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ABSTRACT
A data-graph computation — popularized by such programming
systems as Galois, Pregel, GraphLab, PowerGraph, and GraphChi
— is an algorithm that performs local updates on the vertices of a
graph. During each round of a data-graph computation, an update
function atomically modifies the data associated with a vertex as a
function of the vertex’s prior data and that of adjacent vertices. A
dynamic data-graph computation updates only an active subset of
the vertices during a round, and those updates determine the set of
active vertices for the next round.

This paper introduces PRISM, a chromatic-scheduling algorithm
for executing dynamic data-graph computations. PRISM uses a
vertex-coloring of the graph to coordinate updates performed in
a round, precluding the need for mutual-exclusion locks or other
nondeterministic data synchronization. A multibag data structure
is used by PRISM to maintain a dynamic set of active vertices as
an unordered set partitioned by color. We analyze PRISM using
work-span analysis. Let G = (V,E) be a degree-∆ graph colored
with χ colors, and suppose that Q ⊆ V is the set of active vertices
in a round. Define size(Q) = |Q|+

∑
v∈Q deg(v), which is propor-

tional to the space required to store the vertices of Q using a sparse-
graph layout. We show that a P-processor execution of PRISM
performs updates in Q using O(χ(lg(Q/χ) + lg∆) + lgP) span
and Θ(size(Q) + χ + P) work. These theoretical guarantees are
matched by good empirical performance. We modified GraphLab
to incorporate PRISM and studied seven application benchmarks
on a 12-core multicore machine. PRISM executes the benchmarks
1.2–2.1 times faster than GraphLab’s nondeterministic lock-based
scheduler while providing deterministic behavior.

This paper also presents PRISM-R, a variation of PRISM that
executes dynamic data-graph computations deterministically even
when updates modify global variables with associative operations.
PRISM-R satisfies the same theoretical bounds as PRISM, but its
implementation is more involved, incorporating a multivector data
structure to maintain an ordered set of vertices partitioned by color.
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1. INTRODUCTION
Many systems from physics, artificial intelligence, and scientific

computing can be represented naturally as a data graph — a graph
with data associated with its vertices and edges. For example, some
physical systems can be decomposed into a finite number of ele-
ments whose interactions induce a graph. Probabilistic graphical
models in artificial intelligence can be used to represent the depen-
dency structure of a set of random variables. Sparse matrices can
be interpreted as graphs for scientific computing.

Intuitively, a data-graph computation is an algorithm that per-
forms local updates on the vertices of a data graph. Several soft-
ware systems have been implemented to support parallel data-
graph computations, including Galois [63], Pregel [78], GraphLab
[75, 76], PowerGraph [48], and GraphChi [64]. These systems of-
ten support “complex” data-graph computations, in which data can
be associated with edges as well as vertices and updating a vertex v
can modify any data associated with v, v’s incident edges, and the
vertices adjacent to v. For ease in discussing chromatic schedul-
ing, however, we shall principally restrict ourselves to “simple”
data-graph computations (which correspond to “edge-consistent”
computations in GraphLab), although most of our results straight-
forwardly extend to more complex models. Indeed, six out of the
seven GraphLab applications described in [74, 75] are simple data-
graph computations.

Updates to vertices proceed in rounds, where each vertex can be
updated at most once per round. In a static data-graph computation,
the activation set Qr of vertices updated in a round r — the set of
active vertices — is determined a priori. Often, a static data-graph
computation updates every vertex in each round. Static data-graph
computations include Gibbs sampling [41, 42], iterative graph col-
oring [30], and n-body problems such as the fluidanimate PARSEC
benchmark [10].

We shall be interested in dynamic data-graph computations,
where the activation set changes round by round. Dynamic data-
graph computations include the Google PageRank algorithm [21],



loopy belief propagation [82, 87], coordinate descent [32], co-
EM [84], alternating least-squares [54], singular-value decompo-
sition [47], and matrix factorization [95].

We formalize the computational model as follows. Let G =
(V,E) be a data graph. Denote the neighbors, or adjacent ver-
tices, of a vertex v ∈ V by Adj[v] = {u ∈ V : (u,v) ∈ E}. The
degree of v is thus deg(v) = |Adj[v]|, and the degree of G is
deg(G) = max{deg(v) : v ∈ V}. A (simple) dynamic data-graph
computation is a triple 〈G, f ,Q0〉, where
• G = (V,E) is a graph with data associated with each vertex

v ∈V ;
• f : V → 2Adj[v] is an update function; and
• Q0 ⊆V is the initial activation set.

The update S = f (v) implicitly computes as a side effect a new
value for the data associated with v as a function of the old data
associated with v and v’s neighbors. The update returns a set
S ⊆ Adj[v] of vertices that must be updated later in the computa-
tion. During a round r of the dynamic data-graph computation,
each vertex v ∈ Qr is updated at most once, that is, Qr is a set, not
a multiset. For example, an update f (v) might activate a neighbor
u only if the value of v changes significantly.

The advantage of dynamic over static data-graph computations is
that they avoid performing many unnecessary updates. Studies in
the literature [75,76] show that dynamic execution can enhance the
practical performance of many applications. We confirmed these
findings by implementing static and dynamic versions of several
data-graph computations. The results for a PageRank algorithm
on a power-law graph of 1 million vertices and 10 million edges
were typical. The static computation performed approximately 15
million updates, whereas the dynamic version performed less than
half that number of updates.

A serial reference implementation
Before we address the issues involved in scheduling and executing
dynamic data-graph computations in parallel, let us first hone our
intuition with a serial algorithm for the problem. Figure 1 gives
the pseudocode for SERIAL-DDGC. This algorithm schedules the
updates of a data-graph computation by maintaining a FIFO queue
Q of activated vertices that have yet to be updated. Sentinel values
enqueued in Q on lines 4 and 9 demarcate the rounds of the com-
putation such that the set of vertices in Q after the rth sentinel has
been enqueued is the activation set Qr for round r.

Given a data-graph G = (V,E), an update function f , and an
initial activation set Q0, SERIAL-DDGC executes the data-graph
computation 〈G, f ,Q0〉 as follows. Lines 1–2 initialize Q to contain
all vertices in Q0. The while loop on lines 5–14 then repeatedly
dequeues the next scheduled vertex v∈Q on line 5 and executes the
update f (v) on line 11. Executing f (v) produces a set S of activated
vertices, and lines 12–14 check each vertex in S for membership in
Q, enqueuing all vertices in S that are not already in Q.

We can analyze the time SERIAL-DDGC takes to execute one
round r of the data-graph computation 〈G, f ,Q0〉. Define the size
of an activation set Qr as

size(Qr) = |Qr|+
∑
v∈Qr

deg(v) .

