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ABSTRACT

Cancer is a Darwinian evolutionary process in which rounds of mutation and selection
lead to increasingly fit clones. Understanding how cancers evolve and in particular how
they form lethal metastases is critical to informing the design of new therapies. In the first
part of this thesis, we performed whole-exome sequencing of paired endometrial cancer
primaries and metastases to explore how tumors sample the genetic landscape. We find
that mutations of PTEN, and TP53 occur early in the evolution of endometrial cancers,
whereas BAF complex alterations occur late. We identified novel recurrent alterations in
primary tumors, including mutations in the estrogen receptor cofactor NRIPJ in 12% of
patients. Phylogenetic analyses in cases with multiple metastases indicated these
metastases typically arose from one lineage of the primary tumor. We observed subclones
within the sequenced part of the primary tumor that seeded metastases. We document
extensive heterogeneity and genomic disruption across the various clinical stages in
endometrial cancers. In the second part of this thesis we explore how the widespread
genomic disruption observed in tumors can generate therapeutic opportunities. We use
data from genome-scale shRNA screens to perform an unbiased analysis of all copy-
number: gene dependency interactions. We identify a class of interactions called
CYCLOPS interactions in which genomic loss of essential genes sensitizes cancer cells to
their further suppression. We explore the properties of CYCLOPS genes and show that
the splicing factor SF3B1 is one of them. Biochemical analyses showed that cancer cells
harboring hemizygous loss of SF3BI lack a buffer of SF3BI present in cells whose
SF3B I locus is intact. These data provide evidence for the utility of developing non-
oncogene targeted therapies as a means of advancing cancer therapeutics.
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Chapter 1: Introduction

Cancer is fundamentally a loss of tissue organization. During development,

individual cells must coordinate their growth and death to allow for the proper

macroscopic organization required to create a functioning multicellular organism. In

cancer, a single rogue cell and its descendants "forget" their role in tissue organization

and grow uncontrolled. Eventually, these cells destroy tissue structures and compromise

physiologic processes to cause the death of the entire organism.

1. Cancer as a disease of the genome

There are 14.2 million new cases and 8.2 million deaths due to cancer in the

United States each year'. The proportion of deaths due to cancer has increased steadily as

life expectancy has increased. While environmental exposures are linked to the

development of cancers, many cancers may not be preventable. As humans defeat many

of the diseases of the past, cancer looms as an inexorable probabilistic threat to all

humans. These trends suggest that defining the ways in which cancer develops and

investigating novel vulnerabilities will continue to benefit humans for the foreseeable

future.

Cancers evolve from normal tissues through a multi-step process of mutation and

selection. Hippocrates proposed that the body was composed of four fluids: black bile,

yellow bile, blood and phlegm. For 1300 years since Hippocrates, the world believed that

an excess of one of these humors, black bile, caused cancer. This humoral theory

persisted until Stahl and Hoffman proposed that another liquid, "lymph" this time, was

the cause of cancer. They proposed that cancer consisted of degenerating lymph that had

fermented in parts of the body. Even the father of surgical oncology, John Hunter agreed
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that cancers arose from contaminated lymph. He reasoned that surgical resection of

tumors did not cure patients because the cancerous fluid would always seep back into the

wound like sap in a tree. Finally, in 1838, Johannes MUller showed that cancers are

derived from normal cells, not fluid.

By the mid nineteenth century, scientists agreed that cancers are composed of

cells from the host, but it was not clear whether they arose spontaneously or due to

foreign influence. William Russell provided evidence in 1890 that unidentified

intracellular organisms were found ubiquitously in cancerous tissues2. Today's

pathologists believe that these "Russell bodies" represent accumulated

immunoglobulins 3. In 1926, Glover reported the isolation of a pleomorphic bacterium

from a wide variety of cancers, in a work that was later refuted. Throughout the 1950s

Livingston reported on the isolation of a similar universal cancer bacterium4 , although

this work was also discredited. Finally, in 1984 Warren and Marshall reported on a spiral-

shaped bacterium, 1-elicobacter Pylori, in the majority of patients with gastric ulcers5.

The gastric ulcers in these patients often transformed into malignant cancers. Warren and

Marshall received the Nobel Prize for establishing the first causal link between infection

with a bacterium and cancer. By the time of Warren and Marshall's report, a separate line

of investigation had clearly established that infection with viruses could aid in

transforming normal human cells into cancer cells 6'7 . Recent studies have revisited the

microbe hypothesis with new genetic tools8 to establish novel associations between

certain cancer types and microbial species9.
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While in rare cases, infectious agents can cause cancer, tumors principally arise

due to somatic alterations to the genome. In 1975, scientists had established three

tantalizing associations with the development of cancer: infection with certain viruses'0 ,

family history of cancer and exposure to mutagens"' . It was only in 1976 that Stehelin,

Bishop and Varmus showed that somatic mutation of oncogenes was the dominant cause

13of cancers, thereby synthesizing these findings

Next, scientists established that tumorigenesis is a multistep process. In 1985,

Vogelstein and colleagues showed that cancers are born from a single lineage in the host

(ie that cancer cells have a monoclonal origin)'. In 1988, Vogelstein and colleagues

demonstrated that colonic polyps (early cancers) contained only some of the oncogenic

lesions found in mature colon cancers'5. These observations suggested that mature tumors

require additional genetic "hits" beyond those that are required to form benign tumors.

Several other lines of evidence indicated that mature tumors are derived from benign

tumors. Pathologists had long observed tumors in various "stages" at the time of biopsy.

This phenomenon was observed separately in histologic examination of colonic polyps

and tumors, as well as benign nevi, malignant and metastatic melanoma biopsies'6 .

Together, these observations indicated that the majority of cancers are born from

a single lineage of cells whose genes have been altered to promote cellular growth. Since

Vogelstein's demonstration of step-wise genetic evolution from pre-malignancy to frank

carcinomas, scientists have studied the evolution of cancers in hopes that deciphering

these patterns may help aid in the design and selection of therapeutics. A picture of

primary cancer evolution has emerged that is both rule-based and bewilderingly complex.
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If cancers arise through alterations to genes, several questions are salient: (i) What

processes typically lead to the alteration of genes in cancer? (ii) Which pathways are the

protein products of these genes typically involved in? and (iii) To what extent do all cells

in the same tumor share the same gene alterations?

2. Alterations in cancer genomes

A primary focus of cancer research has aimed at identifying the ways in which

cancer cells disrupt the genes they carry to promote cellular growth. In some cancers such

as melanoma and lung cancers, the dominant genomic lesion is point mutation. The

sources of these mutations, ultraviolet-induced pyrimidine dimers and smoking

associated formation of DNA-adducts respectively have been well appreciated for

decades'. Other environmental associations with mutagenesis, such as exposure to

aflatoxin are well-established but collectively cannot explain the diversity of mutational

signatures present in human tumors. Early evidence that cancer could be caused by

mutations in genes responsible for the fidelity of DNA replications came from the study

of families with predisposition to colorectal cancer. Mutations in DNA mismatch repair

enzymes (MSH2'", MLH1 9 and AS1H6 0 ) were found in the majority of families with

Lynch syndrome. The tumors of these patients typically exhibited microsatellite

instability (MSI), a consequence of the lost ability to repair DNA mismatches occurring

during replication.

Systematic analyses of mutational signatures in cancer have recently highlighted

several new sources of point mutation. One recent survey identified more than 20

different mutational signatures active in human tumors. Mutations of the epsilon

subunit of DNA polymerase cause a tremendous number of mutations in a subset of
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endometrial and colorectal- cancers. Overactivity of the APOBEC family of cytidine

deaminases is associated with a mutational signature present in 14.4% of cancers 2" 4 2 5 .

The APOBEC signature occurs across diverse cancer types including breast, bladder, and

cervical cancers. One mutational signature describes the location rather than the

nucleotide context of mutations. Hundreds to thousands of mutations are sometimes

found on the same strand in very close proximity, a phenomenon called "kataegis". The

majority of identified mutational signatures remain unexplained.

The predominant genomic lesion in other cancers is structural alterations to the

genome, caused by genomic rearrangements. A subset of these rearrangements cause

somatic copy number alterations (SCNAs). Some cancers are caused by a limited number

of genomic rearrangements. The best known of these, perhaps is the BCR-ABL

translocation that defines Chronic Myelogenous Leukemia genomes 26. More recently,

widespread structural rearrangements resulting from a single chromosomal shattering

were demonstrated in a phenomenon called chromothripsis 27 . A structural analogue to

kataegis called "chromoplexy" occurs in prostate cancers whereby multiple

rearrangements across chromosomes occur in a single event 28 .

Other cancer genomes exhibit gain or loss of genomic material encoding genes

whose protein products affect the growth or survival of cancer cells. These somatic copy

number alterations (SCNAs) are the predominant means of genomic disruption in some

cancers, particularly those with low rates of mutation29 . For instance, TP53 mutant

ovarian tumors (96%) typically carry few other mutations in recurrently mutated genes,

but have an average of 12.3 focal SCNAs involving recurrently altered regions. Some

of the genes most frequently involved in SCNAs have become the targets of effective
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therapeutics . Because a single SCNA may affect many genes, deciphering the

selective forces that generate SCNAs at a given locus beyond the background rate

requires the study of many cancer genomes. This remains an active area of research.

Further study of the structural alterations to genomes will likely reveal many more

therapeutically tractable vulnerabilities.

Cancer cells may still evolve methods of altering gene function without altering

their DNA content. Alterations to the epigenome are common across cancers and make

up the majority of heritable alterations in some cancer types. One exciting early report

suggested that hypomethylation of oncogene promoters was found specifically in cancer

tissues3 3 . Other laboratories did not replicate these findings. Instead, cancer epigenomes

tend to display global hypermethylation. Hypermethylation of tumor suppressor

promoters was first documented in 1989 in the retinoblastoma gene 4 . Recently, one of

the mechanisms that can cause the CpG Island Hypermethylator Phenotype (CIMP) was

demonstrated to be mutation of the enzyme IDH13 . The mutated IDHJ produces an

oncometabolite 2-HG, which itself is sufficient to establish CIMP. Instead of altering

their methylation profiles, cancer cells may modify the function of their chromatin to

drive oncogenic gene expression profiles. The most striking example of driver alterations

in chromatin remodeling comes from pediatric rhabdoid tumors, in which 100% of cases

exhibit mutation of SMARCB1, a member of the BAF chromatin-remodeling complex.

Genes encoding components of the chromatin themselves are recurrently mutated in

cancer; mutations in the gene encoding Histone H3.3 occur in one third of pediatric

36glioblastomaS"
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3. Evolution in primary cancers

Both the sets of genomic disruption and the pathways altered in the formation of

primary tumors are diverse. Few cancers are acutely fatal, but in the absence of

intervention, most will eventually evolve to kill their host. Whether facing therapy-driven

selective pressures or competition within a nutrient-limited microenvironment, cancer

cells frequently continue to evolve after the final selective sweep preceding initial

transformation. The latency between presentation and lethality, and the changes therein

present a possible window for understanding and intervention. Understanding how

cancers progress from small, germinal neoplasms to lethal tumors is critical to decreasing

the morbidity and mortality caused by cancer.

Cancer cells continue to evolve past the final selective sweep even in the absence

of selective pressures. The tendency for cancers to evolve was observed clinically long

before the tools to systematically assess evolution became available. In 1928, Maurice

Richter described a case in which a 46 year old shipping clerk presented with a "chronic

lymphatic leukemia [and] subsequently developed a rapidly growing, malignant tumor

arising from reticular and reticuloendothelial cells of the lymphoid tissues". The now

eponymous Richter's syndrome occurs in 5% of Chronic Lymphocytic Leukemia (CLL)

patients 37, and describes the rapid transformation of CLL to Diffuse Large B-cell

Lymphoma (DLBCL). Similarly, clinicians have long known that myelodysplastic

syndrome can convert to acute myeloid leukemia (AML)3 8 .

However, the evolution of cancers in the face of therapy-induced selective

pressures is even better documented. The first documented successes with chemotherapy

were quickly reversed when relapses invariably occurred&9. Response and resistance to
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therapy is a nearly universal theme in the treatment of cancer patients. Studies of the

mechanisms of resistance that cancers evolve can yield important information about the

design of therapies. For example, resistance develops in CML patients treated with

imatinib monotherapy. Sequencing the BCR-ABL gene in resistant samples revealed

frequent mutations in the ABL kinase domain40 . The structural insights from these

resistance mutations allowed for the design of second-line tyrosine-kinase inhibitors that

successfully inhibited 14 of 15 resistance mutations 41 . Resistance to the EGFR inhibitor

erlotinib is also frequently caused by point mutation. The T790M "gatekeeper" mutation

in EGFR blocks erlotinib binding, but two recent clinical trials of novel inhibitors

demonstrated remarkable success in treating T790M mutant cancers42 4 3*. Acquired

resistance to BRAF inhibition in melanoma has revealed alterations in the genes encoding

other members of the MAPK pathways such as MEK and ERK. Therapies that anticipate

these resistance mechanisms have improved outcomes for patients in clinical trials44.

All of these resistance mechanisms have illustrated mechanisms by which cancer

cells can allow for the continued flux of signals through the original oncogenic pathway

in the presence of targeted therapy. However, resistance to blockade of oncogenic

pathways by the activation of an entirely orthogonal pathway has been observed. One of

the most striking examples of this phenomenon occurs in BRAF mutant melanomas in

the face of MAPK blockade wherein amplification of the lineage specific transcription

factor MITF occurs in a subset of resistant clones5.

