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Abstract

Timing and hippocampal information
processing

by

Gregory Hale

Submitted to the Department of Brain and Cognitive Sciences on
February 12, 2015 in Partial Fulfillment of the requirements for the

degree of Doctor of Philosophy in Brain and Cognitive Sciences

Timing is a key component in hippocampal encoding of space. I will discuss three lines of work related
to this theme. First, I will describe the fine-timescale characteristics of single neurons in hippocampal
subregion CAl, where theta oscillations organize groups of neurons into orderly sequences. While
theta was once thought to be synchronized throughout CAl, it was recently shown instead to be
offset in time along the long axis of the hippocampus. Considering distant pairs of neurons, our
fundamental sequence spiking property may instead be systematically staggered by these offsets in
the rhythms that pace them. I tested the impact of theta wave time offsets by recording place cell
spike sequences from groups of neurons in distant parts of CAl, and found that place cell sequences
more closely coordinate with each other than the underlying theta oscillations do. In regions that
differ from one another by 13 milliseconds of theta delay, place cell sequences are typically aligned
to within 5 milliseconds. This raises the possibility that theta wave offsets serve another purpose,
perhaps timing the communication with brain areas connected to different parts of CAl, while
compensatory mechanisms are in place to preserve the fine temporal alignment of place cell spatial
information.

Second, I will describe a tool for closed-loop experiments using information decoded from hippocam-
pal ensembles. Place cell activity is typically extracted and analyzed only after an experiment has
ended. But interrogating the timing of hippocampal information, enhancing or interfering with it,
requires decoding that information immediately. I will discuss some of the difficulties and the even-
tual implementation of a system capable of sequence time-scale position decoding and then survey
the future experimental applications.

Thesis Supervisor: Matthew Wilson

Title: Sherman Fairchild Professor of Neuroscience
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Overview

This thesis is about timing and information coding in the hippocampus. In Chapter 1 we examine

the timing of information coding in populations of place cells - single neurons in the hippocampus

that fire action potentials at preferred locations in space. These neurons also exhibit a surprising

degree of coordination in time. In rats, when a series of neurons are activated in turn by exploration

of an environment, the same sequence of spiking reappears spontaneously in sleep and as the rat

pauses to groom or eat. The sequences are sped up 10 times relative to the sequence experienced on

the track, but they preserve nearly perfect time order. Zooming in, neurons' spikes during running

are also tightly organized into 10x-accelerated miniature versions of the macroscopic sequence. This

coordination is achieved with the help of a native oscillation in the hippocampus called the theta

rhythm, and is thought to be an important piece of the evolving story of how the hippocampus

encodes and remembers spatial information. In 2009 it was discovered that the theta oscillation

isn't synchronized across the entire hippocampus, but instead looks more like a traveling wave, with

different parts of the hippocampus reaching the peak at different points in time.

We set out to measure whether or not the traveling nature of the theta oscillation has a desynchro-

nizing effect on place cell spiking sequences. We recorded from many place cells at once, some of

them close together experiencing the same oscillation, some far apart living in different 'time zones'.

To our surprise, spikes remain tightly aligned in distant groups of cells, replaying spatial sequences

that are less than one hundredth of a second off in their synchrony. That neurons millimeters apart

from each other can be so well coordinated lends more evidence to the hypothesis that sequence

replay is fundamental to hippocampal information encoding. It opens more questions about how

this sequential spiking is achieved and how it is used by other parts of the brain, which connect

selectively with different hippocampal 'time zones'.

In Chapter 2, we discuss the development of ArtE, a tool for collecting place cell sequence spiking

from running rats and analyzing it in real time. Typically this data is analyzed after the experiment

has ended. The goal for ArtE is to detect sequence replay events as they happen, so that we can

design experiments around closed-loop manipulations, for example, rewarding the rat for expressing

replay of one part of the track and not the other part, and measuring the impact of biased replay on
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behavior and on the information-carrying properties of place cells. We take a fairly deep dive into

the technical details of the implementation of the tool, as well as a deep dive into Haskell, the odd

and wonderful programming language ArtE is written in.

Chapter 3 details a serendipitous finding that spiking activity in the retrosplenial cortex reverts to

a sleep like state in rats consuming large rewards on mazes. The timing of these slow-wave sleep

like episodes is strictly limited to the times when the hippocampus undergoes a similar transition,

to a mode of spiking tightly associated with slow-wave sleep.

We tie these topics together with a final discussion of the potential role of population coordination in

the encoding of spatial information, the necessary next steps in connecting this activity with cortical

processing, and the recent advances in electrodes, imaging techniques, and real time processing that

will help us take these next steps.

To maximize the usefulness of this work, where possible, the supporting data are available on

Amazon S3 under a Creative Commons ShareAlike license, and the source code is available at

github.com/inalsogreg/RetroProject under BSD3. For those considering using this data in their

own studies, note that there are more peculiarities about the recording setup than we could possibly

enumerate, and it would be impossible to predict whether these would confound your analyses. So we

can not recommend basing new papers on these data alone. However, the data may be extremely valu-

able in pilot studies or as supplemental or confirmatory material. Both the code and the data format

may evolve as we prepare manuscripts or accommodate cleanup requests from other research groups.

Please check the README.md and CHANGELOG.md at github.com/imalsogreg/RetroProject for

updates in this regard. The source code for the ArtE backend is hosted at arte-ephys.googlecode.com

under GNU GPL-v3, and the source code for the Bayesian decoder is at github.com/imalsogreg/arte-

ephys under BSD3. I have cut a release called thesis2014 for the purpose of checking the results

presented in this thesis against the exact code used to generate them. If you find errors, please get

in touch.

Dedication

This work would not have been possible without the consistent support of my family, especially my

wife, who can relate directly to the experience of writing a PhD thesis. I would also like to extend
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Coordinated information coding in a desynchronized network

Abstract

Brain areas involved in mnemonic and spatial processing are locked to an underlying 8-12 Hz oscil-

lation known as the theta rhythm. In addition to pacing cell excitability, theta influences spatial

information processing by organizing the timing of place cell ensembles into temporally precise

"theta sequences". Theta rhythms were recently shown to have substantial timing offsets across the

hippocampal medial-lateral axis [1]. We sought to determine the impact of theta timing offsets on

theta sequences - are sequences in distant groups of cells offset in time, or synchronized?

We recorded from populations of place cells and measured theta sequence properties with Bayesian

position reconstruction and pairwise timing correlations. Along the CAI medial-lateral axis, we

estimate theta sequences to be synchronized to within 5 ms per millimeter, despite a time offset

in theta on the order of 13 ms per mm. This suggests that the timing of bulk spike rate can be

decoupled from the underlying information carried in those spikes.

This observed information synchrony in the context of desynchronized excitation provides a con-

straint for future models of fast-timescale position coding. Current models of theta phase precession

all make use of the local phase of theta and would have predicted that theta sequences would be

desynchronized by desynchronization in the underlying theta. We put forward two explanatory mod-

els that could account for our results and propose experiments that could distinguish between them.

Future work will help us determine whether the traveling theta wave results in output structures

connected to different parts of CAI receiving those inputs at different times, and what role the

synchrony of CAl encoding has on that temporally structured communication.

Introduction

CA1 place cell excitation is timed by 10Hz oscillation - theta rhythm

In many brain areas associated with spatial learning [2-5] and episodic memory [6-8], neural activity

is modulated by a 7-12 Hz oscillation called the theta rhythm [9-11]. The influence of the theta
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oscillation on spatial and mnemonic information processing has been appreciated at two levels. On

the global level, theta is thought to coordinate activity between connected brain regions [1,12-15].

Locally, theta shapes the fine-timescale properties of information coding within brain areas, by way

of theta phase precession [16].

Theta sequences

Place cells spike at precise phases of theta that depend on where a rat is within the place field. The

spikes at the beginning of the place field occur at early phases and spike near the end of the field

occur at later phases [16]. This led to the prediction that a collection of cells with partly overlapping

fields will fire in a strict order according to the relative positions of the place fields [17,18]. Later

these sequences were observed directly in large groups of simultaneously recorded neurons [19-21].

Interestingly, the tight temporal alignment of place cells in theta sequences is greater than the

precision with which individual cells align their spikes to the theta oscillation [19].

Our goal is to understand how the brain processes information during navigation and how that

processing leads to later recall. Although we can determine a rat's position very precisely using

only firing rate information from place cells [22], it has not been established that this is how the

rest of the brain interprets hippocampal spiking [23]. The conspicuously precise sequential ordering

of place cell ensembles beyond the temporal resolution of a rate code suggests these sequences as

not just a means for adding a bit more accuracy to an estimate of one's current position [24] but a

potentially fundamental aspect of limbic information processing [25,26].

Understanding the mechanism of theta sequence generation will be important for reasoning about

their interactions with other brain areas and possible functional roles. There is not agreement about

their mechanism though (in fact very little is known about the origins of spatial properties of cells

throughout the limbic circuit), but hypothesized models fall into three camps that emphasize either

oscillatory interference, Hebbian phase sequences, or sub-threshold receptive fields.

The oscillatory interference model suggests that place cells oscillate at a rate slightly faster than

theta measured in the LFP, and that the interference pattern of the two oscillators is a more complex

waveform with local peaks that precess with respect to the LFP theta and a low frequency envelope

that determines the length of the place field (for details, see [16]). This theory is supported by
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intracellular recordings of the soma and dendrites of hippocampal place cells, which do indeed

produce precessing spikes in response to inputs presented at different frequencies [27], and which

show some signs of oscillatory acceleration during movement through the place field [28]. The main

weakness of the model is that the oscillations discussed are purely temporal and their interaction

is expected to carry on at a constant rate regardless of an animal's speed, but in reality phase

precession aligns with the animal's location within a place field better than it does with time spent

in a place field [16]. Tweaking the model to match this observation requires a strong correlation

between running speed and theta frequency that isn't seen empirically [16,29,30]. An additional

problem for the oscillatory interference model comes from the observation that phase precession

continues after the cessation of a brief silencing of the hippocampus [31,32].

Hebbian phase sequences [33] are sets of assemblies of cells that excite one another in a feed-forward

synaptic chain. One constellation of neurons preferring location x on the track collectively synapse

on the population preferring x + S, and so on, causing a rapid succession of cell assemblies, initiated

by the sensory details of the current physical location and terminated by the subsequent surge of

theta-rhythmic inhibition, to sweep out a theta sequence ahead of the rat, much as neurons in the

HVC seem to unfold in collateral synfire chains during song production in the finch [34,35]. For

the hippocampus though, this model suffers when it comes to producing theta sequences in two-

dimensional arenas. Empirically, theta sequences sweep forward in the direction that the rat is

facing. The hippocampus would somehow need to unmask selectively the synapses that activate a

West-bound sequence of assemblies when the rat is headed West and a North-east bound sequence

when the rat is headed North-east, etc. At this point it becomes hard to imagine how such specific

matrices of connections could be formed and subsequently selected on a moment-to-moment basis,

although there is some work involving grid cells [5] that may make this more feasible [36].

The third model, called the rate-to-phase model, considers CAI spike timing as an interaction

between an excitatory input that ramps up smoothly with spatial location in a place field, on

one hand, and the temporally oscillating inhibitory effect of theta, on the other (37]. For any

given position in the place field, spikes are fired at the moment when inhibition drops below the

excitation associated with that location. Progress in the field and greater excitation means less

waiting for inhibition to drop to meet the excitation level, and thus earlier phases. This model

directly references space to achieve phase precession, and therefore naturally copes with the finding

12



that phase precession goes according to distance traversed within a field than time spend in a field.

Because neither this model nor the phase sequence model involve previous reverberatory activity,

they are both compatible with the transient inhibition studies [31,32].

One thing that is unclear about the rate-to-phase model is where these hypothesized excitatory

ramp comes from. The ramping excitation is strictly required to be monotonically increasing; if it

were bell-shaped like the place fields of some place cells, we would expect to see a pattern of phase

precession followed by phase procession back to late phases, but this does not happen. Additionally,

there is no known mechanism that could smooth the summed inputs to CA1 into such a flat ramp;

indeed the main inputs to CA1 are themselves theta-rhythmic signals.

Another parameter the rate-to-phase model leaves abstract is the nature of the rhythmic inhibition.

It it the somatic inhibition on place cells, the trough of dendritic excitation, the peak spiking phase of

a particular class of interneuron? The model works well for accounting for phase precession through

a single field without committing to a particular concrete source of theta, but we will need more

information as we try to predict higher-order features, for example, the behavior of pairs of cells

that for whatever reason are not receiving identical inhibitory inputs.

Theta phase precession has been observed in CA3 [16], dentate gyrus (DG) [17], medial prefrontal

cortex [38], ventral striatum [39], entorhinal cortex (EC) layer II (but not layer III) [40] and the

subiculum [41], as well. Whether phase precession organizes cells within a given area into theta

sequences or supplies some other form of ensemble organization, we refer to this as a 'local' role for

theta: a set of timing constraints that single cells or small groups must obey perhaps for temporal

coding or time-sequence coding.

Communication through coherence

At the same time, there is an effort to understand the firing properties of parts of the hippocampus

in terms of information flow through a hierarchy of structures with unique functions, similar to the

work being done in the visual circuit [42]. Here, theta is hypothesized to have a more global role

in facilitating the transmission of information between areas. Hippocampal and prefrontal cortical

theta oscillations become coherent at times when maze navigation needs to refer to the contents

of working memory [12], and this coherence is reflected in the spike times of both hippocampal
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and prefrontal neurons [43,44]. Spatially restricted bouts of gamma oscillations in somatosensory

cortex are modulated by hippocampal theta phase [13], providing an interesting link to the large

literature surrounding cortical gamma oscillations. More direct evidence on the role of theta in pacing

gamma oscillations comes from Colgin et. al. [14], who showed that in CAI, high-frequency gamma

oscillations occur primarily at the peak CAl spiking phase and are coherent with simultaneous high-

frequency gamma oscillations in entorhinal cortex; while low-frequency gamma is strongest about

90* earlier and is coherent with low-frequency gamma in hippocampal CA3. Based on this Colgin

argues that selective theta coherence tunes CAl to communicate preferentially with one input source

or the other.

A related global role for theta attributes specific sorts of information processing to different theta

phases; namely that the phase associated with peak entorhinal cortex spiking is responsible for

encoding new information and the phase associated with input from CA3 is responsible for memory

retrieval [45].

Tension between hypothesized roles in gating communication channels and encoding

These two roles for theta oscillations are difficult to unify, because they make conflicting demands on

the details of how neurons interact with the oscillation. If a cell is meeting the timing requirements

of selective communication with varying brain areas, can it simultaneously be aligning its spikes fall

at progressively earlier theta phases when a rat moves through the cell's place field?

One model suggests that meeting these requirements simultaneously results in strict relationships

between global and local phenomenon, and that we get scientific findings from this 'for free'. Fries

[46] extrapolates from Colgin's [14] work and concludes that early phases of theta in CAI processes

cortical information about the current state of things, and later phases use the modeling capabilities

of CA3 to extrapolate into the future. This model is appealing when observing the shape of theta

sequences in place cell ensembles; they begin near the rat's current position and sweep quickly out

ahead of him, repeating this at every theta cycle. And it accords with the notion of the entorhinal

cortex as a sensory structure (being upstream of the hippocampus), and Marr's notion of the CA3

as a pattern extrapolator [47].

Can we account for the theta-locked spike timing of limbic circuit structures in terms of their
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anatomical ordering? Here things become more difficult. Mizuseki et. al. [48] show that cells in

different structures prefer to fire at different theta phases that bear little resemblance to the sequence

implied by a synaptic traversal of the circuit. Rather than EC-Layer II -+ DG -+ CA3 -+ CAI -+

EC-Layer V (the synaptic pathway of the major hippocampal excitatory circuit), CA3 principal cells

to spike 900 earlier than EC-Layer II principal cells. Additionally, spikes of CAl neurons occur at the

opposite phase from that of their peak dendritic excitation [10,49]. This phenomenon is acceptable

to the global account of theta; it allows for the opening of 'temporal windows' of processing between

sequential anatomical processing stages [48]. But it is at odds with intuitive and formal [49,50]

models of the fine timescale spiking of place cells, which we expect to follow behind their inputs by

conduction delays and synaptic delays. The empirical timing relationships are much longer [48].

Colgin et. al. present data in support of a model associating particular phases of the theta oscillations

of CAl with the opening of specific communication channels to either CA3 or the entorhinal cortex

[14]. The tension between theta's local and global roles is apparent here, as well. To the extent

that CA3-CA1 and entorhinal-CAl communication is limited to narrow windows of theta phase.

Contrary to this, place coding in CAl involves a smooth transition through cell ensembles that

extends over much of the theta cycle [19,20].

Theta as traveling wave, excitatory time offsets over hippocampal CA1

Lubenov and Siapas [1] presented a novel finding about the nature of the theta oscillation itself.

Using large grids of tetrodes carefully positioned a uniform distance from the hippocampal cell layer,

and sampling a large extent of the length of the hippocampus, they showed that the theta rhythm

is not synchronous within hippocampal CAl. Instead, theta at the septal pole of CAl are advanced

in phase, theta in more posterior parts of CAl are phase delayed, and theta measured in between

has a graded delay. The combined activity of these delays resembles a traveling wave with a peak of

excitation that 'moves' down the hippocampal long axis once for every cycle of theta. These findings

were extended beyond dorsal hippocampus to the entire length of CAI by Patel et. al. [51].