The size of Qr is asymptotically the space needed to store all the
vertices in Qr and their incident edges using a standard sparse-
graph representation, such as compressed-sparse-rows (CSR) for-
mat [93]. For example, if Q0 = V , we have size(Q0) = |V |+ 2|E|
by the handshaking lemma [29, p. 1172–3]. Let us make the rea-
sonable assumption that the time to execute f (v) serially is propor-
tional to deg(v). If we implement the queue as a dynamic (resiz-

SERIAL-DDGC(G, f ,Q0)

1 for v ∈ Q0
2 ENQUEUE(Q,v)
3 r = 0
4 ENQUEUE(Q,NIL) // Sentinel NIL denotes the end of a round.
5 while Q 6= {NIL}
6 v = DEQUEUE(Q)
7 if v = = NIL
8 r += 1
9 ENQUEUE(Q,NIL)

10 else
11 S = f (v)
12 for u ∈ S
13 if u /∈ Q
14 ENQUEUE(Q,u)

Figure 1: Pseudocode for a serial algorithm to execute a data-graph com-
putation 〈G, f ,Q0〉. SERIAL-DDGC takes as input a data graph G and an
update function f . The computation maintains a FIFO queue Q of acti-
vated vertices that have yet to be updated and sentinel values NIL, each of
which demarcates the end of a round. An update S = f (v) returns the set
S ⊆ Adj[v] of vertices activated by that update. Each vertex u ∈ S is added
to Q if it is not currently scheduled for a future update.

able) table [29, Section 17.4], then line 14 executes in Θ(1) amor-
tized time. All other operations in the for loop on lines 12–14 take
Θ(1) time, and thus all vertices activated by executing f (v) are
examined in Θ(deg(v)) time. The total time spent updating the
vertices in Qr is therefore Θ(Qr +

∑
v∈Qr

deg(v)) = Θ(size(Qr)),
which is linear time: time proportional to the storage requirements
for the vertices in Qr and their incident edges.

Parallelizing dynamic data-graph computations
The salient challenge in parallelizing data-graph computations is
to deal effectively with races between updates, that is, logically
parallel updates that read and write common data. A determinacy
race [36] (also called a general race [83]) occurs when two logi-
cally parallel instructions access the same memory location and at
least one of them writes to that location. Two updates in a data-
graph computation conflict if executing them in parallel produces a
determinacy race. A parallel scheduler must manage or avoid con-
flicting updates to execute a data-graph computation correctly and
deterministically.

The standard approach to preventing races associates a mutual-
exclusion lock with each vertex of the data graph to ensure that an
update on a vertex v does not proceed until all locks on v and v’s
neighbors have been acquired. Although this locking strategy pre-
vents races, it can incur substantial overhead from lock acquisition
and contention, hurting application performance, especially when
update functions are simple. Moreover, because runtime happen-
stance can determine the order in which two logically parallel up-
dates acquire locks, the data-graph computation can act nondeter-
ministically: different runs on the same inputs can produce differ-
ent results. Without repeatability, parallel programming is arguably
much harder [19, 67]. Nondeterminism confounds debugging.

A known alternative to using locks is chromatic scheduling
[1, 9], which schedules a data-graph computation based on a color-
ing of the data-graph computation’s conflict graph — a graph with
an edge between two vertices if updating them in parallel would
produce a race. For a simple data-graph computation, the conflict
graph is simply the data graph itself. The idea behind chromatic
scheduling is fairly simple. Chromatic scheduling begins by com-
puting a (vertex) coloring of the conflict graph — an assignment
of colors to the vertices such that no two adjacent vertices share
the same color. Since no edge in the conflict graph connects two



Benchmark |V| |E| χ GraphLab CILK+LOCKS PRISM

PR/G 916,428 5,105,040 43 14.9 14.8 12.4
PR/L 4,847,570 68,475,400 333 217.1 227.9 172.3
ID/250 62,500 249,000 4 4.0 3.8 2.5
ID/1000 1,000,000 3,996,000 4 44.3 44.3 20.7
FBP/C1 87,831 265,204 2 13.7 7.4 7.6
FBP/C3 482,920 160,019 2 27.9 14.7 14.6
ALS/N 187,722 20,597,300 6 126.1 113.4 77.1

Figure 2: Comparison of dynamic data-graph schedulers on seven application benchmarks. All runtimes are in seconds and were calculated by taking the
median 12-core execution time of 5 runs on an Intel Xeon X5650 with hyperthreading disabled. The runtime of PRISM includes the time used to color the
input graph. PR/G and PR/L run a PageRank algorithm on the web-Google [72] and soc-LiveJournal [4] graphs, respectively. ID/250 and ID/1000 run an
image denoise algorithm to remove Gaussian noise from 2D grayscale images of dimension 250 by 250 and 1000 by 1000. FBP/C1 and FBP/C3 perform
belief propagation on a factor graph provided by the cora-1 and cora-3 datasets [79, 91]. ALS/N runs an alternating least squares algorithm on the NPIC-500
dataset [81].

vertices of the same color, updates on all vertices of a given color
can execute in parallel without producing races. To execute a round
of a data-graph computation, the set of activated vertices Q is par-
titioned into χ color sets — subsets of Q containing vertices of a
single color. Updates are applied to vertices in Q by serially step-
ping through each color set and updating all vertices within a color
set in parallel. The result of a data-graph computation executed us-
ing chromatic scheduling is equivalent to that of a slightly modified
version of SERIAL-DDGC that starts each round (immediately be-
fore line 9 of Figure 1) by sorting the vertices within its queue by
color.

Chromatic scheduling avoids both of the pitfalls of the locking
strategy. First, since only nonadjacent vertices in the conflict graph
are updated in parallel, no races can occur, and the necessity for
locks and their associated performance overheads are precluded.
Second, by establishing a fixed order for processing different col-
ors, any two adjacent vertices are always processed in the same
order, and the data-graph computation is executed deterministi-
cally. Although chromatic scheduling potentially loses parallelism
because colors are processed serially, we shall see that this concern
does not appear to be an issue in practice.

To date, chromatic scheduling has been applied to static data-
graph computations, but not to dynamic data-graph computations.
This paper addresses the question of how to perform chromatic
scheduling efficiently when the activation set changes on the fly,
necessitating a data structure for maintaining dynamic sets of ver-
tices in parallel.

Contributions
This paper introduces PRISM, a chromatic-scheduling algorithm
that executes dynamic data-graph computations in parallel effi-
ciently in a deterministic fashion. PRISM employs a “multibag”
data structure to manage an activation set as a list of color sets. The
multibag achieves efficiency using “worker-local storage,” which
is memory locally associated with each “worker” thread executing
the computation.

We analyze the performance of PRISM using work-span anal-
ysis [29, Ch. 27]. The work of a computation is intuitively the
total number of instructions executed, and the span corresponds
to the longest path of dependencies in the parallel program. We
shall make the reasonable assumption that a single update f (v) ex-
ecutes in Θ(deg(v)) work and Θ(lg(deg(v))) span.1 Under this
assumption, on a degree-∆ data graph G colored using χ colors,
PRISM executes the updates on the vertices in the activation set

1Other assumptions about the work and span of an update can easily be
made at the potential expense of complicating the analysis.

Qr of a round r on P processors in O(size(Qr)+ χ +P) work and
O(χ(lg(Qr/χ)+ lg∆)+ lgP) span.

Surprisingly, the “price of determinism” incurred by using chro-
matic scheduling instead of the more common locking strategy ap-
pears to be negative for real-world applications. As Figure 2 in-
dicates, on seven application benchmarks, PRISM executes 1.2–
2.1 times faster than GraphLab’s comparable, but nondeterministic,
locking strategy. This performance gap is not due solely to superior
engineering or load balancing. A similar performance overhead is
observed in a comparably engineered lock-based scheduling algo-
rithm, CILK+LOCKS. PRISM outperforms CILK+LOCKS on all
but one benchmark and is on average (geometric mean) 1.18 times
faster.

PRISM behaves deterministically as long as every update is pure:
it modifies no data except for that associated with its target ver-
tex. This assumption precludes the update function from modify-
ing global variables to aggregate or collect values. To support this
common use pattern, we describe an extension to PRISM, called
PRISM-R, which executes dynamic data-graph computations deter-
ministically even when updates modify global variables using as-
sociative operations. PRISM-R replaces each multibag PRISM uses
with a “multivector,” maintaining color sets whose contents are or-
dered deterministically. PRISM-R executes in the same theoretical
bounds as PRISM, but its implementation is more involved.