In a select few cases, the evolutionary trajectory of cancers has been characterized

even past the death of the original host. A recent study of canine transmissible venereal

tumor showed that complex cancer karyotypes remain stable over millennia of separate
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evolution46 . A recent genome-wide survey of several strains of the extensively passaged

HeLa cell line revealed a structurally stable genome as well4 7.

4. Evolution of metastasis

While understanding primary cancer evolution is important, metastases account

for approximately 90% of cancer mortality 48. Metastasis to distant organs requires that

tumor cells execute a complex set of actions termed "invasion-metastasis cascade". The

first step in this cascade requires that cancer cells break free of their attachment to

surrounding cancer and stromal cells. After the loss of adhesion, metastasis can occur by

hematogenous or lymphatic spread. In hematogenous spread, cancer cells must migrate to

and intravasate into a nearby blood vessel. The cells are then swept into the circulation

where they must continue to survive in the presence of new biophysical forces and the

absence of tissue attachment. The surviving cells may then extravasate out of the blood

vessel and into a new target site. Metastasis is complete when the tumor cells have

successfully invaded the foreign tissue and are able to continue to proliferate.

Metastasis of epithelial cancers starts with local invasion, wherein tumor cells are

able to migrate past the basement membrane. The basement membrane serves an

important barrier function in normal tissues, separating the luminal surface from the

deeper regions containing blood vessels and lymph nodes. Cancers cells often secrete

matrix metalloproteinases such as MMP-24 9 or MMP-9" to degrade this barrier, and

travel through either singly or in concert. In other cancers, tumor cells coopt adjacent

stromal cells into secreting matrix metalloproteinases on their behalf5 1,52. The dissolution

of the basement membrane allows cancer cells to pass an important physical barrier and
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to release growth factors sequestered in the extracellular matrix-'. The integrity of the

basement membrane is so important to restricting the growth of carcinoma cells from

their primary site that most pathologists will deem any hyperplastic growths that do not

breach the basement membrane benign. Indeed, colorectal tumors with loss of basement

membrane exhibited a far higher likelihood of metastasis in the five years following

surgical removal compared to colorectal tumors with intact basement membranes 4 .

After invading their surrounding stroma, cancer cells must intravasate into the

bloodstream. Intravasation is facilitated by pro-angiogenic programs that cancer cells

enact by secreting cytokines, or chemical signals, into the local environment. One of the

most widely studied cytokines released by cancer cells is vascular endothelial growth

factor (VEGF), which initiates the outgrowth of blood vessels to supply oxygen to the

growing tumor55 . This process is facilitated in part by the pro-antiogenic programs that

cancer cells enact. The vessels recruited to tumors often have a permissive or "leaky"

endothelium characterized by absence of pericyte coverage 56 . The proximity of

permissive blood vessels to the primary tumor encourages the hematogenous spread of

cells as they lose adhesion to the primary tumor.

Once cancer cells have entered the circulation, they encounter hydrodynamic

forces to which they are poorly accustomed. Experimental models have demonstrated an

increased probability of forming metastases when circulating tumor cells (CTCs) break

off from the primary as clumps of cells 57 or attract platelets to accompany them. The

lifetime of CTCs in the circulation is short; CTCs are often trapped in small diameter

capillaries (3-8 gm) due to their large (-20 pm) diameters and relatively inflexible

membranes compared to erythrocytes (-7 pn) 58. These observations suggest that after
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entering the venous circulation, most CTCs become lodged in the capillary bed of the

lungs within minutes, barely enough time for them to sense their loss of attachment to

surrounding cells.

Having landed at a distant site, cancer cells must extravasate from the vessel into

the foreign tissue. This process requires cancer cells to execute a complex set of

interactions with the adjacent endothelial cells and pericytes. Alternatively, cancer cells

may lodge in a capillary and continue to divide. The growth of a cluster of cancer cells

within the vessel lumen can disrupt the structural integrity of the surrounding vessel,

allowing cancer cells to physically break through the endothelial layer and push their way

into the stroma of the foreign tissue.

In order to become a clinically detectable metastasis, cancer cells that have

successfully invaded a foreign tissue must then found a colony of cells that continue to

proliferate. Several lines of investigation suggest that colonization is the most stringent

bottleneck for the formation of clinically detectable metastases. In one experiment, cells

that had taken up fluorescent nanoparticles were injected into the portal circulations of

mice59 . When the cells divided, the fluorescence intensity of the two daughter cells would

be halved. Examination of the mouse livers up to II weeks later revealed no metastatic

colonies, but many single cancer cells whose fluorescence intensity was unchanged from

the time of injection. When extracted from the livers and placed in a tissue culture dish,

these cells were able to proliferate once more. These data indicate that cancer cells that

have settled in a foreign tissue are rarely able to establish colonies, but often remain

dormant.
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Most human cancer cells remain dormant after metastatic dissemination. Because

carcinomas originating in epithelial tissues stain strongly with antibodies against

epithelial cytokeratins, they can be sensitively identified in otherwise uniformly

mesenchymal tissues such as the bone marrow. Indeed, approximately 30% of breast

cancer patients harbor hundreds of micrometastases in their bone marrow6 0 , yet less than

half of these women will develop clinically apparent metastases within six years of

diagnosis.

One strategy that allows cancer cells to accomplish many of the tasks in the

invasion-metastasis cascade may be the epithelial-to-mesenchymal transition (EMT).

During embryogenesis. cells within the developing embryo must transition into distinct

cell types, sometimes requiring an EMT. During gastrulation for instance, ectodennal

cells arrayed as sheets of epithelia must detach and migrate towards the center of the

61
embryo to spawn the mesoderm . In order to accomplish this feat, the epithelial cells of

the ectoderm must undergo an EMT.

Fundamentally, EMT requires the loss of epithelial markers and the expression of

mesenchymal markers. Principally, epithelial cells must lose E-Cadherin expression

when undergoing an EMT 62. E-Cadherin molecules from adjacent epithelial cells

normally bind to one another to link the cells together63 and sequester Beta-catenin

molecules at the plasma membrane. When E-cadherin is repressed, it is replaced by N-

cadherin6 4' 65, a cell-surface molecule expressed by mesenchymal cells that participates in

similar homophilic interactions 66 . The presence of N-Cadherin on the plasma therefore

increases the affinity of cancer cells for the surrounding stroma. Additionally, loss of E-
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Cadherin allows beta-catenin to translocate to the nucleus and activate growth signaling.

Indeed, tumor cells undergoing EMT exhibit high concentrations of nuclear beta-catenin.

EMT has been observed at the edges of tumors, where heterotypic interactions

with "reactive" stroma can induce the transition with growth factors such as TGF-

Beta 0,68. Xenografted human breast cancer cells in immunocompromised mice stain

positively with human-specific antibodies to the mesenchymal markers vimentin and

avP6 integrin specifically at the invading edge of the tumor69 . These experiments made

clear that mesenchymal cells observed at the tumor margins often represented cancer

cells themselves and not stromal cells.

Recent studies have demonstrated compelling evidence of EMT both in primary

tumors and in CTCs isolated from breast cancer patients. Yu et al. used RNA in-situ

hybridization assays to probe CTCs for expression of the 3 pooled mesenchymal markers

and 7 pooled epithelial markers7 0 . They were able to detect cancer cells that expressed

both mesenchymal and epithelial markers within primary breast tumors. They also found

that the proportion of cancer cells with mesenchymal expression patterns was greater in

CTCs compared to cells in the primary tumor. Interestingly, the proportion of CTCs with

predominantly mesenchymal transcripts varied in response to treatment. Further studies

are required to determine the prognostic information of mesenchymal markers in CTCs

and the biological underpinnings of mesenchymal changes in response to therapy.

Some of the most informative clues we have about the cellular physiology of

metastasis come from clinical experience. Cancers originating in certain tissues display

consistent biases in the tissues to which they eventually metastasize. This tissue tropism

was first described in 1889 by Piaget in a survey of the sites of breast cancer metastasis7
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Much of the observed tissue tropisms can be explained by anatomy. For example, two of

the most common sites of metastasis across all cancers are the lungs and the brain. A

simple explanation for this observation is that the pulmonary circulation offers the first

capillary bed in which cancer cells entering the venous circulation may become trapped.

Similarly, the prevalence of brain metastases can be explained the fact that the brain

receives approximately 25% of the blood flow in the body. However, other tissue

tropisms are more puzzling. Uveal melanoma for instance, almost always metastasizes to

the liver first 72 . The "seed and soil" hypothesis states that favorable interactions between

tumor cells, the "seeds", and certain foreign tissues, the "soil", are required for successful

metastatic colonization. These forces are collectively responsible for the tissue tropisms

we observe.

The requirements for a certain target tissue to be hospitable for a cancer cell are

still poorly defined. The observation that breast cancers rarely metastasize to the

contralateral breast73 indicates that stromal similarity to the primary organ is not the only

requirement of a fertile soil. One set of observations suggests that an inflamed stroma

provides an environment rich with growth factors that enable cancer cells to colonize.

During laparoscopic surgery, a port is inserted through the skin of the patient, creating a

small wound with local inflammation. Port site metastasis is a recognized complication of

these surgeries wherein cancer cells colonize the wound site74 . Similarly, a review of oral

metastases found that many occur after traumatic dental extractions at the site of the

extracted tooth 75. Together, these studies seem to indicate that inflammation produces an

environment that is hospitable for the proliferation of metastatic cancer cells.
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5. Genetic tools to study metastasis

One approach to studying metastasis is to compare the genetic features of tumors

that metastasize to those that do not. Two main study designs can help address this

question. The first such design entails surveying the genetic features of primary tumors in

a population of patients, and associating these features with the development of

metastasis 76 . Unfortunately, this type of study relies on the assumption that the genetic

features detected in the primary tumor faithfully represent the features of the clone that

gave rise to the metastasis. We now know that this assumption is often flawed. The

second study design in this framework entails studying the genomes of biopsies obtained

from metastases compared to biopsies of primary tumors that never metastasized, where

neither the metastasis nor the primary samples are from the same individual 77. This study

design is the only way to associate certain genetic lesions occurring in primary tumors

with the development of metastasis. It does not make the assumption that paired

primaries faithfully represent metastases, but does suffer from the same potential

confounders that can affect any epidemiologic study.

In contrast to the above study designs, the comparison of paired primary and

metastatic tumors offers a useful internal control in each case. The data from paired

tumors allows one to ask new questions such as: (i) What fraction of genetic alterations

are shared between paired primaries and metastases? (ii) Are certain genetic alterations

found uniquely and recurrently in metastases? (iii) Do all metastases typically descend

from one lineage of the cancer cells in the primary tumor?

One of the first genome-scale studies of paired metastases and primaries focused

on prostate cancer 78. Array cGH and SNP6.0 analyses were performed on multiple
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metastases from the same patient, and in some cases, on a biopsy of the paired primary.

The principle of clonal ordering was used to reconstruct phylogenetic trees' 9 . This

principle is based on fact that when a cancer cell acquires an alteration, all of its

descendants inherit this same alteration. Comparing the sets of shared alterations between

different tumor samples can therefore allow one to infer the ancestral structure of a set of

related cancer samples. In this study, all metastases from the same patient shared copy

number alterations, including common breakpoints. While primary prostate tumors are

often multifocal, meaning that they consist of independently arising cancers, the common

breakpoints identified in paired metastases indicated that all of the metastases derived

from one such independent cancer. Unfortunately, these copy number data alone were

unable to address the full spectrum of genetic alterations that exist uniquely in metastases

and was unable to assess whether metastases arise from a single lineage within a cancer

phylogeny. Since this study, other methods have been developed to reconstruct

phylogenetic trees from both allelic80 and total copy number data".

Two of the first genome-scale sequencing studies of paired metastases and

primaries focused on pancreatic cancer 2' 8 3. Vogelstein and colleagues sequenced the

exomes of seven pancreatic cancer metastases from seven patients (index lesions). At the

time, genome-wide sequencing of additional tumor biopsies from these patients was

prohibitively expensive. Therefore, the authors performed Sanger sequencing validation

of the mutations identified in the index lesions in other metastases, and in three cases,

various biopsies of the primary. An average of 64% of mutations identified in the index

metastasis were detected in all tumor biopsies surveyed from the same patient. Mutations
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in well-known driver genes such as TP53 and KRAS fell into this category of ubiquitous

mutations.

Campbell et al conducted a parallel study that used structural variations rather

than point mutations to draw phylogenetic trees. Whole genome sequencing of index

lesions was performed to identify somatic rearrangements. Polymerase chain reaction

assays were performed on other tumor biopsies to genotype them for all of the identified

rearrangements. Both studies identified organ-specific clades within the phylogenetic

tree, suggesting metastasis-to-metastasis spreading within a single foreign tissue.

By 2012, sequencing had become less expensive, enabling scientists to perform

whole exome sequencing on a larger number of samples. Gerlinger et al capitalized on

this advance, performing whole exome sequencing across multiple biopsies of two renal

cell carcinoma primary tumors and, in one patient, across multiple metastases 8 4 . Separate

biopsies of the primary tumor contained different alterations in driver genes of renal cell

carcinomas, including instances in which the same driver gene harbored different

mutations in different biopsies. Furthermore, all metastases descended from a single

branch of the phylogenetic tree, in which the ancestral clone had undergone whole

genome doubling. While not the first study of intratumoral heterogeneity in cancer, this

was the first unbiased sequencing survey of somatic alterations in all biopsies. Similar

studies of primary tumors followed, confirming the finding of intratumoral heterogeneity

consisting of branched evolution3 87 .

