MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Executing dynamic data-graph computations
deterministically using chromatic scheduling

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Tim Kaler, William Hasenplaugh, Tao B. Schardl, and Charles E. Leiserson. 2014.
Executing dynamic data-graph computations deterministically using chromatic scheduling. In
Proceedings of the 26th ACM symposium on Parallelism in algorithms and architectures (SPAA
"14). ACM, New York, NY, USA, 154-165.

As Published: http://dx.doi.org/10.1145/2612669.2612673
Publisher: Association for Computing Machinery (ACM)]
Persistent URL: http://hdl.handle.net/1721.1/100928

Version: Author’s final manuscript: final author’'s manuscript post peer review, without
publisher’'s formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

I I I .
I I Massachusetts Institute of Technology


https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/100928
http://creativecommons.org/licenses/by-nc-sa/4.0/

Executing Dynamic Data-Graph Computations
Deterministically Using Chromatic Scheduling

Tim Kaler  William Hasenplaugh

Tao B. Schardl

Charles E. Leiserson

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street
Cambridge, MA 02139

ABSTRACT

A data-graph computation — popularized by such programming
systems as Galois, Pregel, GraphLab, PowerGraph, and GraphChi
— is an algorithm that performs local updates on the vertices of a
graph. During each round of a data-graph computation, an update
Junction atomically modifies the data associated with a vertex as a
function of the vertex’s prior data and that of adjacent vertices. A
dynamic data-graph computation updates only an active subset of
the vertices during a round, and those updates determine the set of
active vertices for the next round.

This paper introduces PRISM, a chromatic-scheduling algorithm
for executing dynamic data-graph computations. PRISM uses a
vertex-coloring of the graph to coordinate updates performed in
a round, precluding the need for mutual-exclusion locks or other
nondeterministic data synchronization. A multibag data structure
is used by PRISM to maintain a dynamic set of active vertices as
an unordered set partitioned by color. We analyze PRISM using
work-span analysis. Let G = (V,E) be a degree-A graph colored
with y colors, and suppose that Q C V is the set of active vertices
in a round. Define size(Q) = |Q| + >, ¢, deg(v), which is propor-
tional to the space required to store the vertices of Q using a sparse-
graph layout. We show that a P-processor execution of PRISM
performs updates in Q using O(x(1g(Q/x) +1gA) +1gP) span
and O(size(Q) + x + P) work. These theoretical guarantees are
matched by good empirical performance. We modified GraphLab
to incorporate PRISM and studied seven application benchmarks
on a 12-core multicore machine. PRISM executes the benchmarks
1.2-2.1 times faster than GraphLab’s nondeterministic lock-based
scheduler while providing deterministic behavior.

This paper also presents PRISM-R, a variation of PRISM that
executes dynamic data-graph computations deterministically even
when updates modify global variables with associative operations.
PRISM-R satisfies the same theoretical bounds as PRISM, but its
implementation is more involved, incorporating a multivector data
structure to maintain an ordered set of vertices partitioned by color.

This research was supported in part by the National Science Foundation
under Grants CNS-1017058, CCF-1162148, and CCF-1314547 and in part
by grants from Intel Corporation and Foxconn Technology Group. Tao B.
Schardl was supported in part by an NSF Graduate Research Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SPAA’14, June 23-25, 2014, Prague, Czech Republic.

Copyright 2014 ACM 978-1-4503-2821-0/14/06 ...$15.00.
http://dx.doi.org/10.1145/2612669.2612697.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming; E.1
[Data Structures]: distributed data structures, graphs and net-
works; F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—graph algorithms,
sequencing and scheduling

Keywords

Data-graph computations; multicore; multithreading; parallel pro-
gramming; chromatic scheduling; determinism; scheduling; work
stealing

1. INTRODUCTION

Many systems from physics, artificial intelligence, and scientific
computing can be represented naturally as a data graph — a graph
with data associated with its vertices and edges. For example, some
physical systems can be decomposed into a finite number of ele-
ments whose interactions induce a graph. Probabilistic graphical
models in artificial intelligence can be used to represent the depen-
dency structure of a set of random variables. Sparse matrices can
be interpreted as graphs for scientific computing.

Intuitively, a data-graph computation is an algorithm that per-
forms local updates on the vertices of a data graph. Several soft-
ware systems have been implemented to support parallel data-
graph computations, including Galois [63], Pregel [78], GraphLab
[75,76], PowerGraph [48], and GraphChi [64]. These systems of-
ten support “complex” data-graph computations, in which data can
be associated with edges as well as vertices and updating a vertex v
can modify any data associated with v, v’s incident edges, and the
vertices adjacent to v. For ease in discussing chromatic schedul-
ing, however, we shall principally restrict ourselves to “simple”
data-graph computations (which correspond to “edge-consistent”
computations in GraphLab), although most of our results straight-
forwardly extend to more complex models. Indeed, six out of the
seven GraphLab applications described in [74,75] are simple data-
graph computations.

Updates to vertices proceed in rounds, where each vertex can be
updated at most once per round. In a static data-graph computation,
the activation set Q, of vertices updated in a round r — the set of
active vertices — is determined a priori. Often, a static data-graph
computation updates every vertex in each round. Static data-graph
computations include Gibbs sampling [41,42], iterative graph col-
oring [30], and n-body problems such as the fluidanimate PARSEC
benchmark [10].

