
1	

Spoke: A Framework for Building
Speech-Enabled Websites

by

Patricia Saylor
S.B., Massachusetts Institute of Technology (2014)

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

© Massachusetts Institute of Technology 2015. All rights reserved.

Signature of Author………………………………………………………………………………………………
Department of Electrical Engineering and Computer Science

May 22, 2015

Certified by…….
James Glass

Senior Research Scientist
Thesis Supervisor

Accepted by……
Professor Albert R. Meyer

Chairman, Masters of Engineering Thesis Committee

	
	

	

2	

	
	

	

3	

Spoke: A Framework for Building Speech-Enabled Websites

by

Patricia Saylor

Submitted to the Department of Electrical Engineering and Computer Science

on May 22nd in partial fulfillment of the requirements for the degree of

Master of Engineering

Abstract

In this thesis I describe the design and implementation of Spoke, a JavaScript framework
for building interactive speech-enabled web applications. This project was motivated by the
need for a consolidated framework for integrating custom speech technologies into website
backends to demonstrate their power. Spoke achieves this by providing a Node.js server-side
library with a set of modules that interface with a handful of custom speech technologies
that can perform speech recognition, forced alignment, and mispronunciation detection. In
addition, Spoke provides a client-side framework enabling some audio processing in the
browser and streaming of the user’s audio to a server for recording and backend processing
with the aforementioned integrated speech technologies. Spoke’s client-side and server-side
modules can be used in conjunction to create interactive websites for speech recognition,
audio collection, and second language learning, as demonstrated in three sample
applications.

Though Spoke was designed with the needs of the MIT Spoken Language Systems
group in mind, it could easily be adopted by other researchers and developers hoping to
incorporate their own speech technologies into functional websites.

Thesis Supervisor: James Glass
Title: Senior Research Scientist

	
	

	

4	

	
	

	

5	

Acknowledgements
From my first visit to MIT, before even applying for admission, I felt at home. Now

after 5 years at this wonderful institution, immersed in a fun, ambitious, and intelligent

community, I am sad to leave, but ready for the next chapter of my life. I would like to thank

my thesis advisor Jim Glass and the MIT SLS group for providing support and encouragement

over the course of this thesis. An additional thanks to Quanta Computing for their continued

interest and support in the lab.

Over the years there were many others who helped make MIT my home. Thank you to

my parents, Dana Saylor and Julie Stuart, my sister, KayLynn Foster, and my aunt and uncle,

Fred and Chris Lalonde, for their love and support, which helped me transition to life in

Cambridge and at MIT.

Thank you to Jiayi Lin and Vedha Sayyaparaju, my closest friends during undergrad, to

Jonathan Lui and Marcel Polanco, my frequent classmates and periodic project partners, and to

Divya Bajekal and Sunanda Sharma, my friends and cooking coconspirators during grad school.

A special thank you goes to my best friend, Samvaran Sharma, for his unwavering support,

understanding, and faith in my abilities.

	
	

	

6	

	
	

	

7	

Contents
1 Introduction .. 18

1.1 Motivation .. 19

1.2 Purpose ... 20

1.3 Outline .. 21

2 Background ... 22

2.1 Related Work ... 22

2.1.1 WAMI …………………………………………………………………………………………….23

2.1.2 CMU PocketSphinx…………………………………………………………………………..23

2.1.3 Recorder.js……………………………………………………………………………………….24

2.1.4 The Web Speech APIs……………………………………………………………………….24

2.2 Kaldi ... 25

2.3 Challenges ... 25

2.4 The Modern Web ... 26

2.4.1 JavaScript………………………………………………………………………………………..27

2.4.1.1 Node.js…………………………………………………………………………………..27

2.4.1.2 Asynchronous JavaScript: Callbacks and Promises………………………28

2.4.1.3 Managing Module Dependencies: CommonJS and RequireJS………..30

2.4.2 Express.js, Ractive, Socket.io, and WebSockets…………………………………….30

2.4.3 Web Audio and Web Speech APIs………………………………………………………32

3 System Components and Design ... 34

3.1 System Overview .. 35

3.2 Spoke Client-Side Framework .. 36

3.2.1 CrossBrowserAudio…………………………………………………………………………..37

	
	

	

8	

3.2.2 Microphone Volume Meter…………………………………………………………………39

3.2.3 Recorder………………………………………………………………………………………….42

3.2.4 Player……………………………………………………………………………………………..45

3.2.5 Recognizer and Synthesizer………………………………………………………………..47

3.2.6 CSS Library………………………………………………………………………………….….49

3.2.7 Package Distribution and Usage…………………………………………………………49

3.3 Spoke Server-Side Library .. 50

3.3.1 Audio Utilities………………………………………………………………………………….51

3.3.1.1 Recorder………………………………………………………………………………..52

3.3.1.2 Player……………………………………………………………………………………52

3.3.2 Integrated Speech Technologies…………………………………………………………..53

3.3.2.1 Recognizer……………………………………………………………………………..54

3.3.2.2 Forced Alignment……………………………………………………………………55

3.3.2.3 Mispronunciation Detection………………………………………………………56

3.4 SoX Audio Processing Module .. 58

4 Sample Applications .. 63

4.1 Online Speech-Enabled Nutrition Log .. 64

4.1.1 Nut…………………………………………………………………………………………………64

4.1.2 The Nutrition System………………………………………………………………………..67

4.2 Amazon Mechanical Turk Audio Collection ... 68

4.3 Orcas Island: Mispronunciation Detection .. 71

5 Future Work ... 79

5.1 Streaming Speech Recognition ... 79

5.2 Reducing Bandwidth Usage and Dropped Audio .. 80

6 Conclusion ... 82

	
	

	

9	

	
	

	

10	

List of Figures
Figure 2-1: Promise States: This diagram depicts the three possible states of a Promise

object – pending (where the operation has yet to be completed), fulfilled (where the

operation has completed successfully), and rejected (where the operation has completed

unsuccessfully). An asynchronous function can return this type of Promise object

instead of taking a callback parameter, enabling easier handoffs of information with

other asynchronous functions………………………………………………………………………………29

Figure 2-2: AudioNodes (from Mozilla Developer Network): A diagram depicting the

layout of AudioNodes within an AudioContext as part of the Web Audio APIs [31]….32

Figure 3-1: Spoke Module Overview: Spoke is split into two main components – a client-

side framework and a server-side library. The client-side framework includes feature and

helper modules to enable the creation of interactive UI elements (e.g. play and record

buttons, volume meters, front-end connections for recognition and recording). The

server-side library includes modules to help with things such as recognition, alignment,

recording, and more. These server-side modules can be used as part of a web server, or

in batch processing scripts………………………………………………………………………………….35

Figure 3-2: Resolving Vendor-Prefixed APIs with Modernizr: CrossBrowserAudio uses

Modernizr to find browser APIs under their vendor-prefixed names and make them

available under a non-prefixed name to simplify cross-browser development……………..38

Figure 3-3: Sample Microphone Volume Meters: Top: The VolumeMeter enables volume

visualizations on a height-adjustable HTML element. Typically a microphone icon is

	
	

	

11	

used. Bottom: This frequency spectrum visualization illustrates how the VolumeMeter

extracts the frequency bins corresponding to the dominant human speech range (from

300 to 3300 Hz, i.e. telephone bandwidth, in dark blue) when computing the volume

level. Frequencies above 16 kHz rarely appear in the FFT……………………....…………….39

Figure 3-4: Microphone Volume Meter Design: The VolumeMeter creates an audio

processing graph of AudioNodes to compute the volume level. The AnalyserNode

performs an FFT on the user’s audio stream, and the ScriptProcessorNode extracts the

frequency data corresponding to the dominant frequency range of human speech, 300 to

3300 Hz. The final volume level is computed by averaging over this range and then

normalizing………………………………………………………………………………………………………40

Figure 3-5: Microphone Volume Meter Usage: VolumeMeter instances can be initialized

with an HTML element and an options object to configure certain properties of the

AnalyserNode’s FFT, the ScriptProcessorNode, and the meter element……………………41

Figure 3-6: Client-Side Recorder Usage: The Recorder is initialized with an HTML

element that will toggle recording and an optional options object where the developer

can specify the buffer length for the Recorder’s ScriptProcessorNode and the metadata

to be sent to the server along with the stream of audio………………………………………….42

Figure 3-7: Client-Side Recorder Design: The Recorder creates an audio processing graph

consisting of a MediaStreamAudioSourceNode connected to a ScriptProcessorNode. The

audio source for the MediaStreamAudioSourceNode is supplied by promiseUserMedia.

The ScriptProcessorNode operates on a buffer of audio data, converting it to the right

encoding and the right type of buffer before writing it to the socket stream……………..44

	
	

	

12	

Figure 3-8: Client-Side Player Usage: The Player is initialized with an audio stream and

will automatically play the audio as soon as it is ready. An options object may be

passed in during initialization to prevent this default behavior………………………………..45

Figure 3-9: Client-Side Player Design: The Player routes audio from an

AudioBufferSourceNode to an AudioDestinationNode that plays the audio over the

user’s speakers. The Player accumulates the audio data from the stream and

consolidates it into one ArrayBuffer. Using the decodeAudioData API, it transforms the

ArrayBuffer into an AudioBuffer to provide to the source node………………………………46

Figure 3-10: Recognizer Configuration: Spoke’s Recognizer interface can be used to

interact with any recognizer that implements a basic command line interface that

accepts a wav filename and outputs the recognition results on stdout………………………54

Figure 3-11: Example Output from Forced Alignment: Running forced alignment on

a wav and txt file results in a timing file with a simple column format as shown

above. This output contains the timing data for each phoneme of each word in the

txt file, but word-level timing can be extracted by taking the start sample from the

first phoneme and the end sample from its last phoneme…………………………………..55

Figure 3-12: Forced Alignment Result Chaining: The output of

forcedAlignmentAsync is a Promise that will be fulfilled with the name of the

timing file. This Promise can be awaited with ‘then’ to perform some action on its

completion, namely to parse the timing file with getAlignmentResultsAsync, which

also returns a Promise that can be awaited and chained in a similar manner………56

	
	

	

13	

Figure 3-13: Mispronunciation Processing Chain: Using Promises, the processing

steps of mispronunciation detection can be chained for sequential asynchronous

execution. First we execute forced alignment, then parse the timing file, then

preprocess the utterance, and finally perform mispronunciation detection. The last

step involves a streaming pipeline between the output of mispronunciation detection

and a parser that turns results into JavaScript objects……………………………………..58

Figure 3-14: Example Complex SoX Command: Here we use the special filename

"|program [options] ...” to create SoX subcommands that trim the start or end off of

a single file. Inside this subcommand, the –p flag indicates that the SoX command

should be used as in input pipe to another SoX command. The overall SoX

command has 3 inputs that it concatenates into a single output file:

utterance_0.wav trimmed to start at 4.03 seconds, utterance_1.wav untrimmed,

and utterance_2.wav trimmed to end at 2.54 seconds………………………………………59

Figure 3-15: Initial Use of SoX Transcoding in JavaScript: Our early usage of SoX

just created a String command to perform transcoding of a raw audio file to a wav

audio file and executed it with Node’s child_process module…………………………….60

Figure 3-16: Example SoxCommand for Streaming Transcoding: In this example a

44.1 kHz raw audio stream of signed 16-bit integer PCM data is converted on the

fly to a 16 kHz wav audio stream…………………………………………………………………..61

Figure 3-17: Example SoxCommand using SoxCommands as Inputs to Trim and

Concatenate Audio Files: This example leverages SoxCommands as inputs to

other SoxCommands, allowing for the results of one to be piped as input into the

	
	

	

14	

other. The main SoxCommand concatenates three audio files, while the two sub

commands handle trimming the first and last files respectively………………………….61

Figure 4-1: Nut Application: The small Nut webpage displays a volume meter on a

microphone icon that doubles as the record button. When the icon is clicked, it

changes from blue to red to indicate the recording status. At the end of recording,

the audio is run through a recognizer on the server, and the client is notified of the

recognition result, which it places below the icon……………………………………………..65

Figure 4-2: Nut VolumeMeter and Recorder Instances: Nut makes an instance of

the VolumeMeter and of the Recorder, both of which are attached to the same

HTML element (the microphone icon). We can listen for certain recorder and socket

events to appropriately update the UI…………………………………………………………….66

Figure 4-3: Nut Server Recorder and Recognizer Setup: The Nut server creates a

new Recorder and Recognizer instance when a new socket connection is established.

