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Abstract. This paper explores the history and mathematics be­
hind the RSA cryptosystem, including the idea of public key cryp­
tosystems and number theory. It outlines the applications of RSA 
including secure information transfers and electronic signatures. It 
also analyzes why RSA is a secure way of transmitting information 
and the ways that it has been defeated in the past. In particular, 
we focus on the method of the quadratic sieve, a version of which 
was used to crack RSA-129. 

1. Introduction 

In 1977 the internet, electronic mail, and electronic banking were 
in their infancy. Many of the technological advances that we take for 
granted today were just beginning to be developed and refined. If we 
put ourselves in the shoes of the many scientists who were working 
on designing the internet what are some problems that we would en­
counter? One of the major obstacles, especially for email and banking, 
was security and privacy. There had to be some way to send messages 
across phone lines without unwanted eavesdroppers being able to inter­
cept and understand them. The integrity of sensitive information such 
as social security numbers and bank accounts depended on it. Thus the 
science of cryptography became incredibly important for the success of 
the internet. 

The RSA cryptosystem was first proposed in 1977 by Ronald Rivest, 
Adi Shamir, and Len Adleman [6]. It is from the initials of their last 
names that the system derived its name. Prior to RSA people would 
encipher their messages and send a courier to the recipient of the mes­
sage with the key to decipher it. The problem with this, of course, 
was making sure that the message the courier carried was secure. RSA 
was novel in that making the encryption key public did not reveal the 
decryption key [6]. It is a shining example of Public Key Cryptog­
raphy, a concept first proposed by Diffie and Hellman in their classic 
1976 paper[4]. Today, RSA is widely used and is regarded as one of 
the most secure cryptosystems in existence. 
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2. Public Key Cryptosystems 

Let M be the set of all possible messages and K be the set of all 
“keys.” For each key k ∈ K there exists both a decryption function 
Dk : M M and an encryption function Ek : M M . In order to →	 →
be considered a public key cryptosystem these functions must satisfy 
the following conditions [7]: 

(1) For	 every m ∈ M and every k ∈ K, Ek(Dk(m)) = m and 
Dk(Ek(m)) = m. 

(2) For every m ∈ M and every k ∈ K, the values of Ek(m) and 
Dk(m) are not difficult to compute. 

(3) For almost every k ∈ K if somebody knows only the function 
Ek, it is computationally infeasible to compute Dk. 

(4) Given k ∈ K, it is easy to find the functions Ek and Dk. 

A function Ek that satisfies (1)-(4) is called a trap-door one-way per­
mutation [6]. The function is one-way because it is easy to compute 
in one direction but not in the other. The trap-door refers to the fact 
that the inverse functions become simple to compute once certain in­
formation is revealed, in other words, once one finds the trap-door. It 
is a permutation because every message is an encryption of another 
message and every encrypted message is also a permissible message. 
This property is useful when trying to find a way to “sign” electronic 
documents. 

Consider two people who are trying to communicate a private mes­
sage, José and Silvia. Let their encryption and decryption functions 
be denoted as DJ , EJ and DS , ES . They both put their encryption 
functions EJ and ES in their public files. José sends a message to Silvia 
by recovering ES from her public file and encrypting his message with 
it. He sends Silvia ES (m) and only she can decipher it since only she 
knows DS . Likewise, she can send a message m� to José by using EJ . 

3. RSA 

The basic premise behind the RSA cryptosystem is that although 
multiplying two numbers is a simple process, factoring the product 
back into the original two numbers is much more difficult to do compu­
tationally. The difficulty increases as we use larger and larger numbers. 
In order to encrypt a message using the RSA cryptosystem one must 
first choose two large prime numbers p and q, usually of about 50 digits 
each. 
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Definition 3.1. An integer p is prime if p =� ±1 and it’s only divisors 
are ±1 and ±p. An integer that does not satisfy the previous property 
is called composite. 

After choosing p and q we get n = p ∗ q. The encryption key is the 
pair of integers (e, n) and the decryption key is the pair (d, n). Given 
a message m, in order to encrypt it we would first represent it as an 
integer between 0 and n − 1. If the message is too large then we can 
break it into blocks, as long as each block is between 0 and n − 1. 
Then encrypt m by raising it to the eth power modulo n. Denote the 
resulting ciphertext as c. Then we have 

E(m) ≡ m e ≡ c (mod n). 
To decrypt the ciphertext we would raise it to the dth power modulo n. 

