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Abstract

Let X1 . , X2. be smooth linearly independent vector fields in an open set Q C R2n+l.
We form the nonisotropic Sobolev spaces S2 for a > 0, by measuring smoothness in terms of
the X3 's. These function spaces are the natural ones to consider when dealing with operators
of the form X2 + ... + X22n. In particular, in the Dirichlet problem associated with these
operators the problem of restriction to the boundary comes up naturally. Let M be a smooth
hypersurface of f. In this thesis the restriction problem is investigated. It is shown that
many results that hold, concerning the restriction problem, for the isotropic Sobolev space L2
have analogues in the nonisotropic setting, in particular the result L 2|M = L 2_ . When the

index a is small } < a < 1, we have complete characterization of the space of restrictions;
S.Im = F 2_ (M), this latter space is described by similar smoothness conditions to the
classical Sobolev spaces using the first diffrences. We merely replace the distance function
by the nonisotropic one and the surface measure by a weighted measure, this weight is
precisely the angle made by the tangent space and the span of the vector fields X,'s. If do
denotes the surface measure on M, we show also that the space S2 admits restrictions to M
that are members of L 2(do), this result is sharp; in the case of surfaces where the span of
the X,'s is nowhere tangent the condition is a > }. For higher indices a, we use a method
due to Jonsson and Wallin to describe the restriction spaces.

Thesis Supervisor : David Jerison
Title : Professor of Mathematics
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Chapter 1

Introduction

Let X1, -- - , Xm be smooth vector fields defined on some manifold Q. Assume further that
this system of vector fields satisfies a finite step H6rmanders' condition, that is X1; ... ; X,
and commutators of finite length span the tangent space at each point . Identifying the X,'s
with the directional derivatives, we will measure smoothness of functions on Q in terms of
these vector fields. We form the Sobolev type spaces denoted by S' whose members f are
characterized by the requirement that f E SP_ 1 and Xjf E Sk_ 1 , locally, for 1 j < m
and k = 1; 2; . We, of course, adopt the convention that So = L and the derivatives are
in the sense of distributions. These spaces are the natural ones to consider when dealing
with differential operators of the form X2 + ... + X2 and its variants, see for example [DE].
Now in the same way as the classical Sobolev spaces LP, the question of restriction to the
boundary of the members of SP is a natural one and it is of importance, in particular, to the
Dirichlet problem and other boundary value problems, in [JE2] the Dirichlet problem for the
Kohn laplacian was studied from a nonisotropic point view using the nonisotropic Lipshitz
spaces. More precisely, one may formulate the restriction problem in the following way: Let
Al be a lower dimensional submanifold of Q, which we assume to be of codimension one and
we ask

Question 1. What is the space SkIM?
An answer to this question consists of characterizing smoothness conditions for functions
defined on M, so that members of SP satisfy them on M and conversely, given a function g
defined on M satisfying these conditions we should be able to extend it so as to lie in S[.
To try to answer this question in its full generalities as stated above would be an ambitious
task and even a foolish one.

In this thesis we examine the particular case of what is called a contact manifold (or
sometimes refered to as CR manifold) and the situation is as follows:
1. We assume that there are m = 2n linearly independent vector fields X 1,.-. , X2, and that
H6rmander condition is a step 2 one.
2. The dimension of Q is equal 2n + 1
The system of vector fields X1, --- , X2, span a hyperplane of the tangent space of 0, and

thus, the data given by 1. and 2. are equivalent to a given nondegenerate field of hyperplanes
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i.e.: a contact structure on Q. Locally, this situation is modelled by the Heisenberg group and
the function spaces SP as well as SP for a not integer are now realized as potential spaces,
that is, there is a function J,, such that SP = LP * Ja, convolution is group convolution.
Once we realize these spaces in this manner one may approach the restriction problem by
trying to follow the same lines as the classical restriction problem see [ST2] or [JW] and the
litterature listed there. Let us limit our discusion to the case p = 2, all that follow have
analogue to p : 2. Recall that we have (see [ST2])

1
L'(Rn) IR-1 = A2, (Rn-1) for a > (1.1)

the spaces on the right hand side of (1.1) are the classical Besov spaces (which in this case
(p = 2) coincide with the Sobolev spaces themselves) see [ST] for more on these spaces, the
result holds for general smooth hypersurface M. For 0 < a < 1, a norm on the space A'(Rn)
is

If1AL2 + (Jf 'X - f(y)1 dxdy)1/2 (1.2)
lx-yllg ix - y1 2a+n

A similar version of (1.2) involving derivatives is used to define A2(R") for higher a's. We will
seek similar norms as (1.2) to charactrize the space of restrictions. In the noncharacteristic
case (see definition next chapter) similar expression can be used to identify the space of
restrictions of S2 when a is small i.e.; 0 < a < 1, see [ME]. We merely replace the distance
function in the denominator of the integrand of (1.2) by the appropriate one, namely the
nonisotropic one (see next chapter), in particular the restriction of S2 to noncharacteristic
hypersurfaces is contained in L 2(do,) when a > }. This leads us to another question, namely

Question 2 : If de is the surface measure, when do we have the embedding S2IM C L2 (da)?
or what is the relationship (if any) between the space of restrictions S2IM and the classical
Sobolev spaces on M?
For general M, it turns out that the answer to the question 2 is when a > 1, this is theorem 5
chapter 3, the reason for this is precisely the possibilty of tangency of the surface to the field
of hyperplanes at some points. The result for a > 1 can be gotten cheaply by the following
method, embed S2 in L /2 according to proposition 5 of chapter 2, and then restrict using
(1.1), the condition a > 1 is necessary by this method. This makes the case a = 1 interesting.

Now we go back to Question 1. Because it is important how M sits inside Q, by seeking
norms similar to (1.2) to characterize the space of restrictions we have to have a norm that
incorporates this information. It turns out that there is a natural object to consider namely,
the angle made by M (i.e.; its tangent space) and the field of hyperplanes giving us the
contact structure. This function, which we denote by w, has the right weighting as well
as scaling properties see (next chapter). Now set dp = wdo,. This new measure dp is the
right measure to combine with the system of nonisotropic balls in the same way the surface
measure dc is the right one to consider with the system of Euclidian balls, it gives a certain
homogeneous dimension to the surface. Resuts of this thesis are best expressed in terms of
some function spaces denoted by F2 for small values of a and B2 for large values of a. For
0 < a < 1 we take expression (1.2) above and replace the denominator of the integrand by
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the nonisotropic distance and the surface measure by the measure dp we get the norm for
the space F'. Now we are able to prove the analogue to (1.1) above

2 2 1 3SIm= Fi for - < a < - (1.3)
2 2 2

The defintion of F for a > 1 is available to us by the use of local polynomial approximation

(see definition next chapter). These polynomials are taken in some coordinate system in
which M is just the hyperplane. We should mention that we do have S2Im c F _1, the

trouble lies in the extension part i.e.; the reverse of this inclusion. Let us indicate how a
Whitney extension theorem is proved in the Euclidian case. First take the so called Whitney
decomposition (see chapter 4 or [STI]) of the complement of M in the ambient space. On
each Whitney ball B define the extension of a function f defined on M to be equal the
polynomial, in local coordinates, that best approximates f on an appropriate subset of
M(say for example B* n M, where B* denotes a ball with same center as B but radius 10
times the radius of B) in the L 2(do-)-sense, we should mention that the polynomials are
extended in a natural way to the ambient space to be constant along the vertical direction.
We can make this more precise by using a partition of unity to get an extension E(f) of f
to the ambient space. In proving IIE(f)1L2 CiIf I x the following trivial fact is used

|p|2 dvol < Cr |p12 do, (1.4)

To be able to carry on in the nonisotropic case we need an inequality of the type (1.4) with
B in (1.4) replaced by nonisotropic ball and do- by dp. Unfortunetly, in this setting (1.4)
is false, except in two cases 1. when M is noncharacteristic and 2. when p is a constant.
Heuristically, the reason for this is the fact that our balls are tilted and as we approach
the characteristic set they become flat on M and thus if we try to extend polynomials to
be constant along the vertical direction they exit too quickly from the balls before they get
known inside the solid ball.
In the case of small a's we do have extension this way, and that's why we were able to
prove (1.3). To remedy this crisis we have to pay a price by leaving the spaces F2 and
replacing them by somewhat smaller ones , namely the spaces B2. These spaces consists of
system of functions (see the definition at the end of chapter 2) and when considered on the
ambient space each system in B2 consists of a function and all its derivatives up to a certain
order, and this means that the single function determines uniquely the whole system. In the
Euclidian setting the spaces Fj and B. are equivalent since we can prove restriction and
extension theorems to both spaces. The question as to whether these spaces on M coincide
in the nonisotropic setting is not trivial. Combining theorems 6 and 8 we state the result in
the following form

SajM = Ba2 (1.5)

An extension for the spaces F , for a > 1, to the ambient space would be possible if we
could somehow extend polynomials on M (in some local coordinate system) to the ambient
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I.

space by allowing them to lose their character of being polynomials, but we should be able
to control them, for example in (1.4) above if the p on the left denotes the extension of p on
the right we may still have that inequality. In the case of the characteristic hyperplane of the
Heisenberg group, this idea is currently under investigation and progress seems promising at
least to extend functions from F, to S in the case where 0 < a < 2. This method consists

of extending the coordinate functions to be constant along a certain field direction, and hence
giving an extension to polynomials forcing them to stay longer in balls. Generalization to
arbitrary M may be possible if it has isolated characteristic points.

Let us sketch the plan of this thesis. In chapter 2 we present the preliminary background,
section 2.1 is meant to be expository and gives various definitions and notions that are
equivalent in different setting and it essentially justifies the transfer of the original question to
the setting of the Heisenberg group. An important object of this work is the weight function
w. In section 2.2 we prove interesting (elementary) facts about this function. Section 2.3
represents known definitions and facts about the nonisotropic Sobolev and Besov spaces,
the main references for this are [FO],[FS], [NS] and [SA], we also introduce the spaces on
the boundary FP and we follow the construction of [JW] to define the spaces BP. Chapter
3 is the restriction theorem, the main theorems are theorems 5 and 6 and chapter 4 is the
converse to the restriction theorem. Finally we close by mentioning how possible extensions
of our results are possible to the case fo p $ 2, it contains essentially the LP analogue to
theorem 5.
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Chapter 2

Preliminary Background

2.1 The nonisotropic distance

We collect the background necessary to desribe the nonisotropic geometry of the problem;
we also present the notation used in this thesis. This section is meant to be only expository
and therefore no proofs will be given, we refer to [NA],[NS] and [NSW]. We assume that
Q c R 2n+ 1 is some smooth open set, since the results are local. Let {X1, - - - , X2 ,} be a set of

linearly independent smooth vector fields defined on a neighborhood of Q, and satisfying the
step-two H6rmanders' condition i.e.; the system of vectors {X 1 ,, ... , X 2n7 ,, [X3 , Xk]I, 1 K

j, k 2n} spans R2n+'(a Tp ) for all p E Q. The objective of this section is to define the
nonisotropic distance reflecting basically the noncommutativity of the vector fields, as well
as H6rmanders' condition. There are two main approaches to defining suitable distances
associated with a set of vector fields. The first one is global and it is the well known
control distance d. The second definition is local and based on the exponential map, and
thus depends on the base point. Let us discuss briefly these two constructions. We denote
by X2n+ 1 the missing direction i.e.; we choose from the commutators {[X3 , Xk]} one that

completes the system {X 1, ... , X 2n }.

2.1.1 Global definitions

Definition 1 Let r > 0; x0 and x1 be two points of Q. We say that d1 (xo, x1 ) r if there
is a (piecewise smooth) map 0 : [0,1] -+ Q satisfying:

(i) 0(0) = x0 and 0(1) = x1 ;

(ii) dt = z2 n+l a (t)Xj(4(t)) for almost every t E [0 1]
with Ia,(t)| < r for 1 < j ! 2n and Ia2n+1(t)| < r2

The following proposition gives the first comparison of the distance d and the Euclidian
distance which we denote by 11.11, for a proof of this see [NS].

5



Proposition 1 d is a metric on Q, and for every compact set w CC Q, there are constants

C1 and C2 such that

C Iixo - xii d(xo, xi) 5 C 2 1Ixo - x,11/2 (2.1)

There are several variants of the control distance. One of them for example we get by re-
stricting the right hand side of (ii) in definition 1 above to be a constant linear combinations.
Another construction is by requiring the vector 1 be only in the field of hyperplanes which
is not all of the space. The fact that d is distance is easy to verify but what is the volume
of a corresponding ball of radius r? In general it is a hard question to tell just from the
definition of d what shape these balls take, and what their volume is. In order to solve this
problem we define a local metric based on canonical coordinates (i.e.; the exponential map),
that would make the shape as well as the volume of these balls transparent.

2.1.2 Local definitions

Let p E Q be fixed, and let ' E T 2 R2 n+ 1 be a tangent vector, since {X1 1,, , X2n+ p}
spans, V can be written as .=1' aJXAi,. Now the vector field J= i1 ayX is smooth near p
and coinciding with V at p. So, we may flow along the integral curves of this vector field for
unit time if the coefficients aJ are small enough, we get this way the exponential map based
at p,

2n+1

Exp, : Uo -+ V (a,, I ,a2n+) --+ Exp( Z aX) (2.2)
j=1

U0 and V are respectively, a'small neighborhood of the origin in R 2n+1 and of p in 0, we
choose them small enough so that the map (2.2) above is a diffeomorphism. The Jacobian
of the transformation is the determinant of (XI, - - -, X2ne+), i.e.; the volume of the paral-
lelopiped spanned by the vector fields. We give weight 1 to the vector fields X1, , X2 n and
weight 2 for X2n+1. Set

2n+1 2n

Box(r) =: { = 1 AX, : ((Z Aj) 2 + AGnl)+ 4 r} (2.3)
j=1 j=1

and let, for r small enough, B,(r) be defined by

B,(r) =: Exp,(Box(r)) (2.4)

Let us denote by x(p) the coordinate representation of the point p, then it is worth noticing
that the system of balls defined by equation (2.4) is equivalent to the following system of
balls

Bp(r) := {x(p) + s1X1i, + - + S2n +1X2n+1 , i: si, - ' , iS2ni 5 r and JS2n+1i 5 r2 } (2.5)

From (2.4) and (2.5) above we easily see that the balls are sets that looks like tilted ellipsoids
that sits on the span of the Xj's of size r2 n and of thickness r2 . And hence the volume of a ball

6



of radius r is equal to Cr2n+2 . The number Q= 2n+2 is termed the homogeneous dimension
of Q. As we have said in the introduction everything we said so far can be rephrased in the

language of contact structure and the Heisenberg group, we include a brief discussion about
these.

2.1.3 The contact structure and the Heisenberg group

Let Q be any smooth manifold of dimension N.

Definition 2 A contact structure on Q is a given smooth nonintegrable field of hyperplanes
of the tangent space of Q, satisfying a nondegeneracy condition described below.