We shall be interested in dynamic data-graph computations,
where the activation set changes round by round. Dynamic data-
graph computations include the Google PageRank algorithm [21],



loopy belief propagation [82, 87], coordinate descent [32], co-
EM [84], alternating least-squares [54], singular-value decompo-
sition [47], and matrix factorization [95].

We formalize the computational model as follows. Let G =
(V,E) be a data graph. Denote the neighbors, or adjacent ver-
tices, of a vertex v € V by Adjlv] = {u €V : (u,v) € E}. The
degree of v is thus deg(v) = |Adj[v]|, and the degree of G is
deg(G) = max{deg(v) : v € V}. A (simple) dynamic data-graph
computation is a triple (G, f,Qo), where

e G = (V,E) is a graph with data associated with each vertex

vev;

o f:V — 2AdIM s an update function; and

e (o C V is the initial activation set.
The update S = f(v) implicitly computes as a side effect a new
value for the data associated with v as a function of the old data
associated with v and v’s neighbors. The update returns a set
S C Adj[v] of vertices that must be updated later in the computa-
tion. During a round r of the dynamic data-graph computation,
each vertex v € Q, is updated at most once, that is, Q, is a set, not
a multiset. For example, an update f(v) might activate a neighbor
u only if the value of v changes significantly.

The advantage of dynamic over static data-graph computations is
that they avoid performing many unnecessary updates. Studies in
the literature [75,76] show that dynamic execution can enhance the
practical performance of many applications. We confirmed these
findings by implementing static and dynamic versions of several
data-graph computations. The results for a PageRank algorithm
on a power-law graph of 1 million vertices and 10 million edges
were typical. The static computation performed approximately 15
million updates, whereas the dynamic version performed less than
half that number of updates.

A serial reference implementation

Before we address the issues involved in scheduling and executing
dynamic data-graph computations in parallel, let us first hone our
intuition with a serial algorithm for the problem. Figure 1 gives
the pseudocode for SERIAL-DDGC. This algorithm schedules the
updates of a data-graph computation by maintaining a FIFO queue
Q of activated vertices that have yet to be updated. Sentinel values
enqueued in Q on lines 4 and 9 demarcate the rounds of the com-
putation such that the set of vertices in Q after the rth sentinel has
been enqueued is the activation set Q, for round r.

Given a data-graph G = (V,E), an update function f, and an
initial activation set Qp, SERIAL-DDGC executes the data-graph
computation (G, f, Q) as follows. Lines 1-2 initialize Q to contain
all vertices in Qy. The while loop on lines 5-14 then repeatedly
dequeues the next scheduled vertex v € Q on line 5 and executes the
update f(v) on line 11. Executing f(v) produces a set S of activated
vertices, and lines 12—14 check each vertex in S for membership in
0, enqueuing all vertices in S that are not already in Q.

We can analyze the time SERIAL-DDGC takes to execute one
round r of the data-graph computation (G, f, Q). Define the size
of an activation set Q, as

size(Qr) = Q[+ ) _ deg(v) -
veQ,

The size of Q, is asymptotically the space needed to store all the
vertices in Q, and their incident edges using a standard sparse-
graph representation, such as compressed-sparse-rows (CSR) for-
mat [93]. For example, if Oy =V, we have size(Qqg) = |V| +2|E|
by the handshaking lemma [29, p. 1172-3]. Let us make the rea-
sonable assumption that the time to execute f(v) serially is propor-
tional to deg(v). If we implement the queue as a dynamic (resiz-

SERIAL-DDGC(G, f, Qo)

1 forveQ

2 ENQUEUE(Q,v)

3 r=0

4 ENQUEUE(Q,NIL) // Sentinel NIL denotes the end of a round.
5 while Q # {NIL}

6 v = DEQUEUE(Q)

7

8

9

if v==NIL
r+=1
ENQUEUE(Q,NIL)
10 else
11 S = f(v)
12 forucs
13 ifudQ
14 ENQUEUE(Q, u)

Figure 1: Pseudocode for a serial algorithm to execute a data-graph com-
putation (G, f, Qo). SERIAL-DDGC takes as input a data graph G and an
update function f. The computation maintains a FIFO queue Q of acti-
vated vertices that have yet to be updated and sentinel values NIL, each of
which demarcates the end of a round. An update S = f(v) returns the set
S C Adj[v] of vertices activated by that update. Each vertex u € S is added
to Q if it is not currently scheduled for a future update.

able) table [29, Section 17.4], then line 14 executes in (1) amor-
tized time. All other operations in the for loop on lines 12—14 take
O(1) time, and thus all vertices activated by executing f(v) are
examined in ®(deg(v)) time. The total time spent updating the
vertices in Q, is therefore ®(Qy + 3 c(, deg(v)) = O(size(Qr)).
which is linear time: time proportional to the storage requirements
for the vertices in Q, and their incident edges.

