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ABSTRACT

Organisms have a remarkable ability to respond to complex sensory inputs with intricate, tuned
motor patterns. How does the brain organize and tune these motor responses, and are certain
circuit architectures, or connectivity patterns, optimally suited for certain sensorimotor
applications? This thesis presents progress towards this particular problem in three sub-
projects. The first section re-analyzes a large data set of single-unit recordings in zebra finch
area HVC during singing. While HVC is known to be essential for proper expression of adult
vocalization, its circuit architecture is contentious. Evidence is presented against the recently
postulated gesture-trajectory extrema hypothesis for the organization of area HVC. Instead, the
data suggest that the synaptic chain model of HVC organization is a better fit for the data, where
chains of RA-projecting HVC neurons are synaptically connected to walk the bird through each
time-step of the song. The second section examines how optimal sensorimotor estimation using
a Bayesian inference framework could be implemented in a cerebellar circuit. Two novel
behavioral paradigms are developed to assess how rats might tune their motor output to the
statistics of the sensory inputs, and whether their behavior might be consistent with the use of a
Bayesian inference paradigm. While neither behavior generated stable behavior, evidence
indicates that rats may use a spinal circuit to rapidly and dynamically adjust motor output. The
third section addresses the formation of habitual behaviors in a cortico-striatal network using
rats. Stress and depression are known to significantly alter decision-making abilities, but the
neural substrate of this is poorly understood. Towards this goal, rats are trained on a panel of
decision-making tasks in a forced-choice T-maze, and it is shown that a chronic stress
procedure produces a dramatic shift in behavior in a subset of these tasks but not the rest. This
behavioral shift is reversed by optogenetic stimulation of prelimbic input to striatum, pinpointing
a circuit element which may control stress-induced behavioral changes. Furthermore, a circuit
hypothesis is presented to explain why sensitivity to changing reward values diminishes with
overtraining.

Thesis supervisor: Matthew A. Wilson
Title: Professor of Neuroscience



1: Evidence against a GTE model of HVC dynamics during songbir
vocalization

Introduction

Mature songbirds are able to produce a remarkably stereotyped, accurate song which
varies from individual to individual and is based on imitating a tutor’s song. How is this
stereotypy produced by the brain? The premotor nucleus HVC has been shown to be essential
for proper adult vocalization and song stereotypy: lesions in HVC severely degrade the song
(Nottebohm et al, 1976). One model of song production (Fee et al, 2004) has a series of
synaptically connected HVC neurons activate in sequence and walk the bird through each time-
step of the song. Here, each HVC neuron bursts at the same time-point during each song
rendition; and activates a set of RA motor neurons which control the muscles which should be
active at that particular time-point in the song. By synaptically connecting chains of these
neurons together, nucleus HVC can represent a temporally ordered sequence of complicated
motor actions which is replayed virtually automatically. This model has received experimental
support: First, cooling HVC slows the song uniformly, while cooling other regions, which may
also be involved in encoding time, does not slow the song (Long & Fee, 2008). Notably, cooling
HVC does not slow certain timescales of the song more than others (eg syllables). This is good
evidence that a synaptic chain in HVC controls song timing exclusively, without the involvement
of other regions. A second piece of evidence is that intracellular recordings from HVC neurons
show activity consistent with a synaptic chain with no depolarization ramp before bursting (Long
et al, 2010).

However, recent work has proposed an alternate model where biomechanical elements
of the singing bird dictate HVC dynamics. Amador et al (2013) deconstructed the auditory
features of bird's songs, extracting information about the bird’s air sac pressure and labial
tension. They then identified points in the song where these two parameters reached extreme
points, called gesture-trajectory extrema (GTEs). In their model, HVC neurons would
preferentially burst at these GTE points, representing vocal gestures rather than representing
time as in the clock model. The authors presented a minimal data set of 6 HVC neurons, which
seemed to support their hypothesis. Notably, Amador et al reported the precise statistics of how
HVC bursts were distributed around GTE events (a normal distribution with standard deviation =
4 ms and mean < 1 ms.) To compare these two models | compiled and analyzed a larger data
set comprised of 40 HVC projector neurons.

I will first compare the distribution of inter-burst intervals in the extended HVC data set
with predictions from the clock model (predicting a homogenous poisson distribution) and from
the GTE model (predicting an inhomogenous poisson process), using Monte Carlo simulations
to arrive at empirically calculated 95% confidence intervals. | will also use point-process
modeling to compare the two models with the extended data set in a principled way,
constructing Kolmogorov-Smirnov plots. Finally, | will analyze the critical prediction of the clock
model that HVC neuron bursts should cover time in a reasonably uniform manner, by looking at
the probability mass function of the two models and of the data for different bin sizes. In all
cases we find a clear agreement between the extended data set and predictions from the clock
model, and the GTE model’s predictions are not consistent with the data set.

Extracting burst times
The large data set consists of the activity of 40 HVC projector neurons. Each neuron

was recorded over a number of song iterations, and generally produced spikes at the same time
during each song iteration. Spikes which were not produced reliably across trials were



eliminated, and the remaining spikes were convolved with a gaussian with a standard deviation
of 1.5ms, with the burst times being the center of mass of each cluster of gaussian-convolved
spikes. Burst times were rescaled based on syllable length for each rendition. Fig. 1 shows the
66-burst set extracted from the data.
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Figure 1: Extracted HVC bursts for 40 neurons (bottom) during a stereotyped song rendition
(top).

The clock model and the GTE model make different predictions about the statistics of
HVC activity during song production. The clock model predicts that HVC bursts will not be
centered around any song features, which is consistent with a homogenous poisson distribution.
Other distributions could also be consistent with this theory, as long as the distribution covers all
times so that a syn-fire chain can connect the neurons. Here, we will focus on a homogeneous
poisson process to explain the clock model, as it is the most parsimonious explanation. The
GTE model, on the other hand, requires that HVC bursts are centered on gesture extrema,
making the testable prediction that HVC burst statistics would be represented by an
inhomogenous poisson distribution with lambda peaking around GTE events. In this section, |
examine the inter-burst interval distribution from the data, and compare it to what would be
predicted from a homogenous and inhomogenous poisson distribution.

Fig. 2 shows the distribution of inter-burst intervals for the 66-burst data set (blue), with
an interval width of 5ms. If we consider the data as arising from a homogenous poisson
process, lambda = total events / total time = 93.8. Figure 2 also shows the theoretical curve of
inter-burst intervals arising from a homogeneous poisson distribution with this lambda (red),
which appears consistent with the data.



To more rigorously compare the data with a theoretical homogeneous poisson process,
we can calculate confidence intervals for the poisson process using Monte Carlo simulations.
For each of 1000 trials, burst times were drawn from a homogenous poisson process with
lambda = 93.8, over the song interval [0,0.703]. For each inter-burst interval value, | then used
the 1000 trials to find the empirical 95% confidence intervals, by calculating the upper and lower
bounds that 95% of the simulated data fit into for each inter-burst interval value (figure 2, red
stars). The data’s inter-burst interval values are within the 95% confidence intervals in each
case, meaning that we cannot reject the null hypothesis that the data is significantly different
than the homogenous poisson distribution (p>0.05). This provides evidence for the clock model
of HVC function.