Outline
The remainder of this paper is organized as follows. Section 2
reviews dynamic multithreading, the parallel programming model
in which we describe and analyze our algorithms. Section 3 de-
scribes PRISM, the chromatic-scheduling algorithm for dynamic
data-graph computations. Section 4 describes the multibag data
structure PRISM uses to represent its color sets. Section 5 presents
our theoretical analysis of PRISM. Section 6 describes a Cilk
Plus [56] implementation of PRISM and presents empirical results
measuring this implementation’s performance on seven application
benchmarks. Section 7 describes PRISM-R and its multivector data
structure. Section 8 offers some concluding remarks.

2. BACKGROUND
We implemented the PRISM algorithm in Cilk Plus [56], a dy-

namic multithreading concurrency platform. This section pro-
vides background on the dag model of multithreading that embod-
ies this and other similar concurrency platforms, including MIT
Cilk [39], Cilk++ [70], Fortress [2], Habenero [6, 24], Hood [18],
Java Fork/Join Framework [66], Task Parallel Library (TPL) [69],
Threading Building Blocks (TBB) [88], and X10 [26]. We review



the Cilk model of multithreading, the notions of work and span, and
the basic properties of the work-stealing runtime systems underly-
ing these concurrency platforms. We briefly discuss worker-local
storage, which PRISM’s multibag data structure uses to achieve ef-
ficiency.

The Cilk model of multithreading
The Cilk model of multithreading [16, 17] is described in tutorial
fashion in [29, Ch. 27]. The model views the executed computation
resulting from running a parallel program as a computation dag in
which each vertex denotes an instruction, and edges denote parallel
control dependencies between instructions. To analyze the theoret-
ical performance of a multithreaded program, such as PRISM, we
assume that the program executes on an ideal parallel computer,
where each instruction executes in unit time, the computer has am-
ple bandwidth to shared memory, and concurrent reads and writes
incur no overheads due to contention.

We shall assume that algorithms for the dag model are expressed
using the Cilk-like primitives [29, Ch. 27] spawn, sync, and par-
allel for. The keyword spawn when preceding a function call F al-
lows F to execute in parallel with its continuation — the statement
immediately after the spawn of F . The complement of spawn is the
keyword sync, which acts as a local barrier and prevents statements
after the sync from executing until all earlier spawned functions re-
turn. These keywords can be used to implement other convenient
parallel control constructs, such as the parallel for loop, which al-
lows all of its iterations to operate logically in parallel. The work
of a parallel for loop with n iterations is the total number of in-
structions in all executed iterations. The span is Θ(lgn) plus the
maximum span of any loop iteration. The Θ(lgn) span term comes
from the fact that the runtime system executes the loop iterations
using parallel divide-and-conquer, and thus fans out the iterations
as a balanced binary tree in the dag.

Work-span analysis
Given a multithreaded program whose execution is modeled as a
dag A, we can bound the P-processor running time TP(A) of the
program using work-span analysis [29, Ch. 27]. Recall that the
work T1(A) is the number of instructions in A, and that the span
T∞(A) is the length of a longest path in A. Greedy schedulers [20,
35,49] can execute a deterministic program with work T1 and span
T∞ on P processors in time TP satisfying

max{T1/P,T∞} ≤ Tp ≤ T1/P+T∞ , (1)

and a similar bound can be achieved by more practical “work-
stealing” schedulers [16, 17]. The speedup of an algorithm on P
processors is T1/TP, which Inequality (1) shows to be at most P in
theory. The parallelism T1/T∞ is the greatest theoretical speedup
possible for any number of processors.

Work-stealing runtime systems
Runtime systems underlying concurrency platforms that support
the dag model of multithreading usually implement a work steal-
ing scheduler [17, 23, 50], which operates as follows. When the
runtime system starts up, it allocates as many operating-system
threads, called workers, as there are processors. Each worker keeps
a ready queue of tasks that can operate in parallel with the task it is
currently executing. Whenever the execution of code generates par-
allel work, the worker puts the excess work into the queue. When-
ever it needs work, it fetches work from its queue. When a worker’s
ready queue runs out of tasks, however, the worker becomes a thief
and “steals” work from another victim worker’s queue. If an appli-
cation exhibits sufficient parallelism compared to the actual num-

PRISM(G, f ,Q0)

1 χ = COLOR-GRAPH(G)
2 r = 0
3 Q = Q0
4 while Q 6= /0
5 C = MB-COLLECT(Q)
6 for C ∈ C
7 parallel for v ∈C
8 active[v] = FALSE
9 S = f (v)

10 parallel for u ∈ S
11 begin atomic
12 if active[u] = = FALSE
13 active[u] = TRUE
14 MB-INSERT(Q,u,color[u])
15 end atomic
16 r = r+1

Figure 3: Pseudocode for PRISM. The algorithm takes as input a data graph
G, an update function f , and an initial activation set Q0. COLOR-GRAPH
colors a given graph and returns the number of colors it used. The proce-
dures MB-COLLECT and MB-INSERT operate the multibag Q to maintain
activation sets for PRISM. PRISM updates the value of r after each round of
the data-graph computation.

ber of workers/processors, one can prove mathematically that the
computation executes with linear speedup.

Worker-local storage
Worker-local storage refers to memory that is private to a par-
ticular worker thread in a parallel computation. In this paper, in
a P-processor execution of a parallel program, a variable x im-
plemented using worker-local storage is stored as an array of P
copies of x. A worker accesses its local copy of x using a runtime-
provided worker identifier to index the array of worker-local copies
of x. The Cilk Plus runtime system, for example, provides the
__cilkrts_get_worker_number() API call, which returns an in-
teger identifying the current worker. PRISM assumes the existence
of a runtime-provided GET-WORKER-ID function that executes in
Θ(1) time and returns an integer from 0 to P−1.

3. THE PRISM ALGORITHM
This section presents PRISM, a chromatic-scheduling algorithm

for executing dynamic data-graph computations deterministically.
We describe how PRISM differs from the serial algorithm in Sec-
tion 1, including how it maintains activation sets that are partitioned
by color using a multibag data structure.

Figure 3 shows the psuedocode for PRISM, which differs from
the SERIAL-DDGC routine from Figure 1 in two main ways: the
use of a multibag data structure to implement Q, and the call to
COLOR-GRAPH on line 1 to color the data graph.

A multibag Q represents a list
〈
C0,C1, . . . ,Cχ−1

〉
of χ bags (un-

ordered multisets) and supports two operations:
• MB-INSERT(Q,v,k) inserts an element v into bag Ck in Q. A

multibag supports parallel MB-INSERT operations.
• MB-COLLECT(Q) produces a collection C that represents a

list of the nonempty bags in Q, emptying Q in the process.
PRISM stores a distinct color set in each bag of a multibag Q.

Section 4 describes and analyzes the implementation of the multi-
bag data structure.