Parallelizing dynamic data-graph computations

The salient challenge in parallelizing data-graph computations is
to deal effectively with races between updates, that is, logically
parallel updates that read and write common data. A determinacy
race [36] (also called a general race [83]) occurs when two logi-
cally parallel instructions access the same memory location and at
least one of them writes to that location. Two updates in a data-
graph computation conflict if executing them in parallel produces a
determinacy race. A parallel scheduler must manage or avoid con-
flicting updates to execute a data-graph computation correctly and
deterministically.

The standard approach to preventing races associates a mutual-
exclusion lock with each vertex of the data graph to ensure that an
update on a vertex v does not proceed until all locks on v and v’s
neighbors have been acquired. Although this locking strategy pre-
vents races, it can incur substantial overhead from lock acquisition
and contention, hurting application performance, especially when
update functions are simple. Moreover, because runtime happen-
stance can determine the order in which two logically parallel up-
dates acquire locks, the data-graph computation can act nondeter-
ministically: different runs on the same inputs can produce differ-
ent results. Without repeatability, parallel programming is arguably
much harder [19,67]. Nondeterminism confounds debugging.

A known alternative to using locks is chromatic scheduling
[1,9], which schedules a data-graph computation based on a color-
ing of the data-graph computation’s conflict graph — a graph with
an edge between two vertices if updating them in parallel would
produce a race. For a simple data-graph computation, the conflict
graph is simply the data graph itself. The idea behind chromatic
scheduling is fairly simple. Chromatic scheduling begins by com-
puting a (vertex) coloring of the conflict graph — an assignment
of colors to the vertices such that no two adjacent vertices share
the same color. Since no edge in the conflict graph connects two



Benchmark VI |E| X GraphLab CILK+LOCKS PRISM
PR/G 916,428 5,105,040 43 14.9 14.8 124
PR/L 4,847,570 68,475,400 333 217.1 227.9 172.3
1D/250 62,500 249,000 4 4.0 3.8 2.5
1D/1000 1,000,000 3,996,000 4 443 443 20.7
FBP/C1 87,831 265,204 2 13.7 7.4 7.6
FBP/C3 482,920 160,019 2 27.9 14.7 14.6
ALS/N 187,722 20,597,300 6 126.1 113.4 77.1

Figure 2: Comparison of dynamic data-graph schedulers on seven application benchmarks. All runtimes are in seconds and were calculated by taking the
median 12-core execution time of 5 runs on an Intel Xeon X5650 with hyperthreading disabled. The runtime of PRISM includes the time used to color the
input graph. PR/G and PR/L run a PageRank algorithm on the web-Google [72] and soc-LiveJournal [4] graphs, respectively. ID/250 and ID/1000 run an
image denoise algorithm to remove Gaussian noise from 2D grayscale images of dimension 250 by 250 and 1000 by 1000. FBP/C1 and FBP/C3 perform
belief propagation on a factor graph provided by the cora-1 and cora-3 datasets [79,91]. ALS/N runs an alternating least squares algorithm on the NPIC-500

dataset [81].

vertices of the same color, updates on all vertices of a given color
can execute in parallel without producing races. To execute a round
of a data-graph computation, the set of activated vertices Q is par-
titioned into ) color sets — subsets of Q containing vertices of a
single color. Updates are applied to vertices in Q by serially step-
ping through each color set and updating all vertices within a color
set in parallel. The result of a data-graph computation executed us-
ing chromatic scheduling is equivalent to that of a slightly modified
version of SERIAL-DDGC that starts each round (immediately be-
fore line 9 of Figure 1) by sorting the vertices within its queue by
color.

Chromatic scheduling avoids both of the pitfalls of the locking
strategy. First, since only nonadjacent vertices in the conflict graph
are updated in parallel, no races can occur, and the necessity for
locks and their associated performance overheads are precluded.
Second, by establishing a fixed order for processing different col-
ors, any two adjacent vertices are always processed in the same
order, and the data-graph computation is executed deterministi-
cally. Although chromatic scheduling potentially loses parallelism
because colors are processed serially, we shall see that this concern
does not appear to be an issue in practice.

To date, chromatic scheduling has been applied to static data-
graph computations, but not to dynamic data-graph computations.
This paper addresses the question of how to perform chromatic
scheduling efficiently when the activation set changes on the fly,
necessitating a data structure for maintaining dynamic sets of ver-
tices in parallel.

Contributions

This paper introduces PRISM, a chromatic-scheduling algorithm
that executes dynamic data-graph computations in parallel effi-
ciently in a deterministic fashion. PRISM employs a “multibag”
data structure to manage an activation set as a list of color sets. The
multibag achieves efficiency using “worker-local storage,” which
is memory locally associated with each “worker” thread executing
the computation.

We analyze the performance of PRISM using work-span anal-
ysis [29, Ch. 27]. The work of a computation is intuitively the
total number of instructions executed, and the span corresponds
to the longest path of dependencies in the parallel program. We
shall make the reasonable assumption that a single update f(v) ex-
ecutes in @(deg(v)) work and ©(Ig(deg(v))) span.! Under this
assumption, on a degree-A data graph G colored using y colors,
PRISM executes the updates on the vertices in the activation set

!Other assumptions about the work and span of an update can easily be
made at the potential expense of complicating the analysis.

0, of a round r on P processors in O(size(Q;) + x + P) work and
O(x(1g(Qr/x) +1gA) +1gP) span.

