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COMPUTATIONAL 3D AND REFLECTIVITY IMAGING WITH HIGH PHOTON EFFICIENCY

Dongeek Shin∗ Ahmed Kirmani∗ Vivek K Goyal† Jeffrey H. Shapiro∗

∗Massachusetts Institute of Technology †Boston University

ABSTRACT

Capturing depth and reflectivity images at low light levels from
active illumination of a scene has wide-ranging applications. Con-
ventionally, even with single-photon detectors, hundreds of photon
detections are needed at each pixel to mitigate Poisson noise. We
introduce a robust method for estimating depth and reflectivity us-
ing on the order of 1 detected photon per pixel averaged over the
scene. Our computational imager combines physically accurate
single-photon counting statistics with exploitation of the spatial
correlations present in real-world reflectivity and 3D structure. Ex-
periments conducted in the presence of strong background light
demonstrate that our computational imager is able to accurately
recover scene depth and reflectivity, while traditional maximum
likelihood-based imaging methods lead to estimates that are highly
noisy. Our framework increases photon efficiency 100-fold over
traditional processing and thus will be useful for rapid, low-power,
and noise-tolerant active optical imaging.

Index Terms— Computational 3D imaging, low light-level
imaging, time-of-flight, Poisson noise, convex optimization

1. INTRODUCTION

A light detection and ranging (LIDAR) system [1] builds a histogram
of photon counts over time. The time delay and amplitude of the
photon-count histogram, relative to the transmitted pulse’s tempo-
ral profile, contain object depth and reflectivity information, respec-
tively, about the illuminated scene. LIDAR signal-acquisition time
must be long enough to collect the 102 to 103 photons per pixel (ppp)
needed to generate the finely-binned histogram required for accurate
scene 3D and reflectivity images.

In this paper, we introduce an active optical imaging frame-
work that recovers accurate reflectivity and 3D images simultane-
ously, using on the order of 1 detected ppp averaged over the scene
(Fig. 1). Our computational imager combines physically accurate
single-photon counting statistics with exploitation of the spatial
correlations present in real-world reflectivity and 3D structures.
Our method’s dramatically superior sensitivity enables accurate 3D
imaging when very little backreflected light reaches the detector, as
will be the case with low optical-power active imagers [2].

Prior work: Active 3D imaging systems differ in how they modu-
late their transmitted power. Temporal modulation enables distance
measurement by the time-of-flight (TOF) principle. Examples of
TOF methods are homodyne TOF [3], pulsed TOF cameras [4], and
picosecond laser radar systems [5]. Spatial modulation techniques
include structured light [6] and active stereo imaging [7]. These
spatial-modulation techniques have low photon efficiencies because
they use an always-on optical source, whereas pulsed-TOF systems
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Fig. 1: Experimental imaging setup. A periodically pulsed light source
illuminates the scene in a raster-scan pattern. The backscattered light is col-
lected by a time-resolved single-photon detector. Each spatial location is
illuminated with exactly N pulses (fixed dwell time). An incandescent lamp
injects background light that corrupts the information-bearing signal. The
photon arrival times and the total photon counts are recorded. This dataset is
used to computationally reconstruct 3D structure and reflectivity. The setup
is analogous to having a floodlight illumination source and an array of single-
photon counting detectors operating at a fixed dwell time.

use sources that are on only for short intervals. The most photon-
efficient imagers use single-photon avalanche diode (SPAD) detec-
tors [8]. See [9] for a discussion of compressive methods [10–13]
and earlier efforts in SPAD-based 3D imaging [14–16].

In low light-level imaging, a variety of optoelectronic techniques
are employed for robust imaging. Active imagers use lasers with nar-
row spectral bandwidths and spectral filters to suppress background
light and minimize the Poisson noise it creates. However, optical fil-
tering alone cannot completely eliminate background light. Range-
gated imaging [17] is another common technique, but it requires
a priori knowledge of object location. Furthermore, a SPAD may
be replaced with a superconducting nanowire single-photon detector
(SNSPD) [18], which is much faster, has lower timing jitter, and has
lower dark-count rate than a SPAD. However, SNSPDs have much
smaller active areas and hence have narrower fields of view.