By fitting a traveling wave model over the pattern of theta offsets observed over many tetrodes,

Lubenov and Siapas were able to extract parameters that can be used in concrete hypotheses. The

characteristics of the wave vary from cycle to cycle, but tend to have a spatial wavelength of 12mm,

a wave-front speed of 75 mm/sec and a preferred direction about half way between the medial-lateral
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axis of the skull and the septo-temporal axis of the hippocampus. Based on these parameters [1]

and our own LFP measurements, we can establish the mean expected time offset along the direction

of wave propagation as 1/v, 12.8 3.2 ms per mm.

Theta sequences: locally paced or globally synchronized?

The view of theta as a traveling wave will need to be factored in to any future models that unify the

local and global roles for theta, because it has interesting implications in both areas. With theta

mediating information transmission to and from CAL, how will those inputs and outputs cope with

the fact that the window of receptivity is a moving target? Is it acceptable that structures receiving

inputs from one part of CAI will see maximum activity at a different time from structure receiving

inputs from another part of CAI - and could this sequencing actually be useful?

How does this fit when we zoom in from talking about bulk spiking rates, to the level of information-

carrying single spikes at the local level? If theta phase precession conforms to the anatomically

sweeping of peak excitation, then theta sequences composed of sets of cells from different regions of

CAI would be similarly offset in time. The periodic replay of spatial sequences would begin slightly

earlier in septal CAl ensembles, and ensembles near intermediate CAI would begin the same se-

quence about 45ms later, with ensembles further posterior starting later still. This time shifting may

seem to complicate attempts to square theta sequences with anatomical communication. However,

it leads to an interesting prediction: that local regions of hippocampus begins a representation tra-

jectory at offset times. Because of this, a downstream structure observing a snapshot of the spiking

activity across the whole hippocampus would see different parts of the track encoded at different

anatomical locations. Or as Lubenov and Siapas put it, the hippocampus at any instant would not

represent a point in space, but a linear span in space [1].

Alternatively, theta sequences may not conform to the timing offsets suggested by the traveling theta

wave, and the encoded information may be temporally synchronized over large anatomical distances,

despite the presumed timing differences in their underlying drive. This scenario presents a very

different picture to downstream structures - one in which bulk spike output of the hippocampus

goes as a traveling wave, but the information content within it is coherent, and the entire structure

does agree to a single point on the track at any instant.
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We set out to measure the timing relationship between theta waves and place cell sequences in order

to address this one question among many others aimed at unifying the local and global roles for

theta in timing spikes. We characterized the impact of spatial tuning and anatomical distance on the

co-firing of pairs of place cells, as well as the timing relationships of population-encoded trajectories

recovered from anatomically distinct groups of cells, both across CAI and between CA1 and CA3.

We found that in most cases, timing offsets in theta sequences were significantly more synchronized

than the temporally offset excitatory waves that modulate them. We suggest that information

synchrony may be decoupled from the mechanisms that modulate excitation. This decoupling could

be achieved in a trivial way, by stipulating that phase precession begins and ends according to an

underlying source that is in fact synchronized across hippocampus; or it could be achieved through

an active mechanism that supplies extra excitation to the regions that would otherwise be temporally

delayed by the traveling theta wave.

Materials & Methods

Subjects

All procedures were approved by the Committee on Animal Care at Massachusetts Institute of

Technology and followed US National Institutes of Health guidelines. Tetrode arrays were assembled

and implanted according to the procedure in Nguyen et. at. [52] and Kloosterman et. al [53]. We

made several modifications to the materials and procedures to improve our multi-cell sampling. First,

we glued several hundred half-inch pieces of 29 gauge and 30 gauge hypodermic tubing into rows

about 6 mm long, then stacked and glued the rows together to form a honeycomb patterned jig,

for organizing the tetrode guide-tubes that would eventually inhabit the microdrive. Second, we

developed the ArtE recording system (detailed in Chapter 2) to run in parallel with our usual usual

tetrode recording rig. The broader goals of the ArtE project are to enable real-time data analysis

and feedback, but in this experiment we used it merely to increase the number of simultaneously

recorded tetrodes.
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Single-unit tetrode recording

Microdrive arrays were implanted with the center of the grid of tetrodes overlying dorsal CAI

(A/P -4.0, M/L 3.5), spanning 3 mm of hippocampus in the septo-temporal dimension and 1.5 mm

proximo-distal. Tetrodes were lowered into the pyramidal cell layer of CAI over the course of 2 to

3 weeks and left there for several more weeks of recording. We sought to maximize the number of

neurons recorded and to minimize within-experiment drift, so we closely tracked the shape of sharp

wave ripples (which undergo characteristic changes during approach to the cell layer) and later the

amplitudes of burgeoning clusters. If either of these factors changed overnight to a degree greater

than expected, the tetrode was retracted by 30 - 60 micrometers.

Behavioral training

Behavioral training began when nearly all tetrodes exhibited separable spike clusters, and consisted

of rewarding rats for simply running back and forth on a curved 3.4 meter linear track, or running

continuously clockwise on a 3.4 meter long circular track, with rewards given for every 360 degrees

of running for the first 3 laps and for every 270 degrees thereafter. Food deprivation began one or

two days prior to the beginning of acquisition, with rats receiving 30 grams of food per day, adjusted

up or down depending on the rat's motivation to run and level of comfort (assessed by the amount

sleep taken before the running session). The target food-deprived weight was 80% of free-feeding

weight, but we rarely achieved this without disrupting the sleep of the animals, so body weights

tended to be 90% of the free-feeding weight or more, especially after rats learned the simple rules

of the task. We provided rewards throughout training (200-500 milligrams of wetted powdered rat

chow per lap), to encourage the long stopping periods during which awake replay can be observed

[541. Under these conditions, rats run for about 20 laps or 30 minutes before becoming satiated and

ignoring rewards.

Electrophysiological Characterization

Spikes and local field potentials were voltage buffered and recorded against a common white-matter

reference, at 32 kHz and 2kHz respectively, and position was tracked at 15 Hz through a pair of

alternating LED's mounted on the headstage, as in Davidson et. al. [21]. Spikes were clustered
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manually using the custom program, xclust3 (M.A.W.). Place fields were computed for each neuron

as in Zhang et. al. [55], by partitioning the track into 50 to 100 spatial bins, and dividing the number

of spikes occurring with the rat in each spatial bin by the amount of time spent in that spatial bin,

in each case only counting events when the rat was moving at least 10 cm/second around the track.

Direction of running was also taken into account, allowing us to compute separate tuning curves for

the two directions of running, which we label 'outbound' and 'inbound'.

To characterize the phase differences among tetrodes in CAl, a simple spatial traveling wave model

was fit to the theta-frequency filtered LFP signals and the theta-filtered multiunit firing rate in turn,

as in Lubenov and Siapas [1].

Theta sequences

Two complementary techniques were used to assess the relationship between phase offsets between

tetrodes and timing offsets in spatial information encoding. First, in CA1-only recordings, a pairwise

regression was performed similar to that in Dragoi and Buzsaki [18], measuring the dependence of

short-timescale peak spike time differences on the distance between the peaks of that pair's place

fields. We added a second independent variable to this regression: the anatomical distance between

each pair of place cells. The result is a model that predicts the average latency between any pair

of cells, given that pair's place fields, that pair's anatomical separation, and the parameters of the

traveling wave pattern of phase offsets.

Second, Bayesian stimulus reconstruction [55] was carried out independently using place cells from

three groups of tetrodes at the most septal end, the middle, or the most temporal end of the

3mm recording grid. Unlike the case for large populations of neurons, reconstructions from smaller

anatomical subsets are considerably more noisy and do not reliably yield theta sequences. Session-

averaged theta sequences were recovered by aligning the reconstructed position according to a shared

theta phase and the rat's position on the track at that time. In both raw and session-averaged

reconstruction cases, 2d autocorrelograms were taken to quantify the time-delay and space-delay

between pairs of tetrode subgroups.
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Results

Theta phase spatial properties and timing offsets: 13ms delay per mm

We first characterized the timing of the local-field potential (LFP) theta rhythm within a -3mm long,

1.5mm wide strip dorsal CAI, in electrodes embedded near the pyramidal cell layer. A traveling wave

model was fit to the theta-filtered and Hilbert-transformed signals from 16 to 24 tetrodes, in 0.25

second segments, resulting in a time-course of traveling theta wave parameters (Figure 1). We focus

on the parameters that characterize the desynchronization: spatial wavelength, wave propagation

direction, and temporal wavelength.
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B

.A

Figure 1: Theta is desynchronized within CAL. A. The rat hippocampus (left dashed region)
occupies a large of the cortex. Three example recording sites (red, green and blue points) experience
different phases of theta oscillation in the local field potential (right). On average, recording sides
experience increasing phase delay as they move lateral and posterior [1]. Raw LFP traces (in grey)
exhibit theta oscillations and gamma oscillations that depend on electrode depth. Filtered theta
components shown in red, green, and blue. B. The pattern of phase-offsets in LFP recordings
was fit by a traveling wave model in 0.25 second segments. The traveling wave model consists of
parameters for wave direction (0), spatial wavelength (A), amplitude (A), temporal frequency (f),
and phase offset (W, not shown).

These parameters vary on a short timescale but are fairly consistent between animals when averaged

across time. Theta frequency during running varies from 8.2 Hz 0.5 (mean standard deviations).

The spatial wavelength is 6.3 mm t 3.6 after removal of outliers, and the dominant propagation

direction is 180 anterior to the medial-lateral axis. Surprisingly, the fit of the model was not higher

during running than during stopping periods when theta amplitude is low, suggesting that traveling

waves are a broad enough family to fit many patterns of data (in fact, a traveling wave model will
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perfectly fit a set of perfectly synchronized oscillators; the spatial wavelength in this case would be

infinity). As was previously reported [1], proximity of tetrodes to the pyramidal cell layer obscures

the LFP measurement of the traveling wave, so we primarily rely on previously reported wave

parameters.
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Figure 2: Theta traveling wave parameters can be stable over time. A. About of running

(green time window, top panel) elicits a stabilization of the traveling wave fit to theta. During this

time, the spatial wavelength varies between 3 and 10 mm, and wave direction remains fairly constant

about 180 anterior to the medial-lateral axis, except for a brief direction flip near the end of the

run. The fit of the model to the data is not better during the running periods than the stopping

periods, although the variability in parameters during run is lower, because the ability to record

the traveling wave is lower when the tetrodes are near the pyramidal cell layer [1], as they were in

this case. B. The traveling wave velocity inverted gives a wave-delay interval. In this dataset, the

mean delay was 17.8 ms per mm along the medial-lateral axis. Combining with studies optimized

for recording the LFP, the estimate is 12.8 ms per mm.

Place cell pairs are synchronized across anatomical space

We directly measured the relationship between anatomical spacing and spike timing in pairs of place

cells. If two cells with the same place field and phase precession profile are separated by a spatial

interval corresponding to a 13ms delay between theta peaks, two fast-timescale timing relationships

are possible. Either phase precession is locked to to the local theta oscillation, and spikes from the

cell 1mm 'downstream' with respect to the traveling wave will occur 13ms later than those of the

upstream cell (Figure 3). Alternatively, if phase precession disregards the anatomical delays of theta

phase, then spikes from the two cells should fire roughly in synchrony. Other timing relationships

are possible of course, but it is not clear what they would imply mechanistically.
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Figure 3: Assessing the effect of tuning curves and anatomical location on spike timing.
A. Three place cells with partly overlapping fields. Tuning curves are plotted in the left column. In
the center and right columns are a raster plot of several seconds, and a several hundred millisecond
detail. B. Cell A's place field peak is 25 cm beyond Cell B's, its anatomical position is 0.66 mm
more lateral, and it tends to fire 74 ms later (the peak offset of the cross correlation of the two spike
trains). Cell A's place field peak is 7 cm beyond Cell C's, its anatomical position is 1.29 mm more
lateral, and it tends to fire 24 ms later. C. A scatter-plot of all pairs of place fields (gray dots),
taking the peak time offset between the spike trains as a function of both place field distance and
anatomical distance. Projecting all of the points to one axis shows the correlation between field
distance and time offset due to theta sequences (blue). Projecting onto the other axis shows the
much weaker correlation between anatomical offset and timing offset (red).
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These predictions can be generalized beyond cell pairs with perfectly overlapping fields. Field sepa-

ration will result in a timing shift due to phase precession. The virtual speed of the rat encoded in

theta sequences is about 10 m/s, so a cell with a field peaking 0.5 meters beyond that of another cell

will tend to spike 50 ms later. If phase precession is paced against the local theta, then anatomical

separation on the axis of the traveling wave should add to this delay linearly. We can estimate the

effects of place field spacing and anatomical spacing on spike timing by linear regression (Figure 3).
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Figure 4: Field location is the primary determinant of spike time offsets. The scatter-plot
of the previous figure, combining all cell pairs (gray) from four recording sessions, considering timing
offsets (z-axis) as a function of both place field distance (right axis) and anatomical distance (left
axis). Projecting the points onto one axis shows a strong correlation between field distance and
timing offsets (blue) due to theta sequences. Projecting onto the other axis shows the much weaker
correlation between anatomical offset and timing offsets (red).

Pooling cell pairs across rats, we estimate each meter of place field distance to contribute 147.4 t

14.2 ms of delay and each mm of anatomical spacing along the traveling wave axis contributing 0.7

3.3 ms, significantly less lower than the expected 12.8 ms per mm (p < 0.05). In other words,

place cells fire with temporal delays that reflect spatial relationships on the track, and these spiking

events are tightly coordinated throughout the measured extent of CA1 (about 3 mm).
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Table 1: Anatomical separation accounts for relatively little

timing offset. Results of the regression analysis of the previous

figure for each recording session. In three of four rats, the isolated

effect of anatomical distance of time offsets is less than the 12.8

ms per mm time delay of the theta wave. Pooling cell pairs into a

single regression results in a final estimate of 0.7 ms per mm. The

effect of field separation on the other hand is reliably in line with

previous accounts of theta sequences.

Session Anatomical (ms/mm) Field (ms/m) Offset (ms) # of Pairs

Yolanda A -7.0 t 13.9 101.2 20.0 7.3 11.3 31

Yolanda B -1.2 16.4 199.1 40.9 1.2 11.0 18

Morpheus 0.9 3.3 163.1 20.7 -2.1 5.2 38

Caillou 18.6 12.8 198.1 25.1 6.4 7.9 19

Total 0.7 3.3 147.4 14.2 -0.4 3.5 106

Ensemble theta sequences are synchronized

To assess the impact of anatomical distance on spatial representations from another angle, we turned

to population decoding, which provides a direct view of theta sequences as well as spontaneous spatial

replay events.

Within CAI, we partitioned cells into three groups according to the tetrode they were recorded on,

then discarded the middle group, leaving two groups separated by a millimeter at their closest point,

two millimeters on average. We then reconstructed the rat's location twice, once from each set of

tetrodes, at a 15ms temporal scale suitable for observing theta sequences. The division of tetrodes

into independent anatomical groups drastically degrades the appearance of ongoing theta sequences,

because the reconstruction process at such short timescales requires input from a large number

of neurons. But clear theta sequences can be recovered by combining segments of the position

reconstruction, aligned in time by peaks of the theta rhythm, and in space by the rat's current track

position (Figure 5B).
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Figure 5: Reconstructed theta sequences in medial and lateral hippocampus. A: One

second of position decoding from neurons in medial (red) and lateral (green) CAL. Theta sequences

are bracketed by cycles of the theta rhythm (white). B: Triggered-average theta sequences from

medial (red) and lateral (green) position reconstructions. Triggers were centered in time on theta

peaks, and centered in position on the physical track location of the rat at the time of the peak. C:

Cross correlation between lateral and medial triggered average theta sequences.

Yolanda A Yolanda B

Morpheus Caillou

Figure 6: Theta sequence cross correlations for all recording sessions. The cross correlations

between theta sequences computed from medial and lateral place cell groups for each recording

session. Diagonal streaks across the origin indicate that theta sequences resemble one another after

a combination of time shift and position shift, but not a time-shift alone. Black arrows: pure time

shift between medial and temporal cell groups. White arrows: time shift expected if theta sequences

are uniformly delayed by traveling theta wave.

25

zU__j



We asked whether the reconstructed theta sequences are aligned with one another in time by taking

their two-dimensional cross-correlation (Figure 4). A uniform delay of the theta sequence by time

J would appear as a diagonal streak that crosses the x axis at 6. The peak of this cross correlation

occurs when septal CAI leads temporal CAl by 3.5 ms in time. We estimate the uniform delay

that theta sequences would incur in the lateral portion of the hippocampus by multiplying the 12.8

ms/mm delay estimate by the mean inter-place cell distance for each recording session. In this

example, the mean spacing between place cells is 1.05 mm along the medial-lateral axis, so a simple

delay would result in 13.44 ms. These statistics for each rat are given in Figure 6 and Table 2.

Observed time offsets are significantly different from those expected by uniform time delay of the

traveling wave (p < 0.05).

In two of the recording sessions, although the cross correlation extends through the origin, its center

of mass is delayed. This pattern indicates that lateral cells fire tend to fire later than medial

cells, but with a balanced advancement in encoded track location. Rather than theta sequences

being time delayed in lateral cells, the bulk of the spiking involved in a theta sequence comes

from medial hippocampus first, and from lateral hippocampus slightly after, with the information

content between them closely coordinated. This pattern is in the opposite direction in the two other

recording sessions; indicating that on average in those two sessions, lateral hippocampus place cells

fire more vigorously in the first half of theta sequences and medial hippocampal place cells fire later.

