Abstract—An increasing number of streaming applications need packets to be strictly in-order at the receiver. This paper provides a framework for analyzing in-order packet delivery in such applications. We consider the problem of multicasting an ordered stream of packets to two users over independent erasure channels with instantaneous feedback to the source. Depending upon the channel erasures, a packet which is in-order for one user, may be redundant for the other. Thus there is an inter-dependence between throughput and the smoothness of in-order packet delivery to the two users. We use a Markov chain model of packet decoding to analyze these throughput-smoothness trade-offs of the users, and propose coding schemes that can span different points on each trade-off.

I. INTRODUCTION

There has been a rapid increase in streaming applications in both wired and wireless communication in recent years. Unlike traditional file transfer where only the total delay until the end of file transfer matters, streaming applications impose delay and order constraints on each individual packet in the file. Streaming includes audio/video applications VoIP, Netflix, YouTube which play packets in-order. Although these applications need to play packets in-order, they can drop packets that experience large transmission delays. However other cloud-based applications such as remote desktop, Dropbox and Google Drive do not allow packet dropping, because packets represent instructions that need to be executed in-order.

In [1], [2] we considered the problem of point-to-point streaming where the receiver applications require packets in-order. In several applications such as live video broadcasting, many users are accessing the content simultaneously. In this work we consider a multicast scenario where the source wants to ensure fast in-order packet delivery of a stream of packets to multiple users, while using the available bandwidth efficiently.

The use of network coding in multicast packet transmission has been studied in [3]–[7]. The authors in [3] use as a delay metric the number of coded packets that are successfully received, but do not allow immediate decoding of a source packet. For two users, the paper shows that a greedy coding scheme is throughput-optimal and guarantees immediate decoding in every slot. However, optimality of this scheme has not been proved for three or more users. In [4], the authors analyze decoding delay with the greedy coding scheme in the two user case. However, both these delay metrics do not capture the aspect of in-order packet delivery.

In-order packet delivery is considered in [5]–[7]. These works consider that packets are generated by a Poisson process and are greedily added to all future coded combinations. In this work we provide a more general framework where the source can use feedback about past erasures to decide how many and which packets to add to the coded combinations, instead of just greedy coding over all generated packets.

The main contribution of this work is to analyze how the priority given by the source to each user affects the in-order delivery of packets. We analyze the trade-off between the throughput and the smoothness of packet delivery for the two user case. In Section III we find the best coding scheme for a user that is piggybacking on a primary user that is always given higher priority. In Section IV we find the coding scheme that gives the best smoothness in packet delivery while ensuring throughput optimality to both users. In Section V we propose general coding schemes that can be used to tune the operating point on the throughput-smoothness trade-off of each user.

II. PRELIMINARIES

A. System Model

Consider a source that has to multicast an infinite stream of packets s_n, $n \in \mathbb{N}$ of equal size to K users U_1, U_2, \ldots, U_K. Time is divided into fixed length slots. In each slot the source transmits one coded linear combination of the source packets, with coefficients chosen from a large enough field to ensure independence of the coded combinations.

We consider an i.i.d. erasure channel to each user such that every transmitted packet is received successfully at user U_i with probability p_i, and otherwise received in error and discarded. The erasure events are independent across the users. The theoretical analysis presented in this paper focuses on the two user case. For simplicity of notation in this case, let $a \triangleq p_1 p_2$, $b \triangleq p_1 (1 - p_2)$, $c \triangleq (1 - p_1) p_2$ and $d \triangleq (1 - p_1)(1 - p_2)$, the probabilities of the four possible erasure patterns. We consider instantaneous and error-free feedback such that before transmission in slot n, the source knows about all erasures until slot $n - 1$.

The receiver-end application at each user requires packets strictly in order. Packets decoded out-of-order are buffered.

1By considering other values of probabilities a, b, c and $d = 1 - a - b - c$, our analysis can be extended to erasure events that are correlated across users but i.i.d across time slots.
Definition 2 (Throughput). The throughput \(\tau_i \) is the rate of in-order packet delivery to user \(U_i \) and is given by
\[
\tau_i = \lim_{n \to \infty} \frac{r_i(n)}{n} \text{ in probability.} \tag{1}
\]

Definition 3 (Smoothness Index). The smoothness index \(\sigma_i \) is the probability of a burst of in-order packets being delivered in a given slot. It is given by,
\[
\sigma_i = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{I}(r_i(k) > r_i(k-1)) \text{ in probability,} \tag{2}
\]
where \(\mathbb{I}(E) \) is the indicator function that is 1 when event \(E \) occurs and 0 otherwise.