Then it listens for an ‘audioStream’ event on the socket and handles it by passing

the stream to the Recorder for transcoding to a wav file. When the Recorder

finishes, the wav file is passed to the Recognizer for recognition………………………..67

Figure 4-4: The Nutrition System: The microphone icon acts as volume meter and

triggers both recognition with the Web Speech APIs and recording to the Nut

server when clicked. The nutrition system determines which parts of the utterance

correspond to food items, quantities, descriptions, and brands, and tries to provide

nutritional information about the identified food……………………………………………..68

	
	

	

15	

Figure 4-5: Audio Collection Task on Amazon Mechanical Turk: The Turkers are

presented with a set of 10 sentences or sentence fragments to record (5 shown in

this screenshot). While recording one utterance, the record button turns into a stop

button and the other buttons on the page are disabled. After recording, the UI is

updated with feedback about the quality and success of the recording. Sentences

marked with “Redo” must be re-recorded before submission………………………………70

Figure 4-6: Orcas Island Homepage: Orcas Island features a selection of short stories

from Aesop’s Fables. The homepage displays our current selection of stories and

links to each one………………………………………………………………………………………….72

Figure 4-7: Reading a Short Story on Orcas Island: The story is broken into small,

readable fragments of one sentence or less. When the user records a sentence, the

utterance is processed on the server and after a short delay is highlighted in light

gray to indicate successful processing. When the user hovers over a fragment or is

reading a fragment, its control buttons appear and the text is bolded to make it

easier to read………………………………………………………………………………………………73

Figure 4-8: Orcas Island Mispronunciation Processing Chain: The server uses

Promise chaining to create a sequential asynchronous processing pipeline. This

pipeline first waits on the wav and txt files to be successfully saved, then performs

forced alignment, gets the alignment results and saves them, notifies the client of

success, and performs mispronunciation preprocessing………………………………………74

Figure 4-9: Orcas Island Mispronunciation Analysis UI: The results of

mispronunciation detection are displayed in a table with the more significant

	
	

	

16	

mispronunciation patterns near the top. The client uses the Spoke Synthesizer to

enable a comparison between the user’s pronunciation and the correct pronunciation

of the word. The magnifying glass will highlight all instances of that word in the

read fragments…………………………………………………………………………………………….75

Figure 4-10: Orcas Island Recording and Processing Diagram: This diagram

illustrates how the spoke-client Recorder streams audio in buffers to the server,

where the server-side Recorder converts the audio to a wav file and then passes it

into the processing pipeline outlined in Figure 4-8……………………………………………76

Figure 4-11: Final Mispronunciation Detection Step With A Stream Pipeline:

Instead of using Promises, this method handles the final mispronunciation detection

step by using Streams. The stdout output from the mispronunciation detection system

is transformed into a Stream of objects representing mispronounced words………………77

	
	

	

17	

	
	

	

18	

Chapter 1

Introduction

Speech recognition tools have a wide range of applications, from informational discourse for

checking the weather, to multimodal interfaces for playing a language learning game. Many

such applications were developed by the MIT Spoken Language Systems group (SLS) [1,2]

as part of a larger movement towards enabling a broad range of computer interaction

through natural spoken language. To this end, the group regularly builds both new speech

recognition tools and new applications demonstrating the power of these tools.

	
	

	

19	

1.1 Motivation

For example, Ann Lee, a Ph.D. student in the group, is developing a mispronunciation

detection system that discovers patterns of mispronunciation made by a speaker in a set of

multiple utterances [3]. Her backend work needs a frontend application to highlight its true

potential in the domain of language learning. An application for this system will crucially

need to be able to record audio from a live speaker for immediate processing on the

backend, but audio recording on the web, our preferred application domain, is nontrivial

and unstandardized.

Within SLS there is high demand for live audio recording on the web—particularly

to gather custom audio training data by creating an audio collection task on Amazon

Mechanical Turk—but currently there is no in-home support for this feature after the

previous outdated framework was phased out [4]. There are also many researchers seeking

to build small demo websites using their own tools or those built by others in the lab, but

in general there is no standard way of incorporating one’s speech recognition tools into a

website. Setting up this interaction independently for each project in the lab is inefficient

and makes it harder to share and reuse tools on other people’s sites. Thus we need a

consolidated, reusable, and modern solution to using and sharing internal speech recognition

tools for sites throughout the lab.

The group also seeks to expand into new areas for fluid speech interactions. With the

near ubiquity of mobile devices, we strive to bring our speech recognition demos to mobile

browsers and native apps on phones and tablets. With increasing demand for responsive,

real-time applications, we strive to create our own continuous speech recognition system

that outputs recognition hypotheses even as audio is still being streamed and processed.

Both of these goals will benefit from a consolidated framework, while adding their own

challenges to its development.

	
	

	

20	

1.2 Purpose

The purpose of this thesis is to develop Spoke, a framework for the Spoken Language

Systems group to build spoken language enabled websites. This framework leverages modern

web technologies such as the Web Audio APIs, WebSockets, and Node.js to provide a

standardized and streamlined way to build website demos in the lab featuring our own

spoken language research. Spoke is implemented entirely in Javascript.

Spoke has two overarching components, one for the client (the browser) and one for

the server, and it provides a decoupled server library that can be used independently of a

website. The client-side framework provides a set of tools for building front-end speech

recognition websites:

• recording audio to the server for processing

• playing audio from the server

• visualizing audio information in a volume meter

• speech recognition (e.g. using Google’s SpeechRecognition, available in the Chrome

browser, or custom backend recognizers)

• speech synthesis (e.g. using Google’s synthesizer, or custom synthesizers)

Meanwhile the server-side component of Spoke provides a library of speech recognition

technologies built in the lab and a utility-belt of audio tools. The library’s utilities enable

recording raw or wav audio, transcoding audio files or live audio streams, and playing back

streaming audio from a file. The library also provides standardized access to and usage of

technologies built in the lab, such as

• domain-specific speech recognizers

• forced alignment of an audio sample to expected text

• mispronunciation detection on a set of utterances from the same speaker

	
	

	

21	

This is a subset of technologies built in the lab, and it is easy to add new tools to the Spoke

library so that everyone in the lab can use them. One technology we expect to add to Spoke

within the next year is continuous streaming speech recognition, which will benefit from the

current utilities for streaming audio recording and streaming audio transcoding. This library

is decoupled from client interactions, allowing the developer to use the speech recognition

and audio tools for batch processing and scripting in Javascript on the backend.

Creating Spoke with the goals of SLS in mind meant confronting a few big

challenges. The ideal of incorporating the broad range of speech technologies built in the

lab, and those soon to be built, requires a framework with great modularity and

extensibility. Making our demos work on mobile devices, and more generally in limited

bandwidth conditions, encourages reducing data usage by using a small client side

framework and by downsampling the audio before streaming, but ultimately robust

handling of communication errors on both sides is still necessary. Later in this thesis we will

explore these challenges and others further.

1.3 Outline

In Chapter 2 I discuss some related work in the area of building speech-enabled websites

and provide some background about modern technologies for building web pages and web

servers with JavaScript. Chapter 3 gives a high-level overview of Spoke before detailing the

design and implementation of its client-side and server-side components. Chapter 4

describes three sample applications built with Spoke, highlighting our ability to enable

interactivity with custom backend speech technologies. Chapter 5 presents areas for future

work and specific suggestions for their undertaking. Chapter 6 concludes this thesis.

	
	

	

22	

Chapter 2

Background

2.1 Related Work

Enabling speech recognition on the web is far from a new idea, but it is also far from a

solved problem. The variety of available solutions do not fully meet our needs, either

because they are outdated (WAMI) or they clash with using our own spoken language

systems (CMU Sphinx). After all, we want to demonstrate the power of the tools we

ourselves researched and developed. At times, other solutions could be used alongside our

technologies, such as the Web Speech APIs, but at other times it makes more sense to build

our own solution to have full control over it.

	
	

	

23	

2.1.1 WAMI

The WAMI (Web-Accessible Multimodal Interfaces) toolkit was developed in 2008 with the

goal of enabling multimodal interfaces, particularly speech interfaces, on the web [4]. WAMI

importantly provided speech recording and speech recognition as a service to simplify and

thus encourage development of speech-enabled websites. An important component of WAMI

was the AudioController, which was responsible for recording the user’s audio from the

browser and transmitting it to a remote recognizer, and also playing back audio. Although

these two features are in high demand in the lab, the technology underpinning the

AudioController is outdated and we no longer use WAMI.

Initially the AudioController was built as an embedded Java applet, but it was later

rebuilt with the Flash browser plugin [5]. Aside from the poor performance and poor user

experience of Java applets, they have lost support from most major browsers, and Flash,

though still supported widely, is quickly becoming outdated. Flash has limited access to the

browser’s technologies, and also enforces the use of an ugly, un-customizable security panel

for granting audio permissions. The drawbacks and workarounds implemented in order to

use Flash are now unnecessary given the state of the modern browser APIs for accessing a

user’s audio, and the ability to stream binary audio data over WebSockets from the browser

to a backend server.

2.1.2 CMU PocketSphinx

The CMU Sphinx speech recognition toolkit provides a few different packages for different

tasks and speech applications, including a distribution called PocketSphinx built in C for

use on computers and mobile devices [6]. In 2013, they ported PocketSphinx to JavaScript,

empowering developers with a way to run a real-time recognizer for their websites

	
	

	

24	

completely on the client-side [7]. This project is a great boon to web developers, but to

other speech technology researchers, it is less useful. It necessarily utilizes CMU’s own

speech recognition technologies, making it irreconcilable with our goal of building websites

to demonstrate our own technologies.

2.1.3 Recorder.js

A small, independently built project, Recorder.js provides a library for recording audio

using the modern Web Audio APIs (discussed later) and exporting that recording as a wav

file [8]. As it is available on GitHub under the MIT License, it is frequently referenced as a

demonstration of how to use the Web Audio APIs for audio recording on the client, though

the library stops short of sending that audio to a server. Given this shortcoming, this

library barely scratches the surface of the capabilities we need for our own websites. This

makes the library an instructive example, but ultimately we built audio recording into

Spoke, giving us full control over that process.

2.1.4 The Web Speech APIs

The Web Speech API was introduced in late 2012 with the ambition of integrating speech

technologies into the HTML5 standard and ultimately providing web developers with tools for

speech recognition and speech synthesis directly in the browser [9]. So far, only the Chrome

browser has implemented this API (full support starting in version 33), though support for

Firefox seems to be underway. These APIs empower web developers with a black box recognizer

or synthesizer, with options for finer control over their capabilities if desired. For example, the

SpeechRecognition API can recognize a single utterance after it completes, or you can configure

the recognizer to perform continuous recognition and output intermediate recognition results as

the user speaks. Though the Web Speech APIs are not sufficient for all of our needs, they have

	
	

	

25	

proven to be useful in the lab and can easily be used alongside our own audio tools for the

browser, so they have been integrated into the Spoke client-side framework.

2.2 Kaldi

Kaldi is a free speech recognition toolkit written in C++ available under the Apache

License [10]. Many, if not most, of the core speech technologies being developed in SLS use

the Kaldi toolkit for its state-of-the-art capabilities and extensible design. The end result of

developing speech technologies with Kaldi is usually a bash script that runs a bunch of

other scripts with the right inputs, and this makes interfacing with Kaldi-built systems very

flexible. The Spoke server-side library was designed with this executable script paradigm in

mind, and with future extensions to Kaldi in sight. Though Kaldi provides support for

“online decoding” in some fashion [11, 12], we have not yet set up our own instance of their

online decoders operating on audio streams. However, within the next year the lab hopes to

build a continuous speech recognizer on top of Kaldi and this tool can be incorporated into

Spoke in much the same way as existing Kaldi tools.

2.3 Challenges

Creating a framework for integrating speech technologies into web applications meant

confronting a few big challenges. Ideally we would want all speech technologies built in the

lab to be easily incorporated into Spoke, allowing anyone else in the lab to discover and use

that technology, either for offline processing or for a website backend. To this end, it is

important to pick a simple, flexible interface between the Spoke library and non-JavaScript

tools developed in the lab. Many of these tools are built using Kaldi, which lends itself to

	
	

	

26	

command line usage. This prompted a command line script interface with Spoke, which

should be generic enough to extend to tools built in other languages and on other

frameworks, so long as the tool can be used from the command line.