Collecting all of our datasets, we do not find significant evidence to reject the null hypothesis that

the cross-correlation center of mass is at zero (p = 0.7030), but we suspect that this is due to the

low number of recording sessions and the dependence of this measure on the number of place cells

simultaneously recorded.
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Table 2: Theta sequences are aligned in time. Average and

minimum anatomical distances, along the direction of wave prop-

agation, between place cells in the two groups used for theta se-

quence decoding. Expected time offsets are derived from the esti-

mated wave delay times the mean spacing. Offsets observed from

the mean theta-sequence cross-correlations are close to zero, sug-

gesting that that distant theta sequences are tightly synchronized.

Session Mean spacing (mm) Min spacing (mm) Expected offset (ms) Observed offset (ms)

Yolanda A 1.33 0.94 17.02 -4.0

Yolanda B 1.30 0.94 16.64 -3.0

Morpheus 2.27 1.47 29.06 6.0

Caillou 1.05 0.69 13.44 3.5

Discussion

Theta traveling wave properties

Within CAl, theta oscillations are offset in time along the medial-lateral axis. Previous studies of

theta oscillations generally rely on the simplifying assumption, justified by experimental evidence at

the time [56], that theta within the CAl pyramidal cell layer theta is synchronized. The fact that

it is not synchronized means questions like "What is the phase offset between CA3 and CA1" (for

example) are now ambiguous. For any claim about CAI theta phase, we must specify exactly which

part of CAl we are talking about, or else specify that we are describing a process that is globally

synchronized and therefore acts independently of local theta phase offsets.

Despite theta timing differences, information coding is synchronized

We reevaluate place cell's spiking relationship to theta in this context of unsynchronous theta. First

we show that theta sequences, chains of place cell firing thought to be coordinated through their

tight coupling to theta phase [37], are tightly synchronized with each other, in spite of the desynchro-
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nization of the underlying theta rhythms. This information content synchronization exists between

subsections of CAl that differ in theta timing by on average 13 ms.

Medial/lateral CA1 may preferentially carry most of the spikes at different times

In Mehta & Wilson's [37] model, inhibitory theta oscillations control the timing of place cell spikes in

theta sequences. We interpret the traveling LFP theta wave as a desynchronization of that inhibition.

A similar gradient of phase offsets is seen in the multiunit firing rate (although with slightly different

wave characteristics and a less clean spatial correlation) [1]. So if theta is desynchronized within

CAl, how can theta sequences there be synchronized? Is this a contradiction in terms?

If it seems that a traveling theta and theta-locked phase precession strictly imply that theta sequences

should be desynchronized, this may be due to the accidental adoption of definitions of terms that

mean more than what was shown in the original findings that supported them. For example, consider

the finding that phase precession begins at peaks of theta recorded on the same tetrode and precesses

backward toward the trough [16,17]. It is easy to confuse an incidental fact (that theta was recorded

from the same tetrode as the place cell) with the essential fact (that spikes precess to earlier phases).

In fact, whether phase precession begins at the peak of local theta (which is now known to not be

synchronized across CAl), or begins simultaneously for all place cells (so, at different local theta

phases) is closely related to the empirical question that we tested in this paper.

A simple alternative account of the fact that place cells themselves have different preferred firing

phases in different parts of CAl is that different parts of CAl preferentially contribute to different

parts of a theta sequence, although the spatial content of these sequences is temporally aligned. For

example, imagine the cello section is louder than the violins in the second measure; that doesn't

imply that cellos and violins play the same song but trumpets started one measure later. They have

a synchronized view of the melody but preferentially participate at different times. This pattern of

synchronized content but desynchronized participation should be visible in the cross-correlations of

theta sequences from different parts of CAl - the region of good time matching should be a streak

that goes through the origin, with a center of mass that is ahead of the origin. We failed to find

experimental support for this pattern (Figure 6). However we expect that this is due to the large

dependency of theta sequence decoding on large numbers of simultaneously recorded place cells, and

that we can only definitively assess this model with better recordings of more cells. Assuming that
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there is preferential participation at different times, we provide two potential mechanisms for this

below.

Model 1: Spatially graded, temporally constant compensating excitation

First, resynchronization could be achieved through a gradient of additional baseline excitation, great-

est at the lateral pole of CAl and least at the medial pole. In the excitation-to-phase model [37]

spike times are locked to the moments when input excitation overcomes theta-rhythmic inhibition,

extra excitation shifts these times to earlier phases. Applying greater excitation at points where

theta is phase delayed would bring those otherwise-delayed spikes back into alignment with medial

place cells, which experience less phase delay.

This model is not especially parsimonious, but it does make an testable prediction, which is borne

out in the data. Under the excitatory input gradient gradient model in Mehta and Wilson [37],

additional uniform excitation should expose a greater extent of the sub-threshold receptive field,

resulting in longer place fields with more spikes in the 'anticipatory' part of the field and greater

field asymmetry.

Model 2: Phase precession inherited from synchronized afferents

An alternative account for synchronized theta sequences throughout CAI can be built around a less

literal coupling between theta oscillations in the local field potential and phase precession.

In this model, CA3 and entorhinal cortex (two of the known spatial-information carrying inputs to

CAl) are modulated by a theta rhythm that is uniform within each respective area - the traditional

view [48]. Theta recorded at any given point CAl is inherited from both of these areas and appear

as a mixture of the two, in proportion to the relative strengths of the afferents at that point. But

rather than organizing according to this local, mixed theta, CAl spikes directly inherit their precise

spike times from the spikes of the upstream brain areas. Without a traveling wave in CA3 or

entorhinal cortex, all CA3 phase precession is synchronized and entorhinal cortex phase precession

is synchronized; and for the sake of the model, CA3 phase precession is synchronized to entorhinal

cortex phase precession. Now, the spikes of CAl cells that are the result of either CA3 or entorhinal

cortex input are aligned with respect to the spatial locations that the input units represent. What is
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offset in time is the phase-dependent modulation of spike rate. Whatever the track position-by-phase

relationship of a place cell, different phases of theta are associated with higher or lower spiking rates.

In CA3, spike rates are higher during earlier phases of theta, and entorhinal cortex cells express

higher firing rates at later phases.

This model accords with our findings in measuring place-cells: theta-timescale shifts in population

firing rate, but maintained synchrony of the underlying information content. We shed the assump-

tion of a perfectly balanced compensating excitation from the previous model, but pick up a new

requirement: that positional information in entorhinal cortex is synchronized with that in CA3. This

claim lacks empirical backing, and in fact it's not clear that such a timing comparison could even

be made, because spatially selective neurons in entorhinal context are grid cells [5], not place cells.

However, theta phase precession is present [40] in most layer 2 entorhinal grid cells (these project

mainly to CA3), but only sparsely in layer 3 grid cells (which project to CAI). Determining which

of these models (if either) is correct will require two things. First, we need to understand better the

mechanism behind the expression of traveling waves in the first place. Identifying the sources of a

wave without direct access to the rhythm generators can be tricky; we need better measurements

and analysis to be able to answer simple questions, such as whether theta waves are a homogeneous

set with a common source, or the mixture of two essentially different phenomena [57] as is the case

in another tricky traveling wave. Second, we need far better sampling of large numbers of place cells

and grid cells from CA3 and entorhinal cortex in tandem with high-quality recordings in CAl, in

order to register the timing phenomena seen in CAl with those of its inputs.

Model 3: Independent effects on spike timing and LFP from different theta sources

Theta is not a single phenomenon, but a combination of a number of factors [10] including intrin-

sic rhythmic tendendencies [58] and interactions among currents [59]. There is not a one-to-one

mapping between underlying factors (the the rhythmic spiking of inputs, or the rhythmic modula-

tion of particular currents), and physiological endpoints (such as the spiking of pyramidal cells, the

spiking of interneurons, or the oscillation in the local field potential. Instead mechanisms interac-

tively contribute to measures in a many-to-many fashion. GABAergic current at CAI pyramidal

cells, for example, contribute very little to local field recorded theta. This current comes through

an interneuron-to-interneuron-to-pyramidal cell pathway beginning in the medial septum [60] and
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ending at the hippocampal pyramidal cell's soma. The resulting inhibitory current causes very little

deviation on the membrane voltage because the reversal potential of chloride is near the resting

membrate potential. But it has a strong effect on spiking, by acting as a somatic shunting current

counteracting the excitatory impulses that otherwise drive the cell to spike. Excitatory currents on

the other hand contribute strongly to the LFP.

The distinction between different oscillatory factors could explain the apparent paradox of synchro-

nized theta sequences across CAI cells with desynchronized theta oscillations, even when spike times

are biophysically linked to theta. A model of this is illustrated in Figure 7. In the rate-to-phase

model of Mehta and Wilson [37], what exactly is the inhibitory oscilation? It could be directly related

to cortical excitatory theta currents or septal inhibitory theta currents; the model doesn't specify

and there is not experimetal evidence to distinguish the two. There may be phase offsets among

excitatory currents but phase synchrony among inhibitory currents. Septal inhibitory currents from

a single nucleus with gap junction coupling [61] may be synchronized throughout hippocampus. If

it is the inhibitory current that determines the precise spike times of place cells, we would in fact

expect theta sequences to be anatomically synchronized.

Can we account for the effect of this model on the differing phase relationships between inhibitory and

excitatory theta currents in different parts of the hippocampus? Excitatory cortical currents arise

from interactions between several inputs with various phases of their own and relative projection

strength that varies along the hippocampal long axis. Since the excitatory currents come from

different sources, they are not mechanistically related to one another, and they may be in phase at

one location and out of phase at another. Can we account for the related finding that the theta

currents that drive spike timing are synchronized when the local field potential and the bulk firing

rates of the cells are not? In modulating the spike rate, excitatory currents may modulate bulk spike

rate independently of the inhibitory current's effect on spike timing, as it is excitation that drives

a neuron's membrane potential toward spiking in the first place. Likewise, excitatory currents have

a larger impact on the local field potential because excitatory inputs terminate on distal regions of

the apical tree, and the flow of current through the synapse, down the detrite, and out the soma,

sets up long and spatial coherent extracellural dipoles. Inhibitory currents by contrast are due to

chloride conductances at the soma, setting up very short dipoles and having only subtle effects on

the membrane voltage.
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Figure 7: A model of spike timing and LFP driven by independent theta sources. A.
Three major afferents contribute different types of theta-modulated input to CA1 pyramidal cells.
CA3 excitatory synapses terminate primarily on the apical dendrite, but also on basal dendrites. En-
torhinal cortex layer 3 excitatory inputs terminate on distal apical CA1 dendrites. The current path
for these sources runs a long distance from the synapse to the soma, causing large charge separation
and long dipoles easily detected in the local field potential. The magnitute of the excitatory inputs
determines the CA1 cell's spike rate. A third theta rhythmic source comes from inhibitory synapses
from local basket and chandelier interneurons, which are in turn theta modulated by GABAergic
projection neurons in the medial septum. The inhibition causes little change in membrane potential
because it is due mainly to chloride conductances, and therefore is not aparent in the field potential.
Instead it has a current-shunting effect and, in this model, modulates the timing of CA1 spikes. B.
Different theta sources exhibit different phase profiles. Inhibitory currents are phase synchronized
over the extent of CAL. CA3 and entorhinal cortex may each exhibit traveling wave patterns of
anatomical phase offset, or they may each by internally synchronized but at different phases from
each other.
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The excitatory input structures would not necssarily need to carry traveling wave theta phase offsets.

They may combine at CAl in the same mannar as described in Model 2, producing a phase gradient

through a single phase offset, and a gradient of relative connection strength.

This model retains the biophysical relationship between theta rhythms and theta sequences in CAI

by attributing the inhibitory oscillation of Mehta and Wilson's [37] excitation-to-phase model to

anatomically synchronized inhibitory shunting currents, and the LFP currents to dipoles generated

by independent excitatory afferents. It also suggests that the inhibitory basket cells contributing

the inhibitory theta currents should be synchronized along the medial-lateral axis. This prediction

could be tested by measuring the theta phase preferences of the basket and chandelier interneurons

responsible for inhibitory theta currents [10].

A consequenece of the differential impact of two upstream regions on CAl activity in general at

different phases of the theta oscillation, different segments of a theta sequences may have different

roles or reflect different sorts of computation. One popular model for instance considers activity in

the entorhinal cortex to reflect current sensory input and activity in CA3 to reflect either model-based

extrapolations into the future [14,45,46] or completion of neural activity patterns from degraded

input [47].

Information timing is decoupled from bulk firing rate for globally coherent coding

The main contribution of this paper is the finding that theta sequences as we understand them are

impressively highly synchronized (to within less than 10 ins) across large expanses (3 mm) of the

hippocampus, and that this synchronization is achieved in a context of desynchronized rhythmic

firing. This finding raises questions about which of the above explanatory models (or an entirely

different model) is responsible for establishing this synchronization. We of course also want to know

whether this rule is true of the remaining 7mm of CAI, the most remote end of which is thought to

express some emotional content in favor of seemingly arbitrarily-chosen spatial locations [62]; and

we would like to know whether theta sequences in upstream areas are synchronized with those of

CAl, or lead it by one or two synaptic delays.

Theta sequences appear promising as a foundation for an account of how the hippocampus encodes

spatial, mnemonic, and sequential information. But it is important to point out that our under-
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standing of the theta sequence as we describe it now is still tainted by a faulty definition. We define

theta sequences as the ordering of spikes from place cells in terms of the relative positions of their

peak firing rates.

This is problematic. For example, how would our results differ if, unbeknownst to us, some place cells

encode where the animal will be in the near future rather than where the animal is now? There is

experimental evidence that this is in fact the case [63-65], and that failing to account for it degrades

the quality of position decoding [66].

Let's assume for the sake of argument that theta sequences are temporally aligned throughout the

hippocampus, but different parts of the hippocampus preferentially participate in different parts

of the theta sequence, with place cells in very lateral positions only firing in regions of the theta

sequences that are two meters from the rat's current position. In this example, the place field of

the rat would appear to be directly on top of the rat (this is how place fields are now defined), and

two meters behind the part of the track that the place field is actually representing. The theta

sequence that we decode will not extend two meters, because the definition we have used for place

field will incorrectly attribute representation of the rat's current location to that lateral cell's spiking.

Now, two-meter-long theta sequences have never been observed. Is this because they don't exist,

or because we typically do not account for the possibility of prospective coding when we use the

linear tracks that are optimized for recording large numbers of place cells? We don't know. It will

be important and informative to try to address the issue of prospective coding in future studies of

theta sequences.

The use of firing rate in the definition of theta sequences is problematic for a more general reason

than the possibility of prospective coding, though. Any spike that contributes to a theta sequence is

a spike that will impact the shape of the place field's rate code as we currently define it (naively, the

number of spikes fired as a function of the rat's current location). Implicit in the notion of a theta

sequence is a separation between what a place cell encodes (we take this as the peak of the firing

rate profile), and when the place cell expresses this encoding (a theta sequence is the unfolding in

time of encoding of a sequence of locations on the track). Imagine for the sake of argument that a

cell primarily interested in position x on the track participate most heavily in theta sequences that

extend from behind the animal to ahead. By construction we are only manipulating the "when"

of encoding, but by the definition of the rate field, we can't avoid an effect on the "what". How

34



much of a distorting effect does the coupling of theta sequence firing have on our estimation of theta

sequences? We don't know, because although it may be appealing to remove the firing rate field

from the definition of theta sequences (or vice versa), it is unclear what to replace it with.
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Real time position decoding from populations of place cells

Abstract

Observational descriptions of hippocampal spatial encoding are outpacing our understanding of

their underlying mechanisms and ties to behavior. The traditional manipulation techniques can

not adequately target the richly choreographed spiking sequences increasingly recognized as an

essential feature of spatial encoding. Some disruption specificity can be achieved by leveraging

known statistical relationships between information content and the recency of spatial experience,

and such experiments have provided the first evidence of a link between sequence replay and learning.

But this method stops short of being able to distinguish among the diverse forms of spatial content

known to be expressed in a single recording session.

A method of decoding spatial information content in real-time is needed. To do this, we are develop-

ing a multi-tetrode recording system focused on streaming representations of the processing stages

typically used for offline spatial decoding: spike detection, neural source separation (cluster-cutting),

position tracking, tuning curve extraction, and Bayesian stimulus reconstruction. We also extend a

method for position reconstruction without human spike-sorting to operate in real time. Our imple-

mentation makes critical use of Haskell, a programming language that aides software development

by strictly separating a program's logic from its effects on program state, greatly simplifying code

and eliminating large classes of common software bugs. We describe the capabilities and limits

of our recording system, its implementation, and routes for contributors to add functionality; and

we survey the classes of questions that could benefit from real-time stimulus reconstruction and

feedback.

Introduction

Theta sequences and replay in place cells, phenomenology

Temporally compressed spike sequences are increasingly recognized as an essential feature of hip-

pocampal encoding of space. Each increase in our ability to sample large numbers of cells in freely
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navigating rats has been accompanied by further support this claim [67,68].

Physiologists are aware of two forms of sequential encoding. The first occurs during active navigation.

