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Live-cell protein labelling with nanometre precision
by cell squeezing
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Ralph Wieneke1 & Robert Tampé1,4

Live-cell labelling techniques to visualize proteins with minimal disturbance are important;

however, the currently available methods are limited in their labelling efficiency, specificity

and cell permeability. We describe high-throughput protein labelling facilitated by

minimalistic probes delivered to mammalian cells by microfluidic cell squeezing. High-affinity

and target-specific tracing of proteins in various subcellular compartments is demonstrated,

culminating in photoinduced labelling within live cells. Both the fine-tuned delivery of

subnanomolar concentrations and the minimal size of the probe allow for live-cell

super-resolution imaging with very low background and nanometre precision. This method is

fast in probe delivery (B1,000,000 cells per second), versatile across cell types and can be

readily transferred to a multitude of proteins. Moreover, the technique succeeds in

combination with well-established methods to gain multiplexed labelling and has

demonstrated potential to precisely trace target proteins, in live mammalian cells, by

super-resolution microscopy.
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D
irect observation of intracellular processes has the
potential to yield insight into fundamental biological
pathways and disease mechanisms. Several techniques

have been developed to enable high-resolution imaging of live
cells; yet, the limited ability to trace intracellular components has
hindered progress. Hence, two of the persistent challenges are
probe design and cellular delivery with minimal toxicity, pivotal
for advances in live-cell imaging technologies. Here we describe
an efficient approach to tag and image intracellular components
in live mammalian cells. Using the microfluidic cell squeezing
platform to deliver small fluorescent tris-N-nitrilotriacetic acid
(trisNTA) probes (B1 kDa), we demonstrate highly efficient,
minimally disruptive, light-triggered tracing of native proteins
and the subsequent super-resolution imaging of live-cell
phenomena.

Live-cell microscopy contributed significant knowledge of
dynamic processes such as protein trafficking and single-molecule
localization-based imaging techniques visualize proteins with high-
resolution information (r50 nm)1,2. All fluorescent imaging
techniques require protocols to introduce the label with the need
to minimize its influence on the system. Fluorescent proteins, self-
labelling tags3–6 or labelling by enzymatic methods7,8 can interfere
with protein function, assembly or dynamics. Bulky fusion proteins
(420 kDa) entail the risk of steric hindrance and functional
perturbations, whereas smaller tags (for example, tetracysteine tag)
deal with unspecific interactions or require additional experimental
steps8 and optimized flanking sequences for each protein target9.
Although synthetic fluorophores have enhanced photostability,
quantum yield, spectral range and localization precision, it is
difficult to introduce such probes to the cytosolic environment
using existing delivery technologies. On the one hand, current
transduction strategies such as delivery by cell-penetrating peptides
(CPPs), electroporation and so on are suboptimal, suffering from
poor and endosomal uptake, rapid degradation by extracellular and
endosomal proteases, low in vivo efficiency or elaborated chemical
synthesis. On the other hand, antibody-based labelling approaches,
for example, are limited to chemically arrested (fixed) cells and the
availability of specific antibodies for a protein target. Owing to the
described limitations of existing labelling and transduction
technologies, there is a persistent demand for techniques
enabling high-throughput in-cell labelling by minimal tags that
are conductive to high-resolution and super-resolution
microscopy.

Here we demonstrate robust in-cell targeting of native proteins
using a labelled multivalent chelator head trisNTA10 and a
genetically encoded oligohistidine sequence (Fig. 1a). trisNTA site
specifically recognizes His6–10-tagged proteins in the
(sub)nanomolar range (Kd of 0.1–10 nM) even in the crowded
cellular environment11. The minimal size of the tag and the
molecular probe allows direct targeting with nanometre precision
at subnanomolar concentrations as required for single-molecule
localization-based imaging techniques1,2,12,13 with no impact on
intracellular trafficking or demand for additional cofactors
affecting endogenous processes. We simplified efficient transfer
of the trisNTA probe into living cells by cell squeezing14,
combining precisely controlled cytosolic delivery with high
specificity and low cytotoxicity. Briefly, transient cell
permeabilization is achieved by rapid viscoelastic deformation
of cells as they pass through micrometre-scale constrictions. This
facilitates fast uptake of probes into the cytosol before
cell-intrinsic repair mechanisms kick in15.

