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Abstract
There is a growing demand for data-driven web applications that help automate organizational

and business processes of low to medium complexity by letting users view and update structured
data in controlled ways. We present Object Spreadsheets, an end-user development tool that
combines a spreadsheet interface with a rich data model to help the process administrators build
the logic for such applications themselves. Its all-in-one interface with immediate feedback has
the potential to bring more complex tasks within reach of end-user developers, compared to
existing approaches.

Our data model is based on the structure of entity-relationship models and directly supports
nested variable-size collections and object references, which are common in web applications but
poorly accommodated by traditional spreadsheets. Object Spreadsheets has a formula language
suited to the data model and supports stored procedures to specify the forms of updates that
application users may make. Formulas can be used to assemble data in the exact structure in
which it is to be shown in the application UI, simplifying the task of UI building; we intend
for Object Spreadsheets to be integrated with a UI builder to provide a complete solution for
application development.

We describe our prototype implementation and several example applications we built to
demonstrate the applicability of the tool.
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1 Introduction

A wide class of web applications involve routine but non-trivial manipulations of data, to
support sharing of information, small-scale social interactions, and business processes. For
example, a school arranging parent-teacher conferences may want an application that lets
the family of each student schedule a meeting with each of the student’s teachers, avoiding
problems such as double-booking (Fig. 1).
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Teacher Slot Meeting

name hours day time parent slot

•

Flitwick M4-5 • Mon 4:00p • Molly Tue 3:00p

T3-3.30 • Mon 4:30p • Xeno Mon 4:00p

• Tue 3:00p

•

Snape M2-4 • Mon 2:00p • Augusta

• Mon 2:30p • Lucius Mon 2:00p

• Mon 3:00p

• Mon 3:30p

←→

PTC

Mon Tue
2:00p

2:30p

3:00p Molly

3:30p

4:00p

4:30p

5:00p

 Available  Occupied  Your choice

Figure 1 A simple parent-teacher conference application, with the Object Spreadsheet on the
left and a web UI on the right.

Organizations with such a need face a dilemma: to purchase an off-the-shelf solution
(which may fail to meet the specific requirements); to engage a developer (which is usually
too expensive); or, as is most commonly done, to cobble together tools such as email,
spreadsheets and online forms using form builders like Google Forms [3] and Wufoo [5]
(leaving a considerable burden of manual work).

Ideally, an organization’s administrators would build a suitable application by themselves
(end-user development), but this is rarely done for this type of application. General-purpose
web application frameworks continue to demand a high level of technical understanding
from their users, even as design advances over time, such as scaffolding scripts and object-
relational mapping, reduce the amount of code that has to be written. Existing data-driven
web application builders (such as App2You [24] and Intuit QuickBase [1]) make it easier for
people with little or no programming experience to build applications of low to medium
complexity, offering menu-driven, WYSIWYG, or other visual interfaces to specify the
structure of the information stored and the ways in which users may view and update it.
Such tools are more general than form builders, which allow unprivileged users to add records
but offer very limited options (if any) for them to view and edit records other than their own.

Spreadsheets are the most successful example of an end-user development paradigm, and
for this reason, are a common focus of attempts to bring greater ease of use to programming.
They have been extended with capabilities such as more powerful programming languages[32,
14], user-defined functions [10, 31], and stream processing [33]. It seems to us that spreadsheets
offer similar potential benefits for end-user development of web applications, in particular for
the storage and manipulation of persistent data.

The appeal of spreadsheets arises from several aspects:
A simple and flexible visual structure for organizing data;
The use of the very same structure and interface not only for data, but also for the
schema underlying the data and the formulas defining queries on it;
The continual computation strategy, which allows the impact on example data to be
viewed as formulas are constructed and modified;
A simple and declarative formula language that makes simple data transformations easy
(with the ability to select operands visually) and helps the user work through harder
ones (with integrated function documentation and immediate feedback on subexpression
results).

Obtaining all these advantages in the richer context of the kind of data store and programs
required for a web application is not trivial, however (and in the next section we outline
particular challenges). In fact, Quilt [9] is an example of a web application builder backed
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by a traditional spreadsheet in the style we propose, but it does not address most of these
challenges and consequently supports only the very simplest applications. Our aim in this
project, therefore, has been to leverage these advantages while making adaptations to the
spreadsheet model that allow it to be applied in a broader context than the traditional one.

In this paper, we propose an enhanced spreadsheet tool, called Object Spreadsheets, that
can be used by an end-user developer (henceforth the “developer”) to build all of the logic for
a data-driven web application. The spreadsheet serves as the standard UI for development
and administrative access to the application data; the developer would design a separate,
customized application UI for regular use by unprivileged users.

In addition to the editable sheet with formulas, Object Spreadsheets supports stored
procedures to define the updates that unprivileged users of an application can make, and
exposes an API for the application UI to display data and invoke procedures. We envision
combining the tool with a suitable UI builder to provide a complete solution for application
development that requires no prior knowledge of web technologies. While some parts of the
development process (particularly schema design) will remain challenging for many end-user
developers due to the level of abstraction involved, and form building approaches will remain
helpful, we believe that offering a spreadsheet interface has the potential to bring a range
of development tasks within the reach of end-user developers for a range of realistic target
applications and scenarios.

We have implemented a prototype of the spreadsheet tool in the Meteor web application
framework and demonstrated it on a collection of example applications, building the applica-
tion UIs directly in Meteor using the exposed API. We have also conducted a user study to
collect feedback from potential users of the tool.

The rest of the paper describes in more detail how the logic of a data-driven web
application can be built using Object Spreadsheets. Our contributions include:

An analysis of the challenges of extending the spreadsheet paradigm to support web
application development;
A data model (Section 2) and spreadsheet interface designed to handle web application
data in a way that is natural to end-user developers;
A simple formula language that supports relational queries (Section 3), and a simple
procedural language to support restricted updates (Section 4);
A prototype implementation of the tool (Section 5);
A suite of example applications that demonstrate common difficulties presented by this
application class, and their implementations in our tool (also in Section 5);
Qualitative feedback from a user study.

Demos. Interactive demos of the example applications and a video demonstrating how
to build an application with Object Spreadsheets are available on the project web site
at http://web.mit.edu/rmccutch/www/relsheet/. These materials may help the
reader quickly get a sense of what Object Spreadsheets does before reading further in the
paper.

1.1 Challenges
In this section we outline the key challenges of extending a spreadsheet to support web
application development and how they are addressed in our design. We point out a few
alternatives and explain why they are inferior. Further discussion of alternatives and similar
systems is given in Section 6.
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A B C D E F
1 room sq. footage occupant role alloc. free
2 Dungeon Five 480 Sirius Grad. student 12 436
3 James Post-doc 20
4 Wormtail Grad. student 12
5 Greenhouse Two 561 Bellatrix Visiting Prof. 45 476
6 Lily Post-doc 20
7 Remus Post-doc 20
8 role alloc. space =VLOOKUP(D5, A$9:B$11, 2)
9 Grad. student 12 =B2−sum(E2:E4)
10 Post-doc 20 =B5−sum(E5:E7)
11 Visiting Prof. 45

Figure 2 Tracking the used space in each room at a university department based on space
allocation amounts for each role. Adding an occupant or room requires careful adjustment of the
formulas. A real implementation would have a separate table of people like the table of roles above,
but we omit this detail to simplify the example.