In parallel to the spatial genomic heterogeneity discovered in multi-region

sequencing studies, algorithmic advances were enabling the precise dissection of the

subclonal populations within tumor biopsies. The accurate detection of subclones within
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tumor biopsies requires determination of the purity of the biopsy, and allele specific copy

number at each genomic locus. One of the first algorithms to assemble this information

was the Allele Specific Copy number Analysis of Tumors (ASCAT) algorithm". The

original ASCAT algorithm was able to derive allele specific copy number values and

purity estimates from SNP array data, but did not include methods to quantify subclories

within these populations. The subsequent development of ABSOLUTE8 9 made several

improvements that allowed for the quantification of subclones. ABSOLUTE integrated

mutational allelic frequencies from sequencing data for more accurate estimation of

tumor purity in samples with few copy number alterations. These variant allelic

frequencies can be overlaid onto final estimates of purity and ploidy to estimate cancer

cell fraction (CCF) within a biopsy carrying said mutation. These CCF values can be

clustered to define subclonal populations of cancer cells within biopsies. Today, several

such algorithms exist to perform these tasks based on both mutation" and copy number

data91 . Application of these algorithms to deep genome sequencing data allows for

phylogenetic inference from a single tumor biopsy92 .

In 2015, the first evidence of tumor-self-seeding in humans was documented in

prostate cancer93 . A total of 51 biopsies from 10 patients with lethal metastatic prostate

cancer were obtained on autopsy. Whole genome sequencing was performed on all

biopsies. The authors used an n-dimensional Dirichlet process 92 ,94 to identify subclonal

populations of cancer cells in and across biopsies. This analysis demonstrated that

multiple subclones were shared across biopsies, a finding inconsistent with strictly

branched evolution from single seeding events.

24



Two technological advances have opened a new window into metastasis: (i) the

reliable capture of CTCs and (ii) the ability to sequence the DNA of single cells. CTCs

were first observed in the blood of a deceased patient by Ashworth in 1869 5. More than

130 years later, these cells were finally isolated in breast cancer patients, and their

presence was associated with poorer survival 96 . These cells are often isolated based on

their expression of the epithelial markers, such as cytokeratin 97 and EpCAM 98. Various

strategies for the isolation of CTCs have now been devised. In conjunction with advances

that have allowed for the sequence of DNA from single cells99 , studies of clones that have

completed some or all of the invasion-metastasis cascade have been performed. One

such study in prostate cancer revealed that collectively, circulating tumor cells contained

a set of mutations found in the metastasis that were not ubiquitously detected across

exome sequenced cores of the primary tumor. Unfortunately, current technologies rely on

whole genome amplification of DNA from single cells, and stochastic effects such as

allelic drop-out can confound the interpretation of such analyses' 00 . As such, the current

data are insufficient to address the question of whether CTCs represent a genetically

defined subpopulation of cancer cells from the primary tumor or are shed randomly from

all tumor sites.

6. Approaches to cancer therapy

The efficacy of medical treatments for cancer has long relied on nonselective

cytotoxicity. In 1896, a medical student named Emil Grubbe assembled the first X-ray

machine in Chicago and noticed the skin peeling off of his hand after it was exposed to

the machine's beam. He reasoned that if the beam could kill healthy cells, then perhaps it

could also kill cancer cells. Later that year, he used it to experimentally treat Rose Lee's
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breast cancer. Her tumor showed a dramatic response, heralding the birth of radiotherapy.

Toxic chemicals were the next modality to be employed in the treatment of cancer. Some

of the earliest chemotherapies, the alkylating agents, spawned from mustard gas used in

World War I. The grim history of these compounds reflects their toxicities. Radiotherapy

and cytotoxic chemotherapies have saved many lives, but their nonselective nature has

hastened the deaths of others and often left those who survive irreparably harmed. For

this reason, the focus of cancer treatment strategies now emphasizes therapies that

differentially impact normal cells and cancer cells.

Some of the most successful examples of cancer-selective agents are those whose

therapeutic window consists of organ-type specificity. For example, therapies that

influence the signaling of sex hormones have had an enormous impact on the treatment of

breast and prostate cancers. Tamoxifen binds to and inhibits the transcriptional activity of

the estrogen receptor and is now standard-of-care in estrogen-receptor positive breast

cancers. Similarly, androgen deprivation therapy has long been the first-line treatment for

prostate cancer. More recently, immunotherapeutic approaches have taken advantage of

some of the cell surface markers expressed specifically by the cell of origin of certain

cancers. One such therapy is Chimeric Antigen Receptor T-cell therapy (CAR-T). This

strategy infects autologous T-cells with an immune-stimulating receptor that binds to

CD 19, a cell surface receptor expressed on all mature B-cells, including those found in

chronic lymphocytic leukemia (CLL) and acute lymphocytic leukemia (ALL)'0 '03.

Vaccines against antigens expressed specifically by certain organs, such as

mammoglobin in breast tissue, are currently being developed'0 4 .
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A separate paradigm for cancer therapeutics consists of targeting oncogenic

alterations present in cancer cells that are absent in normal cells. This strategy therefore

offers a genetic therapeutic window. Therapeutics that interrupt these oncogene

addictions now exist, mostly consisting of either including small molecules that inhibit

aberrant tyrosine kinases or antibodies directed against overexpressed growth factor

receptors.

7. Synthetic lethal therapeutics in cancer

Experimental studies show that approximately five oncogenic alterations are

required to transform normal human cells into cancer cells 0 . Sequencing studies have

revealed similar estimates, confirming that in many tumors the number of oncogenic

driver alterations is small 0 6 . Unfortunately, many of the recurrent alterations in cancer

genomes are not amenable to inhibition by small molecules. Entire classes of driver

events, such as tumor suppressor loss and transcription factor amplification, are

"undruggable" with current technology. These two sets of facts suggest that many cancer

patients exist for whom the current paradigm of cancer drug discovery will offer no

targeted therapies.

However, one can imagine that many of these driver genetic alterations, or clonal

passenger alterations accompanying them, can cause unintended vulnerabilities in cancer

cells that are not shared with normal cells. In model organisms, when mutations in two

genes separately produce viable organisms, but when mutated together do not, the

interaction between the two genes is said to be one of synthetic lethality. This principle

was first proposed as a way of identifying therapeutic leads for cancer in 1997 by

Hartwell and colleagues'0 7. As proof of concept, Hartwell et al subjected 70 isogenic
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yeast strains with deletions in genes encoding proteins in the DNA repair pathway to

FDA-approved chemotherapeutics. They sought to identify genetic modulators of

sensitivity to each chemotherapeutic agent. Yeast strains deficient in proteins involved in

post-replication DNA repair were especially sensitive to cisplatin. These data provided

the first evidence that genetic mutations in cancer cells could predict heightened

sensitivity to compounds without targeting a mutated oncogene.

The most therapeutically successful synthetic lethal interaction discovered thus

far has been inhibition of the DNA single strand repair enzyme Poly-ADP-ribose

Polymerase (PARP) in BRCA-deficient cancers. Cells incur double strand breaks as a

result of exposure to ionizing radiation, but also at lower frequencies during each cell

division' 08. Normally, the BRCA proteins help to resolve these DNA double-strand

breaks as part of the homologous recombination pathway. As a result, germline mutations

in either BRCA1 or BRCA2 predispose towards the biallelic loss of these "caretaker"

genes and are associated with the development of breast and ovarian cancers'09. Indeed,

sporadic ovarian cancers also exhibit somatic mutations of either BRCA1 (3%) or BRCA2

(3%)1 10.

PARP is responsible for repairing single stranded breaks in DNA. When these

single stranded nicks go unrepaired, they cause stalled replication forks and cell death

ensues" '. In normal cells, BRCA can substitute for PARP to resolve these single

stranded breaks, thereby sparing nornal cells in the face of PARP inhibition. With these

pathways in mind, small molecule inhibitors of PARP have been developed" 2.

Preclinical models demonstrated remarkable sensitivity of BRCA deficient cancers to

PARP inhibitors' 13,114 . After early failures'""', these inhibitors have also enjoyed
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success in clinical trials" 7 . Resistance to PARP inhibitors occurs by reversion of BRCA

mutations ''8,1 thereby confirming that they work through a synthetic lethal mechanism.

Other hypothesis-based synthetic lethal interactions have been explored. More

than twenty years ago, Emil "Tom" Frei proposed that deletion events in cancer could

affect the activity of essential enzymes, which may make chemotherapeutics targeting the

same pathway more effective 2 . One compelling study demonstrating this principle

showed that glioblastoma cell lines harboring deletions of one isoform of enolase were

extremely sensitive to inhibition of the second isoform of enolase'. Our laboratory has

recently shown that hemizygous deletion of essential genes sensitizes cancer cells to their

further expression Similarly, frequent hemizygous deletions of POLR2A in colorectal

cancer sensitize cancer cells to the small molecule inhibitor of POLR2A, a-amanitin >

8. Loss-of-function screens to uncover cancer vulnerabilities

Despite advances in our understanding of cellular biology, knowledge of the

interactions between genes that would predict synthetic lethal opportunities is limited.

Technological advances have allowed for the systematic perturbation of cellular

processes and simultaneous measurement of effects. With these technologies, functional

genotype-phenotype associations can be probed with relative ease. The first technology

that ushered in this era of high-throughput screening was RNA-interference, which

allowed for the silencing of any gene. In particular, libraries of siRNAs or shRNAs

allow for this screens where one assess the impact of decreasing a given gene's

expression on a phenotype of interest. Use of siRNAs in a screening strategy require that

siRNAs be arrayed into a multiwell tissue culture plate for reverse transfection into cells

of interest. In contrast, shRNA libraries use plasmids that integrate into the genome
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following lentiviral infection to constitutively express shRNAs for gene silencing 1 5 .

shRNA libraries does not require reverse transfection or multi-well tissue culture. The

ability to encode barcodes that uniquely identify every shRNA allows one to measure the

representation of cells expressing all shRNAs. Often, cells are infected with the shRNA

library and then split into two pools where one is subjected to a treatment of interest and

the other serves as a control. One can quantify the impact of shRNA expression on

cellular proliferation by comparing the barcode representation in the control pool to the

experimental pool. Next-generation sequencing enables discretized barcode

representation data to be collected on millions of cells at once, allowing for shRNA

screens to be conducted in pooled format 2,. Pooling makes screens easier, less

expensive, and allows for the interrogation of in-vivo phenotypes. More involved

experimental setups allow for screening of a variety of phenotypes aside from

proliferation.

shRNA screens of cancer cells have identified candidate synthetic lethal

vulnerabilities of previously "undruggable" cancer driver alterations. For example,

KRAS has long been considered undruggable because of its lack of allosteric

hydrophobic pockets and picomolar affinity for GTP/GDP'2 '. Genome-scale shRNA

screens have nominated PLK19, STK33" 0, TBKJ I and others"" as vulnerabilities

in KRAS mutant cancer cells. In addition, synthetic lethal vulnerabilities identified in

RNAi screens have been proposed for TP53 " and MYC'3 6 .

While many shRNA screens focus on comparing two isogenic cell lines that differ

in a variable of interest, more recently shRNA screens have been performed on large

numbers of cell lines, each of which has undergone parallel genomic characterization'I7

30



139. These rich datasets enable scientists to identify associations of genetic dependencies

with genetic features in an unbiased, post-hoc manner. With these growing datasets, an

increasing appreciation for the technical shortcomings of shRNA screens has emerged1 40 .

One important aspect of addressing these shortcomings is the design of algorithms

to extract the most meaningful data possible from these screens. One such algorithm,

ATARiS, was developed and applied to the Achilles Project data 41. ATARiS works on

the premise that when the predominant effects of a set of shRNAs targeting the same

gene are due to on-target gene suppression, then these shRNAs should induce similar

phenotypic effects across cell lines. The algorithm therefore searches for associations

between independent hairpin sequences targeting the same gene. Hairpins that behave

consistently across cell lines can then be grouped together to derive gene dependency

scores.

More recently, CRISPR-CAS9 endonuclease technology has offered a new loss-

of-function screening tool that addresses many of the shortcomings of shRNA screens. In

1987, Ishino et al, discovered perplexing 29-nucleotide repeats in Escherichia coli, and

named these repeat structures CRIPSR 142. These structures were later found to constitute

one arm of a bacterial mechanism of immune memory143. Together with the CAS9

endonuclease, CRISPR guide RNAs are capable of cleaving dsDNA complimentary to

the guide sequence. Whereas prior techniques for genome editing such as Zinc-finger-

nucleases'44 and TALENs'41' " required laborious cloning and optimization, generation

of CRISPR guide RNAs is much simpler. This ease of generation allows for the

prospective creation of large libraries of genome editing plasmids that are suitable for
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genome-scale loss-of-function screens. In 2014, the first CRISPR screens in human cells

were performed 47,148.