Surprisingly, the “price of determinism” incurred by using chro-
matic scheduling instead of the more common locking strategy ap-
pears to be negative for real-world applications. As Figure 2 in-
dicates, on seven application benchmarks, PRISM executes 1.2—
2.1 times faster than GraphLab’s comparable, but nondeterministic,
locking strategy. This performance gap is not due solely to superior
engineering or load balancing. A similar performance overhead is
observed in a comparably engineered lock-based scheduling algo-
rithm, CILK+LOCKS. PRISM outperforms CILK+LOCKS on all
but one benchmark and is on average (geometric mean) 1.18 times
faster.

PRISM behaves deterministically as long as every update is pure:
it modifies no data except for that associated with its target ver-
tex. This assumption precludes the update function from modify-
ing global variables to aggregate or collect values. To support this
common use pattern, we describe an extension to PRISM, called
PRrISM-R, which executes dynamic data-graph computations deter-
ministically even when updates modify global variables using as-
sociative operations. PRISM-R replaces each multibag PRISM uses
with a “multivector,” maintaining color sets whose contents are or-
dered deterministically. PRISM-R executes in the same theoretical
bounds as PRISM, but its implementation is more involved.

Outline

The remainder of this paper is organized as follows. Section 2
reviews dynamic multithreading, the parallel programming model
in which we describe and analyze our algorithms. Section 3 de-
scribes PRISM, the chromatic-scheduling algorithm for dynamic
data-graph computations. Section 4 describes the multibag data
structure PRISM uses to represent its color sets. Section 5 presents
our theoretical analysis of PRISM. Section 6 describes a Cilk
Plus [56] implementation of PRISM and presents empirical results
measuring this implementation’s performance on seven application
benchmarks. Section 7 describes PRISM-R and its multivector data
structure. Section 8 offers some concluding remarks.

2. BACKGROUND

We implemented the PRISM algorithm in Cilk Plus [56], a dy-
namic multithreading concurrency platform. This section pro-
vides background on the dag model of multithreading that embod-
ies this and other similar concurrency platforms, including MIT
Cilk [39], Cilk++ [70], Fortress [2], Habenero [6,24], Hood [18],
Java Fork/Join Framework [66], Task Parallel Library (TPL) [69],
Threading Building Blocks (TBB) [88], and X10 [26]. We review



the Cilk model of multithreading, the notions of work and span, and
the basic properties of the work-stealing runtime systems underly-
ing these concurrency platforms. We briefly discuss worker-local
storage, which PRISM’s multibag data structure uses to achieve ef-
ficiency.

The Cilk model of multithreading

The Cilk model of multithreading [16, 17] is described in tutorial
fashion in [29, Ch. 27]. The model views the executed computation
resulting from running a parallel program as a computation dag in
which each vertex denotes an instruction, and edges denote parallel
control dependencies between instructions. To analyze the theoret-
ical performance of a multithreaded program, such as PRISM, we
assume that the program executes on an ideal parallel computer,
where each instruction executes in unit time, the computer has am-
ple bandwidth to shared memory, and concurrent reads and writes
incur no overheads due to contention.

We shall assume that algorithms for the dag model are expressed
using the Cilk-like primitives [29, Ch. 27] spawn, sync, and par-
allel for. The keyword spawn when preceding a function call F al-
lows F' to execute in parallel with its continuation — the statement
immediately after the spawn of F. The complement of spawn is the
keyword sync, which acts as a local barrier and prevents statements
after the sync from executing until all earlier spawned functions re-
turn. These keywords can be used to implement other convenient
parallel control constructs, such as the parallel for loop, which al-
lows all of its iterations to operate logically in parallel. The work
of a parallel for loop with n iterations is the total number of in-
structions in all executed iterations. The span is ®(Ign) plus the
maximum span of any loop iteration. The ®(lgn) span term comes
from the fact that the runtime system executes the loop iterations
using parallel divide-and-conquer, and thus fans out the iterations
as a balanced binary tree in the dag.

Work-span analysis

Given a multithreaded program whose execution is modeled as a
dag A, we can bound the P-processor running time 7p(A) of the
program using work-span analysis [29, Ch. 27]. Recall that the
work 77(A) is the number of instructions in A, and that the span
T.(A) is the length of a longest path in A. Greedy schedulers [20,
35,49] can execute a deterministic program with work 77 and span
T on P processors in time Tp satisfying

max{Ty/P,T..} <T, < T /P+ T, (1)

and a similar bound can be achieved by more practical “work-
stealing” schedulers [16, 17]. The speedup of an algorithm on P
processors is 71 /Tp, which Inequality (1) shows to be at most P in
theory. The parallelism T, /T.. is the greatest theoretical speedup
possible for any number of processors.