The nonintegrability condition means that there is no integral hypersurface to the field. An
example of a field of hyperplanes may be given by the zero set of a 1-form, and conversely,
every smooth field of hyperplanes is locally given by the zero set of a 1-form. This form
is unique up to a nonvanishing smooth factor. If we impose a normalizing condition on
the form, it becomes uniquely determined by the field of hyperplanes. Let us denote by 9
this form. Now we state the nondegeneracy condition by saying that the bilinear form dO
restricted to the field of hyperplanes is nondegenerate i.e.;

rank(d|o=o) = N - 1

This condition forces the manifold Q to be odd dimensional, this is because the bilinear form
dO is skew symmetric and if N is even then N - 1 is odd, and as is well known from linear
algebra, there are no nondegenerate skew symmetric forms on an odd dimensional space.
Set N = 2m + 1, the nondegeneracy condition may also be stated in a fancy way by the
condition

0 A (dO) m 5 0

Sometimes Q with a contact structure is called a CR manifold. The standard and im-
portant example of a contact structure is the Euclidian space R2m+l with coordinates

(X 1,- , xM, y1,- , yM, t) = (x, y, t) and the field of hyperplanes given by the one form

m

9 = dt + 2(xdy - ydx) := dt + 2 Z(xdyj - yjdxj) (2.6)
j=1

(In [AR] it is given by dt + xdy, but it is clear that they are equivalent.) The following is
the analogue to the well known Darboux's theorem in symplectic geometry. It states that
every point of Q has a neighborhood and a coordinate system where the contact form takes

the form (2.6) identically, unlike [FS2] where they proved that the form coincides with one

of the form (2.6) only at that point.

Theorem 1 Every differential 1-form defining a nondegenerate field of hyperplanes (i.e.; a

contact structure) on some odd dimensional manifold, can be written in a local coordinate

system (x, y, t) in its canonical form (2.6) above.

7

MMMMMMMMW.



This theorem is in appendix 4 page 362 of [AR]. It justifies the fact that it suffices to
transfer our problem to the Heisenberg group whose definition is the following.

Definition 3 The Heisenberg group H, is the Lie group whose manifold realization is the
Euclidian space R2 n+, with standard coordinate functions (x 1 , -.. , xn, yi, - , yn, ) = (x, y, )
and whose group law is given by

(x, Y, t)(x', y', t) = (x + x', y + y', t + t' + 2(yx' - xy'))

The identity element of Hn is (0, , 0), and the inverse to a general element u = (x, y, t) is
u-1 = (-x, -y, -t).
The vector fields,

X+2-< j n (2.7)
-x y t =ay 2 at at

form a basis for the left invariant vector fields ( i.e.; the Lie algebra) The commutation
relations are [X,+n, X] = 4T and all others are zero. Thus the system of vector fields

X 1 , - - -, X2n satisfies the step-two condition. The corresponding 1-form is equal to 0 in (2.6)
and satisfies : 0(X,) = 0 for ] = 1, - - - , 2n and 0(T) = 1
Next we define the nonisotropic distance to the origin I.I. It is equivalent to the one given as
a control distance with respect to the vector fields Xj given by (2.7). For u = (x, y, t) we set

n

ul: ((Z(x) + y2)) 2 + t2)1/4
j=1

and
d(u,v) = |v-u| = |u-v|

We have the following triangle inequality

Lemma 1 There is a constant C > 1 such that:

I. |uv| :5 C(|u| +|lVD
2. |u + v| 5 C(Iu| + lvi
3. u 5 Jul 5 IUI1ull/2 for Jul < 1

Next we define dilations by which scaling is performed. For r > 0 and u E H, we denote by
ru, dilation by r,

ru = r(x, y, t) = (rx, ry, r2 t) (2.8)

this change of variables gives the change in the volume by

dV(ru) = r~dV(u) (2.9)

the number Q is the homogeneous dimension. Another important formula we'll be needing
is the following

|uta-QdV(u) C(b" - a-) if a # 0 (2.10)
Ia IuI~b { log~b/a) i

8



from which it follows that Jua- is locally integrable if a > 0 and integrable at infinity if
a < 0. The number -Q is the critical power index.
We need the following notations, J will always stand for a multiindex J = (Ji, , j2 n+1) ,

let us also denote by X2n+1 the vector field T, for u = (x 1 , - - -, x2n+1) E Hn set

U= x...X2 n+1  XJ = X3 --- X32
n

1 ,and J|J= j+J2 + --- +j2n+2 j 2n+1

The left invariant differential operators are linear combinations of the Xj's. Another impor-
tant notion is that of convolution, when we say convolution of two functions f and g it is
always meant convolution in the Heisenberg group, and this is defined as follow

f * g(u) := J f(v)g(v 1 u)dV(v)

it is important to mention that, unlike the ordinary convolution, it is not a commutative
operation. The interaction of the left invariant differential operators with the convolution
we just defined is the following

Xj(f * g) = f * (Xg)

2.2 The weight function w

Let now M be a smooth hypersurface of Hn given locally as the zero set of a smooth function
p, that is M = {u E H : p(u) = 0} and Vp $ 0 on M. The tangent space TM of M sits
in a natural way in the tangent space of H, as a smooth integrable field of hyperplanes and
thus makes an angle w(x) with the one defining the contact structure. This angle is thought
of as a function on M, and the purpose of this section is to measure it. Let us make the
following important definition

Definition 4 A point x of the hypersurface M is said to be characteristic if the tangent

space of M, T.M, coincides with the given field of hyperplanes defining the contact structure

i.e.; characteristic points are those where w vanishes.

A surface M may or may not have characteristic sets. This set can be a point a curve or in
general a lower dimensional set of M, and hence if there are any, characteristic points form
a set of surface measure zero. The geometric structure of the characteristic set can take a
complicated form, however lemma 5 below or rather its proof suggests that the Hausdorff
dimension is at most equal to 2n - 1 = dimension - 2.
An example of characteristic M is what we call in this thesis the characteristic hyperplane,
in the canonical coordinates (x, y, t) it is the hyperplane {t = 0}, it is easy to see that the
vector fields X, -- -, X2n given by (2.7) are tangent at 0. This is an example of an isolated
characteristic set. The family of surfaces {t = c(11x11 2 + 1y1 2)} provides with examples of

surfaces having isolated characteristic point, namely the origin. This family plays the role
of cones in the nonisotropic sense. Another example is given by, in the Heisenberg group,

9
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the surface {t = x - yj}, the characteristic set here is the manifold {xj = y}. Next we
compute this angle to be roughly equal to

2n

w(x) = ( (Xjp) 2 (x)))'/ 2  (2.11)
j=1

it important to note that this function is not smooth.
The following series of lemmas give the size of the function w. Lemma 2 gives the pointwise
size of the function w, lemma 3 gives the ordinary surface measure of balls intersected with
Al. Lemma 4 is one of the most important result it says that the weighted measure wdo-
respects the system of nonisotropic balls in the same way the surface measure respects the
ordinary Euclidian balls, that is the measure of any nonisotropic ball of radius r is a constant
power of the radius throughout the hypersurface M, and thus giving the hypersurface M a
homogenous dimension equal to one less of that of the ambient space . All of these lemmas
are proved using Taylor expansion arguments. We work in a general coordinate system

(x1 ,'* , x2n+1) where now M is the hyperplane {X2n+1 = 0}, we write the expression of the
vector fields in these coordinate system

Xi= aa + a3  (2.12)
_1t 'xa x2n+1

We could have used the canonical coordinates (i.e.; the vector fields given by (2.7)).

Lemma 2 Let x0 E M and set r, = w(x0 ) 0, then
(a) w(x) C(r + i) for all x E Bx0 (r) n M
(b) If q > 0, then w(x) > q/2 for all x E B,0 (c )
(c) maxxEB(r)nM w(x) > Cr

Proof:

The function w(x) 2 is smooth and equal

2n

W(X)2= E a,(xi,.-- , x 2n, 0)2
3=1

each aj is the 8 -component of the vector field Xj. Let xO E M which we assume to be

the origin. By Taylor formula applied to the function w(x) 2 we have

2n

w(x)2 = Z(a (0) + ej(x)) 2

3=1

with 63(x) Clxi, and thus

2n 2n

w(x)2 2 a (0) + Clxi 1a(0 + CIx|2
j=1 j=1

10



from which it follows that w(x) 2 < C(q + r)2 , proving (a). As for (b), we have that

2n 2n

w(x )2 > aj(O) 2 + 2 aJ(0)e,(x) q 2 C2xii / 2/2
j=1j=1

as soon as |xi 3,/ 4C.
To prove (c) let us make the following important remark.

Remark 1 Suppose that 0 E M is close to the characteristic set, so that w(O) is small, then
there is at least one j E {1, - - - , 2n} such that I|V R2na j( 0)I > C > 0 (where VR2n is the
2n -dimensional gradient), otherwise Hrmander condition would be violated. To see this,
since the Xj 's and the commutators span there is a uniform constant C such that:

2 n

0 < C < Z(Xj(x 2n+)) 2 + E([Xj, X(x2n+1))2 _ w2 (x) + E(Xjak - Xka,-) 2

j=1 j,k 3 ,k

2 O aak ca O ak _a__= w2x) +E(E(a-,j- - ak,I ')+ (as -- ak i)
J,k 1=1 ax, axi 3X2n+1 OX2n+1

<Cw2 (x)+C IIVR2nal1 2

1=1

from which the remark follows.

It is obvious, in proving (c) it suffices to assume that w(x) Cr, for all points in
B(r) n M, and this means that the ball B is near the characteristic set. Pick any point
which again we assume to be the origin such that aj(O) is small, by Taylor expansion up to
order 1 now we have

2n

w(x)2 = Z(a(O) + Va,(0).(x) +eJ(x))2
j=1

Because the point 0 is near being characteristic, by the previous remark there is at least one
j E {1, ... , 2n} such that maxix1<E IVa,(x)l > 0, and thus we have

2n 2n 2n

w(x)2 > Z a2(0) + Z(Va(0).x) 2 - CIx1 2 Z IVaj(0).xI
j=1 j=1 3=1

passing to the maximum we get

max w(x) 2 > Cr2 - C'r3 > Cr 2

xEB(r)

and this proves (c) and hence the lemma. C
The next lemma is an estimate on the ordinary surface measure of nonisotropic balls.

11



Lemma 3 (a) There are constants C1 and C2 such that: Cir2 n+l < o(B n M) C2r2n

(b) If we set maxIrB()nM w(x) = 71 then we have o-(B(r) n M) r A
in particular if M has no characteristic points we have o-(B(r) n M) e r2n+1

Proof: To prove this lemma we fix the point x0 and we look at the ball in terms of normal
coordinates. Since the map (2.2) above is a diffeomorphism the surface measure o(B(r)n M)
is essentially the 2n-dimensional Lebesgue measure of the intersection of the hyperplane
TxoM and Box(r). Now estimates in (a) become obvious, the extreme cases are when the
tangent space TxoM coincides with the hyperplane {A 2n+1 = 0}, in which case the surface
is Cr2n, and the other case is when TxoM coincides with one of the hyperplanes {AJ = 0} ,

j 2n, in which case the surface is Cr2n+l, and (a) is proved. To prove (b) we write down
the equation of the hyperplane TxoM in the coordinates A = (A, ... , A 2n+1 ), which is given

by
(VPIA=o).A = 0

where p is a defining function of M in the coordinates A i.e.; M = {A p(A) = 0}. We need
to notice that

2n OP2.3
w(x3)2 = A (0))2 (2.13)

Now if H denotes any hyperplane

2n+1= a1A 1 + ' ' ' + a 2 nA 2 n

by a simple rotation argument it easy to see that

L 2n(Box(r) n H) 2
(al +--- +an)2

as long as (a2 + ... + a2 )1/2 > Cr . L2n is the 2n-dimensional Lebesgue measure. Now
taking into account (2.11) above (b) follows.

The upper bound in the estimate given to us by the following lemma is used in the proof
of the restriction theorem and the lower bound is used in the extension theorem.

Lemma 4

J w(x)do(x) - r2n+l
B (r)flM

Proof: According to lemma 2(a) and lemma 3(b) we have that

J w(x)do-(x) C(r + 7)o-(B(r) n M) Cr 2n+ 1 +C( )r2n+1
B(r)nm 7

now since q can be at least Cr the (5) part follows. For the reverse inequality, let x0 E
B(r) n M be such that n = w(x0 ) = FnaxXEB(r/2)nMw(x), then by lemma 2(b) rl > Cr and

12



by lemma 1 (b) w(x) > C71 for all points x in Bxo(u/1O) n M. We have two cases either
1. B2 o(q/100) C B(r) in which case they are actually equivalent and we have

B(r)nM w( do-(x) C IB, (rlo)nM w(x)cdo-(x) Cro-(Bxo(r/1o) n M) Cr 2n+1

or

2. B(r) C Bxo (C77) in which case w(x) Cq throughout the ball B(r) n M, and in this case

too we have

IB(r)nhM w(x)do-(x) c C o-(B (r) n M )

using lemma 2 (b) we get the desired result. 0 The following lemma is key in proving theorem

5.

Lemma 5 For all 0 < 6 < 1, the function w(x) - is locally integrable, and have the following

estimate

w-'(x)do-(x) < C( max w(x))-'o-(B n M)
Bnm XEBnM

Proof:
The fact that if w vanishes at some point it can only do so to first order by the preceding

remark implies that w-6 is locally integrable, also the ( ) part is obvious. Let x0 E B(r)n M

be a point, which we can assume to be the origin, such that the maximum is reached there

i.e.; w(O) = 7 = maxeB(r)nM w(x). We have to consider two cases like before:

case 1. 77 > lOr in which case the function w continues to be larger than r, in fact it is

almost constant (q y) on the ball B(r) , and therefore we get in this case

IB(r)fl w~'do- q -'o(B(r) n M)

case 2. q a r, in which case the ball B(r) n M is a Euclidian ball. Write w(x) 2 in its Taylor

formula:
2n

w(x)2 = Z(a, (0) + Va3 (0) . x + e)2
j=1

Choose a j such that IVa.(0)| C > 0 and let H be the hyperplane whose equation:

a3 + Vaj(0) - x = 0

We have

W(X)2 > ||a(0) + Vaj(O) -xl2 - 21e&,Iaj(0) + Vaj(0)H1

from which it follows that

1 1
w(x) > 1 a(O) + Vaj(0) - xl= IVaj(0)ldist(x, H) (2.14)

13



so long as !jVa,(O)|dist(x,H) > 2Cjx 2, where the constant C is the minimum of all
constants such that 5,(x) CIx12, which is the case if |Vaj(O)Idist(x,H) > 2Cr2 . Let
C' = 2C/jVaj(O)j and define the set E(B(r)) to be

E(B(r)) := {x E B(r) n M : dist(x, H) < C'diam(B(r))2} (2.15)

And thus, we have

J rfM -'do < C J dist(x, H )-'du + f w~'d
B(r)nm JB(r)nm JE(B(r))

by a linear change of variable making the hyperplane H horizontal we see that the first
integral is equal to Cr-+2' ~ C-'o(B(r) n M). As for the other term we either have
o(E(B(r))) = 0 in which case that's the end of it or else it can be at most a small corridor
of size C r x r x - x r xr2 . Cover it with balls of radius r2 , there can be at most Cr- 2n+l

2n-1

of them Bi(r2 ). And so we have,

JE(B(r)) C B,(r2)

do the same procedure as above to each Bi(r2 ) and we arrive at

JB1 (r2) tv'do < Cr 2+4n JE(B (r2)) w-do

summing over i we get

S w-'do, < Cr-2c+2n+1 W -'do,
JE(B(r)) JE(B(r2))

if we continue this procedure again to each term in the sum we arrive finally at

IB(r) w'd < Cr -+2n(1 + r-e+l + r3 (-e+l) + . -- ) < Cr- +2n

since e < 1. And this finishes the proof of lemma 4 as well as this is the end of this section.