Results
High-affinity protein labelling at subnanomolar concentration.
We first investigated the specificity of the trisNTA/His tag

targeting in chemically arrested cells. To evaluate precise locali-
zation, different proteins resident at distinct subcellular com-
partments were selected: (i) the transporter associated with
antigen processing (TAP) in the membrane of the endoplasmic
reticulum16; (ii) histone 2B (H2B) in the nucleus; and (iii) Lamin
A at the nuclear envelope. All proteins of interest (POIs) were
fused to a His10 tag and a fluorescent protein (TAP1mVenus-His10,
H2BmVenus-His10 and His10-mEGFPLamin A) for specific targeting
and co-localization studies, respectively. For sensitive detection,
trisNTA was covalently coupled to different fluorescent
dyes (trisNTAf, f¼Alexa488, ATTO565, ATTO647N, Alexa647
and ATTO655). Mammalian cells were transiently transfected
with the corresponding target genes. His-tagged proteins were
specifically stained by trisNTAf with excellent co-localization and
signal-to-noise ratio (Pearson’s coefficients between 0.90 and
0.96), using confocal laser scanning microscopy (CLSM; Fig. 1b
and Supplementary Fig. 1). Strikingly, even at 200 pM of
trisNTAf, His-tagged proteins were labelled with high specificity
(Supplementary Fig. 2). By analysing a variety of fluorescent dyes,
we noticed that trisNTAATTO565 targeting produced a higher
background compared with trisNTAATTO647N, trisNTAAlexa647

or trisNTAATTO655 (Supplementary Fig. 3). This was assigned to
unspecific binding of the ATTO565 dye. Moreover, the
superposition of both fluorescence intensity profiles reflects an
excellent correlation between the POI expression level and the
labelling density of trisNTAAlexa647 (Fig. 1c,d, Pearson’s
coefficient r¼ 0.95). Notably, using nanomolar concentrations,
trisNTAf labelling is significantly more efficient within 30 min
than SNAPf-tag labelling (Supplementary Fig. 4). In contrast,
mammalian cells expressing H2B lacking a His tag showed
neither trisNTAf labelling nor unspecific staining (Supplementary
Fig. 5). In conclusion, trisNTAf targeting at subnanomolar
concentrations is highly specific to trace His-tagged proteins.
To exploit these benefits further, we combined trisNTAf with
well-established labelling methods for multiplexed protein
modification. Specific trisNTAAlexa488 labelling of His10LaminA
(Fig. 1e, green) was successfully achieved in combination with
SNAPf-tag labelling of H2B (magenta) and antibody labelling of
tubulin (red), as well as the lysosomal-associated membrane
protein 1 (blue). Thus, the ultra-small interaction pair
complements the toolbox of well-established labelling
techniques and the nanomolar concentrations perform various
avenues in multiplexed labelling.

High-throughput live-cell labelling within mammalian cells.
Encouraged by these observations, we aimed at protein labelling
in living cells. To transfer trisNTAf into cells, we applied
microfluidic cell squeezing (Fig. 2a). As the trisNTAf probes are
chemically diverse relating to the used fluorophores, common
transduction strategies are unlikely to efficiently deliver nano-
molar concentrations of trisNTAf into mammalian cells. Speci-
fically, mammalian cells were mechanically pushed (‘squeezed’)
through micrometre constrictions at elevated pressure of 30 psi.
This approach allows for high cell survival (490%) and efficient
uptake of trisNTAf (up to 80%; Supplementary Figs 6 and 7).
Energy-dependent endocytosis, often observed at cargo transfer
with supercharged molecules (Supplementary Fig. 8) or low
concentrations of CPPs (Supplementary Fig. 9)17, were prevented
by performing cell squeezing at 4 �C (Supplementary Fig. 10).

By squeezing TAP1mVenus-His10-transfected HeLa cells in the
presence of trisNTAf (100 nM), we achieved a high-throughput
delivery and a high-density labelling, illustrated by an excellent
co-localization between both reporter molecules (Fig. 2b). We
noticed that both probe delivery by cell squeezing and protein
labelling are highly reproducible (n420). To quantify the
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trisNTAf delivery, we performed flow cytometry analysis on
micromanipulated cells. Thirty-five per cent of transfected cells
(54% of total) were effectively transduced with trisNTAATTO565

(Fig. 2c), which is 4 30� more efficient for trisNTAf delivery
than electroporation (Supplementary Fig. 11). Squeezing of up to
1,000,000 cells per second enables live-cell labelling at high
throughput and reproducibility, and hence largely exceeds the
efficiency achieved by other direct transfer methods such as
microinjection. The massively parallel and constant cell transduc-
tion surpasses the stochastic, while variable efficient uptake by
CPPs (Supplementary Fig. 9) and is more than 1,000-fold
below the micromolar probe concentrations used by elegant
self-labelling tags, for example, SNAP tag3–6.