The GTE model, on the other hand, predicts that the inter-burst interval distribution from
HVC neurons will be consistent with an inhomogenous poisson process, with a time-varying
lambda which peaks around GTE times. This section uses data reported in the paper originally
hypothesizing the GTE model (Amador et al, 2013) to estimate how lambda changes around
GTE events, generating a large number of simulations each with their own time-varying lambda
and associated burst train.

Amador et al (2013) pinpointed 39 GTEs in the song associated with their data set. For
each of 1000 simulations, | place 39 GTEs randomly on the interval [0,0.703], which is the song
length. To generate a simulation’s time-varying lambda, | convolve each GTE with a gaussian
(standard deviation 4ms, mean Oms, as reported in Amador et al (2013).) and then normalize
the area under this lambda’s curve such that it is identical to the area under the time-invariant
lambda’s curve shown earlier (lambda=93.8). This allows a direct comparison between the
inhomogenous and homogenous poisson distribution. There is now a time-varying lambda
associated with each simulation, which is based on realistic, reported parameters of the GTE
hypothesis. For each simulation, a simple thinning procedure was used to generate a spiketrain
drawn from lambda, from which inter-burst interval distributions were used to calculate 95%
confidence intervals similar to in the previous simulation. Figure 2 also compares the data’s
inter-burst intervals to those of the clock model (homogenous poisson process, red) and of the
GTE model (inhomogenous poisson process, green). By examining the 95% confidence
intervals of both models’ distributions, it is clear that the data is fit best by the clock model, and
is inconsistent with a GTE model distribution (p=>0.05 for inter-burst intervals between Oms and
5ms).
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Figure 2: Inter-interval distribution of HVC bursts (blue), compared with the distribution arising
from a homogeneous poisson process with 95% confidence intervals calculated from 1000
Monte Carlo simulations (red), and with a distribution arising from a nonhomogeneous poisson
process (green).
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The previous sections predominantly focused on using Monte Carlo simulations to
compare the empirically observed inter-burst intervals with those from the two models. However,
Kolmogorov-Smirnov plots provide a principled way of comparing models to data within the
framework of point processes, with the advantage that they do not rely on simulations. Here,
Kolmogorov-Smirnov plots are constructed to compare how well the clock and GTE models fit
the data.

To compare the clock model with the data, | first time-rescaled the burst times based on
a constant lambda = 93.8, consistent with the clock model’s homogenous poisson distribution. |
then placed these time-rescaled burst times on the interval [0,1] by calculating u(j)=1-exp(-time-
rescaled_burst_time(j)) and sorted this new u. | calculated theoretical values b(j)=(j-1/2)/AJ,
where J is the total number of bursts. The pairs (b(j), u(j)) should fall on the unity line if the
model agrees well with the data. | used 95% confidence intervals defined as Cl(j)=b(j)x1.36/
(J12). Figure 3 shows the K-S plot of the data compared with the clock model (homogenous
poisson distribution). The clock model fits the data well.

| then compared the GTE model with the data. All of the data’s neurons were associated
with one bird, and | used real GTE events for that bird's song, generating a time-varying lambda
as before. Figure 4 shows the K-S plot comparing the data with the GTE model, with 95%
confidence intervals. The relationship is outside of the confidence intervals, especially with
CDF<0.5. It appears, then, that the GTE model is not consistent with the data (p<0.05).
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Figure 3: Kolmogorov-Smirnov plot comparing empirical data with the clock model
(homogenous poisson distribution). 95% confidence intervals are shown.
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Figure 4: Kolmogorov-Smirnov plot comparing empirical data with the GTE model
(inhomogenous poisson distribution). 95% confidence intervals are shown.



Probability mass functions: the clock and GTE models compared with empirical data

The critical difference between the clock model and the GTE model is that the clock
model requires that area HVC continuously represents time during the song. A homogenous
poisson distribution would be especially beneficial for this, since it would guarantee that as the
number of neurons increased, the song would almost certainly be uniformly covered with HVC
neuron bursts. In this section | test this crucial tenet of the clock model (uniform song coverage)
by comparing probability mass functions between real data and Monte Carlo simulations of the
clock and GTE model. An oversampling procedure is used to reduce the variability which may
arise if the bin’s start and end location are placed such that it does not see any bursts. Briefly,
the data was binned, and then the bin start points were shifted by 5ms increments and binned
again, repeating until the total number of shifts possible were reached. This oversampling
procedure reduced the variability which may arise if the bin’s start and end location are placed
such that it does not see any bursts.

| analytically calculated the probability mass function for an idealized homogenous
poisson process. For each bin size, lambda_bin=lambda*bin_size. Then the probability mass
function pmf(k)= ((lambda_bin”k)/k!)*exp(-lambda_bin), with k being the number of projectors
active in a bin. | used Monte Carlo simulations to generate a mean probability mass function for
an inhomogenous poisson process. | then plotted the probability mass functions from the two
models and from the empirical data, with bin sizes of 10ms and 50ms, although similar results
are obtained with other bin sizes. Fig. 5 and 6 present these probability mass functions. The
clock model (homogenous poisson process) fits the data much better than the GTE model in all
cases.
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Figure 5: Probability mass function of the data, the clock model, and the GTE model, with a
10ms bin size. The clock model’s curve is calculated analytically, and the GTE model’s curve is
calculated by Monte Carlo simulation.
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Figure 6: Probability mass function of the data, the clock model, and the GTE model, with a
50ms bin size. The clock model’s curve is calculated analytically, and the GTE model’s curve is
calculated by Monte Carlo simulation.

Discussion and conclusion

The clock model is an elegant way of explaining how premotor area HVC could control
stereotyped song production, with neurons connected in a syn-fire chain to form a continuous
representation of time through a sequence of sparse bursts propagating through the chain.
While the GTE model appears to incorporate elements of biological significance (for instance,
having ‘important’ song components represented preferentially by HVC neurons), this model
does not provide a clear explanation for how stereotyped songs could be produced virtually
automatically under the control of HVC. Fortunately, both models make opposing predictions
about the statistics of HVC bursts during song production, and here | compile and analyze a
larger set of HVC neural data to find major evidence against the GTE model of HVC dynamics.

The first section compares inter-burst interval distribution predictions from both models
with distributions from the real data. Here, the GTE model explicitly requires an inhomogenous
poisson distribution for HVC burst times: bursts must be concentrated around gesture extrema.
This has clearly been shown to be inconsistent with the data, especially in the interval of 0-0.05
seconds where the GTE model would predict more inter-burst intervals than are in the real data
set. The clock model does not require a homogenous poisson distribution for HVC burst times
(as long as the song coverage is continuous, the model is not ruled out), but a homogenous
poisson distribution does indeed seem fo fit the data well, even using 95% confidence intervals
generated by repeated Monte Carlo simulations. One idea is of course a hybrid model where
HVC neurons are connected in a syn-fire chain, but proportionally more neurons are active at
time-slices with complex vocalizations than at time-slices with simpler vocalization. However,
this is not supported by the data either, since the 0-0.05 second inter-burst interval bin in the
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real data set has slightly fewer intervals than in the homogenous distribution simulation
(although within the margin of error), rather than slightly more as predicted by the hybrid model.
This under-sampling of short inter-burst intervals could have many causes, including variability
due to a small n.