2.3 The spaces Sg, 1P, FP and BP

Next we discuss the function spaces of interest to us i.e.; the nonisotropic Sobolev spaces

denoted here by SP defined on the ambient space, the nonisotropic Besov spaces FP and the

expected spaces of restrictions to M FO(M) and B3(M).

14



2.3.1 The Spaces SP

These spaces were studied exclusively by few authors, [FG]; [FS]; [NS] and [SA]. Recall
that in the Euclidian space R' with standard coordinate functions (x 1 , -- , x,) the basic
differentiation - , are used to define the classical Sobolev spaces, we denote them
here by LP. Analogously, if we replace the -L by the directional derivatives X, for J =

1; ... ; 2n we obtain the spaces SP namely we have the following:

Definition 5 We say that the function (or to be more precise the Lebesgue class) f belongs
to the nonisotropic Sobolev space SP , if it and its distributional derivatives Xjf , with
|J| < k all belong to LP. The norm of f in S' is given by

|fi|sl := IIXJf|LP (2.16)
IJI<k

One may follow various classical constuctions to define the spaces SP for a noninteger. The
approach we follow here is by realizing these spaces as potentials. We let L = - ET X]
be the sublaplacian we denote by L, its extension to the space LP and we define the spaces
SP as the range of the operator (I + L,)-a/ 2. The operator (I + L,)-a/ 2 is realized as a
convolution operator in the Heisenberg group acting on LP. What this means for us is that
there is a function J., the kernel of (I + L,)-/ 2 , such that

SP = {f * J, f E LP} (2.17)

The function J, has the following properties

Proposition 2 The function Ja is smooth away from the origin and
1. As |x| - 0

IXjJa(x)I CX|"-J -Q if a |JI + Q

2. XjJa is continuous if a > |JI + Q
3. If a = IJI + Q we have instead

1

4. Away from the origin the function Jc, is rapidly decreasing, that is as |x - oc , for any
N and J there is a constant C = CN,J such that

|XjJ,(x)| CIx--N

In particular XjJ, is integrable for all J such that a - IJI > 0. The norm we take for a
function f = g * Ja E SP is

I fI s := 11g1ILP (2.18)

The following proposition says that in the case where a is integer the second definition (i.e.;
the potential definition) is equivalent to the one above. This is tedious task already in the
classical case see [ST1] for this the generalization is due to Folland, its second part also states
that it is enough to define the fractional spaces only for small a .
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Proposition 3 When a is an integer, definition (2) above and (11) are equivalent in the
sense that the norms (10) and (12) are equivalent. Moreover if a > 1, a function f belongs
to SP if and only if f and Xjf for j = 1,---,2n all belong to SP_ 1. An equivalent norm is

2n

HfAs_ + E lXjf||st _
*7=1

Another result that we use later is the following

Proposition 4 The operator defined by convolution with J3 is an isomorphism between the
spaces SP and SP, where y = a +.

Next we compare the spaces SP and the classical L'. It is clear that if a = 2m is an even
integer then we have locally

SP c LPy

and by complex interpolation this is true for all a > 2, the next proposition tells us that
this embedding is true for all a > 0.

Proposition 5 For all a > 0, we have

SP C LiP (locally)

2.3.2 The spaces Ipq

In this section we also include a short discussion on the nonisotropic Besov spaces and
we indicate various connections to the spaces SP. These spaces are the analogues to the
classical Besov spaces A' , see [STI]. The reference for this is Saka's paper [SA]. This
paper is essentially the nonisotropic analog to Taibleson's classical paper [TA]. The theory
of nonisotropic Besov spaces and Sobolev spaces is almost entirely parallel to the isotropic
ones, in the sense that all the results that hold for latter spaces hold in an appropriate sense
for the former ones. Also we show below that these spaces can be characterized by local
polynomial approximations.

Definition 6 Let a > 0 and 1 < p, q < oc. We say that f belongs to the space 1,,q if its

norm defined below is finite 1. If 0 < a < 1

f Ilf(.y) - f(*)IVlPq )/
||f||r g := ||fj|LP + (L y)l

i~fI~r If HLP IyjQ+crq

2. If a = 1, the second difference is used instead,

Iff = II + (jI I If (-y) + f(-y-1) -2f(-) II 1||| 1t := ||<1t + ( Q+q y

3. More generally we let k be the integer such that 0 < k < a < k + 1 and we set

||f||r .,q := I X j I||rP,
|J|<5k
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In the same way the classical Besov spaces can be characterized by means of higher differ-
ences, the nonisotropic ones also enjoy similar characterization. For y E H, we let

Ahf(x) =: f(xh) - f(x)

and set
Akf(x) = Zs(Zk-f(x)) (2.19)

Let k > a, then an equivalent definition of the norm above is

Iff|r = I|fILP + ( IfIILP dy)1/q (2.20)

The next results are Theorem 20 and 23 of [SA]. The first, giving various imbeddings with
the spaces SP, is of interest to us because it says in particular that in the case p = 2 the
spaces F, 2 and Si are equivalent. The second realizes the spaces Spq as real interpolation
spaces of SP0

Theorem 2 Let a > 0, then

(1) FP'P c Sp c Fp,2  for I < p < 2

(2) Fr,2 c SP c Fr'P for 2 < p < oo

in particular we have F, 2 = a.

Theorem 3 The spaces SP form a scale of real interpolation and we have for 0 < 0 < 1,
1 < p < oo 1 < q oo and y = (1 - 0)a + 0/,

(SP, S)O,q = ppq

The next characterization of the Besov spaces ]Fp4 is going to be in terms of local polyno-
mial approximation. For simplicity we discuss only the case p = q and denote the resulting
spaces by FP. It is well known in the classical setting that in many instances differentiabilty
properties of functions can be desribed by how much we can approximate the function by
polynomials see e.g. the appendix of [ST] where the existence of derivatives in the LP is
discussed. In [NI], [BRl] and [BR2] and many other papers, similar ideas were exploited.
It turns out that membership to the Besov spaces (and their generalizations the Lizorkin-
Triebel spaces) , can be expressed in terms of the following quantities:
for any function f and a ball B and N an integer we denote by

WN(f, B)P:= in f IP (2.21)
dOP<N JB I P1

Following [JW], by a net Fk of mesh 2 - we mean a collection of balls B of radius 2 -k and

covering the ambient space satisfying the requirement that if we shrink them enough we get

a disjoint family of balls. For each intege k, let Fk be a net of mesh 2 -, then we have the

following result
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Proposition 6 There is an integer N > a such that the following quantity

If ||LP + (Z 2k'P Z WN(f, B)P)1 P (2.22)
k=O B E Yk

is an equivalent norm for the space 17.

The following important result is well known, it reflects the interpolation property the-

orem 2 above and can be obtained from general interpolation (see [BL] lemma 3.2.3). This

result is used quite often in this thesis.

Proposition 7 Let f E F, and N be an integer larger than a.Then there are smooth

functions fj, y = 0,1 ... such that the following hold:

00

f =Z fj (2.23)
j=Q

convergence is in the sense of S'

IIXj f JLP < 2-j(" JI)aJ f or all |JI N (2.24)

for some sequence of positive real numbers aj satisfying ZgO aP < C < 00.

Conversely,given a family of functions satisfying (2) for some a, 's then the formal infinite

sum E' Q fj defines a distribution that is an element of rp.

We give a proof below that propositions 6 and 7 are equivalent. We basically follow the

proof of [NS1] given for this same proposition but for nonisotropic Lipschitz spaces (r,).

For simplicity we considere only the case p = 2 since that is the case we are going to need

in the sequel anyway.

Proof:

Let p be defined by:
1 if 0 < t < 1
0 if t > 2

and 0 < o(t) < 1 for E R2n+1 set

and for j $ 0

,()= p(2~ j) - p(2- 1I )

Denote by K, the inverse Fourier transform of , we easily verify that

00

Z K: = 6 (2.25)
j=0

and we obtain decomposition of functions f into a sum of smooth functions f, = f * K,

where convolution here again is the group convolution. The following estimates on the Kj's,

which express the size of Kj and its rapid decrease, are needed.

18



Lemma 6 (a) IK,(x)I < C250
(b) For each integer N there is a constant CN such that

|K.(x)I CN JQmN for 2-j+m < -x <2+m+1

A property, that is easy to verify ( because the Fourier transform is supported away from
the origin), that the Kj's have for j : 0 is they orthogonal to polynomials. We begin by
showing that the fj defined satisfy the conclusions of the proposition. We will prove the
estimates only for the L 2-norm of fj, because the estimates for the derivatives follow exactly
the same way. It is obvious that

IfO|L2 Cj|f 1L2

For j : 0, using the orthogonality of polynomials to Kj, the L 2 norm of f, is equal to

IfVA 2 = E lfj(x)12 dx = E J 14 (f((y) - PB(y))Kj(y -1 x)dy1 2dx (2.26)
BE-Fj BEj 2n,

the right hand side of (2.26) is less than or equal to I, + 12, where

I1 = Z l ( f(y) - PB(y)IIKj(y- 1 x)Idy) 2 dx (2.27)
BET,

and
I2= Z J( / If(y) - PB(y)IIKj(y-x)Idy ) 2dx (2.28)

BEF, JR 2 +1 \B

and we show that each Ii is less than or equal to 2-2jab for some numbers such that

_'o bj < oo. I, well controlled and it is less than

C I lf(y) - PB(y)1 2dy < C-2aa2
BEFj

The trouble is to handle the other part I2. For each B in Fj we denote by 2B the ball in
Fj_1 containing it, or to be precise one of the balls in FYj_ containing it. And inductively
we denote by 2kB a ball in Fj-k containing 2k- B, with this we can write the inner integral

in 12 as

lR2n+1\B If(y) - PB(y)IIK(y-'x)Idy

2LB\B IP2B(y) - PB(y)IIKj(y-x)Idy + lR2n+1\2B If(y) - PB(y)IIK(y-'x)Idy

k= 1
2k+1B\2kB +\P2 k+1B(Y)-P2 B(Y)IIK(y'x)Idy+J B If(Y)-P 2)B(Y)IIj(yx)Idy =

19
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By lemma 6 we have,
IKj(y~X)I < CN2jQ2-3N

and thus

A 1  CN23 . -kN
k=0

2w/zk2 -k(N-Q/2)(
k=0

2k+1 B\2k

L2k+IB\2k

CN23yQ 2  2 -k(N-Q/2) (k+B
k=0

P 2k+1B(y) - P2 kB(y)Idy
B

IP2k+1B(y) - P 2 kB(Y 12 )1/ 2dy
B

I2 k+1B y) ~- /

+C ' Q/2 -(-Q/2) (YB 1B2)1/2+CN2' 1  
2 -K(NlQ/2(I If (Y) - P2 kB y1) 1 dy

k=O 1;

integrating this string of inequalities over B and then summing over B in .F using Minkowski's
inequality, and also keeping in mind that when we sum over B E Fj quantities such as

f2kB IP2kB(y) - f(y)1 2 dy get repeated 2 kQ times, we get

A2dx <(Z
BEFj k=0

2-lk(N-/2(I IP2kB(Y) - f (Y) Idy) 1 ) < C2 'ceb 2

J2kB .

where

= 2-2J(N-Q/ 2 -a)( 2k(N-Q/ 2 -a)ak) 2

k=0

choose N > a + Q/2 and use Hardy's inequality, lemma 8 below, to get

00
Zbo o
(b= < oo
j=0

Now we turn to A 2 .

A 2 = n+ I If(y) - P2jB(y)IIKj(y- 1x)dy
\2' B

J R2n+1\23B If (

and so we have

)1K-(yx)Idy + IR2I+1 \23B I P2> B (Y) I IK (y -1 x) I dy

If(y)IJKj(y~x)dy) 2 dx < Cf2n+1 (y- |
If(y)Kj(y-x)dy) 2 dx <

CN-23(N-Q) IifI12 2 -2ja (2-2j(N-Q-,Y) IIf 12)

20
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The other term is estimated in the same way

( P2 )B(y)IIj(y-'x)Idy)2 dx = Z (Z P23 B (Y) IK (y -'x) Idy) 2dx
BEF, BJR

2
n+1\23B BEF \k+B2kB)

CN 2 -kN 2 jQ IP23B(y)dy) 2 dxZ CN -2-, Z kNQQ (.P2cD(y vd) 2

BEJ B kj 2k+1B\2kB BEj k=j 2kB

< CN2 (N-Q) f B 1P2 )B(y)I 2 dy = CN -2(N-Q) Z J PB(y) 2dy
BEF, BEF0

2 2i(CN -2(N-Q-a) IfIIL2 + E lB f(y) - PB(y) 2dy))

Choose N > a + Q, and conclude by Hardy's inequality.
The converse is easier. But before we prove it we need Taylor's formula in the setting of

the Heisenberg group. Because we need it later in the restriction theorem let us show how

to derive it. Let f be a smooth function. For simplicity we indicate the calculations in the

three dimensional space. We want to expand the function f arround a point y = (yi, Y2, y3).
Set

F(s) f(y(s(y-'x)))

we have F(O) = f(y) and F(1) = f(x). Taking ordinary Taylor expansion of F arround 0

we get
N F U) (0)

F(1) = .( + RN
=0 I -

RN (I - s)NF(N+l)(s)ds

we calculate F'(s)

F'(s) = {f(Y1 + s(x 1 - yl), y2 + s(x 2 - Y2), Y3 + S2 (X 3 - y3) + 2s(s - 1)(y1 x 2 - y 2 x1 ))}

(x 1 -y 1 ) )(y(s(y~X)))+( 2-y 2) (y(s(yx)))+(2s(x3-y 3 )+(4s-2)(y1x2-y2x1))-(y(s(Y-X))
Ox 1  Ox2  Ox 3

evaluating F' at 0 we get

Of af Of
F'(0) = (x 1 - y) (y) + (x 2 - Y2) (y) - 2(y 1x 2 - y2 X1 )-(y)= xy9 Ox 2  OX3

=(y-1X) 1'0 '0 )(Xlf)(Y) + (-X('"(~)Y
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More generally we have

F(m)(s) = Z cJmsIJI-(ylX)J(Xjf)(y(s(y-X)))
m<IJI<2m

and evaluating at s = 0 we get the left Taylor polynomial

(2.29)F(m)(0) = E cjm(y~X)J(Xjf)(y)
IJI=m

The remainder is written in its integral form as

(2.30)RN = 1 E CJ,N(yX) 1 s J,-N( _ S)N(Xjf) (y(s(y-x)))ds
N N<IJI<2N

Let us go back now to the proof of the converse, let fj be given to satisfy (2.24) of proposition
7, from which it follows at once that

| Z fkE
k=Q

next we prove

00 00

L2 <Z fkIIL2 < Z
k=O k=

0 22k z 00

k=0 BE1k j=0

cc

2-kaak K C(J a2)1/2
k=0

00

B) 2  C a
j=0

the left hand side of (2.31) is less than

00 k

Z 22k ( 1 fZk
k=0 BEJFk j=O

B) 2 + C Z 22 kee
k=0

replacing Ifj IL2 with its estimates and applying Hardy's inequality we get

term of (2.32) is less than E'_% a2. As for the first term we have

Z L(Z f, B) 2

BEFj j=0
( ( (
j=0 BE-Fi

lB IR (x, XB)I2 dx)1/2)2

that the second

(2.33)

where R.(x, XE) is the remainder of the left Taylor expansion of fj arround any point xB of

B. Now by the estimates satisfied by the remainder we see that the right hand side of (2.33)
is less than or equal to

k k

C 2- 2kIJI(Z I Xjf 1|L2)2 < C Z 2- 2kJI(Z 2-J(*~J J.1 q) 2

J j=0 J 3=0

Now conclude the proof by Hardy.
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2.3.3 The Spaces F and Ba

Now we come to define what we expect to be the boundary values of the spaces SP. The
definition we are going to use is the local polynomial approximation on M. Let Fk be a net
of mesh 2 -k covering the surface M (not the ambient space). Let us also fix a coordinate
system (x1,- - , x2n+1) in which M is described by M = {(X 1,- ,x 2n+1) : X2n+1 = 0}, with

this we can speak of polynomials in M. Now the definition of FP is as follow: we let as in
the case of the ambient space

WN(f, B) 2 := inf B If- P|?dp (2.34)
doP<N JBIf-Pdy(

Definition 7 Let N > a, a function f defined on M is said to belong to the space Fc,,N if

||f| I, ILP(dy) + (Z 2 kpc Z WN(f, B)P)11P (2.35)
1 If 1'F ,Nk=O BE Fk

is finite for some N > a .