Work-stealing runtime systems

Runtime systems underlying concurrency platforms that support
the dag model of multithreading usually implement a work steal-
ing scheduler [17,23, 50], which operates as follows. When the
runtime system starts up, it allocates as many operating-system
threads, called workers, as there are processors. Each worker keeps
aready queue of tasks that can operate in parallel with the task it is
currently executing. Whenever the execution of code generates par-
allel work, the worker puts the excess work into the queue. When-
ever it needs work, it fetches work from its queue. When a worker’s
ready queue runs out of tasks, however, the worker becomes a thief
and “steals” work from another victim worker’s queue. If an appli-
cation exhibits sufficient parallelism compared to the actual num-

PRISM(G’fv QO)
1 x = COLOR-GRAPH(G)
2 r=0
3 0=0
4 while Q#0
5 ¢ = MB-COLLECT(Q)
6 forCe?
7 parallel for ve C
8 active[v] = FALSE
9 s = f(v)
10 parallel for u € S
11 begin atomic
12 if active[u] == FALSE
13 active[u] = TRUE
14 MB-INSERT(Q, u, color|u])
15 end atomic
16 r=r+1

Figure 3: Pseudocode for PRISM. The algorithm takes as input a data graph
G, an update function f, and an initial activation set Qp. COLOR-GRAPH
colors a given graph and returns the number of colors it used. The proce-
dures MB-COLLECT and MB-INSERT operate the multibag O to maintain
activation sets for PRISM. PRISM updates the value of r after each round of
the data-graph computation.

ber of workers/processors, one can prove mathematically that the
computation executes with linear speedup.

Worker-local storage

Worker-local storage refers to memory that is private to a par-
ticular worker thread in a parallel computation. In this paper, in
a P-processor execution of a parallel program, a variable x im-
plemented using worker-local storage is stored as an array of P
copies of x. A worker accesses its local copy of x using a runtime-
provided worker identifier to index the array of worker-local copies
of x. The Cilk Plus runtime system, for example, provides the
__cilkrts_get_worker_number () API call, which returns an in-
teger identifying the current worker. PRISM assumes the existence
of a runtime-provided GET-WORKER-ID function that executes in
O(1) time and returns an integer from 0 to P — 1.

3. THE PRISM ALGORITHM

This section presents PRISM, a chromatic-scheduling algorithm
for executing dynamic data-graph computations deterministically.
We describe how PRISM differs from the serial algorithm in Sec-
tion 1, including how it maintains activation sets that are partitioned
by color using a multibag data structure.

Figure 3 shows the psuedocode for PRISM, which differs from
the SERIAL-DDGC routine from Figure 1 in two main ways: the
use of a multibag data structure to implement Q, and the call to
COLOR-GRAPH on line 1 to color the data graph.

A multibag Q represents a list (Cy,C1,...,Cy_1 ) of  bags (un-
ordered multisets) and supports two operations:

e MB-INSERT(Q, v,k) inserts an element v into bag Cy in Q. A
multibag supports parallel MB-INSERT operations.

e MB-COLLECT(Q) produces a collection ¢ that represents a
list of the nonempty bags in Q, emptying Q in the process.

PRISM stores a distinct color set in each bag of a multibag Q.
Section 4 describes and analyzes the implementation of the multi-
bag data structure.

PRISM calls COLOR-GRAPH on line 1 to color the given data
graph G = (V,E) and obtain the number y of colors used. Al-
though it is NP-complete to find either an optimal coloring of
a graph [40] — a coloring that uses the smallest possible num-
ber of colors — or a O(V¥)-approximation of the optimal col-



collected-subbags

&1 5[] v

o
C()
&)
Y

Vg

[ v

bag-offsets

o
-

0

2
i ] 3
o]V

Cs

tIPIPIPITITIY

> &> vr| V|
array” L—] array” L—] array” L—]
(@

subbag

(®)

Figure 4: A multibag data structure. (a) A multibag containing 19 elements distributed across 4 distinct bags. The contents of each bag are partitioned across
the corresponding subbags in 3 nonempty worker-local SPA’s. (b) The output of MB-COLLECT when executed on the multibag in (a). Sets of subbags in

collected-subbags are labeled with the bag Cy, that their union represents.

oring [77], as Section 6 discusses, an optimal coloring is not
necessary for PRISM to perform well in practice, as long as the
data graph is colored with sufficiently few colors. Many par-
allel coloring algorithms exist that satisfy the needs of PRISM
(see, for example, [3,5, 45,46, 52,59, 61, 62,73,94]). In fact, if
the data-graph computation performs sufficiently many updates,
a ©(V + E)-work greedy coloring algorithm, such as that intro-
duced by Welsh and Powell [96], can suffice as well. Our pro-
gram implementation of PRISM uses a multicore variant of the
Jones and Plassmann algorithm [59] that produces a determinis-
tic (A+ 1)-coloring of a degree-A graph G = (V, E) in linear work
and O(lgV +1gA-min{E,A+1gAlgV /IglgV}) span [52].

Let us now see how PRISM uses chromatic scheduling to execute
a dynamic data-graph computation (G, f, Qo). After line 1 colors
G, line 3 initializes the multibag Q with the initial activation set Qy,
and then the while loop on lines 4-16 executes the rounds of the
data-graph computation. At the start of each round, line 5 collects
the nonempty bags € from Q, which correspond to the nonempty
color sets for the round. Lines 615 iterate through the color sets
C € ¢ sequentially, and the parallel for loop on lines 7-15 pro-
cesses the vertices of each C in parallel. For each vertex v € C,
line 9 performs the update S = f(v), which returns a set S of acti-
vated vertices, and lines 10-15 insert into Q the vertices in S that
are not currently active.