Highly specific protein targeting with minimal disturbance.
Analogous micromanipulation and live-cell labelling was applied
to H2BmVenus-His10- and His10-mEGFPLamin A-transfected cells
(Fig. 2d). Cell transduction was analysed 15 min and 1 h after
squeezing by CLSM. An excellent co-localization between the
trisNTAf reporter molecule and the His-tagged POIs was
observed (Pearson’s coefficients range from 0.81 to 0.93), in line

with the subcellular localization in chemically arrested cells.
Notably, live-cell labelling is independent of cell types, for
example, HeLa, HeLa Kyoto, Chinese hamster ovary (CHO-K1)
or human embryonic kidney 293 cells (Figs 1b and 2d). Beyond
that, trisNTAf labelling after removal of the bulky fluorescent
protein fully exploited the small size of the lock-and-key element
and confirmed again specific labelling in living cells with minimal
perturbation (Supplementary Fig. 12). The specificity was vali-
dated in cells transfected with H2BEGFP lacking a His tag and
untransfected cells (Supplementary Fig. 13). In both cases, neither
co-localization of trisNTAf with H2BEGFP nor unspecific binding
was detected. Delivery of nickel-free trisNTAf or of free Alexa647
dye showed no labelling in TAP1mVenus-His10-transfected cells
(Supplementary Figs 14 and 15). In contrast, trisNTAAlexa647

(Fig. 2 and Supplementary Fig. 14) and trisNTAATTO565

(Supplementary Fig. 16) clearly stain TAP1mVenus-His10 at
the endoplasmic reticulum membrane after cell squeezing.
Noticeably, cell viability of trisNTAf-transduced cells was
negligibly affected 1 and 24 h after labelling. Similar concentra-
tions of unbound nickel ions inside mammalian cells had no
significant toxic effects (Supplementary Fig. 7). In contrast,
electroporation entailed more than twofold increased toxicity
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Figure 1 | ‘Traceless’ tracing of protein assemblies by a minimal lock-and-key recognition pair. (a) Chemical structure of trisNTA conjugated to various

organic fluorophores (red circle). (b) Subcellular tracing of His-tagged POIs by trisNTAAlexa647. Cells expressing TAP1mVenus-His10 (HeLa Kyoto),

H2BmVenus-His10 (HeLa) or His10-mEGFPLamin A (Chinese hamster ovary (CHO-K1)) were fixed and stained with trisNTAAlexa647. Excellent co-localization

(merge) between trisNTAAlexa647 (red) and all His-tagged POIs (green) was observed. Pearson’s coefficients (r) were calculated from eight to ten

individual images (right). Dashed lines indicate the cell border. (c) Specific labelling of TAP1mVenus-His10 by trisNTAAlexa647 in fixed HeLa Kyoto cells with a

Pearson’s coefficient of r¼0.95. (d) Cross-section of relative fluorescence intensities (mVenus and Alexa647), indicated by a horizontal dashed line in c

shows excellent correlation of His-tagged POI expression level and trisNTAAlexa647 staining. (e) Combination of the lock-and-key element with established

labelling methods. HeLa Kyoto cells expressing His10LaminA and H2BSNAPf were simultaneously labelled with trisNTAAlexa488, benzyl guanine (BG)Alexa647

and antibodies against tubulin, as well as the lysosomal protein lysosomal-associated membrane protein 1 (LAMP1). Scale bars, 5mm (b,e), 50mm (c).
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compared with squeezing (Supplementary Figs 7 and 11).
Collectively, nanomolar delivery of trisNTAf fully realized the
potential of in-cell protein manipulation with minimal pertur-
bation and modification rates exceeding common approaches.

After successful in-cell labelling of different His-tagged
proteins, we aimed for in vivo multiplexed labelling by
combining trisNTAf with well-established labelling methods. By
trisNTAAlexa647 delivery via squeezing and subsequent
SNAPf-tag labelling, we achieved specific and distinct targeting
of His10LaminA in the presence of two different SNAPf-tagged
proteins in live cells (Fig. 3a and Supplementary Fig. 17). Hence,
trisNTAf complements the toolbox for in vivo multiplexed
labelling, offering minimal disturbance due to its small size and
simultaneously using low nanomolar concentrations.