The majority [69] of spiking activity in the hippocampus is due to place cells [3], which spike only

when the rat is within an approximately 1 meter span of the track particular to that place cell (the

cell's "place field"). At any given time, the rat is within the (partially overlapping) place fields of

many place cells. Rather than fire in random order, the spikes are arranged in precise sequences,

with spikes from cells with place fields centered just behind the rat first, spikes from place fields

centered ahead of the rat last, and a continuum between [17]. This sequence reflects the sequences

of place field centers that the rat would encounter on the track, except it is sped up eight times

and repeated once per cycle of the underlying 7-10 Hz "theta" oscillation in the local field potential

[18,19].

A second form of sequenced spiking occurs while rats are paused on the track, consuming rewards

or grooming. At these times, the hippocampus emits irregular, 100-500 ms bursts of local field

potential "sharp wave-ripples"(SW-R's) and spiking activity, with spikes ordered in time according

to the spatial ordering of their respective place fields [54,70]. These are known as 'sequence replay'

events. Sequence replay often represents a track other than the track that the rat is currently running

on [71]; indeed it was first observed in sleeping rats [72].

Summary of replay disruption studies

In contrast to the large number of studies exploring the phenomenology of theta sequences and

sequence replay [20,21,71,73,74], interventional studies are rare, because any specific activity pattern

of interest is embedded in a network also exhibiting off-target sequences, and sequences themselves

are not apparent to the experimenter without extensive post-processing.

The content of sequence replay has a tendency to reflect recent experience, however. Some inves-

tigators using SW-R's as a trigger for immediate activity disruption have taken advantage of this

to achieve some degree of stimulus selectivity in replay disruption. Ego-Stengel and Wilson [75]

and Girardeau et. al. [76] used this paradigm to show that selective disruption of sleep sequence

replay of one track can delay the acquisition of a spatial task on that track, relative to another track.

And Jadhav et. al. [77] disrupted all awake sequence replay and showed that this impacts working
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memory performance.

Using real time decoding, we could refine these experiments by disrupting only those replay events

that correspond to the experimental portion of the maze, and leave replay of the control portion

intact. This would provide more specificity in the question of whether relay is required for consoli-

dation during sleep an working-memory performance.

Rationale for information-dependent replay manipulation

We would like to ask much more specific questions of sequence replay than whether or not it is

needed for learning, of course [78]. Very fundamental things are still not known about replay. For

instance, is its contents available to the animal for decision making? Are the contents under the

rat's volitional control (as imagination is under humans' volitional control)? Definitive answers to

these questions are hard to come by, but we could restrict the space of possibilities. By rewarding

the rat for producing one type of replay and punishing him for producing another, an increase in

production of the former by the rat would indicate that replay content is under the rat's control

(although the mechanism of control may be very indirect). A lack of ability to adapt replay contents

to the conditioning paradigm would suggest the opposite. In a complementary experiment, the

experimental selection of a correct arm in a T maze could be determined by the rat's most recent

replay before the trial - left-going replay will cause left to be the correct direction on the next

trial, and vice versa. The ability to use this information or not gives us some evidence about the

question of whether the rat is conscious of the content of his replay. Although in this case too,

the consciousness may be of something incidentally correlated with replay content, rather than the

content itself; so a lack of ability to learn a replay-guided behavior may be more informative than

the positive result.

There are also some uses involving replay manipulation as more of a tool than a scientific question.

For instance, we might like to test the hypothesis that replay events shape the properties of place

cells on subsequent laps. If we have a means of encouraging an animal to produce large or small

amounts of sequence replay for a given part of the track, then we have some experimental control

over replay as an independent variable, and we can measure the subsequent effects of up-regulating

or down-regulating it on place field shape.
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Leaving the realm of sequence replay (but still considering ensemble stimulus reconstruction), these

techniques could be useful for BMI applications.

Online replay decoding challenges

Position decoding has been used for several years as a means of summarizing the data of large

numbers of place cells with multiple place fields [21,55,71], and thanks to Zhang's report [55] it is

not a difficult analysis to do. But porting it to the real time context, where information is available

in a streaming fashion instead of being presented all at once, presents some interesting and surprising

challenges.

The first issue is throughput - processing all of the data for time x to x + 6 must happen in less than

6 time on average, or else a backlog of unfinished work will completely swamp the system. A related

problem is latency - even if the system has sufficient throughput to keep up with the data stream,

each computation step must finish with a small fixed offset from the time the data was acquired, if

it is going to be useful for the experiment. The latency requirements for a behavioral feedback are

generally lax, around 500ms, because we only need to detect a replay quickly enough to deliver some

form of reward to the rat. Other experiments have much tighter latency requirements; interrupting

an ongoing replay requires responses closer to 50 ms from the actual replay event.

Next we have to consider the space complexity and time complexity of the data structures and

algorithms we choose [79]. Different data structures have different advantages and disadvantages

that are typically ignored in offline analysis. A classic example of this is the distinction between

arrays and linked lists [80]. Arrays can be indexed in constant time (the time needed to look up up

the nth element does not depend on the size of the array) but do not support adding new values.

On the other hand, linked lists allow appending elements in constant time, but indexing time is

linearly proportional to the index. Data structures vary in the amount of space they take To cope

with long-running experiments, we must avoid data structures that grow linearly with the number

of spikes processed.

Finally there is the practical concern that different inputs are coming into the system at the same

time, concurrently. Offline, we can ignore time and process the entirety of one electrode's signals at

once, then iterate over the rest - that is of course not possible in real time ensemble-recording settings.
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In addition to the multiplicity of tetrodes, we have data additional concurrent data sources from the

position tracking system and the input of the user. The process of decoding the data is conceptually

concurrent from the incorporation of training data into the model. In general, concurrency and

parallelism are the source of a large number of subtle bugs, and thus there is a great deal of active

research into making concurrent computation more robust [81-85].

Minimizing human intervention: no time for manual spike sorting

The most labor-intensive part of the post-processing involves sorting the multi-unit spiking activity

recorded on each tetrode into the single-unit spike trains of putative single neurons. It is often

impractical to manually segment many tetrodes' spikes into putative single units, especially during a

real time experiment, when clusters need to be cut before any real time feedback can be administered.

Kloosterman et. al. [86] developed a method for Bayesian stimulus decoding from tetrode data

without explicit spike sorting and provided an implementation in MATLAB. This implementation

is only suitable for offline position due to the use of algorithms that take time proportional to the

number of processed spikes, and the poor performance characteristics of MATLAB. But we can

address these issues by re-implementing the idea using different data structures and algorithms, in

a language with good concurrent programming support.

A proof of concept in c and Haskell

Here we report on two advances toward this goal. The first is a new system for simple acquisition,

band-pass filtering, and multi-unit spike detection capable of running in tandem with our existing

recording systems. The second is a proof-of-concept application that streams raw spike data and

rat position data from the hard disk, performs source separation based on previously-determined

waveform discrimination criteria, builds place field models, and performs the Bayesian inference to

reveal sequence encoding, all in real time.

The data acquisition system was written in a mix of c++ and Python, where signal processing and

networking can be done using common libraries within grasp for beginners (which we were at the

time). The real time decoding system presented more interesting challenges, in terms modeling

place fields, supporting infinite data streams, and concurrency. For this system, we turned to
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Haskell [87], a language optimized for ease of building composable abstractions [88], through the

marriage of a highly extensible static type system and functional purity. Haskell's type system

enables the programmer to build custom times that capture the much of the intent of a model or

algorithm, allowing the large classes of bugs to be eliminated by the compiler. Functional purity is an

engineering discipline strictly enforced by Haskell that forbids variables from changing their values

during program execution. This restriction, thought apparently limiting, has many highly favorable

consequences for managing complexity. These features fit together exceptionally well for designing

highly concurrent programs, a notoriously difficult task in all programming languages [83,85].

Our application currently reads spikes in multiple files at the rate they were initially recorded, passes

them through previously-determined cluster boundaries, combines them with a record of the rat's

position also stored in a file, and produces a stream of place fields and a composite visualization of

the rat's position in real time. As we develop the application, it will be able to interface with the

system performing the real time recording, track the rat in real time, accommodate stimuli other

than spatial location, and sort spikes into single units without manual cluster-cutting.

Materials and Methods

Backend signal acquisition and networking

Raw data is acquired simultaneously, at 32kHz, from 32 channels simultaneously on 2 NI PCI-6259

analog-to-digital converter cards (National Instruments), using the NIDaqMX c API. After passing

data from the driver's memory to our program, samples are written into a circular buffer and

passed through a 4th order Butterworth IIR filter. This choice of filter requires only two samples of

history per channel, imposing a very short delay (< ims) between the collection of a given sample

and subsequent processing. Spikes are detected by comparing each sample to a threshold, noting

threshold crossings, and then waiting for one or a few cycles of acquisition until enough samples have

been collected to meet the waveform length required by the user. Parameters like filter properties,

spike threshold, and spike waveform length are initially set in a configuration file, and later modified

through a networked API, so that the program can be run without an immediate graphical user

interface - this is a preferable arrangement for a parallel, potentially distributed system, in which

we may want a single command issued by the user to affect recording systems running on multiple
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computers.

Our previous recording system (AD., M.A.W.) also ran as a distributed collection of low-end acqui-

sition computers receiving analog signals as input. In order to compare the recording quality and

timing of our new system to the old system, we physically split sets of four analog inputs to two sep-

arate amplifiers - one serving each recording system. AD relies on hardware filtering of broadband

data into the spike waveform band (300-6000 Hz) by a 3rd order Butterworth filter. ArtE reduces

the hardware system requirements by digitally filtering a single broadband input into two signal

bands - the spike band and the local field potential band (0.1 - 475 Hz), in each case using a digital

filter designed to mirror the properties of AD's analog filters. Finally, using both systems in tan-

dem required careful time-base coordination. Using standard computer system clocks is completely

inadequate, as network delays between computers are on the order of several milliseconds, and can

vary depending on system load. Instead, we route a digital clock signal used to synchronize the AD

computers into the ArtE system, and manually issue a counter resetting command to ArtE over

the network while AD does the same for its own synchronization process. This fairly hard-coded

time-base integration is one problem that will have to be solved before ArtE can be used in isolation

from AD, but not a very difficult one.

Isolated spike waveforms as well as down-sampled, continuous local field potential signals are saved

to disk in a different format from the one used in the rest of our cluster-cutting and analysis workflow.

Until these tools are rewritten to work with the ArtE data format, we convert ArtE files into AD

format, and continue with xclust (M.A.W.) for cluster-cutting and MATLAB (Mathworks, Natick

MA) for general analysis.

Offline position reconstruction

We compute fast timescale summaries of neural ensemble activity through Bayesian stimulus decod-

ing, as described in Zhang et. al. [55]. Implementations of this procedure to date, including those

used in our lab [21] are decidedly unfriendly to streaming, as they build models of place fields by

sorting all spikes from the beginning of the recording session into the spatial bins partitioning the

track. This operation has time and space complexity linear in the number of recorded spikes, making

it unsuitable for continuous streaming. Place field computations derived late in the recording would

take longer than those computed at the beginning, and memory would be exhausted in finite time.
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These problems do not interfere with offline position decoding, because place fields may be computed

once,slowly, and used repeatedly. The computation of many place fields that are synthesized into a

single position estimate may be computed serially.

Online position reconstruction

Modifying the place field models to update in constant time, rather than performing a linear-time re-

computation for each incoming spike, is straightforward. Treatment of a large number of such models

in parallel, rather than serially, is more challenging, because these models are ultimately combined

into a single position estimate. Additionally, the process of model update must run concurrently

with graphic renderings, user input, and the regular computation of the position estimate itself.

To perform Bayesian decoding in real time, we left the relative comfort of c++ and MATLAB for

Haskell, on the promise that Haskell's type system and functional purity guarantees would simplify

the static design of the model, and aid in the highly concurrent data flow.

Modeling place fields with Haskell data types

The phenomenology of place fields and the diversity of maze environments add complexity to the

core notion of computing the place field, which is simply spike rate as a function of track position.

These complexities are generally addressed in an ad-hoc way appropriate to each experiment. Due

to the increased engineering effort involved in performing reconstruction in real time, we aimed

to anticipate as many of these issues as possible in the design of our stimulus model. We specify

mazes as a collection of spatial bins, each with a user-assigned "outbound" direction and physical

width. An animal's relationship to the environment is thus the combination of its relationship two

each spatial bin in three respects, (1) physical proximity to the bin, (2) "outbound" or "inbound"

heading with respect to the bin, and (3) position of the head with respect to the track width, either

"centered" or "leaning over".

Matrix-based languages like MATLAB and c would suggest a representation of a place field as a

three-dimensional array (with bin identity in the first dimension, the two possible heading direc-

tions in the second dimension, and head-overhang in the third dimension, for example). A par-

ticular position is referenced as an index into that array (for instance, the value at field[14,1,2]
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could correspond to a stored value related to the 14th spatial bin, inbound running direction, head

overhanging the edge). This is error prone. It requires the programmer to remember the mapping

between matrix dimension and stimulus dimension, as well as a mapping between discreet values

and stimulus levels (for example, than 1 means "inbound" and 2 means "outbound"). Naming

the levels with variables does not solve the problem, because the variable "outboundLevel" and

"headOverhanging" are both of the same type. Accidentally swapping the two (for example, writing

field[14, headOverhanging, outboundDir] ) will result in code that compiles and runs, but produces

incorrect output.

Haskell idioms are much safer. Instead of indexing into a matrix using three Integers, an idiomatic

Haskell solution would be to use a triple of indices with different types as the addressable space over

which occupancy or a place field is defined. The use of distinct types for bin, direction, and alignment

'indices' allows the compiler to check the work of the programmer at every point where indexing

happens. This small difference in approach eliminates a very large fraction of the bugs a codebase

acquires as it changes and incorporates new features over time. If the matrix dimensionality were

to change to accommodate a new feature, the Haskell compiler would enforce that this change is

accounted for at every point where the code tries to access the matrix. This is in stark contrast to

the flexible addressing of MATLAB and the untyped addressing of c/c++ arrays - in both of these

cases the change may not result in any complaint from the program, but will instead happily deliver

either noisy (or worse, structured but incorrect) data.

Our Haskell model of the track is the basis for the model of the rat's instantaneous "position", the

model of accumulated time spend at each position (the "occupancy" function), and the model of a

place field. At each point in time, we compute the animal's "position" as its relationship to each bin.

In the simplest case, the bin that the rat occupies is given a score of 1.0, and all other bins scored

0.0; more typically, we assign graded scores to the bins according to their proximity to the rat; this

method is favorable for smoothing noise in place field computations. For those time bins when the

animal is running, this instantaneous position function added to an running tally of time spent at

each position ("occupancy").

A place field is modeled in a similar manner to the occupancy map - as a function from spatial bin

to a number roughly equivalent to a "spike count" in that bin. Each time a neuron fires a spike, the

instantaneous position map is added to the place field function accumulated so far. In the simple
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case when the spatial bin containing the animal is assigned a 1.0, each spike adds an integer to that

spatial bin in the place field. When position is taken by the more usual Gaussian-smoothed method,

each spike adds a Gaussian curve to the accumulated field. This procedure gives us constant-time,

constant-memory spike-count functions that are simple to update, while respecting the complexity

of the underlying behavior (the separate consideration for outbound vs. inbound running direction,

and the consideration of whether the head is aligned with the track or leaning over the edge). When

needed, the actual firing rate function can be computed, in constant time, by dividing the neuron's

specific spike-rate function by the global occupancy function, at each spatial bin.

Managing concurrency and data streaming

To decode in real time, we must simultaneously update place fields with information from new spikes,

update the current position of the rat, read the place fields and combine them into a single position

estimate, handle user input, and render something to the screen. All of these operations interact

with the same underlying data, and thus the problem is inherently in a difficult programming regime.

Due to strict enforcement of functional purity and immutable data, Haskell is in a special position to

simplify concurrent computations. Indeed, the STM library provides a lockless concurrency scheme

that allows multiple threads to simultaneously modify the same data if they wish (this generally

leads to data corruption), as long as the only variables modified are of a special type provisioned by

the library, called TVars. STM tracks access to these variables, detects when two threads have made

conflicting changes, and roles both changes back, allowing the threads to attempt their modifications

again.

We took advantage of the STM library to coordinate this concurrent read and write access to a single

state value. This value was stored in one large TVar, which could be updated in the infrequent event

of user input or the addition of new tetrodes. Within the enclosing state value, each place field is

stored in its own TVar. In this scheme a very large number of spikes can be distributed to their

respective place fields, and updates can be made without regard for the activity of other place field

updates.

The problem is not amenable to processing by entirely independent threads ("embarrassingly paral-

lel"), because the decoding step requires access to all place fields. In addition to place field updates,

we accumulate spike-counts within short time windows, and the decoding thread must reset all of
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these counts to zero each time a position estimate is produced. We group the resetting of all place

field cell counts into a single atomic operation, to prevent the data inconsistencies that would in-

evitably arise if count-updating and count-resetting were interleaved. The grouping of actions into

atomic blocks that can be retried upon collision is precisely the strength of the STM library that

makes it so suitable for the structure of our decoding algorithm.

Clusterless decoding

We extended the clusterless decoding method of Kloosterman et. al. [86] by providing a new

implementation that runs in bounded memory and time (Kloosterman's takes time and memory

proportional to the number of spikes recorded, which makes it too slow for large-scale, long-running

recordings). To restructure the algorithm in a way that would continue to perform with potentially-

infinite streams of data, we turned again to Haskell for its ease of use when working with custom

data structures.