A higher \(\tau_i \) and \(\sigma_i \) means a faster and smoother packet delivery respectively. The best possible trade-off is \((\tau_i, \sigma_i) = (p_i, p_i) \). For the single user case, it can be achieved by the simple Automatic-repeat-request (ARQ) scheme where the source retransmits the earliest undecoded packet until it is decoded. In this paper we aim to design coding strategies that maximize throughput and smoothness index for the two user case.

In our analysis, it is convenient to express \(\tau_i \) and \(\sigma_i \) in terms of the following intermediate quantities.

Definition 4 (Throughput Loss). In \(n \) slots, let \(X_n \) be the number of unerased slots for \(U_i \), and let \(Y_n \) be the number of times the decoder at \(U_i \) receives a combination of already decoded packets. Then its throughput loss \(\delta_i \) is
\[
\delta_i = \lim_{n \to \infty} \frac{Y_n}{X_n} \text{ in probability.} \tag{3}
\]

Definition 5 (Order Loss). In \(n \) slots, let \(Z_n \) be the number of times the decoder at \(U_i \) receives an innovative combination, but cannot decode \(s_r \). Then its order loss \(\omega_i \) is
\[
\omega_i = \lim_{n \to \infty} \frac{Z_n}{X_n} \text{ in probability.} \tag{4}
\]

The throughput \(\tau_i \) and smoothness index \(\sigma_i \) of user \(U_i \) can be expressed in terms of \(\delta_i \) and \(\omega_i \) as follows
\[
\tau_i = p_i(1 - \delta_i), \tag{5}
\]
\[
\sigma_i = p_i(1 - \delta_i - \omega_i). \tag{6}
\]

In (5), \(p_i(1 - \delta_i) \) is the fraction of slots in which the decoder receives an innovative coded combination. Since all packets are eventually delivered to the user, this is equal to \(\tau_i \). In (6), \(p_i(1 - \delta_i - \omega_i) \) is the fraction of slots in which the required packet of \(U_i \) is decoded. Since a burst of in-order packets is delivered to the user whenever this happens, this is equal to \(\sigma_i \). Thus, the best achievable throughput-smoothness trade-off \((\tau_i, \sigma_i) = (p_i, p_i) \) is equivalent to \((\delta_i, \omega_i) = (0, 0) \).

C. Structure of Good Codes

We now present code structures that maximize throughput and smoothness index of the users.

Claim 1 (Include only Required Packets). In a given slot, it is sufficient for the source to transmit a combination of packets \(s_r \), for \(i \in \mathcal{I} \) where \(\mathcal{I} \) is some subset of \(\{1, 2, \cdots, K\} \).

Proof: Consider a candidate packet \(s_c \) where \(c \neq r_i \) for any \(1 \leq i \leq K \). If \(c < r_i \) for all \(i \), then \(s_c \) has been decoded by all users, and it need not be included in the combination. For all other values of \(c \), there exists a required packet \(s_r \) for some \(i \in \{1, 2, \cdots, K\} \) that, if included instead of \(s_c \), will allow more users to decode their required packets. Hence, including that packet instead of \(s_c \) gives a lower order loss.

Claim 2 (Include only Decodable Packets). If a coded combination already includes packets \(s_r \), with \(i \in \mathcal{I} \), and \(U_j, j \notin \mathcal{I} \) has not decoded all \(s_r \), for \(i \in \mathcal{I} \), then a scheme that does not include \(s_r \) in the combination gives a better throughput-smoothness trade-off than a scheme that does.

Proof: If \(U_j \) has not decoded all \(s_r \), for \(i \in \mathcal{I} \), the combination is innovative but does not help decoding an in-order packet, irrespective of whether \(s_r \) is included in the combination. However, if we do not include packet \(s_r \), \(U_j \) may be able to decode one of the packets \(s_r, i \in \mathcal{I} \), which can save it from an order loss in a future slot. Hence excluding \(s_r \) gives a better throughput-smoothness trade-off.