The expressions in the right hand side of (2.34) and hence (2.35) depend on the choice of
local coordinates but membership to the space F ,N is independent of the coordinate system
chosen. The case 0 < a < 1 is of special interest because if we use approximation by constants
instead of polynomials in (2.34) i.e.; wo(f, B) 2 and form the corresponding quantities (2.35)
we get that this space, which we denote from now on by F,2 may be characterized by the
first difference, that is if 0 < a < 1 an equivalent expression to the one in (2.35) is given by

IIfIIF,,, := f IILP(d) + (ff If(x) - f (y) (2.36)
J) d(x,y)<1 d(x, y)Q-l+ap

Since we will be only interested in this space, because this is so far the space that we proved
restriction and extension theorems, for higher a we unfortunetly have to replace them with
the spaces BP whose definition is next. We would like however before we move to next
definition relate these spaces to known spaces such as L 2(do-) for example, and thus we ask
the question for which values of a ( 0 < a < 1) do we have the following imbedding?

F2 C L2 (do-)

For this we have the following

Proposition 8 For all a such that { < a < 1 we have the following

Fc C L 2 (d-)

Proof: Suppose that f E F2 which means f E L 2 (dy) and

22k >1 WO(Qf) 2 <oo
k>O QEYk
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For Q E Fk we denote by )1(Q) balls in Yj touching the ball Q ie;

) 7(Q) = { Q'E -Fi: Q'* n Q 54 0}

where Q'* stands for the ball concentric with Q' and with radius 10 times the radius of Q'.
We note that #YF(Q) 5 C this constant is independent of Q; k and 1, it depends of course
on surface M under consideration and other absolute constants. Let cQ be the constant that
best approximates f in Q inthe L2 (dp) sense i.e.; cQ = - fQ fdp. Let ol be a partition of
unity subbordinate to the cover Fk , and define the function fk by:

fA := E OQCQ
Q EYk

because of the local finiteness of the partition of unity the function fk is well defined even
smooth and it easy to see that the sequence of functions fk approaches f in L2 (dp). For

|f - fk|L2(du) Q( Z (f - CQ)I1'2(dQ)) <
QE.F QE.Fk

(I ZI f - CQI 112 (dg,Q,))2 <
Q E Y Q'E -k(Q)

C( E If - CQII2(dg,Q)) 2 < C2-'ak -- 0
QE~k

Next, we estimate IIfkIHL2(d,)- For k = 0 we have,

LfoHl2(, C E |foI1,2(Q, = | = QCIL2(Q,d,)
QoE o QoEFo Q'.Fo

< C 1 cQ 12a(Q) C c z I J 2dQ 1 If H12(,) + w(Q, f)2 pL2 (dt
QE~o QE-o IM QQE~o

we have used the fact that for Q E Fo, then ( ~ 1, and more generally by lemma 3(a)
and lemma 4 we have,

C < < C'Diam(Q)-1

Now for k > 0 we write

f =(f -- f-)+-+(f1- fo)+ fo

and

hj - fj_1 = Pp,(cq -CQI)
QEF, Q'EFj-l
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and so
k

|fHL2(da 0Ifo2(a) + Z f, - fi-11lL2(da)

f3 - fJ1|L2(d,) < C Z ] Z PQPQ|2cQ -- CQ|2do <
QEF, QEF,(Q) Q'ET -1(Q)

C23  I Z _ cQ Q,|2dp
Q EF, Q EF (Q) Q'Eyj- 1(Q)

because also of the finiteness of the sums over T,(Q) and Fj-i(Q) we get

11fj - fj-112(d,) < C2'( Z w(Q, f) 2 + A(Q' f) 2)
QEF Q'EJ'-1

2'(-2'a 2 -2(3- )a

for some numbers a. such that EZ O a. < oo . Finally,

k k k

|fkIIL2(a) C(|f|IL2(dg) + Z2-( )a,-) C(|f||L2(d ) + (Z 2E2 a.( a
.=0 3=0 j=0

from which it follows, if a > { ,that If lL2(d, CI|f|IF3-

Remark 2 We could have gotten this result cheaply by combining both the classical restric-
tion theorem and the extension theorem (theorem 8 in chapter 4), in the following way extend
the function f E F2 to a function E(f) E S I this function belongs in particular to L2

by proposition 5 above and then restrict to get that the restriction is possible if a > 1/2.
Also the proposition doesn't say anything about the range 0 < a -< . The case a = 1/2 is
actually theorem 5, a result that at present seems to be unprovable by direct methods as the
case of a > 1. As for the range 0 < a < 1 the proposition is false.

Finally we define the spaces BP, that would replace the spaces F. for large a. We follow the

definition of Jonsson and Wallin.

Definition 8 Let k, a, N be such that 0 < k < a < k + 1 and N > a. A system of functions

f {fj : |J| < k} is said to belong to the space BP, if for every net F, of mesh 2-'
and every Q E F, there is a polynomial PQ in the ambient space such that the following

hold :
1. For all multiindices J with |JI < k, we have

Em If j - XjPQdp (cm2~m(I-I))P
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2. For k + 1 < Jf N, we have

SJXj(PQ - PQ1)|Pdpu (cm2~m(-J))P
QEFm Q'Fm(Q)

3. For unit size Q's we have

J |XjPjPdp C

It is clear that the requirements of definition 8 are very strong and difficult to fulfill. Intu-

itively, the system of functions {fj} represents the whole history of f, i.e.; all the derivatives,
in fact when considered in the ambient space the system . This definition was used in the

restriction to very general sets (the so called d-sets). In this case it is clear also why one
wants to consider systems of functions instead of single one.

2.4 Two classical inequalities

Before we close this chapter we record two main inequalities used extensively in this thesis and

they are Young's inequality and Hardy's inequality. The latter inequality had a great impact

on the development of the theory of function spaces, in particular the Besov and Sobolev

spaces. We also use the standard ones such as Holder's and Minkowski's inequalities.

Lemma 7 Let (X, y) and (Y, v) be two measure spaces, and let k(x, y) be a y x v-measurable

function on X x Y such that

(i) sup jk(x,y)jdv(y) C1

and
a~n d(ii) supf j k(x, y)|dp(x) < C2

yEY JX

then, for all f E L 2(Y, v) we have

I J k(x, y)f(y)dv(y) 2 dp(x)) 2  C /2C2 f(y)1 2 dv(y))/ 2

Lemma 8 Let ak > 0. Then, for 0 < p < oc

00 k 00

(i) E2sk(1a)P<C 2kap if s<0
k=O i=O k=O

(ii)(2sk(Za)P<C S2 kap if s>0
k=O i=k k=O
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Chapter 3

The Restriction Theorem

3.1 The L 2 estimates

At this preliminary stage of the restriction theorem we resolve first question 2 raised in the
introduction i.e.; when is the restriction operator bounded from S2 to L2? First of all, there
are two L 2-spaces that we are concerned with. The first is the ordinary L 2(do), d- is the
ordinary surface measure, and the second is L 2(dpz), where we have set di = wdo-. The
following two theorems are the main results of this section.

Theorem 4 The restriction operator is bounded from S2 to L2 (d p) if a >

The next theorem tells us when is the restriction operator bounded from S2 to L2 (do).
Recall that, by proposition (5) chapter 2, we have

So C L2 (3.1)
2

where the spaces on the right hand side of (3.1) are the standard Sobolev-potential spaces,
furthermore one cannot do better than this. On the one hand, by the classical restriction
theorem we have that L 2 and therefore S2 restrict to Lu2 (do-) if a > 1, on the other

2 2

hand theorem 4 tells us that restriction cannot possibly be bounded from S2 to L2 (do-) if

cx < 1/2. So the problem is really when ! < a < 1. Theorem 5 below that says that there
is boundedness for a = 1. We will give at the end of this section an example of a function
belonging to S2_, for all e > 0 but fails to have restriction to the characteristic hyperplane.
So theorem 5 is a borderline result, making it a sharp and interesting result.

Theorem 5 The restriction operator is a bounded linear operator from S2 to L 2(d-).

3.1.1 Proof of theorem 4

We note first that it is part of the theorem that the restriction is well defined almost every-

where. Since both theorems above are local, let us fix once and for all a bounded open set
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U in the ambient space and let us denote by M the intersection of some smooth hypersur-

face with the open set U, we will ignore the edges by assuming that all our functions have

compact support inside U. We may, also without loss, assume that M is given by the graph

of some smooth function, say to fix the notation

M = {(t, z) E R =n+1 2: t = (z)} n U (3.2)

In order to prove the theorem we have to prove the inequality

IjfjMHL2(d,) < C11gjjjL (3.3)

where f = g * Ja, and the constant C may depend on the support . Theorem 4 says not only

the restriction of f to M is in L2(djp) but also the restriction of all derivatives up to order

k, where k < a < k + 1, are in L2. Now let f E S' and let J be a multiindex. Write Xjf as

XJ f(x) = fi(x) + f2(x)

where

fi(x) = (XjJ,)(y-x)g(y)dy

and
f2 (x) = x y)(XJ,)(y-x)g(y)dy

Let us assume first that a $ Q + J. By Schwarz inequality

Ifi(x)I 5 ( I g(y) 2dy)1/2(j (XJ,)(y - 1x)2 dy)1/2

which is less than or equal to Cj1g|9L2 because of the rapid decrease of J, away from the

origin. And thus we have

f1iL2(du) C11g9jrL = CjjfI|s2 (3.4)

We turn to f2 and write it

cc

f 2 (x) = jxI.2- (Xj J,)(y- 1 x)g(y)dy
m=0 fly-|~"

by Minkowski's inequality we get

|f|yoe $((I (J)y-lx)g(y)dy )2W(X )do-(x) )1/2 (3.5)11 f2l I IL2 (wdc7) ZJM~j-x- (Xj Ja (3.5
M=0M y4~-

Let ym(X, y) be the characteristic function of the set

Am(x,y) = {(x,y) E M x R 2
n+1/2m

1 < 1- 1x < 2~}
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and set j.(x, y) = Xm(x, y)(XjJJO)(y-'x) in order to apply Young's inequality to each term
in the sum of (3.5) we need to check that

sup yJa(Xy)Idx < Cm (3.6)
yEM J

and

|(X, y)dp(y) C' (3.7)

For any fixed x E M we have

J lj.(y-x)dy : j Iy~xlc-JI-dy C (3.8)

similarly , we have for a fixed y E U,

fl-Ix12- y~1xja~2J~-w(x)do-(x) < C2-"44-I-1 (3.9)

from which it follows that

(JM(jy-xH-2-m XjJ-(yx)g(y)dy)2w(x)do(x))1/ 2 2 2-"-a-JI1) g9IL2

finally we obtain

IIf2IL2(d|) C||g|IL 2 -"@-IJI- ) < C||g||o
m=O

as long as a - IJI > 1/2
Suppose now that a = IJI + Q, then the only difference from the previous case is now

the estimate we use for XjJJ is

1
IXi J(y)| 5 C log(-) as kl -+ 0

jyl

and the constants in (3.8) and (3.9) are respectively Cm2mQ and Cm2-m(Q-).
M

3.1.2 Proof of theorem 5

Now we turn to prove theorem 5. We will prove the theorem first in the special case of the
characteristic hyperplane {(t, z) : t = 0}. The following lemma, from the general theory of
Hilbert spaces, is key in proving the estimates needed .

