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Abstract:

This work establishes a benchmark by which to measure models of the ventral stream

using crowd-sourced human behavioral measurements. We collected human error pat-

terns on an object recognition task across a variety of images. By comparing the error

pattern of these models to the error pattern of humans, we can measure how similar to

the human behavior the model's behavior is. Each model we tested was composed of

two parts: an encoding phase which translates images to features, and a decoding

phase which translates features to a classifier decision. We measured the behavioral

consistency of three encoder models: a convolutional neural network, and a particular

view of neural activity of either are V4 or IT. We measured three decoder models: logis-

tic regression and 2 different types of support vector machines. We found the most con-

sistent error pattern to come from a combination of IT neurons and a logistic regres-

!iOn, hi it fi ind! that this mode! performed far worse than humans. After accounting for

performance, the only model that was not invalidated was a combination of IT neurons

and an SVM.
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Introduction

Why are models of the ventral stream interesting?

The human visual system is the largest sensory system, and has long been a

target for modeling in computational neuroscience. The inputs are well defined and eas-

ily controllable, and there are several well-defined tasks that this system performs which

are fairly computationally complex. One of these behaviors has long been of interest to

systems neuroscience: object recognition. This task is generally thought to be support-

ed mostly by a subsystem of the visual system called the ventral stream. Lesion studies

and neural decoding have suggested that the ventral stream is a key driver of object

recognition behavior (1, 2, 3). We operationally define this task as choosing mapping

label from a set of possible alternatives to an image. The combination of a concretely

defined task and some understanding of which parts of the brain are involved make this

a very attractive target for computational modeling.

Why benchmark models?

Models of the ventral stream have a long history, and recently have seen rapid

development due to GPU computing, advances in optimization methods, and access to

large scale image data sets (7, 8). This rapid advance, which will likely continue, has

brought about the need for assessing how "brain-like" these ventral stream models are.
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This is important for neuroscience because one top-level goal of neuroscience is to em-

body understanding in an instantiated model: reproduce the brain in-silico.

Why behaviorally benchmark?

One route is to compare the activity of units within the models to the activity of

units in the ventral stream. This is a promising direction which is ongoing and has seen

recent developments. There are two practical limitations to this. First, neural data is very

expensive and takes a long time to acquire. Part of this is related to the limit of how

many neurons can be recorded per monkey, which is a purely technological limitation

which will see quick development, but part of this is also due to how many monkeys a

single scientist can record from, which is a more complex issue. Second, all methods

capable of recording at the high spatial and temporal resolution required for detailed

comparisons between a computational model and neural activity are invasive. This

means they cannot be used on humans. While there are promising results showing the

similarity of object recognition behavior between monkeys and humans, there is no

guarantee that all visual behaviors of interest to neuroscience can be achieved by train-

ing rhesus macaques.

Given these limitations, we have begun to explore an alternative route: behav-

ioral benchmarking. This method requires building a "full pipeline" model that goes from

images to behavior. Any such model can be broken down into at least two subcompo-

nents: an encoding modei that goes from images to some internai representation, and

a decoding model which produces behavioral outputs from this internal representation.

What previous behavioral benchmarks exist?
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Previous work (1, 3) has benchmarked models on more coarse behavioral measures.

This work has resulted in a model of how object recognition behavior is generated by

the ventral stream which has a task-level error pattern that is consistent with human be-

havior. Within object recognition there are many different possible subtasks, such as de-

tecting different objects and within category versus across category tasks. The existing

model can predict the ranking of difficulty of these tasks for human observers: the same

tasks it finds difficult, humans find difficult.

What is different about this benchmark?

In this work, we propose going a step further and analyzing behavioral patterns

at an image level, instead of at a task level. We use models to make image by image

predictions about behavior, then we compare these predictions to actual human behav-

ior.

What is the target behavior for the models?

We collected human behavioral data for 128 images, resulting in an error pattern:

a ranking of the difficulty of these images. A consistent model is one that ranks the im-

ages in the same order.

Task overview Example images

100 ms
Fruit Airplane

No time constraint
Table

100 ms 100 ms

Car
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In the task, we presented a fixation dot for 100 milliseconds, the image for 100 millisec-

onds, and then a blank for 100 milliseconds. The subject then picked among 8 cate-

gories. The objects were shown at unusual angles on random backgrounds in order to

probe invariant object recognition and avoid simple template-matching.

What models were benchmarked?

We chose to use three encoding models a neural one, a computational one, and

a control neural model.