For the two user case, Claims 1 and 2 imply the following code structure.

Proposition 1 (Code Structure for the Two User Case). Every achievable throughput-smoothness trade-off can be obtained by a coding scheme where the source transmits \(s_r \), \(s_r \) or the exclusive-or, \(s_r \oplus s_r \) in each slot. It transmits \(s_r \oplus s_r \) only if \(r_1 \neq r_2 \), and \(U_1 \) has decoded \(s_r \) or \(U_2 \) has decoded \(s_r \).
<table>
<thead>
<tr>
<th>Time</th>
<th>Sent</th>
<th>U_1</th>
<th>U_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s_1</td>
<td>s_1</td>
<td>\times</td>
</tr>
<tr>
<td>2</td>
<td>s_2</td>
<td>\times</td>
<td>s_2</td>
</tr>
<tr>
<td>3</td>
<td>$s_1 \oplus s_2$</td>
<td>s_2</td>
<td>s_1</td>
</tr>
<tr>
<td>4</td>
<td>s_3</td>
<td>s_3</td>
<td>\times</td>
</tr>
<tr>
<td>5</td>
<td>s_4</td>
<td>s_4</td>
<td>s_4</td>
</tr>
</tbody>
</table>

In the rest of the paper we analyze the two user case and focus on coding schemes as given by Proposition 1.

III. OPTIMAL PERFORMANCE FOR ONE OF THE USERS

In this section we consider that the source always gives priority to one user, called the primary user. We determine the best achievable throughput-smoothness trade-off for a secondary user that is “piggybacking” on such a primary user.

A. Coding Scheme

Without loss of generality, suppose that U_1 is the primary user, and U_2 is the secondary user. Recall that ensuring optimal performance for U_1 implies achieving $(r_1, \sigma_1) = (p_1, p_1)$, which is equivalent to $(\delta_1, \omega_1) = (0, 0)$. While ensuring this, the best throughput-smoothness trade-off for user U_2 is achieved by the coding scheme given by Claim 3 below.

Claim 3 (Optimal Coding Scheme). A coding scheme where the source transmits $s_{r_1} \oplus s_{r_2}$ if $r_1 > r_2$ and U_2 has already decoded s_{r_2}, and otherwise transmits s_{r_1}, gives the best achievable (r_2, σ_2) trade-off while ensuring optimal (r_1, σ_1).

Proof: Since U_1 is the primary user, the source must include its required packet s_{r_1} in every coded combination. By Proposition 1 if the source transmits $s_{r_1} \oplus s_{r_2}$ if U_2 has already decoded s_{r_2}, and transmits s_{r_1} otherwise, we get the best achievable throughput-smoothness trade-off for U_2.

Fig. 1 illustrates this scheme for one channel realization.

B. Markov Model of Packet Decoding

Packet decoding at the two users with the scheme given by Claim 3 can be modeled by the Markov chain shown in Fig. 2. The state index i can be expressed in terms of the number of gaps in decoding of the users, defined as follows.

Definition 6 (Number of Gaps in Decoding). The number of gaps in U_1’s decoding is the number of undecoded packets of U_1 with indices less than $r_{\text{max}} = \max_i r_i$.

In other words, the number of gaps is the amount by which a user U_1 lags behind the user that is leading the in-order packet decoding. The state index i, for $i \geq -1$ is equal to the number of gaps in decoding at U_2, minus that for U_1. Since the source gives priority to U_1, it always has zero gaps in decoding, except when there is a $c = p_2(1 - p_1)$ probability erasure in state 0, which causes the system to go to state -1. The states i' for $i \geq 1$ are called “advantage” states and are defined as follows.

Definition 7 (Advantage State). The system is in an advantage state when $r_1 \neq r_2$, and U_2 has decoded s_{r_1} but U_1 has not.

