socket.io provides the best abstraction around the communication layer, and 

with support for binary streaming added in version 1.0 in 2014, it is a great solution for 

audio recording. The client-side and server-side components of the Spoke framework sit on 

top of the corresponding client-side and server-side components of Socket.io.  
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2.4.3 Web Audio and Web Speech APIs 

 

 

With the new Web APIs for audio and speech, JavaScript in the browser is powerfully 

positioned for audio processing and speech recognition. The Web Speech API includes the 

SpeechRecognition and SpeechSynthesis objects [9], which provide speech recognition and 

speech synthesis, respectively, as a service (only in Chrome). This is great for black-box 

recognition, but we need something else in order to use our own speech recognition tools.  

Figure 2-2: AudioNodes (from Mozilla Developer Network): A diagram 
depicting the layout of AudioNodes within an AudioContext as part of the Web 
Audio APIs [31].  
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Enter the Web Audio API, a versatile interface for controlling audio in the browser 

[14]. Through this API, developers can generate audio, access the user’s audio stream (with 

permission), and perform built-in analysis or custom processing of the audio stream. The 

main constructs are the AudioContext and the AudioNode. Within an AudioContext, many 

AudioNodes performing different functions can be linked together in a processing graph. For 

example, hooking an AudioBufferSourceNode into an AnalyserNode will perform a 

configurable FFT on the audio stream from the source node, which can then be used to 

produce visualizations of the audio’s frequency spectrum or volume level. Linking an 

AudioBufferSourceNode to a ScriptProcessorNode allows you to define your own custom 

audio processing function, which could transform the raw audio in some way (changing the 

encoding format or downsampling) or send the audio data over to a backend server. The 

Web Audio API underpins the client-side recording functionality of Spoke. 
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Chapter 3 

System Components and Design 

 
Spoke is a framework for building real-time, interactive speech applications on the web 

backed by speech technologies built in the SLS group. To simplify development of these 

applications, Spoke has a piece for each side of the web application, the client-side and the 

server-side. Spoke also enables the development of backend processing scripts in JavaScript 

that could batch process audio offline. In this chapter I further describe Spoke’s design, 

functionality, and implementation, and sox-audio, an adjacent project that further bolsters 

application development in the lab. 

 

 



	  
	  

	  

35	  

3.1 System Overview 

 

 

The two pieces of Spoke, the client-side framework and the server-side library, should be 

used in conjunction to build real-time, interactive speech applications demonstrating our 

research. The Spoke client-side framework provides tools for building the front-end of 

Spoke Client-Side Modules 

Features 

Microphone Volume Meter 

Recorder 

Player 

Synthesizer 

Recognizer 

Helpers 

Cross Browser Audio 

Shared Audio 

Shared Socket 

Utils 

Utilities 

Recorder 

Player 

Sox Command 

Utils 

Speech Technologies 

Recognizer 

Alignment 

Mispro 

Spoke Server-Side Modules 

Web Audio 

API 

Web Speech 

API 

Figure 3-1: Spoke Module Overview: Spoke is split into two main 
components – a client-side framework and a server-side library. The client-side 
framework includes feature and helper modules to enable the creation of 
interactive UI elements (e.g. play and record buttons, volume meters, front-end 
connections for recognition and recording). The server-side library includes 
modules to help with things such as recognition, alignment, recording, and more. 
These server-side modules can be used as part of a web server, or in batch 
processing scripts. 
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speech applications and communicating with the server, including recording audio to the 

server, playing audio, and visualizing volume level. The server-side of Spoke provides a 

library that integrates some speech technologies built in the lab, such as recognition and 

mispronunciation detection, and a utility belt of audio tools such as recording, transcoding, 

and playback.  

The implementations of these components follow the same high-level design 

principles and paradigms for flexibility, abstraction, and consistency. First and foremost is 

modularity of the components, breaking each component into logically distinct modules, and 

breaking down the actions of each module into logically distinct functions for maximum 

flexibility. For further flexibility, every module object should accept an (optional) options 

parameter, allowing customization to a large extent. One salient example of both of these 

principles is the volume meter module: you can customize the minimum height of the 

volume meter with ‘options’, and you can customize the translation of volume level into 

meter height by overwriting one method of a VolumeMeter instance. Finally, the design 

principally follows prototype-based object-oriented programming, so each module is 

constructed as an object with properties and methods; this allows stateful variables to be 

encapsulated in the object and accessed by all its methods, without adding excessive 

parameters to function signatures that the developer then becomes responsible for 

managing. 

 

 

3.2 Spoke Client-Side Framework 

The Spoke client-side framework, spoke-client, is composed of a CSS library, a few low-level 

helper modules and many high-level feature modules (see Figure 3-1). The high-level 

modules employ prototype-based object-oriented programming and the publish-subscribe 
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pattern to create modules with encapsulated state that operate rather autonomously after 

setup and then notify the developer about key events. This event-driven model is 

implemented using jQuery for event emitting, and events follow the standard namespacing 

convention eventName.package.module (e.g. start.spoke.recorder). Some of these modules 

are driven by user interaction, so they accept an HTML element in the constructor and 

register themselves as click listeners on that element. All of them accept an options object 

for customizing the configuration. Through this framework the following functionality is 

enabled: 

• Recording audio to the server for processing with Spoke’s integrated speech 

technologies (technologies built in the lab and incorporated into the Spoke library)  

• Speech recognition and speech synthesis through the Web Speech APIs 

• Playing audio from the server 

• Visualizing audio information, such as volume level 

 

In this section I will explain some of the key client-side modules in more detail. 

 

3.2.1 CrossBrowserAudio 

The low-level helper modules in spoke-client help simplify and decouple the feature 

modules. In particular, the crossBrowserAudio module resolves two key issues: vendor 

prefixing and audio sharing. 

Many of the feature modules depend on vendor-prefixed APIs, such as 

navigator.getUserMedia and window.AudioContext. These APIs can alternatively be 

provided under prefixed names such as webkitGetUserMedia or mozGetUserMedia in a 

browser-dependent way. The crossBrowserAudio module uses a library called Modernizr to 

ensure these APIs will be available under their non-prefixed names.  
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1	   window.AudioContext	  =	  Modernizr.prefixed('AudioContext',	  window);	  

2	   navigator.getUserMedia	  =	  Modernizr.prefixed('getUserMedia',	  navigator);	  

 

The main area that needed decoupling was the shared dependence of the VolumeMeter and 

Recorder on the user’s audio stream. Accessing the user’s audio stream through 

getUserMedia is an asynchronous task that requires the user’s explicit permission, so instead 

of returning the user’s audio stream, getUserMedia accepts a success callback and an error 

callback to invoke in the event of success or failure respectively. Typically, any action 

involving the user’s media stream happens inside the success callback function provided at 

the time of the request.  

In Spoke, there are multiple modules that need to take action on the user’s media 

stream once it is available, and those modules live in separate files and ought to be 

completely independent from one another. Instead of each module making its own request 

for the user’s audio stream (which requires permission to be granted again unless the 

connection is secure), we can make one request in a helper module and then multiplex 

access to the resulting stream when it is available using Promises. CrossBrowserAudio does 

this by defining promiseUserMedia, a promisified version of getUserMedia that returns a 

Promise that will be fulfilled with the user’s media stream if permission is granted, or will 

be rejected if permission is denied.  

 

 

Figure 3-2: Resolving Vendor-Prefixed APIs with Modernizr: 
CrossBrowserAudio uses Modernizr to find browser APIs under their vendor-
prefixed names and make them available under a non-prefixed name to simplify 
cross-browser development. 
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3.2.2 Microphone Volume Meter 

The microphone module includes a VolumeMeter object for computing and visually 

representing the volume level of the user’s audio. This module is intended to provide 

various such objects for processing and/or visualizing audio from the user’s microphone, for 

example it could be extended to include a live spectrogram analysis.  