We next determined the minimal reporter concentration
required for specific live-cell labelling. Well-resolved images of
TAP1mVenus-His10 were obtained even at 1 nM of trisNTAAlexa647

(Fig. 3b). Based on previous observations, approximately one-third
of the cargo provided during squeezing is the effective intracellular
concentration14. Thus, the estimated cytosolic concentration of
trisNTAf further corroborates the high target sensitivity at
subnanomolar concentrations (B300 pM). These results are in
line with the detection limit of B200 pM trisNTAAlexa647 in
chemically arrested cells (Supplementary Fig. 2). Hence, this
enables the precise adjustment of the effective, intracellular
trisNTAf concentration to improve the signal-to-background
ratio, hardly realized by alternative approaches at nanomolar
probe concentrations (for example, CPPs, SNAP, CLIP and Halo
tag; Supplementary Figs 4 and 9)3,4,6,18, and circumvents endocytic
uptake observed with supercharged proteins at similar nanomolar
concentrations (Supplementary Fig. 8)19.

In-cell protein modification with nanometre precision. Incited
by this observation, we aimed at temporal and spatial control of

protein tracing by light, which depends on low probe
concentrations for high signal-to-background ratios. Using
photoactivatable trisNTAf (PA-trisNTAATTO565)20 for dynamic
cellular imaging on demand, light-activated in vivo labelling of
His10-mEGFPLamin A was demonstrated up to 24 h after squeezing
(Fig. 3c). Notably, already a 10-s 405-nm light pulse sufficiently
activated PA-trisNTA at single-cell level and led to excellent co-
localization in a dose-adapted manner. This probe enables in situ
labelling at defined time points such as certain mitotic phases and
paves the way for live-cell protein tracing with high temporal
resolution. The nanomolar concentrations (r10 nM) and in
particular the small size of the tag and probe are especially
beneficial for advanced microscopy techniques, bringing the
fluorophore in 1-nm proximity to the target protein. Hence, we
performed live-cell super-resolution microscopy with
trisNTAATTO655 on His10-mEGFPLamin A-transfected cells.
Using direct stochastic optical reconstruction microscopy
(dSTORM)21, Lamin A structures with a high signal-to-noise
ratio were obtained in the super-resolved images of live cells. A
localization precision of 16.4±3.1 nm was achieved, resulting in a
resolution of 40 nm by in-cell trisNTAATTO655 tracing with
substantially increased resolution compared with diffraction-
limited fluorescence microscopy (Fig. 3d).

Discussion
We established a high-throughput method for protein labelling
inside living cells using a minimalistic lock-and-key probe. Our
method is versatile in the choice of the molecular probe, cell type
and the subcellular localization of the POIs, a persistent challenge
in live-cell analysis. The high-affinity trisNTA/His tag interaction
pair enables fast labelling (r10 min) at subnanomolar
concentrations with tunable labelling density and flexibility of
cell-impermeable organic fluorophores. Compared with
carrier-mediated transport by CPPs11,18, delivery of 1,000-fold
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Figure 2 | Live-cell labelling of protein assemblies in distinct subcellular compartments. (a) Delivery of trisNTAf into living cells by microfluidic cell

squeezing. Cells are pressed through micrometre constrictions of a microfluidic device, to introduce trisNTAf (bottom). Cell passage causes the formation

of transient holes in the plasma membrane and enables trisNTAf transfer into the cytosol. His-tagged POI (grey) is specifically labelled by fluorophore-

conjugated trisNTA (trisNTAf, top), resulting in co-localization at the respective subcellular compartment. (b) High-throughput in-cell labelling of

TAP1mVenus-His10-transfected HeLa cells by trisNTAAlexa647 imaged 10 min after squeezing by CLSM. (c) Flow cytometry analysis of His10-mEGFPLamin A-

transfected HeLa Kyoto cells, after transduction with 100 nM of trisNTAATTO565. Fluorescence intensity profiles of mEGFP and ATTO565 revealed that 20%

of all cells were double positive for the His-tagged POI and trisNTAf. The error bars indicate the s.d. of three experimental replicates. (d) Specific labelling of

His-tagged proteins in living cells at diverse subcellular localizations. trisNTAAlexa647 was delivered to cells and transfected with TAP1mVenus-His10 (HeLa),
His10-mEGFPLamin A (Chinese hamster ovary (CHO-K1)) or H2BmVenus-His10 (HEK293) by squeezing. High target specificity of trisNTAAlexa647

is represented by excellent co-localization with the POIs (merge). Determined Pearson’s coefficients range from 0.81 to 0.93. Images were taken by CLSM