By Claim 3 the source transmits $s_{r_1} \oplus s_{r_2}$ when the system is in an advantage state i', and it transmits s_{r_1} when the system is in state i for $i \geq -1$. We now describe the state transitions of this Markov chain. First observe that with probability $d = (1 - p_1)(1 - p_2)$, both users experience erasures and the system transitions from any state to itself. When the system is in state -1, the source transmits s_{r_1}. Since s_{r_1} has been already decoded by U_2, the probability $c = p_2(1 - p_1)$ erasure also keeps the system in the same state. If the channel is successful for U_1, which occurs with probability $p_1 = a + b$, it fills its decoding gap and the system goes to state 0.

The source transmits s_{r_1} in any state i, $i \geq 1$. With probability $a = p_1 p_2$, both users decode s_{r_1}, and hence the state index i remains the same. With probability $b = p_1(1 - p_2)$, U_1 receives s_{r_1}, but U_2 does not, causing a transition to state $i + 1$. With probability $c = (1 - p_1)p_2$, U_2 receives s_{r_1} and U_1 experiences an erasure due to which the system moves to the advantage state i'. When the system is an advantage state, having decoded s_{r_1} gives U_2 an advantage because it can use $s_{r_1} \oplus s_{r_2}$ transmitted in the next slot to decode s_{r_2}. From state i', with probability a, U_1 decodes s_{r_1} and U_2 decodes s_{r_2}, and the state transitions to $i - 1$. With probability c, U_2 decodes s_{r_2}, but U_1 does not decode s_{r_1}. Thus, the system goes to state $(i - 1)'$, except when $i = 1$, where it goes to state 0.

We now solve for the steady-state distribution of this Markov chain. Let π_i and π_i' be the steady-state probabilities of states i for $i \geq -1$ and advantages states i' for all $i \geq 0$ respectively. The steady-state transition equations are given by

\[
(1 - a - d)\pi_i = b(\pi_{i-1} + \pi_i') + a\pi_{i+1} \quad \text{for} \quad i \geq 1, \quad (7)
\]

\[
(1 - d)\pi_i' = c(\pi_i + \pi_{i+1}) \quad \text{for} \quad i \geq 1, \quad (8)
\]

\[
(1 - c - d)\pi_{-1} = c(\pi_0 + \pi_1'), \quad (9)
\]

\[
(1 - a - d)\pi_0 = a\pi_1' + (a + b)\pi_{-1}. \quad (10)
\]

By rearranging the terms in (7)-(10), we get the following recurrence relation,

\[
\pi_i = \frac{(1 - a - d)}{c} \pi_{i-1} - \frac{b}{c} \pi_{i-2} \quad \text{for} \quad i \geq 2. \quad (11)
\]
Solving the recurrence in (11) and simplifying (7)-(10) further, we can express π_i, π'_i for $i \geq 2$ in terms of π_1 as follows,

\begin{align}
\frac{\pi_i}{\pi_{i-1}} &= \frac{b}{c}, \quad (12) \\
\frac{\pi'_i}{\pi_i} &= \frac{c}{a+c}. \quad (13)
\end{align}

From (12) we see that the Markov chain will be positive-recurrent and a unique steady-state distribution exists only if $b < c$, which is equivalent to $p_1 < p_2$. The expressions of the steady-state probabilities are not given here due to space limitations. If $p_1 \geq p_2$, the expected recurrence time to state 0, that is the time taken for U_2 to catch up with U_1 is infinity.

C. Throughput-smoothness Trade-off for the Secondary User

Since we always give priority to the primary user U_1, we have $(\delta_1, \omega_1) = (0,0)$. When $p_1 < p_2$, we can express the throughput loss δ_2 and order loss ω_2 in terms of the steady state probabilities of the Markov chain in Fig 2. User U_2 experiences an order loss when the system is in a state i, for $i \geq 1$ and the next slot is successful. And it experiences a throughput loss when it is in state -1 and the next slot is successful. By Definition 4 and Definition 5 δ_2 and ω_2 are normalized by the success probability p_2. Thus, when $p_2 > p_1$,

\begin{align}
(\delta_2, \omega_2) &= \left(\pi_{-1}, \sum_{i=1}^{\infty} \pi_i \right), \quad (14) \\
&= \left(c - b, \frac{b(a+b)}{a+c} \right), \quad (15) \\
&= \left(1 - \frac{p_1}{p_2}, \frac{p_2^2(1-p_2)}{p_1(1-p_1)(p_1+p_2-p_1p_2)} \right). \quad (16)
\end{align}

If $p_1 > p_2$, the system drifts infinitely to the right side and hence it is in state i or i' for $i \geq 1$ with probability 1. Using (13), we can show that the intermediate quantities are

\begin{align}
(\delta_2, \omega_2) &= \left(0, \frac{a+c}{a+2c} \right) = \left(0, \frac{1}{2-p_1} \right). \quad (17)
\end{align}

Both (16) and (17) converge to the same values when $p_1 = p_2$.