Kloosterman et. al.'s algorithm requires the comparison of recently-received spikes (the testing-set)

to the amplitudes of all spikes received from the beginning of recording (the training-set) along with

the rat's track location during those training-set spikes. An estimate of the rat's position at testing-

time is derived through Bayesian inference over a combination of the training-set spikes weighted by

their amplitude-similarity to the testing-set spikes. A literal implementation of this algorithm has

the disadvantage of making a larger and larger number of comparisons as the experiment progresses

and the training-set grows. An obvious alternative would be to divide the space of spike amplitudes

into a set of cubes, and update the cube into which each training-spike falls with the rat's current

position. However, because amplitude space is four dimensional, the number of cubes required to

tile amplitude space at a reasonable resolution is too large to store in computer memory. Sparse

matrices and KD-trees are two good data structures for holding multi-dimensional data in limited

memory. We chose the re-implement clusterless decoding using the latter, at a slight performance

penalty, because trees are somewhat more convenient to work with than matrices in Haskell. In

order to accommodate new training-set spikes in bounded memory, when a new spike arrives less

than some threshold distance from its nearest neighbor, the two are combined into one, and the

payloads of the two (the place fields) are summed according to each point's weight.
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Results

The results of our effort to date axe a working real time decoding algorithm and a proof-of-concept

system of supporting infrastructure. The core algorithm takes advantage of Haskell's highly efficient

runtime system and composable concurrency model to combine spiking and positional information

in real time and produce a streaming Bayesian estimate of the rat's location. The bandwidth of

the system is sufficient for decoding fast-timescale features like theta sequences and sequence replay.

The development process itself made critical use of Haskell's type system features, which drastically

improve the programmer's ability to reorganize code and discover logical and typographical errors

at the time of program compilation.

Decoding fast-timescale features: theta sequences and replay

Simply decoding the rat's position is a potentially useful engineering goal, but in general the rat's

instantaneous position is more conveniently estimated using an overhead camera. The features

we are really interested in gaining real time access to are those internal states that deviate from

the rat's physical location; and these deviations happen on a very fast timescale - the timescale

of theta sequences and sequence replay. Thus one of our primary design goals was to achieve a

processing bandwidth capable of estimating the rat's position in 20ms time windows. Figure 8

shows a position estimate computed post-hoc (top row), and the estimate derived from real time

processing of the same data, at a lower spatial resolution (bottom row). The data set used included

33 place cells recorded on 8 tetrodes. This is combination of spatial resolution and cell count was

near the processing limit for our machine, although we expect that the bandwidth will increase

substantially when the various cell-sorting tasks are split among multiple computers, as they would

be in a full recording system. The middle and right panels show decoded theta sequences and

sequence replay respectively.

Decoding speed and real time requirements

One drawback of using STM to manage concurrency is that performance can be more than we would

like. Measurements of individual processing stages do not give much actionable information about

contention over shared memory. We ran the ArtE position decoder and recorded the timing of its
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Ttack run Theta sequences
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Offline decoding

Figure 8: Fast time-scale position decoding. Reconstructed features computed in real time by

the ArtE decoder (bottom row) match those derived post-hoc (top row). The features are harder

to resolve in the ArtE case because we decoding position at a courser spatial scale (20 cm bins vs.

3.5 cm bins), but are still sufficient for the detection of events that would be used as triggers in a

closed-loop experiment. Theta sequences (middle) and sequence replay (right) are both recoverable

from a typical place cell population in real time.

outputs in two conditions - on a laptop with 4 cores before the diagnosis of a slow memory leak, and

on a faster desktop machine with 8 cores after the removal of the leak. In the poor-performance case,

half way through the session, the system ceases to be able to keep up with the stream of incoming

data and enters into an oscillation between seconds-long chokes and purges. In the better-performing

case, decoding continued reliably over the duration of the recording session, tending to produce a

position estimate once every 20 ms, with occasional < 100 ms excursions.

Bugs, deadlocks, crashes and performance debugging

As promised by the Haskell marketing material, bugs in the Haskell code that passed compilation

were very rare, and bugs that did not pass compilation were generally very easy to find.' Subjectively

speaking, runtinme crashes and deadlocks were exceedingly rare 2 The bugs that do remain tend to

involve improperly specified algorithms (things like sign-flips or reassembling the wrong pieces when

'They were underlined by in red within emacs, thanks to the integration between emacs and the GHC compiler

provided by ghc-mod (Kazu Yamamoto)
2A scientific study of the occurrence of various types of bugs in code written by practitioners of various languages

in a scientific setting would be very interesting.
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Figure 9: A timing failure mode. Running a version of the ArtE decoder with a slow space leak
on a laptop results in the eventual inability for the system to keep up with incoming data, and a

series of long interruptions in the decoding. Removing the source of the memory leak and running on
a fast desktop, fast responses remained for the duration of the recording session, with occasionally
lags of several tens of milliseconds.

mixing the contents of two data structures and the pieces have identical types), and performance

bugs, which can occur due to the improper handling of Haskell's lazy semantics and the accidental

buildup of large collections of unevaluated function applications.

When performance bugs become apparent in a program's runtime behavior, they can often be tracked

down by time and memory profiling. The following is trace of the memory usage of the decoder,

broken down by code module. We see that a module we have no control over (System) is using the

most memory, but that the usage is constant. On the other hand, our own Histogram module has

a memory footprint that is growing linearly with time over the five-minute trace interval. This is

sure to cause problems down the road as the runtime system continuously manages a growing pile of

unused memory. In this case, we simply removed the Histogram (it was an extraneous visualization

widget) to check that it was the source of our performance bug. We can fix it using a finer-grained

version of the same approach, breaking memory usage down by function rather than module.

Discussion

A tool for decoding streaming place cell data

We have developed a working algorithm and a proof-of-concept test system for performing Bayesian

stimulus decoding [21,55] on populations of place cells in real time. The implementation makes
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Figure 10: Memory profiling helps performance debugging. Most Haskell debugging is perfor-
mance debugging, because it can be hard to see which parts of a program will accumulate resources
over time. The GHC Haskell compiler produced this plot of memory usage over time broken down
by module. The runtime system uses the most memory (green). The Histogram module (yellow),
which is part of the ArtE project, fails to release data and grows linearly with time. These pro-
files generally make it easy to find the code errors that lead to ramping memory use and program
slowdowns.
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critical use of Haskell's type system, extensive open source libraries [87], fast runtime [89-91], and

concurrency and parallelism support [92-94] (specifically, using the GHC Haskell compiler [87]).

As other users of Haskell have noted, one difficulty in writing fast code is avoiding patterns that

interact poorly with Haskell's lazy evaluation semantics [95]. This was a stumbling block in our

implementation as well, as some mistakes lead to slowdowns that become evident only after several

minutes of running, and are therefore difficult to eliminate by trial and error. Fortunately the

GHC compiler provides tools for tracking memory and time usage; these tools greatly aided our

performance debugging experience.

Remaining components needed to run experiments

Several components need to be built before our decoding system can be used in closed-loop experi-

ments:

. Tracker: Rat tracking software capable of linearizing twisted tracks and transforming 3D

position into 1D track location and heading direction.

. Replay discriminator: A means of deciding from the stream of decoded positions, when a

pattern counts as replay. This must be customizable enough to fit different experimental

demands, such as conditioning feedback on a replay's virtual run direction on a T-maze.

. Networked decoding: A means of splitting the work of model training and model testing across

multiple computers, to remove the CPU decoding bottleneck and allow the use of more than

eight tetrodes

. Network transport: A common protocol for packaging various types of data (animal location,

neuron spikes, intermediate decoding data, behavioral sensor values, maze actuator commands,

etc). Ad-hoc networking is not quite sufficient because many of our components need to fan

out to multiple listeners (e.g. a spike source) or fan in from many sources (e.g. the stimulus

decoder).

We plan to develop these components ourselves in same way that we developed the ArtE backend

system, by replacing one component at a time into the existing AD recording system built by

Matthew Wilson and Loren Frank, and doing integration tests comparing AD's native output to the
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output with one adapted component. Although there is a lot of work left to do before the system

can do end-to-end work, it's not too early to start fantasizing about the experimental possibilities.

We describe some of these in the next section.

Possible experiments using real time decoding

An important set of experiments to do is to refine the ripple disruption studies [75-77]. The goal of

these studies was to determine whether or not sequence replay is necessary for memory consolidation

(in the case of [75,76]) or working memory (in the case of [77]). Jadhav et. al. disrupted all ripple-

related activity on the track. There was no attempt made to restrict ripple disruption to the ripples

carrying one type of replay or another3. They found that this disruption interferes with the rat's

ability to choose a maze turn direction based on recent memory, but does not interfere with maze

choices that have only long-term memory requirements. But they could not tell, for example, whether

individual replay events carry the short-term memory trace used by the rats on individual trials,

or whether replay disruption is generally upsetting to performance of the more difficult phase of

the task. Indeed, task difficulty is a factor that often distinguishes between the experimental and

control phases of a behavioral task[97], but it is not often acknowledged as one. With online replay

content detection, the two equally difficult working-memory tasks of the Jadhav study could have

been made controls for one another, by selectively disrupting replay corresponding to one of them.

Ego-Stengel and Wilson [75] and Gerardeau et. al. [76] used the fact that replay of recently

experienced tracks is more common during sleep than replay of tracks learned several days ago in

order to selectively disrupt the replay of one track over another. In experimental designs like these,

having the ability to single out one type of replay for disruption would further refine the selectivity,

perhaps enhancing the differential effects on behavior.

Real time replay detection provides opportunities for experimental designs that weren't possible

before. Fewer than half of replay events during wake contain decodable spatial content pertaining

to the current maze [21], and the fraction in sleep is much smaller [72,98]. If we want to make

reward or task contingency conditional on replay, then decoding replay content in real time is a hard
3 1n fact, their control condition was to begin inhibition 200ms after ripple detection, with the intention of finding

a disruption scheme with similar timing characteristics to ripples and avoiding times when the animal is running,
without blocking ripples themselves. As Davidson et. al. [21] and Layton and Wilson [96] showed, some replay events
are longer than 200 ms, and if these were present in the Jadhav study, they may have been truncated.
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requirement.

For example, we may want to test whether left-going replay on a T-maze4 can be used as the

behavioral response that is rewarded or punished to produce operant conditioning, in a specific way

that doesn't generalize to right-going replay, to test whether the content of replay or a behavioral

correlate of that content is something cognitively available to the rat.

There is currently very little evidence for a one-to-one connection between replay content and im-

mediate past or present behavior [21,73,99]. The dual of the operant conditioning experiment would

be to try to train a rat to recognize that, whichever direction his most recent replay took, that is

the direction he must run next to find a reward.

A third class of experiments is nebulous but probably very valuable. Using real time Bayesian

position decoding (not necessarily replay detection per-se), an experimenter would have immediate

access to the joint activity of the recorded population of place cells. Many classical discoveries

in neuroscience are due to chance observations rather than premeditated binary-choice hypothesis-

based predictions. The discover of place cells themselves [3] is due to tinkering with a rat while

listening to the audio amplified spiking of an individual hippocampal neuron; as was the discovery

of the primary visual cortex simple receptive field [100] and the large literature that followed5 We

expect that when decoded position is available to the experimenter, creativity in the moment will

lead to informal experimentation that sheds light on the nature of replay in a way that would not

be possible with the traditional, slow data collection / data analysis cycle.

4
Alternatively, some behavioral factor correlated with replay!

50riented moving bars of light were famously discovered to be the optimal stimulus for driving spiking in the cells
of primary visual cortex when David Hubel and Torsten Wiesel were changing slides in a projector slide deck; although
the many pictures of animals and natural stimuli on the slides failed to elicit a response, the sweeping motion of the
edge of the slide as slides were being changed in and out of the machine caused very robust spiking. Hubel and Wiesel
creatively pointed their projector at a chalk board, systematically moving the slide edge and making chalk marks at
the edge locations and orientations that best excited the cell nearest the electrode. This approach is what we mean
by using real time feedback for 'tinkering'.
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Retrosplenial slow-wave wake and interaction with

hippocampus

Abstract

Cortical slow waves interact with the hippocampus during sleep, in the timing of their oscillations

and the information content of local neural ensembles. These interactions are thought to be involved

in memory consolidation. Here we show that slow-wave like activity in the retrosplenial cortex is not

confined to periods of behavioral sleep, but also accompanies hippocampal ripples and replay during

awake reward consumption. During initial exposure to a maze, many hippocampal transitions into

the offline state are accompanied by slow-wave sleep features. Later in learning, slow-wave sleep like

activity is less prevalent during the consumption of small rewards, but can reliably be elicited with

large rewards. This activity is similarly prevalent during both light and dark phases of the sleep

cycle, suggesting that in is not a function of drowsiness. We propose that the offline state of the

hippocampus is not a time of hippocampal isolation from all cortex. Rather, the same mnemonic

processing thought to rely on cortico-hippocampal interaction may also occur during wake.

Introduction

Cortico-hippocampal sleep interactions, possible role in memory

Both cortex and hippocampus exhibit interesting forms of structured activity in sleeping animals.

In the hippocampus, a brain rhythm known as a sharp-wave ripple is known to carry information

about sequences of locations on a recently visited track [21,54,70,72]. The information-richness of

these coordinated activity patterns makes us hopeful that there are inroads into understanding the

encoding of information and its mechanism of storage. It is thought that cortex has a role in long

term information storage, and that sleep is as an important time for memory formation [101-104].

The interactions between hippocampal activity and cortical activity may provide clues about the role

of sequence replay in the rest of the brain, the mechanism of information transfer from hippocampus

to cortex, and the mechanisms of that information's long-term storage.
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Slow wave oscillations cleanly distinguish between sleeping and awake cortex

The most striking feature of cortical activity in the sleeping brain is a pattern known as up-down

states, the delta rhythm, or frames, depending on the recording method.6 They are three views of the

same underlying phenomenon: the coordinated switching between an online, wake-like state with

spikes, and a hyperpolarized state profoundly devoid of spikes.

This pattern is not seen while an animal is awake. It has so far only been observed in animals that

are drowsey[105] or in slow-wave sleep[106], one of the two primary sleep stages. The other sleep

stage, REM sleep.7 REM sleep is also referred to as paradoxical sleep, because of the similarity of

REM brain activity to activity patterns in awake animals.

Theta and ripples distinguish between 'online' and 'offline' hippocampus

The hippocampus is similar to cortex in that it has two very different modes of operation, but they

are not as strictly linked to sleep and wake as the activity patterns in cortex are. Instead, they

reflect the 'online' or 'offline' nature of attention. During visual exploration, running, foraging, etc.

(and during REM sleep) the hippocampus and many of its input and output structures are engaged

in an 7-10 Hz oscillation called the theta rhythm [9]. When an animal's attention is directed inward

and while the animal is in slow-wave sleep, theta ceases and is replaced by Large irregular activity,

a generally quiet state interrupted by -50ms bouts of coordinated vigorous spiking[109J, sometimes

grouped into ripple bursts that last half a second [96].

Retrosplenial cortex unexpectedly follows HPC into SWS-like state during reward

One popular model proposes that memory formation goes in two stages: while animals are awake,

sensory information flows through the cortex and into the hippocampus, where it is assembled into

short-lived mental models of the various sorts of things to be remembered; and while they are sleeping

the hippocampus projects a modeled form of this information back to the cortex, with repetition, for

long-term storage [110]. This model serves as a backdrop for designing experiments that examine

6 Up-down states refers to intracellular recordings, Delta oscillations to EEG + LFP, and frames to extracellular
multi-unit recording respectively. We use the term frames where the distinction is not important

7 REM stands for Rapid eye movement. REM sleep is accompanied by movements of the eyes that resemble awake
visual exploration [107,1081.
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the effect that concrete hippocampal events have on cortex, and that concrete cortical events have

on hippocampus.

Materials & Methods

Subjects

All procedures were approved by the Committee on Animal Care at Massachusetts Institute of

Technology and followed US National Institutes of Health guidelines. Tetrode arrays were assembled

and implanted according to the procedure in Nguyen et. at. [52] and Kloosterman et. al. [53]. We

made several modifications to the materials and procedures to improve our multi-cell sampling. First,

we glued several hundred half-inch pieces of 29 gauge and 30 gauge hypodermic tubing into rows

about 6 mm long, then stacked and glued the rows together to form a honeycomb patterned jig,

for organizing the tetrode guide-tubes that would eventually inhabit the microdrive. Second, we

developed the ArtE recording system (detailed in Chapter 2) to run in parallel with our usual usual

tetrode recording rig. The broader goals of the ArtE project are to enable real-time data analysis

and feedback, but in this experiment we used it merely to increase the number of simultaneously

recorded tetrodes.

Single-unit tetrode recording

We constructed a tetrode guide jig by cluing together several hundred 2 cm strips of 30-gauge

polyimide tubing (IW MinVasive Components) into a dense 'honeycomb' pattern, one tube at a

time. Starting with a single row of 30 tubes, and then building upwards, each new tube was

secured to the honeycomb with medium thickness cyanoacrylate glue (GreatPlanes). This is a

tedious process. The result is an array of hexagonally-spaced 30-gauge tubes. From these several

hundred, we selected 32 tubes that would become the target sites for individual tetrodes, with

several targeting hippocampal CA1, several targeting retrosplenial cortex, and several targeting

anterior dorsal thalamus (these thalamic tetrodes are not analyzed in this study). We inserted 10

cm stainless steel wires (5 milliinch diameter) partially into the selected tubes, and on the exposed

ends, we loaded 32 10 cm lengths of 30 gauge polyimide tube. These 32 tubes were glued together in
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place with Teets dental acrylic, and the bundle was removed as a unit, and integrated into a tetrode

hyperdrive according to the instructions at Jove [52,53].