Figure 3-3: Sample Microphone Volume Meters: Top: The VolumeMeter 
enables volume visualizations on a height-adjustable HTML element. Typically a 
microphone icon is used. Bottom: This frequency spectrum visualization illustrates 
how the VolumeMeter extracts the frequency bins corresponding to the dominant 
human speech range (from 300 to 3300 Hz, i.e. telephone bandwidth, in dark blue) 
when computing the volume level. Frequencies above 16 kHz rarely appear in the 
FFT. 

human range 16000 Hz mark 
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The VolumeMeter employs the Web Audio API to create an audio processing graph of 

AudioNodes (Figure 3-4). The first node in the processing graph is a 

MediaStreamAudioSourceNode created from the user’s local media stream, which is fulfilled 

by promiseUserMedia. The source node connects to an AnalyserNode, which performs an 

FFT of a given size on a small buffer of audio data from the source node. The result of this 

FFT is an array of frequency data in which each bin (array index) corresponds to a 

moderate range of frequencies and the bin’s value corresponds to the intensity of the 

frequencies in the bin. 

Figure 3-4: Microphone Volume Meter Design: The VolumeMeter creates 
an audio processing graph of AudioNodes to compute the volume level. The 
AnalyserNode performs an FFT on the user’s audio stream, and the 
ScriptProcessorNode extracts the frequency data corresponding to the dominant 
frequency range of human speech, 300 to 3300 Hz. The final volume level is 
computed by averaging over this range and then normalizing. 

function createSourceNode{ 

   wait for promiseUserMedia; 

   once available, make 

      source node from 

      localMediaStream; 

} 

MediaStreamAudioSourceNode 

Act as audio source for following 
nodes 

AnalyzerNode 

Run FFT to convert audio to 
frequency domain 

ScriptProcessorNode 

Run custom code for Spoke 
Volume Meter 

human range human range 

avg = 0.8!

function onAudioProcess{ 

   get frequency data; 

   extract human range; 

   take average of range; 

   normalize volume level; 

} Microphone Volume Meter 
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In order to process the FFT frequency data, I connect the AnalyserNode to a 

ScriptProcessorNode, which calls a custom processing function with a buffer of audio data. 

This processing step computes the current volume level by averaging over the slice of the 

frequency array corresponding to the dominant frequencies of human speech (300 to 3300 

Hz), and then normalizing this average value to get a volume level between 0 and 1. 

 

Usage: The VolumeMeter component is extremely modular—the developer can configure 

every step in the audio processing pipeline and even swap out whole functions for more 

customization. For example, the VolumeMeter is initialized with an HTML element to be 

height-adjusted as the volume changes (Figure 3-5), and this UI update is factored out into 

the adjustVolumeMeter(volumeLevel) method. The developer can overwrite this method on 

their volume meter instance to change how the computed volume level translates into a UI 

update, and in fact this customization is done frequently in the demos built with a 

templating engine. For other plain actions the developer wishes to take when the volume 

level is computed, she can register a listener on the volumeMeter instance for the 

volumeLevel.spoke.volumeMeter event. 

	  

1	   var	  options	  =	  {minMeterHeight:	  15,	  analyserFftSize:	  128};	  

2	   var	  volumeMeter	  =	  new	  mic.VolumeMeter(element,	  options);	  

 

 

Figure 3-5: Microphone Volume Meter Usage: VolumeMeter instances can 
be initialized with an HTML element and an options object to configure certain 
properties of the AnalyserNode’s FFT, the ScriptProcessorNode, and the meter 
element. 
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3.2.3 Recorder 

	  

1	   var	  rec	  =	  new	  Recorder(element,	  options);	  

	  

The Recorder module hooks audio recording onto an element of the webpage and records 

audio to the server. In the constructor, the recorder accepts an HTML element and then 

registers itself as a click listener on that element, such that the recorder is toggled on and 

off with each click (Figure 3-6). When toggled on, the recorder begins streaming raw audio 

data to the server over socket.io and emits a ‘start’ event. Similarly, the recorder emits a 

‘stop’ event when the user ends recording and a ‘result’ event when the audio stream is 

successfully saved on the server.  

Similar to the VolumeMeter, the Recorder creates an audio processing graph with a 

few AudioNodes (Figure 3-7). The processing graph begins with a 

MediaStreamAudioSourceNode created from the user’s local media stream, which is fulfilled 

by promiseUserMedia. This audio source feeds directly into a custom ScriptProcessorNode 

where the raw audio data is processed one buffer at a time. This processing step is two-fold, 

first transforming the audio samples and then writing a buffer of transformed samples to 

the socket stream. 

 

Figure 3-6: Client-Side Recorder Usage: The Recorder is initialized with an 
HTML element that will toggle recording and an optional options object where the 
developer can specify the buffer length for the Recorder’s ScriptProcessorNode 
and the metadata to be sent to the server along with the stream of audio. 
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1. Audio Sample Transform: The browser provides the user’s audio as a buffer of 

raw PCM 32-bit floating-point samples. The buffer size is configurable but defaults 

to 2048 bytes, meaning it holds 512 Float32 samples. Each of these samples is 

converted to a 16-bit signed integer, resulting in a 1024 byte buffer. Given the 

standard browser audio sample rate of 44.1kHz and the recorder’s default buffer size, 

one buffer contains approximately 12 milliseconds of audio. This custom processing 

function is called every time the buffer fills with new audio data, which translates to 

approximately 86 times a second. 

 

2. Writing to the Stream: Audio streaming from the recorder is underpinned by 

socket.io-stream, a wrapper for socket.io that allows you to transfer large amounts of 

binary data from the client to the server or vice versa with the Node.js Stream API. 

Right before recording starts, the recorder creates a new stream with socket.io-

stream and emits an event on the socket with that stream and some metadata to the 

server. Then in the processor function, after the audio samples are converted to 16-

bit integers, the samples need to be written to the stream; however, the audio buffer 

cannot be written directly to the stream. The stream, an implementation of the 

Node.js Stream API, requires a Node-style Buffer object as well, which is not 

interchangeable with the browser’s ArrayBuffer object. So a Node-style Buffer is 

created from the data in the browser-style audio buffer, and then this Node buffer is 

directly written to the socket stream. 

 

Each buffer of audio data is transmitted over socket individually, but the socket.io-stream 

wrapper implements the streaming interface around these transmissions. When socket.io is 

able to establish a WebSocket connection to the server, we are guaranteed the in-order 

delivery of each audio buffer transmitted. 
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Usage: To integrate a recorder instance with the user interface and other JavaScript 

components, the developer subscribes listeners to a few recorder events: ‘start’, ‘stop’, and 

‘result’. The two most likely values for configuration are the buffer length and the audio 

metadata.  The buffer length refers to the size of the buffer (in bytes) that is passed into 

the ScriptProcessorNode for processing. The shorter the buffer, the lower the latency 

between some audio being produced and the recorder processing that audio; however, longer 

buffers may help reduce audio breakup and glitches if the processing behaves differently at 

Figure 3-7: Client-Side Recorder Design: The Recorder creates an audio 
processing graph consisting of a MediaStreamAudioSourceNode connected to a 
ScriptProcessorNode. The audio source for the MediaStreamAudioSourceNode is 
supplied by promiseUserMedia. The ScriptProcessorNode operates on a buffer of 
audio data, converting it to the right encoding and the right type of buffer before 
writing it to the socket stream. 
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the boundaries of the audio. The audio metadata is a preset object sent along with the 

recorder’s audio stream to the server every time a recording is made through this recorder 

instance. This is primarily useful for when you have multiple recorder instances on the page 

with different associated data that the server needs to know, such as prompted text. 

 

3.2.4 Player 
	  

1	   var	  player	  =	  spoke.Player(audioStream);	  

	  

The Player module enables playing an audio stream (such as one from the server) over the 

user’s speakers with the Web Audio APIs. Unlike the previously discussed feature modules, 

the Player does not hook onto an HTML element but rather an audio stream. The 

developer writes her own playback request to emit over the Socket.io socket on a particular 

user interaction, and then adds a socket listener for the server’s audio stream response. In 

this listener, the developer can create a new Player instance to play the audio stream 

returned by the server and register listeners for when the player is ‘ready’ to begin playing 

and when it is ‘done’ playing. 