CRISPR exhibit greater reproducibility between replicates, and suffer from fewer

off-target effects than shRNA screens1 47. Depending on the phenotype of interest, one

may prefer to study gene knockout using CRISPR rather than gene suppression with

shRNAs. However, one drawback of CRISPR as a means to assess loss-of-function is

that one third of deletions on haploid genes and 5/9 of deletions on diploid genes will

result in at-least one in-frame deletion which may have potentially mild effects on gene

function.
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Chapter 2: The genomic evolution of endometrial carcinoma

progression and abdominopelvic metastasis

Abstract

Recent studies have detailed the genomic landscape of primary endometrial cancers, but

their evolution into metastases has not been characterized. We performed whole-exome

sequencing of 89 tumor biopsies including hyperplasias, primary tumors, and paired

abdominopelvic metastases, to survey the evolutionary landscape of endometrial cancer.

We identified novel recurrent alterations in primary tumors, including mutations in the

estrogen receptor cofactor NRIPJ in 12% of patients. We found that likely driver events

tend to be homogenous across biopsy sites, with notable exceptions such as ARIDIA

mutations. Phylogenetic analyses in cases with multiple metastases indicated these

metastases typically arose from one lineage of the primary tumor. These data indicate

extensive genetic heterogeneity across different stages of endometrial cancer, reflecting

changing evolutionary pressures during tumor progression.

Keywords: Cancer, Metastasis, Precursor, Endometrial cancer, Cancer genomics

Introduction

Endometrial cancer is the most common pelvic gynecologic malignancy in

industrialized countries; with increasing incidence attributed to the obesity epidemic'.

Worldwide, there are annually more than 300,000 new cases and 75,000 deaths, with age



standardized incidence rates ranging from 15/100.000 in developed regions to 6/100.000

in less developed regions 2 . Historically, endometrial cancers are divided into two major

groups3 : 75% of patients present with type I, endometrioid, tumors, often with adjacent

regions with hyperplasia with atypia considered to represent precursor lesions. Type I

tumors are often estrogen responsive and portend a good prognosis. Type II tumors are

the non-endometrioid subtypes, including the carcinosarcomas, serous, clear cell and

undifferentiated histologies, tending to occur in older, non-obese women. They are not

estrogen responsive and carry a poor prognosis.

Recent large-scale sequencing studies of primary tumors of endometrioid and

serous subtypes have provided evidence that the difference in phenotype is reflected in

distinct molecular subgroups, also further refined in distinct molecular entities within

each 4 6 . While these studies were able to detail the spectrum and patterns of somatic

alterations across primary tumors, a comparative study of samples from endometrial

hyperplasia, primary tumors, and paired metastatic lesions has not been performed. For

example, it is not known whether metastases derive from the same or multiple lineages

within the primary, and whether cancer cells require mutations that uniquely enable the

metastatic phenotype. The extent to which genetic events observed in the primary biopsy

reflect the heterogeneity that exists across the entire cancer is also unknown. Such

information would be helpful in understanding the biological underpinnings of

endometrial cancer progression and to determine treatment strategies that target features

that are homogenous throughout individual cancers7.

Here we address these questions in a collection of 89 extensively clinically

annotated fresh frozen samples ranging from precursor lesions to primary tumors and
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paired abdominopelvic metastases from 45 cases. We analyzed somatic mutations and

allelic copy number profiles between different biopsies from the same individual to

reconstruct phylogenetic relationships and annotate putative cancer drivers across sites of

disease. In addition, we reanalyzed data from The Cancer Genome Atlas (TCGA) using

updated methods, which led us to identify novel recurrent mutations in NRIPJ and

patterns of microheterogeneity within biopsies that mimic heterogeneity across multiple

tumor sites.

Results

Patient and sample cohort

Our cohort consisted of a population-based patient series from western Norway

with extensive clinical annotation including complete follow-up information. We

obtained fresh frozen tumor tissue from seven cases of complex atypical endometrial

hyperplasia (CAH), 38 independent primary tumors, and 52 abdominopelvic metastases,

totaling 89 biopsies from 45 individuals (Figure 1.1. Supplementary Table 1, and

Supplementary Figures 1.lA-B). These included 23 endometrioid endometrial

carcinomas (EEC) and 15 non-endometrioid endometrial carcinomas (NEEC). The

median time between resection of the primary tumor and first metastasis was 17.5 months

(range 1-99; median 17 months for EECs and 32 months for NEECs). Six and two

patients received chemotherapy and external radiotherapy, respectively, between primary

surgery and resection of metastasis.
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Figure 1.1 Samples assessed.

(a) Anatomic sites from which samples were obtained. (b) Histologic subtypes (E:

endometrioid, CC: clear cell, SP: serous papillary and UN: undifferentiated carcinomas,

and CS: carcinosarcomas), grade, FIGO 2009 stage at primary diagnosis, location of

metastatic lesions, and timing of sampling and treatment after primary diagnosis. Stars on

right indicate two cases that were clinically difficult to distinguish as metastatic or

synchronous primary cancers at time of resection.
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Primary tumors with
corresponding metastases

ID PT M1 M2 M3

EC-021
EC-025
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EC-004
EC-007
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Keys:

Supplementary Figure 1.1. Overview of sample set and data generated.

Samples were collected from hyperplasias (HYP; right), primary tumors (PT) with paired

metastases from the same patient (left) and metastases without matching primary tumors

(middle). Information about type of analysis (key a): Most biopsies underwent whole-

exome sequencing (WES). Copy-number profiles were determined with Affymetrix SNP

6.0 arrays, in large overlapping with WES samples. Location of abdominal metastasis

(M) for the samples are indicated by dots with colours corresponding to key b. For some

patients multiple anatomically distinct metastases were obtained. Microsatellite

instability status by a 7-marker panel was performed on samples analyzed by WES, as

indicated by key c (No indication means MS-stable).
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We performed whole exome sequencing (WES, mean 77x coverage) to characterize

somatic mutations and copy-number alterations (SCNAs) for 72 biopsies from 38 of these

individuals, including twenty-four with paired primary and metastatic lesions, five with

more than one metastasis, and eight metastases without paired primaries, along with

DNA from paired blood in all cases. All of these samples were also analyzed for

microsatellite instability (MSI, Supplementary Figure 1.1 D) by an established seven-

marker panel, enabling classification according to the integrated molecular subgroups

established by TCGA4 (Figure 1.2A). We also analyzed SCNAS in 76 samples from 37

patients using Affymetrix SNP 6.0 arrays (Supplementary Figure 1.2). These included 59

samples from 30 patients that had also undergone WES, 10 additional metastases with

paired primary tumors (from six cases, including three cases with more than one

metastasis) and one unpaired metastasis (Supplementary Figure 1.1A).

Novel significantly mutated genes and hotspots in endometrial cancer

The burden of somatic genetic alterations in our primary tumors was consistent

with endometrial cancers profiled by TCGA. We observed similar rates of somatic

mutation (minimum 40 to maximum 13,717) and SCNAs (Figure 1.2A and

Supplementary Figure 1.3A-B), and an inverse correlation between both (P=0.005;

Figure 1 .2B) . However, mutation rates of some of the most frequently altered genes

differed, with higher mutation rates for PPP2RA, FGFR2, PIK3CA, and ARIDIA, and

lower rates for PIK3R1 in our dataset compared to TCGA. This may reflect different

strategies for sample inclusion, with TCGA enriching for serous and endometrioid grade
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3 lesions, and our approach enriching for patients with systemic disease (Supplementary

Figure 1.4).
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Figure 1.2. Somatic genetic alterations in complex atypical hyperplasias and

primary and metastatic endometrial carcinomas.

(a) Number of exonic mutations (top) and SCNAs (middle) detected in each tumor

biopsy. Tissue types and PTEN, TP53, and 1q amplification status are indicated on the

bottom. (b) Number of mutations (y-axis) against fraction of the genome affected by

SCNAs (x-axis) across atypical hyperplasias (green), primary lesions from endometrioid

endometrial carcinoma (red) and non-endometrioid endometrial carcinoma (blue)

primaries from our dataset (squares) and TCGA (dots). (c) Number of mutations detected

in the primary tumor compared to their metastatic counterpart. (d) Fraction of the genome

affected by SCNAs in metastases (y-axis) relative to paired primaries (x-axis). Circles

indicate metastases that exhibit whole-genome doubling not observed in the primary

biopsy. (e) Stick plot depicting mutations in NRIPI, a cofactor of the estrogen receptor.

(f) Impact of indel rescue on the percentage of patients harboring mutations in known

driver genes.
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Supplementary Figure 1.2. Somatic copy-number profiles by Affymetrix SNP 6.0

array.

Heatmaps indicate amplifications in red and deletions in blue. Tumors are arranged by

endometrioid endometrial carcinoma (EEC) vs. non-endometrioid endometrial carcinoma

(NEEC) status. Assays performed and biopsy locations are indicated to the left and right

of the heatmaps respectively.
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Supplementary Figure 1.3. Somatic alteration rates by tissue type.

a, Number of exonic mutations detected in hyperplasias, primaries and metastases. Data

from TCGA primary tumors are displayed on the right. b, Fraction of the genome that is

affected by SCNAs in hyperplasias, primaries and metastases as determined by whole

exome sequencing (left) or SNP6 array analysis (right). For WES-analyzed samples,

allelic copy number profiles were computed and the fraction of the genome affected by

SCNAs was defined as regions where there was not one copy of each allele. In this

analysis, samples affected by whole genome doubling obtain higher values for the

fraction of the genome affected by SCNAs than an analysis of total relative copy-number

would yield. For samples analyzed with SNP 6.0 arrays, the fraction of the genome

affected by SCNAs was defined as the fraction of the genome where the total relative

copy level (normalized to a median of 2 per sample) was below 1.6 or above 2.5.
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SuppemenaryFigure 1.4. Cohort comparison to TCGA

a, Clinical, histologic and molecular subgroup composition of our cohort and TCGA. Our

cohort included more copy-number high subgroup tumors and more non-endometrioid

tumors. (CNL= Copy-number low; CNH =Copy-number high. b, Percentage of patients

harboring mutations in driver genes by disease status.

c, Percentage of patients with mutation in driver genes by TCGA molecular subgroup.
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The burden of small insertions/deletions (indels) detected among primary endometrial

cancers was higher than previously noted, particularly among microsatellite-unstable

(MSI) carcinomas. MSI is prevalent among endometrial carcinomas and leads to high

rates of these indels. However, due to their sequence context, these events are often

observed at low-allelic fractions in the paired normal samples due to sequencing error,

and are typically discarded by conservative analytic pipelines. We applied recently

developed methods to detect highly recurrent indels that are enriched in tumor samples

(Supplementary Figure 1.5A) 9 . As a result, we identified an average of 156 and 21 indels

per MSI and non-MSI tumor, respectively, compared to 16 and 4.4 in prior analyses'0 .

We used these new calls, as well as the combined dataset of our primary tumors

and those of TCGA (272 primaries in total), to compile a catalogue of significantly

mutated genes in primary endometrial cancer. We supposed these changes would increase

our statistical power to detect novel driver alterations. We later use this catalogue to

distinguish heterogeneity of likely driver vs passenger mutations between biopsies of

primaries and metastases (see below).

We identified 49 genes that undergo significantly recurrent rates of mutation

(Supplementary Table 2, Supplementary Figure 1.5B), including 16 that have not been

previously described in endometrial cancer4 "0 . Of the 16 novel genes, four (NFE2L2,

ERBB2, U2AFI, and ALPK2) have been found to be recurrently mutated in other primary

cancer types using similar analytic methods to those used here' 0 .

The other 12 novel significantly recurrently mutated genes included both ESRJ,

encoding the estrogen receptor alpha, and its binding partner NRIPJ. Alterations in the

estrogen signaling system, such as unopposed estrogen or alterations in estrogen receptor
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expression/function, are considered risk factors in endometrioid endometrial cancer",

and recently recurrent rearrangements involving ESRJ have been identified in breast

cancer 12. However, significantly recurrent point mutations in the estrogen pathway have

not been previously described in cancers that had not received anti-estrogen therapy.

We found NRIP] mutations in 12.5% of cancers, concentrated in two highly

recurrent sites, p.K728fs (n=1 1) and p.N516fs (n=4) (Figure 1.2E, Supplementary Figure

1.5C-D). All of these recurrent site mutations were rescued indels, which may account for

their absence in prior analyses, and all but two of these indels were in MSI samples (20%

of MSI samples). Conversely, 14% of colorectal MSI samples analyzed by TCGA

exhibited NRIPI indels. We validated the existence of NRIPI p.K728fs mutations by

Sanger sequencing in an independent cohort of 37 primary endometrial cancers, of which

two exhibited the mutation (Supplementary Figure 1.5D). NRIPl is a coregulator that

binds to the AF2 domain of the estrogen receptor and is essential for its transcriptional

activity'".

Mutations in ESRi were detected in 4% of cancers and clustered in the ligand-

binding domain (Supplementary Figure 1.5E-F). These included Y537(C/N/S) mutations

that have been shown to cause constitutive activation and resistance to tamoxifen therapy

in breast cancer' 5 1 6 and among breast cancers had only been detected after anti-estrogen

therapy. However, the only patient in our cohort whose tumor harbored one of these

mutations never received tamoxifen treatment, indicating that these mutations can occur

outside this anti-estrogen therapy context.

Additional novel genes also included AXL4K the binding partner of MYC family

members. We identified two recurrently mutated sites in MAX: p.H28R (n=5) and
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p.R60Q (n=2, Supplementary Figure 1.6A). We also observed significantly recurrent

mutations in MYCN, as previously noted' 0 , with a hotspot at p.P44L (n=5; Supplementary

Figure 1.6B). Mutations of MAX and MYCN never co-occurred with each other or with

amplifications of MYC or MYCN (Supplementary Figure 1.6D), though this mutual

exclusivity did not reach statistical significance (p=0.36). The perturbation of MYC

family members by translocations 7 , amplifications'" and viral mimicry' 9 has been widely

described, and indeed MYCN is recurrently amplified in endometrial cancers

(Supplementary Figure 1.6C).