Fig. 3 shows the smoothness index σ_2 as a function of channel success probability p_2 of the secondary user, for different values of p_1. We observe that the increase of σ_2 with p_2 is much faster when $p_2 > p_1$. However, when $p_2 > p_1$, the throughput saturates at p_1 as given by (15). This implies that secondary user piggybacking on a fixed primary user achieves good smoothness without much throughput loss when p_2 is slightly more than p_1.

For $K > 2$ users with a fixed priority order, we can find lower bounds on the throughput and smoothness index of a user. This can be done by fusing users with higher priority into a super user, thus reducing it to the two user case.

IV. THROUGHPUT OPTIMALITY FOR BOTH USERS

We now consider the case where the source wants to ensure throughput optimality to both users, and we determine the best achievable smoothness indices of the users.

A. Greedy Coding Scheme

Let $r_{\text{max}} = \max(r_1, r_2)$ and $r_{\text{min}} = \min(r_1, r_2)$, where r_1 and r_2 are the indices of the required packets of the two users. We refer to the user(s) with the higher index r_i as the leader(s) and the other user as the lagger. Thus, U_1 is the leader and U_2 is the lagger when $r_1 > r_2$, and both are leaders with $r_1 = r_2$.

Definition 8 (Greedy Coding). In greedy coding, the source transmits $s_{r_{\text{max}}} \oplus s_{r_{\text{min}}}$ when the lagger has decoded $s_{r_{\text{max}}}$ but the leader has not, and transmits $s_{r_{\text{max}}}$ otherwise.

Fig. 4 illustrates the greedy coding scheme and the sequence of packets decoded by the two users.

Claim 4 (Optimality of Greedy Coding). The greedy coding scheme in Definition 8 gives the best smoothness indices σ_1 and σ_2 while ensuring throughput optimality to both users.

Proof: To ensure throughput optimality, the source must include packet $s_{r_{\text{max}}}$ in the coded combination. By Proposition 1, the coding scheme that includes $s_{r_{\text{max}}}$ in the combination only if the lagger has decoded $s_{r_{\text{max}}}$ but the leader has not, maximizes the smoothness indices of the two users. \blacksquare
hence \(\omega \equiv \tau \) optimality for both users. Hence, \(b \neq c \) throughput losses \(\delta \) (equivalent to \(U \)) Markov chain shown in Fig. 5, which is a two-sided version of the Markov chain in Fig. 2. User \(U_1 \) is the leader in states \(i \geq 1 \) and \(U_2 \) is the leader in states \(i \leq -1 \), and both are leaders in state 0. The system is in the advantage state \(i' \) if packet is decoded by the lagger but not the leader. All the transitions for states \(i \) and \(i' \) for \(i \geq 1 \) are same as in Fig 5. The transitions for states \(i \leq -1 \) are symmetric to \(i \geq 1 \), with probabilities \(b \) and \(c \) interchanged.

For the states \(i \), with \(i \geq 2 \) the steady state recursions are same as (12) and (13). Similarly for states \(i \leq -2 \) we have

\[
\pi_{i} = \frac{c}{b}, \quad \pi'_{i} = \frac{b}{a+b}. \tag{20}
\]

The right hand side of the chain is transient if \(b > c \) (equivalent to \(p_1 > p_2 \)), and the left side is transient if \(b < c \). Hence, the Markov chain is transient when \(b \neq c \), which is equivalent to \(p_1 \neq p_2 \), and null-recurrent when \(p_1 = p_2 \).

C. Throughput-Smoothness Trade-offs of the two users

By Claim 4 the greedy coding scheme ensures throughput optimality for both users. Hence, \(\tau_1 = p_1, \tau_2 = p_2 \) and the throughput losses \(\delta_1 \) and \(\delta_2 \) are both zero.