Nested variable-size sets. All but the simplest web applications contain one or more sets
of objects and allow users to add objects to and remove objects from these sets. Many even
include two or more nested levels of such sets. For example, consider an application used
by an administrator to manage the space allocation for a university department, shown in
spreadsheet form in Fig. 2. Each person is allocated an amount of space depending on their
role, and people must be assigned to rooms in such a way that each room is large enough
for the people assigned to it. The administrator is constantly facing the problem of finding
a room with enough free space to put the next person, so he wrote formulas that subtract
the total allocated space from the square footage of each room. Unfortunately, this requires
hard-wiring the cell ranges corresponding to the occupants of each room (E2:E4 and E5:E7).
The impact of this is that when adding a new occupant to a room or when adding a room to
the list, the formulas have to be edited or copied to consider the new cells.

This example illustrates the fundamental challenges of handling variable-size sets in a
spreadsheet. Applications require both per-item computations, such as the lookup of the
allocated space for each person based on their role, and computations over sets, such as

Room RoleOccupant

name sqFoot name role free title allocSpace

• text number • text Role number • text number

•

Dungeon Five 480 • Sirius Grad. student 436 • Grad. student 12

• James Post-doc • Post-doc 20

• Wormtail Grad. student • Visiting Prof. 45

•

Greenhouse Two 561 • Bellatrix Visiting Prof. 476

• Lily Post-doc

• Remus Post-doc

Room.free =̂ sqFoot − sum[v : Occupant](v.role.allocSpace)

Figure 3 An Object Spreadsheet for the space allocation example.
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summing the allocated space for the occupants of a room. Actually, the latter computation
is also a per-item computation at the room level. To support variable-size sets, a spreadsheet
must be able to:
1. Fit as many items as are needed;
2. Automatically apply per-item computations to added items;
3. Maintain enough information to locate sets and their enclosing items as sizes change.
These capabilities are difficult to achieve in a traditional spreadsheet, in which data items
and formulas are bound to individual cells in the grid and there is no paradigm for adapting
the structure to programmatic changes in data size. One strategy to handle two levels of sets
is to lay out one level (e.g. the rooms) along one axis, and another level (e.g. the occupants)
along the other. This limits nesting to two levels, and is also hard to maintain when the
inner items are composed of several fields, as in the example. Another strategy is to move
all the inner items to a separate table with references to the outer items, as in a relational
database. But if end-user developers think of their data as nested, this transformation is an
ongoing burden and in particular risks making schema design even harder than it already is.

In Object Spreadsheets, we solve the problem by abandoning the two-dimensional grid
with per-cell formulas as the fundamental data model in favor of one that directly supports
nested sets of objects. In our model, every formula defines a computed field of an object type
and is automatically evaluated on each object of that type in the sheet, ensuring uniformity;
a root object is available to hold global values and formulas. We visualize the data using the
“nested table” layout with each object type occupying a range of columns and objects of the
same type occupying vertically stacked rectangles, which is common in other tools [7, 8, 19].
The result is shown in Fig. 3.

Object references. Web applications include relationships between objects, not all of which
are well captured via hierarchy, which leaves a need for object references of some form. In
the space allocation example (Fig. 2), this can be seen by the “role” of each occupant, which
refers to a role listed in the table at the bottom. The administrator then wants to retrieve
the allocated space for the role from this table. This can be done with the VLOOKUP
function, but it becomes tedious and error-prone to specify the target cell range for each
such lookup in an application. This approach is the analogue of a join or subquery on a
foreign key in a relational database.

Another approach is to have the occupant’s role cell store a cell reference in string form,
such as "A11" in the case of Bellatrix, and use a formula like =OFFSET(INDIRECT(D5),0,1)
to look up the allocated space. This approach avoids specifying the cell range of the role
table but still requires significant boilerplate, and it fails if the role table must be moved to
allow the room table to grow. Furthermore, to enter the role of an occupant into the sheet,
the admin has to manually look up the correct cell reference.

Object Spreadsheets provides object references that are analogous to the "A11" mentioned
above, but since the data model supports objects directly, these references do not break when
the layout of the visualization changes. So if the developer defines an object type named Role
corresponding to the role table, then references to individual Role objects can be stored in
the “role” column of the occupant table and manipulated like any other data type. A dot
notation is used to access fields of the target object, so the lookup of the allocated space
might be expressed as “=role.allocSpace”. The same notation is used to access ancestor or
child objects in the hierarchy, for example, to retrieve all occupants of a room to compute
the free space. Finally, Object Spreadsheets lets the developer designate one field of each
object type (defaulting to the first field) as its “display” field, which is used as a string
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representation to display and input references to objects of that type in the spreadsheet.
So, by default, references to roles from the occupant table would display the role name,
underlined to remind the developer that they are references.

Binding the application UI to data. Any web application builder has to give the developer
a way to specify what data should appear in a given page of the (user-facing) application UI.
In existing tools such as QuickBase and App2You, each page is associated with a particular
object type, and a form building interface is used to specify what fields and what tables
of related objects to display. The amount of logic inherent in such UI building becomes
nontrivial if related objects are nested or are filtered, potentially depending on parameters
chosen by the user on the page.

We propose to harness the benefits of spreadsheets for this task by making the page merely
a stylized view of a dedicated region of the spreadsheet that contains the data for display.
As described in the previous paragraphs, our spreadsheet model has a hierarchical structure,
which aligns well with how user interfaces are normally built, plus plenty of expressive power
to select and assemble data. We discuss further details in Section 3.4.

Mutations. Finally, the developer must specify the kinds of mutations that users may make
to the application’s state. Assume that the admin from the previous examples wants to allow
other users to assign occupants, but not e.g. add rooms or alter their square footage. In
the simplest case, if a web application builder has a flexible means to bind mutable state
directly to a page, the developer could choose to allow edits to some of the displayed values
and creation and deletion of objects that meet the criteria to appear in tables on the page,
perhaps subject to conditions expressed as formulas. If the page is bound to a view defined
by formulas on the source data, then the natural way to achieve equivalent functionality is
to provide default view-update semantics for formulas with appropriate syntactic forms, as
PostgreSQL does.

However, some of our target applications, such as Got Milk (see Section 5), have composite
mutations that cannot be expressed in this form without complicated tricks. The most basic,
general way to support such mutations is to use stored procedures and allow users to call
certain procedures with arguments of their choice; the procedures would also receive some
built-in parameters such as the identity of the calling user and the time. This is the approach
we take. We designed a small procedural language as extension of the formula language
(thus, we hope, making it easy for end-users to understand). A room assignment procedure
might look like this:

assign room: Room, name: text, role: Role
let a = new room.Occupant
a.name = name
a.role = role
check room.free >= 0

2 Data Model

Our data model is visually similar to a standard spreadsheet (and indeed we shall refer
informally to a particular instance of the data model as a “spreadsheet”), but also derives
from the entity-relationship (ER) model proposed as a precursor to the design of relational
schemas. It differs from a pure relational model in several ways that we believe will make it
a better match to the developer’s mental model of their application. It offers:
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Attributes, or fields, as the basic unit of data (rather than relational tuples).
Abstract references between objects.
Set-valued fields.
An ownership hierarchy of objects.
Computed fields and objects.

In an object spreadsheet, data is arranged in cells. Cells are arranged in columns, and
both cells and columns follow a hierarchy of ownership: each column has exactly one parent
column, and each cell has exactly one parent cell, obeying the commutativity rule that a
cell’s parent always resides in the parent column of the column containing the cell. The only
exception is a specially designated root column, which contains exactly one cell (the root
cell); neither the root column nor the root cell has a parent.