10 min (b) or 1 h (d) after squeezing. Dashed lines indicate the cell border. Scale bars, 50mm (b), 5 mm (d).
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lower concentrations (nM versus mM) effectively decreases the
fluorescence background. Furthermore, high-throughput analysis
with up to 1,000,000 cells per second can be achieved in contrast
to microinjection. In addition, trisNTAf delivery via squeezing
avoids endocytic cargo uptake, frequently observed with low CPP
concentrations and supercharged molecules, offering decreased
toxicity and a 430-fold higher efficiency compared with
electroporation. The minimal probe complements the toolbox
of well-established labelling techniques such as self-labelling
enzymes and can be combined with the latter to achieve distinct
labelling of different proteins in fixed as well as in living cells.
Moreover, in situ photoactivation of PA-trisNTA allows labelling
at defined time points, to trace proteins for dynamic cellular
imaging. The achieved close target proximity of the labelling pair
substantially improved the localization accuracy in live-cell super-
resolution microscopy. Remarkable aspects of our approach are
the speed, flexibility and efficiency for high-throughput live-cell
targeting of proteins even if assembled in stable and transient
macromolecular complexes. This study is exploited via one of the
smallest high-affinity lock-and-key recognition pairs known so
far and allows even multiple cargos to be delivered
simultaneously, displaying diverse chemical properties. The
quantity of cargo for in-cell manipulation can be precisely
tuned and the biological output can in turn be fine-tuned. As the
affinity tag is widely used in life sciences and our delivery
platform is broadly applicable across cell types, this live-cell
labelling method could potentially be implemented across
numerous cell-impermeable probes and prodrugs, as well as

translated to difficult cell lines including patient-derived cells and
embryonic stem cells, providing the opportunity to use these cells
for advanced microscopy techniques and live-cell analysis.

Methods
Plasmid construction. The H2B construct H2BmVenus-His10 was generated by
consecutive insertion of H2B and mVenus-His10 into pCDNA3.1(þ ) (Life
Technologies). mVenus-His10 was PCR amplified using Phusion High-Fidelity
DNA Polymerase (Fermentas) and the primer pair forward (fw) 50-GCGCGC
GCGGCCGCGTGAGCAAGGGCGAGGAGCTGTTCA-30 (NotI restriction
site underlined) and reverse (rev) 50-GCGCGCTCTAGATTAGTGATGGTGGT
GATGATGATG-30 (XbaI restriction site underlined), and cloned into the
pCDNA3.1(þ ) plasmid using the indicated restriction enzymes (Fermentas).
Subsequently, H2B was amplified using the primer pair fw 50-GCGCGCGGTA
CCATGCCAGAGCCAGCGAAGTCTGCTCCCGC-30 (Acc65I restriction site
underlined, start codon bold) and rev 50-GCGCGCGCGGCCGCTCTTGG
AGCTGGTGTACTTAGTGAC-30 (NotI restriction site underlined), and cloned
into the pCDNA3.1(þ ) plasmid, amino terminally of mVenus-His10. As a
template for the amplification of H2B, the plasmid pEGFP-N1 containing the
human H2B sequence (plasmid 11680, Addgene) was used, which also served as
control for the specificity of trisNTAf for His-tagged POIs in living cells
(Supplementary Figs 5 and 13). The plasmid encoding for human Lamin A was
generously provided by Dr Sascha Neumann (Institute of Biochemistry, University
of Cologne)22 and used as template to amplify Lamin A with the primer pair fw
50-GCGCGCCTCGAGCTATGGAGACCCCGTCCCAGCGGCGCGCCACCC
G-30 (XhoI restriction site underlined) and rev 50-GCGCGCGATATCTTACA
TGATGCTGCAGTTCTGGGGGCTCTGGG-30 (EcoRV restriction site
underlined, stop codon bold). Lamin A was inserted into the pcDXC3GMS plasmid
(Addgene) already containing His10-mEGFP, leading to the fusion gene encoding
for His10–mEGFPLamin A. To generate the plasmid containing His10Lamin A
without a fluorescent protein, Lamin A was amplified via PCR, simultaneously
introducing a His10-tag with the primer pair fw 50-GCGCGCGGATCCACCATGC
ACCATCATCATCATCATCACCACCATCACTCCGGACTCAGATCTCGAGT
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Figure 3 | Light-triggered live-cell labelling and super-resolution microscopy of protein assemblies. (a) Combination of trisNTA labelling with SNAPf-tag

labelling in living cells. HeLa Kyoto cells co-expressing His10LaminA and H2B-SNAPf were squeezed in the presence of 100 nM trisNTAAlexa647 (magenta)

and subsequently incubated with cell-permeable TMR-Star (red) for SNAPf-tag labelling. Confocal images were taken 1 h after squeezing and demonstrate

simultaneous specific labelling of the His-tagged LaminA and the SNAPf-tagged H2B. (b) trisNTAAlexa647 concentration scan for tunable labelling of