D(c) ≡ c d ≡ m (mod n). 
The integers e and d are closely related to p and q. Choose d to be any 
large random integer that is relatively prime to (p − 1)(q − 1). Then e 
is the multiplicative inverse of d, modulo (p − 1)(q − 1). 

Definition 3.2. The integers a and b are relatively prime if their great­
est common divisor is 1, 

gcd(a, b) = 1. 

Definition 3.3. An integer a is the multiplicative inverse of an integer 
b, modulo s, if 

a ∗ b ≡ 1 (mod s). 
Anybody wishing to send and receive private messages would make 

their encryption key (e, n) public but keep their decryption key (d, n) 
private. Nobody would be able to derive the private key from the public 
key due to the extreme difficulty of factoring n. 

We can now prove that the above method fulfills the properties of a 
public key cryptosystem. 

Definition 3.4. Let ϕ(n) be the totient function of an integer n. Then 
ϕ(n) gives the number of positive integers that are relatively prime to 
n. That is, ϕ(n) gives every integer a > 0 that satisfies gcd(a, n) = 1. 

Theorem 1. The RSA cryptosystem fulfills property (1) of a public 
key cryptosystem. 

Proof. By Euler’s theorem [3] we know that for any two integers m and 
n that are relatively prime 

(1) m ϕ(n) ≡ 1 (mod n). 
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Also, for a positive prime integer p, 

ϕ(p) = p − 1. 

Therefore, for any message m that is relatively prime to n = p ∗ q, 

m ϕ(n) ≡ 1 (mod n) 

By the basic properties of the totient function ϕ(n) [3] we know 

ϕ(n) = ϕ(p) ∗ ϕ(q), 

= (p − 1)(q − 1) 

= n − (p + q) + 1. 

Also, we have defined the encryption and decryption functions in 
such a way that E(D(m)) ≡ D(E(m)) modulo n since 

E(D(m)) ≡ (D(m))e ≡ (m d)e (mod n)


D(E(m)) ≡ (E(m))d ≡ (m e)d (mod n).


Furthermore, by construction we have chosen e and d to be multiplica­

tive inverses modulo (p − 1)(q − 1). In other words we have 

(2) e ∗ d = k ∗ ϕ(n) + 1 for any integer k.


By (1) we see that for all messages m such that p does not divide m


m(p−1) ≡ 1 (mod p).


By (2) and since (p − 1) divides ϕ(n) we have


m k∗ϕ(n)+1 = m ∗ (m(p−1))k(q−1) 

≡ m (mod p). 

The above equality holds for all m. If we use a similar argument for q 
we see, for all m, 

m k∗ϕ(n)+1 ≡ m (mod q).


If we combine the two previous equations we deduce


m e∗d k∗ϕ(n)+1 (mod n)≡ m ≡ m 

for all m. � 
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Example 3.1. Let p = 47, q = 59, n = 47 ∗ 59 = 2773, and d = 157. 
Then ϕ(2773) = 46 ∗ 58 = 2668. The Extended Euclidian algorithm is 
a procedure to find α, β, and c where α ∗ a + β ∗ b = c, for integers 
a, b, and c such that gcd(a, b) = c [3]. If we compute e using the 
Extended Euclidean algorithm we can set a = ϕ(n), b = d and we 
know that since ϕ(n) and d are relatively prime at the end of the 
algorithm we will obtain c = 1. However, we will also obtain α and β 
where α ∗ ϕ(n) + β ∗ d = 1, and β will be the multiplicative inverse of 
d (mod ϕ(n)). Using this procedure we arrive at e = 17. Suppose we 
have a message 

m = IT’S ALL GREEK TO ME. 

Then we can set each letter in the alphabet equal to a two-digit 
number. This will ensure that there is no ambiguity when encoding 
and decoding. If A = 1, B = 2,. . . , then 12 could mean AB or L. 
Therefore we set blank = 00, A = 01, B = 02, . . . , Z = 26. The 
encoded message becomes 

m = 0920 1900 0112 1200 0718 0505 1100 2015 0013 0500. 

Note that the message has is broken into blocks of two letters each. 
If we put it in blocks of three letters they would not each be less than 
n − 1 = 2772. Let m1 be the first block of the message. Then to 
encipher m1 we calculate 

E(m1) ≡ (m1)
17 ≡ (920)17 ≡ 948 (mod 2773).


Let c denote the ciphertext for the entire message, then


c = 0948 2342 1084 1444 2663 2390 0778 0774 0219 1655. 

It is easy to check that the deciphering method works. For m1, 
948157 ≡ 920 (mod 2773). 

