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Abstract 

Surreal numbers are a field that contain both the reals as well as infinitely large 
and infinitely small numbers. Similar to Dedekind cuts, surreals are cosntructed 
using two sets of previously created numbers, and the subsequent properties that 
emerge create a rich set of properties. While a still largely unexplored area, this pa­

per discusses some elementary properties of surreals, construction, comparisons, and 
operations. In addition, interesting computations involving various forms of infinity 
will be described, as well as applications in the field of games and combinatorial game 
theory. 
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1 Introduction to Surreal Numbers 

All of us are familiar with the very basic number systems; these would include the 
integers, rationals, reals, complex, etc. However, there is another set of numbers in­

troduced recently by John Horton Conway via Donald Knuth’s 1974 Mathematical 
novelette, “Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics 
and Found Total Happiness.” 

More formally, these numbers form a field that contain reals as well as infinite and 
infinitesimal numbers. They have interesting properties as well as useful applications 
that we will talk about today. 

1.1 Construction 

Every number in the surreals corresponds to two sets of previously created numbers 
with one restriction: no member of the left set is greater than or equal to any members 
of the right set: 

x = (XL, XR) 

with the restriction that 
XL � XR 

This simply means that given an surreal xL in XL, and for any number xR in XR, we 
must have xL � xR for this to be a valid surreal. Note: for the purposes of notation, 
I will choose to use lowercase letters for numbers, while uppercase letters will usually 
mean sets of numbers. 

The obvious question is what numbers exist in the first place to get these set con­

structed numbers started. Conway realized that the natural start would be when 
both XL and XR are taken to be the empty set ∅. Therefore we can see that zero can 
be defined as follows: 

0 = (∅, ∅) 

We must be careful that this is indeed a valid surreal number. Based on the defini­

tion, we know it must satisfy XL � XR. Since both sets are empty, we see that this 
is immediately true, as no element of the left set is greater than an element of the 
right set as there are no elements at all. 
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From here, it is not hard to build more and more surreals. We now have 0 avail­

able to us to use as part of the left or right set. For example, we can define -1 as 
follows: 

−1 = (∅, {0}) 

and similarly we can define 1 as follows: 

1 = ({0}, ∅) 

We do a quick check with each of these numbers to confirm they are well formed. 
Since both of them have an empty set, we again see that the condition is satisfied, as 
there are no elements in either the left or right set for comparison. 

One interesting note is that if either XL or XR is the empty set, the condition 
XL � XR is always true, and therefore we can see immediately that infinitely many 
numbers can be created in this fashion. 

1.2 Comparison Definition 

We now define what it means for surreal numbers to be less than or equal. The usual 
notation for something like this is x ≤ y. For this to be true in the surreal numbers, 
we must have: 

XL � y 

and 
x � YR 

Specifically, every element of XL satisfies the condition xL � y, and that x is not 
greater than or equal to any element of YR. 

With this definition, we can show some elementary properties of the numbers we 
have shown to exist so far. For example, using our definitions we can show that 
0 ≤ 0. Since 0 = (∅, ∅), we see that indeed no number of the left set of 0 is greater 
than or equal to 0, and no number of the right set of 0 is less than or equal to 0. 
Therefore we have shown that 0 ≤ 0. 

In addition, we should be able to show other properties of these numbers that make 
intuitive sense, such as -1 not being greater than or equal to 0. That is, we aim to 
show 0 � −1 where −1 = (∅, {0}). 
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For 0 ≤ −1 to be true, we require that x � YR, where YR in this case is {0}. 
But we have shown earlier that indeed, 0 ≥ 0, so therefore this is not true and we 
have that -1 is not greater than or equal to 0. 

One final example to convince that these rules produce an intuitive ordering for 
the surreals, we will show that -1 is less than 1. By the inequality rule, we see that 
−1 ≤ 1. We want to also show that 1 � −1. 1 ≤ −1 implies that 0 � −1, but we 
have shown that this is false. Therefore it must be that −1 < 1. 

1.3 Transitive Law 

In comparing numbers so far, we have taken the general approach of making sure 
that, for example, every element of XL is not greater than or equal to y. 