In the second section, Kolmogorov-Smirnov plots are used to compare the difference
between cumulative distribution functions of the real inter-burst intervals with predictions from
both models. This metric is useful because it provides a principled way of comparison with
confidence intervals. Here, we can conclude that while the clock model is in good agreement
with the data, the GTE model does not agree, especially in short inter-burst intervals, with 95%
confidence. Finally, in the third section, we compare quantitative predictions about the
probability mass distributions for both the clock and the GTE model, finding that the data fits
with the clock model much better. In this section, the difference between the models is
dramatically illustrated: the GTE model predicts that in a given time-bin, there will be a less
variable number of projector neurons active, but the clock model predicts that the number of
projectors active will be slightly more variable.

This section presents evidence against the GTE model of HVC singing-related
dynamics. However, Amador et al (2013) raise an intriguing point: Is it necessary for song
structure to be reflected in HVC burst structure, given that HVC controls stereotyped song?
Amador et al (2013) clearly think this point to be biologically obvious. However, we can consider
a simple alternate explanation whereby HVC only encodes time through a syn-fire chain of
projector neurons (identical numbers of neurons are active at each point in the chain), but that
song complexity is instead dictated by the number of synapses onto downstream RA neurons.
Here, HVC projector neurons active at times of gesture extrema may project to comparatively
more RA neurons than HVC projectors active at times of silence.

2: Bayesian inference for automatic motor compensation in rats

Bayesian inference and possible neural circuit mechanisms for implementation

When sampling from the environment, individuals can potentially arrive at inaccurate
estimates due to measurement error. In one form of optimal estimation, Bayesian estimation,
the measurement error can be combined with knowledge of the statistical distribution
characterizing an event, to arrive at a statistically optimal estimate of the true event sample. For
example, while estimating the speed of an incoming baseball may be a potentially inaccurate
task, if the instantaneous measurement and its typical measurement error is combined with
knowledge of the mean and standard deviation of baseball velocities experienced by that
pitcher, the sample’s estimate can be optimized.

Recent work (Jazayeri & Shadlen, 2010) has shown that the framework of Bayesian
estimation can convincingly explain human psychophysical results, where individuals are asked
to estimate the length of a single presented time interval. Here, the individuals combine an
instantaneous, noisy measurement of the sample time interval with a knowledge of the prior
distribution of the time interval in previous trials. In particular, given a fixed, presented time
interval to estimate, individuals will consistently give a lower estimate of the presented time
interval if the past history of interval distributions is low; and they will conversely give a higher
estimate of an identical, presented time interval if the past history of interval distributions has a
higher mean.

How would this optimal estimation mechanism be implemented neurally? One population
of neurons could represent the sample measurement, with the mean firing rate representing the
measured estimate while the standard deviation of the firing rate could represent the standard
deviation of the measurement error. Yet another population could represent the prior
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experienced distribution of samples in a similar manner, and these two population responses
could be combined somehow to arrive at an optimal estimate. This basic idea has been outlined
in previous theoretical work (Hoyer et al, 2002) but has never seen a real neural
implementation. While primate work is currently underway to address elements of this
estimation paradigm, rodents provide an elegant model system where circuit elements can be
perturbed in a reliable way, and large-scale population recordings from multiple animals is
relatively easy. One specific hypothesis for simple cerebellum-dependent sensorimotor task in
rodents is that each cerebellar Purkinje cell is performing a Bayesian computation with inputs
sampled from the prior and likelihood. In other words, each mossy fiber gives a sample from the
likelihood distribution of the sensory input, and the Purkinje cell’s firing pause gives the best-
estimate of the true value of the sensory input. Each Purkinje cell’s firing pause would then
sampled from the posterior distribution in a Monte Carlo fashion.

This section presents experimental progress towards a behavioral paradigm in rodents
which would allow rigorous testing of this Bayesian inference framework, using simple
sensorimotor tasks. Two basic tasks are presented. In the first task, rats are placed on a rotating
rod and must correctly estimate the timing of rod rotation events, or else they lose balance and
fall off the rod. In the second task, rats are placed on a treadmill where the treadmill’s speed
varies, and they must estimate the timing between velocity changes or else they fall back on the
treadmill and hit an electrified grating. Both tasks involve building and programming equipment;
and the second task additionally involves the use of a high-speed camera to track foot
movement. While both tasks were unsuccessful at the behavioral stage, behavioral data is
presented which suggests, intriguingly, that basic sensorimotor tasks may rely on a mechanism
involving gait dynamics or a spinal circuit to rapidly adjust estimation during the course of a
behavioral choice, rather than relying on a sophisticated brain circuit to make an optimal
estimation prior to behavioral execution.

For all behavioral tasks, rats were kept under water restriction with a target of 90% pre-
restriction body weight; and were given chocolate milk for correct task performance (typically
1mL per trial). In the first task, | set up a rotating rod controlled by a motor and imaged with a
high-speed IR camera. The rat sits on the rod, which rotates at some predictable intervals which
the rat must guess. The motor and camera are connected to National Instruments cards and are
programmed using LabView. The reward system is custom- made and controlied using MatLab.
Rats were tested on this paradigm for approximately a week, but the problem here was that we
could not motivate the rat to stay on the rod. Since jumping down was not aversive, the rat could
not be trained to move at the correct time to avoid falling. Additionally, the rat’s position on the
rod was extremely variable, and it appeared to use its tail in a variable fashion, which would
affect how well it could react to balance perturbations. Therefore we tried another approach.

In the second behavioral paradigm, rats are placed on a treadmill (PanLab single-lane
rat treadmill). The treadmill is controlled via the COM port of the computer, using Matlab, and
the camera is still controlled via LabView. In this paradigm, the treadmill’s speed is changing in a
predictable way and the rat must learn to generate anticipatory motor commands. | developed a
reward paradigm whereby rats learn to pair chocolate milk dispensing with an LED going off. We
can then use the LED as a conditioned response to guide behavior. The rats were tested on a
number of paradigms on the treadmill over the course of 2 months. First, rats learned to run at a
constant speed for 30-60 seconds to receive a chocolate milk reward. This was primarily to
acclimatize them to the chamber. Second, the rat was exposed to a sinusoidal velocity profile on
the treadmill. With the period fixed, we predicted that the rat would go through two major
learning phases. Early in learning, the rat would fail to correctly predict the speed profile and
would instead react to the observed speed, with the outcome that the rat would oscillate back
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and forth in the treadmill axis over time. Later in training, if the rat could correctly predict the
speed profile and organize a pre-emptive motor plan for each sinusoid, the outcome would be
that the rat would be stationary in the treadmill axis over time, rather than oscillating back and
forth. It is likely that this simple sensorimotor paradigm would reflect cerebellum-dependent
updating of motor predictions, similar to previous work in electric fish (Bell et al, 1997). If this
were the case, the paradigm would provide a powerful platform to ask questions about how the
prior over different sinusoidal speed regimes would be represented and updated in the
cerebellum.