1. For a neural encoding model we chose a particular read of neurons in the infer-

otemporal cortex which was found in a previous study to be the most consistent with

human behavior: The average activity from 100-170 ms after image onset, averaged

over 30 trials. We refer to this encoding model from now on simply as "IT"

2. For a computational model, we chose the convolutional neural network with the best

performance on a difficult object recognition task that was available for use, based

on the hypothesis proposed in (PNAS paper) that higher performing computational

models are more likely to predict neural activity, and therefore presumably will also

produce behavior that is similar to humans. Since this model architecture was based

on a publication by a group pat NYU, we refer to this model simply as "NYU"

3. For a control neural model we chose 128 multiunit sites of V4 neurons that were

processed in the same way as those in IT (30 trial average, 100-1 70ms window),

and refer to this as "'v4"

We chose three different decoding models:
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1. A multiway one versus all SVM, which is not probabilistic and was the model previ-

ously used which is consistent at the task level, for this reason we refer to it as the

"Standard Model"

2. A logistic regression which makes probabilistic predictions. We refer to this simply

as the "Logistic Regression Model"

3. A one vs. one SVM built out of many 2 way classifiers which makes probabilistic

predictions. In order to produce probabilistic estimates from an SVM, a one vs. one

scheme has been found in previous studies to be a good starting point (9). We refer

to this as the "SVM probability estimate model"

The main difference between these models is that the second two make probabilistic

predictions, and therefore can produce accuracies on a single image that are between

zero and one. The "standard model" will either get an image correct or incorrect: the ac-

curacy is either 0 or 1.

Methods

Computational Models

We trained a large convolutional network architecture specified in (8) in order to have a

roughly state of the art model to benchmark against. We attempted to reproduce the

methodology specified in that paper using the cudaconvnet library. The field is moving

very quickly so by now this is already an outdated architecture. One line of future work

is to benchmark more recent models the same way.

Decoding Models:
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We used scikit-learn to implement the decoding models, using default parameters, ex-

cept for the regularization parameter, which was selected using a grid search. For the

"Standard Model" we used LinearSVC, which is one versus all. For the logistic regres-

sion model, we used the LogisticRegression class. For the "SVM probability estimate

model" we used the SVC class, which defaults to a one vs. one scheme instead of a

one vs all scheme.

Neural data:

The neural data was collected via a multi-electrode array, with 196 channels. The neural

data used in this line of work is the same as in (4), where it is more thoroughly de-

scribed.

Behavioral data

Using an a custom javascript library, we were able to get precisely timed presentations

of images. We used 100 ms presentations both in order to match the presentation time

of the neural data and in order to avoid eye movements and generate a dynamic range

of errors which are the signal used in the behavioral benchmarking method. We showed

128 images to 25 subjects for 2 repetitions of each image. After each image 8 choices

were presented, and the subject was asked to classify the image into one of 8 cate-

gories: airplane, animal, boat, car, chair, boat, face, fruit, or table. The subjects were

rewarded a performance based bonus to incentivize maximum performance. The sub-

jects were recruited via Amazon Mechanical Turk.

Fine-grained behavioral benchmarking

The data gathered on Mechanical Turk (mturk) was then used to calculate consistency

as follows. First, an error pattern is produced by calculating the percentage correct for
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each image across repeated presentations of each image. This produces a set of error

patterns: one per individual. Then, a pooled error pattern is calculated by taking the

mean across subjects. The goal is then to calculate how much each human individual

looks like the pooled error pattern. This correlation will by how internally consistent the

human individuals are and so we estimated this limit by splitting the data in half, and

normalizing by it. Specifically, we split each individual's trials in two halves, and corre-

lated the error pattern between the two halves, H1, H2 to calculate internal consistency

of that individual: Rh. The pool internal consistency was also calculated by splitting the

trials in half, P1, P2 and correlating between the two resulting error patterns: Rp. Then

the consistency between each possible choice of human (H1, H2) and pool (P1, P2)

halves was calculated, then normalized by the geometric mean of Rh and Rp. This

process was repeated for 1000 iterations of different splittings and then the median of

all the normalized consistencies was used as the consistency for that individual. This

results in a distribution of consistencies to the pool.

Extrapolation:

Consistency increases as more sites are added and so we used extrapolation to make

some inferences about how different neural models may behave if we had access to

more sites. We fit a variety of functional forms to the data, and then selected one of the

functional forms based on cross validation. We limited extrapolation to 500 units, as this

is roughly the range where a previous study found that an extrapolation of object recog-

nition performance of IT neurons intersects human level performance.

Results
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Human split half consistency = 0.859015846188
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terns from this combination of encoding and decoding model are less consistent with

the pooled human error pattern than any of the humans found in the sample, even if we

extrapolate out the trend in increasing consistency to 500 units.

Standard M~iodel + IT 100-170 i SVM Probability Estimate Model + IT 100-170
L 0 1 .0 o 0 -0 -- 0 0

* U 0

0.8 - 0.80-0.8-

. . 0
0.