TAP1mVenus-His10 in HeLa Kyoto cells. High labelling density was obtained even at 1 nM trisNTAAlexa647 during squeezing. (c) Light-activated labelling of
His10-mEGFPLamin A with PA-trisNTAATTO565 in living HeLa Kyoto cells. Before photoactivation, no decoration of Lamin A was observed 24 h after

squeezing (top), whereas on illumination fluorescence increase and specific labelling were monitored (bottom). (d) Reconstructed dSTORM image

of His10-mEGFPLamin A labelled with trisNTAATTO655 (100 nM) in a living HeLa Kyoto cell. Increased spatial resolution (r40 nm) was obtained in live-cell

super-resolution imaging of trisNTAATTO655 by dSTORM (left and magnification right) compared with the wide-field image (left corner, bottom). Images

were taken by CLSM (a–c) or dSTORM (d) 1 h (a,b,d) or 24 h (c) after squeezing. Dashed lines indicate the cell border. Scale bars, 5 mm (a,b), 10mm

(c) and 2 mm (d).
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CATGGAGACCC-30 (BamHI restriction site underlined, start codon bold,
His10-tag italic) and rev 50-GCGCGCGCGGCCGCTTACATGATGCTGC
AGTTCTGGGGGCTCTGGG-30 (NotI restriction site underlined, stop codon
bold). Indicated restriction sites were used to insert this PCR product into
the pCDNA3.1 (þ ) vector. The pSNAPf-H2B and pSNAPf-Cox8A plasmids
(New England Biolabs) were used for SNAPf-tag labelling. In addition, a
plasmid coding for the core domain of TAP1, tagged with mVenus-His10

(TAP1mVenus-His10) was used as previously described23.

Cell culture and transfection. HeLa cells, HeLa Kyoto cells, Chinese hamster
ovary (CHO-K1) cells and human embryonic kidney 293 cells were maintained in
DMEM medium with 4.5 g l� 1 glucose (Gibco), supplied with 10% (v/v) FCS
(Gibco) in T75 cell culture flasks (Greiner). Every 2–3 days, cells were passaged
using PBS (Sigma-Aldrich) and 0.5% trypsin/0.02% EDTA/PBS (GE Healthcare).
All cell lines were cultivated in a humidified tissue culture incubator at 37 �C and
5% CO2. Mycoplasma contamination tests were carried out regularly, following the
guidelines described24. Transient transfection was performed with Lipofectamine
2000 (Life Technologies), following the manufacturer’s instructions. For fixation
and staining, 2� 104 cells per well were seeded into eight wells on cover glass II
slides (Sarstedt) and transfected with 0.2 mg DNA per well. For squeezing
experiments, 8� 105 cells were seeded into six-well cell culture plates (Greiner)
and transfected with 2 mg DNA per well. After transfection, cells were incubated
12–48 h at 37 �C and 5% CO2 until experiments were performed.

Cell viability test. To analyse cell viability after squeezing, the Sytox Blue Dead
Cell stain (Life Technologies) was used to stain cells with a permeable plasma
membrane. Cells were squeezed in the presence of 100 nM trisNTAAlexa647, 100 nM
Alexa647 dye or 500 nM NiCl2, followed by incubation with 1 mM of Sytox Blue
Dead Cell Stain (20 min, room temperature (RT)) at different time points.
Cell viability analysis was performed using the Attune flow cytometer (Life
Technologies) and data were processed using FlowJo 7.6.5 (Tree Star Inc.).
Before detaching the cells, the supernatant was collected to avoid altering the
results by removing dead cells during washing. Identical Sytox Blue Dead Cell
Staining was conducted with cells after electroporation (described above), followed
by flow cytometry analysis of cell viability and uptake of trisNTAATTO565. All
experiments were performed in triplicates and error bars indicate the s.d.

Confocal imaging. Imaging was performed using the confocal laser scanning
TCS SP5 microscope (Leica) and a Plan-Appochromat 63� 1.4 Oil differential
interference contrast objective. Images were acquired sequentially to avoid
cross-talk. The following laser lines were used for excitation: 405 nm (diode laser)
for 4,6-diamidino-2-phenylindole, Hoechst and Sytox Blue Dead Cell Stain; 488 nm
(argon laser) for monomeric enhanced green fluorescent protein (mEGFP),
Alexa488, MitoTrackerGreen and Syto16; 488 or 514 nm (argon laser) for mVenus;
565 nm (diode-pumped solid-state laser) for ATTO565 and TMR-Star; and 633 nm
(helium-neon laser) for ATTO647N, Alexa647 and ATTO655. For image analysis,
ImageJ25 was used in combination with Fiji26.