To characterize the rat’s position in the treadmill box quantitatively, |1 developed a simple
computer-vision algorithm which was given a stripe on the rats’ bodies, and found the most
likely position of this stripe in each frame using a least-squares method on normalized pixel
intensities. The algorithm was additionally designed to only search for matches near the
previous frame’s best template match, to render the results more robust against false matches.
Additionally, the pixel-value results were rescaled as true distances from the front of the
treadmill. The algorithm was able to extract the positions of 2 rats in a robust fashion. Figure 7
shows a frame from one rat’s run depicting equipment setup.

The rats’ position appeared to vary in step with the treadmill’s sinusoidal velocity profile.
Figure 8 shows the given treadmill velocity and extracted rat’s position for short segment of a
full 30-second run. The rat’s position appears to reach its most posterior position with a slight
time-lag after the maximal treadmill velocity. Could the rat’s velocity, rather than position, be
modeled as a sinusoid with the same frequency but slightly different phase lag compared to the
treadmill’s velocity? This comparison of velocity profiles, rather than raw position data, would
allow a more direct comparison to models of how the rat's sensorimotor machinery may be
reacting to the input (for example, duplicating the treadmill’s velocity with some constant time
lag). To assess this, the derivative of the rat’s position vector was taken to produce a velocity
vector for the rat. A Fourier transform was performed on this velocity vector and all frequencies
but the highest-amplitude one were filtered out before transforming the data back into the time
domain (Fourier filtering). A short segment of this data is plotted along with the treadmill velocity
data in Figure 9. As expected, the major component in the rat's velocity data was a sinusoid with
its frequency a multiple of the treadmill velocity sinusoid (twice that of the treadmill velocity). The
frequency doubling is likely a behavioral artifact arising from the fact the rat’s stride frequency is
double that of the treadmill velocity, so the body stripe being imaged has the same doubling of
frequency. We can also determine the time lag between the peak treadmill velocity and the
decreases throughout the running session due to the slightly higher frequency for the rat
velocity sinusoid. Collapsing time lags across the entire running session gives a mean lag of
0.413 +- 0.180 s, with the high standard deviation corresponding to the gradual lowering of lag
as the running session proceeds. One interpretation of this result could be that as the session
proceeds, the rat improves its predictions and reacts with smaller time delays to the treadmill
velocity changes. However, this is a simplified set of data due to the Fourier filtering, and the
raw extracted position data shows that even two subsequent treadmill velocity perturbations can
give different rat position time-lags (Figure 7). Although the data suggest that learning may
occur within a session, it is difficult to draw any strong conclusions due to the behavioral
variability.

Can the Fourier-filtered rat velocity data be compared with model predictions for how
sensorimotor circuitry is producing outputs? | considered a simple model where the rats
replicate the observed treadmill velocity with a constant time delay (Vrat(t)=Vireadmin(t-taelay)).
However, the time shift between the rat’s peak total velocity and the peak treadmill velocity
converges to period/4 (0.25 s in this case) as taelay approaches infinity, while a shift of 0.413 s is
needed as discussed above. Clearly the simple model is not a good fit.
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Figure 7: Still frame from a movie of one session, depicting equipment setup and rat placement.
The light in the top-left corner indicated maximum treadmill velocity and was used to correctly fit
the treadmill velocity profile to the video.
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Figure 8: The rat’s position on the treadmill, extracted using a computer-vision algorithm, for a
short segment of the total 39-second session for one rat. For comparison, the treadmill velocity
is depicted at the bottom. The red lines indicate peak treadmill velocities and show behavioral
variability in rat position at these points.

13



0.14 -

(= o (=]
¢ =} © -
8 @® - N
 I— T

=)
b

Velocity of treadmill (r) and filtered velocity of rat (b) (cm/s)
S
T

\ 2 4 i

15 16

- )

0
Time (s)

Figure 9: The treadmilll's velocity (red) compared with a Fourier-filtered version of the rat's
velocity incorporating only the dominant sinusoidal component (blue). A short segment of the
entire 39-second run is depicted.

Are the rats truly predicting the treadmill velocity changes, or are they simply reacting to
them? To more fully test this, | exposed the rats to square wave velocity functions where the
times between square waves were drawn from a Poisson distribution with a mean of 1 second,
making it impossible for the rat to predict when the velocity would change. A nonpredictive
spinal loop should generate identical reaction times to unpredictable square waves compared
with predictable sinusoids, while a predictive cerebellar circuit should produce larger reaction
times in the unpredictable square wave test compared with predictable sinusoids. Paradoxically,
we saw very short reaction times to square waves (almost instantaneous), which was different
than the slightly longer reaction times we saw when giving the rat a sinusoidal speed profile.
This was very surprising - if rats were truly predicting in the sinusoidal treadmill velocity task,
and shortening their time delays as they learn the task over the course of one trial, then one
should expect that unpredictable, random events such as the square waves given should
produce longer time delays than in the predictive sinusoidal treadmill velocity task. The fact that
the opposite happened, and that the rats produced shorter time delays in response to random
square waves, suggests that perhaps the rats were not being predictive in the first sinusoid task.

What underlies the vastly different time delay responses to sinusoids and square
waves? This finding could be explained in two ways. First, a spinal mechanism could mediate
this task, with an input of leg positions and an output of muscle contractions to optimize leg
position invariance over time. This spinal mechanism could be more receptive to large
accelerations (square wave) than more gradual ones (sinusoid), such that it would be able to
quickly correct for square wave perturbations while correcting more slowly for sinusoidal
perturbations. Second, the rat could be integrating information from multiple sensory modalities
to make a decision, and could be using each sense a different amount on a trial-by-trial basis,
which would generate variability in the perceived reaction times. The rats specifically like to
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press their whiskers against the front of the treadmill in the square wave task, which seems to
lead to very short reaction times; but when they do not have this sensory cue and are further
back on the treadmill (sinusoidal wave task), they have longer reaction times. (They are likely
using a combination of proprioceptive input and vestibular system input in this case, neither of
which are as instantaneous as whiskers).

Discussion and conclusion:

This section explored rodent sensorimotor tasks designed to investigate how noisy
sensory inputs are transformed into highly optimal motor outputs, based on prior knowledge of
the input statistics. In the first task, rats balanced on a rod and had to make predictive
movements as to when the rod would rotate. Here, the rats did not reliably stay on the rod, and
their tail usage was unpredictable, generating variable behavior. In the second task, rats were
forced to anticipate treadmill velocity changes for sucrose reward. This task generated
promising behavior. The rat’s position on the treadmill varied as a sinusoidal velocity profile was
provided to the treadmill, consistent with the rat making slightly inaccurate measurements about
the current speed. Fourier filtering showed that the rat's velocity had a time lag from the
treadmill velocity which decreased as the session progressed, possibly indicating learning over
the session. However, the rat’s behavior was not consistent; and moreover, when Poisson-
distributed square waves of velocities were shown to the rat, its motor lag actually decreased,
contrary to what would be expected from an unpredictable stimulus compared to the more
predictable sinusoid. Either the rat is relying on a simple spinal loop to generate rapid motor
outputs; or it is integrating sensory input from multiple modalities which vary in contribution over
time and lead to varying time lags in the motor output.