 

Figure 3-8: Client-Side Player Usage: The Player is initialized with an 
audio stream and will automatically play the audio as soon as it is ready. An 
options object may be passed in during initialization to prevent this default 
behavior. 
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Over the stream, audio data arrives a buffer at a time. Internally the Player listens to the 

provided audio stream, consolidating all these audio data buffers into one buffer for 

playback. The main buffer construct on the browser is the ArrayBuffer, a fixed-length raw 

binary data buffer. Working with these buffers can be cumbersome because The 

ArrayBuffer’s raw contents cannot be directly manipulated and its size in bytes is fixed at 

initialization, which makes working with it cumbersome: 

Figure 3-9: Client-Side Player Design: The Player routes audio from an 
AudioBufferSourceNode to an AudioDestinationNode that plays the audio over the 
user’s speakers. The Player accumulates the audio data from the stream and 
consolidates it into one ArrayBuffer. Using the decodeAudioData API, it 
transforms the ArrayBuffer into an AudioBuffer to provide to the source node. 

 

function prepAudioData{ 

   decode audio data from 
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   store in source node; 

} 
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• To manipulate the data in an ArrayBuffer, you have to create a TypedArray around 

it, which provides an interpretation of the raw binary data as data of a certain type, 

e.g. Uint8Array is a TypedArray that provides a view of the data as unsigned 8-bit 

integers.  

• To concatenate two buffers, you have to create a new larger buffer and copy over the 

data from each smaller buffer.  

 

Nevertheless, the player needs to merge all the small buffers of audio data from the stream 

into one large buffer for playback. As the player listens to the audio stream, it gathers all 

the audio data buffers into an array of buffers. When the stream ends, it counts the total 

number of bytes of audio data from all the small buffers and makes a new empty 

ArrayBuffer of that size, then copies a TypedArray of each small buffer into the appropriate 

section of a TypedArray of the large buffer. 

Once the audio data is consolidated, the player emits the ‘ready’ event and will 

proceed to play the audio using the Web Audio API. The ArrayBuffer of audio data first 

needs to be converted to an AudioBuffer that an AudioBufferSourceNode knows how to 

play. This is done asynchronously with the API’s decodeAudioData method, and then the 

player makes a new AudioBufferSourceNode for the resulting AudioBuffer. This source node 

is connected directly to an AudioDestinationNode representing the user’s speakers. By 

default the Player will automatically play the audio once it is ready, but it can be 

configured to wait and let the developer manually trigger playing later. The developer can 

also listen for the ‘done’ event to make UI updates when playback has finished. 

 

3.2.5 Recognizer and Synthesizer 

The Recognizer and Synthesizer modules are wrappers around the two core pieces of the 

Web Speech API, the SpeechRecognition and SpeechSynthesis interfaces, which provide 
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speech recognition and speech synthesis, respectively, as a service. Though most browsers do 

not support the Web Speech API because it is still experimental, Chrome provides full 

support and support in Firefox is pending. The Spoke wrapper modules abstract some of the 

common patterns for working with these interfaces to simplify development. At the same 

time, integrating these interfaces into Spoke provides greater visibility for them in the lab 

and an easier starting point for most developers.  

The Recognizer module simplifies both hooking recognition toggling onto an element 

of the page and taking action on the recognizer’s state changes and final results1. In the 

constructor, the Recognizer sets a click listener on the HTML element that was passed in 

such that recognition is toggled on and off with each click. When toggled, the Recognizer 

either emits a ‘start’ or ‘stop’ event that the developer can listen for to make appropriate 

UI changes on the page. Then when the underlying SpeechRecognition object has new 

speech recognition results, it emits a SpeechRecognitionEvent object that contains an array 

of SpeechRecognitionResults, each of which contains an array of 

SpeechRecognitionAlternatives specifying one possible transcript and its confidence score. 

The Recognizer emits a ‘result’ event passing through this deep SpeechRecognitionEvent 

object, but as a convenience for developers it also searches through the event for the best 

transcript of the most recent final result and emits that with a ‘finalResult’ event. 

The SpeechSynthesis interface is far less complex and thus the Synthesizer module 

provides only a thin wrapper for it.  A Synthesizer instance is created with a string of text 

to translate to speech and will automatically prepare and play the synthesized speech if 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

	  

1	  Note that the Recognizer module can also be used alongside the Recorder module, hooked 
onto the same button, and listening to the same audio. 
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autoPlay is set to true (the default). The ‘play’ method takes care of trying to play the 

utterance immediately, which involves cancelling any currently-playing utterances and 

clearing the utterance queue before queuing the current utterance and resuming the 

SpeechSynthesis’s playing. In addition to the standard ‘start’ and ‘end’ events, the 

Synthesizer also re-emits a ‘boundary’ event triggered when the currently playing utterance 

reaches a word or sentence boundary.  

 

3.2.6 CSS Library 

The spoke-client package also provides a CSS library for styles shared throughout the lab. 

This library is small to begin with, but with greater use of Spoke we can add more styles 

that will help standardize the look of websites and their components built by SLS. 

Currently the library includes some utility classes for text styling and classes for styling a 

microphone icon that is used in many sites around the lab. 

 

3.2.7 Package Distribution and Usage 

Spoke-client uses RequireJS to explicitly manage its module dependencies and 

asynchronously load them in the browser, and it uses the r.js optimizer to build and 

optimize itself for production. The r.js optimizer is a command line tool that allows you to 

get the best of both worlds out of RequireJS—source code divided into modules in separate 

files with managed dependencies for development, and then one minified self-contained file 

for production. It takes the name of the file to build and then follows its dependency chain, 

building a standalone output file that concatenates the original file and all its dependencies, 

and then optionally minifies it. Build options can be specified on the command line or in a 

simple JavaScript build file. Spoke-client does the latter, defining three builds, one for the 

minified CSS library spoke.min.css (1 kb), and one each for a development and production 
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version of the JavaScript modules, spoke.js (198 kb) and spoke.min.js (79 kb) respectively. 

The ultimate result is a modularized, production-ready file that can be required (using 

RequireJS) into other projects to provide all the functionality of spoke-client. 

 

 

3.3 Spoke Server-Side Library 

The Spoke server-side library provides modules of two types—audio utilities and speech 

technologies—geared towards building a speech processing backend for a webserver, but the 

library can also be used for offline scripting and batch processing (see Figure 3-1). As a 

library, not a framework, it is up to the developer to listen for client events and then decide 

which pieces of the library to use. The library’s utilities enable recording raw or wav audio, 

transcoding audio files or live audio streams, and streaming audio from a saved file. The 

library also provides standardized access to and usage of some speech technologies built in 

the lab, such as  

• domain-specific speech recognizers 

• forced alignment of an audio sample to expected text 

• mispronunciation detection on a set of utterances from the same speaker 

 

These integrated speech technologies support the key functionality we wish to demonstrate 

through sample web applications, and any technology that has a command line interface 

can also be integrated into Spoke, even a hardware recognizer. This makes the technology 

visible, accessible, and usable for website backends and offline JavaScript processing. For 

technologies with complex outputs, such as forced alignment, the technology module is 

paired with an output parser that transforms the output into a usable JavaScript object. 
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Each module employs prototype-based object-oriented programming to export one 

object providing a clean interface to a tool or technology. Under the hood, all of these 

modules operate by running a command in a new process, though the utility modules do 

this indirectly through the SoxCommand interface. In Node’s single-threaded model, 

asynchronously creating these new processes is essential, allowing the developer to spin up a 

long running process and then wait for a callback; Node provides a child_process module to 

accomplish exactly this.  Callbacks are the standard Node.js way, but they are not always 

the best way for handling asynchronous control flow when multiple asynchronous steps need 

to be chained together. In this case, the preferred option is that the command execution 

method returns a Promise instead of calling a callback, since Promises can easily be chained 

to create a sequential pipeline of asynchronous tasks2. Each module in the library supports 

both styles, callback-based and Promise-based, leaving it to the developer’s discretion for 

her particular case.  