Super-resolution imaging. A custom-built microscope was used for
super-resolution imaging of trisNTAATTO655-labelled His10-mEGFPLamin A27.
Samples were illuminated with 488 nm (Sapphire 488 LP, Coherent) and 643 nm
(iBeam smart, Toptica Photonics) laser beams in total internal reflection
fluorescence mode. The excitation light was focused on the back focal plane of a
100� oil objective (PLAPO 100� , total internal reflection fluorescence mode,
numerical aperture 1.45, Olympus) mounted on an inverted microscope (Olympus
IX71). The emission was recorded using an electron multiplying charge-coupled
device camera (Ixon3, Andor) with frame-transfer mode, 5.1� pre-amplifier gain
and electron multiplying (EM) gain set to 200. For every sample, 40,000 images
were recorded at a frame rate of 33 Hz and image reconstruction was performed
with rapidSTORM28. The localization (sloc) precision of the dSTORM images was
calculated to 16.4±3.1 nm and a resolution of r40 nm (for dSTORM image see
Fig. 3d). Calculations were performed according to Mortensen et al.29

Fixation and trisNTAf labelling. Before fixation, cells were washed with PBS
(Sigma-Aldrich). Fixation with 4% formaldehyde (Roth)/PBS for 15 min at RT
was followed by quenching using 50 mM glycine/PBS (10 min, RT; Roth) and
permeabilization with 0.1% Triton X-100/PBS (10 min, RT; Roth). After blocking
with 5% (w/v) BSA (Albumin Fraction V, Roth) in PBS (1 h, RT), cells were stained
with 100 nM of trisNTAf in 1% (w/v) BSA/PBS. Cells were stained with
0.1 mg ml� 1 40 ,6-diamidino-2-phenylindole (Sigma-Aldrich) in 1% BSA/PBS for
30 min–1 h at RT. After washing with 5% BSA/PBS (3� ), cells were postfixed with
2% formaldehyde/PBS (15 min, RT) and stored in PBS until confocal imaging was
performed. When trisNTAf labelling was combined with antibody labelling,
100 nM trisNTA was applied together with the primary antibodies for 1 h at RT.
After subsequent washing with PBS, cells were incubated with secondary
antibodies. Antibodies were all diluted in 1% BSA/PBS as follows: rabbit a-tubulin
(Abcam, 1:350), mouse a-human CD107a (LAMP-1; Biolegend, 1:1,000), goat
a-rabbitCy3 (Abcam, 1:1,000) and goat a-mousePacificBlue (Life Technologies,

1:1,000). trisNTA was conjugated with the corresponding fluorescent dyes by
reacting amino-trisNTA with the N-hydroxysuccinimide (NHS)-activated dye,
respectively. After RP-C18 HPLC chromatography, the multivalent chelator head
was loaded with Ni2þ (10 mM NiCl2 in 20 mM HEPES, pH 7.0) and purified by
anion exchange chromatography (HiTrap Q HP; GE Healthcare)11.

SNAPf-tag labelling in fixed cells. HeLa Kyoto cells transfected with H2BSNAPf

were labelled with O6-benzyl guanineAlexa647 (New England Biolabs) 24 h after
transfection. After washing with PBS, cells were fixed with 4% formaldehyde/PBS
(10 min, RT), washed twice with PBS and subsequently permeabilized using 0.1%
Triton X-100/PBS (10 min, RT). Cells were washed three times with 0.5% BSA/PBS
and incubated with 10 or 100 nM of benzyl guanineAlexa647 for 30 min at 37 �C.
After three washing steps with 0.1% Triton X-100/0.5% BSA/PBS and two washing
steps with PBS, imaging was conducted by CLSM. In case of combined trisNTAf-
and SNAPf-tag labelling, SNAPf-tag labelling was performed first, followed by
trisNTAf labelling as described above.