To ensure that an activated vertex is not added to Q multiple
times in a round, PRISM maintains an array active of Boolean flags,
where entry active[v] indicates whether vertex v is currently active.
Conceptually, flag active[v] indicates whether v € Q in the modified
version of SERIAL-DDGC that is analogous to PRISM. To process
a vertex v, line 8 of PRISM sets active[v] to FALSE, whereas SE-
RIAL-DDGC removes v from Q. Lines 12 and 13 of PRISM set
activelu] to TRUE only if active[u] was previously FALSE, whereas
SERIAL-DDGC adds vertex u to Q only if u ¢ Q. The begin
atomic and end atomic statements on lines 11 and 15 ensure that
activelu] is read and set atomically, thereby preventing a data race
from adding vertex u to PRISM’s multibag Q multiple times. Al-
though alternative strategy exist to avoid this atomicity check, our
empirical studies indicate that this limited use of atomics seems to
work well in practice.

4. THE MULTIBAG DATA STRUCTURE

This section presents the multibag data structure employed by
PrisM. The multibag uses worker-local sparse accumulators [44]
and an efficient parallel collection operation. We describe how the
MB-INSERT and MB-COLLECT operations are implemented, and
we analyze them using work-span analysis [29, Ch. 27]. When used
in a P-processor execution of a parallel program, a multibag Q of
bags storing n elements supports MB-INSERT in ®(1) worst-case
time and MB-COLLECT in O(n+ x + P) work and O(lgn+ x +
1g P) span.

A sparse accumulator (SPA) [44] implements an array that
supports lazy initialization of its elements. A SPA T contains
a sparsely populated array T.array of elements and a log T.log,
which is a list of indices of initialized elements in 7. array. To im-
plement multibags, we shall only need the ability to create a SPA,
access an arbitrary SPA element, or delete all elements from a SPA.
For simplicity, we shall assume that an uninitialized array element
in a SPA has a value of NIL. When an array element 7. array[i] is
modified for the first time, the index i is appended to T.log. An
appropriately designed SPA T storing n = |T. log| elements admits
the following performance properties:

e Creating T takes O(1) work.

e Each element of T can be accessed in (1) work.

e Reading all initialized elements of T takes ®(n) work and
O(lgn) span.

e Emptying T takes ©(1) work.

A multibag Q is an array of P worker-local SPA’s, where P is
the number of workers executing the program. We shall use p in-
terchangeably to denote either a worker or that worker’s unique
identifier. Worker p’s local SPA in Q is thus denoted by Q[p]. For a
multibag Q of x bags, each SPA Q[p] contains an array Q|[p).array
of size y and a log Q[p]. log. Figure 4(a) illustrates a multibag with
x = 7 bags, 4 of which are nonempty. As Figure 4(a) shows, the
worker-local SPA’s in Q partition each bag C; € Q into subbags
{Ck,0,Ck1;- - -,Cr,p—1}, where Q[p]. array[k] stores subbag Cy .

Implementation of MB-INSERT and MB-COLLECT

The worker-local SPA’s enable a multibag Q to support paral-
lel MB-INSERT operations without creating races. Figure 5 shows



MB-INSERT(Q, v, k)

1 p = GET-WORKER-ID()

2 if Q[p]. arraylk] == NIL

3 APPEND(Q[p].log, k)

4 Qlpl.array[k] = new subbag
5 APPEND(Q|p].arraylk],v)

Figure 5: Pseudocode for the MB-INSERT multibag operation to insert an
element v into bag C; in multibag Q.

the pseudocode for MB-INSERT. When a worker p executes
MB-INSERT(Q, v,k), it inserts element v into the subbag Cy ,, as
follows. Line 1 calls GET-WORKER-ID to get worker p’s identi-
fier. Line 2 checks if subbag Cy , stored in Q[p].array[k] is ini-
tialized, and if not, lines 3 and 4 initialize it. Line 5 inserts v into
Qlp]. array[k].

Conceptually, the MB-COLLECT operation extracts the bags
in Q to produce a compact representation of those bags that
can be read efficiently. Figure 4(b) illustrates the compact rep-
resentation of the elements of the multibag from Figure 4(a)
that MB-COLLECT returns. This representation consists of a
pair (bag-offsets,collected-subbags) of arrays that together re-
semble the representation of a graph in a CSR format. The
collected-subbags array stores all of the subbags in Q sorted by
their corresponding bag’s index. The bag-offsets array stores in-
dices in collected-subbags that denote the sets of subbags com-
prised by each bag. In particular, in this representation, the contents
of bag C}, are stored in the subbags in collected-subbags between
indices bag-offsets[k] and bag-offsets[k+ 1].

Figure 6 sketches how MB-COLLECT converts a multibag Q
stored in worker-local SPA’s into the representation illustrated in
Figure 4(b). Steps 1 and 2 create an array collected-subbags of
nonempty subbags from the worker-local SPA’s in Q. Each subbag
Cy,p in collected-subbags is tagged with the integer index k of its
corresponding bag Cy € Q. Step 3 sorts collected-subbags by these
index tags, and Step 4 creates the bag-offsets array. Step 5 removes
all elements from Q, thereby emptying the multibag.