Lemma 9 Let H1 and H2 be two Hilbert spaces ; T be a linear operator from H1 to H2 , and
define the adjoint operator T* from H2 to H1 by

(T*u,w)Hl := (u, Tw)H2

If T is bounded then TT* (resp. T*T) is a bounded operator from H2 to H2 (resp. from H1

to H1 ) . And conversely, if either TT* or T*T is bounded operator, then T is also bounded.
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Proof:
It is clear that T is bounded if and only if T* and the boundedness of TT* and T*T

follows. Conversely, if TT* is bounded then by Cauchy Schwarz

IIT*u||21 = (T*u,T*u)Hl = (u,TT*u) ||uI|H2 HTT*u JH1 C U 1

0

1. The case of the characteristic hyperplane
If f E S 2

f(t, z) = J I((s, u)(t, z))g(s, u)dsdu (3.10)

where I is the Riesz kernel i.e.; the kernel function of the operator (-L)- ( 1 X) 2

and g E L2. Recall that we have

I 1(t; Z)| 1: C I(t; Z)|-+ (3.11)

So proving that f(0, z) E L 2(dz) ammounts to proving that the operator R(-L)-1 (R is
the restriction operator to M i.e.; Rf := fIM ) is bounded from L2(dtdz) to L2 (dz), which
according to lemma 9 above is equivalent to showing that the operator

T = (R(-L)-2)(R(-L)~2)* (3.12)

is bounded from L 2(dz) to L 2(dz). The kernel function of T is given by

K(z, z') = J I((su) 1(0, z))I((s, u)~ 1(0, z'))dsdu (3.13)

it is easy to check that the kernel function K(z, z') is symmetric and homogeneous of degree
-2 that is

K(rz, rz') = r- 2K(z, z')) (3.14)

Let us assume for simplicity that n = 1 and change variables to polar coordinates.

z = rei, z' = r'ei'o (3.15)

the action of T is seen as a group convolution on ]0, oo[xS' with its obvious group structure

f
2

7 0 r , dr'
Tf(re'9 ) = F -,0 - O')f(r' )--d'

where
F(r, 0) = K(1, rei9 )

the properties of F(r, 0) can be read off directly from the estimates on the kernel K which
is lemma 11 below.
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Lemma 10

(a) F(r, 0) = O((jr - 1 + 02)~2) as (r, 0) -* (1, 0)

(b) F(r,0) = O(1) as r 0

(c) F(r, 0) = O(r-2 ) as r - oo

Now in order to prove that T maps L2 (rdrd9, (0, oo) x S') to itself we need to show:

2 oF 1)f ( r'ei' )--dO' ) 2rdrd0
S 0 0 rr

C j | 1 r f(reO")|2rdrdo
0 0

and this is the same as

jj 0J rir' r",, - 0')(rI f (r'e9 ' ))dr'dO')2 drd0
0 0 0 r/

Cf |r'f(re)|2drd0
30

For Young's inequality to apply , we need to show two things

~27r 00 1 ,- r
sup r!r'F(, 0-0')dr'd' < C (3.16)

2, 0 
r7"

sup r2r'2F( - ')drd9 < C (3.17)
r/,0J 0 In r/

but via a change of variables the two integrals are amenable to each other, and this is because

the kernel K is symmetric, so we need only consider one of them, say (3.16). Fix r and 0
and break the domain of integration in () into three parts

1 2 ir r 2 ~ 2 ir 2r 2 ir 00

]+ 11 + l = A+ A2+ A3
0 0 0 r/2 JO2r

using lemma 10 we have

A 1  C /rI3'( r2d' 0C

while 00 -
w Aa<C r r' dr' <C

A 2 C ir' - 1/+2 0- 2' r~2drId' -
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CJ2  ;s i(as - 11 + |0 - O'I )2 -dO' <
1/2s

2 r (s - |+ 0' )-2dsdO < C

0 1 /2

2. The general case.
Let us settle some notation to avoid cumbersome expressions. The notation z E M has the
obvious interpretation to mean (O(z), z) E M, also the notation d(z, z') should be taken
to mean the nonisotropic distance between the points (O(z), z) and (O(z'), z'), similarly if
x E U and z E M the notation d(x, z) should be clear. Finally, denote by d(z) the distance
to the origin.
We describe now the general case. Let K(z, z') be the kernel function of T given by (3.12),
it is a symmetric kernel and defined in the same way as in (3.13) by

K(z, z') = J I((s, u)~'(b(z), z))I((s, u)-(b(z'), z'))dsdu (3.18)

Let q(z) > 0 be a nonnegative function defined on M and define the measure dv by the
equation

q(z)dv(z) = du(z)

so that
Tf(z) E L2 (dT) if and only if q(z)1/ 2 Tf(z) E L 2 (dv(z))

and so the inequality to prove

I I K(z, Z')f (z')d(z')2do(z) C f(z)1 2 do(z)

is equivalent to

q(z')1/2K(z, z')q(z) 1 / 2 (q(z')1 / 2f(z'))dv(z')1 2 dv(z) 5 C I q(z)"/2 f(z)1 2 dv()

Set
K(z, z') = q(z) 1/2K(z, z')q(z')1/ 2  (3.19)

By Young's inequality we need to show

sup I f(Z, Z')dv(z') C (3.20)
ZEM JM

This is exactly what we did in the special case of the hyperplane, there the function q(z)
is equal to r1/2. The function r in the previous case is equal to the weight function w. Here
too we choose the function q to be equal some power of the weigth function w, q(z) := w(z),
for any 0 <e < 1.

The following lemma gives the estimates for K, which is lemma (2) in the case of the
hyperplane.
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The kernel K(z; z') satisfies

K(Z.; z') < Cd(z, z')-Q+2

as d(z; z') tends to zero

Proof: K(z, z') is essentially

K(z; z') ~d(u; z)-Q+ld(u; z')-Q+ldu

By the triangle inequality, it is easily seen that there is a constant C > 1 such that

,~;z d(z; z')
C

implies

d(u; Z) >d(z; z')
C

so we can break the integral defining K into two parts, one is

d((zz') d(u;-Q+ld(u; z'-Q+ld <

the other part is

but if d(u; z') - 2kd(z; z') , then also we have d(u; z) - 2kd(z; z'), so the sum
equal to d(z; z')-Q+2.
E
(:3.20) follows if we prove

w(z')' d(z, z')-Q+2tv(z)-'d(z) < C < oo

is less than or

(3.21)

with constant independent of z'. Fix z' E M which we can assume to be the origin 0 and

assume that w(0) = y > 0. Split the the integration in (3.21) into two parts, and we prove

and

(3.22)

(3.23)

7i = I d(z)-Q+2w(z)-'do < C < oo

I2 = 1 d( z)-Q+2w(z)-'da < C < oo

I2 = d(z /10) d(z) -Q+2w(z)-'dc(z)
k=1dz)2 n/ )
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Cd2, z-Q+2

k=fd(u;z')~2k ( )
d(u; z)-Q+1d(u; z')~Q+ldu



00

Cq' E(2 /1Q)-Q+ 2

k=1

by lemma 5 and 3(b) of chapter 2.2 we have

Jd(z)<2kN/1O w(z)edu(z)

and thus,

I2 2 Cr k7 (2//10)-Q+ 2( max w(z)) -o-(B(0, 2 kq/10) n M)
k=1 d(z)<2k/10

K

c77'1( 2 k77)Q+2 (2k?)Q-1( 2 kq)l, = C 1:2-k )
k=1 k=1

and (3.23) follows.
Now we turn to I1,by lemma 2(c) chapter 2, since r7 > 0 , w(z) ;> 7/10 for all z such that

d(z) q/10 and so

1 Id(z)<
7 /10

d(z)-Q+2 do-(z)

Change variables to
Z' = Z/Ai S = t/,2

In this coordinate system the surface M transforms to

MA' = {(s,z') : s = O/'(z') = 1

Now the bounds on 0'(z') are : if we take the Taylor expansion of 0 we get that

(z) = VO() - z + q(z)

77 = 1170(0)1

with this we have
1 

=

the function q'(z') := 7q(rz') is bounded with all its derivatives, for since q(z) = O(|zl2) it
follows that q'(z') is bounded and if take derivatives things get better, for example for the
first derivatives we have

Vq'(z') = 1 xq2(Vq)(/z') = Vq(z) = O(jzl)

34
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+ 12q(rz')
7

d(z)<2k77
w (z) -' < (2 kdl41( max

zEB(2k?7)
wMz-)-'< (2 kqkd-2-c



and so on. The new corresponding weight function w' is comparable to 1 because w'(0) =
JV (0)= 1. That is, the new surface is noncharacteristic which implies in particular that

77

a(B(O,r) n M') 2 Cr9 - 1 . The distance d(z) transforms to

d(z) = qd(z')

the surface measure expressed in the new coordinates is just

dom,(z') q-Q+F 2 dz'

and therefore

f C(d ( z')-Q+2 z'
C / 

dd(z')~<2-k

C > 2(Q-2)kc (B(0, 2-k) n M') C Z 2-k < x

k=0 k=0

E

3.1.3 Sa doesn't restrict to L(du) for a < 1

In this section we provide with an example of a function belonging to S'_, for all e > 0 but
fails to have restriction in L 2(do). For simplicity we place ourselves in the three dimensional

space R3 . Set p = (t 2 + (x2 + y2)1 /4 and let

f(t, x, y) = f(p) = p~ 1O(p)

where 0 is a smooth function identically equal to 1 for p 1 and vanishes for p > 2. Clearly,

t=O = (x 2 + y 2)-1/ 2 near 0 fails to belong to L 2 (dxdy). That f belongs to S2 follows if we

show that
f * I 1-c E

for all a < 1. Because I,, is a homogeneous function of degree 1 - a - Q = -3 - a, and

f is homogeneous of degree -1 near the origin , f * I,-, is homogeneous of degree -a (this

follows in gneral from the fact that if two functions are homogeneous of degree s and I their

convolution, if it makes sense, is homogeneous of degree s + I + Q.) Now X(f * I1-,) is

homogeneous of degree -1 - a, which is in L 2 (do) if and only if a < 1.
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3.1.4 Some consequences of theorem 4& 5

Before we move on to the main estimates for the restriction we discuss some consequences of
Theorem 4& 5. If B is any unit size ball, then according to Theorem 5 we have the inequality

BnM 
2  t f (If(tZ)1 2 + jtf(tZ)1 2)dtdz (3.25)

we would like to have this inequality at all scales. Let r > 0, and B(r) a ball centered at

the point (V(zo), zo) E M. By left translation we can assume that zo = 0 and y(zo) = 0 i.e.;

0 E M. Next we assume that the weight function w assumes its maximum on the ball B

at the point (0, 0), for otherwise we look for one point where the maximum is achieved and

take a ball centered there of a larger radius so as to contain the original ball B, and then

left translate to the origin. Now the situation we are in is a ball B of radius r > 0, centered

at the origin and we would like to rescale (3.25) above. Change variables to

t' = tr 2  z' = z/r

the ball B gets transformed into the unit ball B' and the surface into

M' = {(t', z') : t' = z'(z') := r 2 4'(rz')}

if we denote by doul(t, z) and dom,(t', z') the surface measures on M and M' respectively,
and if we set f'(t', z') := f(r2 t', rz') = f(t, z), we get upon applying (3.25) above

kInBI If'(t', z')1 2dcif,(t', z') 5 C JB(If(t', z')I 2 + IVf'(t', z')I 2 )dt'dz' (3.26)

The right hand side of (3.26) is equal to

Cr-Q If(t, z) 12dtdz + Cr-Q+2 J f(t, z)|2dtdz (3.27)

the surface measure dr(t', z') on M' is, in terms of the graph coordinates, equal to

dom,(t', z') = (1 + IVO'(z')2)1/2dz' = (1 + r-2lV(rz')121/2dz' =

r-Q+l( r + IV (rz')I2 ) 1/2dom(r 2t', 'rz)
1 + IVO(rz')12

By Taylor expansion

4'(z) = VO(0) . 7 + O(Iz12)

and so

VO(z) = VO(0) + O(IzI)

and thus,

IVb(z)l > CIZB - Crj
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now because WB is at least Cr according to lemma 2(c), we get

r2 + 1Vl4(rz')1)1/
2 > CWB

1 + IVO(rz')1 2

and hence,
doM,(t', z') ;> CwBr-Q+1dM(r 2t', rz')

Now using this we have

IB'nM'

Sf'(t',

WB B'*

IfI(t', z') 12dM (r 2t', r z') 5

z')1 2 cdt'dz' + C r It.
W B B*

WB IB'nM'

f'(t', z')| 2dt'dz' <

C(r-1 v| 1 If(t, z) 12dtdz + rw-1 J Vf(t,z)| 2dtdz)

Therefore,

JBnM if(t,
z)|2 d C(r-1 J |f(t, z)I 2dtdz + r I Vf(t, z)j2 dtdz)

Next we recall Poincare inequality due to Jerison [JE1] in this setting. Let B(r) be a ball of
radius r > 0, then we have

If - cj2dtdz < Cr2 I VfI 2dtdz (3.30)

We can obtain a similar inequality on the surface as follows. Apply inequality (3.29) to the
function (f - c) and then inequality (3.30) to have at once

inff
c JBnM

|f - c| 2dp Cr If| 2 dtdz

We summarize all of the above in the following lemma.

Lemma 12 Let B be any ball of radius r > 0, and M a smooth hypersurface. Then,

(a) IBnM If(t, Z)12 do(t, z) -C (r-w-1 J f(tZ)I2dtdz + rw21 J jvf(t,)1 2dtdz)

(b) IBnM If(tZ)1 2 C(r'J If(t, Z)1 2dtdz + r If(t, z) 2 dtdz)

(c) inf
c JBnM

If - c1 2 dp Cr f 2 dtdz
JB*
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3.2 The main estimates

The following theorem is the main result of this section.

Theorem 6 Let f E S2 and let k > 0 be the integer such that k < a - < < k + 1. Let M be
a smooth hypersurface, then the system of functions {fj := XjfIM, JI 5 k} is an element
of the space B 2(M). In particular if k = 0 i.e.; when 2 < a < 2, then the restriction

operator is bounded from S2 to F'_.

3.2.1 The case 0 < =a - <1
According to the definitions, the spaces B'(M) and Fj(M)
so we can use the first difference characterization (2.36) to
The following inequality is what we have to prove:

coincide when 0 < / < 1. And
prove the theorem in this case.

AO (g) 2 := If W - f dp(x)dp(y) C||g||2J fly-'I:5y -xX2)3+Q-

for f = g * Ja. We that we note that if 3 < 1/2, we can give a straightforward

Decompose the function f according to Proposition 7 like;

00

f = fJ
j=0

with the fj's satisfying the required estimates. We prove the inequality,

O
E 22'm3 E inf
M=0 BEY cm BnM

If - c1 2dp < CI IfI112

By lemma 12(c) we have,

00
Z 22 m o E inf / f - c 2 dp
m=0 BEFm CBnM

CZ00 00 0

2 c inf Jf | c2d+ Z 22mr BnMI .Z
m=0 BE-mF, j='O m=0 BEm j=m+1

1= 2 2(i) 2JB IZ 2 dvol
m=0 B Fm j=O

J I 221n(a( 2dvol)112 2
m=0 J=O BEFm

00 M 00

C Z 22m(-1) (2-(a-1)a )2 < C Z a2
m=0 j=0 m=0
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since a < 1. The estimate for II is also similar, we use lemma 12(b) instead applied to each
individual fj we get,

II < C 22 m ( Z 2~oa ) 2 < C E a2
m=O j=M+1 m=O

The following proof is due to Jonsson and Wallin [JW], it is based on real interpolation
(vector valued version), and so we state the theorem and refer to [BL]; Theorem 5.6.1; page
122 for a proof and more on interpolation. If X is a banach space we denote by l'(X) the
space of sequences (a3 )'o C X such that:

||(ag )||p-,x) :=( 23PS la IIs)I/P < 00 (3.33)
j=O

Theorem 7 Let 0 < qo, q1 < oo and s - so. Then for all q we have

(lX(AX),lq, (X))O,q = l'( X)

Let f = g * J, E S', we would like to show the inequality:

Ac,(f) 2 < CIjgI2p (3.34)

the left hand side of (3.34) is clearly equivalent to the expression

Z 2 2m J If_(X) _ _2d (x)d ,(y) (3.35)
E- f 2-m-1<jy-1<2-M yx

Set dp'(x, y) := Ng") and let X = L 2 (M x M,dp'(x,y), and define the operator T

(Tj)%' by

Tjf(x, y) = xj (x, y)(f(x) - f(y))

where xJ(x, y) denotes the characteristic function of the set

{(x,y) E M x M : 2-' y-1x < 2-i}

Then another way of restating what we want to prove is that the operator T is bounded from
S2 to l(X). For this to be true it suffices, according to the interpolation theorem above,
that the operator T be bounded from S, to la(X) i.e.;

22m 1JJ _ f(y)1 2 dp'(x, y) C (3.36)

the constant C is independent of m. To show (3.36) let F > 0 and set

IJC'(z-X) - JC(z-1y)j = jJO(z-X) - Ja(z1y)IeJca(z-lx) - Ja(z-1y)I1-
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by Schwarz inequality

I ky-' j !2-n If(x) - f(y)1 2 d p'(x, y) <

I fyIxj 2- (J J,(z-1x) - J (z-'y)I2"g(z)2dz) ( |IJ (Z-1)-J,(Z-IY)12(- dz)d'(x, y) 