With mobile devices and slow Internet connections comes the need for reducing data

usage to likewise reduce latency. When a webpage is first opened, it usually needs to fetch

some extra JavaScript and CSS files, and how these files are provided can have a significant

effect on the load time of the page. External libraries should be loaded from a CDN, a

Content Delivery Network that distributes static content, meaning you only have to load

each file once and then it is cached in the browser. The website’s custom files, on the other

hand, have to be loaded every time, so to reduce latency we must minify the JavaScript and

CSS files and even then we should try to load them asynchronously if possible. After the

webpage is ready, we expect audio streams to consume the most bandwidth, so this is the

next area for improvement. We can reduce the size of the audio stream by downsampling

and/or compressing the audio before transmission. On the server-side, we use the SoX audio

processing command line tool to accomplish this, but on the client-side we will later have to

implement our own downsampling since it is not built into the Web Audio API.

2.4 The Modern Web

In the past few years the web community has seen dramatic improvements in the

functionality of modern web browsers, the power of JavaScript, and the interactivity of

communication between a client and server through WebSockets.

	
	

	

27	

2.4.1 JavaScript

JavaScript is a cross-platform, object-oriented scripting language that is incredibly flexible but

sometimes tricky. Its flexibility comes from being a dynamically typed language that supports

both the functional paradigm and object-oriented programming without classes. The core

language includes an impractically small standard library of objects, from Array to Date to

String. Most of its power, then, comes from its host environment and how properties and

methods can be added dynamically to objects [13]. Inside a host environment, JavaScript can be

connected to the objects of its environment to provide programmatic access and control over

them, while the core libraries themselves are frequently extended to provide more utility.

On the client side, this translates to an extended language with new objects for some

complex interactions with the browser and servers. Far beyond the basic objects for interacting

with a browser and its DOM (Document Object Model), browsers now extend JavaScript to

provide powerful APIs ranging from server communication to audio processing. For example, an

XMLHttpRequest allows you to send asynchronous HTTP requests to a server, while

WebSockets enable a persistent TCP connection to the server for bidirectional communication.

Moreover, the Web Audio API [14] provides a powerful interface for controlling audio sources,

effects, and destinations, enabling web developers to record audio from the browser with no

hacks or plugins. With the rise in server-side JavaScript implementations, and the increasing

power of JavaScript in the browser, we can now use the same language in both places to great

effect.

2.4.1.1 Node.js

Server-side JavaScript has been around since 1994, but has recently seen a huge resurgence with

frameworks like Node.js. Node is a platform for building and running fast, scalable JavaScript

applications [15]. The platform is built on Chrome’s JavaScript runtime, allowing you to run

JavaScript outside of a browser environment, and it extends the core language with full-fledged

modules for interacting with the server’s file system and for creating and controlling child

	
	

	

28	

processes, just to name a few. With Node, you can easily develop command-line tools or full-

featured dynamic HTTP and HTTPS servers, and I hope that members of SLS soon use it for

both.

The two central themes of Node are event-driven, non-blocking I/O and Streams [16].

JavaScript itself does not have a built-in way to do I/O, but web developers were already

familiar with asynchronous callback-based I/O in the browser (AJAX is a good example of this).

So Node built out I/O support following this same single-threaded asynchronous, non-blocking

model using a library called libuv [17]. This makes Node very well suited for data-intensive real-

time applications where the limiting factor is I/O, but not appropriate for CPU-intensive

operations. So performing speech recognition in Node.js is out of the question, but we can create

a web server in Node capable of handling thousands of concurrent connections, and then spin up

other processes for performing speech recognition upon request, which is what Spoke does.

The Stream module provided by Node.js is also central to their evented asynchronous

model. Stream instances are very reminiscent of Unix pipes, and they can be readable, writable,

or duplex (both readable and writable). The ReadableStream interface allows you to process a

large stream of data a chunk at a time by subscribing to the “data” event, where you can add a

function to read, process, and even emit some transformation of that data. Additionally, you

can pipe readable streams into writable streams with “pipe”, allowing you to chain together a

processing pipeline, and you can pipe one readable stream into two separate writable streams.

This proves useful for dealing with readable streams of audio data, allowing us to handle

incoming raw audio in two different ways at once: saving the raw audio directly, and performing

streaming downsampling of the audio using SoX [18].

2.4.1.2 Asynchronous JavaScript: Callbacks and Promises

Asynchronous callbacks in JavaScript are great for simple operations, but they can get

messy very quickly when callbacks are nested inside of other callbacks. In Node, this type of

nesting is especially common since all I/O is asynchronous. Luckily the continuation passing

	
	

	

29	

style of callbacks can be subverted by using Promises, a new pattern for representing the

results of an asynchronous operation [19]. Instead of an asynchronous function taking a

callback parameter, it can return a Promise object, which can be in one of three states:

• pending—the initial state of a promise before the operation has completed

• fulfilled—the state of a promise indicating a successful operation

• rejected—the state of a promise indicating a failed operation

Promises can easily be composed using their “then” and “catch” methods to take action on

the fulfillment or rejection of a promise, respectively. There are many JavaScript

implementations of the Promise API for both the client and server, and the most

comprehensive ones also build out support for “promisifying” callback-based functions,

including those for I/O in Node.js [19, 20].

Figure 2-1: Promise States: This diagram depicts the three possible states of
a Promise object – pending (where the operation has yet to be completed), fulfilled
(where the operation has completed successfully), and rejected (where the
operation has completed unsuccessfully). An asynchronous function can return
this type of Promise object instead of taking a callback parameter, enabling easier
handoffs of information with other asynchronous functions.

Pending

Fulfilled

Rejected

fulfill

reject

	
	

	

30	

2.4.1.3 Managing Module Dependencies: CommonJS and RequireJS

Modularity is critical in software design, but it is not built into the core JavaScript

language. Currently there are two main flavors of modularization for JavaScript:

CommonJS and RequireJS. CommonJS is the standard for Node.js development, but it is

not well suited for the browser environment [22]. In the CommonJS style, every file is given

a module.exports object to fill with that module’s contents; the exports object can be a

function, a value, or a plain JavaScript object containing a plethora of other functions,

values, and objects. When you require another module with mod	 =	

require(‘otherModule’) you get back its module.exports object. This model is simple and

easy to use on the server-side, and though it can be used on the client-side, there is a better

option.

Though browsers themselves provide no way to manage JavaScript module

dependencies on the client side, RequireJS is optimized for exactly this [23]. In the earlier

days of web development, script dependencies were managed by just loading scripts in a

particular order, which is a fragile sort of modularity. RequireJS allows you to explicitly list

module dependencies in a file with the “define” function, and then at runtime it

asynchronously loads those dependencies for you. Besides the asynchronous module loading,

lower latency can be achieved by using the r.js optimizer for packaging your main

JavaScript file and all its dependencies into one minified file [24, 25]. Spoke uses CommonJS

for the server side code and RequireJS for the client side code.

2.4.2 Express.js, Ractive, Socket.io, and WebSockets

Part of the success of Node.js and its revival of server-side JavaScript can be attributed to

its large and active ecosystem, which allows anyone to develop and publish a Node.js

	
	

	

31	

module through NPM, Node’s package manager [26]. Express.js and Socket.io are two high-

quality projects born out of this open ecosystem that are geared towards building great

websites.

Express.js is a Node.js web application framework with support for routing,

middleware, RESTful APIs, and template engines [27]. It is a core component of the now

popular MEAN stack for web development, which includes MongoDB, Express.js,

Angular.js and Node.js, but you can use it just as effectively with other database and

templating solutions. Express supports a vast array of templating solutions, and it can be

hard to find the right one to use, balancing the features you need with ease of use and

current maintenance of the project. For my web applications, I chose to use Ractive, a

Mustache-based templating engine featuring a simple but powerful templating syntax, two-

way data binding, and template partials [28].

Socket.io is a JavaScript library for building real-time web applications with event-

based bidirectional communication between the client and server [29]. Traditionally the

client initiates communication with the server through a single request, and receives a single

response; but the bidirectional model means either side can initiate communication, so the

server can push data updates to the client when they are available instead of the client

asking for updates periodically. WebSockets [30] provide the underpinnings for Socket.io,

enabling a persistent TCP connection to the server for the bidirectional communication, but

Socket.io can also fallback to AJAX longpolling if a WebSocket connection cannot be

established. Socket.io provides the best abstraction around the communication layer, and

with support for binary streaming added in version 1.0 in 2014, it is a great solution for

audio recording. The client-side and server-side components of the Spoke framework sit on

top of the corresponding client-side and server-side components of Socket.io.

	
	

	

32	

2.4.3 Web Audio and Web Speech APIs

With the new Web APIs for audio and speech, JavaScript in the browser is powerfully

positioned for audio processing and speech recognition. The Web Speech API includes the

SpeechRecognition and SpeechSynthesis objects [9], which provide speech recognition and

speech synthesis, respectively, as a service (only in Chrome). This is great for black-box

recognition, but we need something else in order to use our own speech recognition tools.

Figure 2-2: AudioNodes (from Mozilla Developer Network): A diagram
depicting the layout of AudioNodes within an AudioContext as part of the Web
Audio APIs [31].

	
	

	

33	

Enter the Web Audio API, a versatile interface for controlling audio in the browser

[14]. Through this API, developers can generate audio, access the user’s audio stream (with

permission), and perform built-in analysis or custom processing of the audio stream. The

main constructs are the AudioContext and the AudioNode. Within an AudioContext, many

AudioNodes performing different functions can be linked together in a processing graph. For

example, hooking an AudioBufferSourceNode into an AnalyserNode will perform a

configurable FFT on the audio stream from the source node, which can then be used to

produce visualizations of the audio’s frequency spectrum or volume level. Linking an

AudioBufferSourceNode to a ScriptProcessorNode allows you to define your own custom

audio processing function, which could transform the raw audio in some way (changing the

encoding format or downsampling) or send the audio data over to a backend server. The

Web Audio API underpins the client-side recording functionality of Spoke.

	
	

	

34	

Chapter 3

System Components and Design

Spoke is a framework for building real-time, interactive speech applications on the web

backed by speech technologies built in the SLS group. To simplify development of these

applications, Spoke has a piece for each side of the web application, the client-side and the

server-side. Spoke also enables the development of backend processing scripts in JavaScript

that could batch process audio offline. In this chapter I further describe Spoke’s design,

functionality, and implementation, and sox-audio, an adjacent project that further bolsters

application development in the lab.

	
	

	

35	

3.1 System Overview

The two pieces of Spoke, the client-side framework and the server-side library, should be

used in conjunction to build real-time, interactive speech applications demonstrating our

research. The Spoke client-side framework provides tools for building the front-end of

Spoke Client-Side Modules

Features

Microphone Volume Meter

Recorder

Player

Synthesizer

Recognizer

Helpers

Cross Browser Audio

Shared Audio

Shared Socket

Utils

Utilities

Recorder

Player

Sox Command

Utils

Speech Technologies

Recognizer

Alignment

Mispro

Spoke Server-Side Modules

Web Audio

API

Web Speech

API

Figure 3-1: Spoke Module Overview: Spoke is split into two main
components – a client-side framework and a server-side library. The client-side
framework includes feature and helper modules to enable the creation of
interactive UI elements (e.g. play and record buttons, volume meters, front-end
connections for recognition and recording). The server-side library includes
modules to help with things such as recognition, alignment, recording, and more.
These server-side modules can be used as part of a web server, or in batch
processing scripts.

	
	

	

36	

speech applications and communicating with the server, including recording audio to the

server, playing audio, and visualizing volume level. The server-side of Spoke provides a

library that integrates some speech technologies built in the lab, such as recognition and

mispronunciation detection, and a utility belt of audio tools such as recording, transcoding,

and playback.