Columns are of two kinds: value columns and object columns. The cells in value columns
(value cells) contain primitive values, or references to object cells (details in Section 3.3);
cells in object columns (object cells) do not store data but instead represent distinct object
identities, visualized as bullets. To illustrate this, Fig. 4 shows a small data-set of students
enrolled in various classes next to a list of houses at the school. “Class” is an object column,
whereas “name”, “student”, and “house” are value columns. The root column is not shown.
(We will follow the convention that object column names are capitalized and value column
names are written in lowercase.) Child cells of object cells are conceptually owned by the
object; child value cells represent fields of the object, while child object cells represent nested
objects. Value cells are not allowed to have children.

In the example of Fig. 4, “Class” has two child columns, “name” and “student”. “Class”
and “house” are both directly descended from the root column (not shown in the figure).
Fig. 4 presents the columns of this spreadsheet as a tree, expressing the ownership relations.
To indicate the column hierarchy visually, we extend the header row so that headers of object
columns stretch across those of child columns. (Our tool offers this as a display option.)

Because a cell may have children in more than one column, we group them according to
the column to which they belong. The set of all cells in a given column with a given parent
object cell is called a family and represents the entire value of a field of the parent object, or
its entire set of child objects of a certain type. Fig. 5 shows the tree of cells for the sheet of
Fig. 4, with families indicated by forked edges.

Notice that, in the default view, object cells are stretched vertically to span over all rows
containing child cells. An entire object and its fields thus occupy a contiguous rectangular
region on the spreadsheet area. Value cells normally do not stretch, but when fields are
constrained to contain a single value per object,1 as in the case of the “name” field, it is
convenient to match their height with that of the object containing them. The result is a
nested table layout.

Conceptually, families are sets. Value cells belonging to the same family all hold distinct
values (although a column can have repeating values as long as they occur in different
families). The value of a cell never changes during its lifetime; while our UI allows the value
in a cell to be edited, semantically such an edit removes the cell and adds a different one
to the same family. The items in a family have no intrinsic order, but can be sorted using
the normal spreadsheet options (e.g., lexicographic order for strings, chronological order for

1 We envision this constraint being specified as part of the schema, but our prototype does not yet support
this and simply stretches every field that currently contains a single value.
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(root)

Class

name student

house

(root)
Class

name student house
• Charms Parvati Gryffindor
• Potions Draco Slytherin

Lee Ravenclaw
• Divination Lavender Hufflepuff

Vincent
• Herbology Neville

Figure 4 A simple spreadsheet with nested elements and its column hierarchy.

(root)

•

“Charms” “Parvati”

•

“Potions” “Draco”

“Lee”

. . . “Gryffindor”

“Slytherin”

“Ravenclaw”

“Hufflepuff”

Figure 5 Cell hierarchy (only some of the cells are shown). Forked edges indicate cell families.

dates)2. 3

The most basic use case of a spreadsheet is data entry. The owner of a spreadsheet, or
any user otherwise granted full write access to it, may add cells to any family. Creation of
object cells brings to life new families, which are initially empty and can subsequently be
extended with new items.

In addition to manual entries, some columns may be populated by computed values
that are calculated from other entered (or computed) values. Section 3 describes these
computations and their semantics.

2 This feature has not yet been implemented.
3 To simplify the example in Fig. 4, we assume that no two students have the same name; otherwise, a

different key has to be used, or a student object column may be introduced.
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2.1 Formal Specification
The object spreadsheet data model has two main parts: a data schema, which contains the
definition of the column hierarchy; and a data instance, which holds actual cells and their
values.

2.1.1 Data Schema
Our system provides a set of primitive types P, including “text”, “number”, “boolean”, etc.
A function V is initially defined on each of these types, giving the set of values of that type.

I Definition 1. A schema Σ consists of:
A finite set C of columns, partitioned into a set OC of object columns and a set VC of
value columns.
A root column R ∈ OC and a parent function p : C \ {R} → OC that arranges the
columns in a tree rooted at R. We write D ; C to say that D has a child C (that is,
p[C] = D), and also denote C+ = C \ {R}, OC+ = OC \ {R}.
A function name : C+ → string giving a name to each non-root column.
A type assignment Γ : C→ T (where T = P∪OC) such that Γ[C] = C for every C ∈ OC.

With this notation, each object column also functions as a type whose values are references
to any objects that could possibly exist in the column.

2.1.2 Data Instance
I Definition 2. An instance M of a schema Σ consists of:

A set E of cells.
A root cell r and a function col : E→ C assigning cells to columns, such that col−1[R] =
{r}. We write e : C to mean col[e] = C, and denote E+ = E \ {r}.
A parent cell function p : E+ → E. As with columns, we use d ; e to say p[e] = d.
A value assignment val, which maps each cell e ∈ E to a value v : Γ[col[e]], where v : T is
defined as follows:

For a primitive type T ∈ P, v : T just means v ∈ V[T ].
For an object column C ∈ OC, v : C is as defined above, i.e. v ∈ E and col[v] = C.

An instance must satisfy the following properties:
Homomorphism: the parent-child relationship between cells respects that of columns.
That is, if d ; e, then col[d] ; col[e].
Value uniqueness: given a cell d : D and a child column D ; E, the values of d’s children
in E comprise a logical set, so there are no repeating values, that is —

∀e1, e2 : E. d ; e1 ∧ d ; e2 ∧ e1 6= e2 =⇒ val[e1] 6= val[e2]

Object identities: the value of an object cell is itself, i.e., val[e] = e for e : C,C ∈ OC.

The parent function partitions the cells in each column. We call these partitions families.
A family is formally addressed by a pair 〈C, d〉 where C ∈ C+ and d : p(C) and contains all
cells in C whose parent is d.

Value columns having a type that is another object column, Γ[C] ∈ OC, are used to
create cross references. Cells in these columns hold references to other cells in the respective
object columns, and play a similar role to that of references in object-oriented languages.
Cross references are discussed in more detail later in the paper (Section 3.3), after we have
defined the formula language.
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expr ::= var-name // local variable
| (expr.)? column-name ([expr])? // column navigation
| literal
| { expr∗ } // union
| op expr // unary operator
| expr op expr // binary operator
| function-name ( expr∗ ) // built-in function invocation
| { var-name : expr | expr } // filter comprehension
| sum[var-name : expr](expr) // sum comprehension

literal ::= $ // root cell literal
| number // singleton number literal
| "string" // singleton string literal
| true | false // singleton Boolean literal

Table 1 Formula syntax.

3 Formulas and Computation

Formulas are assigned to columns rather than to individual cells as in traditional spreadsheets.
If a column is assigned a formula, it will not admit data entry by typing into the cells—instead,
cells in that column are populated by evaluating a formula that computes values based on
other data in the spreadsheet. We refer to these columns as computed columns, to distinguish
them from columns containing mutable state, which we will call state columns. The formula
of a computed column is evaluated once for each object cell in the parent column (known as
the context object cell for the purpose of the evaluation), generating a family of result cells
with that object cell as parent.

The most important aspect of formulas in spreadsheets access to data in other cells of the
spreadsheet. Excel and other traditional spreadsheets use a row-column coordinate notation
that is either absolute or relative. Since our data model is hierarchical, data access must
follow this hierarchy, a process we refer to as navigation.