Craniotomy templates were printed on paper with a standard laser-jet printer, with markings cor-

responding to the guide tube bundles. Marks were printed for bregma and lambda skull points too.

Plastic transparency sheet was placed on top of this diagram and holes were cut to accommodate

the drive bundles; needle holes were made at the bregma and lambda points. We sterilized this

plastic cutout and used it during surgery at a stencil, using sterilized pencil to mark the locations of

the craniotomy. This ensures that the craniotomy will perfectly fit the peculiar shape of the tetrode

guide tubes.

Tetrodes were lowered into the pyramidal cell layer of CA1 over the course of 2 to 3 weeks and left

there for several more weeks of recording. We sought to maximize the number of neurons recorded

and to minimize within-experiment drift, so we closely tracked the shape of sharp wave ripples

(which undergo characteristic changes during approach to the cell layer) and later the amplitudes

of emerging clusters. If either of these factors changed overnight to a greater degree than expected,

the tetrode was retracted by 30 to 60 micrometers.

Behavioral training

Behavioral training consisted of rewarding rats for simply running back and forth on a curved 3.4

meter linear track, or running continuously clockwise on a 3.4 meter long circular track, with rewards

given for every 360 degrees of running for the first 3 laps and for every 270 degrees thereafter. Food

deprivation began one or two days prior to the beginning of acquisition, with rats receiving 30 grams

of food per day, adjusted up or down depending on the rat's motivation to run and level of comfort

(assessed by the amount sleep taken before the running session). The target food-deprived weight

was 80% of free-feeding weight, but we rarely achieved this without disrupting the sleep of the

animals, so body weights tended to be 90% of the free-feeding weight or more, especially after rats

learned the simple rules of the task. Additionally, we occasionally provided large rewards throughout

training (2-3 grams of wetted powdered rat chow), to encourage the long stopping periods during

which awake replay can be observed. Most rewards we delivered were 200-300 milligrams. Under

these conditions, rats run for about 20 laps or 30 minutes before becoming satiated and ignoring

rewards. In some cases, rats continued to express interest in track running, but we aborted the
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trial early because continuous running in a single direction causes coiling of the electrical tether and

torsion on the head.

Electrophysiological Characterization

Spikes and local field potentials were voltage buffered and recorded against a common white-matter

reference, at 32 kHz and 2kHz respectively, and the rat's position was tracked at 15 Hz through

a pair of alternating LED's mounted on the headstage, as in Davidson et. al. [21]. Spikes were

clustered manually using the custom program, xclust3 (M.A.W.). Place fields were computed for

each neuron as in Zhang et. al. [55], by partitioning the track into 50 to 100 spatial bins, and

dividing the number of spikes occurring with the rat in each spatial bin by the amount of time spent

in that spatial bin, in each case only counting events when the rat was moving at least 10 cm/second

around the track. Direction of running was also taken into account, allowing us to compute separate

tuning curves for the two directions of running, which we label 'outbound' and 'inbound'.

Frame detection

The multi-unit spikes with peak-to-trough with width greater 0.4 milliseconds from each tetrode

were counted in non-overlapping 1 ms windows to compute firing rate. Down-states were defined as

interruptions in cortical electrode spiking activity lasting at least 10 seconds with an average (over

tetrode) spike rate of at most 40 Hz. Candidate down-states that were interrupted for less than 5

milliseconds were merged into one. Up-states (or "frames") were defined as any time in between

dips greater than 10 milliseconds and less than 3 seconds in length.

Results

Characterizing slow-wave sleep (SWS) in cortex

Slow-wave sleep is dominated by large irregular activity in the hippocampus, which consists of periods

of desynchronized activity, interrupted by sporadic -50ms bursts of activity from large numbers of

cells. These bursts are associated with about 50ms-long monophasic or biphasic spikes in the local
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field potential, bouts of -200 Hz rhythmic activity called ripples, and large amounts of multi-unit

spiking activity (Figure 11 top, sharp-wave ripples marked in blue).

During this time, retrosplenial cortex is engaged in the slow oscillations of slow-wave sleep, with

spiking activity collected into up-states lasting 250ms to two seconds, with intervening 10 to 100ms

down-states (Figure 11 green arrows) that coincide with either spindles, K-complexes or delta rhythm

cycles, depending on the depth of slow wave sleep (Figure 11 bottom).
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Figure 11: Slow-wave sleep features in retrosplenial cortex and hippocamnpus. Top: Five
seconds of multi-unit activity, LFP spectrogram, and LFP raw trace from the hippocampus during

slow-wave sleep. Blue arrows mark sharp-wave ripples. Bottom: Multi-unit activity, LFP spectro-

grain, amid LFP raw trace of retrosplenial cortex during the same period. Green arrows mark down

states, interruptions in the ongoing cortical spiking.

Retrosplenial cortex enters SWS-like state during novelty / large rewards

We trained rats to run clockwise around a 3.4 meter circumference track to receive food reward

(Figure 12), iii order to engage navigational circuits in the hippocamnpus as well as head-direction

circuits in retrosplenial cortex. Most rewards were a small 200-300ing bolus of wetted powdered rat
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chow, delivered at a single point on the track (requiring a full lap for delivery) for three laps. On

subsequent laps, we rewarded the rat once for each 2700 degrees of track running (for reasons not

related to this study - we were reusing the task design of a study we were aiming to replicate about

REM replay [111]). Once in every 4 to 6 trials, we instead used a 3g bolus, to encourage the rat to

stop, eat, and produce more ripples and replay events from the hippocampus. In later phases of the

experiment, we moved a number of electrodes up from hippocampus into somatosensory and motor

areas, to explore further the phenomenon we noticed in retrosplenial cortex. During track running

and sleep, we often listened to the amplified activity of either hippocampus or cortex (switching the

audio monitor back and forth over the course of 30 minute sessions).

Three full laps ~ 15 laps at 270*, occasional large rewards

B
Motor/somatosensory cortex Retrosplenial cortex

HippocarplM

Figure 12: Recording sites and behavioral training. Top: Behavioral training was carried out
every day over the course of the recording and consisted of clockwise running on a 3.4 meter circular
track. For the first the rat got normal (200-300 mg) rewards. For the remainder of the session

(usually 10 to 20 laps) normal reward was delivered every 2700, but occasional normal rewards were
replaced with large (2-3 g) rewards, to encourage longer pauses and more hippocampal replay.

We became accustomed to the sound of ripples and spindles in the multi-unit spiking activity of cortex

in the sleeping rat. We were surprised to hear a subjectively similar pattern from retrosplenial cortex

while rats stopped to eat large rewards. Comparing the raster plots and LFPs of several, retrosplenial

cortex activity transiently but strongly resembles the structure of activity during slow-wave sleep

(Figure 13), with characteristic sharp breaks in ongoing activity and accompanying K-complex like
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LFP oscillations. In another set of experiments, conducted at the end of a 5-hour period of sustained

wake in the middle of the day, we recorded activity during foraging in an open field, using novel

objects to keep the rat in a curious state and preventing him from sleeping on the maze. During

these periods of drowsiness, we saw similar interruptions in ongoing retrosplenial cortex spiking.
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Figure 13: Slow-wave sleep like features in awake retrosplenial cortex. Five seconds of

activity in hippocampus and retrosplenial cortex during the consumption of large reward on the track.

Top: Multi-unit activity, LFP spectrogram and LFP trace from the hippocampus, with sharp-wave

ripples indicated by blue arrows. Bottom: Multi-unit activity, LFP spectrogram, and LFP trace

from a representative tetrode in the retrosplenial cortex over the same interval. Crossings below the

spike rate threshold used for frame detection indicated by green arrows. Note the similarity to the

slow-wave pattern in slow-wave sleep shown in Figure 11. Far bottom: Position trace (white dots)

and reconstructed position from hippocampal place cells. Awake sequence replay events co-occur

with some hippocampal ripple bursts.

Examining longer periods of time, we can find that the epochs dominated by hippocampal large

irregular activity, ripples and replay events are the same epochs dominated by slow-wave sleep-like

activity in retrosplenial cortex. Figure 13 shows a 60 second pause on the track, the first half of
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which exhibits slow-wave sleep-like features, and the second half of which does not. Although the

rat is not making forward progress on the track during the second half of the pause, hippocampus

and retrosplenial cortex are both in 'online' mode, so presumably the rat is still but attentive.
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Figure 14: Retrosplenial slow-wave sleep and hippocampal awake large irregular activity
occupy the same behavioral epochs. A sixty second sample of activity in hippocampus and
retrosplenial cortex during the consumption of large reward on the track. Top: Multi-unit activity
and an LFP trace from the hippocampus. For the first half of the stopping period, hippocampus is
in an offline state with occasional bursts of ripples. Bottom: Multi-unit activity, LFP spectrogram,
and LFP trace from a representative tetrode in the retrosplenial cortex over the same 60 second
interval. The first half of the stopping period is marked by a sporadic K-complexes and down-state-
like interruptions of the ongoing spiking. Far bottom: Position trace (white dots) and reconstructed
position from hippocampal place cells.

RSC awake slow waves coordinate with hippocampus under diverse conditions

To determine whether slow-wave like activity is related to familiarity or drowsiness, we recorded it

early and late in behavioral training, and during both the light and dark phases of the light cycle.
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Early in training, both ripples and frames appear in response to large and small rewards (Figure 15,

top). Later in training, ripples may still appear during the collection of small rewards, but down-

states are more restricted to large reward consumption (Figure 15, bottom). To determine whether

slow-wave sleep like activity is related to drowsiness, we attempted to eliminate it by providing a rat

two day's rest and then running him during the dark phase of the light cycle, when rats are more

active (Figure 15, middle). We continued to see very strong slow-wave like activity during these

sessions.

Early training

Down states

Run speed

Ripples

Dark cycle running

Down states

Run speed 2 mi

Ripples

Mixed reward sizes

Down states A

Run speed 1fyJ4

Figure 15: Behavioral scale alignment between slow-wave like activity and hippocampal
ripples, during two phases of the light cycle and early in training. Retrosplenial slow-wave
like activity can arise under diverse conditions, but is always associated with a hippocampal offline
state. Down states detected as sharp drops in cortical firing rate are indicated as green raster ties

over the course of three training sessions. Ripples detected by increases in hippocampal firing rate

and ripple-frequency LFP power are indicated in blue. Top: Early in training down states occur
during both short and long pauses on the track. Middle: A recording session taken in the middle
of the wake phase of the light cycle late in training. Ripples and down states largely avoid short
stopping periods and small rewards. Bottom: A typical recording session late in training, during

the light phase of the light cycle. Down states are largely restricted to long eating pauses; ripples

are more prevalent during long pauses but also present during collection of small rewards.
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Anatomical restriction - non-participation in other cortical areas

In later recording sessions, we retracted most of the hippocampal tetrodes up into overlying so-

matosensory and motor cortices and recorded from these in tandem with the retrosplenial cortex.

We saw clear slow-wave modulation of these tetrodes during slow-wave sleep and a degree of partic-

ipation during drowsiness. However no spontaneous down states, frames, or K-complexes were seen

during wake.

Slow-wave sleep Drowsy Awake reward

Som/mot cortex

Retrosplenial cortex

Figure 16: Example frames in SWS, drowsiness, and large reward consumption. Example
frames and down states are clearly visible and coordinated between retrosplenial cortex (green) and
somatosensory and motor cortices (magenta) during SWS. Down states are less frequent during
drowsiness and reward consumption. In drowsiness, weak coordination between cortical areas can
be seen. During awake reward consumption, frames and down states are visible in retrosplenial
cortex, but somatosensory and motor cortex fire as they normally do during wake.

In the retrosplenial cortex, lengths of putative down states in slow-wave sleep, drowsiness, and

consumption of large reward were distributed similarly (Figure 17). The same is true of the scattered

somatosensory and motor cortex electrodes, with the exception that thees only exhibited down-

states during slow-wave sleep and drowsiness. We found no down states meeting our criterion of 5

milliseconds at less than 40 Hz multiunit activity in somatosensory and motor cortex tetrodes.

Discussion

Awake slow-waves in RSC, coordinated with HPC, fully awake

We show that in retrosplenial cortex, slow-wave sleep like activity can be reliably elicited in the fully

awake rat using large rewards. This activity could be elicited in fully-awake rats and drowsy rats.
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Figure 17: Distribution of down-state lengths in SWS, drowsiness, and large reward

consumption. Down states were defined as intervals with mean spike rate per tetrode below 40

Hz lasting for at least least 5 ms. Down states in retrosplenial cortex and somatosensory cortex

are similarly distributed. The distribution appears during large reward consemption periods in

retrosplenial cortex, while no awake down states were seen in sortatosensory and iotor cortex.

Early in behavioral training, it occasionally occurred during the consumption of small rewards. Late

in training it occurred preferentially in response to large rewards.

Furthermore, this activity is coordinated on the behavioral timescale with the offline-mode of activity

in hippocampus, which is already known to engage in large irregular activity [109] during track pauses

and reward consumption. The novel finding here is that the hippocampus is not alone in this pattern.

Comparison with Vyazovskiy's local sleep

These results are similar to the local sleep findings of Vyazovskiy et. al. [105], but the primary

difference is that the results we report seem to be unrelated to drowsiness, while Vyazovskiy's local

sleep is strongly related to sleep need and momentary behavioral impairment. Our findings suggest

something else - that local sleep may be a normal part of the waking state, and that the hippocampal-

cortical dialog previously thought to occur only during sleep may also occur when large rewards are

found.

To summarize, we think that Vyazovskiy et. al. are seeing the same thing that we are seeing -

slow waves. However, Vyazovskiy shows that the slow waves of sleep can encroach on local cortical

circuits at the times near sleep. We show that slow waves may also appear in retrosplenial cortex

in a way that's otherwise unrelated to sleep.
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Functional roles for HPC-Cortex coordination may apply to wake

Very little is known about the effect of ripples and replay on ongoing cortical activity. The finding

that retrosplenial cortex follows the same general activity pattern in wake gives us the opportunity

to extend work in hippocampal-cortical interactions during sleep to waking periods.

Awake hippocampal-cortical interaction may share features with the cortico-hippocampal interac-

tions of sleep, such as the appearance of up-down states in hippocampal interneurons [112] or the

coordination of encoded spatial content [98].

New questions raised by awake slow waves

These findings raise a number of interesting questions. First, what other brain areas coordinate with

hippocampus during wake? Is this phenomenon specific to retrosplenial cortex, or could be a feature

of all navigational cortical structures in the Papez circuit [113]? Or is it a feature of the default

mode network [114]? The retrosplenial cortex is a member of both.

Then there is the question of mechanism. Slow wave sleep is thought to arise from an interaction

between cortex, relay thalamus, and inhibitory reticular thalamus. In the case of retrosplenial cortex,

the excitatory thalamic afferent comes from the anterior dorsal thalamic nucleus (ADT). This raises

the obvious question, does anterior does ADT participate in awake slow waves? Is there enough

specificity in the connections from ADT to the reticular nucleus such that slow waves could be

expressed in retrosplenial cortex without spilling over into other thalamo-cortical loops? Or does

more of the thalamus than ADT participate in awake slow waves, and it is the cortex that suppresses

these effects in order to maintain the normal cortical activity while retrosplenial cortex adopts sleep-

like activity. All of these questions can be answered simply by multi-site recording in a maze with

large rewards, and this should greatly expand our understanding of the role and extend of slow-wave

activity.

In addition to the parallels that may be drawn between functional roles for sleep interactions and

wake interactions, awake interactions may be have some of their own unique features. The rest

of the cortex is behaving so dissimilarly between wake and slow-wave sleep that the inputs to

retrosplenial cortex between wake and sleep will be very different. It is not necessarily the case that

slow waves preclude the processing of sensory information however. Rasch et. al. [115] showed that
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the slow-wave sleep presentation of odors that were previously paired with awake learning improve

performance on the next day.
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Conclusion / Wrap-up

Our ultimate goal is to understand how information is encoded in the brain, and how that encoding

lends itself to permanent storage. Work on place cells in the hippocampus is indicating that timing,

populations, and structured interactions among large numbers of neurons will be a key part of

the story of how information encoding and storage are achieved. In answering some particular

hypothesis-driven questions, it may be enough to collect a few cells each from a large number of

animals. But to go beyond testing the hypotheses that our current paradigm can generate, to discover

new paradigms that involve the emergent phenomena of numerous brain structures integrating rich

streams of environmental information with even richer mental models generated over a lifetime and

accessed at the whim of the organism, we will need to record from very large numbers of neurons in

many brain areas in naturalistic contexts with great temporal precision.

The history of the tetrode recordings of the hippocampus in freely moving animals provide evidence

for this claim. Place cells and VI orientation tuned cells were discovered using auditory feedback

and a very open-ended experimental paradigm. Online sequence replay was discovered by taking an

unbiased look at the simultaneous activity of many place cells in an animal given the freedom to relax

naturally between laps on the track. In the realm of information coding, information transmission,

and memory, the parts of the brain under study are complex enough that there is a great deal to

be gained by optimizing an experiment for open-ended interpretation. The key features of an open-

ended design are naturalistic conditions, very large populations of data, high temporal resolution,

and the ability for the experimenter to access that data in real time for tinkering.