Even among genes previously noted to harbor significantly recurrent alterations,

we often detected much higher rates of alteration than previously noted due to less

conservative indel calling (Supplementary Table 2). For instance, we discovered ARIDIA

mutations in at least one biopsy from 49% of patients, a 40% increase over prior

estimates. Genes in which polymerase slippage-associated indels have previously been

identified, such as RPL22, RNF43 and JAKJ, showed even more dramatic gains (370%,

206%, and 163% increases respectively; Figure 1.2F). Conversely, the number of patients

with biopsies exhibiting PIK3CA or CTNNBJ mutations increased by only 5.6% and 0%

respectively. Overall, we called 39% more mutations (all indels) across all genes and

54% more mutations in recurrently altered genes (p=0.28).
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Supplementary Figure 1.5. Indel rescue and estrogen pathway mutations.

a, Accuracy of modification to indeLocator to "rescue" indels. Insertions/Deletions

meeting modified indeLocator criteria were called in tumor-normal pairs (x-axis). To test

the specificity of these calls, tumor/normal labels were swapped and the number of called

indels was recorded for each normal-tumor pair (y-axis). A mean of 0.16 mutations were

called in the swap, indicating a low false positive rate, whereas a mean of 62 mutations

were rescued in the tumor-normal comparisons. b, Comparison of significance analysis

results to TCGA. The 49 significantly mutated genes in our study (x-axis, orange dots)

were plotted by their FDR q-value towards that obtained from the TCGA cohort (y-axis).
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Genes along the x-axis are significantly mutated in this study but not in that of the

TCGA. Red genes indicate novel significant genes in our study that are also recurrently

mutated in other cancer types. Green genes indicate novel significant genes in our study

that are not recurrently mutated in other cancer types. c, The NRIP1 p.K728fs mutation

shown based on WES data for a vaginal metastasis in case EC-009 visualized by

Integrated Genomics Viewer. d, Sanger sequencing chromatograms validating NRIP1

p.K728fs mutation in an external sample set of primary endometrial cancer. Two of 37

samples in the validation cohort carried the mutation. e, Stick plot of mutations observed

in ESR1 by data source. Mutations cluster in the ligand-binding domain of the estrogen

receptor. The Y537 mutations have previously been observed to confer tamoxifen

resistance in breast cancers. However, we observed one patient in our cohort who

developed a p.Y537H mutation without any prior hormonal therapy as shown in f.

Chromatogram of Sanger sequencing validate this ESR 1 p.Y537H hotspot mutation in

this individual.
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Supplementary Figure 1.6. Frequency of co-alteration of MYC pathway copy

number alterations and mutations.

a, Stick plot of mutations in MAX by data source. We identified two hotspots in MAX,

p.H28R (n=5) and p.R60Q (n=4). b, Stick plot of mutations in MYCN by data source.

Two recurrent sites were identified, P44L (n=5) and H386R (n=2). c, All samples in our

cohort and TCGA were analyzed to determine the patterns of coalteration between

significantly altered MYC pathway members. Both MYCN and MAX mutations were

mutually exclusive with other MYC pathway alterations. None of these anti-correlations

reached statistical significance (p=0.29 and 0.36 for MYCN and MAX respectively). d,
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MYCN is the only gene in a GISTIC peak in endometrial cancer. GISTIC q-values are

plotted on the y-axis, with genomic position on the x-axis.
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P13K pathway alterations predominate in complex atypical hyperplasias.

Compared to primary tumors, complex atypical hyperplasias exhibited few

somatic mutations with one highly-mutated exception (median 35 mutations per sample,

range 15-345; Figure 1.2B; Supplementary Figure 1.6A). Less of the genome exhibited

copy-number alterations in CAHs than primary tumors (median 0.4% of genome altered

vs. median of 12.2% in primary tumors, p=5xl0-5; Supplementary Figure 1.3B).

The only significantly mutated genes in hyperplasias were PTEN and PIK3CA,

and mutations in at least one of these (usually PTEN) were present in all seven samples

(Supplementary Figure 1.7). Loss of heterozygosity of chromosome 10q containing

PTEN, was the only recurrent copy-number alteration (n=2). Other genes that were

significantly mutated in primary endometrial cancers were found mutated in single

hyperplasias, including RNF43. FGFR2 and ARIDJA; mutations of ARHGAP35 occurred

in two samples. Phosphatidylinositol 3-kinase (P13K) pathway mutations have previously

been shown to be prevalent in complex atypical endometrial hyperplasia 0 . These results

indicate that no other genes are mutated at a similar rate.
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Supplementary Figure 1.7. Mutations in endometrial hyperplasias.
(top) Number of exomic mutations detected in endometrial hyperplasias. (bottom) Genes

that were significantly mutated in primary tumors are depicted in the row of the

comutation plot. Only PTEN and PIK3CA were mutated in every hyperplasia.
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Rates of genomic alteration are similar for primaries and metastases

Biopsies from primary tumors (PBs) and from their paired metastases (MBs)

exhibited similar overall burdens of somatic genomic alteration (p=0.81). Metastases

exhibited a median of 94.5 mutations per biopsy vs 93 in primaries (Supplementary

Figure 1.3A); the number of mutations typically varied by only 6.2% between a primary

and its paired metastasis (Figure 1.2C). Metastases exhibited a median of 14 SCNAs per

tumor, vs 11 per primary (p=0.51); the number of SCNAs typically varied by 22%

(Figure 1.2A). Similarly, the fraction of the genome that deviated from diploid was

similar between most primaries and paired metastases, suggesting that aneuploidy

develops early in tumorigenesis (Figure 1.2D).

Six phylogenies exhibited whole genome doubling (WGD), including two in

which WGD was present in the MB but not in the paired PB. In both of these cases, the

biopsies that underwent WGD exhibited more localized events. Indeed, in one case, we

obtained two biopsies of the same metastasis at different times. Both exhibited WGD,

but only the second biopsy exhibited increased rates of localized events (Supplementary

Figure 1.8). Whole-genome doubling has previously been associated with increased rates

of localized SCNAs in model systems2 ' and in primary tumors' '. These data support

(though do not prove) a similar temporal relationship between WGD and subsequent

localized SCNAs in human tumors.
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Supplementary Figure 1.8. Whole genome doubling (WGD) is followed by elevated

rates of localized structural events

a-b, Allelic copy number plots for phylogenies with non-truncal WGD for cases EC-0 18

4nd EC-004. While the primary biopsy for patient EC-004 harbored few SCNAs that

would allow accurate determinate of biopsy purity, we were able to assign a purity of

67% from the variant allelic fractions of 1,027 mutations. At this purity, we were
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adequately powered to detect clonal SCNAs if they occurred. We detected neither WGD

nor arm-level copy number events. c-d, Number of arm-level events occurring in each

biopsy in a and b respectively. All single-copy losses were deemed to have occurred after

WGD. Losses of two copies of the same allele could have occurred prior to or after

WGD; we called all of these prior to WGD to be conservative. (inset, d) We performed

flow cytometry to confirm that the primary in EC-004 was diploid. The second vaginal

biopsy was obtained 12 months after the resection of the first vaginal metastasis and may

therefore represent either recurrence of the first metastasis or an independent metastasis.

Due to this ambiguity, EC-004 was excluded from multi-metastasis analyses.
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Half of mutations and SCNAs in metastases are not shared with paired primaries

While the overall burden of somatic genomic alterations was similar between

primaries and their matched metastases, only an average of 52% of the specific mutations

(Figure 1.3A) and 50% of the SCNAs found in the MB were shared with the PB.

Conversely, an average of 59% and 53% of mutations and SCNAs in the PB,

respectively, were shared with each MB. The fraction of mutations that were unique to

the MB tended to increase with the anatomical distance of the metastasis site from the

endometrium (p=0.27; p=0.13; Supplementary Figure I.9A), consistent with similar data

in prostate tumors 3 .

Overall mutation rates vary widely among endometrial cancers, but PBs with a

high burden of somatic mutations typically shared a smaller fraction of mutations with

their paired MB (p=0.006, Supplementary Figure 1.9B). Mutations that precede

oncogenesis are likely to be ubiquitous throughout the tumor ("truncal"). These data

indicate that the number of truncal mutations is more similar across endometrial cancers

than indicated from single biopsy data, and that varying mutation rates detected across

endometrial cancers from such data reflect in part varying rates of intratumoral

heterogeneity.

Despite the dissimilarities between PBs and paired MBs, sufficient similarity

exists to distinguish paired biopsies from a single cancer from synchronous primaries.

We identified two cases (one is shown in Supplementary Figure 1.9C) in which two

biopsies exhibited substantially different morphology, engendering clinical calls of

synchronous primaries. In each case, however, sequencing of the biopsies revealed shared
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mutations, indicating the same cancer. Conversely, identical analyses of brain metastases

have revealed clonally unrelated primary/metastasis pairs.

Among the 186 arm-level SCNAs (comprising most of a chromosome arm) we

detected, 90 (48%) were heterogeneous across biopsies. Arm-level losses were more

likely than gains to be truncal (58% vs 40%; p=0.02; Supplementary Figure 1.1OA).

Losses of I Oq, harboring PTEN and 17p, harboring TP53, were truncal more often than

expected given the overall rates (p=0.019 and 0.035). The most common arm-level gain,

that of I q, was only truncal in 6/12 cases (Supplementary Figure 1. 1 OB). The

heterogeneous events included both gains and losses of different alleles at the same

genomic loci in the PB and MBs (Supplementary Figures 1.LOC-F), indicating

convergent evolution of SCNAs.
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Figure 1.3. Heterogeneity among somatic mutations.
Fractions of (a) all mutations and (b) driver mutations detected in metastases that were
truncal. Lines indicate the mean. (c) The number truncal and branch mutations involving
the indicated driver genes. (d) Percentage of mutations that were detected in all paired
biopsies in our dataset for frequently mutated driver genes. ARIDIA and ZFHX3 are
frequently mutated in the branches of phylogenies. (e) Distribution of the probability that
each mutation detected in TCGA endometrial biopsies is clonal for the indicated genes.
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Supplementary Figure 1.9. Trends in phylogenetic similarity.
a, The fraction of mutations each metastasis shared with its paired primary decreased

with the distance to the primary tumor. This trend was not statistically significant
(p=0.27). For purposes of statistical analysis, sites were grouped into four categories:

close mets= Cervix, Perimetrium
gynecologic mets= Vagina,Ovary
semi-gynecologic mets= Douglasi, Lymph Node
abdominal mets= Omentum, Gastrointesinal, Spleen, Abdominal

b, The fraction of mutations each biopsy shared with its paired biopsies (y-axis) against

overall mutation rate (x-axis). Highly mutated tumors shared proportionally fewer

mutations across biopsies than less mutated tumors (p=0.000 3 )
c, EC-0 18 was reclassified during this study as two independent synchronous cancers by
pathologists, but the two biopsies shared 76 mutations, indicating a single cancer. (left)

Tissue (HE) section from the uterine cavity showed glandular morphology consistent

with endometrioid adenocarcinoma. Immunohistochemistry (IHC) indicated the tumor to

be positive for p53 and estrogen hormone receptor (ER alpha) and negative for WTI

(Wilms' Tumor 1).
(right) Tissue (HE) section from the right ovary showed a papillary morphology

consistent with a high grade serous adenocarcinoma. Immunohistochemistry indicated

that this tumor was positive for p53 and WTl and negative for ER.
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Supplementary Figure 1.10. Phylogenetics of somatic copy number alterations.
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c, Haplotype tracking across tumor biopsies for EC-002 reveals convergent SCNAs.

Copy-number adjusted allelic fractions from germline heterozygous sites are plotted for

the PB (top) and MB (bottom). All variants at germline heterozygous sites are labeled in

the PB by whether more reads of either allele are present (major allele, red). These labels

were maintained in the MB (the sites labeled as red in the PB are red in the MB) and the

same analysis was performed in the MB. Where a genomic segment is deleted or

amplified, a haplotype is revealed. Often, the same haplotype is gained/lost in both

biopsies (eg 1 Oq in this example, red arrowhead). Occasionally, genomic regions undergo

convergent copy number gains/losses in which the opposite allele is gained/lost in the

MB compared to the PB (eg 2p in this example, blue arrowhead).

d, The convergent SCNAs identified by allelic analysis in EC-002 also displayed

different breakpoints in total copy ratio data.

e, Allele-specific copy-number profiles at germline heterozygous sites in primary and

metastasis of EC-0 18.

f, Schematic outlining process of convergent loss of chromosome arms 15q and I8q

indicated by data in e. WGD = Whole Genome Doubling.
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Rates of intratumoral heterogeneity among common drivers

An average PB shared 87% of its driver mutations with its paired MB (Figure

1.3B). We defined "driver mutations" as any non-silent mutation of a gene listed in

Supplementary Table 2.2; we identified 1-22 (median 3) truncal driver mutations per

patient. Among the 24 PBs, 11 (46%) contained driver mutations not detected in the

paired MBs. The overlap among drivers exceeded the overlap in the overall number of

mutations between primaries and metastases (mean 87% vs 59%, p=1.2 x 10-7). This

suggests that the fraction of new mutations that are drivers decreases along the length of

the evolutionary tree.