A major problem in this section was behavioral consistency. To this end, a similar but
more consistent paradigm would be to build a virtual reality machine for mice, where they run on
a ball and are presented with a curved screen of visual inputs. For angular movements, the gain
between the ball’s rotation and the on-screen rotation could be drawn from a distribution,
resulting in a different gain value for each trial. If the mice were presented with a curved maze to
navigate, then for the first few seconds of running each frial, they would have to integrate limited
sensory information about the correspondence between running direction and screen turning
with a knowledge of the prior from which gains are drawn. This approach has many strengths.
First, it would likely produce far more reliable behavior, since the mice would have a sparser set
of sensory cues rather than the combined vestibular, proprioceptive (walls) and auditory cues
which fluctuate in their contribution over time in the treadmill task. Second, the motor output
would be easily and unambiguously measured as the ball’s direction, instead of having to rely
on a camera and an algorithm to extract position vectors. Third, the virtual reality machine could
be reprogrammed with parameters far more easily than a physical treadmill. However, the main
drawback to this paradigm is that the mice find it far harder to produce an angular shift of the
ball than to simply run in a straight line; and this angular shift is often accompanied by odd,
irregular motor patterns involving all four paws; moreover, angular accuracy is not very high and
mice often have to correct angular outputs more than they correct linear acceleration outputs
(personal communication, Dr. Chris Harvey). Therefore, it may be unlikely that mice could
achieve the high motor precision required for our version of the task.

Finally, in this lab | additionally learned to set up a rodent colony, design a water
restriction paradigm, order and build a surgery platform for simple craniotomies and injections,
write surgery addenda, and perform perfusions and simple retrobead injections.

15



3: Prefrontal input to dorsal striatum: A potential role in online biasing
of complex decision-making processes

Functional anatomy of dorsal striatum:
Animals can make behavioral choices using a variety of distinct mental frameworks. For

example, in what is called goal-directed responding, individuals explicitly associate certain
actions with certain outcomes, and have the ability to update outcome values to guide action
choice (for instance, if the animals are sated they will no longer press a lever for sucrose water
reward). In a second major type of responding, called habitual responding, a cue reliably drives
action production, with no regard for the actual outcome’s value, so habitual responders are
quicker to execute the action but are less sensitive to changes in reward value, and will often
repeat an action long after it is behaviorally optimal. When learning a simple behavioral task
such as a T-maze, animals typically start out as goal-directed but shift towards habitual
responding over a period of weeks (Thorne et al, 2010). A key question is how this change in
mental framework is reflected in the brain, and indeed how the eventual motor output is altered
in a reliable manner. Is there a solitary behavioral choice region that shifts its activity during
learning, or are multiple regions recruited to compete for behavioral control throughout the
course of learning?

Portions of the striatum appear to play crucial, separable roles in controlling the two
types of behavioral responses. The dorsomedial striatum (DMS) receives convergent input from
parts of prefrontal cortex including prelimbic (PL), infralimbic (IL) and anterior cingulate cortex
(ACC), while the dorsolateral input primarily receives input from the somatosensory and motor
cortex (Pan et al, 2010); both send output back to these regions through the direct and indirect
outflow pathways of the basal ganglia. DMS appears to be essential for volitional, goal-directed
behaviors present early in training: if DMS is lesioned, even animals in the early stages of
training become largely insensitive to any reward value alterations - for instance, if the
underlying reward amount is decreased, DMS-lesioned animals will continue to perform a lever
press previously associated with that reward (Yin et al, 2005). Surprisingly, lesions of the other
dorsal striatum subdivision, DLS, appear to have no effect on animals in early stages of training
- they continue to respond in a goal-directed fashion to cues and can alter their actions flexibly
based on the underlying goal values. However, DLS lesions prevent animals from transitioning
to habitual responses, where they would respond quickly and automatically but would not be as
sensitive to changes in the underlying reward value (Yin et al, 2004). In other words, DLS
lesions produce animals which never lose the ability to change their behavioral response based
on changing reward values, but that cannot respond as automatically and quickly to tasks. The
functional separability of these two areas has been confirmed in more recent work using
inactivation methods (Gremel & Costa, 2013). The emerging story appears to be that while DMS
biases prefrontal networks to produce volitional, goal-directed behavior early in training, DLS
plays an essential role in biasing motor networks to respond automatically to cues with the
appropriate action later in training.

This is borne out by recent electrophysiological studies, testing the prediction that DMS
should be active early in training while DLS is active later in training, if the functional
interpretations of lesion studies are to be believed. Indeed, Thorne et al (2010) found that DMS
neurons produce spikes early in learning, and these spikes are concentrated during cue
presentation and at choice points (both midway through the task) - DMS neurons largely stop
spiking later in learning, when the animal has been tested to be responding habitually. In
contrast, DLS neurons, while active early during training, are mainly active at late stages of
training when the animal is insensitive to goal value changes and thus is responding habitually.
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Here, DLS neurons form task-bracketing activity rather than midrun activity as with DMS
neurons. The task-bracketing activity of DLS neurons appears to be a robust phenomenon
(Kubota et al, 2009; Root et al, 2010).

Taken together, these results could be interpreted as supporting a model whereby as
animals learn a forced-choice task, there is continual competition between two groups of brain
regions: one supporting model-based, flexible responding (including prefrontal regions and
DMS) which dominates early in training; and another group supporting rapid, habitual responses
(including motor cortex and DLS) which dominates later in training. One computational model
suggests these two systems might compete for control of behavior, based on Bayesian
uncertainty in the ability to predict outcomes (Daw et al, 2005). An obvious question is how
these two groups of brain regions could mechanistically compete to drive different motor outputs
based on a fixed sensory input - this has been the subject of intense investigation with no clear
answer. A simple model could be that early in training, DMS receives information from limbic
centers like PL about perceived goal value and satiety state, and provides a premotor bias to
particular channels of ACC incorporating to bias one of the choices over the other. ACC would
then convey this choice preference to M1, activating the correct set of muscles for that choice.
This concept of a premotor bias is similar to that proposed in birds between striatum and cortex
(Fee & Goldberg, 2011). Later in training, PL activity might diminish, decreasing DMS activity
and decreasing the bias ACC provides to motor cortex. It is still unclear how DLS would fit into
this story, and specifically how lesions in DLS would prevent habitual responding.