PRISM calls COLOR-GRAPH on line 1 to color the given data
graph G = (V,E) and obtain the number χ of colors used. Al-
though it is NP-complete to find either an optimal coloring of
a graph [40] — a coloring that uses the smallest possible num-
ber of colors — or a O(V ε )-approximation of the optimal col-
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oring [77], as Section 6 discusses, an optimal coloring is not
necessary for PRISM to perform well in practice, as long as the
data graph is colored with sufficiently few colors. Many par-
allel coloring algorithms exist that satisfy the needs of PRISM
(see, for example, [3, 5, 45, 46, 52, 59, 61, 62, 73, 94]). In fact, if
the data-graph computation performs sufficiently many updates,
a Θ(V + E)-work greedy coloring algorithm, such as that intro-
duced by Welsh and Powell [96], can suffice as well. Our pro-
gram implementation of PRISM uses a multicore variant of the
Jones and Plassmann algorithm [59] that produces a determinis-
tic (∆+1)-coloring of a degree-∆ graph G = (V,E) in linear work
and O(lgV + lg∆ ·min{

√
E,∆+ lg∆ lgV/ lg lgV}) span [52].

Let us now see how PRISM uses chromatic scheduling to execute
a dynamic data-graph computation 〈G, f ,Q0〉. After line 1 colors
G, line 3 initializes the multibag Q with the initial activation set Q0,
and then the while loop on lines 4–16 executes the rounds of the
data-graph computation. At the start of each round, line 5 collects
the nonempty bags C from Q, which correspond to the nonempty
color sets for the round. Lines 6–15 iterate through the color sets
C ∈ C sequentially, and the parallel for loop on lines 7–15 pro-
cesses the vertices of each C in parallel. For each vertex v ∈ C,
line 9 performs the update S = f (v), which returns a set S of acti-
vated vertices, and lines 10–15 insert into Q the vertices in S that
are not currently active.

To ensure that an activated vertex is not added to Q multiple
times in a round, PRISM maintains an array active of Boolean flags,
where entry active[v] indicates whether vertex v is currently active.
Conceptually, flag active[v] indicates whether v∈Q in the modified
version of SERIAL-DDGC that is analogous to PRISM. To process
a vertex v, line 8 of PRISM sets active[v] to FALSE, whereas SE-
RIAL-DDGC removes v from Q. Lines 12 and 13 of PRISM set
active[u] to TRUE only if active[u] was previously FALSE, whereas
SERIAL-DDGC adds vertex u to Q only if u 6∈ Q. The begin
atomic and end atomic statements on lines 11 and 15 ensure that
active[u] is read and set atomically, thereby preventing a data race
from adding vertex u to PRISM’s multibag Q multiple times. Al-
though alternative strategy exist to avoid this atomicity check, our
empirical studies indicate that this limited use of atomics seems to
work well in practice.

4. THE MULTIBAG DATA STRUCTURE
This section presents the multibag data structure employed by

PRISM. The multibag uses worker-local sparse accumulators [44]
and an efficient parallel collection operation. We describe how the
MB-INSERT and MB-COLLECT operations are implemented, and
we analyze them using work-span analysis [29, Ch. 27]. When used
in a P-processor execution of a parallel program, a multibag Q of χ

bags storing n elements supports MB-INSERT in Θ(1) worst-case
time and MB-COLLECT in O(n+ χ +P) work and O(lgn+ χ +
lgP) span.

A sparse accumulator (SPA) [44] implements an array that
supports lazy initialization of its elements. A SPA T contains
a sparsely populated array T.array of elements and a log T. log,
which is a list of indices of initialized elements in T.array. To im-
plement multibags, we shall only need the ability to create a SPA,
access an arbitrary SPA element, or delete all elements from a SPA.
For simplicity, we shall assume that an uninitialized array element
in a SPA has a value of NIL. When an array element T.array[i] is
modified for the first time, the index i is appended to T. log. An
appropriately designed SPA T storing n = |T. log| elements admits
the following performance properties:

• Creating T takes Θ(1) work.
• Each element of T can be accessed in Θ(1) work.
• Reading all initialized elements of T takes Θ(n) work and

Θ(lgn) span.
• Emptying T takes Θ(1) work.

A multibag Q is an array of P worker-local SPA’s, where P is
the number of workers executing the program. We shall use p in-
terchangeably to denote either a worker or that worker’s unique
identifier. Worker p’s local SPA in Q is thus denoted by Q[p]. For a
multibag Q of χ bags, each SPA Q[p] contains an array Q[p].array
of size χ and a log Q[p]. log. Figure 4(a) illustrates a multibag with
χ = 7 bags, 4 of which are nonempty. As Figure 4(a) shows, the
worker-local SPA’s in Q partition each bag Ck ∈ Q into subbags
{Ck,0,Ck,1, . . . ,Ck,P−1}, where Q[p].array[k] stores subbag Ck,p.

Implementation of MB-INSERT and MB-COLLECT

The worker-local SPA’s enable a multibag Q to support paral-
lel MB-INSERT operations without creating races. Figure 5 shows



MB-INSERT(Q,v,k)
1 p = GET-WORKER-ID()
2 if Q[p].array[k] = = NIL
3 APPEND(Q[p]. log,k)
4 Q[p].array[k] = new subbag
5 APPEND(Q[p].array[k],v)

Figure 5: Pseudocode for the MB-INSERT multibag operation to insert an
element v into bag Ck in multibag Q.

the pseudocode for MB-INSERT. When a worker p executes
MB-INSERT(Q,v,k), it inserts element v into the subbag Ck,p as
follows. Line 1 calls GET-WORKER-ID to get worker p’s identi-
fier. Line 2 checks if subbag Ck,p stored in Q[p].array[k] is ini-
tialized, and if not, lines 3 and 4 initialize it. Line 5 inserts v into
Q[p].array[k].

Conceptually, the MB-COLLECT operation extracts the bags
in Q to produce a compact representation of those bags that
can be read efficiently. Figure 4(b) illustrates the compact rep-
resentation of the elements of the multibag from Figure 4(a)
that MB-COLLECT returns. This representation consists of a
pair 〈bag-offsets,collected-subbags〉 of arrays that together re-
semble the representation of a graph in a CSR format. The
collected-subbags array stores all of the subbags in Q sorted by
their corresponding bag’s index. The bag-offsets array stores in-
dices in collected-subbags that denote the sets of subbags com-
prised by each bag. In particular, in this representation, the contents
of bag Ck are stored in the subbags in collected-subbags between
indices bag-offsets[k] and bag-offsets[k+1].

Figure 6 sketches how MB-COLLECT converts a multibag Q
stored in worker-local SPA’s into the representation illustrated in
Figure 4(b). Steps 1 and 2 create an array collected-subbags of
nonempty subbags from the worker-local SPA’s in Q. Each subbag
Ck,p in collected-subbags is tagged with the integer index k of its
corresponding bag Ck ∈Q. Step 3 sorts collected-subbags by these
index tags, and Step 4 creates the bag-offsets array. Step 5 removes
all elements from Q, thereby emptying the multibag.

Analysis of multibags
We now analyze the work and span of the multibag’s MB-INSERT
and MB-COLLECT operations, starting with MB-INSERT.

LEMMA 1. Executing MB-INSERT takes Θ(1) time in the
worst case.

PROOF. Consider each step of a call to MB-INSERT(Q,v,k).
The GET-WORKER-ID procedure on line 1 obtains the executing
worker’s identifier p from the runtime system in Θ(1) time, and
line 2 checks if the entry Q[p].array[k] is empty in Θ(1) time.
Suppose that Q[p]. log and each subbag in Q[p].array are imple-
mented as dynamic arrays that use a deamortized table-doubling
scheme [22]. Lines 3–5 then take Θ(1) time each to append k to
Q[p]. log, create a new subbag in Q[p].array[k], and append v to
Q[p].array[k].

The next lemma analyzes the work and span of MB-COLLECT.