4. Signatures 

The RSA cryptosystem can be used to send and receive sensitive 
or private information over insecure channels. However, it also has 
another use which has proven equally important. That is, it allows 
people to sign electronic documents. There are two obstacles to signing 
documents over the internet. The first, of course, is making sure that 
the signature is not forged by an impostor. The second, is verifying 
that the message that is signed is not altered in any way after it has 



6 SILVIA ROBLES 

been signed. RSA provides a clever answer to both of these problems. 
It assures that a signature is paired with a certain message and cannot 
be “pasted” on to a different message. Let S denote the signature for 
the message m. Recall our two people, Silvia and José. Each had their 
corresponding encryption and decryption functions, ES , DS , and EJ , 
DJ respectively. If José is sending the message to Silvia he signs it by 
computing 

S = DJ (m). 

He then encrypts this signed message in the usual way, using ES 

from Silvia’s public file. The message that Silvia receives is 

ES (S), 

which Silvia can decrypt to obtain S with her own private decryption 
function. Since Silvia is expecting a message from José she knows 
to extract the original message by using EJ from José’s public file. 
Property (1) of public key cryptosystems ensures that EJ (DJ (m)) = m. 
The result is a message, signature pair (m, S). This process proves 
that José (and not some impostor) signed the message because only 
he could manufacture S = DJ (m). If we change the message then 
the signature changes, therefore no signature can be “pasted” onto a 
different message. 

5. Security of RSA 

The security of the RSA cryptosystem is not perfect. There are 
several weaknesses that must be guarded against that mostly consist 
of avoiding prime numbers that are easily found by current factoring 
methods. This implies that the security of the RSA cryptosystem rests 
on the difficulty of factoring n. Indeed, trying to break RSA by finding 
d, the decryption key, or computing ϕ(n), amounts to factoring n in 
the end. 

Once we had ϕ(n) we could break RSA in two ways. First, we could 
find d by finding the multiplicative inverse of e (mod ϕ(n)). Second, 
we could find n = pq. To see why computing ϕ(n) would give us p and 
q [7] note 

n − ϕ(n) + 1 = pq − (p − 1)(q − 1) + 1 

= p + q. 

Once we know n = p ∗ q and p + q, we can find p and q by computing 
the roots of the polynomial 
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x 2 − (n − ϕ(n) + 1)x + n = x 2 − (p + q)x + pq 

= (x − p)(x − q). 

Since finding ϕ(n) allows us to factor n, it is no easier than factoring 
n. Similarly, since once d is known, n would be known, finding d can 
be no easier than factoring n. 

To factor n once we have d we would first compute de − 1. The term 
de−1 is a multiple of ϕ(n). We can now apply the method for universal 
exponent to factor n since for any integer a such that gcd(a, n) = 1 

a(de−1) ≡ a kϕ(n) ≡ 1 (mod n). 

There are many factoring algorithms known today. Here are a few 
examples of how their existence would affect our choice of d, p, and q 
[7]. 

Theorem 2. Let n = pq, where p and q are primes with q < p < 2q. 
Suppose d < 1/3n1/4 . Given (n, e) such that d ∗ e ≡ 1 (mod ϕ(n)) 
holds, there is an efficient procedure for computing d. 

Proof. The method is given by [8] and uses continued fractions for 
e/n. � 

The result of the above theorem is that p and q should be of slightly 
different sizes and d should be large in order to guard against this 
particular attack. 

Theorem 3. Let Sn = pq have t digits. If we know the first t/4, or 
the last t/4 digits of p then we can efficiently factor n. 

Proof. This result is given in [2]. � 
The result here is that we should choose a p such that most of the 

digits are not predictable. If we choose our prime p by testing numbers 
for primality that are always of the form N ∗ 1050 + k for a random 
50-digit number N and k = 1, 3, 5, . . ., then an attacker will know 47 
of the last 50 digits. They will all be zero! 

Theorem 4. Suppose (n,e) is an RSA public key and n has t digits. 
Let d be the decryption key. If we have at least the last t/4 digits of d 
then we can efficiently find d in time that is linear in elog2e. 

Proof. This proof is given in [1]. � 
Here we see that if the encryption key e is large then it is difficult to 

find d since the search is bounded as a function linear in elog2e. This 
shows that we should not choose a small e. 
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6. The Quadratic Sieve 

The Quadratic Sieve is a factoring algorithm that was invented in 
1981 by Carl Pomerance [5]. It has been used with much success since 
then and a variant of it was used to solve RSA-129 in 1994 [7]. To 
factor n using the quadratic sieve we must first create a factor base. 