Building on this work, this section will address two related questions. First, focusing on
the DMS portion of striatum, can a chronic stress procedure change the behavioral choice
output of rats, when having to make a forced choice between different amounts of costs and
benefits? And could this change in behavioral output be reflected by either a change in PL firing
dynamics (encoding choice elements), or by a change in DMS medium spiny neuron dynamics?
In other words, during chronic stress is there a change in prefrontal input, or a change in the
synaptic strength between prefrontal networks and DMS MSNs? And finally, if the prefrontal-
DMS synapses are truly controlling behavioral choice, can we reverse the decision-making shift
by chronic optogenetic stimulation of prefrontal-DMS connections? | will investigate this
behaviorally and using optogenetic tools, although | also learned electrophysiological recording
techniques (there was no access to this data at the time of writing).

The second question relates to how the DMS-DLS divide represents choice throughout
learning, and specifically provides a circuit-level hypothesis as to how changing reward values
early in learning results in rapid behavioral flexibility, but changing reward values later in
learning does not result in the same speed of flexibility. The orbitofrontal cortex is a portion of
cortex which projects specifically to dorsomedial striatum (Gremel & Costa, 2013) and tracks
perceived reward value well (van Duuren et al, 2007). Here, the hypothesis is that upon a
change in the reward value (for instance, reversal of contingencies), orbitofrontal cortex updates
its representation quickly and sends a global stop signal to those medium spiny neurons in DMS
representing the currently favored behavioral choice (stopping direct pathway outflow to ACC
and thus premotor bias), allowing the previously unfavored choice to dominate through ACC
premotor bias. | will propose experiments integrating electrophysiology with optogenetics and
behavior to test this.

How does stress affect a prefrontal-striatal network during cost-benefit decision making:

As discussed above, the dorsomedial striatum receives convergent input from many
parts of prefrontal cortex including prelimbic cortex, and likely integrates information about the
animal’s state (eg thirst) with outcome values to guide an appropriate premotor bias.
Dorsomedial striatum is specifically involved in goal-directed, or non-habitual, responding. How
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does this network assess possible behavioral choices which each involve a balance of rewards
with costs?

Previous work (Graybiel lab, unpublished) has started addressing this important
question. Rats are trained on a forced-choice T-maze task where the two arms each have
various combinations of rewards (chocolate milk in different dilutions) and costs (an aversive
light at different brightnesses). The task layout is shown in Figure 10. Notably, two versions of
the task lead to a simple decision for the rat: In both the benefit-benefit and cost-cost versions,
the rat must simply pick the greatest amount of reward or the least cost. However, in the cost-
benefit version, the rat must assess the relative weighting of costs and benefits, presumably
based on internal factors such as satiety or mood. This likely involves the prefrontal-DMS
network discussed earlier as it incorporates limbic inputs. The animals appeared to make stable
decisions in all three versions of the task. Notably, optogenetic inactivation of PL projectors to
DMS only shifted choice in the cost-benefit version (towards the high cost option) and did not
affect the other versions, indicating PL may encode task elements unique to this conflict version
but not the others. Consistent with this, antidromically identified striatal-projecting PL neurons
reached peak spiking early in the cost-benefit version of the task, before the decision, but
reached peak spiking later in the other versions of the task after the decision-point - indicating
that they may be guiding the decision only in the cost-benefit version of the task but not the
others. From this, we can conclude that a network involving medial prefrontal cortex and
dorsomedial striatum appears to control complex choices involving weighting the relative value
of costs and benefits (based on internal state and perceived value); but does not appear to be
involved in simpler non-comparative decision-making.

If PL is providing information about internal state to DMS to guide decision-making, then
how would the system and behavioral output change if the animal’s internal state is perturbed?
To test this, rats were placed in a chronic stress procedure involving hours of complete
immobilization every day. | then exposed them to the same T-maze task described above. It
appears, as expected, that exposure to chronic stress alters the responses to the cost-benefit
version of the task (incorporating elements of internal state) while leaving responses to the other
versions intact. Specifically, chronically stressed animals choose the arm with higher reward but
higher cost, rather than the arm with lower reward and lower cost as in unstressed animals.
Figure 11 describes these resuits collected from x animals. The interpretation here is that
chronic stress has altered the animals’ relative weighting of rewards such as chocolate milk
compared to aversive costs such as light. They appear to be weighting reward acquisition
highly, in a manner more independent of associated costs compared to before - possibly due to
a habituation to negative valences due to chronic stress exposure. How would the prefrontal-
DMS circuit track this change in behavioral choice? The model most consistent with the
previous results described above would be that PL provides information to DMS about the
relative weighting of costs and benefits (based on the animal’s internal state), that changes in
this PL input alone are sufficient to alter behavior, and that upon chronic stress exposure, PL
has altered its input to DMS and this is responsible for the altered behavior. This behavioral
paradigm also has enormous clinical implications, since the altered decision-making is often a
phenotype associated with human conditions such as depression and suicide, where the
weighting of rewards and costs is altered. It would have great relevance to pinpoint the pathway
involved in this altered decision-making, and to revert the decision-making back to normal
parameters.

As a first step, we reasoned that if the PL-DMS pathway is sufficient to coordinate an
altered behavior in the cost-benefit paradigm, then optogenetic activation of PL terminals in
DMS should alone be enough to revert the animal’s behavior back to a more normal weighting
of costs and benefits. An excitatory channelrhodopsin, C1V1, was packaged in an AAV5 vector
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and put under control of the CaMKlla promoter, and 0.2uL of virus was bilaterally injected in PL
in x rats. After 1 month of chronic stress (immobilization in plastic wraps for 6-8 hours daily),
optic fibers were implanted in dorsomedial striatum. During the cost-benefit T-maze task, PL
terminals in DMS were optogenetically stimulated from gate opening to reaching of the reward,
and behavioral results were tabulated. Figure 12 summarizes these results for 6 animals.
Optogenetic stimulation of the PL-DMS pathway reverted decision-making towards the low-cost,
low-reward option, while optogenetic stimulation in control rats produced an even greater bias
towards the low-cost, low-reward option. These results are critical because, to our knowledge,
they represent the first instance of stress altering cost-benefit decision weighting in a task in a
repeatable way; and they represent the first time that optogenetic stimulation of a solitary
pathway has reversed this decision-making deficit - which may have broad clinical implications
for depression and suicide.

Recall that previously, PL projector neurons were shown to have pre-choice spiking in
the cost-benefit version of the task, but this pre-choice spiking was not as prevalent in other task
versions such as benefit-benefit comparison. This implied that PL projectors may encode
information about the relative weighting of costs and benefits or internal state factors involved in
making optimal decisions. Based on this, we asked whether the behavioral shift produced by
chronic stress was reflected by either a change in PL neuron dynamics, or only by a change in
DMS dynamics at the choice-point in the task (the latter would imply that information is
communicated identically by PL, independent of stress, but that perhaps synaptic weight
between PL and DMS was altered). Two rats were implanted with headstages carrying 6
tetrodes implanted in each of left and right PL and DMS, as well as stimulating electrodes in left
and right DMS for antidromic identification of PL projectors. Electrodes were lowered over a
period of 14 days until high-quality single unit recordings were obtained during task
performance. | also learned spike-clustering and antidromic activation techniques. Unfortunately
data from this electrophysiolgical section is unavailable for this report.