C2 L|2

where

C1 = sup J J(z-X) - J,(Z-ly)12(-")dz
Iy-1x|22-

and
C2 = supJ

Z I y-1 xi12- Jc(I~) - J(z-ly)1 2edp'(x, y)

C1 = sup J X(z-x) - J'(z~1y)1 2(l-)dz = I + II
ly-1.19 2 m

I 5 Cj (Iz- 1 XI + Iz-1 yI,-) 2(1-c)dz

but we note that if Iz-x 2-" and y-xI 2 2-' , then also |z- 1 yj 5 2-mn+10, and thus

I < C I|z- I2(-) a-Q < C 2 -2n(1-)(e- 2-mQ
~~z lx212<2-m

as long as
21-E)(a - Q) + Q > 0

by the mean value theorem we have

II < C2-2 (-) -j<--1-)dz < C2 -2m(1-ea-Q2-"Q

provided that
(a- Q - 1)(1 - e) + Q < 0

combining (3.37) and (3.38) we get that - has to be chosen such that

0 0
1 -- - < < I -

2(Q + 1 - a) 2(Q - a)

(3.37)

(3.38)

(3.39)

The estimates for C2 are similar to C1. Let E, = {(x, y) : Iy-1| 2 2-", Iz-'xI < 2-"} and
E2 the complement of E1 in y-'x 1 2-, then we have

C2 I' + II'
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'= Ja(Z'-X) - J (z~ 1 y) 2 dp'(x, y) <

C2"(Q-1) Jz-|xI2- Zl1x|2 (a-Q) jp(B(x, 2-r') n M)d p(x)

C 2- r 2(,- Q)ed(,p(B(z, r) n M)) C2-2m(a-Q)2~m(Q- 1 )

as long as 2(a - Q)e + Q - 1 > 0 i.e.;

Q-1
E < Q (3.40)2(Q - a)

The same estimate is satisfied by II except the condition on E is now

-> (3.41)
2(Q + 1 - a)

combining (3.40) and (3.41) we get that 6 must be such that

Q < < Q- 1 (3.42)
2(Q + 1 -a) 2(Q - a)

Now it suffices to note that
C1 C2 = C2 -2MO

which is what we have set to prove provided that E can be chosen so as to satisfy both
requirements (3.39) and (3.42) . Solving this system of inequalities we see that it is the same
as - < a < .

3.2.2 The case 3 > 1

Let k be the integer such that 0 < k < 3 k + 1, then we want to prove that the system
of functions {fj = XifIM, IJI 5 k} belongs to B. Let us note the functions fL are well
defined, this is because Xjf E S2_Ij and a - JI > 1 . Recall that this means that for each
net F, of size 2-" , and each set Q E F, there is a polynomial PQ(t, z) in the ambiant
space of degree N > k + 1 such that
1. For all IJI < k we have

f X - X dJPQI2dp (Cr2~- IJI))2

2. For k + 1 < IJ| I N

IX(PQ - P 1')|2 dp (Cm2-m(-J)) 2

Q-F. Q'E-n+I(Q)
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and
3. For |JI < N we have

Z J XPQ|2 d < co
QE.Fo Q

the constants cm satisfy Z:' c2 < oo. We start by the proof of 1. For Q E Fm, we let PQ
be the left Taylor polynomial, of degree N, given by the formula (2.29) and (2.30) of chapter
2, of the finite sum

m

Fm = (fj
j=O

taken arround any fixed point of Q, say its center xQ. Let us write those formulas again in
this context

PQ(x) = Z Cj(x- 1 x)'(XjFm)(xQ)
IJ|<N

denote by RQ(x) the remainder Fm - PQ , then

RQ(x) = N
N! E

N+1<|JI<2(N+1)

Cj(xQ'x)' j sIJI-N-1( S)N(XjFm)(xQ(s(xQx)))ds

Estimates in 1. follows if we prove

(W).
S |XjR( x)2dp(x) (cm2-m(~ IJI)) 2

and
(1").

QE m .Xj(

Using lemma 12(b) and Minkowski;s inequality we have

|:JQIxi( E,
SE.Fm j=M+1

fj)|2 dpu(x) C2"n( |Xjfj||)2 + C2~m (
3 .=m+1

|| (Xjf|)1|)2

C2m ( Z 2-'("- 1 a.)2 + C2-"(
b H =m+i v=M+1

(cm2-" ~ ?7t3 jj)2

b3y Hardy's inequality we have

= 2
M=0

= C > 22m(,-I|+!(
m=0

0
00

C a = CIfI|2
m=O
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and this takes care of (1").
Next, XjRQ(x) is a sum of terms of the type

A(x) = C CjfX j(x- 1 x )'f
01

s(IJ'-N-1)(l _ S)(N+IJ21)(XJ 2 XJFm )(XQ(s(xQx)))ds

with J = Ji + J2 .

|A(xb| ) Cit follows t'hat X2XjiFm(xQ(s(xlx)))|2ds)12

invoking lemma 12(b), it follows that

| A(x) |2 dp(x) <

C E 2-2m(jJ'I-IJ|iI-)
J1

E QQ.F. O
IXj 2 XjFm | 2 dvol+ -2n(IJ'l- I+ )

J/
z:

Q E m Q'

< C ( 2-2..'-ni (E 2-ifo|'ll/ aj)+ E 2-n 2'-A+ )( 2-(- '-.2-) 2
J =0 J1 j=0

(Cm 2m(/O IJI) ) 2

by keeping in mind that LJ'I > N + 1 we can apply Hardy's inequality to conclude, and this
takes care of (1').
3. is straightforward we have,

Z |JXJPQ|2 d
QEFo

C E |Xj(fo - PQ)|2dp
QE.Fo

+C 1:
QE.Fo '9Q IXj fo1 2dy K

|*IX j(fo - PQ)12dvol + C I:
QE Fo

J X jX(fo - p) 2dvol+

jXjfol 2dvol < C E
Q EFo IQ*

|VXjfOI2 dvol < co

Finally we prove 2. For Q E Fm and Q' E Fm+I, we write the difference PQ - PQ, like,

m
PQ (x) - PQ,(x) = E(r3(xQ, x) - r-(xQ,, x)) + rm+l(xQ,, x) - fm+1(X)

j=0
(3.43)
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where ry(z, x) := fj(x) - pj(z, x) is the Taylor remainder of the function fj taken arround

the point z. And so,

z J XJ,(PQ - PQI) 2 dp
QEFm

< J ( Xj, (r3 (xQ, x)-r j(xQ,, x))) 2 d p+ Z 1XJrm+1(xQ,, X)12d+ ' IXjifm+i1 2 dp

QE.m , j=O Q'E6m QE
(3.44)

The last two terms in the right hand side of (3.44) are dealt with in the same way as before

by invoking lemma 12(b), and they are both less than or equal to

(Cm+12-(m+-1)(O-IJ' )2

By Taylor's formula we can write the difference r.(z, x) - r (y, x) as

r, (z, x) - r3 (y, x) = (: C, (z1 y) J sI l I (Xf (r (w, x)))m=(Z(S(2-l)))ds (3.45)
1 III| z-2

the notation Xw means that the action is on the w variable. Writing out the integral

representation of ry(w, x) and taking the derivatives Xwrj(w, x) we get that rj(z, x)-rj(y, x)

is a sum of terms of the type

C(,: 'y)j s1IJllIJ-N-1(1_tN+IJ21(X J, (- I X)))XJ2Xdfygg(-lX))) l=(Z(,(2-i -)))ds dt

(3.46)
with J1 = J3 + J2 . Applying Xj, to this typical term we get that Xj,(r3 (z, x) - r3 (y, x)) is
a sum of terms like;

C (Z - 1y)j111 IJII-ltlJI-N-1 ( _t)N+I J21(X JIXJ3(- 1 x)J)) Xj, Xj2Xj 0 -fj( t(wx))ds dt

(3.47)

with J' = J1 + J2 and the expression in the integrand of (3.47) is supposed to be evaluated

at tw = (z(s(z-x))). Taking into account

Iz l yi 2-rn+2

and that

1w~ 1x1 = (s(z-ly))y-lx C(sjz~1y + ly-xj) < 2-"+10

also

jXj;Xj3 ((w'-lx)j)l C2~n(JIJI-J3 I)

if IJf - |J1 - J31 > 0 which is the case. The terms of the type (3.47) are in absolute value

less than or equal to

C2-(J IgA+Ijl-l'HAJ 1)( 1 01XjI XJ2 Xifj (W(t (w- )))2|_ ),,-sdsdt)i/ (3.48)
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summing over j and square it integrating it over Q, using lemma 12(b) and the estimates on
the fl's over Q, and then summing over Q E Fm using Minkowski's inequality we get finally

Z (ZXI(r (xQ,x) - r3 (xQ,,x))) 2dp
QEFm Q J=0

C -2m(lIJI+l I |-IJ'I-I3+.L)(E 2-.(C'- I jl- I 2' ~-IJ2) a ) 2+
j=0

C 22 (lI J+1-7 I -IJ'I -I3 1-1)( 2-'I- J1- 1)a~ .y)2<

j=0

(Cm2-m(-'I))2

and the proof of the restriction theorem is now complete.
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Chapter 4

The Extension Theorem

This chapter is concerned with the extension of functions, or rather systems of functions,
defined on a surface M, to the ambient space. It is the converse to the restriction theorem.
It was our goal to prove an extension theorem for the spaces FJ instead of Bj, of course
that would have been a stronger result. We still do not know wether it is possible or not.
Another simple way to ask the question is: are the spaces B, and FJ equivalent? The
answer is yes for 0 < , < 1 and would be yes if we can prove an extension to the ambient
space for the space FI since the restriction is bounded from the space S' to F. The

extension described below is based on two main ingredients, the first objects are polynomials
and the second is the Whitney decomposition of open sets in the nonisotropic metric. This
technique of extending functions is classical and goes back to Whitney (1930's) who used it
to extend Lipschitz functions defined on an arbitray closed set of Rn see [WH] and [STI] for
more on this. Recall that in the classical case (isotropic) the extension using the Whitney
decomposition is as follows. First flatten the hypersurface M by a local coordinate system

(x 1 ... , Xn) such that M = {xn = 0}. Now we can talk about polynomials in the coordinates

(X, , x,_-1) and use them to define the spaces F2. Polynomials p in R 1 have obvious

extension to Rn, just extend them to be constant along the vertical direction (the x,-axis).
These extended polynomials satisfy the following trivial but important property: let B be
any Euclidian ball of radius r > 0, and centered on M then,

12dvol < Cr 1p(X1,---,Xn_1)2 dO (4.1)

Once we have this, given f E F2 we define its extension on a Whitney cube to be the best

polynomial approximation (in the L 2(do-)-sense) off on a corresponding ball on M. With

(4.1) and the so called Markov's inequality (see [JW]) we can prove that the extension is

bounded etc...
Of course in the Euclidian case there are other possible ways of extensions for example the

reflection method, see [AD] and [STI] [ST2] for example, is applicable for smooth hypersur-
faces, there is also the method of Calderon that one can use when we have a surface that is

smooth. The extension of Whitney type is a powerful tool when we don't have smoothness

of the surface. In [JO], one of the most recent (1984) papers dealing with extendibility of
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classical Sobolev spaces defined on "almost arbitrary open sets", the so called (e, 6)-domains,
this method is used successfully.
Let us return to the nonisotropic setting. The first thing to say is that (1) is false if we re-
place the Euclidian ball B by a nonisotropic one and the surface measure by the the measure
dp, except if the surface is noncharacteristic or the polynomial is actually a constant, in the
former case it is true because one can choose a coordinate system (x1 , * ' , X2n+1) such that
M = {X2n+1 = 0} and for which a transverse vector field say X2n is given by a , and

aX2n+ I

this of course makes (4.1) valid . We don't have a canonical way of extending polynomials
to the ambient space and still have (4.1) valid in this coordinate system, the reason being
the fact that when we extend by constant along the vertical direction we might exit the
balls too quickly especially when the balls are centered at characteristic points. We can
use normal coordinates to extend polynomials, but this requires us to fix a base point on
AM and this means that the same polynomial has different extensions a property that we
certainly do not want. One may seek a universal vector field along which we can perform
constant extension. This idea is in fact under investigation and it seems to work at least
for 0 < a < 2, for the characteristic hyperplane and hence would work for hypersurfaces
with isolated characteristic points. Which is an improvement, unfortunetly the details of
this technique have not been worked out and therefore cannot be included in here, they will
appear elsewhere in the future. This technical difficulty led us to seek other methods to deal
with the higher derivatives case. The method of Jonsson and Wallin is applicable in our
context. This method requires the knowledge of all derivatives even transverse ones to be
able to construct extensions, this of course in their setting was necessary, because they deal
with complicated d-sets. Let us state the main theorem.

Theorem 8 Let 0 < k < 3 k + 1. There is an extension operator E taking elements

I := {fj : |J| < k} of BJ(M) to functions defined on the ambient space such that:

E : B' (M) - S

is bounded and such that XjE(f) I = fj almost everywhere, where a = / + 2.

After constructing the extension operator E, we plan the proof of the theorem as follows.
First, because the difficulty is only technical, we treat the case 0 < / < 1, in this case
constants are enough to use. This case is important because the spaces F1 and B 2 are the
same. We start with / = 0 , and show that the first derivatives are in L2 and then use other
possible characterizations of the spaces Sj.

4.1 The Whitney decomposition

The construction of the extension operator is achieved using the Whitney decomposition and
a partition of unity. Recall that this cover is obtained by covering Q by balls of radius 2 -

and then selecting from this balls that are at distance 10 x 2-k away from M, for k = 0, 1, - --,
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integer. This cover is required to meet the condition that the balls do not get pilled up too
much, this means that if B and B' are two distinct balls with nonempty intersection then if
we shrink them enough they end up disjoint. We summarize all what we need to know about
the Whitney decomposition in the following theorem. We refer to [ST1] for the proofs.