One observation we can make is that it seems logical that when comparing num­

bers, it is unnecessary to go through all of them—what seems to matter is the largest 
element of XL. That is, if any particular element in XL is ≥ y, then the largest one 
should be as well. This applies as well in the case where we are comparing x with 
YR; we should only have to examine the smallest element of YR. 

If this result holds, then it means that any surreal (XL, XR) will act exactly the 
same in the comparison sense if the left set is replaced by the largest element and the 
right set replaced by the smallest. 

In essence, what we need to prove is transitivity. That is, for surreal numbers x, y, 
and z, 

if x ≤ y and y ≤ z, then x ≤ z. 

For the purposes of this presentation, I will show this informally and sketch a proof 
by contradiction. Let us assume that there exist three numbers such that: 

x ≤ y, and y ≤ z, and x � z. 

From our inequality rules, we can see that if these numbers exist, then the following 
is also true: 

XL � y 

x � YR 

YL � z 

y � ZR 
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We also know that y ≤ z, z ≤ xL and y � xL, so this is yet another set of numbers 
that do not work with transitivity. More specifically, it can be shown that there are 
only two possible cases for every “bad” x, y, z triple: 

Case 1: There exists some xL ≥ z, and therefore (y, z, xL) are another triplet of 
numbers that do not satisfy transitivity. 

Case 2: There exists some zR ≤ x, and therefore (zR, x, y) are another bad triplet. 

Where does this get us? Well, in either case, the newly constructed triplet is a 
simpler version of the original (x, y, z). In other words, using induction we can show 
that if a set of numbers like this does exist, then it is impossible to keep finding 
simpler and simpler sets of these. Since we cannot keep doing this indefinitely, there 
cannot exist any numbers that do not follow transitivity at all. 

1.4 Reasoning Directly/Indirectly 

To further our understanding of surreal numbers, we will now show a few interesting 
properties. First we ask the question, is it true that two numbers are always related 
to each other? In other words, could it ever be the case that 

x � y and y � x 

To show that this cannot happen, I first present the following theorem without proof: 

Theorem A: Let x be a surreal number. Then x ≤ x 

Now assume x and y are numbers that are not related to each other in the sense we 
have defined above. Then for some xL or yR, one of the following must be true: 

xL ≥ y or x ≥ yR 

We examine this case by case. If y ≤ xL and if xL ≤ x, we then would have y ≤ x by 
transitivity, and by assumption y � x. Therefore xL � x. 

For the other case where yR ≤ x, the same logic would show that this implies y � yR. 
Now all that is left to show is an important concept within surreal numbers, that of 
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every number lying in between all the elements of its left and right sets. In other 
words: 

Theorem B: XL ≤ x and x ≤ XR 

We prove one half of this—the other half follows by an analogous argument. For the 
sake of contradiction, assume that xL � x. Then there is either a number xLL in XLL 

such that xLL ≥ x, or there exists a number xR in XR such that xL ≥ xR. We know 
this latter case is impossible from the construction of surreal numbers. 

As for the first case, we notice that since xLL is an element of the left set of xL, 
we can see that xLL ≤ xL by induction. We then have: 

x ≤ xLL and xLL ≤ xL 

which by transitivity implies that x ≤ xL. But that is impossible, because it would 
imply that XL � xL, which would mean that xL is contained in XL. Along with 
Theorem A, this reasoning implies thatXL ≤ x. The other part that we need to 
show, x ≤ XR can also be proved by a similar argument. 

With these results, we no longer have to write and reason indirectly in comparisons. 
In other words, x � y is identical to x < y. 

2 Equivalence and Arithmetic 

2.1 Equivalence 

As mentioned before, an interesting insight is that when comparing numbers, it is 
unnecessary to go through every one in a set. In particular, all that seems to matter 
is the largest element of XL, and the smallest element of YR. In this part of the 
presentation, we discuss this issue in more depth. 