LEMMA 2. In a P-processor parallel program execution, a call
to MB-COLLECT(Q) on a multibag Q of χ bags whose contents
are distributed across m distinct subbags executes in O(m+χ +P)
work and O(lgm+χ + lgP) span.

PROOF. We analyze each step of MB-COLLECT in turn. We
shall use a helper procedure PREFIX-SUM(A), which computes
the all-prefix sums of an array A of n integers in Θ(n) work

MB-COLLECT(Q)
1. For each SPA Q[p], map each bag index k in Q[p]. log to the pair
〈k,Q[p].array[k]〉.

2. Concatenate the arrays Q[p]. log for all workers p ∈ {0,1, . . . ,P−1}
into a single array, collected-subbags.

3. Sort the entries of collected-subbags by their bag indices.
4. Create the array bag-offsets, where bag-offsets[k] stores the index of

the first subbag in collected-subbags that contains elements of the
kth bag.

5. For p = 0,1, . . . ,P−1, delete all elements from the SPA Q[p].
6. Return the pair 〈bag-offsets,collected-subbags〉.

Figure 6: Pseudocode for the MB-COLLECT multibag operation.
Calling MB-COLLECT on a multibag Q produces a pair of arrays
collected-subbags, which contains all nonempty subbags in Q sorted by
their associated bag’s index, and bag-offsets, which associates sets of sub-
bags in Q with their corresponding bag.

and Θ(lgn) span. (Blelloch [11] describes an appropriate im-
plementation of PREFIX-SUM.) Step 1 replaces each entry in
Q[p]. log in each worker-local SPA Q[p] with the appropriate index-
subbag pair

〈
k,Ck,p

〉
in parallel, which requires Θ(m+ P) work

and Θ(lgm+ lgP) span. Step 2 gathers all index-subbag pairs into
a single array. Suppose that each worker-local SPA Q[p] is aug-
mented with the size of Q[p]. log, as Figure 4(a) illustrates. Ex-
ecuting PREFIX-SUM on these sizes and then copying the entries
of Q[p]. log into collected-subbags in parallel therefore completes
Step 2 in Θ(m+P) work and Θ(lgm+ lgP) span. Step 3 can sort
the collected-subbags array in Θ(m + χ) work and Θ(lgm + χ)
span using a variant of a parallel radix sort [15, 27, 98] as follows:

1. Divide collected-subbags into m/χ groups of size χ , and cre-
ate an (m/χ)× χ matrix A, where entry Ai j stores the num-
ber of subbags with index j in group i. Constructing A can
be done with Θ(m+ χ) work and Θ(lgm+ χ) span by eval-
uating the groups in parallel and the subbags in each group
serially.

2. Evaluate PREFIX-SUM on AT (or, more precisely, the ar-
ray formed by concatenating the columns of A in order) to
produce a matrix B such that Bi j identifies which entries in
the sorted version of collected-subbags will store the sub-
bags with index j in group i. This PREFIX-SUM call takes
Θ(m+χ) work and Θ(lgm+ lg χ) span.

3. Create a temporary array T of size m, and in parallel over
the groups of collected-subbags, serially move each sub-
bag in the group to an appropriate index in T , as identified
by B. Copying these subbags executes in Θ(m+χ) work and
Θ(lgm+χ) span.

4. Rename the temporary array T as collected-subbags in Θ(1)
work and span.

Finally, Step 4 can scan collected-subbags for adjacent pairs of
entries with different bag indices to compute bag-offsets in Θ(m)
work and Θ(lgm) span, and Step 5 can reset every SPA in Q in
parallel using Θ(P) work and Θ(lgP) span. Totaling the work and
span of each step completes the proof.

Although different executions of a program can store the ele-
ments of Q in different numbers m of distinct subbags, notice that
m is never more than the total number of elements in Q.

5. ANALYSIS OF PRISM
This section analyzes the performance of PRISM using work-

span analysis [29, Ch. 27]. We derive bounds on the work and span
of PRISM for any simple data-graph computation 〈G, f ,Q0〉. Recall
that we make the reasonable assumptions that a single update f (v)



Graph |V | |E| χ CILK+LOCKS PRISM Coloring

cage15 5,154,860 94,044,700 17 36.9 35.5 12%
soc-LiveJournal1 4,847,570 68,475,400 333 36.8 21.7 12%
randLocalDim25 1,000,000 49,992,400 36 26.7 14.4 18%
randLocalDim4 1,000,000 41,817,000 47 19.5 12.5 14%
rmat2Million 2,097,120 39,912,600 72 22.5 16.6 12%
powerGraph2Million 2,000,000 29,108,100 15 12.1 9.8 13%
3dgrid5m 5,000,210 15,000,600 6 10.3 10.3 7%
2dgrid5m 4,999,700 9,999,390 4 17.7 8.9 4%
web-Google 916,428 5,105,040 43 3.9 2.4 8%
web-BerkStan 685,231 7,600,600 200 3.9 2.4 8%
web-Stanford 281,904 2,312,500 62 1.9 0.9 11%
web-NotreDame 325,729 1,469,680 154 1.1 0.8 12%

Figure 7: Performance of PRISM versus CILK+LOCKS when executing 10 · |V | updates of the PageRank [21] data-graph computation on a suite of six real-
world graphs and six synthetic graphs. Column “Graph,” identifies the input graph, and columns |V | and |E| specify the number of vertices and edges in the
graph, respectively. Column χ gives the number of colors PRISM used to color the graph. Columns “CILK+LOCKS” and “PRISM” present 12-core running
times in seconds for the respective schedulers. Each running time is the median of 5 runs. Column “Coloring” gives the percentage of PRISM’s running time
spent coloring the graph.

executes in Θ(deg(v)) work and Θ(lg(deg(v))) span, and that the
update only activates vertices in Adj[v].

THEOREM 3. Suppose that PRISM colors a degree-∆ data
graph G = (V,E) using χ colors, and then executes the data-graph
computation 〈G, f ,Q0〉. Then, on P processors, PRISM executes
updates on all vertices in the activation set Qr for a round r using
O(size(Qr)+χ +P) work and O(χ(lg(Qr/χ)+ lg∆)+ lgP) span.

PROOF. Let us first analyze the work and span of one iteration
of lines 6–15 in PRISM, which perform the updates on the ver-
tices belonging to one color set C ∈ Qr. Consider a vertex v ∈ C.
Lines 8 and 9 execute in Θ(deg(v)) work and Θ(lg(deg(v))) span.
For each vertex u in the set S of vertices activated by the up-
date f (v), Lemma 1 implies that lines 11–15 execute in Θ(1) to-
tal work. The parallel for loop on lines 10–15 therefore executes
in Θ(S) work and Θ(lgS) span. Because |S| ≤ deg(v), the paral-
lel for loop on lines 7–15 thus executes in Θ(size(C)) work and
Θ(lgC+maxv∈C lg(deg(v))) = O(lgC+ lg∆) span.

By processing each of the χ color sets belonging to Qr,
lines 6–15 therefore executes in Θ(size(Qr) + χ) work and
O(χ(lg(Qr/χ)+ lg∆)) span. Lemma 2 implies that line 5 executes
MB-COLLECT in O(Qr + χ + P) work and O(lgQr + χ + lgP)
span. The theorem follows, because |Qr| ≤ size(Qr).

