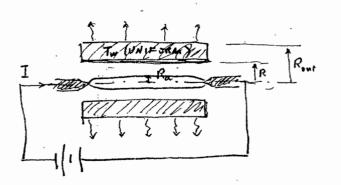
Handed: 3/4/04 Due: 3/11/04

Problem 1

Using the simple model of ionization/conduction developed in class, calculate and plot versus T(K) the quantities $n(m^{-3}), S(m^{-3}), n_e(m^{-3}), \alpha = \frac{n_e}{n_n + n_i}$ (degree of ionization), $\overline{c}_e(\frac{m}{s}), v_{en}(s^{-1}), v_e(s^{-1}), n_e(s^{-1})$ and $\sigma(Si/m)$. Cover the range 5,000K $\leq T \leq 16,000$ K. Compare to the more complete results in Yos' graph handed out in class. Take P=1 atm.

Problem 2

Using the simplified formulation covered in class calculate the maximum current in an arc burning inside a <u>radiatively cooled</u> constrictor, the walls of which are limited to a



 $(T_w)_{MAX}$. Assume the constrictor is long enough that the $\ell \sim d$ effects are negligible. There is no flow around the arc. The body of the constrictor is made of a good thermal conductor, and can be

Maximum temperature

assumed to be isothermal, at T=T_w. The outside surface radiates to space at a rate $\varepsilon \sigma T_w^4$ per unit area (ε is the emissivity, and $\sigma = 5.67 \times 10^{-8} w/m^2/K^4$ is Stefan-Boltzmann's constant).

NOTE: Try to arrange your expression in the form $I^* = \lambda f(y)$ where $y = \beta \frac{T_w^{*4}}{1 - T_w^{*}}$; $T_w^* = \frac{T_w}{T_e}$; $\beta = \frac{\varepsilon \sigma T_e^3 R_{out}}{K_{out}}$ and other symbols are as defined in class.

Calculate the allowable current for the case: $\overline{K} = 1 w/m/K$; $K_{out} = 0.2 w/m/K$ (gas thermal conductivities inside and outside arc). $\varepsilon = 0.8$; $T_e = 7000K$; $R_{out} = 1cm$; R = 3mm. $T_w=2000K$ (max allowable) a=0.5 Si/m/K