The rate at which driver mutations were shared across all biopsies varied by gene,

ranging from 0%-100% (Figure 1.3C). For six genes, we had adequate power to

determine whether mutations affecting them were truncal more or less often than the

average rate among drivers ("trunk-biased" and "branch-biased" respectively, Figure

1.3D). Of these genes, PTEN, PIK3CA, TP53, and PPP2R1A were trunk-biased (Fisher's

two-tailed p=0. 0 3 , p=0.1, p=0.05, p=0.0 4 ), suggesting they are early events and, in the

cases of PTEN and PIK3CA, consistent with their prevalence among CAHs. The

remaining two genes displayed significant branch-bias: ARIDJA and ZFHX3 (p=0.013

and p=0.005, respectively). Mutations in ARIDJA were only truncal in 27% of

phylogenies, vs. 60% among other drivers.

Analysis of heterogeneity within biopsies supports the finding of frequent

heterogeneity of mutations in ARJDJA and ZHFX3. We quantified the fraction of cancer

cells that carry each mutation in the TCGA endometrial cancer dataset, using joint
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estimates of the allelic fractions and copy-numbers of those mutations 2 '2 5,26 . While

mutations of PTEN and TP53 were almost exclusively clonal (81 % and 92% of cases,

respectively), only two-thirds of ARIDJA and 61% of ZFHX3 mutations were clonal

(dissimilar rates from PTEN; p=1.6x10-" and 6.9x1 0-4 for ARIDJA and ZFLX3,

respectively; Figure 1.3E).

This relative heterogeneity of ARIDIA mutations in endometrial cancers is

mirrored by heterogeneity of mutations across BAF complex members in other cancers.

The BAF complex, which contains ARIDI A, regulates the organization of chromatin and

contains several components that are significantly mutated across diverse cancer

types'' 27. Mutations of BAF complex members displayed the most phylogenetic

heterogeneity of all known driver mutations in multi-region sequencing studies including

mutations of PBRMJ in renal cell carcinoma 2 8, SA1RC'44 in gliomas2 9, and

ARIDJA/SMALRCBI in meningiomas30 ,31. Collectively, these observations suggest that

perturbation of BAF complex function enhances cancer cell fitness in the context of pre-

existing alterations and tumor growth.

Among seven phylogenies with PPP2R]A mutations, five also exhibited TP53

mutations (p=0.02, Supplementary Figure 1.1 IA), and in all cases both the PPP2RJA and

TP53 mutations were truncal. We validated the association between PPP2R]A and TP53

mutations in the TCGA dataset using a network analysis approach that takes into account

varying degrees of genomic instability across cancers'8 3
2 (Supplementary Figure 1. 11 B,

Supplementary Table 3). The only gene whose mutation was positively correlated with

TP53 was PPP2R]A (p=6x1 O~). These two gene nodes formed an isolated network

corresponding to a subset of nonendometrioid tumors.
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We determined from the analysis of all 272 endometrial cancers that

PPP2R1A mutations tend to cluster in two hotspots: p.Pl79R (n=11) and p.S256F

(n=4, Supplementary Figure 1.1 IC). The association between PPP2R1A and TP53

mutations among the 272 primaries was also primarily due to PPP2R1A hotspot

mutations: 17 of 19 tumors with PPP2RJA hotspot mutations exhibited TP53 mutation

(p = 5.8x10-8; one of the remaining two tumors exhibited loss-of-heterozygosity at TP53,

consistent with a cryptic inactivating event; Supplementary Figure 1.11 D) whereas only

three of 16 tumors with non-hotspot PPP2R1A mutations exhibited TP53 mutations

(p=0.56).

Among the 66 potentially clinically actionably genetic alterations3 3 detected in

our cohort, 50 were shared between PBs and MBs (Supplementary Figure 1.12). Ten of

the alterations were detected uniquely in the paired MBs, whereas only six were detected

in the paired PB. The enrichment of actionable alterations in MBs may represent

sampling bias: in some cases, we sequenced multiple MBs and only a single PB. The

relative homogeneity of clinically actionable drivers in endometrial cancer contrasts with

recent analyses of brain metastases2 .
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a, Phylogenies with recurrent PPP2R1A mutations. b, Network model of gene
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Multi-metastasis sequencing suggests most metastases arise from a single lineage in

the typical metastatic endometrial cancer

We determined phylogenetic relationships between tumor biopsies using both

mutations and allelic copy-number alterations. In six of seven cases with multiple MBs,

all MBs were more closely related to each other than to the PB (monophyly), suggesting

the metastases all arose from a small fraction of the primary. In the seventh case,

however, one of the MBs was more closely related to the PB than to the other MBs

(polyphyly; Figure 1.4A, Supplementary Figures 1.13-1.14).

These results suggest that most metastases arise from one lineage in the primary

tumor. In cases of two MBs and one PB, the phylogeny could have three configurations:

either the PB is the most distantly related biopsy, or either of the MBs is the most

distantly related biopsy. Assuming the MBs arise from independent lineages, all of these

configurations would be equally likely, so that monophyly would be observed in one-

third of cases. In cases of three MBs and one PB, the phylogenetic tree could include two

clades with two members each (with a one-third probability34 ) or clade with one and three

members, respectively (with a two-thirds probability34 ). Only the latter is consistent with

monophyly, and only if the PB is in the clade by itself (with a probability of one-quarter),

for a one-sixth probability of monophyly overall. Three of our seven cases included two

MBs and the other four included three MBs. We would typically expect one or two

(expectation value 1.7) cases of monophyly in this setting, a significantly different result

from the six of seven cases of monophyly observed (p=0.00 1).

Even the existence of two independent lineages, each contributing half of

observable metastases in the typical metastatic endometrial cancer, is inconsistent with
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our observed data. In such a case, and considering phylogenies with two MBs, these

MBs would derive from different lineages in half of cases, each associated with a one-

third rate of monophyly, and from the same lineage in half of cases. We assume that if

the MBs derive from the same lineage, they necessarily exhibit monophyly (a

conservative assumption: it is possible that the PB would by chance represent that same

lineage within the primary tumor, in which case polyphyly would still be possible).

Using similar considerations for phylogenies with three MBs, we calculate that four of

the seven phylogenies would exhibit monophyly., a significantly different result from that

observed (p=0.0l8). The single observed case of polyphyly might represent a cancer

with more than one independent metastatic lineage, or a case in which the PB happened

to sample descendants of the metastatic lineage within the primary tumor.

We performed similar calculations on phylogenies from prostate and pancreatic

cancers for which genome-level sequencing had been performed on two to ten MBs and

one to nine paired PBs2 3, 5,36 . Prostate and pancreatic cancers exhibited polyphyly in one

of five and three of five cases, respectively. Like endometrial cancers, the results for the

prostate cancers are inconsistent with equal contributions to metastasis of two or more

lineages (p=0.05). Pancreatic cancer metastases exhibit monophyly approximately as

often as expected if they arose from two independent lineages (p=0. 9 8 ).

The finding that observed metastases in endometrial cancers tend to be associated

with a single lineage indicates that cells that metastasize share a feature that is associated

with genetic ancestry. This may be a genetic event that enables metastasis (see below),

but it is consistent with other explanations. For example, members of a single lineage

may happen to be located in an environment that is conducive to metastasis 7, or by
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chance have initiated a first metastasis, an act that may somehow enable them to form

additional metastases.
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Figure 1.4. Phylogenetic trees for tumors with more than one metastasis.

(a) The labeled alterations constitute a subset of the alterations that distinguish

between the indicated branches. Asterisks indicate trees that were derived from

SNP6.0 array data. (b) Summary of the 2D phylogenetic pattern observed across
biopsy comparisons. (c) (top) 2D phylogenetic plots depicting the seeding of
metastases from a subclone detected in the primary biopsy for case EC-004.

(bottom) Proposed evolution of EC-004. CCF densities for the mutations supporting
the metastasizing subclone (purple) are presented in Supplementary Figure 1.17.
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Supplementary Figure 1.13. Phylogenetic trees and copy number alterations for

trees with multiple metastases.
a-e, (Top) WES-derived tumor phylogenies from the combined mutation and copy

number alteration profiles from individual biopsies. The trees display the evolutionary

relationship between primary-metastasis samples for a single patient: alterations

ubiquitous to all biopsies are blue, yellow indicates mutations shared by all metastases,

and red indicates mutations specific to only one biopsy (private). a-e, (Bottom) Allelic
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copy number profiles. Molecular classifications for all primary and metastatic lesions are
denoted in colored squares to the right of each copy number panel in line with the TCGA
uterine cancer classification scheme, followed by time (months) between resection of
primary and metastatic lesions. Histological type, grade and FIGO stage is given for each
individual. Further clinical details are in Supplementary Table 1. Scale bars for mutations
are given for each case. Non-silent driver mutations are labeled in trees a,d, and e. Due to
the extremely high burden of mutations in b and c, only specific mutations are labeled
(those with amino acid changes labeled as recurrent in COSMIC). f-g, Phylogenies of
multi-met tumors profiled with Affymetrix SNP 6.0 Arrays.
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Supplementary Figure 1.14. Focal copy number alterations demonstrate separate

origins of metastasis in patient EC-1495.

a, A focal SNCA on chromosome 2 that is shared across all biopsies demonstrates that all

biopsies were of comparable purity and similarly able to detect SCNAs.

b-d, Focal SCNAs that are shared by two ovarian metastases and the primary biopsy but

absent in the biopsy from a vaginal metastasis. These SCNAs indicate that the ovarian

biopsies and the primary biopsy have a shared common ancestor that did not give rise to

the vaginal biopsy.
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No evidence of ubiquitous metastasis-specific mutations

We did not discover any significantly recurrent metastasis-specific mutations. It is

possible that infrequent metastasis-specific drivers remain undetected. To assess the

power to detect a hypothetical metastasis specific driver that occurs in a given percentage

of metastases, we "spiked" mutations corresponding to a hypothetical driver into our

dataset and then assessed whether we recovered the gene in question (Supplementary

Figure 1.15). Our power exceeded 90% for genes mutated in at least 50% of metastases

and remained greater than 50% for genes mutated in at least 20% of metastases. These

results indicate there are no metastasis-specific exomic mutations that recur in greater

than 50% of abdominopelvic metastases.

We also observed no significant excess of known driver mutations among

metastases. Among our 24 phylogenies, 19 exhibited the same number of driver

mutations in the primary and metastatic biopsies, four exhibited more drivers in the

metastasis, and one exhibited more drivers in the primary (p=0.38).
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Supplementary Figure 1.15. Power to detect metastasis specific drivers in this study.

Hypothetical drivers of metastasis were spiked into the set of mutations detected only in

metastasis biopsies that were used to search for metastasis-specific drivers. The fraction

of hypothetical drivers was varied and the rate at which MUTSIGCV2 recovered the

driver as significant (q<O.25) is plotted above. Error bars reflect binomial 95%

confidence intervals on the fraction of hypothetical drivers recovered.
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Heterogeneity within primary and metastasis biopsies reveals a seeding clone

We integrated allelic fraction data for each mutation with its local copy-number to

determine the fraction of cancer cells carrying each mutation. Different mutations

tended to cluster around similar cancer cell fractions, indicating the presence of subclonal

populations. Subclonal mutations were detected in all of the primary biopsies and 97%

(32/33) of the MBs. A median of 20.7% and 21.3% of mutations in biopsies from

metastases and primaries, respectively, were subclonal.

We focused on mutation clusters that were detected in more than one biopsy, but

subclonal in at least one of them, as these may indicate seeding patterns from one biopsy

to another (Figure 1.4B, Supplementary Figure 1.16). In one patient, this analysis

identified a clone within the PB that seeded the MBs (Figure 1.4C, Supplementary Figure

1.17). We did not, however, find evidence of either oligoclonal seeding of metastases or

re-seeding of either metastases or primaries. These results are consistent with a near-

ubiquitous 'branched-sibling' relationship between primary tumors and paired metastases

observed previously.
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Supplementary Figure 1.16. Possible phylogenetic patterns in analysis of 2D
mutation clonality
a, Where an unbiopsied subclone of the primary seeds a metastasis, no subclonal
mutations in the primary can be observed in the metastasis. A similar pattern would be
expected if the metastasis was seeded by a subclone of the biopsied part of the primary
tumor that was below the limit of detection.
b, Oligoclonal seeding of the metastasis by genetically distinquishable cells within the
primary would demonstrate a pattern in which subclonal mutations were shared between
the primary and the metastasis. Similarly, if a distinct subclone present within the
primary biopsy re-seeded the metastasis at a later time, subclonal mutations would be
shared between both the biopsies from the primary and the metastasis.
c, If a subclone of the biopsied portion of the primary tumor seeded the metastasis, then
the subclone of the primary would appear clonal in the metastasis (a', purple cluster).
Importantly, no private clonal mutations may be contained in the primary biopsy, as these
mutations would also be clonal in the metastasis.
d, If a subclone of the biopsied portion of the metastasis reseeds the biopsied portion of
the primary and performs a clonal sweep, the pattern in d would occur.
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Supplementary Figure 1.17. Mutations assigned to primary subclone that seeded

metastases in EC-004

2D confidence intervals on the cancer cell fraction (CCF) of mutations assigned to the

cluster of mutations that became clonal in the metastasis but was subclonal in the primary

for patient EC-004. The CCF of the mutation in the primary biopsy is plotted on the x-

axis and the CCF of the mutation in the metastasis biopsy (Vagina 1) is plotted on the y-

axis. The outermost ellipse represents the 95% confidence interval. Candidate driver

mutations are highlighted in red.
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Discussion

We present the first genome-wide analysis of genetic changes through endometrial cancer

progression including hyperplasias. primary tumors, and paired metastases. We observed

striking heterogeneity between biopsies of paired primary and metastatic tumors, with

only half of mutations shared on average between any two biopsies. These biopsies did

not fully sample these tumors, implying higher overall levels of heterogeneity than what

we measured.