First-photon imaging (FPI) [19] is a method that allows accu-
rate 3D and reflectivity reconstruction using only the first detected
photon at every pixel in a raster-scanned scene. It combines first-
photon detection statistics with the spatial correlations existing in
natural scenes to achieve robust low light-level imaging. Its raster-
scanning process to collect 1 ppp, however, makes the dwell time
at each pixel a random variable. The dwell time is also a random
variable when collecting any fixed number of photons per pixel, as
in [15, 16] for 3D imaging separated from reflectivity. Thus, FPI
does not extend naturally to operation using SPAD arrays—since si-
multaneous measurement implies equal dwell times—and precludes
the dramatic speedup in image acquisition that such arrays enable.



Fig. 2: Rate function of inhomogeneous Poisson process combining desired
scene response and noise sources is shown. Here, N = 3 and kij = 2.
A noise photon (red) was detected after the second transmitted pulse, and a
signal photon (blue) was detected after the third transmitted pulse.

In this paper, we consider fixed dwell time at each pixel, thereby
opening up the possibility of robust SPAD array-based imaging at
low light-levels and with short dwell times.
Main contributions—Theoretical: We introduce a physically ac-
curate model for the signal produced by a SPAD under low light-
level conditions that incorporates arbitrary illumination pulse shapes
and the inhomogeneous Poisson process characteristics (shot noise
from the quantum nature of light) given a fixed acquisition time.
Main contributions—Experimental: We experimentally demon-
strate that our proposed 3D imager’s photon efficiency, measured as
recovery accuracy, is more than 100 times higher than that of tradi-
tional maximum likelihood (ML) estimation. We also show that our
3D imager achieves sub-pulse-width depth resolution under short ac-
quisition times, in which 54% of the pixels have missing data, and
at high background levels, when any given photon detection has ap-
proximately probability 0.5 of originating from ambient light.

2. IMAGING SETUP
Fig. 2 shows our imager’s signal-acquisition model. We aim to form
reflectivity and depth images α, z ∈ Rn×n of the scene. We index
the scene pixels as (i, j), where i, j = 1, . . . , n. The distance to
pixel (i, j) is zij ≥ 0 and its reflectivity, αij ≥ 0, includes the
effect of radial fall-off, view angle, and material properties.
Illumination: We use a periodically pulsed laser—pulse wave-
form s(t) and repetition period Tr—to illuminate the scene in a
raster-scanned fashion. Physically, s(t) is the photon-flux waveform
of the pulse emitted at t = 0 measured in counts/sec (cps). To
avoid distance aliasing, we assume Tr > 2zmax/c, where zmax is
the maximum scene range and c is the speed of light. With con-
ventional processing, the root mean-square (RMS) pulse width Tp
governs the achievable depth resolution in the absence of back-
ground light [20]. As is typically done in range imaging, we assume
that Tp � 2zmax/c.

Detection: A SPAD detector provides time-resolved single-photon
detections [8]. Its quantum efficiency η is the fraction of photons
passing through the pre-detection optical filter that are detected.
Each detected photon is time stamped within a time bin of duration
∆, measuring a few picoseconds, that is much shorter than Tp.
Data acquisition: Each pixel (i, j) is illuminated with N laser

pulses. The total pixelwise acquisition time (dwell time) is thus
Ta = NTr . We record the total number of observed photon detec-
tions kij , along with their photon arrival times {t(`)ij }

kij
`=1, where the

latter are measured relative to the immediately-preceding transmit-
ted pulse. We also shine ambient light, with photon flux bλ at the
operating optical wavelength λ, onto the detector.

3. MEASUREMENT MODEL
Illuminating pixel (i, j) with the pulse s(t) results in backreflected
light with photon flux rij(t) = αijs(t−2zij/c)+bλ at the detector.
Poisson statistics: The photon detections produced by the SPAD in
response to the backreflected light from transmission of s(t) consti-
tute an inhomogeneous Poisson process with time-varying rate func-
tion ηrij(t). To these photon detections we must add the detector
dark counts, which come from an independent homogeneous Pois-
son process with rate d. Lumping the dark counts together with the
background-generated counts yields the observation process at the
SPAD’s output, viz., as shown in Fig. 2, an inhomogeneous Poisson
process with rate function

λij(t) = ηrij(t)+d = ηαijs(t−2zij/c)+(ηbλ+d), (1)
when only a single pulse is transmitted. Fig. 2 shows the rate func-
tion λij(t) for the pulse-stream transmission.