0.0

0. . 4 06 08 0080 0'. 04 0. 0.

Model prediction Model prediction

This means that as a model of human behavior, this particular read of IT plus an

SVMV model are strongly invalidated. If we look closely at the correlation between the

error patterns of the model and the human pool, immediately the problem is clear: the

predictions of the model can only be either correct or incorrect on a per image basis,

which makes the correlation between the model predictions and the observed human

behavior suffer.

If we instead use a decoding model that can produce probabilistic predictions

then we can estimate the probability of getting a given image correct by simply assum-

ing that the model will pick each class in accordance with how probable it believes that

the class is. That is, if probabilistic prediction for class 1 and class 2 are both 50%, then

each class is chosen half the time. This means that if class 1 is the correct answer, then
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the model will be correct 50% of the time. This model extrapolates much better, and the

error bounds on the extrapolation are within the human distribution by the time the ex-

trapolation reaches 500 units, and therefore this model is not strongly invalidated.

1.0 IT + SVM Probabili Estimate Model Human to Pool consistency distribution
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However, this decoding model does not rescue the other two encoding models tested

from being strongly invalidated:
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The logistic regression model appears to be slightly more consistent and is also

not invalidated on consistency grounds:

IT + Lo istic Re ression Model Human to Pool consistency distribution
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However, its performance (measured as the percentage of responses that are correct)

appears to plateau at far below human levels. This means that IT+ a logistic regression

is invalidated on performance grounds. This is, however, not an issue for the SVM

probability estimate model, which does not plateau in performance as function of the

number of features.

Human performance distribution
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In summary, only two models ever enter the human distribution: IT+logistic, and IT+SVM

probability estimates. Out of these two, the logistic regression appears to be invalidated

on performance grounds.

1.0 All Model Extra olations
IT+Logistic

- - IT+Standard
- - IT+SVM probability

0.8 - NYU+Logistic
~o -- NYU+Standard
0
a. - - NYU+SVM probability
o - V4+Logistic

- V4+Standard
40 -- - V4+SVM probability

(U

. -

L.2

0.4

Li

10 102 103

# Features

Conclusions/Future directions

The main conclusion from this work is that in order to accurately predict human error

patterns on an image by image basis, probabilistic estimates of class membership out-

perform simple maximum operators over class margins. In addition, the particular read
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of IT we have used still seems like a promising encoding model, while the particular

computational neural network model we used has been invalidated. This highlights a

key future direction of this work: using the same benchmark in order to assess different

computational models. The development of deep neural network models has become a

very fast-moving field. This benchmark, among others, may be a useful way to assess

whether the development of these models is still "on track" to become more brain-like,

as opposed to purely performance driven. In addition, the stringency of this benchmark

may be strengthened by taking a larger sample of images with more trials per human,

perhaps allowing even the best existing models (IT 100-170 + Logistic regression) to be

invalidated.



17

Bibliography

1. Najib Majaj, Ha Hong, Ethan Solomon, James DiCarlo, "A unified neuronal popula-
tion code fully explains human object recognition," Computational and Systems Neu-
roscience (COSYNE).

2. Cowey, A., and C. G. Gross. "Effects of foveal prestriate and inferotemporal lesions
on visual discrimination by rhesus monkeys." Experimental Brain Research 11.2
(1970): 128-144.

3. Hung, Chou P., et al. "Fast readout of object identity from macaque inferior temporal
cortex." Science 310.5749 (2005): 863-866.

4. Daniel Yamins*, Ha Hong*, Ethan Solomon, Darren Seibert, and James DiCarlo,
"Performance-Optimized Hierarchical Models Predict Neural Responses in Higher
Visual Cortex," Proceedings of the National Academy of Sciences, 111, 2014.

5. James DiCarlo, Ha Hong, and Daniel Yamins, "Modern population approaches for
discovering neural representations and for discriminating among algorithms that
might produce those representations.," Vision Sciences Society Annual Meeting
(VSS).

6. Daniel Yamins*, Ha Hong*, Charles Cadieu, and James DiCarlo, "Hierarchical Mod-
ular Optimization of Convolutional Networks Achieves Representations Similar to
Macaque IT and Human Ventral Stream," Advances in Neural Information Process-
ing Systems (NIPS), 26, 2013.

7. Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." Computer Vi-
sion and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009.

8. Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional
networks." Computer Vision-ECCV 2014. Springer International Publishing, 2014.
818-833.

9. Wu, Ting-Fan, Chih-Jen Lin, and Ruby C. Weng. "Probability estimates for multi-class clas-
sification by pairwise coupling." The Journal of Machine Learning Research 5 (2004):
975-1005.