Take a given number x = (XL, XR). Also given are arbitrary sets of numbers YL 

and YR, with the constraint that: 

YL < x < YR 

Now define a new number z as follows: 

z = (YL ∪ XL, XR ∪ YR) 
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The claim is that x “is like” z. This appeals to our theory that creating larger sets 
XL and XR by adding numbers that do not affect the max/min of the appropriate 
sets does not significantly change x in the comparison sense. 

Clearly z is a well formed number. We now want to show two things: 

z ≤ x and x ≤ z 

For the first part, we need to demonstrate that: 

YL ∪ XL < x and z < XR 

However, it is easy to see why this is true. By assumption, YL < x and we know 
XL < x and z < XR ∪ YR from the previous section. The same argument can be used 
to prove that x ≤ z. Therefore we have shown the following: 

Theorem C: if YL < x < YR, then x ≡ (YL ∪ XL, XR ∪ YR) 

Where we use the notation x ≡ z to denote “x is like z”. 

2.2 Addition and Subtraction with Surreals 

The concept of addition with surreal numbers is a very natural one. Informally, the 
left set of the sum of two numbers is the sum of all left parts of each number, and 
the right set of the sum is the sum of all right parts of each number. 

More formally, we can write the sum of two surreals as: 

x + y = ((XL + y) ∪ (YL + x), (YR + x) ∪ (XR + y)) 

Conway also defined the negative of a number very precisely as having as its sets the 
negatives of the number’s opposite sets. Formally: 

−x = (−XR, −XL) 

Subtraction was naturally defined to be the addition of the negative. 

Now we can do an example to show how addition works with surreals: 

Example 1: Say we want to calculate 1 + 1. We recall that 1 = ({0}, ∅). Using 
Conway’s rule, we get: 

1 + 1 = ({0 + 1, 0 + 1}, ∅) 
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To further simplify this, we also calculate what 0 + 1 is. Recalling that 0 = (∅, ∅), we 
get that: 

0 + 1 = ({0 + 0}, ∅) 

One last calculation to do, and that is to find out what 0 + 0 is. Once again, using 
the addition rule we find that: 

0 + 0 = (∅, ∅) = 0 

Substituting back, we see that 0 + 1 = ({0}, ∅) = 1. From this, we finally see that: 

1 + 1 = ({1}, ∅) 

We can call this number ({1}, ∅) = 2. We’ve just proved that 1 + 1 = 2! 

Example 2: What is 1 + 1
2 ? 

Given that 1 = {0, ∅} and 
2

1 = {0, 1} we get: 

1 1 1 
1 + = {(0 + ) ∪ (1 + 0), (∅ + ) ∪ (1 + 1)}

2 2 2

={(0 + 1
2 ) ∪ (1 + 0), 1 + 1} 

Simplifying the sums, we see that: 

={(1

2 ) ∪ (1), 2}

={1, 2}

=11


2 

2.3 Multiplication 

Although operations with multiplication are somewhat complex, we will go over the 
formula for the sake of completeness. If you have to surreals x and y, then their 
product is the following: 

xy = {(XLy+xYL−XLYL)∪(XRy+xYR−XRYR), (XLy+xYR−XLYR)∪(XRy+xYL−XRYL)} 

where 

XY = {xy|x element in X and y element in Y } 
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Xy = X{y} 

xY = {x}Y


Example 1: What is 0 × x?


For this example of Surreal multiplication, we proceed given the formula above. We 
see that this becomes: 

0x = {(∅x +0XL −∅XL) ∪ (∅x +0XR −∅XR), (∅x +0XR −∅XR) ∪ (∅x +0XL −∅XL)} 

= {∅, ∅} 
= 0 

Example 2: What is 1 × x? 

Again, using the definition we get: 

1x = {(0x +1XL − 0XL) ∪ (∅x +1XR −∅XR), (0b +1XR − 0XR) ∪ (∅x +1XL −∅XL)} 

= {1XL, 1XR} 
= x 

3 Examples and Applications 

3.1 Numerical Examples 

As mentioned earlier in the presentation, the surreals contain the real numbers. This, 
however, is not yet clear from the discussion so far. To see how the surreals can rep­

resent every real number, we recall that every real number is just an infinite decimal 
or binary expansion. I will illustrate this idea with a few examples: 

Example 1: How do we represent the real number 
3

1 ? 