How does chronic stress impact behavioral choice? This section looks at complicated
decisions involving assessing relative weights of positive and negative valences, finding that
chronic stress reliably decreases the weight of negative valences. Importantly, this shift can be
reversed by optogenetic stimulation of the PL-DMS pathway, providing further evidence that this
elements of this pathway coordinate complicated decision-making. Specifically, the evidence is
consistent with a model where PL provides information about the relative importance of rewards
and costs, and DMS integrates these with other factors to arrive at an optimal decision which is
communicated to ACC to provide a premotor bias. Importantly, the optimal decision given a set
of input parameters may be different between animals, and indeed may even vary within one
animal based on fluctuating internal states.
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Cost-benefit (conflict) Benefit-benefit Cost-cost

Figure 10: Rats are presented with different combinations of a reward (chocolate milk) and a
cost (aversive light). The cost-benefit version of the task is the only version where different

optimal decisions can be made based on internal weighting of costs and benefits.
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Figure 11: Chronic stress decreases the weight of the cost element in cost-benefit analysis, yet
does not alter choice in other task versions. Mixture refers to low-concentration chocolate milk,

while chocolate refers to high-concentration chocolate milk. n=6 rats.
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Figure 12: Optogenetic activation of PL terminals in striatum in chronically stressed rats is
sufficient to revert decision-making back to a normal weighting of rewards and costs, and is
similar to the behavioral shift evoked by optogenetic stimulation of this pathway in control

animals. n=6.

20



A model for behavioral flexibility involving orbitofrontal cortex and striatum

Individuals can quickly learn mappings between environmental cues and the behavioral
response which gives maximal reward. For instance, rodents can learn to associate certain
odors with pushing a particular lever for sucrose reward; and Americans learn, when
approaching a busy street, to always look left for oncoming traffic. However, what if the
underlying associations between cues and rewards change? Americans, if taken to Britain, find
it difficult to look right instead of left before crossing a busy street. But sometimes, remapping
cue-reward associations is done relatively effortlessly, especially in the early phases of learning.
This section provides a proposal for how cue-reward associations could be remapped at
different phases of learning in an orbitofrontal-striatal network, and is specifically interested in
solving the problem of how individuals overtrained on a task, or over-exposed to it, find it harder
to adapt to changing contingencies than newly trained individuals.

This problem has been subject to intense investigation, and work has highlighted the
important role of the orbitofrontal cortex (OFC) in promoting behavioral flexibility. Specifically,
animals with OFC lesions cannot adapt their behavior as rapidly during reward devaluation or
reversal learning (Bohn et al, 2003; Ghods-Sharifi et al, 2008; Izquierdo et al, 2004) but these
same animals learn initial cue-reward associations unimpaired (Schoenbaum et al, 2003 (1)).
This indicates that OFC is necessary to remap cue-reward associations, but is not necessary for
initial cue-reward learning. Do OFC neurons encode behaviorally relevant parameters during
behavioral tasks? OFC neurons indeed develop cue-evoked activity that codes for reward
magnitude and is selective for particular cues, with both properties dependent on basolateral
input to OFC (Schoenbaum et al, 2003 (2)). Other work suggests in fact that the OFC may
represent animal’s current state in an abstract map of the task (Wilson et al, 2014). Given that
striatum is known to be important in both goal-directed and habitual behavior, could OFC inputs
to striatum change decision-making during periods of altered reward values? Consistent with
this general idea, recent work (Burgiere et al, 2013) showed that an OCD mouse model’s
compulsive behavior can be inhibited if OFC-striatal circuits are optogenetically activated.
However, stimulating projections from the more more medial portion of OFC to ventromedial
striatum produced the opposite behavior: normal mice displayed OCD-like characteristics
(Ahmari et al, 2013). These contradictory results highlight the need for more fundamental,
mechanistic study of the roles of OFC and striatal circuits during normal behavior.

In line with this, recent experiments (Gremel & Costa, 2013) examined OFC and striatal
neuron dynamics during goal-directed and habitual behavior, using a lever-press task with
different reward schedules. After the reward was devalued, there was a clear correlation
between OFC neurons’ firing rates and the change in lever press rate, suggesting that OFC
directly controls a behavioral change to reward devaluation. Thus, one model is that after a
reward value change, OFC activity changes and this alone is sufficient to alter behavior. This
would lead to the prediction that if OFC is optogenetically activated, behavior should always be
altered identically - since no other factors such as downstream circuit dynamics play a role in
the behavioral shift. However, the authors found that optogenetic OFC activation changed lever-
press behavior, but only in goal-directed, early behavior, and only post-devaluation, not before.
Based on this result, OFC is not sufficient to change behavior after devaluation, and other
factors such as striatal dynamics or behavioral state must be additionally necessary. The
authors also use a task design which prevents direct comparison between OFC dynamics in the
goal-directed and habitual state, making it difficult to form a model to directly explain the
findings.

Here, | propose a model where a cue arrives, and OFC contains two populations of
projector neurons which respond to that cue. One population encodes predicted reward if action
one is executed after the cue, and a separate second population encodes predicted reward if

21



action two is executed after that cue. Both predictions are encoded as firing rates. This reward
prediction occurs in all behavioral states, including in overtrained animals, and tracks changes
in reward contingencies. OFC projector neurons communicate these predictions to DMS,
synapsing onto a local interneuron which places an inhibitory brake on those DMS neurons
controlling the opposite behavioral choice through output to ACC. In other words, if OFC
neurons predict a high reward for action one, then action two will be inhibited, and vice versa.
This system has the advantage that if the reward prediction for action one changes to be very
low, action two will be disinhibited and thus has a high chance of being behaviorally executed -
the DMS inhibitory interneurons synapsing onto these action-two-controlling DMS projector
neurons will be less active, since the interneurons receive less excitatory drive from the OFC
neurons predicting the low reward for action one. The system can thus quickly respond to
changes in reward contingency, in a manner highly consistent with what is known about striatal
control of action selection through the classical direct and indirect outflow pathways.

How does this system respond later in training, when it is known that animals do not
respond rapidly to reward contingency changes? Recall that early in training, DMS medium
spiny neurons are highly active during the decision point and provide input to ACC, which
provide a premotor bias to M1, activating or inhibiting the correct or incorrect responses,
respectively; this is the basis for the rapid remapping response of different cue inputs as
discussed above. However, recall that later in training, DMS is not active to provide premotor
bias, and instead DLS starts indicating task-bracketing activity which is associated with habitual
control of actions. Late in training, DMS projector neurons are not actively firing to provide input
to ACC, and since they are silent, inhibiting them via a local interneuron would have no effect.
Therefore, in late-trained animals, while OFC is still actively signaling reward predictions if
various actions are taken, its input to DMS has no behavioral effect. This provides a plausible
neural mechanism to explain why overtrained animals are generally far less sensitive to
changes in reward contingencies, while newly trained animals respond to these same changes
in a far more dynamic manner. The model presented here integrates various disparate and
sometimes contradictory experimental observations to arrive at an integrated explanation for
how an orbitofrontal-striatal network could plausibly control action selection for various
environmental cues in a highly dynamic manner. In the next section, | will briefly discuss
experiments which will test this model.