Define S =
∫
s(t) dt and B = (ηbλ+d)Tr as the total signal

and background count per pulse-repetition period, where, in what
follows, we will include dark counts in what we refer to background.
We assume that B is known, because it is straightforward to mea-
sure it before we begin data acquisition. The derivations to follow
assume ηαijS+B � 1, meaning that the photon-flux per pixel per
pulse-repetition period is much less than 1, as would be the case
in low light-level imaging where an imager’s photon efficiency is
paramount.
Signal vs. noise photons: A detection could originate from the
backreflected signal or from background. The arrival statistics ob-
served at the detector result from the merging of the Poisson pro-
cesses corresponding to these sources. Using the theory of merged
Poisson processes [21], we have that

Pr [ detected photon at (i, j) is signal ] =
ηαijS

ηαijS+B
.

3.1. Statistics of Number of Detected Photons
Using Poisson process statistics [21], we have that the probability of
the SPAD detector’s not recording a detection at pixel (i, j) from one
illumination trial is P0(αij) = exp[− (ηαijS+B)]. Because we il-
luminate with a total ofN pulses, and the low-flux condition ensures
that multiple detections per repetition interval can be neglected, the
number of detected photons Kij is binomially distributed:

Pr [Kij = kij ;αij ] =

(
N

kij

)
P0(αij)

N−kij ( 1−P0(αij) )kij ,

for kij = 0, 1, . . . , N .
Pixelwise maximum-likelihood reflectivity estimation: Given the
total observed photon count kij at pixel (i, j), the constrained ML
reflectivity estimate is

α̂ML
ij = max{[log(N/(N−kij))−B] /ηS, 0} ,

where log is the natural logarithm. Traditionally, the normalized
photon-count value is used as the reflectivity estimate [22],

α̃ij =
kij
NηS

. (2)

Note that the normalized count value estimate is equal to the ML es-
timate under the Poisson approximation to the binomial distribution
when B = 0.



3.2. Statistics of Single-Photon Arrival Times
The distribution of the single-photon detection time for pixel (i, j)
depends on whether the detection is due to signal or background.
Under our low-flux assumption, the arrival time of a detected photon
originating from backreflected signal is characterized by the normal-
ized time-shifted pulse shape [21]. On the other hand, the photon ar-
rival time from background is uniformly distributed over the Tr-sec
pulse repetition period in which the detection occurred. The proba-
bility density function for the photon arrival time Tij in the interval
[0, Tr) can thus be shown to satisfy

fTij (tij ; zij) =
ηαijS

ηαijS+B

(
s(tij−2zij/c)

S

)
+

B

ηαijS+B

(
1

Tr

)
,

where infinitely fine time-binning has been assumed. This density
is a mixture distribution, comprising pulse and uniform background
distributions whose mixture weights depend on ηαijS and B.
Pixelwise maximum-likelihood depth estimation: Using the pho-
ton arrival-time dataset {t(`)ij }

kij
`=1, the pixelwise constrained ML

depth estimate is

ẑML
ij = argmax

zij∈[0,cTr/2)

kij∑
`=1

log
[
ηαijs(t

(`)
ij −2zij/c)+B/Tr

]
,

assuming that kij ≥ 1. If B > 0, then the ML depth estimate is
obtained by solving a non-convex optimization problem. Also, ML
estimation requires the knowledge of the true reflectivity αij , which
is not typically available. Thus, the log-matched filter [21] is instead
traditionally used for estimating depth from kij photon detections:

z̃ij = argmax
zij∈[0,cTr/2)

kij∑
`=1

log
[
s(t

(`)
ij −2zij/c)

]
. (3)

We observe that the log-matched filter solution is equal to the con-
strained ML estimate when B = 0.