Theorem 9 Let M be a closed subset of Q, then there are nonisotropic balls W covering
Q \ M with the following properties:
(a)
Q \ M C UBEwB
(b)

1r(B) dist(B, M) 10r(B)
(c)
B.n B' = 0, where the notation B. means the ball with the same center as B but with radius
'th the radius of B.
(d)If B and B' are two balls such that B* n B'* # 0, then

1 r(B)-< <10
10 - r(B') -

(e)Finally No point in Q \ M belongs to more than 100 balls of W

In particular by property (d) we can cover the surface M by sets of the form B** n M. Recall
also that membership to the spaces F, or B' is independent of the covering Fk, and hence
we can use Wk to define a grid on M, Fk := {B** n M, B E Wk}. In particular for small 3
a possible norm for the spaces B, and Fo' is given by:

|ff|2 1I + 22k Z infJ If - c1 2d (4.2)
k=O BEWk

Next we let PB be a partition of unity subbordinate to the cover W. The support of C.B

is contained in B*, it is identically equal to 1 in B*. The two properties essential in what
follows about the OB's are:
For all x E \ M we have

and E YOB(X) =1(4.3)B EW

and

IXJ(PB(X)l : Cr(B)-1J (4.4)

4.2 Proof of theorem 8

4.2.1 The case 0 < 3 < 1
Let f E F0, for each ball B E W we denote by CB the constants in the definition of F2 , such

that

Z f If - cB 2du (ck2-k3)2 (4.5)
BET B~n
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we can be more precise with the constant cB to take it the best constant approximating f
in the L 2(dp)-norm i.e.; its average over the set B** n M, but that is not necessary. The
extension E is given by,

E(f)(x) = Z YB(X)CB for x E Q \ M (4.6)
BEW

The sum defining the extension is locally finite and hence defines a smooth function away
from M. Let us check that the resulting function is an element of L2 (Q). Indeed, we have

|IEfII2 < E Z |c'|2 = C Z BI E lCB'|l
BEW B'EW(B) B BEW B'EW(B)

where |Bj denotes the volume of B. But by theorem (2)-e the number of balls in the inner
sum is bounded by 100, hence

|IEfI 2 < C E |B|IcBI2 = RI c2d
B E1w BEW p(B** n M) iB+-nM

C j 2 -k Z [- cB|2d + C|If||2(d 1 ) < C||f|2 for any 0 < / < 1
k=O BEWk JB*nM

Suppose now that 3 = !, then we need to check that the first order derivatives X(Ef) are2'
in L2 . By (3) we have

> X PB(X) 0 (4.7)
BEI

and so

IIX(Ef)|| 2 <

Z r(B)~2 B| IcB -cB'1
2 < C ( r(B)- 2  BI B CB - cB2 d

BEW B'OW(B) BEIV (B** ) B'EW(B)] IC

CZ 2k Ii:f - cB 2 dp < C||f|2
k=O BEW, B**nM {

To prove the estimates needed for the full range 0 < 3 < 1 we distinguish between two

cases. The first case is when 0 < /< j and the second when 1 < < 1 . Instead of proving
directly that the extended function is in the Sobolev space S2, we may, in the first case,

prove that given any tiling .Fk of the ambient space (not to be confused with the tiling of

the surface M which in the present situation is given to us by the Whitney decomposition),
we have

Z inf IF(x) -cj 2dx < 2 -2k(k+)c2
BEFk
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for some Ck satisfying

Zk -< CIfII1F2
k=O

in the second case we have to check that the same holds for the derivatives of first order.

Now let Fk be a net of mesh of 2 -k for the ambient space, and let B E Fk, suppose also

that it is contained in a Whitney ball Qo, then by Poincare inequality, we have

inf |F(x) - c| 2dx < Cr(B)2 lB VF(x) 2 dx

but by (4.7)
VF(x)= Z c QVQ(x)=

QEw
E (cQO -CQ)VtQ(X)

QEW

and thus we have,

|F(x) - c| 2 dx < C( r(B) )21B|
r(Qo) Z CQ - CQ0 |

QEW(Qo)

and since for Q E W(Qo) we have r(Q) - r(Qo), we get that

inf |F(x) -C12dx < C( r(B) 2  |B|
c " r(Q) ,(Qo n ) If(x) - CQ|dp2I(x)

QEW(Qo)IQ*AI

now the balls in Fk that are contained in Whitney balls are those that are far away from Al,
denote those balls by Fk(W) i.e.,

.Fk(W) = {B E Fk: B C Q,for some Q E W}

with this we have

IF(x) - c1 2dx = z + z:
BE.'Fk(W) BVYk

= Skj + Sk,2

Let the letter s (instead of Q) denote temporarily the homogeneous dimension (s=2n+2),
using (4.8)

Sk,1C E f(r(B) 2  |Bj

QEW BEFk(Q) JB r(Q) p(Q* n Al)
E I If(x)

Q'EW(Q) Q'nM

C 2 -2(k-m) 2 -km2(s-1) z z I |f x - Qud p( x )
m=0 QEWm BEFk(Q) Q'EW(Q) Q nM

note also that

z:B EFk(Q)
1 < C2(k-m)s
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using this we finally get

k2
-1k J f(X _ - Q 12d() -2k(s3+.) Ck Sk,1 m C2-, 2Q n : -Q n fdtp(x) k

m=O Q EWm Qn

where

-= -2k(2-a) 22m(-a)a2
m=O

and as usual by Hardy's inequality we conclude that

Zci 2 C a2
k=O k=O

Now we turn to balls B ' Tk(W), pick any cube Q E Wk+1 that is contained in B and

set

IF(x) - cB2 dx =

CB := CQ

0m(B
M=k+l QEWn( B)

F(x) - CB12dx

IF(x) - CB 2dx < CIQI z |cQ -Cc2
Q'EW(Q)

C2 m IQ*nM If(x) - CB12 d (x) + >: C2-"
Q'EW(Q) IQ'*nM

|f(x) - CQ,12d/p(x)

I(Q) + II(Q)

I(Q) C
m=k+1

2-m IB**nM

and summing over B ' Fk(W) we get

Bi~k(W ) m=k+1 QEWm(B)

I(Q) C2-k-1 EQEWk+1 JQ-nM
fx) - CQ dp(x) C-2(k+1)(c+ 1) ak+1

summing II(Q) over Q E Wm(B) and then over m and then over B E Fk we get

E E E
BE~k m=k+l QEWm(B)

00

1I(Q) C E 2-"
m=k+1

If(x) - CQ12dp(x)E JQnMQEW, Q n

22m(I3+i)a2 K 2-2k(o+!)C)am < 2 2k< C E
M=k+l

51

B

E
QE Wm(B)m=k+1

IMEMEMEMEMEMP- M

|f(x )-CB12 d (x ) < C2 -k-1 JQ*M f -X C 2 dp (x



c 2 = C E$
2k(@+ j) m=k+1

2-2m(ce+I) 2
2 am

and by the second part of Hardy's inequality we get that

c 2 C a 2

k=O k=O

By the same method we get the estimates needed for the derivatives of first oredr in the case

where ! < < 1.

4.2.2 The case 3 > 1

Now we come to the description of the extension operator in the general case. Unfortunetly
we have to leave the spaces F 2 and deal with B 2 whose elements are systems of functions.

Here we assume that the integer N >> 0. Let 0 < k < 3 5 k + 1 and f := {fj : IJI l k} E

B1, recall that this means that for each B E W there is a polynomial PB of degree < N such

that:
(a)

(Cm2~m(3-lj) 2, for all IJI k( |~fMIfj - XJPB|2 dp K
BEY. B**nM

(b)

IXj (PB - PB')12 dp (Cm9-m(O-|J|) 2, for k + 1 < IJI N

(c)

B E Fo Bg *nM

The extension of f = {fi} is now given by

< co, for all

F(x) := E(f)(x) = Z pQ(x)PQ(x), for
QEW

Let a=3 + , The first thing that needs to be checked is that

00

IIXjFH1 C( E c2 )1/2
m=O

for IJ < a

let x ' M, then XjF(x) is a sum of two types of terms:

Aj',j"(x) = ( Xj,,pQ(x)Xj"PQ(x), J' + J" = J, J'| # 0
QEW
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TzB EFm B'w(B)B**nM

|JI N

(4.10)

(4.11)



and

OQ(X)X JPq(X)B (x) = E
QEW

We need the following lemma

Lemma 13 Let P(x) be a polynomial and Q a nonisotropic ball such that, pL(Q** n M)
r(Q)s~ 1 then

'Q
|P(x)|2dx < C r(Q)1+ 2 JIXp

Q**nM IXjPQ(x)
2dtu (4.12)

Proof:
It suffices to note that if Q is unit size then both quantities of (4.12) define norms and they
are equivalent. Rescale to get the result.
E
By (4.7) and the lemma

||Aj',j |112 < C>:
QE I

|Aj',j (x)j 2dx < C Z r (Qf-2J' 1
QEW Q'EW(Q)

Nj" (pQ _ pQ, 12dx

C: E r(Q)1+2(jj-jJ'j)
j QEW

E 1 XjXj" (PQ - PQ,) 2 dp
Q'EW(Q)

it easy to realize that

Z 1 (Q)1+2(ijK-J'I) |XjXju P|2d p< C 7 r(Q)1+ 2(jI-IJI) I XjP| 2dip
Q~nM a B*nM

J

And hence

IA j',j-|12 < C E E
|J"|<|I|l<k Q E W

E
Q'EIw(Q)

|Xj(PQ - PQ1)1 2dy

C > > r(Q)1+2(i\-IJI) f J|Xj(PQ - Pq1)| 2dy
IiI>k+1 QEW Q'Ew(Q) Q

by (a) and (b) we get at once

||A ',j 11 2 < 2-2m(!-WIJ+/3C2 <
M=0m

as long as IJ| <1 0+ = a.
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Next we turn to Bj. This term is estimated in a different way.

||Bjj|2 < C l
QEW

|Bj|2 dx < C XjPQ| 2dX =
Q( JBQEW

0 : f X p |2dx
Mr=0 QEWm

For each Q E Win, Wm- 1 (Q) denotes the balls in Wm- 1 touching the ball Q, the immediate

ancestors of Q. By theorem 2-d there are at most a finite number of them say less than 100
for each ball Q, let us enumerate them keeping in mind that this enumeration depends on

Q.

Wm- 1 (Q) = {Q Q ,-- QN 1,

Put QoN = Q, inductively we enumerate the set W,- (Q'f f ),

Wm-j(Q .,) = {Q>,Q, .., Q2'}

with this we can write PQ as a telescopic sum:

PQ = (PQ - P1)+ (PQ1 - P )+ -- +(PN1-1 - PQNJ)+ PN,

(P-PQI )+(PQ - PQ2)+-+(PQNI-1 -PQ N)+(PQNI - PQ)+---(PN 2-1 - PN2) +PQN 2

N1-1

(PQ - PQ)+ (
1=1

P -PQl+1 )+(PNJ -

N2 -1

PQO)+ (PQ
1=1

+(PQNm1 - 1)

+ -1

+ Z (PQL
1=1

- P1+1)+ PNm

m N,-1

Z(PQ=

M-1

- PQL+1) + E (PNj
j=O '

- PQI ) + PQ IV"

Now use Minkowski's inequality to get

m

|XjPQ12 dx ) 1/ 2 < Z( Z
j=1 QEWm

N, -1z
1=1

|Xj(PL - PQ+1) 2 dx )1/2
i

+

IQ
|XJ(P N,

> - PQ |1 2 dx)1/2 +( ZJ
QEwm I

XjPQ Nm 2 dx) 1/ 2

54

where N, = N1 (Q)

for

QEWmJB
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By the lemma we get

mn N,-1

I = ( m Z X(PQ -
J=1 Q EWm 1=1 I

JQ nm

Pi+12) 
2 dx )1/2

Q3

|XjXj(PQ PQ+1)2dp)1/2

C E 2-m(I m+ -o (
IIiJI 3=1 Q E Wm

Let us look at the double sum

QEIVm

N, -1

1=1
JQXM J

N (Q)-1

IC~| IXj( PQ
1=1 Qnl

pge 1 2dy )112

- PQ )12 d p

Since the balls Q. in the second sum are the jth ancestors of the balls Q C W the first

sum can be replaced by a sum over balls in Q E Wm whose projections on M Q* n M are

contained on the projection of balls in Wm-j then followed by a sum over W-J. There

might be repetition in this way but as we said they get repeated only a finite number of

times and thus we have

N,(Q)-1

E Z |Xj(PQI
Qm 1=1 QnM

and therefore we get

- PQI)| 2dp < C E E IQnM |Xj(PQ -
QEVVn-jQ'EWm-j(Q)

I < C E 9-mi+lI-I Z( >1 Z I
IJIJI J. 3=1 QEWm-i Q'EWm-,(Q) QnM

By (a) (if LJl < k) and (b) (if il k + 1) we get that the last term is less than or equal to

C 1 2 n(+IJI-IJI): 2 -i-c
IjI IJI 3=1

which when squared and summed over m, using Hardy's inequality, is less than or equal to

00
C Z 2 -2n-(aIJI)C 2 <

M=0
C c2

M=0

the other terms are dealt with similarly we

|XJ(P N, - PQ1 )| 2dx)1/2
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m NI -1

C12- +=1 QEm 11
3 .=1 QO~ E 1m=1

PQ,)1 2d p

|Xj(PQ - PQ,)|2 dp) 1/ 2

for all |JI 5 a

M-1

j=0 QEWm IQ



m-1

C 2 2-m('+Ijl-lJ E ( E JQ | Xj(PQN, - Po }|2dy2
jI IJI j=0 QEwI n j >

C E 2-m(+IJ-JI Z( Z Z ]Q_' M

IjIIjI j =, QEIVm.-, Q'EWm,-+I(Q)
lXj(PQ - PQ,)|2dp)1/2

Now square it and sum it over m like before to it less than or equal to

00
2 2-2rn(a-jJj)C2

M=0

the last term is simpler we use estimate (c) to get it less than or equal to co. Thus we have
proved that for all IJI < a

IIXjF| C( c2)1/2 CI|{fJI}I|B2
m=O

and hence if a is integer the extension theorem is proved.
Next we treat the case a noninteger. Let 1 be the integer such that < -

and set A = a - 1, then like the proof in the case of small / we are going to
derivatives XjF belongs to S' by showing that

Z inf lB XjF - c| 2dx < 2- 2m Mc JI 1
BEFm

1 < 3+1 = a,
prove that the

(4.13)

We take as before for each integer m a grid .Fm of the ambient space. We prove (13) proving
it for each of the terms Aj,,j, and Bj. Let B be a ball that is contained in a Whitney ball
Q, then by Poincare inequality we have

inf I |AjI,j// - c1 2 dx
C B

Cr(B)2 | tAil'il|2<

Cr(B)2 J1 z
Q'EW(Q

(VXjPQ,)(XPQ,)1 2dx + Cr(B)2 z
) Q'EW(Q)

(XjiPQI)(t XilPi ) 12dx

I+ II

both terms I and II satisfy the same estimates so we treat only one of them. Summing over
the balls that are contained in Whitney balls we get

inff |Aj,j"-c12dx < C2-2m Z2 2 (IJ'1+1) Z Z Z IX JI(PQ-PQ,)|2 dx
j=C QEW, B E Fm(Q) Q'EW(Q)
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MK

C2 -2m I: )23(IJ'1+1) IQ I XJII(PQ - PQI)I'dx
j=Q QEW, Q'EWV(Q)

C2-2m E
IJI I"I

Z22(-JI+\JI+b) z z /
j=O QEWj Q'EW(Q) Q

|Xj(PQ-PQ,)| 2 dy C2~2" 2 -
3 .=0

where
w a 2 < C E 2 -2m(-IJI)C 2 < C 0 2

m=O m=O m=O
for IJI: l

Next we turn to balls that are near Al i.e. B ' .Fm(W) . For these we show that

| Ayji,i 2 dx < 2 -2"C
BgFn(W)IB

j=m
I:

QEW43(B) Q I >3
Q'EW(Q

C ? 22jIJ'l > >
j=m QEW(B)Q'EW(Q) Q

(XjI.PQ,)(XjII(PQ - PQ,))| 2dx <
)

XJI(PQ - PQ')|2 dx

o >3 >~3 2(IJI-ljI--!)>3 31
C QEW2(Q-E)(Q) 2

IjI;>IjI J'=M Q E Wy(B) Q'E W(Q) Qn

After we sum over B Fm(W) and rearranging the terms we finally get

> 2 -2", >(C232A E 2-2 a 2)
B .Fm(W) j=m

The other term Bj is estimated in the same manner except that we would have to use the

method by which we proved it to be in L 2 , we do not wish to repeat it here.