 

3.3.1 Audio Utilities 

Spoke provides a utility-belt of audio tools that complement its speech technologies with 

support for recording audio streams to a file, creating audio streams from a file, and 

building arbitrarily complex SoX commands that will be run in a new process. This last 

piece is enabled by sox-audio, a Node.js package I built as part of this thesis but that, 

independent of Spoke, is useful for the community of Node.js developers, so it was released 

as a standalone package on NPM. The Recorder and Player modules then use sox-audio to 

do most of the heavy lifting. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

	  

2	  Not to be confused with a streaming pipeline, which is also asynchronous but does not 
wait for one step to finish before the next one begins.	  
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3.3.1.1 Recorder 

The Recorder module records audio from a raw input stream to a file, either in the original 

raw format or in an optionally downsampled wav format. This feature of Spoke alone is 

greatly useful, enabling live audio recording on the web for the collection of audio samples 

for training and testing of new speech technologies. 

At initialization, the Recorder can be configured with information about the raw 

input streams it will be handling, such as their bit depth and sample rate, and with the 

desired sample rate for converted wav files. The crucial method is convertAndSave, which 

accepts a raw audio file or raw audio stream and a wav file or stream for outputting the 

transcoded results; transcoding is carried out with a SoxCommand built from the method’s 

parameters for input and output streams or files and the Recorder configuration for sample 

rates, etc.  For offline processing, this can be used to transcode already saved raw files to 

wav files. More interestingly, as part of a web backend, this can be used to perform 

streaming transcoding of a raw stream to a wav stream, which could start being processed 

before all the audio has been received if a speech technology accepted streaming audio. As it 

is, all of them currently accept only saved wav files, but this should change over the next 

year. 

 

3.3.1.2 Player 

Turning a saved file into a stream is simple in Node.js, but turning only part of an audio 

file into a stream or concatenating multiple audio files, or parts of them, into one stream is 

not. The Player module enables all of the above, using SoxCommands for audio trimming 

and concatenation. Given a wav input (file or stream) and the start sample and end sample 

of the desired section, the Player builds a SoxCommand that cuts the audio at the specified 

samples and pipes out only the desired section to a provided stream. Similarly, a list of wav 
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files can be trimmed and concatenated such that the resulting audio stream starts at the 

specified start sample of the first file and ends at the specified end sample of the last file in 

the list, with intervening files included in their entirety. 

 

3.3.2 Integrated Speech Technologies 

A core subset of the lab’s speech technologies have been integrated into Spoke allowing for 

their use in Node.js server backends or processing scripts. Each technology has its own 

module providing a clean JavaScript interface to its typical command line usage. Each 

module has a default configuration for calling a certain set of scripts to carry out the 

execution steps of the technology, but alternative scripts to call for these steps can be 

provided in the ‘options’ object; this means another implementation of the same technology 

can be swapped in3 at run time and used through the same JavaScript interface. 

Though these technologies can be used through Spoke for offline processing, Spoke is 

first and foremost designed to enable interactive speech applications on top of the lab’s 

technologies—thus the functionality of each module is broken into small logical steps as 

much as possible to allow for the shortest delay before responding to the user. Technologies 

primed for integration into Spoke should mirror this pattern, breaking the processing into 

separate logical steps that will be meaningful to other developers or the end user. A great 

example of this is in how the mispronunciation detection technology was designed: originally 

it consisted of one long-running process called after all utterances had been collected, but it 

was split into a pre-processing step to be called on each utterance after it is saved and a 

shortened mispronunciation detection step after all utterances are collected. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

	  

3 As long as it adheres to the same script interface for inputs and outputs, including 
ordering of arguments for input and location and formatting of output. 
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1	   var	  nutritionOptions	  =	  {	  

2	   	  	  	  	  	  recognitionScript:	  ‘my/local/path/nutrecognizer.sh’,	  

3	   };	  

4	   	  

5	   var	  nutritionRecognizer	  =	  new	  Spoke.Recognizer(nutritionOptions);	  

 

3.3.2.1 Recognizer 

The Recognizer enables JavaScript integration of any speech recognizer built in the lab with 

a command-line interface taking a single wav filename and outputting the recognized text 

on stdout. A new Recognizer instance will by default use a Kaldi recognizer trained on 

nutrition logs (easy to change for Spoke, but that’s what we’ve been using mainly), but it 

can be configured with a new path to any recognition script with ‘recognitionScript’ in 

‘options’ (Figure 3-10). Recognition is performed asynchronously on a wav file with either 

the ‘recognize’ or ‘recognizeAsync’ method, depending on whether the developer wants to 

use callbacks or Promises; either way, the recognition script is executed with Node’s 

child_process module and the script’s output on stdout will be provided to the developer 

asynchronously (i.e. when available). 

 

3.3.2.2 Forced Alignment 

Figure 3-10: Recognizer Configuration: Spoke’s Recognizer interface can be 
used to interact with any recognizer that implements a basic command line 
interface that accepts a wav filename and outputs the recognition results on 
stdout. 
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The Alignment module provides a simplified JavaScript interface for performing forced 

alignment with Kaldi. The developer must provide an outputDir at initialization, an 

existing directory where the forced alignment script can put output and associated 

processing files, and then call the initDir method on the Alignment instance before any 

forced alignments can be performed. The ‘forcedAlignment’ method requires a wav file and 

a txt file to which to align the speech and performs forced alignment on them, 

asynchronously returning the timing results txt file; behind the scenes, the Alignment 

module handles also passing the outputDir to the alignment script, simplifying the interface 

presented to the developer.  

 

1	   [start	  sample]	  [end	  sample]	  [phoneme]	  [word]	  [wordboundary]	  

2	   24960	  	   	  	  	  26080	  	   	  	  	  	  	  w	  	  	  	  	  	  	  	  	  warm	  	  	  I	  

3	   26080	  	   	  	  	  27520	   	  	  	  	  	  aa	  

4	   27520	  	   	  	  	  28000	  	   	  	  	  	  	  r	  

5	   28000	  	   	  	  	  28960	  	   	  	  	  	  	  m	  	  	  	  	  	  	  	  	  warm	  	  	  E	  

 

The timing file has a simple column format specifying on each row a phoneme, its start 

sample and its end sample, with two optional columns for the word the phoneme is from 

and whether the phoneme is at the start or end of this word. This file is difficult to use 

directly, so the Alignment has an associated parser that reads in this file with phoneme-

Figure 3-11: Example Output from Forced Alignment: Running forced 
alignment on a wav and txt file results in a timing file with a simple column 
format as shown above. This output contains the timing data for each phoneme of 
each word in the txt file, but word-level timing can be extracted by taking the start 
sample from the first phoneme and the end sample from its last phoneme.  
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level timing information and extracts word-level timing information. The method 

getAlignmentResults handles parsing a timing file and asynchronously returns a list of 

objects representing words in the alignment with their start samples, end samples, and a list 

of their phonemes. Again, each of these methods can be chained with Promises, leading to 

easily readable code. 

 

1	   alignment.forcedAlignmentAsync(wavFilename,	  txtFilename)	  

2	   	  	  	  	  	  .then(function	  (timingFilename)	  {	  

3	   	  	  	  	  	  	  	  	  	  	  return	  alignment.getAlignmentResultsAsync(timingFilename);	  

4	   	  	  	  	  	  });	  

 

 

3.3.2.3 Mispronunciation Detection 

The Mispro module wraps the mispronunciation detection technology built in our lab by 

Ann Lee using the Kaldi toolkit. This technology processes a set of utterances from the 

same speaker over a set of known text and determines the n most likely mispronunciation 

patterns in the collected speech. An integral part of this system is performing forced 

alignment on each (utterance, text) pair in the set, so each Mispro instance takes in an 

outputDir then creates its own Alignment instance and exposes its methods. Similar to the 

Figure 3-12: Forced Alignment Result Chaining: The output of 
forcedAlignmentAsync is a Promise that will be fulfilled with the name of the 
timing file. This Promise can be awaited with ‘then’ to perform some action on its 
completion, namely to parse the timing file with getAlignmentResultsAsync, which 
also returns a Promise that can be awaited and chained in a similar manner.  
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Alignment scripts, the Mispro scripts also require this outputDir, which the Mispro module 

handles passing to the script calls for the developer.  