4. NOVEL IMAGE FORMATION
In the limit of large sample size or high signal-to-noise ratio (SNR),
the ML estimate converges to the true parameter value [23]. How-
ever, when the data is limited or SNR is low—such as in our
problem—pixelwise ML solutions yield inaccurate estimates. We
compare our 3D imaging method with the baseline normalized-
count reflectivity estimate α̃ij and the log-matched filter depth
estimate z̃ij , which are ML estimates asymptotically. Along with
using the single-photon detection statistics, we exploit the spatial
correlations present in real-world scenes by regularizing the ML
estimators. Our approach provides significant improvements over
pixelwise ML estimators as well as traditional denoising techniques
that may exploit scene sparsity but assume additive Gaussian noise.
Our computational image construction proceeds in three steps.

1. Reflectivity estimation: The negative log-likelihood of scene
reflectivity αij given count data kij is

Lα(αij ; kij) = (N−kij)ηSαij−kij log[1−exp{−(ηαijS+B)}]

after constants independent of αij are dropped. Since Lα(αij ; kij)
is a strictly convex function in αij , it is amenable to global mini-
mization using convex optimization, with or without the inclusion
of sparsity-based regularization [24]. The penalized ML (PML) esti-
mate for scene reflectivity image is obtained from noisy data {kij}i,j
by solving the following convex program:

α̂PML = argmin
α:αij≥0

n∑
i=1

n∑
j=1

Lα(αij ; kij)+βα pen(α),

where pen(α) is a convex function that penalizes the non-smoothness
of the estimate and βα controls the degree of penalization.

2. Rejection of background detections: Direct application of a
similar regularized-ML approach to depth estimation using time-of-
arrival data is infeasible. This is because the background light contri-
bution to the likelihood function creates a cost function with locally-
optimal solutions that are far from the global optimum. Hence, be-
fore estimating depth, the second processing step attempts to censor
the photon detections that are due to background light.

Detections from background light do not contain any scene-
depth information. Their arrival times are mutually independent
over spatial locations with variance T 2

r /12. In contrast, because
light pulses have duration Tp � Tr and depths zij are correlated
over spatial locations, the detection times of signal photons have
conditional variance, given data from neighboring positions, that is
much lower than T 2

r /12. Based on this key observation, our method
to censor a noisy detection at (i, j) is as follows:

1. Compute the rank-ordered mean (ROM) tROM
ij for each pixel,

which is the median value of all the photon arrival times at the
8 neighboring pixels of (i, j) [25]. If tROM

ij cannot be computed
due to missing data, then set tROM

ij = +∞.

2. Estimate the set of uncensored signal photons as follows:

Gij =

{
` : |t(`)ij −t

ROM
ij | < 2Tp

B

ηα̂PML
ij S+B

, ` = 1, . . . , kij

}
.

It is demonstrated in [25] that the method of rank-ordered means
is effective in detecting pixels that are corrupted by high-variance
uniform noise. Since photon detections from background light are
uniformly distributed, we use the ROM method to reject such detec-
tions and only keep signal detections for further processing.

3. Depth estimation: With background detections rejected, the neg-
ative log-likelihood function of depth zij given data {t(`)ij }`∈Gij is

Lz
(
zij ; {t(`)ij }`∈Gij

)
= −

∑
`∈Gij

log
[
s(t

(`)
ij −2zij/c)

]
,

where Lz(zij ; {t(`)ij }`∈Gij ) = 0 ifGij = ∅. Our framework allows
the use of arbitrary pulse shapes, but many practical pulse shapes
are well approximated as s(t) ∝ exp{−v(t)}, where v(t) is a con-
vex function in t. Then, Lz(zij ; {t(`)ij }`∈Gij ) =

∑
`∈Gij

v(t
(`)
ij −

2zij/c) is a convex function in zij . Our penalized ML estimate for
the scene depth image is thus obtained using uncensored data and
solving the following convex optimization problem:

ẑPML = argmin
z:zij∈[0,cTr/2)

n∑
i=1

n∑
j=1

Lz
(
zij ; {t(`)ij }`∈Gij

)
+βz pen(z).