Experiment 1: Do the reward-prediction dynamics of QFC projection neurons change throughout
training to reflect behavior?

The model relies on the unusual assumption that as reward contingencies change, OFC
projector neurons quickly update reward predictions for a given cue-action combination - and
that this rapid updating persists even later in training, where animals update their behaviors on a
far slower time-scale. In other words, OFC always signals the correct reward prediction, but
later in training, striatum is unable to organize an appropriate response, resulting in slow
behavioral change. This contrasts with the possibly more parsimonious prediction that as the
animals are overtrained and transition to a habitual mode of responding, then OFC projectors
actually attenuate their reward-predictions after cues, possibly tracking the strength of the cue-
reward association (which decreases later in training). Here, while striatum can always organize
a rapid behavioral shift, it is OFC’s signaling of correct predictions which attenuates over time
and accounts for the resulting slowness of behavioral changes later in training.

Populations of OFC projector neurons have never, to my knowledge, been recorded over
longer time-periods such as days or weeks. Therefore, a simple preliminary experiment to test
the this model would be to train and overtrain rats on a simple T-maze forced-choice task over a
period of weeks, while recording from antidromically identified DMS-projecting OFC neurons.
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The model proposed above would predict that given a presented cue, one population of OFC
projectors would signal a reward prediction if action 1 were taken after this cue (for instance,
turning left in the maze) while another population of OFC projectors would signal a reward
prediction if action 2 were taken (turning right in the maze). Additionally, the magnitudes of these
reward predictions, averaged across the population, would remain relatively constant throughout
training and overtraining. If the contingencies were to change (cue 1 should now be mapped
onto action 2 rather than action 1), OFC projector neurons would signal this contingency
remapping quickly, regardless of whether animals are early-trained or late-trained. Upon cue
presentation, the OFC population representing action 2’'s reward prediction would rapidly
increase firing rate, while the OFC population representing action 1’s reward prediction should
rapidly decrease firing rate. This remapping of population codes should proceed quickly
independently of the stage of training. Behaviorally, in contrast, contingency remapping should
result in rapid behavioral shifts towards the correct cue in newly trained animals, while resulting
in slower behavioral shifts towards the correct cue in overtrained animals. This result would
demonstrate that OFC cannot be sufficient to organize a behavioral change, since the
timescales of OFC dynamics are always rapid while the behavioral timescales transition from
rapid to slow-responding as animals are overtrained.

In contrast, the alternate hypothesis would make different predictions about the
timescales of OFC dynamics and behavioral dynamics - they should be correlated. Given a
contingency remapping early in learning, DMS-projecting OFC neurons should rapidly adjust
reward predictions to reflect this. However, later in learning, the same contingency remapping
should result in a much slower adjustment of reward predictions in DMS-projecting OFC
neurons. The rate of reward prediction adjustment in all cases should be correlated with the rate
of behavioral adjustment to the new, correct reward contingencies. This result would suggest
that OFC dynamics alone are sufficient to explain behavioral remapping to new cue-reward
associations.

The above experiment is a necessary first step to test whether the model could be
plausible, but it only presents correlational rather than causal evidence. Experiment 2 provides a
mechanism to causally test the major tenets of the model described above.

Experiment 2: |s optogenetic perturbation of DMS-projecting OFC neurons sufficient to alter
behavior?

This experiment provides a causal test of whether changes in activity of DMS-projecting
OFC neurons is sufficient to change behavior throughout training. The model outlined above
predicts that it will not be sufficient in over-trained animals, while an alternate hypothesis
predicts that it will be sufficient in both early-trained and overtrained animals. This will be tested
by optogenetically activating OFC neurons which project to DMS at the cue point, as rats run a
T-maze task. Optogenetic activation will be done in probe frials throughout the course of
training, from start to over-training.

Let us first consider the mode! outlined above. Recall that in OFC, upon presentation of
a cue, one population of projectors would signal a reward value prediction if action 1 is taken,
while a second population would signal a reward value prediction if action 2 is taken. If action
one’s reward value prediction is higher than action two’s associated prediction, then the
downstream DMS medium spiny neurons corresponding to action two will be suppressed by
activation of a local inhibitory interneuron synapsing onto only this action’s associated DMS
neurons. Let us now suppose that in the early stages of training, during the cue presentation the
majority of DMS-projecting OFC neurons are optogenetically activated. By the proposed model,
this optogenetic perturbation should increase feedforward inhibition on both sets of DMS
medium spiny neurons, both corresponding to action 1 and to action 2 - both actions should be
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inhibited rather than just one action being inhibited as before the perturbation. Behaviorally, the
rat should no longer be biased towards the maze arm giving optimal reward, and would likely
choose each arm equally.

Let us consider what the proposed model would predict if late-trained animals, rather
than early-trained ones, were to have DMS-projecting OFC neurons optogenetically activated
during the cue presentation. As in early-trained animals, OFC projection neurons representing
action 1's reward prediction would increase firing, increasing feedforward inhibition onto DMS
MSN neurons associated with releasing action 1; and OFC projection neurons representing
action 2’s reward prediction would also increase firing, increasing feedforward inhibition onto
DMS MSN neurons associated with releasing action 2. However, in late-trained animals DMS
activity has aftenuated to a practically silent state, and instead the DLS portion of striatum
seems to be controlling action. Therefore, the increased feedforward inhibition onto both
action-1-related DMS neurons and onto action-2-related DMS neurons has no effect, since both
of these groups of neurons are already silent. So the proposed model predicts that if OFC
neurons projecting to DMS were optogenetically activated late in training, this perturbation
should have practically no behavioral effect and rats should continue to favor the maze arm
associated with most reward. This is in contrast to the model’s prediction for early-training
optogenetic perturbation, where the rats should now choose both arms equally rather than
favoring the optimal maze arm. Additionally, electrophysiologically, we would predict that in early
trained animals any DMS medium spiny neurons active during the cue point would be silenced
during optogenetic activation of OFC projector terminals; and that DMS interneurons would be
more active. In late-trained animals DMS medium spiny neurons should be silent during cue
presentation, and optogenetic activation of OFC projectors should have no effect on this.

Consider the alternative: that OFC dynamics alone were somehow sufficient to organize
a behavioral change. Here, we would predict that in both early-trained and over-trained animals,
optogenetic activation of OFC projector neurons in DMS would result in rats favoring either arm
equally.

In this section, | have outlined a possible model for how an orbitofrontal-striatal circuit
can organize behavioral shifts when the reward contingencies of a task change. A major
strength of this model is that it provides an explanation for the observation that late-trained
animals are less receptive to reward-contingency remapping than early-trained animals,
supposing that this difference is due to an alteration in striatal dynamics which occurs during
learning. The first experiment provides correlational evidence that OFC reward-prediction
signals are not sufficient alone to explain the change in receptivity to reward-contingency
remapping which occurs during the course of learning. The second experiment provides more
causal evidence that this is the case, using optogenetic manipulations.
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