6. EMPIRICAL EVALUATION
This section describes our empirical evaluation of PRISM. We

implemented PRISM in Cilk Plus [56] and compared its perfor-
mance to that of three other schedulers for executing data-graph
computations. This section presents three studies of PRISM’s per-
formance. The first study, which compared PRISM to a nondeter-
ministic locking strategy, indicates that the overhead of managing
multibags is less than the cost of a locking protocol. The second
study, which compared PRISM to a chromatic scheduler for static
data-graph computations, shows that the overhead of maintaining
activation sets dynamically is only about 20% more than using
static activation sets. This study suggests that it is worthwhile to
use dynamic data-graph computations instead of static ones even if
only modest amounts of work can be saved by avoiding unneces-
sary updates. The third study shows the performance of PRISM is
relatively insensitive to the number of colors used to color the data
graph, as long as there is sufficient parallelism.

Experimental setup
We implemented PRISM and the multibag data structure in Cilk
Plus [56], compiling with the Intel C++ compiler, version 13.1.1.
Our source code and data are available from http://supertech.
csail.mit.edu. To implement the GET-COLOR procedure, the
PRISM implementation used a deterministic multicore coloring al-
gorithm [52], which was also coded in Cilk Plus. For comparison,
we engineered three other schedulers for executing dynamic data-
graph computations in parallel:
• CILK+LOCKS uses a locking scheme to avoid executing con-

flicting updates in parallel. The locking scheme associates a
shared-exclusive lock with each vertex in the graph. Prior to
executing an update f (v), vertex v’s lock is acquired exclu-
sively, and a shared lock is acquired for each u ∈ Adj[v]. A
global ordering of locks is used to avoid deadlock.

• CHROMATIC treats the dynamic data-graph computation as
a static one — it updates every vertex in every round — and
it uses chromatic scheduling to avoid executing conflicting
updates in parallel.

• ROUND-ROBIN treats the dynamic data-graph computation
as a static one and uses the locking strategy to coordinate
updates that conflict.

These schedulers were implemented within a modified multicore
version of GraphLab. Specifically, we modified GraphLab’s en-
gine to replace GraphLab’s explicit management of threads with
the Cilk Plus runtime. Using the GraphLab framework, we tested
these schedulers on existing GraphLab applications with little to no
alteration of the application code.

The benchmarks were run on Intel Xeon X5650 machines, each
with 12 2.67-GHz processing cores (hyperthreading disabled);
49 GB of DRAM; two 12-MB L3-caches, each shared among 6
cores; and private L2- and L1-caches of sizes 128 KB and 32 KB,
respectively.

Overheads for locking and for chromatic scheduling
We compared the overheads associated with coordinating con-
flicting updates of a dynamic data-graph computation using locks
versus using chromatic scheduling. We evaluated these over-
heads by comparing the 12-core execution times for PRISM and
CILK+LOCKS to execute the PageRank [21] data-graph computa-
tion on a suite of graphs. We used PageRank for this study because
of its relatively cheap update function, which updates a vertex v by
first scanning v’s incoming edges to aggregate the data from among



Benchmark χ # Updates ROUND-ROBIN CHROMATIC PRISM

PR/L 333 48,475,700 19.2 11.4 17.8
FBP/C3 2 16,001,900 12.4 8.8 9.5
ID/1000 4 10,000,000 13.6 13.3 14.8
PR/G 43 9,164,280 2.4 1.0 2.0
FBP/C1 2 8,783,100 6.6 4.6 4.7
ALS/N 6 1,877,220 75.2 36.7 38.2
ID/250 4 625,000 0.8 0.9 1.0

Figure 8: Performance of three schedulers on the seven application bench-
marks from Figure 2, modified so that all vertices are activated in every
round. Column “# Updates” specifies the number of updates performed in
the data-graph computation. Columns “ROUND-ROBIN,” “CHROMATIC,”
and “PRISM,” list the 12-core running times in seconds for the respective
schedulers to execute each benchmark. Each running time is the median of
5 runs.

v’s neighbors, and then scanning v’s outgoing edges to activate v’s
neighbors.

We executed the PageRank application on a suite of six synthetic
and six real-world graphs. The six real-world graphs came from the
Stanford Large Network Dataset Collection (SNAP) [71], and the
University of Florida Sparse Matrix Collection [31]. The six syn-
thetic graphs were generated using the “randLocal,” “powerLaw,”
“gridGraph,” and “rMatGraph” generators included in the Problem
Based Benchmark Suite [90].

We observed that PRISM often performed slightly fewer rounds
of updates than CILK+LOCKS when both were allowed to run un-
til convergence. Wishing to isolate scheduling overheads, we con-
trolled this variation by limiting the total number of updates the two
algorithms executed on a graph to 10 times the number of vertices.
The accuracy requirements for the PageRank application were se-
lected to ensure that neither scheduler completed the computation
in fewer than 10 · |V | updates.

Figure 7 presents our empirical results for this study. Figure 7
shows that over the 12 benchmark graphs, PRISM executed between
1.0 and 2.1 times faster than CILK+LOCKS on PageRank, exhibit-
ing a geometric mean speedup factor of 1.5. From Figure 7, more-
over, we see that, on average, 10.9% of PRISM’s total running time
is spent coloring the data graph. This statistic suggests that the cost
PRISM incurs to color the data graph is approximately equal to the
cost of executing |V | updates. PRISM colors the data-graph once to
execute the data-graph computation, however, meaning that its cost
can be amortized over all of the updates in the data-graph compu-
tation. In contrast, the locking scheme that CILK+LOCKS imple-
ments incurs overhead for every update. Before updating a vertex
v, CILK+LOCKS acquires each lock associated with v and every
vertex u ∈ Adj[v]. For simple data-graph computations whose up-
date functions perform relatively little work, this step can account
for a significant fraction of the time to execute an update.

Dynamic-scheduling overhead
To investigate the overhead of using multibags to maintain activa-
tion sets, we compared the 12-core running times of PRISM, CHRO-
MATIC, and ROUND-ROBIN on the seven benchmark applications
from Figure 2. For this study, we modified the benchmarks slightly
for each scheduler in order to provide a fair comparison. First, be-
cause PRISM typically executes fewer updates than a scheduler for
static data-graph computations does, we modified the update func-
tions PRISM used for each application so that every update on a
vertex v always activates all vertices u ∈ Adj[v]. This modification
guarantees that PRISM executes the same set of updates each round
as a ROUND-ROBIN and CHROMATIC. Additionally, we modified
the update functions used by ROUND-ROBIN and CHROMATIC to
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Figure 9: Scalability of PRISM on the image-denoise application as a func-
tion of χ , the number of colors used to color the data graph. The parallelism
T1/T∞ is plotted together with the actual speedup T1/T12 achieved on a 12-
core execution. Parallelism values were measured using the Cilkview scal-
ability analyzer [53], which measures the work and span of a Cilk program
by counting instructions. Speedup on 12 cores was computed as the ratio of
the 1-core and 12-core running times.

remove any work that would be unnecessary in a statically sched-
uled computation.

Figure 8 presents the results of these tests, which reveal the over-
head PRISM incurs to maintain activation sets using a multibag.
As Figure 8 shows, PRISM executed 1.0 to 2.0 times slower than
CHROMATIC on the benchmarks with a geometric-mean slowdown
of 1.2. PRISM nevertheless outperformed ROUND-ROBIN on all
but the ID/250 and ID/1000 benchmarks due to ROUND-ROBIN’s
lock overhead. These results indicate that PRISM incurs relatively
little overhead to maintain activation sets with multibags.