When the right side of chain is transient, that is, if \(p_1 > p_2 \),

\[
\begin{align*}
\omega_1 & = 0, \\
\omega_2 & = \sum_{i=1}^{\infty} \pi_i = \frac{1}{2-p_1}. \tag{22}
\end{align*}
\]

If \(p_2 > p_1, \omega_2 = 0 \) and \(\omega_1 \) is same as in (23) with \(p_1 \) replaced by \(p_2 \). When \(p_1 = p_2 \) the Markov chain is null-recurrent, in which case, the limit in Definition 5 does not converge, and hence \(\omega_1 \) and \(\omega_2 \) are ill-defined.

Using (6), we can express the smoothness trade-off \(\sigma_2 \) as,

\[
\sigma_2 = \begin{cases}
p_2 & \text{if } p_1 < p_2, \\
\frac{p_2}{2-p_1} & \text{if } p_1 > p_2, \\
\text{undefined} & \text{otherwise.} \tag{24}
\end{cases}
\]

Fig. 5. Markov chain model of packet decoding with the greedy coding scheme in Definition 8 that ensures throughput optimality to both users. It is a two-sided version of the Markov chain in Fig. 2.

B. Markov Analysis of Packet Decoding

Packet decoding with greedy coding can be modeled by the Markov chain shown in Fig. 5 which is a two-sided version of the Markov chain in Fig. 2. User \(U_1 \) is the leader in states \(i \geq 1 \) and \(U_2 \) is the leader in states \(i \leq -1 \), and both are leaders in state 0. The system is in the advantage state \(i' \) if packet is decoded by the lagger but not the leader. All the transitions for states \(i \) and \(i' \) for \(i \geq 1 \) are same as in Fig 5. The transitions for states \(i \leq -1 \) are symmetric to \(i \geq 1 \), with probabilities \(b \) and \(c \) interchanged.

The expression \(\sigma_1 \) is same as (24) with the probabilities \(p_1 \) and \(p_2 \) interchanged everywhere. We can see that the user with the better channel gets the optimal smoothness index, but at the cost of the other user experiencing a much lower smoothness in packet delivery.

V. GENERAL THROUGHPUT-SMOOTHNESS TRADE-OFFS

For the general case, we propose coding schemes that can be combined to tune the priority give to each user and achieve different points on its throughput-smoothness trade-off.

A. Proposed Codes

We can modify the greedy coding scheme in Definition 8 to get more general schemes called \((N,M)\) multicast codes.

Definition 9 \((N,M)\) Multicast Codes. In the \((N,M)\) multicast code, the source follows the greedy coding scheme in Definition 8 except in states \(i \geq N \) or \(i \leq -M \) for \(N,M \geq 1 \), of the model in Fig. 5 where it gives priority to the lagger and transmits \(s_{r_{ma}} \).

The packet decoding using the \((N,M)\) multicast code can be modeled by the Markov chain in Fig. 6. It is a generalization of the chain in Fig. 5. By Definition 9 the source gives priority to the lagger \(U_2 \) and transmits \(s_{r_2} \) when the system is in state \(i \geq N \), and it transmits \(s_{r_1} \) when in states \(i \leq -M \), where \(U_1 \) is the lagger. Thus, there are backward state transitions with probabilities \(p_2 \) and \(p_1 \) interchanged everywhere. We can see that the user with the better channel gets the optimal smoothness index, but at the cost of the other user experiencing a much lower smoothness in packet delivery.

We can modify the greedy coding scheme in Definition 8 to get more general schemes called \((N,M)\) multicast codes.
Claim 5 (Time-sharing \((N, M)\) codes). For every \(W\) slots, if the source uses the \((N_r, M_r)\) code for \(x_r W\) slots, with \(0 \leq x_r \leq 1\) and \(\sum_{r=1}^{R} x_r = 1\), then for large enough \(W\),
\[
(\tau_i, \sigma_i) = \left(\frac{\sum_{r=1}^{R} x_r \tau_i^{(r)}}{\sum_{r=1}^{R} x_r}, \frac{\sum_{r=1}^{R} x_r \sigma_i^{(r)}}{\sum_{r=1}^{R} x_r} \right). \tag{25}
\]

The proof is omitted due to space limitations.