5. EXPERIMENTAL RESULTS
To test our robust 3D structure and reflectivity imaging method, we
used the dataset collected by D. Venkatraman for [19], which is
available from [26]. The experimental setup used to collect data is
shown in Fig. 1. A pulsed laser diode with pulse width Tp = 270 ps
and repetition period Tr = 100 ns was used as the illumination
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Fig. 3: Experimental results. We compare the 3D and reflectivity reconstruction performance of our proposed imager with pixelwise ML estimation methods
(see Section 3). Pixelwise RMSE images of 3D and reflectivity reconstruction using our method were generated with 100 repeated trials of experiments.

source. A two-axis galvo was used to raster scan 1000×1000 pix-
els. A lensless SPAD detector with quantum efficiency η = 0.35
was used for detection. The background light level was set such that
B equaled the scene-averaged value of ηαijS. Further details of the
experimental setup are given in [19]. Because raster scanning with
a fixed dwell time is equivalent to using a floodlight illumination
source and a detector array, our experimental results are indicative
of what can be accomplished in real-time imaging scenarios using
SPAD arrays.

Fig. 3 shows the results of recovering depth and reflectivity of
a life-size mannequin using traditional and our imaging methods.
Ground truth images were generated using ML estimation from 200
photon detections at each pixel (Fig. 3(a)). The raw dataset for
Figs. 3(b), (c) and (d), generated using dwell time Ta = 100µs,
has 1.21 detected photons per pixel averaged over the scene, with
54% of the pixels having zero detections. All reflectivity images
were rescaled to have visual information in the range [0, 1].

We see that the pixelwise ML approach (Eqs. (2), (3)) gives 3D
and reflectivity estimates with high root mean-square error (RMSE)
and low peak signal-to-noise ratio (PSNR) (Fig. 3(b)), due to sig-
nal and background light Poisson noise. Pixels with missing data
were imputed with the average of their neighboring 8 pixelwise ML
values. Denoising the ML reflectivity estimate using bilateral filter-
ing [27] and the ML depth estimate using median filtering [28] im-
proves their qualities (Fig. 3(c)). However, denoising the 3D struc-
ture of the mannequin shirt fails, because the region’s very low re-
flectivity causes many pixels to have missing data. On the other
hand, because our framework combines accurate photon-detection
statistics with spatial prior information, it accurately reconstructs im-
ages with RMSE and PSNR values of 0.8 cm and 30.6 dB (Fig. 3(d)).
We used the total variation semi-norm [29] as the penalty function
in our method and the penalty parameters βα and βz were chosen
to maximize PSNR for reflectivity imaging and minimize RMSE for
3D imaging. The pixelwise RMSE images in Fig. 3(e) show that

Mean Ta Mean kij PSNR RMSE
FPI 244µs 1.0 ppp 29.5 dB 0.62 cm
Our method 244µs 2.3 ppp 35.6 dB 0.30 cm

Table 1: Comparison between first-photon imaging (FPI) [19] and our
imaging method using the mannequin dataset, when dwell time averaged over
all pixels is equal.

(a) RMSE (in cm) of ML (b) RMSE (in cm) of our method

Fig. 4: RMSE simulation results for 3D imaging. The RMSE
plots were generated by simulating background levels on the ground
truth mannequin dataset. Signal-to-background ratio (SBR) is defined as∑n
i,j=1 ηαijS/(n

2B). Note the differences in the colorbar scales.

our computational imager achieves sub-centimeter depth resolution
and repeatedly recovers high reflectivity information. Fig. 4 demon-
strates that the high photon efficiency of our 3D imager holds for a
range of acquisition times and background strengths. Finally, Table
1 shows that our imager has somewhat better performance than the
first-photon imager when imaging the mannequin for a fixed mean
dwell time. See [9] for additional results and analysis.

6. CONCLUSION AND FUTURE WORK
We have demonstrated accurate 3D structure and reflectivity imag-
ing using on the order of 1 detected ppp averaged over the scene,
when any given photon detection has approximately probability 0.5
of originating from background light. Extending the FPI framework
from [19], our computational imager is based on combining accu-
rate photon-counting statistics with the spatial prior information in
depth and reflectivity maps given a fixed acquisition time. Thus, our
work motivates the development of accurate and low-power SPAD
array-based 3D and reflectivity imagers.

Our framework can be used in a variety of low light-level imag-
ing applications using photon-counting detectors, such as fluores-
cence lifetime imaging microscopy (FLIM) [22] and high-resolution
LIDAR [8]. Future developments in optoelectronic methods can im-
prove the accuracy of our 3D and reflectivity imager. In particular,
our framework can benefit from improved background suppression
techniques [2] and range-gating methods [17].
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