Scalability of PRISM

To study the parallel scalability of PRISM, we measured the par-
allelism T1/T∞ and the 12-core speedup T1/T12 of PRISM execut-
ing the image-denoise application as we varied the number of col-
ors used to color the application’s data-graph. The image-denoise
application performs belief propagation to remove Gaussian noise
added to a gray-scale image. The data graph for the image-denoise
application is a 2D grid in which each vertex represents a pixel, and
there is an edge between any two adjacent pixels. PRISM typically
colors this data-graph with just 4 colors. To perform this study, we
artificially increased χ by repeatedly taking a random nonempty
subset of the largest set of vertices with the same color and assign-
ing those vertices a new color. Using this technique, we ran the
image-denoise application on a 500-by-500 pixel input image for
values of χ between 4 and 250,000 — the last data point corre-
sponding to a coloring that assigns all pixels distinct colors.

Figure 9 plots the results of these tests. As Figure 9 shows,
although the parallelism of PRISM is inversely proportional to χ ,
PRISM’s speedup on 12 cores is relatively insensitive to χ , as long
as the parallelism is greater than 120. This result harmonizes
with the rule of thumb that a program with parallelism above 10
times the number of workers ought to achieve near perfect linear
speedup [28].

7. THE PRISM-R ALGORITHM
This section introduces PRISM-R, a chromatic-scheduling algo-

rithm that executes a dynamic data-graph computation determinis-



FLATTEN(L,A, i)
1 A[i] = L
2 if L. left 6= NIL
3 spawn FLATTEN(L. left,A, i−L. right. size−1)
4 if L. right 6= NIL
5 FLATTEN(L. right,A, i−1)
6 sync

Figure 10: Pseudocode for the FLATTEN operation for a log tree. FLATTEN
performs a post-order parallel traversal of a log tree to place its nodes into
a contiguous array.

tically even when updates modify global variables using associa-
tive operations. The multivector data structure, which is a theoret-
ical improvement to the multibag, is used by PRISM-R to main-
tain activation sets that are partitioned by color and ordered de-
terministically. We describe an extension of the model of simple
data-graph computations that permits an update function to per-
form associative operations on global variables using a parallel re-
duction mechanism. In this extended model, PRISM-R executes
dynamic data-graph computations deterministically while achiev-
ing the same work and span bounds as PRISM.

Data-graph computations that modify global variables
Several frameworks for executing data-graph computations allow
updates to modify global variables in limited ways. Pregel aggrega-
tors [78], and GraphLab’s sync mechanism [75], for example, both
support data-graph computations in which an update can modify a
global variable in a restricted manner. These mechanisms coordi-
nate parallel modifications to a global variable using parallel re-
ductions [12,25,57,58,60,65,80,88], that is, they coordinate these
modifications by applying them to local views (copies) of the vari-
able and then reducing (combining) those copies together using a
binary reduction operator.

A reducer (hyperobject) [38, 68] is a general parallel reduction
mechanism provided by Cilk Plus and other dialects of Cilk. A
reducer is defined on an arbitrary data type T , called a view type,
by defining an IDENTITY operator and a binary REDUCE operator
for views of type T . The IDENTITY operator creates a new view
of the reducer. The binary REDUCE operator defines the reducer’s
reduction operator. A reducer is a particularly general reduction
mechanism because it guarantees that, if its REDUCE operator is
associative, then the final result in the global variable is determin-
istic: every parallel execution of the program produces the same
result. Other parallel reduction mechanisms, including Pregel ag-
gregators and GraphLab’s sync mechanism, provide this guarantee
only if the reduction operator is also commutative.

Although PRISM is implemented in Cilk Plus, PRISM does not
produce a deterministic result if the updates modify global vari-
ables using a noncommutative reducer. The reason is that the order
in which a multibag stores the vertices of an activation set depends
on how the computation is scheduled. As a result, the order in
which lines 7–15 of PRISM evaluate the vertices in a color set C
can differ depending on scheduling. Therefore, if two updates on
vertices in C modify the same reducer, then the relative order of
these modifications can differ between runs of PRISM, even if a
single worker happens to execute both updates.

PRISM-R extends PRISM to support data-graph computations
that use reducers. Before presenting PRISM-R, we first describe
the multivector data structure that is used by PRISM-R to maintain
deterministically ordered color sets.

IDENTITY()

1 L = new log tree node
2 L. sublog = new vector
3 L. size = 1
4 L. left = NIL
5 L. right = NIL
6 return L

REDUCE(Ll ,Lr)

1 L = IDENTITY()
2 L. size = Ll . size+Lr. size+1
3 L. left = Ll
4 L. right = Lr
5 return L

Figure 11: Pseudocode for the IDENTITY and REDUCE log-tree reducer
operations.

The multivector data structure
A multivector represents a list of χ vectors (ordered multisets).
It supports two operations — MV-INSERT and MV-COLLECT —
which are analogous to the multibag operations MB-INSERT and
MB-COLLECT, respectively. We now sketch the design of the mul-
tivector data structure.

The multivector relies on properties of a work-stealing runtime
system. Consider a parallel program modeled by a computation dag
A in the Cilk model of multithreading. The serial execution order
R(A) of the program lists the vertices of A according to a depth-
first traversal of A. A work-stealing scheduler partitions R(A) into
a sequence R(A) = 〈t0, t1, . . . , tM−1〉, where each trace ti ∈ R(A) is
a contiguous subsequence of R(A) executed by exactly one worker.
A multivector represents each vector as a sequence of trace-local
subvectors — subvectors that are modified within exactly one trace.
The ordering properties of traces imply that concatenating a vec-
tor’s trace-local subvectors in order produces a vector whose ele-
ments appear in the serial execution order. The multivector data
structure assumes that a worker can query the runtime system to
determine when it starts executing a new trace.

A multivector stores its nonempty trace-local subvectors in a log
tree, which represents an ordered multiset of elements and supports
Θ(1)-work append operations. A log tree is a binary tree in which
each node L stores a dynamic array L.sublog. The ordered multi-
set that a log tree represents corresponds to a concatenation of the
tree’s dynamic arrays in a post-order tree traversal. Each log-tree
node L is augmented with the size of its subtree L.size counting
the number of log-tree nodes in the subtree rooted at L. Using this
augmentation, the operation FLATTEN(L,A,L.size− 1) described
in Figure 10 flattens a log tree rooted at L of n nodes and height h
into a contiguous array A using Θ(n) work and Θ(h) span.

To handle parallel MV-INSERT operations, a multivector em-
ploys a log-tree reducer, that is, a Cilk Plus reducer whose view
type is a log tree. Figure 11 presents the pseudocode for the
IDENTITY and REDUCE operations for the log-tree reducer. No-
tice that the log-tree reducer’s REDUCE operation is logically
associative, that is, for any three log-tree reducer views a, b,
and c, the views produced by REDUCE(REDUCE(a,b),c) and
REDUCE(a,REDUCE(b,c)) represent the same ordered multiset.

To maintain trace-local subvectors, a multivector Q consists of
an array of P worker-local SPA’s, where P is the number of proces-
sors executing the computation, and a log-tree reducer. The SPA
Q[p] for worker p stores the trace-local subvectors that worker p
appended since the start of its current trace. The log-tree reducer
Q. log-reducer stores all nonempty subvectors created.