Thus the extension theorem is proved granted we prove finally that (XjF)lm

G(x) := XjF(x). First we should note that since IJI k < f and F E S2 (0+ 1

G E S2 for some 1 < A < 1. Set

= fj. Set
= a) then

G(Q):= - G(x)dx

Let W* be balls of Wm expanded enough to cover the surface M, and let OQ. be a partition

of unity subbordinate to this cover and finally set

Gm(x):= >3 OQ-G(Q)
QE W.
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then this function is smooth and hence its restriction to Al is well defined. To prove that
the restriction is what we started with it suffices to prove two things:
1.

and
9)

|fA - G.I2d[p- 0

IG - Gm|2d 1 -+ 0

m -+ o

m - oo

to prove 1. we have

|f -GI 2 dip = I l/)Q.(fj-G(Q'))I2 dp <
-~~ E pwn

I: | m
Qew E VV,

Z ?kQ.(fj-G(Q'))2d p
Q'E Wm (Q)

Z_ Z fj - G(Q')| 2di < C
QEIV. Q*EWn(Q)

EC W m IQE~n

I: IQ|nM ff - G(Q)12 d4
Qow E Wm

the first term is by definition less than 2-2m( - cJI) -+ 0. As for the second term it is easily
proved that if P is a polynomial and Q any ball then we have

JQ *nM~IP| 2dy < C2"J Ip2dvol

(if we use a linear change of variables so as the class of polynomials is preserved and the
surface becomes horizontal then the assertion is true by finite dimensionality of polynomials,
then rescale to get the general version, it is also worht noticing that the reverse inequality

is not true.) And thus we have that the second term is less than

C2" Z J I|G(Q)-XjPQ|2dvol < C2m Z
QEWmQ QEW

IQ G(Q)-G 2 dvol+C2' Z |Q G-XjPQdvol
Q E Wm

by (1.) the first term is less than cm 2 ~2m-2 -- 0 as m -* oo

write G - XjPQ as a sum of terms of the form

cjI',j E XJ' rIQXI I(PQ, - PQ), J' + J" = J, IJ'| # 0
Q'EW

Plus

( PQXJ(P - PQ)
Q'eW

if we use now lemma (11) we get at once

JQIG - XQ12dvol

58

|fj - XjPQI 2dp +C Q( IQ *nAf
Q E Wm

|G(Q) - XjPQ| 2dp



XjXJII(PQ-PQ,)1 2d, +Z 2-2n+(I +1) J Xj X J(PQ-PQ, ) 2 d,,
2QnM< C JJ 2-2, -jJ'l+-1)2 2 Q*- nM A

< C 1 1 2 -2m(IjI--JI+ ) I
J',J" |jy|1j,|

Xj (PQ --P) |2d p+ Z 2-2m2-I +n J
JiQ Iji

IXj (PQ -PQ,) 12d p

summing over Q E Wm and using the definition of B 2 we get the desired result. To
prove 2. it suffices to note that from the proof of the restriction theorem that we presented

for 1 < a < 1, we see that if Q is a Whitney ball and if f E S2, and if we set f(Q)
IfraclIQI fQ fdvol, then we ahve

|f - f(B)|2 dp C22M )

QEWm Q**nA

from which 2. follows immediately.
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Chapter 5

Some Generalizations to p 5 2

In this note we shall give indications on how to obtain generalizations to p : 2 whenever
possible. Now, the spaces we are concerned with are SP := LP * J,. Theorem 1 extends to
the p 5 2 case trivilally, the limitation there for p and a is that a > !, and 1 < p < 00.

p

The same proof can be carried out in this case, the only difference is, whenever we used
Schwarz's inequality we use H6lder's. The restriction theorem is also true if we adopt the
Jonsson and Wallin proof to our situation. Our proof extends to a restriction theorem for the
nonisotropic Besov spaces instead; the reason is because we used decomposition of functions
that is valid for Besov spaces and not for Sobolev spaces in the case p $ 2. The extension is
also true from BJ spaces on the hypersurface to the ambiant space to land in SP, a = 3+ 1
but now p must be 1 < p < oo. The only difference and "not obvious" extension to p $ 2 is
theorem 2. Recall that we have the embedding

SP LP (locally) (5.1)
2

where the spaces on the right hand side of (5.1) are the classical potential spaces.

R: SP - A P_ (M) (5.2)
2 p

provided that 2 - > 0; i.e.; a > 2. The spaces on the right hand side of (5.2) are the
2 p p

classical Besov spaces see [ST]; chapter V. In particular (5.2) tells us that the restriction
spaces of SP to M, is in LP(do-) if a > 2. Let M = {t = 0} be the characteristic hyperplane,

and let p = (1z1 4 + t2)1; then the function +2 belongs to SP near the origin for all

a < 2, but clearly its restriction to {t = 0} fails to belong to LP(do-). Thus, the question
p

remains unsettled only for a = and this ammounts to checking whether or not we have
p

boundedness of the operator

R oJa : LP(R2,+ 1) - LP(M, d-) (5.3)
p

We will employ the same weighted methods as in the case of p = 2, except here we need

two weight functions wi(x) and w2(y) on M and R 2 n+1 respectively. So, let w,(x) ;> 0 and
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w2(y) > 0 be two functions not identically zero on M and R 2 n+l respectively; and denote
by T the operator R o J2 . Let g E LP(R2n+1) having support in, say the unit ball, then forp
x E M,

Tg(x) = Ja(y'1x)g(y)dy
1915<1 P

Set dp(x) = wi(x)~Pda(x) (sorry if it causes confusion this dp is not the we've been calling

in this thesis) and dv(y) = w2(y)-Pdy, then it is easily verified that the inequality

Tg |ILP(dca,) C |1 |ILP(dy) (5.4)

is equivalent to :

(j K(x, y)f(y)dv(y)) 2 dpu(x) C I f(y) |' du(y). (5.5)

where K(x,y) = w2(y)P-lJ(y-l)wj(x). According to Young's inequality, to have (5) it

suffices that we check two estimates:

(a) sup jK(x,y)tdv(y) < C
xEM JylI<

and
(b) sup K(x, y) dp(x) < C.

IyI<1 M

in terms of the Lebesgue measure and ordinary surface measure (taking into account the

estimate for JI) (a) and (b) follow fromp

(a)' sup wi(x)j y-'X P~ w 2 (y)~ldy C
xEM j~yI<1

and

(b)' sup w 2(y)P 1 J y1x l w(x) 1 Pda(x) 5 C.
19|:51 M

From our experience with the case p = 2, we know what w,(x) ought to be; w,(x) = w(x)-,

for some e > 0 small enough. The problem is to find w2 (y) satisfying (a)' and (b)'. From

(b)' we can take w2 (y) to be equal to,

(W2(y))-P+= IM I -x I z(x)1~Pd(x) (5.6)

and we will be left with (a)'. Let us analyze the integral

M y-1xjI-Qw(x)c(1P)do,(x). (5.7)

The factor ly-lxl-Q is at its worst (blowing up) for those x E M that are near enough to y;

i.e., within a d(y, M) from AI. The factor w(x)1-' is worst when x is near the characteristic
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set F and the integrand is worst when the singularities are combined, i.e., when x is near y

and near the characteristic point that is when d(y, F) is comprable to d(y, M). The integral

in (5.7) is therefore going to be expressed (or estimated) solely in terms of two quantities,
d(y, M) the distance of y to M and d(y, F), the distance of y to F. Let us treat the case

M = {t = 0} first. In this case integral in (5.7) is

I = [ y -- Q~xJ'0 Plda(x) = I, + 12 + '3

I3== jKXy ~d o (x ) , 2I2( = l sixQ d o l

I3 = fxis.cli 1X1'(1-P'1y-1-Q~do(x)

We need the following easily proved lemma whose statements are just variants of the triangle

inequality.

Lemma 14 Let 0 $ x E M , y E R 2 n+1 (a)

y-1X 2 |xi. If |y > lxi then |y- 1xJ | |yi.
If d(y, M) < iyi and xo E M is such that d(y, M)

By lemma (b)

I1 < Ciy l-

13 = jxi:clyi ixi'-0Iyx 1- do(x)

By lemma (a) Jy- 1 xl 2 lxi and thus

13 < C jy
Jlxl;>Clyl

xJ-Q++EP(1-P)do,(x) ClyJ(!+c)(-P)

12 is more subttle and requires a careful analysis

I2 5 Ciy| 1~P) J1x C1Y|y- -1x2Qdo.(x)

If Iy| I d(y, M), we have

I2 C1y1(2+r)

If lyI > d(y, M), pick a point xo E All such that |xj'y1 I d(y, M) and write

Jy-1xi~Qdo(x) = Jy~xjP-Qdo(x) + E AZ
I1x isxI d(y,M) k=1

where
Ak = iy-1xJ1-Qdor(x)
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If Jyj < lxi and lJy j d(y,M) then
(b) If lxi I then ly- 1x > ' . (c)

= xJly1, then Ixol a lyl.

j1Xj5cMy

I x I-'-P) Iy-lx I1P-Qdo(x)

Jxl'01-P)do,(x) < Cly0(+0)0-P)



where
Aj = {2 ~1d(y, A) < IxO'xI < 2kd(y, M)}

y-'xIPQ do(x) d(y,M)-4Q0({I x1xI d(y, M)})

By lemma 3(b) of chapter 2 we have

o({Ix-1xI 5 d(y, M)}) 5 C d(y, M)Q- 1
IXoI

and 0(Ak) - (2kd(y, M))Q-l
aY)

and by lemma (c)

Ak (2 kd(y, M)) o({IxO- x 2 d(y, M) }) k 
(2kd( I)Qkd(y, M))Q-1 (yI

and hence,

k=O11 :ClyI

provided that p > 2. Therefore

21

I2 Cjyjl1-P)-1d(y, M)~

which also contains the estimate for I, and I3, so,

I < Cjyc(1-P)l-d(y, M) 1  for p> 2

What about p < 2 ? If p = 2 the integral to estimate is

IM jy-1xj-Q+lxj-cdo(x)

Case 1: yj a d(y, M), the same estimate as 13 above yields

IM
Case 2: lyI > d(y, M); break the integral into three parts

J/ y 1x-Q+1|xI-'do(x) = I1 + 12 + 13

Ii = jxrlxl<d(y,M)
y-1x-Q1 x do(x) 12 = Id(y,M)<Jxo1x1<|yI

jy~1 x-Q+1Ix-'do(x)
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jx - <d(yM)

(5.8)

ly- lx-Q+l1 -'do,(x) ! Clyl~'-'

I3 = Jx-x>Y

ly-lxl-Q+l lxl-'do,(x)



I1 Cjy-d(y,M)-Q+1a({xO xI < d(y,AM)}) 5 Clyl-'-1

I2 Clyl-' Ix- 1x| '1do(x) =

= Cly (] r-Q+ 1do({jxOxj < r})) 5 Cly-(yK' + y - log( d( M

I2 Cjy-'-(1 + log( d( )

13 is easy, we notice that y-Ix and jxl are exchangeable and compute that 13 5 Clyl-'-'
and thus

(5.9)
I < Cly~-(I + log(d(y ))

p < 2 : Case 1: ly I d(y, M), then, like before

/ Mjy -1jIP-Qxj'(-P)do,(x) = I1 + 12

11=1 Iy~Ixj2Qjxjel-P)do.(x)

I2 = C

1 12 = H jy1xjIda(x)

Ix|-Q+f1-P d,( X ) = CIy|G+'r)-1

By lemma (a)

I, = JIXI<IYI

Case 2: y I > d(y, M), we have

y~1TI -Qjxj'(1-P)do(x) = I1 + 12 + 13
'If

I0 = ly-1xjIP-Qj x -Pldo(x)

I3 =

integration bu parts gives

z- r-1 ll
= Cly|(lP)rP- r- + C

Ix0| 0

12dIC 2 -Q-1 -i \II -p a(|ojx | < r)dr
0
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1 I2 = 4

Ii CIyIe-P) j
1IY

IX xJ'xIQdo(x) = CjyI-r(1P)10C

JdYM: lX y~ 45 IY j+xj 1do(x ) 5 Cjyj-'dy )<x~ l<y d(y,M)<|XOX-I |<;yi

ly- |N4||' -Pdax)5 lyi~ jxj'(-P)do(x) ! C y10 2+00-P)

r -Qd(or(jx-1x < r))

jy~9I4xj2 jx'( P)do(x)

y 1x2Q j| 4xj'(1P)da(x)



1 2o 1

11-'-)Y

2
since - -1 > 0

p

since Ixol a ly

12 is similar to I,

12 0 ~ 1 ~p
11 I~yI

The tail 13 is also easy, in this case the quantities jxj and ly-'xl are exchangeable, and hence

13 5 C lxi -Q+e0-P)do(x) = C f r- )r dr
lyl

Hence, if p < 2 we have a better estimate

IM
In summary, by (5.6),(5.8),(5.9) and (5.10) w 2 (y) ought to be

W2(Y) = Cy'-(

C1y l-('-+!)p

if p > 2

if

d(y, M)

+ log(d y )))

if p< 2

In order to conclude, we need to check estimate (a)'

sup jxil
xEM 2y~

ly-'xjK~4w 2 (y)-1dy < C

Assume lxi # 0 and p > 2

jy-1xjp-jyj-('+ )d(y, M)-N dy <

1JyI-d(y,M)
M)~E dy = I + II|y -1x lp lyl-(E+ )dy +

Let E 1 = {y : jyj 2 d(y, M), IyI lxI} and E2 = {y : iyI d(y, M), ly > lxl}

+ E2
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(5.10)

p = 2

jxjc'-P)da(x) ! ClyI(C+2)(1-P)

jy-1xj~p~Qjxj'(-P)do,(x) :5 Clyl(2+')(1r)

ly~ oli~4|y -1nd~,
ly|>d(y,M) y xjpQy-' 1)dy

I~ ~ <;P~xi4y~~ dyE 1 -X 2- 1 1

'r-zp P dy1Y-1X1!-Q1Y1-



By lemma 14(a)

Let Ek = {y :y > d(y, M) and d(y, M) 2 xI}
~x|}

II = E'Ek y~-xIy-~ d(y, M)N - dy
k=O E YX1

and F = {y': yt > d(y, M) andd(y, M) 5

+ J~ Iy-'xIyQIy~d(y, M)fdy

JEk

~yj ~'~ Ndy = (2 |xi)0 >2 Iy~ dy
I~yI>2k jx IY A -)IQ

< C(2kX~),

Summing over k we get

k y-J| yylx Qd(y, M)AP-ldy Cjxj-
k=OJ EYIX'

The other term of II is estimated in a similar manner and the case p < 2 is easy to check.
The estimates for general M follow the same ideas, and because of the torture they give, we
do not want them to be here.
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I < ~~i4 f |y |'~I dy + y |~'~e dy : C~x|~'

jIj>2k kir

I k1XI) 1 1p p I d(yj M) dy :5 (2 p P-1 dyly-,XI2-Qlyl-,- JIV > 2k Ix I IY-'XI -QIYI-'-

< ( 2 k1I
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