 The mispronunciation detection system is broken into a few steps to enable more 

interactivity and shorter delays while processing. Each (utterance, text) pair undergoes a 

forced alignment step and then a mispronunciation preprocessing step. These two steps are 

separate because the forced alignment output may be relevant for enabling certain user 

interactions after recording (such as playing back a certain word), whereas the 

preprocessing step is purely for the benefit of the system to speed up the final computation 

over the whole set of utterances. After all utterances from the same speaker have been 

processed in this way, the misproDetection method will perform the final step, finding 

patterns of mispronunciation, and outputting the identified mispronunciations to stdout. 

The stdout output of the mispronunciation system is not directly useable, so the 

Mispro module has an associated parser that transforms the output into a suitable 

JavaScript object. The system iteratively identifies mispronunciation patterns in decreasing 

order of severity (or probability), and outputs for each pattern its triphone rule and the 

words in the text set matching the pattern. The parser then constructs an ordered list of 

objects representing the mispronounced words, with the word itself, the expected and actual 

phoneme contributing to the mispronunciation, and the location of the phoneme in the 

word. 

 

1	   mispro.forcedAlignmentAsync(wavFilename,	  txtFilename)	  

2	   	  	  	  	  	  .then(function	  (timingFilename)	  {	  

3	   	  	  	  	  	  	  	  	  	  	  return	  mispro.getAlignmentResultsAsync(timingFilename);	  

4	   	  	  	  	  	  })	  
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5	   	  	  	  	  	  .then(function	  ()	  {	  

6	   	  	  	  	  	  	  	  	  	  	  return	  mispro.preprocessAsync(wavFilename);	  

7	   	  	  	  	  	  )	  

8	   	  	  	  	  	  .then(function	  ()	  {	  

9	   	  	  	  	  	  	  	  	  	  	  var	  misproOutput	  =	  mispro.misproDetectionStream();	  

10	   	  	  	  	  	  	  	  	  	  	  var	  misproResultsStream	  =	  	  

11	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  mispro.getMisproResultsStream(misproOutput);	  

12	   	  	  	  	  	  });	  

 

 

 

3.4 SoX Audio Processing Module 

SoX is a command line utility for audio manipulation that can convert between many audio 

formats and apply various effects to audio files [18]. It supports streaming audio in and out 

of processing commands and the use of subcommands to provide input for later routines 

through a set of special filenames.  This opens the door to interesting and complex 

commands that could, for example, trim two files and concatenate them all in one line 

without creating any intermediate files (Figure 3-14). 

Figure 3-13: Mispronunciation Processing Chain: Using Promises, the 
processing steps of mispronunciation detection can be chained for sequential 
asynchronous execution. First we execute forced alignment, then parse the timing 
file, then preprocess the utterance, and finally perform mispronunciation 
detection. The last step involves a streaming pipeline between the output of 
mispronunciation detection and a parser that turns results into JavaScript objects. 
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1	  

sox	  “|sox	  utterance_0.wav	  -‐t	  wav	  -‐p	  trim	  =4.03”	  utterance_1.wav	  “|sox	  	  

	  	  	  	  	  utterance_2.wav	  -‐t	  wav	  -‐p	  trim	  0	  =2.54”	  trim_and_concat.wav	  -‐-‐combine	  	  

	  	  	  	  	  concatenate	  

	  

Initially we were using SoX simply for downsampling and transcoding the raw PCM 44.1 

kHz audio data from client browsers to 16 kHz wav files compatible with our recognizers. 

For this basic usage of SoX’s command line interface, creating and executing the command 

by hand using Node’s child_process module was rather simple: first save the raw audio to a 

file, then compose the String command to perform transcoding and execute it (Figure 3-15). 

However, taking this simple processing step to the next level of streaming transcoding was 

vastly more difficult and we realized the need to abstract out the creation and management 

of the commands. We searched for a Node module to accomplish this, but the ones we 

found provided access to only a sliver of SoX’s capabilities. Seeing how useful it could be to 

enable all of SoX’s capabilities through a JavaScript interface, I chose to take this 

abstraction beyond just transcoding commands and make it for any SoX command in 

general. 

 

1	   var	  convertFileSox	  =	  function	  (rawFileName,	  saveToFileName)	  {	  

Figure 3-14: Example Complex SoX Command: Here we use the special 
filename "|program [options] ...” to create SoX subcommands that trim the start 
or end off of a single file. Inside this subcommand, the –p flag indicates that the 
SoX command should be used as in input pipe to another SoX command. The 
overall SoX command has 3 inputs that it concatenates into a single output file: 
utterance_0.wav trimmed to start at 4.03 seconds, utterance_1.wav untrimmed, 
and utterance_2.wav trimmed to end at 2.54 seconds.  
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2	  
	  	  	  	  	  var	  COMMAND_FORMAT	  =	  'sox	  -‐r	  44100	  -‐e	  signed	  -‐b	  16	  -‐c	  1	  %s	  	  

	  	  	  	  	  	  	  	  	  	  -‐r	  16k	  %s';	  

3	  
	  	  	  	  	  var	  commandLine	  =	  util.format(COMMAND_FORMAT,	  rawFileName,	  	  

	  	  	  	  	  	  	  	  	  	  saveToFileName);	  

4	   	  	  	  	  	  var	  command	  =	  child_process.exec(commandLine);	  

5	   };	  	  

	  

The sox-audio module (currently open-sourced and available for public consumption on 

NPM) provides a complete Node.js interface to the SoX audio utilities and many usage 

examples. The main construct is a SoxCommand on which you progressively specify the 

command’s inputs, outputs, effects, and associated options for each to build arbitrarily 

complex SoX commands. This interface was heavily inspired by fluent-ffmpeg, a fluent 

Node.js interface for Ffmpeg that operates in a very similar manner [33]. The SoxCommand 

accepts any number of inputs and one or more outputs, where an input may be a filename, 

a ReadableStream, or another SoxCommand, and an output may be a filename, a 

WritableStream. If another SoxCommand is provided as input, it is treated as a 

subcommand such that its output is piped into the main SoxCommand as input. The input 

and output options are very similar, allowing you to specify the sample rate, encoding, file 

type, etc. for each input and output. With SoxCommands transcoding a raw audio stream 

to a wav audio stream is easily accomplished just by specifying a few input options and 

output options (Figure 3-16).  Even the complex command from the beginning of this 

section is easy to construct using a couple SoxCommands with the ‘trim’ effect as input to 

the main SoxCommand and applying the ‘concat’ effect (Figure 3-17). 