Figure 12 sketches the MV-INSERT(Q,v,k) operation to in-
sert element v into the vector Ck ∈ Q. MV-INSERT differs from
MB-INSERT in two ways. First, when a new subvector is created
and added to a SPA, lines 6–7 additionally append that subvector to
Q. log-reducer, thereby maintaining the log-tree reducer. Second,
lines 2–3 reset the contents of the SPA Q[p] after worker p begins



MV-INSERT(Q,v,k)
1 p = GET-WORKER-ID()
2 if worker p began a new trace since last insert
3 reset Q[p]
4 if Q[p].array[k] = = NIL
5 Q[p].array[k] = new subvector
6 L = GET-LOCAL-VIEW(Q. log-reducer)
7 APPEND(L. sublog,Q[p].array[k])
8 APPEND(Q[p].array[k],v)

Figure 12: Pseudocode for the MV-INSERT multivector operation to insert
an element v into vector Ck in multivector Q.

executing a new trace, thereby ensuring that Q[p] stores only trace-
local subvectors.

Figure 13 sketches the MV-COLLECT operation, which re-
turns a pair 〈subvector-offsets,collected-subvectors〉 analogous
to the return value of MB-COLLECT. MV-COLLECT differs
from MB-COLLECT primarily in that Step 1, which replaces
Steps 1 and 2 in MB-COLLECT, flattens the log tree underlying
Q. log-reducer to produce the unsorted array collected-subvectors.
MV-COLLECT also requires that collected-subvectors be sorted us-
ing a stable sort on Step 2. The integer sort described in the proof
of Lemma 2 for MB-COLLECT is a stable sort suitable for this pur-
pose.

Analysis of multivector operations
We now analyze the work and span of the MV-INSERT and
MV-COLLECT operations, starting with MV-INSERT.

LEMMA 4. Executing MV-INSERT takes Θ(1) time in the
worst case.

PROOF. Resetting the SPA Q[p] on line 3 can be done in Θ(1)
worst-case time with an appropriate SPA implementation, and ap-
pending a new subvector to a log tree takes Θ(1) time. The theorem
thus follows from the analysis of MB-INSERT in Lemma 1.

Lemma 5 bounds the work and span of MV-COLLECT.

LEMMA 5. Consider a computation A with span T∞(A), and
suppose that the contents of a multivector Q of χ vectors are dis-
tributed across m subvectors. Then a call to MV-COLLECT(Q)
incurs Θ(m+χ) work and Θ(lgm+χ +T∞(A)) span.

PROOF. Flattening the log-tree reducer in Step 1 is accom-
plished in two steps. First, the FLATTEN operation writes the nodes
of the log tree to a contiguous array. FLATTEN has span propor-
tional to the depth of the log tree, which is bounded by O(T∞(A)),
since at most O(T∞(A)) reduction operations can occur along any
path in A and REDUCE for log trees executes in Θ(1) work [38].
Second, using a parallel-prefix sum computation, the log entries
associated with each node in the log tree can be packed into a con-
tiguous array, incurring Θ(m) work and Θ(lgm) span. Step 1 thus
incurs Θ(m) work and O(lgm+T∞(A)) span. The remaining steps
of MV-COLLECT, which are analogous to those of MB-COLLECT
and analyzed in Lemma 2, execute in Θ(χ + lgm) span.

Deduplication
In addition to using a multivector in place of a multibag, PRISM-R
differs from PRISM in how it ensures that the activation set for a
given round contains each vertex at most once. Recall that PRISM
uses atomic operations in lines 11–15 to determine whether to in-
sert an activated vertex into its multibag. Although it is inconse-
quential in PRISM which update of a neighbor of a vertex caused

MV-COLLECT(Q)
1. Flatten the log-reducer tree so that all subvectors in the log appear in

a contiguous array, collected-subvectors.
2. Sort the subvectors in collected-subvectors by their vector indices

using a stable sort.
3. Create the array vector-offsets, where vector-offsets[k] stores the in-

dex of the first subvector in collected-subvectors that contains ele-
ments of the vector Ck ∈ Q.

4. Reset Q. log-reducer and for p = 0,1, . . . ,P−1, reset Q[p].
5. Return the pair 〈vector-offsets,collected-subvectors〉.

Figure 13: Pseudocode for the MV-COLLECT multivector opera-
tion. Calling MV-COLLECT on a multivector Q produces a pair
〈vector-offsets,collected-subvectors〉 of arrays, where collected-subvectors
contains all nonempty subvectors in Q sorted by their associated vector’s
color, and vector-offsets associates sets of subvectors in Q with their corre-
sponding vector.

the vertex to be added to the multibag, in PRISM-R, color sets must
be ordered in a deterministic manner. To meet this requirement,
PRISM-R assigns each vertex v a priority priority[v], stores vertex-
priority pairs in its multivector, (rather than just vertices), and re-
places the Boolean array active in PRISM with a comparable array
that stores priorities. For each vertex u ∈ Adj[v] activated by up-
date f (v), the vertex-priority pair 〈u,priority[v]〉 is inserted into the
multivector, and a priority-write operation [89] is performed to set
active[u] = max{active[u],priority[v]} atomically. After executing
MV-COLLECT in a round, PRISM-R performs a deduplication step,
iterating over the vertex-priority pairs in parallel and deleting any
pair 〈v, p〉 for which p 6= active[v].

Analysis of PRISM-R
The next theorem shows that PRISM-R achieves the same theoreti-
cal bounds as PRISM.

THEOREM 6. Let G be a degree-∆ data graph. Suppose that
PRISM-R colors G using χ colors. Then PRISM-R executes up-
dates on all vertices in the activation set Qr for a round r of a
simple data-graph computation 〈G, f ,Q0〉 in O(size(Qr)+χ) work
and O(χ(lg(Qr/χ)+ lg∆)) span.

PROOF. PRISM-R can perform a priority write to its active ar-
ray with Θ(1) work, and it can remove duplicates from the out-
put of MV-COLLECT in O(size(Qr)) work and O(lg(size(Qr))) =
O(lgQr + lg∆) span. The theorem follows by applying Lemmas 4
and 5 appropriately to the analysis of PRISM in Theorem 3.

8. CONCLUSION
Researchers over multiple decades have advocated that the dif-

ficulty of parallel programming can be greatly reduced by using
some form of deterministic parallelism [7, 8, 13, 19, 33, 34, 36, 37,
43,51,55,85,86,92,97]. With a deterministic parallel program, the
programmer observes no logical concurrency, that is, no nondeter-
minacy in the behavior of the program due to the relative and non-
deterministic timing of communicating processes such as occurs
when one process arrives at a lock before another. The semantics of
a deterministic parallel program are therefore serial, and reasoning
about such a program’s correctness, at least in theory, is no harder
than reasoning about the correctness of a serial program. Testing,
debugging, and formal verification is simplified, because there is
no need to consider all possible relative timings (interleavings) of
operations on shared mutable state.

The behavior of PRISM corresponds to a variant of SERI-
AL-DDGC that sorts the activated vertices in its queue by color
at the start of each round. Whether PRISM executes a given data



graph on 1 processor or many, it always behaves the same. With
PRISM-R, this property holds even when the update function can
perform reductions. Lock-based schedulers do not produce such
a strong guarantee of determinism. Although updates in a round
executed by a lock-based scheduler appear to execute according to
some linear order, this order is nondeterministic due to races on the
acquisition of locks.

Blelloch, Fineman, Gibbons, and Shun [14] argue that deter-
ministic programs can be fast compared with nondeterministic pro-
grams, and they document many examples where the overhead for
converting a nondeterministic program into a deterministic one is
small. They even document a few cases where this “price of de-
terminism” is slightly negative. To their list, we add the execution
of dynamic data-graph computations as having a price of determin-
ism which is significantly negative. We conjecture that research
will uncover many more parallel applications that admit to efficient
deterministic solutions.
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