With a particular cell as the starting point—by default, all navigations start at the
context object cell—we distinguish two types of navigation:

Up navigation—following the parent relationship to go to one of the cell’s ancestors.
Down navigation—retrieving all children of the cell in a particular child column, which
comprise a child family of the starting cell. In general, a down navigation results in a set
of cells. Since developers like to use short column names that describe the meaning of a
column with respect to its immediate parent (e.g. “name”, “age”), we allow each single
navigation to go down only one level so that its meaning is clear. (To go down more than
one level, one can chain navigations.)

For simplicity of design, all formula expressions evaluate to sets, following the style of
Alloy [22]. Navigation is done using the dot notation: cell.ancestor or cell.child, and is
naturally lifted to sets by taking the union of the results of the navigation on each element.
The column name is resolved to a column when the formula is entered, and the formula
is automatically updated if the column is later renamed by the developer, much as a cell
reference in a traditional spreadsheet formula updates if the target cell moves.

To perform this resolution, we must know the type of cell, so formulas are type-checked
when they are entered. Type-checking ensures that every subexpression evaluates to a
homogeneous set, meaning that all elements are all of the same type (which may be a
primitive type or a reference type). As in Alloy, scalar values are represented by singleton
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sets.
Formula expressions are drawn from a language whose syntax is described in Table 1.

It includes set equality (=) and inclusion (in) operators, which can also be used for scalar
equality and scalar membership in a set; a set comprehension notation {var : set | pred} that
filters an existing set using a predicate; and various numeric, boolean, date, and set-related
operators and functions (+, -, <, >, &&, count, etc.).

Our tool currently supports a syntax for sum resembling the mathematical
∑

notation:
sum[p:Part](p.price).4

When a formula is evaluated in the context of a family, an implicit variable this is
bound to the parent cell of the family. This allows for more compact formulas when accessing
fields of the same object and of containing objects. For example, if we were to add a column,
named “size”, as a child column of “Class”, and assign to it the formula count(students),
the formula would evaluate to the number of students in each class. In contrast, the formula
count($.Class.students) would evaluate to the overall number of students (using the
special literal $ that refers to the root cell).

A formula may be assigned:
To a value column, in which case each value returned by the formula generates a cell with
that value, or
To an object column, in which case each value generates an object (with a unique identity),
and the value itself is stored as a single child in a designated key column. One must keep
in mind that the formula context is the parent object column, not the object column
containing the formula (which is only populated after the formula has been evaluated).

Since a key column is associated with the formula of its parent object column, it cannot
have a formula of its own.

3.1 Formula Semantics
Each time the schema or a formula is modified, the system type-checks all formulas. Specifying
the type of a computed column is optional; if unspecified, the type will be determined
automatically during each type-checking pass. This process may fail if there is a cyclic
dependency among columns of unspecified type, in which case the developer can break the
cycle by specifying one of the types. For as long as a column’s formula is ill-typed or fails to
match a specified type, evaluation of cell values in the column is postponed.

The formal type-checking rules are listed in Table 2. Formulas are checked in a type
environment Γ = {this 7→ C} for the appropriate parent column C. In particular, (LU-↓) and
(LU-↑) describe the lookup rules for down/up navigation; name[C] denotes the name assigned
to C in Σ. In addition, it should be pointed out that navigation must be unambiguous. That
is, if two distinct judgments lu(C.id) = lu1, lu(C.id) = lu2 (with lu1 6= lu2) can be obtained
for the same expression, the type checker rejects the formula and reports an ambiguity error.

Since all formula values are sets, a judgment Γ ` e : T means that expression e evaluates
(in environment Γ) to a set of elements of type T . Each built-in operator and function has
its own typing rule. Many have fixed parameter and return types, but not all: for example,
the = operator takes two parameters of the same (arbitrary) type and its return type is bool.

4 We would like to support the simpler syntax sum(Part.
price), but under the current model, Part.price is a set without duplicates. Introducing
multiset-valued expressions would be one way to solve this problem.



12 Object Spreadsheets

Γ, v : T ` v : T (VAR)

C ; D name
[
D
]

= id

lu(C.id) = 〈D, ↓〉 (LU− ↓) B ;∗ C name
[
B
]

= id

lu(C.id) = 〈B, ↑〉 (LU− ↑)

Γ ` e : C lu(C.id) = 〈D, d〉 (d∈{↑,↓})

Γ ` e.id : Γ[D] (NAV(.))

Γ ` this.id : T
Γ ` id : T (NAVthis)

∀i ∈ {1..n}. Γ ` ei : T
Γ ` {e1,e2, · · ·,en} : T (SET)

Γ ` e1 : T, e2 : T
Γ ` e1 = e2 : bool, e1 in e2 : bool (=/IN)

Γ ` e1 : numeric, e2 : numeric
Γ ` e1 + e2 : numeric (+)

Γ ` e : T Γ, v : T ` c : bool
Γ ` { v : e| c} : T (SET-COMP)

Γ ` e : T
Γ ` count(e) : numeric (COUNT) Γ ` e : T Γ, v : T ` a : numeric

Γ ` sum[v : e](a) : numeric (SUM)

Γ ` true : bool,false : bool
Γ ` num : numeric

Γ ` $ : R

(LIT)

Table 2 Formula type-checking rules.

The rules for =, in, +, and count are shown as examples. Operators that require scalar
arguments, such as +, check at runtime that their arguments are singleton sets.

The evaluation of formulas is given via denotational semantics in Table 3. In the context
of an instance M , the semantic function JK maps a formula expression e and an assignment
σ to a set of values of type T , assuming that σ maps the variables to set types respecting
Γ and that Γ ` e : T . The notation ;∗, used in both typing rules and semantics, is the
reflexive-transitive closure of the respective ; relation on columns/cells.

3.2 Computational Model
The semantics describes the steps of the computation performed, but for completeness we
need to explain the computation of the entire spreadsheet, and in particular that cyclic
references and formulas yield undefined results, and that a spreadsheet can be extended by
the addition of formulas in the expected way.

The basic unit of computation for formulas is the family. Recall that a family is formally
addressed by a pair 〈C, d〉 where C ∈ C+ and d : p(C).

I Definition 3.
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JvKσ = σv if v is a variableJidKσ = Jthis.idK if id is a column name

Je.idKσ =
{
{val[c] | α ∈ JeKσ, c : C, c ;∗ α} if Γ ` e : D, lu(D.id) = 〈C, ↑〉
{val[c] | α ∈ JeKσ, c : C,α ; c} if Γ ` e : D, lu(D.id) = 〈C, ↓〉JlKσ = {l} if l is a primitive literalJ$Kσ = {r}J{ e1, . . .,en}Kσ =

⋃
iJeiKσJe1 = e2Kσ =

{(Je1Kσ = Je2Kσ)} Je1 in e2Kσ =
{(Je1Kσ ⊆ Je2Kσ)}Je1 + e2Kσ = {x+ y} if Je1Kσ = {x}, Je2Kσ = {y}Jf(e1, · · ·,en)Kσ = f (Je1Kσ, · · · , JenKσ)J{v:e|c}Kσ =

{
α ∈ JeKσ ∣∣ JcK(σ[v 7→ α]) = {true}

}
Jsum[v:e](a)Kσ =

∑
α∈JeKσJaK(σ[v 7→ α])

Table 3 Denotational semantics for formulas.

1. A computed instance M of a schema Σ has all the components of an instance (Definition 2),
plus a set F ⊆ C× E of computed families.