Definition 6.1. A factor base is a finite set of small primes. 
2Next choose integers r that are close to 

√
n. Calculate Q ≡ r

(mod n). Try to factor Q using only the factor base we created ear­
lier. By the unique factorization theorem [3] an integer n ≤ 2 can be 
uniquely written in the form 

e1 e2 ek n = p1 p2 p ,· · · k 

where 1 < p1 < p2 < . . . < pk are prime numbers and e1, e2, . . . , ek 
are positive integers. For example, if the factor base contains 2,3,5 and 
7, then 600 can be written as 23 ∗ 31 ∗ 52 ∗ 70 . If a list of factors has 
only even exponents then it is a perfect square. We are interested in 
perfect squares because they are solutions to the congruence x2 ≡ y2 

(mod n). Finding a square Q will lead us to a factor of n, which is why 
this algorithm is called the quadratic sieve. 

If we don’t immediately find a Q that is a perfect square we can com­
bine several Q’s in order to obtain one that is a square. For example, 
if one Q is almost square but it contains 71 as a factor, and another 
Q is almost square but it contains 73 as a factor, multiplying them 
will yield a perfect square and multiplying their corresponding r’s will 
satisfy the quadratic congruence. We can see that the procedure for 
making a square combination of Q’s is a linear algebra problem. We 
can solve this problem by constructing a matrix where each column 
corresponds to a prime in the factor base and each row is a Q. The 
entries of the matrix will be the exponents that correspond to each Q. 
Also, since all that matters is whether the exponent is odd or even, 
each entry can be represented as either a 1 for odd or 0 for even. So 
if jth row corresponds to Q = 600 then the entries for that row would 
look like 1 1 0 0 . We combine two rows by adding them modulo 
2. We can use Gaussian elimination to find a linear dependence, and 
if we keep track of the operations we performed we can recreate them 
on the actual Q and r values that the row in the matrix represents and 
obtain a factor of n. In order for this matrix to work we need at least 
as many congruences as the number of primes in the factor base. 

The method is a sieve because to determine the Q and r values we 
set them up in an arithmetic progression and cross out values every 
so often, much like the sieve of Eratosthenes. The algorithm sums 
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the logarithms of the successful divisors, which gives greater weight to 
larger factors. Each Q for which the sum is larger than some threshold 
is likely to be “smooth”, in particular, it can be factored quickly by 
trial division. 

In 1994 Arjen Lenstra, Paul Leyland, Michael Graff, and Derek 
Atkins organized a massive effort to factor RSA-129. RSA-129 was 
used to encode a message set out in 1977 by the creators of RSA as 
a challenge to anybody who thought they could break the encryption. 
They offered $100 to anybody who could do it before April 1st, 1982 
[7]. The 129 referred to the number of digits in n. The algorithm that 
they used was called the multiple-polynomial quadratic sieve, where 
the quadratic congruence Q ≡ r2 (mod n) is replaced by polynomial 
relations [5]. Through the effort of 600 people, in 24 countries, on 1600 
computers, RSA-129 was factored in 7 months. The factor base in­
cluded all prime factors less than 16333610. It took 45 hours to perform 
Gaussian elimination on the matrix they made with 524,338 columns 
(corresponding to each prime factor) and 569,466 rows (corresponding 
to each congruence). The first three factorizations that were found 
were trivial, but the fourth gave the solution to RSA-129 [5]. What 
was the message that Rivest, Shamir and Adleman had encrypted in 
1977? 

THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE 

7. Conclusion 

Cracking an RSA encryption is certainly a formidable task. The fact 
that it has survived the test of time stands as a testament to it’s se­
curity; 30 years in a world where technology is advancing at breakneck 
speed is nothing short of amazing. However, the death of RSA can be 
seen in the horizon. There are two ways in which it could be circum­
vented. Either a brilliant mathematician finds an efficient factoring 
algorithm, or computers speed up. The first possibility could happen 
tomorrow. As illustrated by the above example, methods improved 
enough between 1977 and 1994 to be able to factor RSA-129, although 
it took a great deal of effort. With respect to technology, either normal 
computers can improve, or quantum computers can become a reality, 
which would effectively make RSA obsolete. Either one of these op­
tions will most likely take some time. Even so computer scientists and 
mathematicians are already searching for different approaches to en­
crypting messages such as elliptic curve cryptosystems. What will be 
the standard 10 or 20 years from now? Only time can tell. 
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