We have shown in this thesis that information encoding is precisely timed in a global fashion within

hippocampal CA1. The subsequent finding that hippocampus and retrosplenial cortex interact

during sequence replay opens a window for moving beyond the co-occurrence of LFP events, toward

an understanding of how hippocampal information is moved to the cortex and what form it takes

while in the cortex. And our work on the ArtE real time decoding system will hopefully give us

a way to take population-wide information encoding and render it into a form useful for human

experimenters in real time.
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Appendix A: Hippocampal anatomy and physiology

background

A brief reveiw of cellular organization in the hippocampus is given to help the reader stay oriented

during discussions of electrode placement and traveling wave propagation. We also describe the freely

moving rat's local field potential signatures and single-unit spiking properties, which are central to

the rest of the thesis.

Hippocampal anatomy: cell layer and dendritic layers

The rat hippocampus is a curved, complex, three-dimensional structure most easily thought of as a

sheet [116], about 10 by 7 mm face-on and 1mm thick, folded into a 'C' shape first along its short

axis, and again into a larger 'C' along its long axis. The face of the sheet is fully tiled by primarily

excitatory pyramidal neurons. Their cell bodies of these neurons are collected into a thin (about

0.1mm) band within the sheet's 1mm thickness.

Basal dendritic arbors extending upward from the cell bodies toward the skull (the hippocampus is

inverted relative to cortex) for 0.25mm form the stratum oriens. Apical dendrites extend downward

for 0.5mm forming the stratum radiatum, and then branch widely to form the stratum laconosum

moleculare.

After folding and curling, the far end along the longer dimension of the sheet terminates near the

septal nuclei, and the other travels backward and bends down to embed itself in temporal cortex.

The long axis of the hippocampus is referred to as the septo-temporal axis.

The first folding of the sheet described above divides the proximal-distal axis into two parts, named

CA3 and CA1 by Lorente de N6 [117], (CA stands for "cornu ammonis", or ram's horn, which is

reminiscent of the shape of the hippocampus in cross section).

CA3 dendrites receive most of their synaptic input from the dentate gyrus, entorhinal cortex, and

the axons of other CA3 neurons. [116,118]. CA1 receives most of its input from CA3 and entorhinal

cortex, but does not project to itself [116]. These patterns of inputs are more restricted than in many
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other parts of the cortex and have lead to computational models that take advantage of a layer with

recurrent connections (CA3) connecting to one without (CA1), but none have wide acceptance. We

will see later that our understanding of information processing within a single layer is incomplete,

and this makes it difficult to speculate on the nature information transmission between areas.

Hippocampal place cells

Pyramidal cells increase their firing rate dramatically when rats enter a particular part of a maze,

as originally described by O'Keefe [3]. The region of space eliciting spikes is that cell's place field.

Typical place fields are roughly 20 and 80 centimeters long, and different neurons have different

place fields; recording about 30 neurons is enough to find a 3 meter track without any gaps in place

field coverage. Spiking rates outside of a neuron's place field are quite low - often less than 0.1 Hz,

and in-field rates peak rates are reliable across trials, typically 10-30 Hz.

The behavior of place fields in response to rotations and distortions of the maze is the subject of a

large body of work, which can be summarized in terms of map displacement, rate remapping and

global remapping [119]. Rate remapping refers to a change in place field peak firing rate and global

remapping a displacement in place field location not necessarily in agreement with the displacements

experienced at the same time by other place cells. The rules governing which sort of remapping will

result from which types of maze manipulation are complex and not completely consistent between

studies, to the point that the neurons themselves disagree on the rules in particular instances and

may fall at the same time in different directions [120,121]. But in general, minor changes to the

appearance of the maze tend to elicit rate rernapping [119,122] while radical ones scramble the

locations of place fields and produce global remapping [122,123].

A similar rule of thumb applies to most maze and cue displacement results: place fields tend to

follow what we would expect of a rat's top-level model of where he is. Minor enlargements of

the maze produce proportional stretching and displacement of the place fields [124]. A rotation of

enough maze cues such that North is falsely recognized as the old West will produce the appropriate

rotation of place fields with respect to the poles of the earth (and a lack of displacement with respect

to the cues)[125].
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Theta oscillations and multiunit spike phase

Electrodes in the hippocampus pick up a 7-10 Hz, large-amplitude rhythm, in addition to somatic

spikes. This is called the theta rhythm [9,10]. The theta rhythm is present when animals are

running or in a stationary, attentive state, and during REM sleep [9]. Theta oscillations can be

found throughout CA1 and CA1, as well as in the dentate gyrus and entorhinal context, and a host

of other cortical and subcortical areas. Collectively the areas expressing theta are known as the

Papez circuit [113]. Incidentally a lesion to any component of the Papez circuit produces in humans

strong anterograde amnesia (as reported in the hippocampal patient H.M. [126], thought in fact

HM's entorhinal cortex was far more damaged than his hippocampus [8]).

The mechanisms of theta's expression is being explored on two levels: the level of the generation

of rhythms in the neurons, and the level of the translation of neural rhythms to extracellular cur-

rents [10]. Neither level is completely understood, despite a large number of studies lesioning or

pharmacologically silencing specifically excitatory or inhibitory neurons in various brain regions.

What is known is that two sources of theta can be pharmacologically distinguished by atropine

and NMDA antagonists [59,127], and these two components are associated with different intrinsic

frequencies and different behavioral states. Type 1 theta is insensitive to systemically delivered

atropine [127]. Its intrinsic frequency is about 10 Hz and it is naturally elicited by running. Type

2 theta is sensitive to atropine and is naturally elicited by stationary attention. The importance of

the septum in theta generation is strongly suggested by the fact that lesions to it nearly eliminate

the appearance of theta in the local field potential throughout the rest of the brain. But this is

not the whole story, as a dissected hippocampus in a dish will spontaneously express theta after

application of acetylene [128]. Interestingly, if that same hippocampus is pharmacologically divided

in two along its long axis by application of the GABA agonist muscimol, then the two halves will

oscillate at theta frequencies differing by up to 1.3 Hz, with septal hippocampus being the faster

oscillator of the two. [128].

Quite a few facts are also known about the connection between the theta-rhythmic excitation of

neurons and neuropil, and the appearance of theta to an electrode in the form of a local field

potential. These details are important and interesting because of a connection between the phase of

the oscillation and the activities of place cells (which we will discuss soon), and the phase of such an
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oscillation is such a finicky thing. For one, applying different filters to the recorded signal is enough

to significantly advance or delay theta's apparent phase [129]. For another, an electrode's view of

the rhythm is determined by the dipole environment local to it, and different parts of a neuron's

dendritic tree express different dipoles at different phases of theta; so that the perceived phase of

theta changes by half a cycle as an electrode is moved through the thickness of the hippocampus.

Buzsaki in particular has done a lot of mapping of the electrical sources of theta, first by lowering

a single electrode in consistent intervals [130] through the apical-basal axis and measuring repre-

sentative oscillations, and later by using probes with large numbers of evenly spaced contacts [59],

and applying the current-source-density technique, which predicts the spatial sinks and sources of

current within the tissue. To summarize these findings, the Type 1 theta currents come mostly

from pyramidal cell apical dendrites near the hippocampal fissure and basal dendrites in stratum

oriens, while Type 2 currents are strongest in stratum radiatum and are due to dentate and CA3

input. These two sources do not agree in phase, and the effects of each drop off with distance of

the recording electrode from the source. This is why electrodes with different placement will report

different theta phases - they are respectively closer to different theta sources [131]. The combined

effects of the multiple sources is still fairly sinusoidal, as the sources are fairly sinusoidal and equal

in frequency, and sine waves of equal frequency but different phase generally sum to a sine wave of

a new phase [132].
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Appendix B: Sleep states and hippocampal-cortical

interactions

Sleep stages, cortical EEG correlates (spindles, delta, theta)

Waking and sleep behavioral states are accompanied by very different patterns of neural activity

in the cortex and hippocampus. These differences can be more pronounced that the modulations

of firing rate associated with encoding sensory information and producing particular motor output.

Some are easily detected through the human skull via EEG. They are immediately apparent in the

firing patterns of populations of neurons and in the character of local field potentials recorded inside

the brain. We study these differences in order to understand the function and mechanistic origins of

sleep, as well as to gain clues about how sensory stimuli are processed during waking and shut out

during sleep. We would also like to know whether the particular signature activity patterns of sleep

have functional roles themselves, or in combination with other sleep-specific events in other brain

areas.

Sleep in most animals [133] is divided into two categories [134]: slow-wave sleep, named after the

EEG oscillation associated with it [106]; and REM sleep, named for the associated rapid movement

of the eyes [107]. The latter is also called "paradoxical sleep" 8 , because brain activity during REM

sleep so closely resembles brain activity in waking animals and because a relative small fraction of

mammalian sleep in REM sleep [135].

Slow-wave sleep in humans can be further divided into four stages that correspond to four levels

of depth of sleep and are marked by different combinations of signature EEG events[134]. Stage I

sleep is drowsiness and it is marked by the appearance of spindles, short bouts of -10Hz oscillations

lasting about a second each and occurring from once a minute to ten times a minute until drowsiness

transitions into the next sleep stage. In stage II spindles become less frequent and are replaced

by occasional K-complexes, large, one-cycle oscillations. Stage III and Stage IV sleep are both

deep sleep; they lack spindles altogether, and K-complexes have become part of a 1-4 Hz "delta

8Perhaps if most sleep were REM sleep, then our nomenclature would be different, and what is now known as
slow-wave sleep would have been called "paradoxical activity", because sleep itself would no longer be the major
discriminator between types of brain activity.
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oscillation" [136], the characteristic rhythm that gives slow-wave sleep its name. Stages III and IV

are differentiated by the regularity of the slow waves (they are not very periodic, by the standards

of most waves) - in Stage III single cycles will vary in length from 200 ms to 2 s.

Up-down states in vitro, frames of cortical spikes during sleep in vivo

Delta oscillations of slow-wave sleep have a clear neural basis, the synchronized spontaneous oscilla-

tions of cortical neurons [137]. The extracellular peaks of the slow oscillation correspond to periods

of profound hyperpolarization and the complete absence of cortical spiking. Intracellular voltage

traces make the non-periodic nature of the slow oscillation more clear; rather than a harmonic os-

cillation, there is a clear bimodality in the distribution of membrane voltages: -100ms blocks of

-80mV without spiking interspersed between blocks of -60mV with spiking. There is a large body

of work on the mechanisms of generation of this state; it is thought to involve interaction with the

thalamus (and in particular, inhibitory long-range neurons of the thalamic reticular nucleus), which

also profoundly changes its mode of firing during sleep [138].

Hippocampal ripples and sleep replay, wake replay

Activity in the hippocampus during awake active behavior is dominated by the 10 Hz theta oscillation,

which impacts the spiking of all neurons in the hippocampus and is plainly visible in local field

potential recording and audible in the multi-unit spiking [9,139]. The hippocampus of a rat in slow-

wave sleep is very different. It is known as "large irregular activity"[109], and it consists of quiet

periods interrupted by sporadic, vigorous bursts of spikes. The collective activity of the neurons

causes a -200 Hz oscillation known as a "ripple", which is usually accompanied by a single cycle of

a slower (-10 Hz) "sharp wave". These bursts of activity tend to last about 50 ms [140], and often

come in pairs or triplets [96] of ripples in quick succession (a "ripple burst").

Unlike the cortex, however, sleep is not the primary determinant of which mode of activity the

hippocampus will be in. Large irregular activity occurs in the hippocampus whenever an animal

stops to groom, consumes reward, or reaches the end of copulation [141]. Paradoxical sleep in the

hippocampus is marked by a sustained theta rhythm and the absence of large irregular activity [9].
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Hippocampal-cortical coordination

Several recent studies have begun to show a link between the sleep characteristics of cortex and

those of hippocampus. Although the hippocampus does not exhibit delta-frequency slow waves in

its local field potential, up-down states mirroring those in cortex are also present in the membrane

potential of hippocampal interneurons and the granule cells of the hippocampal input structure,

dentate gyrus [112]. And the membrane potentials of some hippocampal CA3 and CA1 pyramidal

cells are modulated at the times of cortical transitions from down state to up state [142].

The hippocampal ripples have also been found to coordinate in time with cortical down-to-up state

transitions [143] and cortical spindles [144,145], suggesting that these oscillatory events may be

either a reflection of information transfer between cortex and hippocampus, or that they may be a

mechanism by which that information is transferred.

The possibility of cortico-hippocampal information transfer became much more concrete after the

report by Ji and Wilson [i2006coordinated] that hippocampus and cortex express coordinated infor-

mation content during slow-wave sleep. Surprisingly, single neurons in primary visual cortex (Vi)

fire spikes at specific locations on a maze, when that maze is instrumented with visual cues on its

floor (1 bit per spike in V1, vs. 3 bits per spike in hippocampus); and during sleep, the sequence

of VI cells activated by the track spontaneously co-fire in the same order during slow wave sleep,

as place cells have been shown to do in slow-wave sleep [72]. When both hippocampus and cortex

re-express in sleep a sequence learned in wake (admittedly a rare event, at least with our current

recording capabilities), they almost always agree on what sequence to replay [98].
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Appendix C: Haskell

What is functional programming

Functional programming is both a style of programming and a set of language features designed to

make functional programs natural to write and performant. That style revolves around two novel

notions of what a function is. First, functions in a functional programming language are analogous

to functions in math - relationships between inputs in a domain and return values in a range; they

are guaranteed to return the same result from the same inputs. Second, functions are themselves

'normal values' - they can be passed as arguments to other functions, or returned from other functions

as return values.

Languages like c allow a programmer to use functions in this way but do not make it easy. C is

modeled closely on computer hardware, a context that emphasizes allocating memory and manip-

ulating it. These operations are not 'functional' in the mathematical sense, because they involve

'doing' things - fetching memory blocks, performing some activity that is dependent on what was

found in the memory block, and modifying the memory block. Functions in math are relationships

between values in a domain and a range; these relationships are not dependent on the state of things

like memory blocks, and the evaluation of a function's result in math does not impact the world in

a way that changes other mathematical equations.

More natural support for functional programning is available in many higher-level languages, for

instance python has the built-in functions map, which takes a function and a list and returns a list

with the function applied to each element. We can write a function that modifies a single number

and apply that function to a list of numbers using map.

def topLimit (x):
if x > 10:

return 10

else:
return x

print map(topLimitI[1,15,20,3,-2,5])

[1, 10, 10, 3, -2, 5]
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The map function in Haskell looks very similar, except that there are no parentheses used in applying

a function to its arguments. The first line defines the function topLimit as a mapping from number

to number, and the second line uses map to apply topLimit to a list of numbers.

module Main where

topLimit x
x > 10 = 10

I otherwise = x

main = print( map topLimit [1,15,20,3,-2,2] )

[1 1 10 1 10 3 1 -2 12]

What are types

Types are sets like Integer or String whose elements are values, like {0, 1, -1, 2, -2, ... } and

{'Greg','Hello neuron\n',...} respectively. Their role is to annotate data in a program, which

would otherwise exist only as 0 s and 1 s whose identity would need to be tracked by the programmer.

These annotations ensure that functions and data are paired in the correct way - for example

preventing the programmer from attempting to take the square root of a string.

That basic motivation for types has been taken much further in the design of different programming

languages. The nature of types is the main feature distinguishing programming languages [146].

Type systems divide languages into classes like dynamically typed languages (e.g. python, JavaScript,

lisp), in which values can adopt a new type if the context demands it; and statically typed languages

(e.g. c++, Java, Haskell), in which they can't. The term 'object oriented programming' refers to

one style of type system, in which smaller types can be collected into a larger type called a 'class',

and classes can be derived from a parent class [147]. The typical example is a Car class that has

associated data, such as a String to identify its owner, a pair of Number s to indicate its location,

and a Number to indicate its speed. Another class Truck could be derived from Car, and the Truck

type would inherit the Car s associated data. We can add additional associated data, like a Number

type to indicate the maximum payload and a Number to store the tow rating of its trailer hitch.

Individual Car s would be constructed in the program with concrete values in all the associated

data fields. The goal in an object-oriented design is to build a hierarchy of sets (types, classes) that
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reflects the hierarchy of labels of objects. Internal properties of the objects being modeled are 'inside'

the types, and running a program involves modifying these interval values. Consequently, the style

is very noun-oriented [yegge2010execution].

An alternative foundation is to model types around logic, capturing ideas like mutual exclusion,

associated data, and value-to-value relationships in the types. We need an example here:

data Coord = C Double Double (1)

ptA = C 0.1 0.1 :: Coord (2)

ptB = C 1.1 0.1 :: Coord

ptC = C 0.5 2.1 :: Coord

data SpikeRegion = (3)

Box { corners :: (Coord,Coord), bChans :: (Int,Int)}

I Polygon { polyPoints :: [Coord], pChans :: (Int,Int)}

I Union SpikeRegion SpikeRegion

I Intersect SpikeRegion SpikeRegion
I Diff { rBase :: SpikeRegion, rDelete :: SpikeRegion}

regionA :: SpikeRegion -- (4)
regionA = Box {corners = (ptA, ptB), bChans = (1,2)}

regionB :: SpikeRegion
regionB = Polygon { polyPoints = [ptA,ptB,ptC], pChans = (2,3)}

regionC :: SpikeRegion
regionC = Intersect regionA regionB

. (1): We first define our own set Coord, the set of all pairs of Double s (real numbers). The C

is a 'constructor' that can be used to build a Coord.