2. A family 〈C, d〉 ∈ F in a computed instance M respects the formula ϕ when:
If C is a value column:
{this : p(C)} ` ϕ : Γ[C] and JϕK{this 7→ d} = {val[e] | e : C, d ; e}

If C is an object column, where K is its key column (C ; K):
{this : p(C)} ` ϕ : Γ[K] and JϕK{this 7→ d} = {val[k] | e : C, k : K, d ; e ; k}

(d ; e ; k abbreviates d ; e and e ; k.)
3. A program Φ : C+ ⇀ expr, κ : OC+ ⇀ VC is an assignment of formulas to a set of

columns of the schema known as the computed columns. Computed object columns are
assigned respective key columns such that C ; κ[C]. The remaining columns are known
as state columns. Programs must have the property that no state column is the child of a
computed column; this is necessary for state instances as defined below to exist. Families
in state columns and computed columns are called state families and computed families,
respectively.

4. M respects Φ, κ if for every C ∈ dom[Φ] and e : C, M has 〈C, p[e]〉 ∈ F, and every
computed family 〈C, d〉 ∈ F respects Φ[C] (with key κ[C] where appropriate).

I Definition 4.
1. An input instance is a computed instance with finitely many cells and with F = ∅.
2. In an instance M that respects a program Φ, κ, a computed family 〈C, d〉 depends on a

family 〈C ′, d′〉 if evaluation of JΦ[C]K{this 7→ d} attempts to read from cells belonging to
〈C ′, d′〉.

3. M is good for Φ, κ if it respects Φ, κ and the dependency relation on computed families
contains no infinite forward chains (and in particular, no cycles).

4. An instance M ′ is an extension of an instance M for the same schema if the sets E and
F of M ′ are supersets of those of M , the functions col and val of M ′ are extensions of
those of M , and M ′ does not add any new cells to families that exist in M .

5. A spreadsheet consists of a schema Σ, a program Φ, κ for Σ, and an input instance M
that respects Φ, κ.
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The following proposition is proved in the appendix:
I Proposition 1. In any spreadsheet, there is a good extension M̂ of M that is an extension
of any other good extension of M .

We call M̂ as defined in Proposition 1 the computed extension of M . It contains all
families that can be evaluated successfully. All readers of the data model, including the
spreadsheet UI and web application views, use the computed extension.5

It is impossible to write a formula that returns an infinite set, and consequently, the
computed extension always contains finitely many cells and can be computed in its entirety
in finite time. The computational model in this section works for such infinite spreadsheets,
though the spreadsheet UI would need to offer controls to show only parts of the sheet
at a time and the runtime system would need to compute those parts on demand. These
capabilities would be important for large finite sheets as well, such as those that back views,
described in the next section.

3.3 Cross References
As explained in Section 2.1.2, some cells contain references to other (object) cells. References
can be followed directly, unlike foreign keys in a relational database, which require an explicit
join or subquery on the other table. References are first-class values; their closest analogues
in a traditional spreadsheet are cell reference strings such as "A11" that can be treated as
data and later passed to a dereferencing function such as INDIRECT.

These references can be obtained in two ways:
Computed by a formula, as described in the previous subsections. A formula evaluation
produces a set of values, which can be references if the type of the formula resolves to
some object column.
Entered by the user.

While the first case has been thoroughly covered, the second case has some subtle issues;
in particular, the user-entered references need to be stored with the state data (for computed
values, we assume they can be recomputed when needed). A form of addressing is needed
that is persistent and stable as data changes, especially in the presence of computed data.

We apply separate treatment for references to cells in state columns and to computed
columns. For state object cells, we assume we have an infinite set T of tokens, and a unique
token is allocated to every new state object cell when it is created. We then store a bijective
mapping tok : E+ ⇀ T with the serialized state data, and store any reference to a state cell e
as tok−1[e]. This resembles the practice of assigning unique identifiers to rows in a relational
database. It should be noted, however, that the tokens are encapsulated and hidden from
the user in the same way that addresses are encapsulated in Java, for example.

Our implementation also supports references from state cells to computed objects, but
since this situation is quite rare, we describe this feature as an extension and defer it to
Section 7.

For an example, Fig. 3 in the introduction shows a spreadsheet containing references.
The column “role” of the object “Occupant” contains references to objects of type “Role”.
Reference values are marked with an underline, and the text defaults to the first field of the
referenced object.

5 Our formalization suggests that the tool can simply fail in the presence of errors such as cycles, but in
practice of course it should provide feedback about the location of the error, and show any intermediate
results that were computed up to that point.
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ParentView Child Meeting
parent student enrollment teacher sel. slot avail. slots
Person Person Enrollment Person Slot Slot

• Molly • Fred • Fred @ Potions Snape Snape @ 1pm
• Freg @ Divination Trelawney Trelawney @ 4pm

Trelawney @ 5pm
Trelawney @ 6pm

• George • George @ Charms Flitwick Flitwick @ 10am
Flitwick @ 11am

Hello, Molly.
Meetings for Fred selected pick one:

Snape @ 1pm ◦ Trelawney @ 4pm
× ◦ Trelawney @ 5pm

◦ Trelawney @ 6pm
Meetings for George pick one:

◦ Flitwick @ 10am
◦ Flitwick @ 11am

Figure 6 A view model and one instance for scheduling parent-teacher meetings, with an example
rendering.

Certain UI features can make references more manageable: for example, highlighting the
target of a reference when mousing over its containing cell, a “jump to” operation that moves
the spreadsheet cursor there, and the ability to choose a “display field” other than the first
field, which can also be a computed field.

3.4 Views
Application views follow MVC guidelines. The design of HTML views is hierarchical by
nature, so it seems desirable to have a hierarchical model backing it. We define a view model
to be a designated sub-tree of the data model, by picking an object column C ∈ OC and
including all its descendant columns and all the cells in these columns. The view model is
crafted through formulas to contain exactly those data items that are to be displayed. If a
view needs some parameters, such as the currently logged-in user, selected class, etc., then
these parameters are placed in state fields of a common view instance object v : C. This
allows several instances of the same view to exist simultaneously.

The view instance is then mapped onto an HTML template using regular templating
techniques. Notice that at this point the template does not have to contain any logic such as
conditional statements; such logic can be pushed to the formulas populating the view. This
makes the binding straightforward, following the nested structure of the view model.

An example is shown in Fig. 6. Under the object column “ParentView”, “parent” is a
state value column that is filled with a reference to the user requesting the view. Formulas
then pull out the relevant data from the other columns in the data model. Notice that
“ParentView”;“Child” and “Child”;“Meeting”, matching the containment structure on the
HTML form below.

To understand how the control aspect works, notice the buttons × and ◦ in the figure;
clicking a button fires a transaction that mutates the data in order to schedule or cancel a
meeting. Transactions are explained in the next section; the important thing to notice is
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procedure ::= ( Γ ) → block
block ::= statement∗
statement ::= let var-name = expr // set local variable

| expr.column-name := expr // replace content of value family
| to set expr.column-name add expr // add element(s) to value family
| from set expr.column-name remove expr // remove element(s) from value family
| (let var-name =)? new expr.column-name // create object
| delete expr // delete object
| if expr { block } (else { block })?
| foreach (var-name : expr) { block }
| check expr // validation/assertion

Table 4 Procedural language syntax.

that the button is contained in a UI element, which is in turn associated with a cell in the
spreadsheet, simplifying the task of associating the click with the relevant data item(s) that
need to be updated.

4 Transactions

An object spreadsheet can contain transaction procedures, which are stored procedures that
can be called by unprivileged users to mutate the spreadsheet state, similar to events in
Sunny [27]. Each execution of such a procedure is a transaction. Transactions are atomic
with respect to readers and other transactions and are automatically rolled back if they fail.