We know we can represent this as the following binary expansion: 

1 
= .0101010101... 

3 

Which is of course non terminating. So far we have only given examples of surreal 
numbers with finite left and right sets. To represent 1

3 , we introduce the idea of 
choosing either XL or XR as infinite sets. 
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For example, we can choose the left set XL to approach the binary expansion from 
below, as such: 

XL = {.01, .0101, .010101, .01010101, ...} 

Similarly, we also need an infinite set of numbers that approach the binary expansion 
from above for the right set: 

XR = {.1, .011, .01011, .0101011, .010101011, ...} 

Since we proved that the number lies between the left and right sets, we see that 
x = (XL, XR) will represent the number 1

3 . 

Example 2: How would we represent π? 

Similar to the previous example, we first represent π as a binary expansion: 

π = 11.00100100001111... 

We can now represent the surreal number with the following left and right sets: 

ΠL = {11.001, 11.001001, 11.00100100001, ...} 

which continues indefinitely by stopping at every 1. 

ΠR = {11.1, 11.01, 11.0011, 11.00101, ...} 

which comes about by stopping at every 0 and then adding a 1 to the sequence. These 
sequences converge to π from above and below. 

An important observation is that there are many ways to choose these sets to repre­

sent the same real number. In fact, there are infinitely many ways to choose XL and 
XR such that the surreal number is equivalent. 

3.2 Surreals and Infinity 

One of the most interesting properties of surreal numbers is the way the concept of 
infinity is defined and manipulated. The definition is in fact very natural. We let: 

XL = {1, 2, 3, 4, 5, 6, ...} 
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and for the right set, we define: 
XR = ∅ 

Clearly, this number, denoted as ω = (XL, XR) is larger than all other numbers and 
is the infinity of surreal numbers. 

Let us explore a related concept in a different sense. Consider the number ǫ = 
(XL, XR) where: 

XL = {0} 

1 1 1 1 
XR = {1, , , , , ...}

2 3 4 5

We can see that based on the rules for surreal numbers, ǫ is a number greater than 
zero and less than all positive real numbers. This is an extremely important idea, 
and shows how surreal numbers can fill in the “gaps” between the real numbers. 

Even more interesting is how our rules allows us to manipulate numbers such as 
ω and ǫ in ways that are not intuitive to us. We can even see things such as which 
infinity is larger, and how to add and subtract from them. 

Example 1: What is ω + 1? 

Our rules show us that ω + 1 = ({ω, 2, 3, 4, 5, ...}, ∅). This can simplify to: 

ω + 1 ≡ ({ω}, ∅) 

Example 2: What is ω + 2? 

It is easy to show that this is equivalent to: 

ω + 2 ≡ ({ω + 1}, ∅) 

Example 3: What is ω − 1? 

Applying Conway’s subtraction rule, we get: 

ω − 1 ≡ ({1, 2, 3, 4, ...}, {ω}) 
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What is the intuition for a number such as ω −1? It is basically the first surreal num­

ber created that is larger than every integer, but still less than ω. In other words, 
this is an infinite number less than infinity. 

3.3 Surreal Numbers and Game Theory 

Surreal numbers have their origins within the theory of games. It has been said that 
Conway originally came up with the idea for surreal number construction after in­

tensely studying “Go.” 

In particular, the restriction that every element of the left set must be less than 
every element of the right set is dropped, and then this more general class of elements 
is known as games. 

The construction rule for a game is as follows: 

Construction: If L and R are two sets of games then {L |R} is a game. 

All the familiar rules for addition, subtraction, multiplication, etc. that we have de­

fined earlier for surreal numbers is valid in the context of games. It is important to 
note that since games are less restricted than surreals, every surreal is a game but not 
every game is a surreal number. While we showed that surreals have a total order, 
games only have a partial order. 

Technically, a “move” in a game is when the player whose turn it is chooses a game 
from the left set (if he is the left player) or the right set (if he is the right player), and 
then passing the game to the opponent. The loss condition comes when the player 
whose turn it is cannot move because his choice is from an empty set. 
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