The implementations of these components follow the same high-level design

principles and paradigms for flexibility, abstraction, and consistency. First and foremost is

modularity of the components, breaking each component into logically distinct modules, and

breaking down the actions of each module into logically distinct functions for maximum

flexibility. For further flexibility, every module object should accept an (optional) options

parameter, allowing customization to a large extent. One salient example of both of these

principles is the volume meter module: you can customize the minimum height of the

volume meter with ‘options’, and you can customize the translation of volume level into

meter height by overwriting one method of a VolumeMeter instance. Finally, the design

principally follows prototype-based object-oriented programming, so each module is

constructed as an object with properties and methods; this allows stateful variables to be

encapsulated in the object and accessed by all its methods, without adding excessive

parameters to function signatures that the developer then becomes responsible for

managing.

3.2 Spoke Client-Side Framework

The Spoke client-side framework, spoke-client, is composed of a CSS library, a few low-level

helper modules and many high-level feature modules (see Figure 3-1). The high-level

modules employ prototype-based object-oriented programming and the publish-subscribe

	
	

	

37	

pattern to create modules with encapsulated state that operate rather autonomously after

setup and then notify the developer about key events. This event-driven model is

implemented using jQuery for event emitting, and events follow the standard namespacing

convention eventName.package.module (e.g. start.spoke.recorder). Some of these modules

are driven by user interaction, so they accept an HTML element in the constructor and

register themselves as click listeners on that element. All of them accept an options object

for customizing the configuration. Through this framework the following functionality is

enabled:

• Recording audio to the server for processing with Spoke’s integrated speech

technologies (technologies built in the lab and incorporated into the Spoke library)

• Speech recognition and speech synthesis through the Web Speech APIs

• Playing audio from the server

• Visualizing audio information, such as volume level

In this section I will explain some of the key client-side modules in more detail.

3.2.1 CrossBrowserAudio

The low-level helper modules in spoke-client help simplify and decouple the feature

modules. In particular, the crossBrowserAudio module resolves two key issues: vendor

prefixing and audio sharing.

Many of the feature modules depend on vendor-prefixed APIs, such as

navigator.getUserMedia and window.AudioContext. These APIs can alternatively be

provided under prefixed names such as webkitGetUserMedia or mozGetUserMedia in a

browser-dependent way. The crossBrowserAudio module uses a library called Modernizr to

ensure these APIs will be available under their non-prefixed names.

	
	

	

38	

1	 window.AudioContext	 =	 Modernizr.prefixed('AudioContext',	 window);	

2	 navigator.getUserMedia	 =	 Modernizr.prefixed('getUserMedia',	 navigator);	

The main area that needed decoupling was the shared dependence of the VolumeMeter and

Recorder on the user’s audio stream. Accessing the user’s audio stream through

getUserMedia is an asynchronous task that requires the user’s explicit permission, so instead

of returning the user’s audio stream, getUserMedia accepts a success callback and an error

callback to invoke in the event of success or failure respectively. Typically, any action

involving the user’s media stream happens inside the success callback function provided at

the time of the request.

In Spoke, there are multiple modules that need to take action on the user’s media

stream once it is available, and those modules live in separate files and ought to be

completely independent from one another. Instead of each module making its own request

for the user’s audio stream (which requires permission to be granted again unless the

connection is secure), we can make one request in a helper module and then multiplex

access to the resulting stream when it is available using Promises. CrossBrowserAudio does

this by defining promiseUserMedia, a promisified version of getUserMedia that returns a

Promise that will be fulfilled with the user’s media stream if permission is granted, or will

be rejected if permission is denied.

Figure 3-2: Resolving Vendor-Prefixed APIs with Modernizr:
CrossBrowserAudio uses Modernizr to find browser APIs under their vendor-
prefixed names and make them available under a non-prefixed name to simplify
cross-browser development.

	
	

	

39	

3.2.2 Microphone Volume Meter

The microphone module includes a VolumeMeter object for computing and visually

representing the volume level of the user’s audio. This module is intended to provide

various such objects for processing and/or visualizing audio from the user’s microphone, for

example it could be extended to include a live spectrogram analysis.

Figure 3-3: Sample Microphone Volume Meters: Top: The VolumeMeter
enables volume visualizations on a height-adjustable HTML element. Typically a
microphone icon is used. Bottom: This frequency spectrum visualization illustrates
how the VolumeMeter extracts the frequency bins corresponding to the dominant
human speech range (from 300 to 3300 Hz, i.e. telephone bandwidth, in dark blue)
when computing the volume level. Frequencies above 16 kHz rarely appear in the
FFT.

human range 16000 Hz mark

	
	

	

40	

The VolumeMeter employs the Web Audio API to create an audio processing graph of

AudioNodes (Figure 3-4). The first node in the processing graph is a

MediaStreamAudioSourceNode created from the user’s local media stream, which is fulfilled

by promiseUserMedia. The source node connects to an AnalyserNode, which performs an

FFT of a given size on a small buffer of audio data from the source node. The result of this

FFT is an array of frequency data in which each bin (array index) corresponds to a

moderate range of frequencies and the bin’s value corresponds to the intensity of the

frequencies in the bin.

Figure 3-4: Microphone Volume Meter Design: The VolumeMeter creates
an audio processing graph of AudioNodes to compute the volume level. The
AnalyserNode performs an FFT on the user’s audio stream, and the
ScriptProcessorNode extracts the frequency data corresponding to the dominant
frequency range of human speech, 300 to 3300 Hz. The final volume level is
computed by averaging over this range and then normalizing.

function createSourceNode{

 wait for promiseUserMedia;

 once available, make

 source node from

 localMediaStream;

}

MediaStreamAudioSourceNode

Act as audio source for following
nodes

AnalyzerNode

Run FFT to convert audio to
frequency domain

ScriptProcessorNode

Run custom code for Spoke
Volume Meter

human range human range

avg = 0.8!

function onAudioProcess{

 get frequency data;

 extract human range;

 take average of range;

 normalize volume level;

} Microphone Volume Meter

	
	

	

41	

In order to process the FFT frequency data, I connect the AnalyserNode to a

ScriptProcessorNode, which calls a custom processing function with a buffer of audio data.

This processing step computes the current volume level by averaging over the slice of the

frequency array corresponding to the dominant frequencies of human speech (300 to 3300

Hz), and then normalizing this average value to get a volume level between 0 and 1.

Usage: The VolumeMeter component is extremely modular—the developer can configure

every step in the audio processing pipeline and even swap out whole functions for more

customization. For example, the VolumeMeter is initialized with an HTML element to be

height-adjusted as the volume changes (Figure 3-5), and this UI update is factored out into

the adjustVolumeMeter(volumeLevel) method. The developer can overwrite this method on

their volume meter instance to change how the computed volume level translates into a UI

update, and in fact this customization is done frequently in the demos built with a

templating engine. For other plain actions the developer wishes to take when the volume

level is computed, she can register a listener on the volumeMeter instance for the

volumeLevel.spoke.volumeMeter event.

	

1	 var	 options	 =	 {minMeterHeight:	 15,	 analyserFftSize:	 128};	

2	 var	 volumeMeter	 =	 new	 mic.VolumeMeter(element,	 options);	

Figure 3-5: Microphone Volume Meter Usage: VolumeMeter instances can
be initialized with an HTML element and an options object to configure certain
properties of the AnalyserNode’s FFT, the ScriptProcessorNode, and the meter
element.

	
	

	

42	

3.2.3 Recorder

	

1	 var	 rec	 =	 new	 Recorder(element,	 options);	

	

The Recorder module hooks audio recording onto an element of the webpage and records

audio to the server. In the constructor, the recorder accepts an HTML element and then

registers itself as a click listener on that element, such that the recorder is toggled on and

off with each click (Figure 3-6). When toggled on, the recorder begins streaming raw audio

data to the server over socket.io and emits a ‘start’ event. Similarly, the recorder emits a

‘stop’ event when the user ends recording and a ‘result’ event when the audio stream is

successfully saved on the server.

Similar to the VolumeMeter, the Recorder creates an audio processing graph with a

few AudioNodes (Figure 3-7). The processing graph begins with a

MediaStreamAudioSourceNode created from the user’s local media stream, which is fulfilled

by promiseUserMedia. This audio source feeds directly into a custom ScriptProcessorNode

where the raw audio data is processed one buffer at a time. This processing step is two-fold,

first transforming the audio samples and then writing a buffer of transformed samples to

the socket stream.

Figure 3-6: Client-Side Recorder Usage: The Recorder is initialized with an
HTML element that will toggle recording and an optional options object where the
developer can specify the buffer length for the Recorder’s ScriptProcessorNode
and the metadata to be sent to the server along with the stream of audio.

	
	

	

43	

1. Audio Sample Transform: The browser provides the user’s audio as a buffer of

raw PCM 32-bit floating-point samples. The buffer size is configurable but defaults

to 2048 bytes, meaning it holds 512 Float32 samples. Each of these samples is

converted to a 16-bit signed integer, resulting in a 1024 byte buffer. Given the

standard browser audio sample rate of 44.1kHz and the recorder’s default buffer size,

one buffer contains approximately 12 milliseconds of audio. This custom processing

function is called every time the buffer fills with new audio data, which translates to

approximately 86 times a second.

2. Writing to the Stream: Audio streaming from the recorder is underpinned by

socket.io-stream, a wrapper for socket.io that allows you to transfer large amounts of

binary data from the client to the server or vice versa with the Node.js Stream API.

Right before recording starts, the recorder creates a new stream with socket.io-

stream and emits an event on the socket with that stream and some metadata to the

server. Then in the processor function, after the audio samples are converted to 16-

bit integers, the samples need to be written to the stream; however, the audio buffer

cannot be written directly to the stream. The stream, an implementation of the

Node.js Stream API, requires a Node-style Buffer object as well, which is not

interchangeable with the browser’s ArrayBuffer object. So a Node-style Buffer is

created from the data in the browser-style audio buffer, and then this Node buffer is

directly written to the socket stream.

Each buffer of audio data is transmitted over socket individually, but the socket.io-stream

wrapper implements the streaming interface around these transmissions. When socket.io is

able to establish a WebSocket connection to the server, we are guaranteed the in-order

delivery of each audio buffer transmitted.

	
	

	

44	

Usage: To integrate a recorder instance with the user interface and other JavaScript

components, the developer subscribes listeners to a few recorder events: ‘start’, ‘stop’, and

‘result’. The two most likely values for configuration are the buffer length and the audio

metadata. The buffer length refers to the size of the buffer (in bytes) that is passed into

the ScriptProcessorNode for processing. The shorter the buffer, the lower the latency

between some audio being produced and the recorder processing that audio; however, longer

buffers may help reduce audio breakup and glitches if the processing behaves differently at

Figure 3-7: Client-Side Recorder Design: The Recorder creates an audio
processing graph consisting of a MediaStreamAudioSourceNode connected to a
ScriptProcessorNode. The audio source for the MediaStreamAudioSourceNode is
supplied by promiseUserMedia. The ScriptProcessorNode operates on a buffer of
audio data, converting it to the right encoding and the right type of buffer before
writing it to the socket stream.

MediaStreamAudioSourceNode

Act as audio source for following
nodes

ScriptProcessorNode

Run custom code for client side
Recorder processing

function onAudioProcess{

 convert audio data;

 package into buffers;

 prep data for stream;

 write data to stream;

}

Buffers sent to server
over socket stream

function promiseUserMedia{

 wait for user media;

 once ready, make available

 for others to use;

}

	
	

	

45	

the boundaries of the audio. The audio metadata is a preset object sent along with the

recorder’s audio stream to the server every time a recording is made through this recorder

instance. This is primarily useful for when you have multiple recorder instances on the page

with different associated data that the server needs to know, such as prompted text.

3.2.4 Player
	

1	 var	 player	 =	 spoke.Player(audioStream);	

	

The Player module enables playing an audio stream (such as one from the server) over the

user’s speakers with the Web Audio APIs. Unlike the previously discussed feature modules,

the Player does not hook onto an HTML element but rather an audio stream. The

developer writes her own playback request to emit over the Socket.io socket on a particular

user interaction, and then adds a socket listener for the server’s audio stream response. In

this listener, the developer can create a new Player instance to play the audio stream

returned by the server and register listeners for when the player is ‘ready’ to begin playing

and when it is ‘done’ playing.

Figure 3-8: Client-Side Player Usage: The Player is initialized with an
audio stream and will automatically play the audio as soon as it is ready. An
options object may be passed in during initialization to prevent this default
behavior.