In keeping with the spreadsheet philosophy, transaction procedures are written in a simple
procedural language that does not include all the abstraction capabilities of general-purpose
programming languages. The grammar is shown in Table 4. Each procedure has a signature
defined by a type assignment Γ to named parameters. The body of the procedure is a
sequence of statements.

Much of the semantics is self-explanatory. For all of the mutation statements, if the first
expression returns multiple objects, each is mutated in the manner described. Families of
(value) cells are manipulated as sets of values, via :=, add, and remove. State objects are
created with the new statement, which returns a new object each time it executes; delete
deletes all objects returned by the expression, including all data they own. A formal definition
of mutations is shown in Appendix A.2.

check fails the transaction if the condition is false. An idiom is to define a cell whose
formula is the conjunction of all application-specific data validity conditions and check it
at the end of each transaction. A transaction also fails if any formula in a statement fails to
evaluate. We leave to future work the issue of giving the user as much information about
errors as possible without leaking confidential data.

Like formulas, procedures are type-checked when they are first defined (in order to resolve
column references) and again after each change to the schema; a procedure that is ill-typed
with respect to the current schema cannot be executed. let bindings extend Γ with more
type assignments according to the types of expressions, which are formulas and therefore
follow the same rules of Table 2. The type of new e is the same as that of the corresponding
sub-expression e. Since conditional assignment to a local variable is a common programming
idiom, we make local variable assignments inside an if statement visible after the statement,
provided that the variable has the same type at the end of both branches; if the types differ,
the variable cannot be read after the if statement. Assignments inside a foreach loop are
not visible outside the loop.

Clearly, writing a transaction procedure presents a greater challenge to an end-user
developer than writing formulas. For create, update, and delete transactions on a single
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object type, the tool could offer a command to generate a procedure, which the developer
could then customize. We envision letting the developer set up one or more example calls
with particular arguments and optionally a hard-coded starting state (if the production state
changes too rapidly to make a stable example case), and then showing the mutations that
would be made and local variables that would be bound by each statement as it is written,
an approach known as example-centric programming [17]. To diagnose problems with past
transactions, the system could store their execution traces and allow the developer to browse
and search these traces as well.

5 Experiments and Evaluation

We have built a prototype of the object spreadsheets execution engine and the developer
user interface on top of the Meteor web framework [26]; all our applications thus inherit
the reactivity of Meteor. The developer UI is rendered via a Handsontable [20] widget with
cell merging managed by our code, and supports editing the schema (that is, the overall
structure) and its contents. Formulas and values are type-checked to ensure conformance to
the schema. Transaction procedures are executed by the engine, but they cannot currently
be edited in the user interface (so they must be provided in a file).

To assess the applicability of our model, we collected scenarios in which our colleagues
faced a need for a collaborative data-driven web application for a specific task. We noted a
few of the most interesting features of each application and considered how best to implement
them in an object spreadsheet. We then built the essential parts of these applications, and
hand-coded UIs for them with basic client-side templates provided by Meteor (eventually,
template creation will be integrated in the developer interface).

The applications are:
PTC—the parent-teacher conference application mentioned in the the introduction.
Teachers, students, and parents are stored as Person objects. A reference field links
students to their parents. Teachers own Slot objects that represent potential meeting
times. Classes are stored using another top-level object column, and each class owns
Section objects, which in turn have references to teachers teaching those sections, as well
as own Enrollment objects that link to enrolled students. Parents can schedule meetings
only with teachers that teach one of their children; they can only schedule one meeting
per Enrollment; and they cannot book an occupied time slot.
Dear Beta, a site for students working on a system architecture assignment to share
advice on correcting particular test failure modes. Students can vote on questions and
answers as on Stack Overflow. The questions are organized in a tree structure matching
the structure of the exercises given in class.
Hack-q, a system for participants in a hackathon to request help from mentors in particular
areas of expertise. This case study is discussed in more detail below.
Got Milk, a management application for a group of people who share a pool of fresh milk
for coffee. Teams of two members take turns buying the milk for the entire group. The
application sends e-mail notifications for members when it is their turn to buy the milk,
and alerts when milk supply is low.

To give an idea of the size of the applications, Table 5 shows the sizes of the Object
Spreadsheets that were used to back them. the numbers under “Data” and “Formulas”
indicate the number of columns of respective kind. The numbers under “Procedures” indicate
the number of lines of procedure code that were written for mutations.
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Case study. We present the data model, formulas, and transactions constructed for the
“Hack-q” example and explain their function in finer detail. In this application, participants
of an organized hackathon access a web form where they fill in their name, the programming
area in which they require assistance, and their current location. Meanwhile, designated
mentors have been classified according to their area of expertise—each mentor has been
assigned one or more “skills”. The submitted request then shows up in the relevant mentors’
queues as a “call”. A mentor can then “pick” the call, in which case it disappears from the
queues of other mentors. After talking to the participant, the mentor may close the call
(discarding it from the queue), or forfeit the call, putting it back so that it reappears in all
other queues and can subsequently be picked up again by another mentor.

Fig. 7 shows a sample sheet containing some concrete data. Column names, their types,
and their hierarchy are shown by the header of the spreadsheet. The formula for the column
“inbox” (under “Staff”) computes a mentor’s incoming queue. Every mentor is assigned a
set of “Call” objects on subjects relevant to the mentor’s skills as listed in the “expertise”
column. The calls are sorted according to the “time” column. Calls assigned to other
mentors, and calls that have been forfeited by that mentor, are subtracted from their queue.
The transactions are used to insert and remove elements from the queue, and are quite
straightforward.

For comparison, we built as much of Hack-q in QuickBase as we could. We created Skills
and Calls tables as in Fig. 7, but we stored the expertise information in reverse by adding a
QuickBase user-list field, “Experts”, to the Skills table to hold the set of mentors with the
skill. With this slightly unusual representation, we were able to define an Inbox report on
the Calls table that tested whether the current user was in the Experts list of the skill record
associated with each call. However, if we wanted to enhance the application so that a call
could require multiple skills, this would require only a small change in Object Spreadsheets
but we are not aware of a way to express such logic in QuickBase; this illustrates the risk
that developers take by investing in a tool with limited expressive power. Also, QuickBase
does not support application-specific mutation patterns (such as assigning a call to the
current user) in the core application builder; instead, the developer has to write a formula to
concatenate strings into a URL that will make the desired change via the QuickBase API
and then add a link to this URL to the page.

5.1 User study
To begin to collect feedback about how a tool like ours would be received by the intended end-
user developers, we conducted a small user study, recruiting four individuals with experience
building data-driven applications from a local user group for one of the existing application
builders and from our department. We guided each participant through the process of

Data Formulas Procedures
# object # computed

# columns columns columns LOC
PTC 40 12 9 17
Dear Beta 13 7 1 7
Hack-q 13 3 1 9
Got Milk 16 5 1 16

Table 5 Sizes of sample applications.
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Skill Staff Call
name name expertise inbox time name location issue assign forfeit
text text Skill Call date text text Skill Staff Staff

• Python • Remus Firefox Myrtle • 9:53 Angelina Forbidden Linux
• Android Python Forest
• Firefox • Severus Linux Angelina • 10:18 Myrtle Chamber Firefox
• Linux Python Neville of Secrets

• Dolores Android Angelina • 11:31 Neville Hall of Python Severus
Linux Myrtle Hexes
Firefox

Formulas inbox
{c : $.Call | c.issue in expertise

&& (c.assign = {} || c.assign = {Staff})
&& !(Staff in c.forfeit)}

Procedures enqueue name : text, issue : text, location : text
let q = new $.Call
q.time := now
q.name := name
q.location := location
q.issue := {s : $.Skill | s.name = issue}
check q.issue != {}

pick call : Call, user : Staff
call.assign := user

forfeit call : Call
to set call.forfeit add call.assign
call.assign := {}

done call : Call
delete call

Hello! I am name and I need help with issue .
I am in location .