Conjecture 1. A randomized policy where in every slot, the source uses the \((N_r, M_r)\) code with probability \(x_r\), for \(r = 1, 2, \cdots R\) gives the same \((\tau_i, \sigma_i)\) trade-off each user \(U_i\) as the time-sharing policy in Claim 5.

Conjecture 1 implies that the trade-off of a scheme where in state \(i\), the source transmits \(s_{r,i}\), with probability \(q_i\), can be expressed as a combination of the trade-offs of \((N, M)\) codes.

B. Throughput-Smoothness Trade-offs of the Two Users

We can solve for the following recursive relations between the steady-state probabilities of the chain in Fig. 6. For \(N \geq 2\),
\[
\pi_i = \begin{cases}
\frac{b}{b(1-d)} & \text{for } 2 \leq i \leq N-2, \\
\frac{b}{a(1-d)} & \text{for } i = N-1, \\
\frac{b}{1} & \text{for } i = N, \\
0 & \text{for } i > N.
\end{cases} \tag{26}
\]
\[
\pi_i' = \begin{cases}
\frac{c}{a+c} & \text{for } 1 \leq i \leq N-2, \\
\frac{c}{1-d} & \text{for } i = N-1, \\
0 & \text{for } i \geq N.
\end{cases} \tag{27}
\]

For states \(i \leq -1\), the ratios \(\pi_{i+1}/\pi_{i+1}\) and \(\pi'_{i+1}/\pi'_{i+1}\) are same as given by (26) and (27), but with the probabilities \(b\) and \(c\) interchanged, and \(N\) replaced by \(M\). The throughput and order losses can be expressed in terms of \(\pi_i\) as
\[
(\delta_1, \omega_1) = \left(\sum_{i=1}^{N-1} \pi_{i-1}, \sum_{i=1}^{M-1} \pi_{i} \right), \tag{28}
\]
\[
(\delta_2, \omega_2) = \left(\sum_{i=1}^{N-1} \pi_{i}, \sum_{i=1}^{M-1} \pi_{i+1} \right). \tag{29}
\]

Using [5] and [6] we can express the throughput-smoothness trade-off \((\tau_i, \sigma_i)\) in terms of \((\delta_i, \omega_i)\). From (25) and (29) we see that to achieve high smoothness index (proportional to \(-\delta_i + \omega_i\)) for one user, one needs to sacrifice on the smoothness index of the other user. In Fig. 7 we plot the throughput-smoothness tradeoff \((\tau_i, \sigma_i)\) for \((N, N)\) codes with \(N \geq 1\), and when \(p_1 = p_2\). We choose \(N = M\) to give equal priority to both users. Since the two sides of the Markov chain are symmetric for these parameters, \(\tau_1 = \tau_2\) and \(\sigma_1 = \sigma_2\). Using Claim 5 we can infer that time-sharing between the \((1, 1)\) and \((N, N)\) codes for large \(N\) gives the best throughput-smoothness trade-off, which is the dashed line joining the end points of each curve in Fig. 7. Further, if Conjecture 1 is true, then randomized policy which uses the \((1, 1)\) code with probability \(q\) for \(0 \leq q \leq 1\), and uses the \((N, N)\) code with large \(N\) otherwise can also achieve this trade-off. From this we can infer that in a coding strategy which favors the non-leader with probability \(q_i\) in state \(i\), setting all \(q_i\) to the same value \(q\) gives the best trade-off.

VI. CONCLUDING REMARKS

In this work we study the trade-off between the throughput and smoothness in packet delivery when the application requires the packets in-order. We use a Markov chain model to analyze the trade-off when the source is multicasting a packet stream to two users over erasure channels with instantaneous feedback. The throughput and smoothness index achieved by a user depends on the priority given to it by the source. By considering the cases of fixed and greedy priority we can show that both users cannot simultaneously achieve optimal throughput and optimal smoothness. We propose general coding schemes that can be used to tune the priority given to each of the users and thus span different points of their throughput-smoothness trade-offs. Future directions include extending this framework to more users, and analyzing second-order delay characteristics such as the exponent of inter-delivery delay.

REFERENCES