Analysis of multibags

‘We now analyze the work and span of the multibag’s MB-INSERT
and MB-COLLECT operations, starting with MB-INSERT.

LEMMA 1. Executing MB-INSERT takes ©(1) time in the
worst case.

PROOF. Consider each step of a call to MB-INSERT(Q,v,k).
The GET-WORKER-ID procedure on line 1 obtains the executing
worker’s identifier p from the runtime system in ®(1) time, and
line 2 checks if the entry Q[p].arraylk] is empty in ®(1) time.
Suppose that Q[p].log and each subbag in Q|p].array are imple-
mented as dynamic arrays that use a deamortized table-doubling
scheme [22]. Lines 3-5 then take ®(1) time each to append k to
Q[p].log, create a new subbag in Q[p].array[k], and append v to
Olp|-array[i]. O

The next lemma analyzes the work and span of MB-COLLECT.

LEMMA 2. Ina P-processor parallel program execution, a call
to MB-COLLECT(Q) on a multibag Q of X bags whose contents
are distributed across m distinct subbags executes in O(m+ ) + P)
work and O(lgm+ x +1g P) span.

PROOF. We analyze each step of MB-COLLECT in turn. We
shall use a helper procedure PREFIX-SUM(A), which computes
the all-prefix sums of an array A of n integers in ®(n) work

MB-COLLECT(Q)

1. For each SPA Qlp], map each bag index k in Q[p].log to the pair
(k,Q[p].arraylk]).

2. Concatenate the arrays Q|[p]. log for all workers p € {0,1,...,P—1}
into a single array, collected-subbags.

3. Sort the entries of collected-subbags by their bag indices.

4. Create the array bag-offsets, where bag-offsets|k] stores the index of
the first subbag in collected-subbags that contains elements of the
kth bag.

5. For p=0,1,...,P—1, delete all elements from the SPA Q[p].

6. Return the pair (bag-offsets, collected-subbags).

Figure 6: Pseudocode for the MB-COLLECT multibag operation.
Calling MB-COLLECT on a multibag Q produces a pair of arrays
collected-subbags, which contains all nonempty subbags in Q sorted by
their associated bag’s index, and bag-offsets, which associates sets of sub-
bags in Q with their corresponding bag.

and O(lgn) span. (Blelloch [11] describes an appropriate im-
plementation of PREFIX-SUM.) Step 1 replaces each entry in
0|[p].log in each worker-local SPA Q[p] with the appropriate index-
subbag pair <k,Ck$p> in parallel, which requires ®(m + P) work
and O(Igm +1g P) span. Step 2 gathers all index-subbag pairs into
a single array. Suppose that each worker-local SPA Q[p] is aug-
mented with the size of Q[p].log, as Figure 4(a) illustrates. Ex-
ecuting PREFIX-SUM on these sizes and then copying the entries
of Q[p].log into collected-subbags in parallel therefore completes
Step 2 in @(m + P) work and ®(lgm + IgP) span. Step 3 can sort
the collected-subbags array in ®(m + x) work and @(lgm + x)
span using a variant of a parallel radix sort [15,27,98] as follows:

1. Divide collected-subbags into m/x, groups of size x, and cre-
ate an (m/y) x x matrix A, where entry A;; stores the num-
ber of subbags with index j in group i. Constructing A can
be done with ®(m + x) work and ©(lgm + ) span by eval-
uating the groups in parallel and the subbags in each group
serially.

2. Evaluate PREFIX-SUM on AT (or, more precisely, the ar-
ray formed by concatenating the columns of A in order) to
produce a matrix B such that B;; identifies which entries in
the sorted version of collected-subbags will store the sub-
bags with index j in group i. This PREFIX-SUM call takes
O(m+ x) work and @(lgm +1gx) span.

3. Create a temporary array 7T of size m, and in parallel over
the groups of collected-subbags, serially move each sub-
bag in the group to an appropriate index in 7', as identified
by B. Copying these subbags executes in ®(m+ x ) work and
O(lgm+ ) span.

4. Rename the temporary array T as collected-subbags in ©(1)
work and span.

Finally, Step 4 can scan collected-subbags for adjacent pairs of
entries with different bag indices to compute bag-offsets in ®(m)
work and ®(Igm) span, and Step 5 can reset every SPA in Q in
parallel using ®(P) work and ®(IgP) span. Totaling the work and
span of each step completes the proof. [

Although different executions of a program can store the ele-
ments of Q in different numbers m of distinct subbags, notice that
m is never more than the total number of elements in Q.