−→ call
[

name
requires
location

]

Severus, your calls are
Angelina (Linux) Pick
»Neville (Python)« Forfeit Done

pick
[
call
Staff

]
forfeit [call]
done [call]

Figure 7 Data model, formulas, transaction procedure code, and HTML forms associated with
the simple queuing example “Hack-q” in the case study.
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building a book marketplace application (very similar in complexity to the parent-teacher
conference application) using Object Spreadsheets. With three of the participants, we went
through the same process in QuickBase. We wanted to know the strengths and weaknesses
the participants experienced in each tool once they understood the basics; we did not believe
a learnability test with no guidance would be realistic or appropriate at this stage.

The major lessons we learned:
One participant said editing the entire schema and data set on one screen was much better
than going back and forth between schema and data pages for each table in QuickBase.
Two of the participants liked the ability to nest objects and said they would use it. One of
them has built several applications backed by a data warehouse and expressed frustration
with the number of different database views that had to be joined explicitly, and observed
that appropriate use of nesting in the original views would reduce this burden. This
remark was made in the context of querying an existing database, but one would imagine
the same principle would apply to designing an application from scratch.
All participants struggled to write formulas, especially set comprehensions. The ability
of end-user developers to construct formulas is critical for the success of our system, and
we believe the situation will improve with the implementation of the formula builder.

In addition, participants pointed out a number of specific UI elements that were confusing or
error-prone and made suggestions for improvement, which we are in the process of reviewing.

6 Related Work

Spreadsheet-backed application builders. The clearest example of a tool for building
spreadsheet-backed web applications with their own permanent state is Quilt [9]. It uses
an unmodified Google Spreadsheet and does not attempt to overcome the limitations of the
traditional spreadsheet model, so at most it supports a single table containing one record
per row. The developer creates an HTML page and specifies an element to be repeated to
display each record, subelements of which may be bound to fields of the record using column
names or may be hidden conditionally based on fields. In addition, controls can be bound to
add and delete records.

Spreadsheet design features have been pursued more extensively for development of
“mashup” applications that combine, transform, and query data from multiple sources,
probably because these applications do not need to maintain their own richly structured state
across programmatic updates, which is challenging for traditional spreadsheets. Gneiss [11, 12]
and SpreadMash [23] both retain the two-dimensional grid but allow cells to contain nested
data structures retrieved from external sources. They can extract and filter items from these
structures, and SpreadMash can even define computed fields on them, but neither tool can
generate or mutate such structures on its own.

Other data-driven application builders. Subtext with Two-Way Dataflow [16] is analogous
to our work in offering a continuously visible rich data model with computed data and
application UI binding support, and it has an intriguing design for batching view updates
using a total order on the data model. However, its developer UI is less familiar than a
spreadsheet, and it’s unclear how the UI will scale to development of our target applications.

App2You [24] and AppForge [34] both let the developer build hierarchical forms, con-
structing the schema automatically, and offer a menu of access control policies. However,
neither has demonstrated how end-user developers would build arbitrary logic. AppForge
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supports only filters of the form “field operator constant”, and [24] does not state the form of
filters supported by App2You, though it mentions a formula language as a future extension.

Finally, mainstream application builders QuickBase [1], FileMaker [2], and Knack [4] all
support computed fields that are a function of fields of the same object or aggregations of
related objects, but none has the ability to repeat a computation on each related object, as
Object Spreadsheets can by introducing a computed object column.

Naked Objects. Our work may recall the Naked Objects approach to application design [30].
The essential principles of this approach are (1) a commitment to encapsulating all logic in
the objects it affects and (2) automatic generation of the application UI from the schema and
programmatic interfaces. The use of Object Spreadsheets as a data model and development
tool for the application logic appears to be orthogonal to both of these principles. (Object
Spreadsheets currently does not provide any features to enforce encapsulation, but a developer
can still choose to respect it.) Furthermore, the spreadsheet UI on the application state
could play the role of the automatically generated application UI, except for the need for
read access control. It does not yet provide a way to invoke procedures, but this is planned.

Nested table interfaces to relational data. Related Worksheets [7] is a spreadsheet-like
tool that lets a developer construct a schema for a set of related tables and join them
into editable nested-table views. The original vision was to provide most of the features
of spreadsheets, but formula support was never added. Instead, the authors went on to
develop SIEUFERD [8, 6], a tool for exploring existing relational databases. Because of
the close similarity of the work, we asked the authors for details about the system that are
not yet published. SIEUFERD lets a developer construct nested-table views using menu
commands for joins, filtering, and sorting, but does not support modifying the data or the
schema. SIEUFERD also supports computed fields, with a formula language that supports
navigations both up and down the hierarchy, though many data transformations are only
achievable via the menu commands. SIEUFERD assembles its views by generating a set
of SQL queries and does not have a semantics at the cell level, and indeed, some changes
to the view definition have non-local effects that surprised us. We believe there is a subset
of SIEUFERD’s functionality that (with the use of some boilerplate) is equivalent to the
computational capabilities of Object Spreadsheets, though we have not verified this. Object
Spreadsheets differs in its support for schema and data editing, stored procedures, and
abstract object references and its demonstration as a backend for web applications.

SheetMusiq [25] is similar in computational capabilities to SIEUFERD, but its UI differs
superficially from a nested table layout: it repeats the values in columns at outer levels of
the nesting.

Mashroom [19] uses a typed, nested data model and a nested table layout like ours and
has a formula language similar in spirit to ours with support for hierarchical navigation
(Mashroom does not have object references). However, its computational model is based on a
script of transformations starting from the source data, such as “insert a column containing
a snapshot of the result of this formula”, which can then be replayed on new source data.
One could achieve a development cycle similar to ours by modifying formulas in the script
and replaying it, with the limitation that dependencies must be acyclic at the column level
rather than the family level. Also, Mashroom does not consider mutations to a permanent
state, as contrasted with recording them in the script.
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Spreadsheets with declarative repetition of formulas. MDSheet [15] lets a developer define
the structure and formulas of a spreadsheet using the ClassSheets [18] modeling format,
which supports repeating groups of rows and columns and a dot notation for navigation,
and then maintains it as the developer adds and removes repetitions. However, this system
supports only one level of repetition along each axis of the grid, which limits its expressive
power.

The Sumwise [28, 29] spreadsheet tool lets developers annotate rows and columns based
on their roles in the sheet and then declaratively bind formulas to groups of cells based on
those annotations. However, the available documentation is insufficient for us to evaluate
its expressive power compared to that of Object Spreadsheets, and it does not address
programmatic mutations.

Other spreadsheet extensions. We have reviewed several systems that extend spreadsheets
with new capabilities to see if they might be capable of handling nested variable-size sets
with per-item formulas definable in context, even if their original motivation differed from
ours. Mini-SP [35] meets this test, since it allows sheets to be nested in cells and has a
rich programming language that includes the ability to instantiate a nested sheet for each
cell in an input array, but the code required is more complex than in Object Spreadsheets.
Forms/3 [10] is capable of mapping auxiliary sheets containing per-item formulas across
a variable-size input array but does not support nested data. The Analytic Spreadsheet
Package [32] and the spreadsheet of Clack and Braine [14] combine the two-dimensional grid
with formulas in more powerful programming languages that can manipulate nested data
structures, so such structures can be stored in a single cell, but these systems do not provide
any help working with variable-size data in the spreadsheet grid.