	
	

	

46	

Over the stream, audio data arrives a buffer at a time. Internally the Player listens to the

provided audio stream, consolidating all these audio data buffers into one buffer for

playback. The main buffer construct on the browser is the ArrayBuffer, a fixed-length raw

binary data buffer. Working with these buffers can be cumbersome because The

ArrayBuffer’s raw contents cannot be directly manipulated and its size in bytes is fixed at

initialization, which makes working with it cumbersome:

Figure 3-9: Client-Side Player Design: The Player routes audio from an
AudioBufferSourceNode to an AudioDestinationNode that plays the audio over the
user’s speakers. The Player accumulates the audio data from the stream and
consolidates it into one ArrayBuffer. Using the decodeAudioData API, it
transforms the ArrayBuffer into an AudioBuffer to provide to the source node.

function prepAudioData{

 decode audio data from

 ArrayBuffer to

 AudioBuffer;

 store in source node;

}

AudioBufferSourceNode

Act as audio source for following
nodes

AudioDestinationNode

Play audio through default
destination (e.g. speakers)

	
	

	

47	

• To manipulate the data in an ArrayBuffer, you have to create a TypedArray around

it, which provides an interpretation of the raw binary data as data of a certain type,

e.g. Uint8Array is a TypedArray that provides a view of the data as unsigned 8-bit

integers.

• To concatenate two buffers, you have to create a new larger buffer and copy over the

data from each smaller buffer.

Nevertheless, the player needs to merge all the small buffers of audio data from the stream

into one large buffer for playback. As the player listens to the audio stream, it gathers all

the audio data buffers into an array of buffers. When the stream ends, it counts the total

number of bytes of audio data from all the small buffers and makes a new empty

ArrayBuffer of that size, then copies a TypedArray of each small buffer into the appropriate

section of a TypedArray of the large buffer.

Once the audio data is consolidated, the player emits the ‘ready’ event and will

proceed to play the audio using the Web Audio API. The ArrayBuffer of audio data first

needs to be converted to an AudioBuffer that an AudioBufferSourceNode knows how to

play. This is done asynchronously with the API’s decodeAudioData method, and then the

player makes a new AudioBufferSourceNode for the resulting AudioBuffer. This source node

is connected directly to an AudioDestinationNode representing the user’s speakers. By

default the Player will automatically play the audio once it is ready, but it can be

configured to wait and let the developer manually trigger playing later. The developer can

also listen for the ‘done’ event to make UI updates when playback has finished.

3.2.5 Recognizer and Synthesizer

The Recognizer and Synthesizer modules are wrappers around the two core pieces of the

Web Speech API, the SpeechRecognition and SpeechSynthesis interfaces, which provide

	
	

	

48	

speech recognition and speech synthesis, respectively, as a service. Though most browsers do

not support the Web Speech API because it is still experimental, Chrome provides full

support and support in Firefox is pending. The Spoke wrapper modules abstract some of the

common patterns for working with these interfaces to simplify development. At the same

time, integrating these interfaces into Spoke provides greater visibility for them in the lab

and an easier starting point for most developers.

The Recognizer module simplifies both hooking recognition toggling onto an element

of the page and taking action on the recognizer’s state changes and final results1. In the

constructor, the Recognizer sets a click listener on the HTML element that was passed in

such that recognition is toggled on and off with each click. When toggled, the Recognizer

either emits a ‘start’ or ‘stop’ event that the developer can listen for to make appropriate

UI changes on the page. Then when the underlying SpeechRecognition object has new

speech recognition results, it emits a SpeechRecognitionEvent object that contains an array

of SpeechRecognitionResults, each of which contains an array of

SpeechRecognitionAlternatives specifying one possible transcript and its confidence score.

The Recognizer emits a ‘result’ event passing through this deep SpeechRecognitionEvent

object, but as a convenience for developers it also searches through the event for the best

transcript of the most recent final result and emits that with a ‘finalResult’ event.

The SpeechSynthesis interface is far less complex and thus the Synthesizer module

provides only a thin wrapper for it. A Synthesizer instance is created with a string of text

to translate to speech and will automatically prepare and play the synthesized speech if

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	

1	 Note that the Recognizer module can also be used alongside the Recorder module, hooked
onto the same button, and listening to the same audio.
	

	
	

	

49	

autoPlay is set to true (the default). The ‘play’ method takes care of trying to play the

utterance immediately, which involves cancelling any currently-playing utterances and

clearing the utterance queue before queuing the current utterance and resuming the

SpeechSynthesis’s playing. In addition to the standard ‘start’ and ‘end’ events, the

Synthesizer also re-emits a ‘boundary’ event triggered when the currently playing utterance

reaches a word or sentence boundary.

3.2.6 CSS Library

The spoke-client package also provides a CSS library for styles shared throughout the lab.

This library is small to begin with, but with greater use of Spoke we can add more styles

that will help standardize the look of websites and their components built by SLS.

Currently the library includes some utility classes for text styling and classes for styling a

microphone icon that is used in many sites around the lab.

3.2.7 Package Distribution and Usage

Spoke-client uses RequireJS to explicitly manage its module dependencies and

asynchronously load them in the browser, and it uses the r.js optimizer to build and

optimize itself for production. The r.js optimizer is a command line tool that allows you to

get the best of both worlds out of RequireJS—source code divided into modules in separate

files with managed dependencies for development, and then one minified self-contained file

for production. It takes the name of the file to build and then follows its dependency chain,

building a standalone output file that concatenates the original file and all its dependencies,

and then optionally minifies it. Build options can be specified on the command line or in a

simple JavaScript build file. Spoke-client does the latter, defining three builds, one for the

minified CSS library spoke.min.css (1 kb), and one each for a development and production

	
	

	

50	

version of the JavaScript modules, spoke.js (198 kb) and spoke.min.js (79 kb) respectively.

The ultimate result is a modularized, production-ready file that can be required (using

RequireJS) into other projects to provide all the functionality of spoke-client.

3.3 Spoke Server-Side Library

The Spoke server-side library provides modules of two types—audio utilities and speech

technologies—geared towards building a speech processing backend for a webserver, but the

library can also be used for offline scripting and batch processing (see Figure 3-1). As a

library, not a framework, it is up to the developer to listen for client events and then decide

which pieces of the library to use. The library’s utilities enable recording raw or wav audio,

transcoding audio files or live audio streams, and streaming audio from a saved file. The

library also provides standardized access to and usage of some speech technologies built in

the lab, such as

• domain-specific speech recognizers

• forced alignment of an audio sample to expected text

• mispronunciation detection on a set of utterances from the same speaker

These integrated speech technologies support the key functionality we wish to demonstrate

through sample web applications, and any technology that has a command line interface

can also be integrated into Spoke, even a hardware recognizer. This makes the technology

visible, accessible, and usable for website backends and offline JavaScript processing. For

technologies with complex outputs, such as forced alignment, the technology module is

paired with an output parser that transforms the output into a usable JavaScript object.

	
	

	

51	

Each module employs prototype-based object-oriented programming to export one

object providing a clean interface to a tool or technology. Under the hood, all of these

modules operate by running a command in a new process, though the utility modules do

this indirectly through the SoxCommand interface. In Node’s single-threaded model,

asynchronously creating these new processes is essential, allowing the developer to spin up a

long running process and then wait for a callback; Node provides a child_process module to

accomplish exactly this. Callbacks are the standard Node.js way, but they are not always

the best way for handling asynchronous control flow when multiple asynchronous steps need

to be chained together. In this case, the preferred option is that the command execution

method returns a Promise instead of calling a callback, since Promises can easily be chained

to create a sequential pipeline of asynchronous tasks2. Each module in the library supports

both styles, callback-based and Promise-based, leaving it to the developer’s discretion for

her particular case.

3.3.1 Audio Utilities

Spoke provides a utility-belt of audio tools that complement its speech technologies with

support for recording audio streams to a file, creating audio streams from a file, and

building arbitrarily complex SoX commands that will be run in a new process. This last

piece is enabled by sox-audio, a Node.js package I built as part of this thesis but that,

independent of Spoke, is useful for the community of Node.js developers, so it was released

as a standalone package on NPM. The Recorder and Player modules then use sox-audio to

do most of the heavy lifting.
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	

2	 Not to be confused with a streaming pipeline, which is also asynchronous but does not
wait for one step to finish before the next one begins.	

	
	

	

52	

3.3.1.1 Recorder

The Recorder module records audio from a raw input stream to a file, either in the original

raw format or in an optionally downsampled wav format. This feature of Spoke alone is

greatly useful, enabling live audio recording on the web for the collection of audio samples

for training and testing of new speech technologies.

At initialization, the Recorder can be configured with information about the raw

input streams it will be handling, such as their bit depth and sample rate, and with the

desired sample rate for converted wav files. The crucial method is convertAndSave, which

accepts a raw audio file or raw audio stream and a wav file or stream for outputting the

transcoded results; transcoding is carried out with a SoxCommand built from the method’s

parameters for input and output streams or files and the Recorder configuration for sample

rates, etc. For offline processing, this can be used to transcode already saved raw files to

wav files. More interestingly, as part of a web backend, this can be used to perform

streaming transcoding of a raw stream to a wav stream, which could start being processed

before all the audio has been received if a speech technology accepted streaming audio. As it

is, all of them currently accept only saved wav files, but this should change over the next

year.

3.3.1.2 Player

Turning a saved file into a stream is simple in Node.js, but turning only part of an audio

file into a stream or concatenating multiple audio files, or parts of them, into one stream is

not. The Player module enables all of the above, using SoxCommands for audio trimming

and concatenation. Given a wav input (file or stream) and the start sample and end sample

of the desired section, the Player builds a SoxCommand that cuts the audio at the specified

samples and pipes out only the desired section to a provided stream. Similarly, a list of wav

	
	

	

53	

files can be trimmed and concatenated such that the resulting audio stream starts at the

specified start sample of the first file and ends at the specified end sample of the last file in

the list, with intervening files included in their entirety.

3.3.2 Integrated Speech Technologies

A core subset of the lab’s speech technologies have been integrated into Spoke allowing for

their use in Node.js server backends or processing scripts. Each technology has its own

module providing a clean JavaScript interface to its typical command line usage. Each

module has a default configuration for calling a certain set of scripts to carry out the

execution steps of the technology, but alternative scripts to call for these steps can be

provided in the ‘options’ object; this means another implementation of the same technology

can be swapped in3 at run time and used through the same JavaScript interface.

Though these technologies can be used through Spoke for offline processing, Spoke is

first and foremost designed to enable interactive speech applications on top of the lab’s

technologies—thus the functionality of each module is broken into small logical steps as

much as possible to allow for the shortest delay before responding to the user. Technologies

primed for integration into Spoke should mirror this pattern, breaking the processing into

separate logical steps that will be meaningful to other developers or the end user. A great

example of this is in how the mispronunciation detection technology was designed: originally

it consisted of one long-running process called after all utterances had been collected, but it

was split into a pre-processing step to be called on each utterance after it is saved and a

shortened mispronunciation detection step after all utterances are collected.
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	

3 As long as it adheres to the same script interface for inputs and outputs, including
ordering of arguments for input and location and formatting of output.

	
	

	

54	

1	 var	 nutritionOptions	 =	 {	

2	 	 	 	 	 	 recognitionScript:	 ‘my/local/path/nutrecognizer.sh’,	

3	 };	

4	 	

5	 var	 nutritionRecognizer	 =	 new	 Spoke.Recognizer(nutritionOptions);	

3.3.2.1 Recognizer

The Recognizer enables JavaScript integration of any speech recognizer built in the lab with

a command-line interface taking a single wav filename and outputting the recognized text

on stdout. A new Recognizer instance will by default use a Kaldi recognizer trained on

nutrition logs (easy to change for Spoke, but that’s what we’ve been using mainly), but it

can be configured with a new path to any recognition script with ‘recognitionScript’ in

‘options’ (Figure 3-10). Recognition is performed asynchronously on a wav file with either

the ‘recognize’ or ‘recognizeAsync’ method, depending on whether the developer wants to

use callbacks or Promises; either way, the recognition script is executed with Node’s

child_process module and the script’s output on stdout will be provided to the developer

asynchronously (i.e. when available).