5. ANALYSIS OF PRISM

This section analyzes the performance of PRISM using work-
span analysis [29, Ch. 27]. We derive bounds on the work and span
of PrIsM for any simple data-graph computation (G, f, Qo). Recall
that we make the reasonable assumptions that a single update f(v)



Graph \4 |E| X CILK+LOCKS PRISM Coloring
cagel5 5,154,860 94,044,700 17 36.9 355 12%
soc-LiveJournall 4,847,570 68,475,400 333 36.8 21.7 12%
randLocalDim25 1,000,000 49,992,400 36 26.7 14.4 18%
randLocalDim4 1,000,000 41,817,000 47 19.5 12.5 14%
rmat2Million 2,097,120 39,912,600 72 22.5 16.6 12%
powerGraph2Million 2,000,000 29,108,100 15 12.1 9.8 13%
3dgrid5m 5,000,210 15,000,600 6 10.3 10.3 7%
2dgrid5m 4,999,700 9,999,390 4 17.7 8.9 4%
web-Google 916,428 5,105,040 43 39 2.4 8%
web-BerkStan 685,231 7,600,600 200 39 24 8%
web-Stanford 281,904 2,312,500 62 1.9 0.9 11%
web-NotreDame 325,729 1,469,680 154 1.1 0.8 12%

Figure 7: Performance of PRISM versus CILK+LOCKS when executing 10- [V | updates of the PageRank [21] data-graph computation on a suite of six real-
world graphs and six synthetic graphs. Column “Graph,” identifies the input graph, and columns |V| and |E| specify the number of vertices and edges in the
graph, respectively. Column y gives the number of colors PRISM used to color the graph. Columns “CILK+LOCKS” and “PRISM” present 12-core running
times in seconds for the respective schedulers. Each running time is the median of 5 runs. Column “Coloring” gives the percentage of PRISM’s running time

spent coloring the graph.

executes in ®(deg(v)) work and ©(lg(deg(v))) span, and that the
update only activates vertices in Adj[v].

THEOREM 3. Suppose that PRISM colors a degree-A data
graph G = (V,E) using X colors, and then executes the data-graph
computation (G, f,Qq). Then, on P processors, PRISM executes
updates on all vertices in the activation set Q, for a round r using

O(size(Qr) + x + P) work and O(x(12(Q,/x) +1gA) +1g P) span.

PROOF. Let us first analyze the work and span of one iteration
of lines 615 in PRISM, which perform the updates on the ver-
tices belonging to one color set C € Q,. Consider a vertex v € C.
Lines 8 and 9 execute in ®(deg(v)) work and ®(lg(deg(v))) span.
For each vertex u in the set S of vertices activated by the up-
date f(v), Lemma 1 implies that lines 11-15 execute in @(1) to-
tal work. The parallel for loop on lines 10-15 therefore executes
in ©(S) work and ®(1gS) span. Because |S| < deg(v), the paral-
lel for loop on lines 7-15 thus executes in @(size(C)) work and
O(lgC + max,cclg(deg(v))) = O(IgC +1gA) span.

By processing each of the ) color sets belonging to O,
lines 6-15 therefore executes in @(size(Q,) + x) work and
O(x(1g(Q,/x) +1gA)) span. Lemma 2 implies that line 5 executes
MB-COLLECT in O(Q, + x + P) work and O(IgQ, + x +1gP)
span. The theorem follows, because |Q,| < size(Q,). [

6. EMPIRICAL EVALUATION

This section describes our empirical evaluation of PRISM. We
implemented PRISM in Cilk Plus [56] and compared its perfor-
mance to that of three other schedulers for executing data-graph
computations. This section presents three studies of PRISM’s per-
formance. The first study, which compared PRISM to a nondeter-
ministic locking strategy, indicates that the overhead of managing
multibags is less than the cost of a locking protocol. The second
study, which compared PRISM to a chromatic scheduler for static
data-graph computations, shows that the overhead of maintaining
activation sets dynamically is only about 20% more than using
static activation sets. This study suggests that it is worthwhile to
use dynamic data-graph computations instead of static ones even if
only modest amounts of work can be saved by avoiding unneces-
sary updates. The third study shows the performance of PRISM is
relatively insensitive to the number of colors used to color the data
graph, as long as there is sufficient parallelism.

Experimental setup

We implemented PRISM and the multibag data structure in Cilk
Plus [56], compiling with the Intel C++ compiler, version 13.1.1.
Our source code and data are available from http://supertech.
csail.mit.edu. To implement the GET-COLOR procedure, the
PRISM implementation used a deterministic multicore coloring al-
gorithm [52], which was also coded in Cilk Plus. For comparison,
we engineered three other schedulers for executing dynamic data-
graph computations in parallel:

e CILK+LOCKS uses a locking scheme to avoid executing con-
flicting updates in parallel. The locking scheme associates a
shared-exclusive lock with each vertex in the graph. Prior to
executing an update f(v), vertex v’s lock is acquired exclu-
sively, and a shared lock is acquired for each u € Adj[v]. A
global ordering of locks is used to avoid deadlock.

o CHROMATIC treats the dynamic data-graph computation as
a static one — it updates every vertex in every round — and
it uses chromatic scheduling to avoid executing conflicting
updates in parallel.

e ROUND-ROBIN treats the dynamic data-graph computation
as a static one and uses the locking strategy to coordinate
updates that conflict.

These schedulers were implemented within a modified multicore
version of GraphLab. Specifically, we modified GraphLab’s en-
gine to replace GraphLab’s explicit management of threads with
the Cilk Plus runtime. Using the GraphLab framework, we tested
these schedulers on existing GraphLab applications with little to no
alteration of the application code.

The benchmarks were run on Intel Xeon X5650 machines, each
with 12 2.67-GHz processing cores (hyperthreading disabled);
49 GB of DRAM; two 12-MB L3-caches, each shared among 6
cores; and private L2- and L1-cache