Other tools that bridge databases and spreadsheets. Senbazuru [13] automatically recog-
nizes and extracts relational data from existing spreadsheets and provides a UI for developers
to perform certain types of queries, but it does not allow queries to be defined persistently,
does not match the expressiveness of Object Spreadsheets, and does not have an approach to
handle programmatic mutations.

Sroka et al. [21] give a construction to store relational tables in a traditional spreadsheet
and execute SQL queries reactively by translating them to intricate spreadsheet formulas.
This may be a convenient environment to work with data, but it does not improve upon SQL
in terms of end-user development of queries.

7 Extensions

UI builder. We envision a UI builder that includes all the features of the spreadsheet
interface, but applied to a WYSIWYG representation of the page instead of the nested table
layout. For example, to design a page in which the user enters a query parameter in a field
at the top and sees a list of matching objects in a nested table, the developer would enter
the query formula directly into the nested table in the UI preview, clicking on the field to
refer to the parameter value entered by the user.

References to computed objects. As described in Section 3.3, references to state objects
are done through tokens. For objects created using a formula, this approach would not work
since objects are recreated when the formulas are reevaluated, and the tokens will not be
stable. Instead of devising a consistent token-allocation strategy for computed objects, we
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take advantage of the existing compute engine to reduce state references to computed objects
into computed references: we create value columns corresponding to the key of the computed
object and its parent. Then we add a formula that pulls the right object from the parent and
places it in a third column. This technique can be extended to more than one key, in case
computed objects are nested.

Access control and privacy. Portions of the application’s read access control policy can be
factored out into their own computed columns and then referenced from the formulas for
each view. For example, the developer could define a column giving the set of domain objects
that each user is allowed to see and then define each view to be limited to the objects listed
in that column for the current user. The developer can even opt to define a per-user filtered
copy of the entire application state and base all views on this copy, achieving a similar effect
to the centralized read access control policies of Sunny [27].

Bridge to other services. Naturally, many web applications require intercommunication
with web services such as e-mail, social media, news feeds, etc. A mechanism for hooking
spreadsheet applications with external sources can be implemented by designating a table
that gets filled by a service “robot” instead of by the user; for example, a table connected
to an e-mail account, where a row is inserted whenever a message is received. Spreadsheet
formulas can then operate on the data in the table to do any filtering or aggregation required.
Similarly, tables can be used as sinks, where the insertion of a row (typically by a transaction)
will trigger a message to be sent.

8 Conclusion

Our experience with the data model and the computational model shows that they yield
compact programs that are easy to understand and easy to change, making them suitable
for rapid prototyping without up-front design and for situations where the requirement
specifications tend to change frequently. We have shown that spreadsheets can greatly benefit
from having more structure built into them, without making it harder to write formulas, and
while keeping the data model coherent with the visual representation. Programming with
formulas can be made even easier with additional point-and-click support, which reduces the
need to type identifier names and is very intuitive for spreadsheet users. Having a statically
typed language aids in early detection of mistakes, but does not burden the developer with
annotations, since most of the types can be inferred. Tighter integration with a UI builder
can help filling in the types of transaction parameters by selecting them from the view. Most
importantly, the application is always “live”, with the view reflecting the current value of
the state and the formulas that have been entered, this breaking the code-build-debug cycle
that slows down and obscures conventional programming.
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A Appendix

A.1 Proof of existence of the computed extension
Proposition 1 In any spreadsheet, there is a good extension M̂ of M that is an extension
of any other good extension of M .

Proof. First we show that no two good extensions M1, M2 of M can have different data in
the same computed family. Suppose for the sake of contradiction that such M1, M2 exist,
and let S be the set of families that appear in both M1 and M2 with different data. Since the
family dependency relation in M1 has no infinite forward chains, we can walk dependencies
to find a family f ∈ S, none of whose dependencies in M1 are in S. So either all of these
dependencies are present in M2 with the same data, in which case the formula semantics give
the same data for f in M2, or at least one is absent, in which case the formula semantics do
not give a result for f in M2 at all. This contradicts the choice of f ∈ S.

Now, we claim that the union of all good extensions of M is the desired M̂ . One can show
that it is a well-formed instance, and it is clearly an extension of each of these extensions.
It remains to show that M̂ is good. Each computed family f in M̂ comes from some good
extension M1 of M (in general, not unique), and all of the dependencies of f in M1 appear
in M̂ with the same data, so the formula semantics give the same data for f in M̂ , meaning
that f respects its formula in M̂ . And if there were an infinite dependency chain from f in
M̂ , the same chain would exist in M1, contrary to the assumption that M1 is good. J

A.2 Procedure Semantics
The purpose of procedural code embedded in a spreadsheet is to alter its state instance M ,
that is, to add and remove cells in state columns. Each transaction in progress has a local
variable assignment σ that is initialized with the parameters of the transaction procedure
and can be updated by let bindings. All formulas in a statement are evaluated with respect
to σ and the computed extension M̂ of M , as it exists at the time the statement begins.

The semantics of the statements that mutate state are given in Table 6. ∆− ⊆ E is the
set of cells to delete from M . ∆+ is a set of tuples of one of the following forms:
〈〈C, d〉, v〉 where 〈C, d〉 ∈ F, C ∈ VC and v ∈ V(Γ[C]), meaning that a cell of value v
should be created in family 〈C, d〉;
〈〈C, d〉, k〉 where 〈C, d〉 ∈ F, C ∈ OC′ and k ∈ V(KΣ[C]), meaning that a cell of key k
should be created in family 〈C, d〉.

When a cell is created or deleted, its child families in all child state columns are implicitly
added or removed. Key families and the values of object cells are implicitly updated as
prescribed by the definition of a data instance. For suggestiveness, we notate a tuple
〈〈C, d〉, x〉 ∈ ∆+ as d ; x : C.

The first four statements in Table 6 operate on a set of families addressed by the
expression e1.id, where e1 determines the parent cell of each family, and id identifies the
child column where the family lives (only down-navigation can be used address families). For
these statements, we define the target columns C1 and C2 as the parent and child columns,
respectively, given by Γ ` e1 : C1 and 〈C2, ↓〉 = lu(C1, id).
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e1.id := e2

∆− = {e | d ; e, e : C2, d ∈ Je1Kσ}
∆+ =

{
d ; β : C2

∣∣∣ d ∈ Je1Kσ, β ∈ Je2Kσ}
to set e1.id add e2

∆− = ∅
∆+ =

{
d ; β : C2

∣∣∣ d ∈ Je1Kσ, β ∈ Je2Kσ \ {val[e] | d ; e, e : C2}
}

from set e1.id remove e2

∆− = {e | d ; e, e : C2, d ∈ Je1Kσ, val[e] ∈ Je2Kσ}
∆+ = ∅

new e1.id
∆− = ∅
∆+ =

{
d ; fresh E : C2

∣∣∣ d ∈ Je1Kσ}
delete e1

∆− =
{
e′
∣∣ e ∈ Je1Kσ, e ;∗ e′

}
∆+ = ∅

Table 6 Semantics for mutating statements in terms of ∆− and ∆+. S and C2 are defined in
the text.