Figure 3-15: Initial Use of SoX Transcoding in JavaScript: Our early 
usage of SoX just created a String command to perform transcoding of a raw 
audio file to a wav audio file and executed it with Node’s child_process module. 
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1	   var	  command	  =	  SoxCommand();	  	  

2	   	  

3	   command.input(inputStream)	  	  	  	  

4	   	  	  	  	  	  .inputSampleRate(44100)	  	  	  	  

5	   	  	  	  	  	  .inputEncoding('signed')	  	  	  	  

6	   	  	  	  	  	  .inputBits(16)	  	  	  	  

7	   	  	  	  	  	  .inputChannels(1)	  	  	  	  

8	   	  	  	  	  	  .inputFileType('raw');	  

9	   	  

10	   command.output(outputStream)	  	  	  	  

11	   	  	  	  	  	  .outputSampleRate(1600)	  	  	  	  

12	   	  	  	  	  	  .outputEncoding('signed')	  	  	  	  

13	   	  	  	  	  	  .outputBits(16)	  	  	  	  

14	   	  	  	  	  	  .outputChannels(1)	  	  	  	  

15	   	  	  	  	  	  .outputFileType('wav');	  

16	   	  

17	   command.run();	  

 

 

Figure 3-16: Example SoxCommand for Streaming Transcoding: In this 
example a 44.1 kHz raw audio stream of signed 16-bit integer PCM data is 
converted on the fly to a 16 kHz wav audio stream. 
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1	   var	  command	  =	  SoxCommand();	  	  

2	   var	  trimFirstFileSubCommand	  =	  SoxCommand()	  	  	  	  	  	  

3	   	  	  	  	  	  .input('utterance_0.wav')	  	  	  	  	  	  

4	   	  	  	  	  	  .output('-‐p')	  	  	  	  	  	  

5	   	  	  	  	  	  .outputFileType('wav')	  	  	  	  	  	  

6	   	  	  	  	  	  .trim(“=4.03”);	  	  	  

7	   var	  trimLastFileSubCommand	  =	  SoxCommand()	  	  	  	  	  	  

8	   	  	  	  	  	  .input(‘utterance_2.wav')	  	  	  	  	  	  

9	   	  	  	  	  	  .output('-‐p')	  	  	  	  	  	  

10	   	  	  	  	  	  .outputFileType('wav')	  	  	  	  	  	  

11	   	  	  	  	  	  .trim(0,	  “=2.54”);	  	  	  

12	   command.inputSubCommand(trimFirstFileSubCommand)	  	  	  	  

13	   	  	  	  	  	  .input('utterance_1.wav');	  	  	  	  

14	   	  	  	  	  	  .inputSubCommand(trimLastFileSubCommand)	  	  	  	  	  	  

15	   	  	  	  	  	  .output(outputFileName)	  	  	  	  	  	  

16	   	  	  	  	  	  .concat();	  	  	  

17	   command.run();	  

 

Figure 3-17: Example SoxCommand using SoxCommands as Inputs to 
Trim and Concatenate Audio Files: This example leverages SoxCommands 
as inputs to other SoxCommands, allowing for the results of one to be piped as 
input into the other. The main SoxCommand concatenates three audio files, while 
the two sub commands handle trimming the first and last files respectively. 
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Chapter 4 

Sample Applications 
The central purpose of Spoke is to enable demonstrations of speech technologies built in the 

Spoken Language Systems group. These demonstrations take the form of web applications 

that may apply a mix of client-side and server-side tools to create interactive speech-

enabled websites. In this section we discuss three sample applications built with Spoke that 

together cover all of Spoke’s client-side and server-side modules. These applications 

illustrate the power and flexibility of Spoke’s modules as well as how easy they are to use 

for building front-end features and backend processing. Each of these applications is backed 

by an Express server using Socket.io and Spoke to handle processing the user’s audio data. 
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4.1 Online Speech-Enabled Nutrition Log 

The Spoken Language Systems group is currently developing a speech-enabled nutrition 

system whose main goal is to enable efficient dietary tracking through an interactive speech 

web interface. On the nutrition website the user describes a meal she had and her utterance 

is recognized with the Web Speech API; the nutrition system then uses language 

understanding techniques to determine the food items, their quantities, and their 

descriptions, and then fetches appropriate images and nutritional information for each food 

item to display to the user [32]. Ultimately we want to replace the Web Speech API 

recognizer on the client-side with our own server-side domain-specific recognizer trained on 

utterances from real user interactions with the system.  

To this end, we wanted to augment the nutrition website’s existing functionality 

with Spoke’s volume meter for visual feedback, its recording framework for collecting 

utterances and its recognizer library for using the custom speech recognizer. However, the 

nutrition system’s backend was already implemented in Java, so it was outside the Node.js 

ecosystem where the Spoke server-side library is available. Thus while incorporating Spoke’s 

client-side framework was straightforward, incorporating its server-side libraries required 

setting up a separate JavaScript server for handling recording and recognition.  

 

4.1.1 Nut 

For the initial development and testing of this server, I built a small standalone application 

called Nut that would carry out the same interactions with Spoke that we wanted to enable 

in the nutrition system. The Nut webpage prominently displays a microphone icon, which 

acts as both a volume meter and a record button, and the recognized text (Figure 4-1). On 

the client-side, Nut creates a new VolumeMeter instance and a new Recorder instance on 
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the HTML element for the microphone icon (Figure 4-2). When the icon is clicked, the 

spoke-client Recorder begins sending the user’s audio stream to the server over Socket.io 

with the event name ‘audioStream’.  The Nut server handles the ‘audioStream’ event by 

sending the audio stream to the Spoke Recorder (server-side) for streaming transcoding to a 

wav file. Once the wav file is saved, Nut uses the Spoke Recognizer to run the wav file 

through a Kaldi speech recognizer trained on nutrition logs, and then sends the recognition 

result back to the client over Socket.io.  

 

1	   var	  element	  =	  $('.volumeMeter');	  

2	   var	  volumeMeter	  =	  spoke.microphone.VolumeMeter(element);	  

3	   	  

4	   var	  recorder	  =	  spoke.Recorder(element);	  

5	   recorder.on('start.spoke.recorder',	  {},	  function	  (e)	  {	  

Figure 4-1: Nut Application: The small Nut webpage displays a volume meter 
on a microphone icon that doubles as the record button. When the icon is clicked, 
it changes from blue to red to indicate the recording status. At the end of 
recording, the audio is run through a recognizer on the server, and the client is 
notified of the recognition result, which it places below the icon. 
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6	   	  	  	  	  	  /*	  set	  icon	  color	  to	  red	  */	  

7	   });	  

8	   recorder.on('stop.spoke.recorder',	  {},	  function	  (e)	  {	  

9	   	  	  	  	  	  /*	  set	  icon	  color	  to	  blue	  */	  

10	   });	  

11	   	  

12	   recorder.socket.on('recognition	  results',	  function	  (text)	  {	  

13	   	  	  	  	  	  /*	  update	  UI	  with	  recognition	  results	  */	  

14	   });	  

 

 

1	   var	  recorder	  =	  new	  Spoke.Recorder();	  

2	   var	  recognizer	  =	  new	  Spoke.Recognizer();	  

3	   	  

4	   ss(socket).on('audioStream',	  function	  (stream,	  data)	  {	  

5	   	  	  	  	  	  recorder.convertAndSaveAsync(stream,	  wavFilename)	  

6	   	  	  	  	  	  	  	  	  	  	  .then(function	  (resultWavFilename)	  {	  

7	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  return	  recognizer.recognizeAsync(resultWavFilename);	  

Figure 4-2: Nut VolumeMeter and Recorder Instances: Nut makes an 
instance of the VolumeMeter and of the Recorder, both of which are attached to 
the same HTML element (the microphone icon). We can listen for certain 
recorder and socket events to appropriately update the UI.  

. 



	  
	  

	  

67	  

8	   	  	  	  	  	  	  	  	  	  	  })	  

9	   	  	  	  	  	  	  	  	  	  	  .then(function	  (recognitionResult)	  {	  

10	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  socket.emit('result.spoke.recognizer',	  recognitionResult);	  

11	   	  	  	  	  	  	  	  	  	  	  });	  

12	   	  	  	  	  	  });	  

	  

	  

	  

4.1.1 The Nutrition System 

The client-side usage of Spoke is almost exactly the same in the nutrition system as on the 

Nut website except for a small amount of configuration to direct Socket.io to the URL for 

the Nut server. Operating completely independently of the nutrition system’s Java server, 

the Nut server handles recording the user’s nutrition logs and running a custom domain-

specific speech recognizer on them. These recognition results are returned to the client but 

are not yet used by the nutrition system because the recognizer needs more training. The 

recording we have enabled will help collect utterances for this training the more the system 

is used.  