3.3.2.2 Forced Alignment

Figure 3-10: Recognizer Configuration: Spoke’s Recognizer interface can be
used to interact with any recognizer that implements a basic command line
interface that accepts a wav filename and outputs the recognition results on
stdout.

	
	

	

55	

The Alignment module provides a simplified JavaScript interface for performing forced

alignment with Kaldi. The developer must provide an outputDir at initialization, an

existing directory where the forced alignment script can put output and associated

processing files, and then call the initDir method on the Alignment instance before any

forced alignments can be performed. The ‘forcedAlignment’ method requires a wav file and

a txt file to which to align the speech and performs forced alignment on them,

asynchronously returning the timing results txt file; behind the scenes, the Alignment

module handles also passing the outputDir to the alignment script, simplifying the interface

presented to the developer.

1	 [start	 sample]	 [end	 sample]	 [phoneme]	 [word]	 [wordboundary]	

2	 24960	 	 	 	 	 26080	 	 	 	 	 	 	 w	 	 	 	 	 	 	 	 	 warm	 	 	 I	

3	 26080	 	 	 	 	 27520	 	 	 	 	 	 aa	

4	 27520	 	 	 	 	 28000	 	 	 	 	 	 	 r	

5	 28000	 	 	 	 	 28960	 	 	 	 	 	 	 m	 	 	 	 	 	 	 	 	 warm	 	 	 E	

The timing file has a simple column format specifying on each row a phoneme, its start

sample and its end sample, with two optional columns for the word the phoneme is from

and whether the phoneme is at the start or end of this word. This file is difficult to use

directly, so the Alignment has an associated parser that reads in this file with phoneme-

Figure 3-11: Example Output from Forced Alignment: Running forced
alignment on a wav and txt file results in a timing file with a simple column
format as shown above. This output contains the timing data for each phoneme of
each word in the txt file, but word-level timing can be extracted by taking the start
sample from the first phoneme and the end sample from its last phoneme.

	
	

	

56	

level timing information and extracts word-level timing information. The method

getAlignmentResults handles parsing a timing file and asynchronously returns a list of

objects representing words in the alignment with their start samples, end samples, and a list

of their phonemes. Again, each of these methods can be chained with Promises, leading to

easily readable code.

1	 alignment.forcedAlignmentAsync(wavFilename,	 txtFilename)	

2	 	 	 	 	 	 .then(function	 (timingFilename)	 {	

3	 	 	 	 	 	 	 	 	 	 	 return	 alignment.getAlignmentResultsAsync(timingFilename);	

4	 	 	 	 	 	 });	

3.3.2.3 Mispronunciation Detection

The Mispro module wraps the mispronunciation detection technology built in our lab by

Ann Lee using the Kaldi toolkit. This technology processes a set of utterances from the

same speaker over a set of known text and determines the n most likely mispronunciation

patterns in the collected speech. An integral part of this system is performing forced

alignment on each (utterance, text) pair in the set, so each Mispro instance takes in an

outputDir then creates its own Alignment instance and exposes its methods. Similar to the

Figure 3-12: Forced Alignment Result Chaining: The output of
forcedAlignmentAsync is a Promise that will be fulfilled with the name of the
timing file. This Promise can be awaited with ‘then’ to perform some action on its
completion, namely to parse the timing file with getAlignmentResultsAsync, which
also returns a Promise that can be awaited and chained in a similar manner.

	
	

	

57	

Alignment scripts, the Mispro scripts also require this outputDir, which the Mispro module

handles passing to the script calls for the developer.

 The mispronunciation detection system is broken into a few steps to enable more

interactivity and shorter delays while processing. Each (utterance, text) pair undergoes a

forced alignment step and then a mispronunciation preprocessing step. These two steps are

separate because the forced alignment output may be relevant for enabling certain user

interactions after recording (such as playing back a certain word), whereas the

preprocessing step is purely for the benefit of the system to speed up the final computation

over the whole set of utterances. After all utterances from the same speaker have been

processed in this way, the misproDetection method will perform the final step, finding

patterns of mispronunciation, and outputting the identified mispronunciations to stdout.

The stdout output of the mispronunciation system is not directly useable, so the

Mispro module has an associated parser that transforms the output into a suitable

JavaScript object. The system iteratively identifies mispronunciation patterns in decreasing

order of severity (or probability), and outputs for each pattern its triphone rule and the

words in the text set matching the pattern. The parser then constructs an ordered list of

objects representing the mispronounced words, with the word itself, the expected and actual

phoneme contributing to the mispronunciation, and the location of the phoneme in the

word.

1	 mispro.forcedAlignmentAsync(wavFilename,	 txtFilename)	

2	 	 	 	 	 	 .then(function	 (timingFilename)	 {	

3	 	 	 	 	 	 	 	 	 	 	 return	 mispro.getAlignmentResultsAsync(timingFilename);	

4	 	 	 	 	 	 })	

	
	

	

58	

5	 	 	 	 	 	 .then(function	 ()	 {	

6	 	 	 	 	 	 	 	 	 	 	 return	 mispro.preprocessAsync(wavFilename);	

7)	

8	 	 	 	 	 	 .then(function	 ()	 {	

9	 	 	 	 	 	 	 	 	 	 	 var	 misproOutput	 =	 mispro.misproDetectionStream();	

10	 	 	 	 	 	 	 	 	 	 	 var	 misproResultsStream	 =	 	

11	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 mispro.getMisproResultsStream(misproOutput);	

12	 	 	 	 	 	 });	

3.4 SoX Audio Processing Module

SoX is a command line utility for audio manipulation that can convert between many audio

formats and apply various effects to audio files [18]. It supports streaming audio in and out

of processing commands and the use of subcommands to provide input for later routines

through a set of special filenames. This opens the door to interesting and complex

commands that could, for example, trim two files and concatenate them all in one line

without creating any intermediate files (Figure 3-14).

Figure 3-13: Mispronunciation Processing Chain: Using Promises, the
processing steps of mispronunciation detection can be chained for sequential
asynchronous execution. First we execute forced alignment, then parse the timing
file, then preprocess the utterance, and finally perform mispronunciation
detection. The last step involves a streaming pipeline between the output of
mispronunciation detection and a parser that turns results into JavaScript objects.

	
	

	

59	

1	

sox	 “|sox	 utterance_0.wav	 -‐t	 wav	 -‐p	 trim	 =4.03”	 utterance_1.wav	 “|sox	 	

	 	 	 	 	 utterance_2.wav	 -‐t	 wav	 -‐p	 trim	 0	 =2.54”	 trim_and_concat.wav	 -‐-‐combine	 	

	 	 	 	 	 concatenate	

	

Initially we were using SoX simply for downsampling and transcoding the raw PCM 44.1

kHz audio data from client browsers to 16 kHz wav files compatible with our recognizers.

For this basic usage of SoX’s command line interface, creating and executing the command

by hand using Node’s child_process module was rather simple: first save the raw audio to a

file, then compose the String command to perform transcoding and execute it (Figure 3-15).

However, taking this simple processing step to the next level of streaming transcoding was

vastly more difficult and we realized the need to abstract out the creation and management

of the commands. We searched for a Node module to accomplish this, but the ones we

found provided access to only a sliver of SoX’s capabilities. Seeing how useful it could be to

enable all of SoX’s capabilities through a JavaScript interface, I chose to take this

abstraction beyond just transcoding commands and make it for any SoX command in

general.

1	 var	 convertFileSox	 =	 function	 (rawFileName,	 saveToFileName)	 {	

Figure 3-14: Example Complex SoX Command: Here we use the special
filename "|program [options] ...” to create SoX subcommands that trim the start
or end off of a single file. Inside this subcommand, the –p flag indicates that the
SoX command should be used as in input pipe to another SoX command. The
overall SoX command has 3 inputs that it concatenates into a single output file:
utterance_0.wav trimmed to start at 4.03 seconds, utterance_1.wav untrimmed,
and utterance_2.wav trimmed to end at 2.54 seconds.

	
	

	

60	

2	
	 	 	 	 	 var	 COMMAND_FORMAT	 =	 'sox	 -‐r	 44100	 -‐e	 signed	 -‐b	 16	 -‐c	 1	 %s	 	

	 	 	 	 	 	 	 	 	 	 -‐r	 16k	 %s';	

3	
	 	 	 	 	 var	 commandLine	 =	 util.format(COMMAND_FORMAT,	 rawFileName,	 	

	 	 	 	 	 	 	 	 	 	 saveToFileName);	

4	 	 	 	 	 	 var	 command	 =	 child_process.exec(commandLine);	

5	 };	 	

	

The sox-audio module (currently open-sourced and available for public consumption on

NPM) provides a complete Node.js interface to the SoX audio utilities and many usage

examples. The main construct is a SoxCommand on which you progressively specify the

command’s inputs, outputs, effects, and associated options for each to build arbitrarily

complex SoX commands. This interface was heavily inspired by fluent-ffmpeg, a fluent

Node.js interface for Ffmpeg that operates in a very similar manner [33]. The SoxCommand

accepts any number of inputs and one or more outputs, where an input may be a filename,

a ReadableStream, or another SoxCommand, and an output may be a filename, a

WritableStream. If another SoxCommand is provided as input, it is treated as a

subcommand such that its output is piped into the main SoxCommand as input. The input

and output options are very similar, allowing you to specify the sample rate, encoding, file

type, etc. for each input and output. With SoxCommands transcoding a raw audio stream

to a wav audio stream is easily accomplished just by specifying a few input options and

output options (Figure 3-16). Even the complex command from the beginning of this

section is easy to construct using a couple SoxCommands with the ‘trim’ effect as input to

the main SoxCommand and applying the ‘concat’ effect (Figure 3-17).

Figure 3-15: Initial Use of SoX Transcoding in JavaScript: Our early
usage of SoX just created a String command to perform transcoding of a raw
audio file to a wav audio file and executed it with Node’s child_process module.

	
	

	

61	

1	 var	 command	 =	 SoxCommand();	 	

2	 	

3	 command.input(inputStream)	 	 	 	

4	 	 	 	 	 	 .inputSampleRate(44100)	 	 	 	

5	 	 	 	 	 	 .inputEncoding('signed')	 	 	 	

6	 	 	 	 	 	 .inputBits(16)	 	 	 	

7	 	 	 	 	 	 .inputChannels(1)	 	 	 	

8	 	 	 	 	 	 .inputFileType('raw');	

9	 	

10	 command.output(outputStream)	 	 	 	

11	 	 	 	 	 	 .outputSampleRate(1600)	 	 	 	

12	 	 	 	 	 	 .outputEncoding('signed')	 	 	 	

13	 	 	 	 	 	 .outputBits(16)	 	 	 	

14	 	 	 	 	 	 .outputChannels(1)	 	 	 	

15	 	 	 	 	 	 .outputFileType('wav');	

16	 	

17	 command.run();	

Figure 3-16: Example SoxCommand for Streaming Transcoding: In this
example a 44.1 kHz raw audio stream of signed 16-bit integer PCM data is
converted on the fly to a 16 kHz wav audio stream.

	
	

	

62	

1	 var	 command	 =	 SoxCommand();	 	

2	 var	 trimFirstFileSubCommand	 =	 SoxCommand()	 	 	 	 	 	

3	 	 	 	 	 	 .input('utterance_0.wav')	 	 	 	 	 	

4	 	 	 	 	 	 .output('-‐p')	 	 	 	 	 	

5	 	 	 	 	 	 .outputFileType('wav')	 	 	 	 	 	

6	 	 	 	 	 	 .trim(“=4.03”);	 	 	

7	 var	 trimLastFileSubCommand	 =	 SoxCommand()	 	 	 	 	 	

8	 	 	 	 	 	 .input(‘utterance_2.wav')	 	 	 	 	 	

9	 	 	 	 	 	 .output('-‐p')	 	 	 	 	 	

10	 	 	 	 	 	 .outputFileType('wav')	 	 	 	 	 	

11	 	 	 	 	 	 .trim(0,	 “=2.54”);	 	 	

12	 command.inputSubCommand(trimFirstFileSubCommand)	 	 	 	

13	 	 	 	 	 	 .input('utterance_1.wav');	 	 	 	

14	 	 	 	 	 	 .inputSubCommand(trimLastFileSubCommand)	 	 	 	 	 	

15	 	 	 	 	 	 .output(outputFileName)	 	 	 	 	 	

16	 	 	 	 	 	 .concat();	 	 	

17	 command.run();	

Figure 3-17: Example SoxCommand using SoxCommands as Inputs to
Trim and Concatenate Audio Files: This example leverages SoxCommands
as inputs to other SoxCommands, allowing for the results of one to be piped as
input into the other. The main SoxCommand concatenates three audio files, while
the two sub commands handle trimming the first and last files respectively.