. (2): ptA, ptB and ptC are each particular Coord s, built from C and a pair of real numbers.

* (3): We define a more complicated type, SpikeRegion, the set of amplitude regions that could
be used to spike-sort tetrode data. A spike region could take one of five forms. The definition
of each form is separated by a I and a new line. The Box constructor builds a Spike Region
from a pair of Coord s and the pair of electrode channels used for sorting. The terms 'corners'
and 'bChans' here are not important - they are just labels for accessing the Box s internal
data later. Alternatively, the Polygon constructor can be applied to a list of Coord s. Union
is different; it is built from its constructor and a pair of other SpikeRegion s. Its meaning in
our program is: 'the space that is in either of the associated bounding regions'.

. (4): We define three different regions. The first is a rectangular region defined for tetrode
channels 1 and 2. The second is a polygonal region defined by our three Coord s on channels
2 and 3. The third is the intersection of the first two regions. regionC is a typical sort of
region used in manual cluster-cutting: the intersection of regions drawn on two projections. A
region that uses a third projection to further restrict regionC could be constructed simply as
Intersect regionC anotherRegion.
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To declare five mutually-exclusive sorts of regions in Python, we have two options, neither of which

are as intuitive as the Haskell type above.

First, we could write one class with an associated string that we set to 'box', 'polygon', etc, as well

as the sum of all the associated data for all of the possible sorts of regions. This solution allows a

programmer using a SpikeRegion type to accidentally use value that does not belong with that sort

of region. If we try to refer to one of the Intersection 's sub-regions when our region is a Box, our

program will crash at some time in execution. An more serious issue would arise if data were used

in a way that disagrees with the meaning of the type but does not cause a crash. It would be a very

innocent mistake for a programmer to accidentally make use of the bChans data when working with

a Union region, believing that they are taking the union of two projections instead of a union within

the full 4 channels of a tetrode. This is a silent bug; the program will run but produce incorrect

results. In the best case, a user will notice this and the bug will be fixed; in the worst case the error

will propagate into the experimental conclusions.

Alternatively, we could use object-oriented style in Python to enforce the invariant that Box and

Union and the others are associated with different sorts of data. The approach would be to define

a GenericRegion class with no associated data, and one associated 'stub' function for checking

whether the generic region contains a spike (the stub will not be implemented - it's a placeholder).

Then five new classes can be written for the five types of region. The derived Box class will have

fields for the corners of the box and for the channels of the electrode. The derived Intersection class

will have two references to other SpikeRegion s. This solution enforces our invariant nicely, but it

forces the functions that use a subtype of SpikeRegion to resolve the actual type; and it cost us a

lot of boiler-plate code defining all of our subtypes. Additionally, we have no way to keep track of

whether additional classes will be derived in distant files that are part of the same program.

The mechanism of defining data types in Haskell allows (in fact, forces) the programmer to enumerate

the variants of a type in one place, circumventing the issues discussed in the context of Python's types.

Additionally, because the definition of our data is collected into one place, the compiler can know

enough about our type check its use during compilation, before the program is ever run. It would

be impossible for the programmer to accidentally refer to the sub-region of a Polygon and produce

an error in running code, for example, because the compiler would recognize this as a contradiction

in terms (Polygon has no associated sub-region data) and refuse to produce an program from the
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faulty code. The compiler can also ensure than any function operating on SpikeRegions has handled

every possible case of SpikeRegion. This checking is a tremendous source of help to a programmer

experimenting with changes in the data model. Without this checking, bringing the rest of a program

into alignment with a change to a data definition is often done by running the program to the point

of failure, finding and fixing one bug at a time.

Functions in Haskell are values and therefore have types. Their types indicate their domain and

range. length is a function from [a] (list of any type) to Integer. We will also define a tetrode spike

and a function for judging whether it is in a region.

length [a] -> Int
length = undefined -- we'L/ impLement 7.ength scon

data TetrodeSpike = TS [Double]

regionContainsSpike SpikeRegion -> TetrodeSpike -> Bool
regionContainsSpike = undefined

The type of regionContainsSpike looks strange to normal programmers because there is not a

clear distinction between arguments and return values. However there is something interesting

happening. The -+ in a type is right associative, so a -+ b -+ c is synonymous with a -+ (b -* c).

regionContainsSpike is in fact a function that takes a SpikeRegion and returns a (TetrodeSpike -+

Bool), a function. We can apply this new function to a TetrodeSpike to get a Bool. Surprisingly,

all functions in Haskell are 'actually' functions of one argument. Multiple-function arguments can

always be simulated in terms of single-argument functions that return new functions taking one

argument fewer.

Declarative programming

Another side of the story of how Haskell facilitates writing code with fewer bugs is immutability -

the notion that variables are fixed at a single value throughout a program. The rationale is that the

behavior of a program is much harder to reason about when variables are allowed to change value.

All modern languages have facilities for limiting the access of particular variables to specific other

regions in the source code, to make this reasoning easier. Haskell goes to the extreme by forbidding

any variable from changing.
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Removing the ability to change a variable is obviously an enormous restriction on the flexibility

and usefulness of a language, and it's not immediately clear how many types of programs we could

recover in this regime. In fact, this aspect of Haskell was very unflattering during its early history

[1481. But a great deal of research and practice have resulted in new programming tools, styles

and idioms that bridge the gap. After importing something called a monad from abstract math,

the notion of change could be integrated into the type system in a highly principled way [149], and

now Haskell is an exceptionally good language for coordinating programs with moving parts and

uncertainty from the data in the world.

But before resorting to monads, it is useful to see how many values can be computed without making

use of changing variables, using pure mathematical equations instead.

length :: [a] -> Int

length [1 = 0
length (x:xs) = 1 + length xs

In this listing, the function length is defined by parts. The length of the empty list ( [] ) is 0. The

length of any list that can be broken into its first element and a remainder is 1 more than the length

of the remainder. Evaluating the right-hand-side in the non-empty-list case involves a recursive

call to length on xs. The term (x : xs) on the left-hand side is a way of naming different parts of

the input value passed to the function that makes this kind of recursive definition (the definition

of functions in general) convenient. These names only apply within the body of the function, they

aren't permanently stored or passed into sub-functions. So when we recursively descend into length,

the name xs is a different variable in each context, respectively being bound to a smaller sub-list.

This is easier to see with the names removed completely:

length "Rat" -mackes R :"at")

= 1 + length "at" -atcies (: "' W)

= 1 + 1 + length "t" - mt he- (t1- !)
= 1 + 1 + 1 + length [0 matche2s
= 1 + 1 + 1 + 0
=3

Using recursion, we described the length of the list, rather than computing it with iteration as we

would in Python:

def listLength(x):
nElem = 0
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for i in x:
nElem = nElem + 1

return nElem

print listLength('Hello iteration.')

16

The differences between declarative and traditional styles becomes more clear when we combine

pieces together into larger programs. Let's try to take the product of the first 10 elements of the

Fibonacci sequence.

def listProduct(xs):
acc = 1
for n in xs:

acc = acc * n;

return acc

def makeFibonacci(nElems):
fibs = [1,1]
for n in range(2,nElems):

fibs.insert(n,fibs[n-1) + fibs[n-2])
return fibs

print listProduct (makeFibonacci (10))

122522400

This works, but it's a little unsatisfying to have to say how to build an array filled with Fibonacci

numbers, instead of describing the series itself, and that the definition is tangled up with an ar-

bitrary detail, the length of the list we want to produce. What would happen if we needed the

$1000000000$th number, and the array didn't fit it memory? Should we have used something more

complicated like a generator, to produce Fibonacci numbers without using increasing amounts of

memory? This would force any users of makeFibbonacci to consume streams. In Haskell, we use

recursion to declare what Fibonacci numbers are:

fibs [Integer]
fibs = [1,1] ++ (zipWith (+) fibs (tail fibs))

Translating this into English, fibs is the list [1,1] followed by the list-wise sum of fibs with fibs

less its first element. The surprising fact that we can define a value in terms of itself comes from

82



the fact that, in math, we don't need to know the entire list fibs in order to apply a function to

fibs, we only need to know enough about fibs to satisfy what will be used by the function. Here

fibs is defined as a seed and a function that only needs the seed in order to produce the next value.

But this is an implementation detail. From the point of view of the programmer, we have our hands

on a value fibs that is indistinguishable from the entire infinite series. Trying to take the product

of the list will take infinite time, not because our definition is infinite, but because we are doing

something infinite. On the other hand, we can do something finite with something infinite, and it

will take only finite time.

module Main where

fibs = [1,1] ++ (zipWith (+) fibs (tail fibs))

prodFibs n = product (take n fibs)

main = print(prodFibs 10)

122522400

This property of being able to apply functions to arguments when the arguments aren't fully known

is called laziness, and it is one of the main features allowing declarative programming style and the

combination of diverse software components into large programs. Combining infinite things with

other infinite things in finite time, and decoupling mathematical models from details about how many

elements to generate, are central to that. For an excellent discussion of functional programming's

role as a glue layer between large components see Why Functional Programming Matters [88].

Concurrency - difficulty of running multiple threads simultaneously

Concurrency is the simultaneous execution of multiple sections of code simultaneously.' The Haskell

standard library provides the function forkIO, which takes as its input a single action to run and

acquires a new thread from the Haskell runtime to run that action.

module Main where
import Control.Concurrent
import Control.Monad

action :: [Char] -> IO 0
9 0r interleaved in time with one another quickly enough that they appear to be executing simultaneously
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action xs =

forM_ xs (flip (>>) (threadDelay 500000) . putChar)

main = do
forkIO $ action ['a'..'e']
action ['v'..'z']

>> avwbxcydze

Our action function takes a list of characters and slowly prints them. In main, we send one action

applied to the list ['a'..'e'] to a separate thread, and run the same action applied to a different list

on the main thread. Because these actions are running concurrently we see the letters mixed with

one another in the output (if we remove the forkIO, we would have seen 'abcdevwxyz' because the

two actions run sequentially).

The fact that 'w' appears before 'b' is surprising, since we expected that 'a' appearing before 'v'

implied that the first action's effects will happen before the second action's. In fact we have requested

that the letters from the respective lists be printed approximately at the same time; the exact

ordering depends on tiny fluctuations in the timing of threads in the runtime system. Running

this program repeatedly, 'b' does come before 'w', about half of the time. When the output of a

concurrent program is noticeably different in circumstances that are not noticeably different, this is

called a 'race condition' [150]. The metaphor is that two threads are racing toward two positions in

memory; the first one will write into the first slot and the second will will write into the second slot.

Does it matter whether 'b' or 'w' is printed first? The answer depends on the application. Even

in moderately complex programs, predicting the locations of race conditions can be unintuitive and

failing to notice them can result in corrupted data or a disruption of the forward flow of the program.

In one famous case, a race condition among three power-line sensors lead to a failure of the alarm

system at FirstEnergy Corp, preventing a response as snow-covered trees damaged a number of

cables,1 0 and leading to a 2-day blackout for 8 million Canadians and midwesterners[151].

As a rule of thumb, race conditions become problematic when multiple threads share read and

write access to common data, and some multi-step operations on that data only make sense if

1OThe report tells in fascinating detail just how hard routing out this kind of bug can be: "The bug had a window
of opportunity measured in milliseconds. 'There was a couple of processes that were in contention for a common data
structure, and through a software coding error in one of the application processes, they were both able to get write
access to a data structure at the same time,' says Unum. 'And that corruption led to the alarm event application
getting into an infinite loop and spinning ... This fault was so deeply embedded, it took them weeks of poring through
millions of lines of code and data to find it."'

84



the operations are carried out without interruption. The classic example a the bank processing

transactions of two friends, "Alice" and "Bob", who unwittingly transfer money to one another at

approximately the same time. In this case two different processing threads need to access shared

data: the balance of Alice's account and the balance of Bob's account. This code does the job:

module Bank.Transfer where

transfer :: IORef Account -> IORef Account -> DollarAmount -> 10 0
transfer fromAccount tAccount amount = do
a <- readIORef fromAccount
writeIORef fromAccount (a - amount)
b <- readIORef toAccount
writeIORef toAccount (b + amount)

The IORef Account type is a reference to a value that can be shared across threads. transfer takes

two references and an amount to transfer. It then reads the balances and increments each to reflect

the money transfer. This works as long as Alice and Bob aren't at the bank at the same time. But

if they try to send each other money at nearly the same time, data races can invalidate invariants

that we expect to hold - such as the invariant that the sum of two accounts before and after any

transaction should be equal. In the following example, thread A processes a $10 transfer from Bob

to Alice while thread B processes a transfer of $20 from Alice to Bob, and interleaved effects cause

$10 to be lost in the balance.

Table 3: Two concurrent threads operating on shared data
will often lead to a corrupted final state. This happens be-
cause the individual steps in each operation change the shared data
in ways not accounted for by the other thread. Thread A is pro-
cessing $10 transfer from Bob to Alice; thread B is processing a
$20 transfer from Alice to Bob.

Time Thread Command Alice Bob Violated invariant?

0 A getBalance bob 100.00 50.00 No
1 A setBalance bob (50 - 10) 100.00 40.00
2 B getBalance alice 100.00 40.00
3 B setBalance alice (100-20) 80.00 40.00 ...
4 B getBalance bob 80.00 40.00 ...
5 B setBalance bob (40+20) 80.00 60.00 ...
6 A getBalance alice 80.00 60.00 ...
7 A setBalance alice (80+10) 90.00 40.00 Yes
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So functions that may be run in a concurrent context must somehow clamp the access to variables

so that that threads don't make changes behind one another's backs. The basic tool for this is the

mutex," a 'lock' that can be taken by at most one thread at a time. Mutexes are managed by the

runtime system and are synchronized across all threads. It's up to the programmer's discretion how

many she would like to create and which blocks of code she would like to wrap with them, and

how tightly. But it turns out, there is no generally acceptable answer here either! We can wrap

the entire transfer function in a single mutex, but this means the entire program can only run a

single transfer at a time; Bob and Alice are blocked from making their transfers while a completely

unrelated transfer between Chris and Dean is going on. Alternatively, we could make a mutex for

each account-holder in the bank, and in the process of transferring money between Alice and Bob,

we take both mutexes in turn, perform the transfer, then return both mutexes. This can be made

to work, but perhaps surprisingly, it is subject to a problem similar to that in the mutex-free case:

the act of taking and releasing mutexes is prone to interaction effects. Alice transferring to Bob at

nearly the same time that Bob transfers to Alice can cause one thread to take Alice's mutex just as

the other take's Bob's, and then neither thread can make progress because each one is stuck waiting

for the other to finish its transaction and release the complementary mutex. The topic is inherently

difficult to understand, but the author is partly to blame for this too, in this case. For a more

thorough treatment of this topic refer to Marlow's excellent Parallel and Concurrent Programming

in Haskell [94]. The main point is, concurrency is often necessary to consider in programs that

interact with the outside world, with inputs coming from multiple sources, and coping with it can

be subtle and difficult.

Functional programming is a promising avenue for handling concurrency because so much of the

business of functional programming is not about describing how things are done, but what things are.

The relationships between values are timeless and constant. So the "surface area" of a functional

program on which parts are legitimately changing is small. We still have to consider data races

in those places where values change, and here Haskell offers an interesting solution, called Software

Transactional Memory[152] (STM).' Allow concurrent mutation to happen without locks, and allow

the runtime system to detect when this produces corruption, then undo whatever actions caused the

corruption and run them again from a clean version of the data. This approach would be impossible,

1
Mutex is short for Mutual exclusion

"Other popular systems have implemented STM: the database management system PostgreSQL [153], Java, and
the associated functional language Clojure[154], and it has been implemented at the hardware level[155].
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if the system were attempting to track the changes to every variable, and it is generally impossible

to "undo" arbitrary actions that change the state of the computer. But in Haskell we can declare a

small subset of variables to be tracked by the system, and use the type system to enforce that the

only variables allowed to change are those tracked ones.

Do we face the same challenge that we had with mutexes above, choosing between two unfavorable

alternatives when in comes to the scale at which we wrap our actions with the change-tracking and

rollback abilities? Not in such a strict sense, no. Single actions manipulate tracked variables, but the

tracking and rollback by default do not happen. Instead of tracking by default, individual actions are

able to be combined together with other actions, and the composite action is tracked for corruption

and allowed to be rolled back. In the bank example, we would combine the four-action sequence (get

Alice's balance, set Alice's balance, get Bob's balance, set Bob's balance) into one composite action

and mark that composite for tracking and rollback. This gives us the same level of protection as

the single global mutex scenario. But individual threads are free to work simultaneously on other

transactions.

This approach is very highly preferable to the preemptive threading and mutex tools that program-

mers traditionally go to first when designing mulicore shared memory programs at this modest scale.

But it does have a fairly serious drawback. Attempting to push a small number of expensive changes

to shared variables from one thread, and a large number of very cheap changes from another thread,

can cause the first thread to repeatedly fail to have its changes committed. This is known as thread

starvation. What constitutes and expensive computation, a cheap computation, or a large number?

These factors are system dependent. It can be hard to anticipate that thread starvation will rear its

head. In general, one simply implements their algorithm using STM and tests to see that operation

seems to be going as expected. But optimistically increasing the workload you subject an STM

program to can be risky.
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