Across primary endometrial cancers, we identified 16 novel significantly mutated

genes, owing in part to less stringent exclusion of indels in MSI tumors. Among these

was NRIPI, which was mutated in 12.5% of tumors. NRIPl is an obligate cofactor of the

estrogen receptor14 , and germline SNPs near NRIPJ have also been associated with ER-

positive breast cancer in GWAS studies38 . These data suggest that NRIPJ alterations are

common drivers of primary endometrial cancer oncogenesis. However, variations in

indel rates across the genome are not well-described, and NRIPI alterations were also

seen in MSI colorectal cancers. Further characterization of the functional effects of these

alterations is necessary.

The varying rates in heterogeneity across mutations in different genes indicate the

order in which these mutations are acquired during tumor evolution. In particular, likely

drivers of primary oncogenesis tend to be more homogenous than likely passengers.

Among the drivers, mutations in PIK3CA, PTEN, TP53, and PPP2RA occurred earlier

on average in tumor evolution. In the case of PIK3CA and PTEN, these findings from

advanced cancers mirror the findings in hyperplasias, which almost exclusively exhibited
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P13K pathway mutations, supporting hyperplasias as a genetically appropriate model of

early stages of advanced endometrial cancer

Conversely, mutations of the BAF chromatin remodeling complex subunit

ARIDJA were frequently heterogeneous. Recent studies have provided new therapeutic

leads, such as EZH2 inhibition 9 , to target ARIDJA-deficient cancers. The heterogeneity

of ARIDlA mutations raises questions regarding the likely efficacy of such therapeutic

interventions. However, it should be noted that convergent evolution involving ARIDJA

mutations was also observed, suggesting more homogenous pathway activation than

indicated by looking at specific mutations in ARIDIA. The finding of heterogeneity in

mutations affecting the BAF complex are in accordance with several other cancer

sequencing studies 8 -3 1 , but contrast with the role of BAF complex mutations in

malignant pediatric rhabdoid tumors in which SMARCBI mutation is typically the sole

driver of oncogenesis 40 .

We also observed different levels of heterogeneity across cancers. In particular,

we observed higher rates of heterogeneity between biopsies in tumors with more

mutations in each biopsy, suggesting a single biopsy can indicate overall levels of

heterogeneity across an entire tumor.

The finding that most of the biopsied metastases appeared to arise from the same

lineage could indicate that acquiring metastatic potential is a rare event in endometrial

cancers. It is possible, however, that it also reflects the timing of metastasis, whereby

additional lineages metastasize later but do not have time to grow to macroscopic sizes by

the time the first metastases are detected. Moreover, our analyses involved solely

abdominopelvic metastases, many of which were nodal. It is possible that metastases to
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other sites arise from other lineages. Multi-metastasis sequencing across more sites of

metastasis is necessary to comprehensively characterize phylogenetic patterns of

metastasis in endometrial and other cancers. Multi-metastasis sequencing across larger

numbers of patients may also reveal subpopulations of endometrial cancer in which

metastases arise from a larger number of lineages.

Our data did not support the hypothesis that seeding originated from multiple

clones, nor that re-seeding occurred, as has previously been detected in models of breast

cancer' and in prostate tumors>. However, our data are insufficient to reject the

hypothesis that these events occurred. Our biopsies of the primary tumor are unlikely to

reflect the full diversity of the primary, and some of the diversity within biopsies might

only be revealed with higher sequencing depth. Similarly, our data can neither refute nor

confirm recent mouse studies demonstrating seeding of metastases by clumps of adjacent

tumor cells 42 . These clumps would probably not appear as distinct entities in

phylogenetic analysis, because of their spatial proximity and hence likely identical

genetic makeup. In contrast to our finding of consistent branched evolution, a recent

study of recurrent gliomas following surgery and temozolomide therapy2 9, found a

variety of evolutionary relationships, including branched, linear or "intermediate-mixed"

phylogenies. However, the glioma data reflect recurrence after local resection rather than

metastasis. The bottlenecks involved in recurrence may be less stringent, allowing

persistence of multiple subclones that may repopulate the tumor.

The finding that metastases arise from a limited number of lineages within the

primary tumor suggests that the ability to metastasize is not a common feature among

primary endometrial cancer cells-further suggesting that metastasis requires additional
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events to those that are required for primary oncogenesis. However, we did not identify

metastasis-specific drivers. It may be that the drivers of metastasis are intergenic,

epigenetic, or environmental events that are not well-assessed by whole-exome

sequencing 7 . It is also possible that there is a great diversity of genetic events that

contribute to metastasis, each occurring in a small subset of metastatic cancers, and that

we had insufficient power to detect such rare events. Genomic analysis of much larger

numbers of paired primary and metastasis samples is therefore warranted.
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Methods

Sample collection and description

The investigations within this study were approved by the Norwegian Social Science

Data Services (15501), the local Institutional Review Board at Haukeland University

Hospital, Bergen, Norway (REK-number) and the Broad Institute, Cambridge MA, USA.

All patients consented to inclusion in this study. Samples were collected from Sept 2002-

Sept 2012. Biopsies were snap-frozen in liquid nitrogen and stored at -80'C. Tumor

purity was assessed by sections obtained by microtome prior to DNA extraction. Blood

samples were collected for reference as normal controls.

Assessment of microsatellite instability (MSI) status

MS1 testing was performed on all samples submitted to whole exome sequencing using

the marker set employed by TCGA4. DNA was whole-genome amplified using the

GenomePlex Complete Whole Genome Amplification kit (Sigma Aldrich). The probe set

consisted of BAT25, BAT26, BAT40, TGFBRII, D2S123, D5S346 and D17S250. No

markers were positive in the normal controls (blood). None of the patients in this study

were diagnosed with hereditary nonpolyposis colorectal cancer (HNPCC).

Exome Sequencing and SNP Array profiling

Genomic DNA was isolated from frozen tissues using the Qiagen DNAamp kit or a

standard proteinase K protocol. Samples were sequenced on an Illumina HiSeq-2000 to

an average of 77x depth. Affymetrix SNP 6.0 arrays were used for a subset of samples.

Three hyperplasias, out of 10 profiled, were found to have both an exceptionally low
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purity (less than 25% per ABSOLUTE analysis- 2 ) and low burden of mutations. Upon

manual review, the mutations whose allelic fractions were higher than 10% were

enriched in regions with low mapping quality. These three samples were therefore

excluded from further analyses.

ESR] p.Y537H and NRIPJ p.K728fs mutations were validated by Sanger sequencing

using an Applied Biosystem 3730XL Analyzer, as previously described.

Somatic mutation calling

Somatic mutations were called with MuTect 44 . OxoG artifacts were removed using the

Broad Institute OxoG3 filter . Insertions and deletions (indels) were called with

Indelocator. Additional indels were rescued according to the following previously

established criteria: at least 50 reads in both the tumor and normal, > 0.2 allelic fraction

for the variant read in the tumor, and <0.05 allelic fraction for the variant read in the

normal9 . To ensure the fidelity of this approach, we swapped tumor and normal labels to

determine the false positive rate of indel calls. A median of 0 and maximum of 2 indels

were falsely called exome-wide in this approach (Supplementary Figure 1.5A). In

contrast, we rescued more than 100 mutations in 13 tumor samples using this approach.

Copy number analysis

Relative copy number profiles from Affyretrix SNP 6.0 arrays were determined as

previously described". Relative copy number profiles from exome sequencing data were

determined by normalizing exome coverage data to values from blood controls and
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generates segmented copy-number profiles. These were paired with germline

heterozygous sites to obtain allele-specific relative copy-number profiles, as previously

described2 4,46 . The relative allele-specific copy number profiles were paired with exome

mutation data for each tumor sample as input to ABSOLUTE for final determination of

discrete allele-specific copy number profiles. The sequence of events that led to each

allelic copy number profile was inferred using a maximum parsimony approach'.

Mutation correlations analysis

The mutations detected in primary cancers from this cohort were combined with

mutations detected in endometrial cancers profiled by TCGA4 to detect correlations and

anticorrelations between mutated genes, using a previously described approach that

maintains the marginal counts of both the number of mutations within each sample and

the number of events within each gene . Ultramutated samples and rescued indels in

MSI tumors were excluded from this analysis. P-values were calculated using 10,000

permutations of the observed data. The network of correlated interactions was plotted

using Cytoscape where the negative-log of the q value for positive correlation is

proportional to the spring constant of an edge between two nodes.

Detection of subclones within biopsies

For each mutation, cancer cell fractions were calculated by ABSOLUTE. Information

from local allelic copy number, biopsy purity and variant allele counts were integrated to

calculate a posterior distribution over cancer cell fractions. PHYLOGIC 24 jointly clusters

the distributions of cancer cell fractions across each biopsy. The number of predicted
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subelones is likely to be smaller than the real number due to imprecision of calculated

posterior distributions on cancer cell fractions from 78x median sequencing depth. As

such, our estimates of subclonal heterogeneity are conservative.

For the analysis of cancer cell fraction of mutations in TCGA data, we performed

ABSOLUTE across all tumor samples in the TCGA endometrial dataset. ABSOLUTE

computes a probability distribution of the cancer cell fraction of each mutation and

includes a probability that each mutation is subclonal. To exclude the possibility that

passenger mutations in hypermutated samples could confound our analysis, we excluded

hypermutated samples (>1000 detected mutations) from this analysis.

We determined from this analysis that subclones were not shared across biopsies (with

the sole exception of the seeding clone in EC-004). enabling us to draw biopsy-level

phylogenetic trees.

Phylogenetic tree reconstruction

To improve the mutation calls in each biopsy, we implemented a "force-calling"

procedure. The union of all mutations observed in a given phylogeny was obtained. For

each biopsy., raw sequencing reads were re-examined at all sites for evidence of the

alterative allele originally called by the mutation caller. This procedure effectively

rescues true mutations that failed to reach the threshold of Mutect in a given biopsy.
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Phylogenetic trees were constructed using an implementation of clonal ordering. Force-

called mutations were converted into a binary incidence matrix depending on their

absence/presence in a set of paired biopsies. We calculated the power to detect each

mutation in each biopsy based on local allelic copy number and purity. Where a mutation

was not detected in one biopsy, but power to detect it was less than 0.95, the mutation

was excluded from the incidence matrix and separately annotated. A distance matrix was

computed from the final incidence matrix using the following distance metric:

1
da,b +% -a Mb

where ma corresponds to the binary vector of mutations in biopsy a and 'il is the vector

describing biopsy b. Hierarchical clustering of this distance matrix was performed using

the complete linkage method in R.

Haplotype tracking across tumor biopsies

Germline heterozygous sites were determined from exome sequencing of the normal

blood control sample. The allelic fraction of these sites was determined at each site in the

exome in all paired tumor samples (primaries and metastases). Purity estimates (p) from

ABSOLUTE were used to generate purity-adjusted minor allelic fractions (mAF) at each

site.

1
mAF - G --P)

mAFcorrected - -

These allelic fractions were multiplied by the local total copy number (CNT) by

ABSOLUTE to graph a point estimate for each SNP of the major and minor tumor
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alleles. A point estimate for the minor allelic copy number (mACA) at each site was

calculated as follows:

mACN = CNr x mAFcorrected

The major allele in the reference tumor for each site was defined as whichever allele

count was greater (variant vs. reference). The expected major allele at each SNP was

colored red in the resulting plot. In the test tumor, the same major and minor alleles

estimated from the reference (primary) tumor are used and colored accordingly.

Haplotype tracking was performed across every pair-wise comparison in the cohort.

Resulting plots were manually reviewed for discordant tumor haplotype alterations.

Instances in which the haplotype undergoing copy loss/gain in the test tumor is opposite

the haplotype undergoing loss/gain in the reference tumor indicate separate events in the

genetic history of the tumor. Raw plots for selected chromosomes for case EC-018 are

shown in Supplementary Figure 1.10.

Significance analysis of primary endometrial cancers

We combined the force-called mutation lists (without indel rescue) from our primary

tumors with the mutations from the TCGA'0 . We applied MUTSIG2CV on this list of

mutations. Genes with q-values less than 0.1 were considered significantly mutated.

Separately, we combined the force-called mutation lists (with indel rescue) from our

primary tumors with the mutations from TCGA that included indel rescue9. We
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considered any genes that were mutated in greater than 10% of samples and whose q-

value was less than 10-5 as significant.

Significance analysis of metastasis-associated drivers

For each phylogeny in our dataset, we selected the set of mutations that were detected in

every paired metastasis biopsy that were not detected in the biopsy of the primary tumor.

We applied MUTSIG2CV to this set of mutations and considered any mutations whose q-

value was less than 0.25 as significant.