	
	

	

63	

Chapter 4

Sample Applications
The central purpose of Spoke is to enable demonstrations of speech technologies built in the

Spoken Language Systems group. These demonstrations take the form of web applications

that may apply a mix of client-side and server-side tools to create interactive speech-

enabled websites. In this section we discuss three sample applications built with Spoke that

together cover all of Spoke’s client-side and server-side modules. These applications

illustrate the power and flexibility of Spoke’s modules as well as how easy they are to use

for building front-end features and backend processing. Each of these applications is backed

by an Express server using Socket.io and Spoke to handle processing the user’s audio data.

	
	

	

64	

4.1 Online Speech-Enabled Nutrition Log

The Spoken Language Systems group is currently developing a speech-enabled nutrition

system whose main goal is to enable efficient dietary tracking through an interactive speech

web interface. On the nutrition website the user describes a meal she had and her utterance

is recognized with the Web Speech API; the nutrition system then uses language

understanding techniques to determine the food items, their quantities, and their

descriptions, and then fetches appropriate images and nutritional information for each food

item to display to the user [32]. Ultimately we want to replace the Web Speech API

recognizer on the client-side with our own server-side domain-specific recognizer trained on

utterances from real user interactions with the system.

To this end, we wanted to augment the nutrition website’s existing functionality

with Spoke’s volume meter for visual feedback, its recording framework for collecting

utterances and its recognizer library for using the custom speech recognizer. However, the

nutrition system’s backend was already implemented in Java, so it was outside the Node.js

ecosystem where the Spoke server-side library is available. Thus while incorporating Spoke’s

client-side framework was straightforward, incorporating its server-side libraries required

setting up a separate JavaScript server for handling recording and recognition.

4.1.1 Nut

For the initial development and testing of this server, I built a small standalone application

called Nut that would carry out the same interactions with Spoke that we wanted to enable

in the nutrition system. The Nut webpage prominently displays a microphone icon, which

acts as both a volume meter and a record button, and the recognized text (Figure 4-1). On

the client-side, Nut creates a new VolumeMeter instance and a new Recorder instance on

	
	

	

65	

the HTML element for the microphone icon (Figure 4-2). When the icon is clicked, the

spoke-client Recorder begins sending the user’s audio stream to the server over Socket.io

with the event name ‘audioStream’. The Nut server handles the ‘audioStream’ event by

sending the audio stream to the Spoke Recorder (server-side) for streaming transcoding to a

wav file. Once the wav file is saved, Nut uses the Spoke Recognizer to run the wav file

through a Kaldi speech recognizer trained on nutrition logs, and then sends the recognition

result back to the client over Socket.io.

1	 var	 element	 =	 $('.volumeMeter');	

2	 var	 volumeMeter	 =	 spoke.microphone.VolumeMeter(element);	

3	 	

4	 var	 recorder	 =	 spoke.Recorder(element);	

5	 recorder.on('start.spoke.recorder',	 {},	 function	 (e)	 {	

Figure 4-1: Nut Application: The small Nut webpage displays a volume meter
on a microphone icon that doubles as the record button. When the icon is clicked,
it changes from blue to red to indicate the recording status. At the end of
recording, the audio is run through a recognizer on the server, and the client is
notified of the recognition result, which it places below the icon.

	
	

	

66	

6	 	 	 	 	 	 /*	 set	 icon	 color	 to	 red	 */	

7	 });	

8	 recorder.on('stop.spoke.recorder',	 {},	 function	 (e)	 {	

9	 	 	 	 	 	 /*	 set	 icon	 color	 to	 blue	 */	

10	 });	

11	 	

12	 recorder.socket.on('recognition	 results',	 function	 (text)	 {	

13	 	 	 	 	 	 /*	 update	 UI	 with	 recognition	 results	 */	

14	 });	

1	 var	 recorder	 =	 new	 Spoke.Recorder();	

2	 var	 recognizer	 =	 new	 Spoke.Recognizer();	

3	 	

4	 ss(socket).on('audioStream',	 function	 (stream,	 data)	 {	

5	 	 	 	 	 	 recorder.convertAndSaveAsync(stream,	 wavFilename)	

6	 	 	 	 	 	 	 	 	 	 	 .then(function	 (resultWavFilename)	 {	

7	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 return	 recognizer.recognizeAsync(resultWavFilename);	

Figure 4-2: Nut VolumeMeter and Recorder Instances: Nut makes an
instance of the VolumeMeter and of the Recorder, both of which are attached to
the same HTML element (the microphone icon). We can listen for certain
recorder and socket events to appropriately update the UI.

.

	
	

	

67	

8	 	 	 	 	 	 	 	 	 	 	 })	

9	 	 	 	 	 	 	 	 	 	 	 .then(function	 (recognitionResult)	 {	

10	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 socket.emit('result.spoke.recognizer',	 recognitionResult);	

11	 	 	 	 	 	 	 	 	 	 	 });	

12	 	 	 	 	 	 });	

	

	

	

4.1.1 The Nutrition System

The client-side usage of Spoke is almost exactly the same in the nutrition system as on the

Nut website except for a small amount of configuration to direct Socket.io to the URL for

the Nut server. Operating completely independently of the nutrition system’s Java server,

the Nut server handles recording the user’s nutrition logs and running a custom domain-

specific speech recognizer on them. These recognition results are returned to the client but

are not yet used by the nutrition system because the recognizer needs more training. The

recording we have enabled will help collect utterances for this training the more the system

is used.

Figure 4-3: Nut Server Recorder and Recognizer Setup: The Nut server
creates a new Recorder and Recognizer instance when a new socket connection is
established. Then it listens for an ‘audioStream’ event on the socket and handles
it by passing the stream to the Recorder for transcoding to a wav file. When the
Recorder finishes, the wav file is passed to the Recognizer for recognition.

	
	

	

68	

4.2 Amazon Mechanical Turk Audio Collection

The audio recording capabilities of Spoke are particularly expedient when applied to collect

audio data through Amazon Mechanical Turk (AMT) tasks [33]. Given the tens of

thousands of written nutrition logs collected for the nutrition system and our desire to build

a custom speech recognizer for the nutrition system, the nutrition domain was a prime

candidate for this audio collection task. For the first round of audio collection, we selected

Figure 4-4: The Nutrition System: The microphone icon acts as volume
meter and triggers both recognition with the Web Speech APIs and recording to
the Nut server when clicked. The nutrition system determines which parts of the
utterance correspond to food items, quantities, descriptions, and brands, and tries
to provide nutritional information about the identified food.

	
	

	

69	

and cleaned 1,000 nutrition logs, and in the second round we selected 5,000 logs with

minimal cleaning. In each round, we assigned each log a unique utterance ID and split them

into groups of 10 with a unique group ID.

For this AMT task, I built a task-oriented utterance collection website with Spoke

that displays instructions and a set of 10 utterances for the AMT workers (sometimes called

“Turkers”) to record. Each utterance has its own record button that is hooked up to an

instance of the spoke-client Recorder and configured with specific metadata to send to the

server along with the audio. This metadata specifies the utterance ID and the expected

utterance text that the Turker should be reading.

The server creates a new recording directory for each Socket.io connection it

receives. Then the server handles an audio stream and its metadata by saving the raw audio

and the transcoded wav file with the Spoke server-side Recorder, and saving the utterance

text from the metadata to a txt file. The filenames for these three files includes the unique

utterance ID included in the metadata. Upon successfully saving these files, the server

responds to the client with an ‘audioStreamResult’ event, echoing back the metadata along

with the path to the saved wav file to be included in the AMT results for the task.

As an early quality control measure, we wanted to verify that the utterances being

collected at least partially matched the expected text before allowing the Turker to submit

their assignment. Our nutrition recognizer could not be used for this purpose (since we were

still collecting data to train it), but the recognizer available in the Web Speech API was

well suited for the job. Thus while the audio is being recorded to the server, it is

simultaneously being processed with the Web Speech API, used through the spoke-client

Recognizer module. The final recognition results are compared to the expected text for

exact matches and partial matches—if the two match exactly, we accept the recording and

mark that utterance as “Perfect”; if at least 60% of the expected words are present in the

	
	

	

70	

recognized text, then we accept it and mark it as “Great”; otherwise, we mark it as “Redo”

and require that the Turker record the utterance again.

Using AMT’s ExternalQuestion data structure we can embed this webpage in a frame on

the Turker’s browser [34]. Any data we want to collect within AMT has to be in a named

field in a form that gets posted to a specific URL of the Mechanical Turk website. In this

Figure 4-5: Audio Collection Task on Amazon Mechanical Turk: The
Turkers are presented with a set of 10 sentences or sentence fragments to record
(5 shown in this screenshot). While recording one utterance, the record button
turns into a stop button and the other buttons on the page are disabled. After
recording, the UI is updated with feedback about the quality and success of the
recording. Sentences marked with “Redo” must be re-recorded before submission.

	
	

	

71	

task, we save the group ID, the Turker’s ID, and each of the utterance IDs, their expected

and recognized texts and the paths to their wav files on the server.

Using Spoke for this high traffic application allowed us to observe the client-server

audio streaming under great load while collecting thousands of utterances. Theoretically a

Node.js server can handle thousands of Socket.io connections if the server is properly

architected to minimize CPU usage on the application thread. The Spoke server-side library

excels at this: all CPU-intensive processing methods operate by creating a new child process

to handle the computation on a new thread. However, audio recording under high load was

still not perfect. Some of the AMT recordings had audio artifacts or were truncated, and

these issues were more pronounced with long polling connections than with WebSocket

connections, suggesting they may have resulted from timed out connections or a backed-up

stream to the server.

4.3 Orcas Island: Mispronunciation Detection

The mispronunciation detection technology being built in the group has great potential in

the field of language learning. To demonstrate its potential we built Orcas Island, an

interactive speech-enabled web application with Spoke that uses this core technology on the

backend to provide specific feedback on a user’s pronunciation. This application uses almost

all of Spoke’s client-side and server-side modules, illustrating how the features of Spoke can

be combined to create novel and complex demonstrations centered around a core

technology. The user can record utterances and play back a whole utterance or hone in on

just one word. Ultimately the application provides feedback about which words were

mispronounced, and allows the user to compare her pronunciation of the word with that of

a speech synthesizer.

	
	

	

72	

The mispronunciation detection system looks for patterns of mispronunciation made by the

same speaker over a set of utterances, so the application features a variety of short stories

(from Aesop’s Fables) broken into fragments for the user to read out loud. Each fragment is

presented in a separate box with its own controls for recording and playback, allowing the

user to focus on the story one sentence at a time. Each record button is hooked up to its

own spoke-client Recorder instance configured with specific metadata about the fragment to

send to the server along with the user’s audio stream (e.g. the fragment number and the

Figure 4-6: Orcas Island Homepage: Orcas Island features a selection of
short stories from Aesop’s Fables. The homepage displays our current selection of
stories and links to each one.

	
	

	

73	

fragment text). Each play button fires a Socket.io event requesting an audio stream of the

user’s utterance for that fragment to play back to the user.

1	 Promise.join(recordingPromise,	 txtPromise)	

2	 	 	 	 	 	 .then(function	 ()	 {	

3	
	 	 	 	 	 	 	 	 	 	 return	 mispro.forcedAlignmentAsync(wavFilename,	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 txtFilename);	

Figure 4-7: Reading a Short Story on Orcas Island: The story is broken
into small, readable fragments of one sentence or less. When the user records a
sentence, the utterance is processed on the server and after a short delay is
highlighted in light gray to indicate successful processing. When the user hovers
over a fragment or is reading a fragment, its control buttons appear and the text
is bolded to make it easier to read.