 

Figure 4-3: Nut Server Recorder and Recognizer Setup: The Nut server 
creates a new Recorder and Recognizer instance when a new socket connection is 
established. Then it listens for an ‘audioStream’ event on the socket and handles 
it by passing the stream to the Recorder for transcoding to a wav file. When the 
Recorder finishes, the wav file is passed to the Recognizer for recognition. 
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4.2 Amazon Mechanical Turk Audio Collection 

The audio recording capabilities of Spoke are particularly expedient when applied to collect 

audio data through Amazon Mechanical Turk (AMT) tasks [33]. Given the tens of 

thousands of written nutrition logs collected for the nutrition system and our desire to build 

a custom speech recognizer for the nutrition system, the nutrition domain was a prime 

candidate for this audio collection task. For the first round of audio collection, we selected 

Figure 4-4: The Nutrition System: The microphone icon acts as volume 
meter and triggers both recognition with the Web Speech APIs and recording to 
the Nut server when clicked. The nutrition system determines which parts of the 
utterance correspond to food items, quantities, descriptions, and brands, and tries 
to provide nutritional information about the identified food. 
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and cleaned 1,000 nutrition logs, and in the second round we selected 5,000 logs with 

minimal cleaning. In each round, we assigned each log a unique utterance ID and split them 

into groups of 10 with a unique group ID. 

For this AMT task, I built a task-oriented utterance collection website with Spoke 

that displays instructions and a set of 10 utterances for the AMT workers (sometimes called 

“Turkers”) to record. Each utterance has its own record button that is hooked up to an 

instance of the spoke-client Recorder and configured with specific metadata to send to the 

server along with the audio. This metadata specifies the utterance ID and the expected 

utterance text that the Turker should be reading.  

The server creates a new recording directory for each Socket.io connection it 

receives. Then the server handles an audio stream and its metadata by saving the raw audio 

and the transcoded wav file with the Spoke server-side Recorder, and saving the utterance 

text from the metadata to a txt file. The filenames for these three files includes the unique 

utterance ID included in the metadata. Upon successfully saving these files, the server 

responds to the client with an ‘audioStreamResult’ event, echoing back the metadata along 

with the path to the saved wav file to be included in the AMT results for the task. 

As an early quality control measure, we wanted to verify that the utterances being 

collected at least partially matched the expected text before allowing the Turker to submit 

their assignment. Our nutrition recognizer could not be used for this purpose (since we were 

still collecting data to train it), but the recognizer available in the Web Speech API was 

well suited for the job. Thus while the audio is being recorded to the server, it is 

simultaneously being processed with the Web Speech API, used through the spoke-client 

Recognizer module. The final recognition results are compared to the expected text for 

exact matches and partial matches—if the two match exactly, we accept the recording and 

mark that utterance as “Perfect”; if at least 60% of the expected words are present in the 
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recognized text, then we accept it and mark it as “Great”; otherwise, we mark it as “Redo” 

and require that the Turker record the utterance again.  

 

 

Using AMT’s ExternalQuestion data structure we can embed this webpage in a frame on 

the Turker’s browser [34]. Any data we want to collect within AMT has to be in a named 

field in a form that gets posted to a specific URL of the Mechanical Turk website. In this 

Figure 4-5: Audio Collection Task on Amazon Mechanical Turk: The 
Turkers are presented with a set of 10 sentences or sentence fragments to record 
(5 shown in this screenshot). While recording one utterance, the record button 
turns into a stop button and the other buttons on the page are disabled. After 
recording, the UI is updated with feedback about the quality and success of the 
recording. Sentences marked with “Redo” must be re-recorded before submission. 
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task, we save the group ID, the Turker’s ID, and each of the utterance IDs, their expected 

and recognized texts and the paths to their wav files on the server. 

Using Spoke for this high traffic application allowed us to observe the client-server 

audio streaming under great load while collecting thousands of utterances. Theoretically a 

Node.js server can handle thousands of Socket.io connections if the server is properly 

architected to minimize CPU usage on the application thread. The Spoke server-side library 

excels at this: all CPU-intensive processing methods operate by creating a new child process 

to handle the computation on a new thread. However, audio recording under high load was 

still not perfect. Some of the AMT recordings had audio artifacts or were truncated, and 

these issues were more pronounced with long polling connections than with WebSocket 

connections, suggesting they may have resulted from timed out connections or a backed-up 

stream to the server.  

 

 

4.3 Orcas Island: Mispronunciation Detection 

The mispronunciation detection technology being built in the group has great potential in 

the field of language learning. To demonstrate its potential we built Orcas Island, an 

interactive speech-enabled web application with Spoke that uses this core technology on the 

backend to provide specific feedback on a user’s pronunciation. This application uses almost 

all of Spoke’s client-side and server-side modules, illustrating how the features of Spoke can 

be combined to create novel and complex demonstrations centered around a core 

technology. The user can record utterances and play back a whole utterance or hone in on 

just one word. Ultimately the application provides feedback about which words were 

mispronounced, and allows the user to compare her pronunciation of the word with that of 

a speech synthesizer.  
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The mispronunciation detection system looks for patterns of mispronunciation made by the 

same speaker over a set of utterances, so the application features a variety of short stories 

(from Aesop’s Fables) broken into fragments for the user to read out loud. Each fragment is 

presented in a separate box with its own controls for recording and playback, allowing the 

user to focus on the story one sentence at a time. Each record button is hooked up to its 

own spoke-client Recorder instance configured with specific metadata about the fragment to 

send to the server along with the user’s audio stream (e.g. the fragment number and the 

Figure 4-6: Orcas Island Homepage: Orcas Island features a selection of 
short stories from Aesop’s Fables. The homepage displays our current selection of 
stories and links to each one.  
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fragment text). Each play button fires a Socket.io event requesting an audio stream of the 

user’s utterance for that fragment to play back to the user.  

 

1	   Promise.join(recordingPromise,	  txtPromise)	  

2	   	  	  	  	  	  .then(function	  ()	  {	  

3	  
	  	  	  	  	  	  	  	  	  	  return	  mispro.forcedAlignmentAsync(wavFilename,	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  txtFilename);	  

Figure 4-7: Reading a Short Story on Orcas Island: The story is broken 
into small, readable fragments of one sentence or less. When the user records a 
sentence, the utterance is processed on the server and after a short delay is 
highlighted in light gray to indicate successful processing. When the user hovers 
over a fragment or is reading a fragment, its control buttons appear and the text 
is bolded to make it easier to read.  
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4	   	  	  	  	  	  })	  

5	   	  	  	  	  	  .then(function	  (timingFilename)	  {	  

6	   	  	  	  	  	  	  	  	  	  	  return	  mispro.getAlignmentResultsAsync(timingFilename);	  

7	   	  	  	  	  	  })	  

8	   	  	  	  	  	  .then(function	  (utteranceTimingData)	  {	  

9	   	  	  	  	  	  	  	  	  	  	  timingData[utteranceId]	  =	  utteranceTimingData;	  

10	   	  	  	  	  	  	  	  	  	  	  socket.emit('success.spoke.alignment',	  metadata);	  

11	   	  	  	  	  	  })	  

12	   	  	  	  	  	  .then(function	  ()	  {	  

13	   	  	  	  	  	  	  	  	  	  	  return	  mispro.preprocessAsync(wavFilename);	  

14	   	  	  	  	  	  })	  

15	   });	  

 

When the server receives an audio stream from the client, it begins transcoding the raw 

audio stream to a 16 kHz wav file with the Spoke Recorder and then runs the saved file 

through a processing pipeline comprised of Spoke’s integrated speech technologies and 

chained together with Promises. Given the saved wav file and the fragment text the user 

was reading, the server runs asynchronous forced alignment using Spoke’s Alignment 

Figure 4-8: Orcas Island Mispronunciation Processing Chain: The 
server uses Promise chaining to create a sequential asynchronous processing 
pipeline. This pipeline first waits on the wav and txt files to be successfully saved, 
then performs forced alignment, gets the alignment results and saves them, 
notifies the client of success, and performs mispronunciation preprocessing. 
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module. When this finishes, it uses the Alignment module to parse the timing results and 

present them in a JavaScript object. At this step the server notifies the client that playback 

for the recorded fragment is now available and goes on to the last stage of the pipeline, 

preprocessing for mispronunciation detection.  