trisNTAf delivery via cell squeezing. Squeezing was performed using a chip with
constrictions of 7 mm in diameter and 10mm in length (CellSqueeze 10-(7)x1,
SQZbiotech), if not otherwise stated. In all microfluidic experiments, a cell density
of 1.5� 106 cells per ml in 10% (v/v) FCS/PBS were squeezed through the chip at a
pressure of 30 psi. Transduction was conducted at 4 �C, to block cargo uptake by
endocytosis. During squeezing, the following cargo concentrations were used:
0.1–100 nM of trisNTAf (f¼ATTO565, ATTO647N, Alexa647 or ATTO655),
200 nM of PA-trisNTAATTO565 and 100 nM of free Alexa647 (Molecular Probes).
After squeezing, cells were incubated for 5 min at 4 �C, to reseal the plasma
membrane15. Squeezed cells were washed with DMEM containing 10% FCS and
10 mM histidine (Sigma-Aldrich), to remove unspecifically bound trisNTAf from
the cell surface, seeded into eight wells on cover glass II slides (Sarstedt) in DMEM
containing 10% FCS and cultured at 37 �C and 5% CO2. Confocal imaging was
performed at different time points (0.25, 0.5, 1, 2 and 24 h) after squeezing. As a
control for endosomal uptake, cells were incubated with 100 nM of trisNTAf at RT
and 4 �C without microfluidic cell manipulation (Supplementary Fig. 10). In case of
combined trisNTAf and SNAPf-tag labelling, cells were first squeezed in the
presence of 100 nM trisNTAAlexa647 and 3 mM SNAP-Cell TMR-Star (New England
Biolabs) was added 5 min after squeezing. After 15 min incubation at 37 �C and 5%
CO2, cells were washed with 10% FCS/DMEM and incubated again 30 min under
standard cell culture conditions before CLSM imaging was performed. To visualize
mitochondria in case of Cox8ASNAPf labelling MitoTrackerAlexa488 was added
10 min prior imaging.

trisNTAf delivery by the CPP Tat49–57. TAPmVenus-His10-transfected HeLa Kyoto
cells were incubated with different concentrations (10mM and 100, 10 and 1 nM) of
a non-covalent complex composed of Tat49–57

His6 and trisNTAAlexa647 for 30 min.
After washing with 10% FCS/DMEM and PBS at 37 �C, trisNTA uptake and
labelling of His10-tagged TAP was analysed by live-cell imaging via CLSM11.

trisNTAf delivery via supercharged GFP (GFP36þ ). trisNTAATTO565 (100 nM)
and His6GFP36þ (100 nM) were incubated for 30 min at RT to form the trisNTA-
His tag complex. HeLa cells were washed with PBS and treated with the pre-formed
complex at 37 �C. In vivo uptake was immediately followed by CLSM. After 20 min,
cells were washed three times with PBS and 20 U ml� 1 heparin/PBS (2� ), to
remove the complex from the plasma membrane. Internalization of trisNTA/
His6GFP36þ was analysed by CLSM after washing three times with PBS.
His6GFP36þ was expressed in BL21(DE3) Escherichia coli. After lysis by sonication
in 2 M NaCl/PBS, His6GFP36þ proteins were purified via immobilized metal ion
affinity chromatography using Ni Sepharose 6 Fast Flow (GE Healthcare). Elusion
was performed with 500 mM imidazole before desalting of the eluted protein was
conducted with PD-10 desalting columns (GE Healthcare)19.

trisNTAf delivery via electroporation. Trypsinized HeLa Kyoto cells were per-
meabilized via electroporation in the presence of trisNTAATTO565 (100 nM) with a
Nucleofector Device (Lonza) using Nucleofector Kit V and program I-013.
Transduced cells were washed with 10% FCS/DMEM and plated into eight-well
cover glass II slides. To quantify trisNTAf uptake, flow cytometry analysis
(as described above) and CLSM imaging was performed 1 h after electroporation.
Before CLSM imaging, transduced HeLa cells were incubated with Sytox Blue Dead
Cell Stain or Syto16 (Life Technologies) live cell stain, to distinguish between dead
and live cells. Cell viability was analysed by flow cytometry using Sytox Blue Dead
Cell Stain (see above).

Photoactivation of PA-trisNTAf. HeLa Kyoto cells, transfected with His10-mEGFP

Lamin A, were squeezed in the presence of PA-trisNTAATTO565 (200 nM)20 and
incubated at 37 �C and 5% CO2. Imaging via CLSM and photoactivation was
conducted 2 or 24 h after squeezing, after cells reattached to the glass surface. PA-
trisNTAATTO565 was photoactivated in single cells by illumination with the 405-nm
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laser for 10 s. Imaging of both channels (mEGFP and ATTO565) was performed
before and directly after photoactivation.
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SLAP: small labeling pair for single-molecule super-resolution imaging. Angew.
Chem. Int. Ed. Engl. 54, 10216–10219 (2015).

14. Sharei, A. et al. A vector-free microfluidic platform for intracellular delivery.
Proc. Natl Acad. Sci. USA 110, 2082–2087 (2013).

15. Sharei, A. et al. Plasma membrane recovery kinetics of a microfluidic
intracellular delivery platform. Integr. Biol. (Camb) 6, 470–475 (2014).
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