	
	

	

74	

4	 	 	 	 	 	 })	

5	 	 	 	 	 	 .then(function	 (timingFilename)	 {	

6	 	 	 	 	 	 	 	 	 	 	 return	 mispro.getAlignmentResultsAsync(timingFilename);	

7	 	 	 	 	 	 })	

8	 	 	 	 	 	 .then(function	 (utteranceTimingData)	 {	

9	 	 	 	 	 	 	 	 	 	 	 timingData[utteranceId]	 =	 utteranceTimingData;	

10	 	 	 	 	 	 	 	 	 	 	 socket.emit('success.spoke.alignment',	 metadata);	

11	 	 	 	 	 	 })	

12	 	 	 	 	 	 .then(function	 ()	 {	

13	 	 	 	 	 	 	 	 	 	 	 return	 mispro.preprocessAsync(wavFilename);	

14	 	 	 	 	 	 })	

15	 });	

When the server receives an audio stream from the client, it begins transcoding the raw

audio stream to a 16 kHz wav file with the Spoke Recorder and then runs the saved file

through a processing pipeline comprised of Spoke’s integrated speech technologies and

chained together with Promises. Given the saved wav file and the fragment text the user

was reading, the server runs asynchronous forced alignment using Spoke’s Alignment

Figure 4-8: Orcas Island Mispronunciation Processing Chain: The
server uses Promise chaining to create a sequential asynchronous processing
pipeline. This pipeline first waits on the wav and txt files to be successfully saved,
then performs forced alignment, gets the alignment results and saves them,
notifies the client of success, and performs mispronunciation preprocessing.

	
	

	

75	

module. When this finishes, it uses the Alignment module to parse the timing results and

present them in a JavaScript object. At this step the server notifies the client that playback

for the recorded fragment is now available and goes on to the last stage of the pipeline,

preprocessing for mispronunciation detection.

Playback requests from the client are fulfilled with the Spoke Player on the server. If an

entire utterance was requested, the Player simply creates a stream from the saved wav file

for that utterance and the server sends that audio stream to the client where it is played

with the spoke-client Player module. Requests for a single word of one utterance require

Figure 4-9: Orcas Island Mispronunciation Analysis UI: The results of
mispronunciation detection are displayed in a table with the more significant
mispronunciation patterns near the top. The client uses the Spoke Synthesizer to
enable a comparison between the user’s pronunciation and the correct
pronunciation of the word. The magnifying glass will highlight all instances of that
word in the read fragments.

	
	

	

76	

trimming the audio file with the server-side Player, using the timing results of the forced

alignment step, before streaming.

Figure 4-10: Orcas Island Recording and Processing Diagram: This
diagram illustrates how the spoke-client Recorder streams audio in buffers to the
server, where the server-side Recorder converts the audio to a wav file and then
passes it into the processing pipeline outlined in Figure 4-8.

Server Side

Recorder Recorder

Client Side

start() saveAndConvertAsync()

Alignment

forcedAlignmentAsync()

Alignment

getAlignmentResultsAsync()

Mispro

preprocess()

read from stream

buffers sent to server over socket stream with metadata

then

then

then

	
	

	

77	

When the user is finished reading, the client notifies the server and it begins the final

mispronunciation detection step, analyzing all the utterances as a set. Unlike the Promise-

chained pipeline from earlier, this step forms a pipeline of streams. The Mispro module’s

misproDetectionStream method returns a stream for the output from the mispronunciation

detection system, and getMisproResultsStream transforms the output stream into a stream

of results. Each object in the results stream represents one mispronounced word, including

additional information about the part of the word affected by the error and the location of

one instance of the word in the recorded utterances. Passing along this information to the

client, the user can see the mispronounced part of the word highlighted and can hear her

own pronunciation of the word juxtaposed with the correct pronunciation generated by the

Spoke Synthesizer module.

1	 socket.on('doneReading',	 function	 ()	 {	

2	 	 	 	 	 	 var	 misproOutput	 =	 mispro.misproDetectionStream();	

3	
	 	 	 	 	 var	 misproResultStream	 =	 	

	 	 	 	 	 	 	 	 	 	 mispro.getMisproResultsStream(misproOutput);	

4	 	 	 	 	 	 misproResultStream.on('data',	 function	 (misproWord)	 {	

5	 	 	 	 	 	 	 	 	 	 	 socket.emit('result.spoke.mispro',	 misproWord);	

6	 	 	 	 	 	 });	

7	 });	

Figure 4-11: Final Mispronunciation Detection Step With A Stream
Pipeline: Instead of using Promises, this method handles the final
mispronunciation detection step by using Streams. The stdout output from the
mispronunciation detection system is transformed into a Stream of objects
representing mispronounced words.

	
	

	

78	

This application uses Spoke extensively to enable interactivity in the demonstration of the

mispronunciation detection system. We showed how Spoke’s modules could be combined in

powerful ways to build novel features. For example, combining the Player’s ability to trim

audio with the Alignment’s timing information, we implemented word-level playback from

recorded utterances. Moreover, most methods of Spoke’s server-side modules can be chained

together with Promises to create a sequential, asynchronous processing pipeline.

	
	

	

79	

Chapter 5

Future Work

Now that Spoke has bridged the gap between backend speech technologies and frontend

web applications, we must consider areas for expansion and improvement.

5.1 Streaming Speech Recognition

With a continuous streaming speech recognizer, interactive speech-enabled web applications

can be taken to the next level. This type of recognizer can operate on a stream of audio,

outputting recognition hypotheses even as more audio comes in. As it receives more audio,

the newest input may change the last few words of the best hypothesis, but over time

	
	

	

80	

prefixes of the best partial hypothesis tend to stabilize [35]. The Web Speech API supports

streaming recognition, and many developers have demonstrated its ability to make websites

more responsive and engaging by providing more immediate feedback to the user. However,

this browser API is currently only available in Chrome.

SLS seeks to build our own streaming speech recognizer in Kaldi to serve this

purpose across multiple browsers and multiple devices. New speech technologies such as this

can be integrated into Spoke through a command line interface, as has been done for non-

streaming Kaldi recognizers already. A streaming recognizer could be integrated into Spoke

in a very similar manner, except that instead of providing a saved wav file to the new child

process executing the technology, it would set up the child process to take audio input from

stdin and then pipe the user’s audio stream onto stdin, much like the sox-audio

SoxCommand does for streaming transcoding.

5.2 Reducing Bandwidth Usage and Dropped Audio

Though Spoke has proven its usefulness for audio recording from desktop browsers, it has

not been thoroughly tested on mobile browsers. The initial tests on an Android Chrome

browser produced barely intelligible audio with chunks of zeros and repeating waveforms

that suggest some buffers were being duplicated and others were not getting read in time.

Client-side downsampling could help reduce these occurrences by lightening the load on the

client, but even so we will most likely need to move the recording processes to a background

task using the Web Workers API [36]. Since these artifacts sometimes crop up even on

desktop browsers, this is an important area for further investigation.

 Another way we might reduce bandwidth is by transmitting FFT magnitudes

instead of raw audio data. This could be achieved with an audio routing graph very similar

	
	

	

81	

to that of the spoke-client VolumeMeter: a MediaStreamAudioSourceNode connected to an

AnalyserNode connected to a ScriptProcessorNode. However, the configuration of the

AnalyserNode would be substantially different. The VolumeMeter does not require high

fidelity, so it can perform a small FFT over a larger chunk of audio data. If we plan to use

the FFT output for backend processing, we will have to try a few sets of configuration

parameters for the FFT size and the audio data buffer size to strike the right balance. The

ScriptProcessorNode could easily be setup to transmit a buffer of FFT magnitudes to the

server over Socket.io following the example in the spoke-client Recorder.

	
	

	

82	

Chapter 6

Conclusion

As research progresses and new speech technologies are developed, it is crucial to be able to

create tangible implementations and applications utilizing the advancements. However,

without a convenient method for doing so, developers and researchers will be stuck re-

inventing the wheel every time they wish to showcase a new technology or prepare an

interface for data collection from users at scale. Spoke is a consolidated framework that

allows a developer to quickly and simply take a speech-related technology and produce an

application for almost any purpose, without having to tailor-make a solution from scratch.

 Spoke leverages modern web technologies to enable the creation of speech-enabled

websites. With an emphasis on modularity, the framework is flexible and powerful enough

	
	

	

83	

to work with any spoken language system with a command line interface, while still

allowing for a high level of customization by the developer. A client-side framework enables

the creation of interactive UI elements, and a server-side library allows one to set up a web

server to power the front end, or even use the methods in a standalone fashion to create

batch-processing scripts.

 In this thesis, three examples of complex speech-enabled websites created with the

help of Spoke were explained, demonstrating how the various modules can be utilized to

enable a multitude of applications with different goals. This included a nutrition-related site

that used Spoke to help gather spoken information from users about their daily eating

habits, a scalable Amazon Mechanical Turk application for large-scale data collection, and a

mispronunciation detection website that provides automatic feedback to people seeking to

learn to speak in a new language.

 Because of the modularity inherent in the framework, it leaves a lot of room for

further advancements to be made piece by piece, guaranteeing that developers that use

Spoke will always have the latest tools available to them. Spoke will help greatly reduce the

overhead and production time to bring a newly-developed speech-related technology into a

real, working application. Ultimately we hope that this type of power in the hands of

researchers and developers will go a long way in enabling a broader range of human-

computer interaction through natural spoken language.

	
	

	

84	

	
	

	

85	

Bibliography
[1] C. Cai, Adapting Existing Games for Education Using Speech Recognition, S. M.

Thesis, MIT Department of Electrical Engineering and Computer Science, June 2013.
[2] J. Liu, S. Cyphers, P. Pasupat, I. McGraw, and J. Glass, "A Conversational Movie

Search System Based on Conditional Random Fields," Proc. Interspeech, Portland,
Oregon, September 2012.

[3] A. Lee and J. Glass, "Context-dependent Pronunciation Error Pattern Discovery
with Limited Annotations," Proc. Interspeech, pp. 2877-2881, Singapore, September
2014.

[4] A. Gruenstein, I. McGraw, and I. Badr, "The WAMI Toolkit for Developing,
Deploying, and Evaluating Web-Accessible Multimodal Interfaces," Proc. ICMI,
Chania, Crete, Greece, October 2008.

[5] C. Varenhorst, Making Speech Recognition Work on the Web, M.Eng. thesis, MIT
Department of Electrical Engineering and Computer Science, May 2011.

[6] D. Huggins-Daines, et al. “Pocketsphinx: A free, real-time continuous speech
recognition system for hand-held devices,” Acoustics, Speech, and Signal Processing,
2006. ICASSP 2006 Proceedings.

[7] http://cmusphinx.sourceforge.net/2013/06/voice-enable-your-website-with-
cmusphinx/

[8] https://github.com/mattdiamond/Recorderjs
[9] https://dvcs.w3.org/hg/speech-api/raw-file/9a0075d25326/speechapi.html
[10] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M.

Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer and K.
Vesely, "The Kaldi Speech Recognition Toolkit," in IEEE 2011 Workshop on
Automatic Speech Recognition and Understanding, IEEE Sginal Processing Society,
2011.

[11] http://kaldi.sourceforge.net/online_programs.html
[12] http://kaldi.sourceforge.net/online_decoding.html
[13] https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
[14] https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
[15] https://nodejs.org/

	
	

	

86	

[16] https://github.com/substack/stream-handbook#introduction
[17] http://docs.libuv.org/en/v1.x/
[18] http://sox.sourceforge.net/
[19] https://promisesaplus.com/
[20] https://www.promisejs.org/
[21] https://github.com/petkaantonov/bluebird
[22] http://requirejs.org/docs/commonjs.html
[23] http://requirejs.org/
[24] http://requirejs.org/docs/optimization.html
[25] https://github.com/jrburke/r.js
[26] https://www.npmjs.com/
[27] http://expressjs.com/
[28] http://www.ractivejs.org/
[29] http://socket.io/
[30] https://developer.mozilla.org/en-US/docs/WebSockets
[31] https://developer.mozilla.org/en-US/docs/Web/API/AudioNode
[32] M. Korpusik, Spoken Language Understanding in a Nutrition Dialogue System, M.S.

thesis, MIT 2015
[33] http://aws.amazon.com/documentation/mturk/
[34] http://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_

ExternalQuestionArticle.html
[35] I. McGraw and A. Gruenstein, "Estimating word-stability during incremental speech

recognition," 2011.
[36] https://github.com/fluent-ffmpeg/node-fluent-ffmpeg