 

 

 

Playback requests from the client are fulfilled with the Spoke Player on the server. If an 

entire utterance was requested, the Player simply creates a stream from the saved wav file 

for that utterance and the server sends that audio stream to the client where it is played 

with the spoke-client Player module. Requests for a single word of one utterance require 

Figure 4-9: Orcas Island Mispronunciation Analysis UI: The results of 
mispronunciation detection are displayed in a table with the more significant 
mispronunciation patterns near the top. The client uses the Spoke Synthesizer to 
enable a comparison between the user’s pronunciation and the correct 
pronunciation of the word. The magnifying glass will highlight all instances of that 
word in the read fragments.  
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trimming the audio file with the server-side Player, using the timing results of the forced 

alignment step, before streaming.  

 

Figure 4-10: Orcas Island Recording and Processing Diagram: This 
diagram illustrates how the spoke-client Recorder streams audio in buffers to the 
server, where the server-side Recorder converts the audio to a wav file and then 
passes it into the processing pipeline outlined in Figure 4-8.  
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When the user is finished reading, the client notifies the server and it begins the final 

mispronunciation detection step, analyzing all the utterances as a set. Unlike the Promise-

chained pipeline from earlier, this step forms a pipeline of streams. The Mispro module’s 

misproDetectionStream method returns a stream for the output from the mispronunciation 

detection system, and getMisproResultsStream transforms the output stream into a stream 

of results. Each object in the results stream represents one mispronounced word, including 

additional information about the part of the word affected by the error and the location of 

one instance of the word in the recorded utterances. Passing along this information to the 

client, the user can see the mispronounced part of the word highlighted and can hear her 

own pronunciation of the word juxtaposed with the correct pronunciation generated by the 

Spoke Synthesizer module. 

 
1	   socket.on('doneReading',	  function	  ()	  {	  

2	   	  	  	  	  	  var	  misproOutput	  =	  mispro.misproDetectionStream();	  

3	  
	  	  	  	  	  var	  misproResultStream	  =	  	  

	  	  	  	  	  	  	  	  	  	  mispro.getMisproResultsStream(misproOutput);	  

4	   	  	  	  	  	  misproResultStream.on('data',	  function	  (misproWord)	  {	  

5	   	  	  	  	  	  	  	  	  	  	  socket.emit('result.spoke.mispro',	  misproWord);	  

6	   	  	  	  	  	  });	  

7	   });	  

 

Figure 4-11: Final Mispronunciation Detection Step With A Stream 
Pipeline: Instead of using Promises, this method handles the final 
mispronunciation detection step by using Streams. The stdout output from the 
mispronunciation detection system is transformed into a Stream of objects 
representing mispronounced words. 
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This application uses Spoke extensively to enable interactivity in the demonstration of the 

mispronunciation detection system. We showed how Spoke’s modules could be combined in 

powerful ways to build novel features. For example, combining the Player’s ability to trim 

audio with the Alignment’s timing information, we implemented word-level playback from 

recorded utterances. Moreover, most methods of Spoke’s server-side modules can be chained 

together with Promises to create a sequential, asynchronous processing pipeline. 
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Chapter 5 

Future Work 

 
Now that Spoke has bridged the gap between backend speech technologies and frontend 

web applications, we must consider areas for expansion and improvement.  

 

 

5.1 Streaming Speech Recognition 

With a continuous streaming speech recognizer, interactive speech-enabled web applications 

can be taken to the next level. This type of recognizer can operate on a stream of audio, 

outputting recognition hypotheses even as more audio comes in. As it receives more audio, 

the newest input may change the last few words of the best hypothesis, but over time 



	  
	  

	  

80	  

prefixes of the best partial hypothesis tend to stabilize [35]. The Web Speech API supports 

streaming recognition, and many developers have demonstrated its ability to make websites 

more responsive and engaging by providing more immediate feedback to the user. However, 

this browser API is currently only available in Chrome.  

SLS seeks to build our own streaming speech recognizer in Kaldi to serve this 

purpose across multiple browsers and multiple devices. New speech technologies such as this 

can be integrated into Spoke through a command line interface, as has been done for non-

streaming Kaldi recognizers already. A streaming recognizer could be integrated into Spoke 

in a very similar manner, except that instead of providing a saved wav file to the new child 

process executing the technology, it would set up the child process to take audio input from 

stdin and then pipe the user’s audio stream onto stdin, much like the sox-audio 

SoxCommand does for streaming transcoding.  

 

 

5.2 Reducing Bandwidth Usage and Dropped Audio 

Though Spoke has proven its usefulness for audio recording from desktop browsers, it has 

not been thoroughly tested on mobile browsers. The initial tests on an Android Chrome 

browser produced barely intelligible audio with chunks of zeros and repeating waveforms 

that suggest some buffers were being duplicated and others were not getting read in time. 

Client-side downsampling could help reduce these occurrences by lightening the load on the 

client, but even so we will most likely need to move the recording processes to a background 

task using the Web Workers API [36]. Since these artifacts sometimes crop up even on 

desktop browsers, this is an important area for further investigation. 

 Another way we might reduce bandwidth is by transmitting FFT magnitudes 

instead of raw audio data. This could be achieved with an audio routing graph very similar 
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to that of the spoke-client VolumeMeter: a MediaStreamAudioSourceNode connected to an 

AnalyserNode connected to a ScriptProcessorNode. However, the configuration of the 

AnalyserNode would be substantially different. The VolumeMeter does not require high 

fidelity, so it can perform a small FFT over a larger chunk of audio data. If we plan to use 

the FFT output for backend processing, we will have to try a few sets of configuration 

parameters for the FFT size and the audio data buffer size to strike the right balance. The 

ScriptProcessorNode could easily be setup to transmit a buffer of FFT magnitudes to the 

server over Socket.io following the example in the spoke-client Recorder. 
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Chapter 6 

Conclusion 

 
As research progresses and new speech technologies are developed, it is crucial to be able to 

create tangible implementations and applications utilizing the advancements. However, 

without a convenient method for doing so, developers and researchers will be stuck re-

inventing the wheel every time they wish to showcase a new technology or prepare an 

interface for data collection from users at scale. Spoke is a consolidated framework that 

allows a developer to quickly and simply take a speech-related technology and produce an 

application for almost any purpose, without having to tailor-make a solution from scratch. 

 Spoke leverages modern web technologies to enable the creation of speech-enabled 

websites. With an emphasis on modularity, the framework is flexible and powerful enough 
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to work with any spoken language system with a command line interface, while still 

allowing for a high level of customization by the developer. A client-side framework enables 

the creation of interactive UI elements, and a server-side library allows one to set up a web 

server to power the front end, or even use the methods in a standalone fashion to create 

batch-processing scripts. 

 In this thesis, three examples of complex speech-enabled websites created with the 

help of Spoke were explained, demonstrating how the various modules can be utilized to 

enable a multitude of applications with different goals. This included a nutrition-related site 

that used Spoke to help gather spoken information from users about their daily eating 

habits, a scalable Amazon Mechanical Turk application for large-scale data collection, and a 

mispronunciation detection website that provides automatic feedback to people seeking to 

learn to speak in a new language. 

 Because of the modularity inherent in the framework, it leaves a lot of room for 

further advancements to be made piece by piece, guaranteeing that developers that use 

Spoke will always have the latest tools available to them. Spoke will help greatly reduce the 

overhead and production time to bring a newly-developed speech-related technology into a 

real, working application. Ultimately we hope that this type of power in the hands of 

researchers and developers will go a long way in enabling a broader range of human-

computer interaction through natural spoken language. 
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