Power to detect metastasis-associated drivers

We used an empirical approach to determine our power to detect mutations that conferred

the ability to metastasize. We used the list of metastasis-specific mutations that we

previously constructed as a pool into which we "spiked" hypothetical driver gene

mutations at decreasing frequencies. We then assessed the rate at which these

hypothetical driver genes were recovered as significant (q<0.25).

Percentage of mutations in driver genes found in all biopsies

To calculate the percentage of mutations in each driver gene that were truncal, we used

force-calling mutation lists annotated with detection power from ABSOLUTE. We then

determined whether the mutation was detected in all biopsies from the same patient. If

the mutation was present in all biopsies, then the number of trunk mutations was

incremented by one. If a mutation was not detected in a given biopsy, and power to detect

a single alternate read of the mutation was greater than 0.8, the number of branch
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mutations was incremented by one. If there was not sufficient power to detect the

mutation in one or more biopsies lacking the mutation, then the mutation was not counted

towards the trunk or branch counts. To exclude that possibility that passenger mutations

in driver genes could confound our analysis, two phylogenies with POLE exonuclease

mutations and ultramutated genomes (15,095 and 30,601 mutations detected) were

excluded from this analysis.
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Supplementary Note

Here we describe the methods we used to determine the most likely number of lineages in

the primary tumor that contribute to metastases that are large enough to biopsy

("metastatic-potential lineages", or MPLs), and the likely fraction F of the primary tumor

occupied by each of these of these MPLs.

Estimation of the fraction of the primary tumor capable of metastasis assuming a

single lineage with metastatic potential

To simplify the explanation, we first consider F, and specifically in the case that the

primary contains only one MPL. In that case, if F is small, biopsies of the primary tumor

(PBs) are unlikely to have sampled the MPL. Therefore, all metastasis biopsies (MBs)

will be more closely related to each other than any is to the PB. Conversely, if F is large,

PBs may have sampled the MPL, and in some cases an MB may be more closely related

to the PB than to the other MBs.

We use Bayes' theorem to calculate the posterior distribution on F given the trees T that

we observe:

P(FIT) = P(TIF)P(F)
P(T)

where P(T IF) is the probability of observing T given F.
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We consider specifically the tree structure 7' in which all MBs exhibit monophyly (i.e.

they are more closely related to each other than to the PB). In that case, either the PB

was within the MPL but nevertheless more distant from the MBs than the MBs are from

each other, or the PB was not within the MPL. We write this as follows:

P(T m IF) = P(M n DIF) + P(-,MIF) (2)

where P(Al) is the probability that the PB falls within the MPL and P(D) is the

probability that the PB is the most distant biopsy in the phylogeny. By definition,

P(MIF) = F (3)

and therefore:

P(-,MIF) = 1 - F (4)

Furthermore,

P(M n DIF) = P(MIF) * P(DIM, F) = F * P(D|M, F) (5)

To determine P(DIM,F), we consider all possible tree structures as equally likely if the

PB falls within the MPL. Among these, D is only possible if all the MBs form an

unbroken clade in the phylogenetic tree. Such a state requires that the tree structure

contains an unbroken clade with a number of leaves equal to the number of MBs, and

further requires that the PB happens to occupy the most distant leaf.
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We call the state in which the tree structure contains an unbroken clade with a number of

leaves equal to the number of MBs state U. We determined its probability P(U) using

the Yule-Harding-Kingman (YHK) process (for a more advanced discussion and proof,

see Zhu et al3 4). In the case of three biopsies (two MBs and one PB), P(U) = 1. In the

case of four biopsies (three MBs and one PB), P(U) = 2/3.

Assuming U applies, to achieve D the primary biopsy would also have to occupy the

most distant leaf. Given a tree structure, the probability of a given labeled tree is

calculated by considering all unique permutations of its leaves. With n biopsies overall,

including the one PB and n-I MBs, the probability P(D I U) that the PB is the most distant

leaf is thus 1/n.

Therefore,

P(D) =P(U) (6)
nbiopsies

For the case of 2 metastases and I primary biopsy, P(D)=1/3. For the case of 3 metastases

and I primary biopsy, P(D) = 1/6 because the P(U) under YHK is 2/3 and P(DIU) is 1/4.

Combining the equations above, we obtain:

P(TmIF) = F* P(U) + (1 - F). (7)
nbiopsies
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Necessarily,

P (iTmIF) = 1 - P(TIF). (8)

To calculate P(FjT), we use equations 1 and 6 and iteratively observe trees. After each

observation we update the prior, P( F), to be the posterior P(Fj T) given the trees before, as

follows:

-. P(TiIF)P(FITO _1i)

P(FTO ... ) = ;P(FIT) = 1, (9)
P (T )

where T represents the ith tree and P(F|' j.i) represents all trees through T;. Note that

this process assumes the same F and n,,pi apply to all trees. We discuss below how

variations between trees might affect our results.

Joint estimation of F and the number of MPLs

In the setting of more than one MPL, we can obtain monophyly either because all MBs

derive from the same MPL (we call this state M 1), or if the MBs derive from different

MBLs (state M2) but the PB nevertheless occupies the most distant leaf on the tree. This

implies:

P(TmIlmpi, F) = P(M1)x P(Tm IM1, F) + P(M2)x P(T mIM2, F),
(10)
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Where nfmpi refers to the number of MPLs. Note that P(M 1) and P(M 2) do not depend on

F.

P(Tm IM1, F) is given by equation 7 above, except that in this case F must be adjusted

for the fact that it is divided between all MPLs. For simplicity, we assume this division is

equal, so that:

P(T. IM1, F ) = * P(U)_ F

nmplxfbiopsies 7
mp1

Calculating P(Tm 1M2 , F), P(MI), and P(M 2) depend critically on the number of MBs

and PBs. We will describe the calculation for two MBs and one PB (indicated by

subscripts 2m and Ip below). In this case,

P(M1) 2 mp = , (12)

P(M2)2m,1p = 1 - P(M) 2mip - mpI , (13)

and

P(TmIM2, F)2 maip = 1/3 (14)

because by definition, the distinct MPLs evolved independently and therefore share no

increased relation to one another than a random biopsy of the primary tumor. Moreover,

equation 11 reduces to:
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P(TmIM1, F)2mip = F + 11 -2 F. (15)
3 nmp, \ 7Imp) 3 71npt

Putting these together,

P(TmI nmpi, F) 2mip = 1 - + rmpl 4  (16)
Mpt mp,

Considering multiple trees, we can calculate:

P(T IF, nmpi) = flrees P(T.IF, nmpi). (17)

We then calculate the probability distribution over F and nmPt given T using Bayes' rule:

=P(Trmpi,F)P(F,nmpj)
P(F, n,p,1 -* - ( P(r) (18)

We assume that the prior probability distributions over F and n,,p are independent, so

that:

P(F,nmpl) = P(F)XP(nmpi). (19)

We assume a uniform prior over F [i.e., P(F) = I for all values between 0 and 1]. In

theory, n,,,. can range from 1 to infinity. In this case, a uniform prior would be improper

(non-normalizable). We therefore used Rissanen's universal prior on integers 47 as

P(nlmpt). Rissanen's prior also accounts for the increased relative precision of posterior

estimates on n,np when n,,P1 is small.
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Results and effects of variations in F and n,,,pl between trees

Applied to the endometrial cancer dataset, these calculations indicate the typical primary

cancer has only one MPL with a 92% probability, and that this MPL comprises a

substantial fraction of the primary tumor with an expectation value of 30%.

The result that n,,, is most likely one is due to the finding that six of the seven

endometrial cancer trees we evaluated exhibited monophyly, a result that is unlikely if

two or more MPLs were present and generated similar numbers of metastases that could

be biopsied. Even in the case of a single tree with two MBs and one PB, and assuming F

is near-zero (the assumptions that maximize estimates of n,,,i), the presence of two MPLs

would tend to generate polyphyly in two-thirds of cases. The finding that six of seven

trees exhibited monophyly, in some cases with more than two metastases, would be

highly unlikely under such circumstances (p=0.007). This likelihood decreases if more

MPLs are assumed (p=0.00I for infinite MPLs). For these reasons, it seems likely that

the ninpl is one or near-one for most of these trees and, by generalization, the typical

metastatic endometrial cancer.

The finding that F has an expectation value of 30% rather than near-zero is due to the

presence of one tree that did not exhibit monophyly for the MBs. In the models above

and assuming ninpl is one in all cases, this could only occur if the PB sampled the MPL,

which is only likely if F is non-zero.
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However, it is possible that the one tree with polyphyly reflected a tumor with more than

one MPL, even if many of the other tumors had only one MPL. In such a case, F could

be near-zero and polyphyly nevertheless be observed in that one tree. For these reasons,

the conclusion that F in not near-zero is less reliable than the conclusion than n,,,, is one

or near-one for most trees.
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Chapter 3: Genome-wide copy number synthetic lethal

analysis identifies partial copy loss of SF3B1 as a novel cancer

vulnerability

Abstract

One of the hallmarks of cancer is genomic instability, resulting in widespread

somatic copy number alterations. We use genome-scale shRNA screening data to

perform an unbiased analysis of all copy-number:gene-dependency interactions.

We find an enriched class of interactions in which hemizygous loss of essential

genes sensitizes cells to their further suppression. We validate one of these

interactions for the splicing factor SF3B1. Cancer cells harboring loss of SF3B1 lack a

reservoir of SF3b complex that protects cells whose SF3B1 locus is intact in the face

of SF3B1 suppression. These data provide evidence that copy-number synthetic

lethal approaches may serve as a useful means for developing novel cancer

therapeutics.

Introduction

During the course of tumorigenesis, the majority of cancers undergo genomic structural

alterations affecting the number of copies of each gene '. Such somatic copy number

alterations (SCNAs) result in either gains or losses of genetic material affecting many

regions across a cancer's genome. Genes located within SCNAs may promote the

oncogenic phenotype and are thought to be cancer "driver events", which undergo



positive selection due to their effects on oncogenes or tumor suppressor genes that drive

tumor development.

Frequently, SCNAs encompass broad chromosomal regions and affect hundreds

to thousands of neighboring genes, including essential genes, that do not affect the

oncogenic phenotype are considered to be "passenger events". Much effort has been

placed on the development of therapeutics that target cancer driver events including those

arising from SCNAs, such as amplifications of MYC 2, and CCNDJ 3. However, a

systematic and genome-wide evaluation of the landscape of copy-number associated

cancer vulnerabilities has not been conducted to date. Besides driver gene-associated

SCNA vulnerabilities, targeting non-driver genes in cancer represents a potential new

approach for cancer treatment that could be extended to a large number of novel

therapeutic targets.

Non-driver dependencies can arise in cancer as a result of structural alterations

during tumorigenesis. Compared to normal cells, cancer cells can rely on SCNAs to drive

altered signaling pathways that maintain their oncogenic state. For example, inactivation

of a tumor suppressor gene by deletion can initiate tumorigenesis but often coincides with

loss of an entire chromosome arm, or chromosome. These broad events inadvertently

delete hundreds to thousands of presumably normal genes 4, some of which are essential

to cell survival. It is possible that structural alterations create an opportunity to selectively

kill tumor cells that harbor hemizygously deleted essential genes while normal diploid

cells can tolerate partial gene suppression (Figure 2AA).

We surveyed the landscape of copy-number associated vulnerabilities by

integrating copy-number data from cancer cell lines with a genome-wide shRNA screen
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for cell viability. We determined which genes, when altered by SCNAs, result in cancer

dependencies when the same or different gene is suppressed. We find that many of the

SCNA-associated dependencies result from copy-loss of a gene sensitizing cells to

further suppression of that same gene. We previously named these CYCLOPS (copy

number alterations yielding cancer liabilities owing to partial loss) genes. Amongst the

CYCLOPS gene list, one of the most significantly enriched pathways identified was the

spliceosome.

The spliceosome, which removes introns and ligates exons from nascent pre-

mRNAs 5, represents a novel target for anti-cancer therapies 6-8. While spliceosome

function is essential for cell survival, recent evidence suggests that mutation of

spliceosome components may be driver events in many cancer types 9-2 Small molecule

inhibitors of mRNA splicing have shown the ability to potently kill cancer cells 3. The

existence of spliceosome inhibitors raises the possibility of a "therapeutic window" for

pharmacologic targeting of cancer cells either harboring loss of spliceosome-associated

CYCLOPS genes or dependent on a splicing factor driver mutation.

Hlere we identify common genomic features of CYCLOPS genes and characterize

the U2 snRNP component, SF3BJ, as a CYCLOPS gene. We find that hemizygous loss

of CYCLOPS genes are common in cancer genomes and represent a subset of cell-

essential genes with genornic features unique from other essential genes. We demonstrate

that cells with partial copy loss of SF3B] are highly vulnerable to further SF3BJ

suppression. The identification of SF3B] as a CYCLOPS gene highlights a previously

unrecognized cancer vulnerability and suggests that inhibition of WT SF3B1 can be a

potential therapeutic strategy for treatment of SF3Bl1"'" tumors.
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Results

Analysis of Genome-Wide Copy-Number Induced Cancer Dependencies

We interrogated copy-number associated vulnerabilities genome-wide across 179

cell lines by integrating dependency data from Project Achilles 14 with copy-number

profiles generated across 1.8 million loci 15 (Figure 2. lA). The dependency data

represented the effects on proliferation of 55,416 shRNAs against 11,589 genes,

measured in each line as z-scored fold-changes in cells carrying shRNAs against each

targeted gene 16. For every pair of genes, we calculated Pearson correlations between the

copy-number of the first gene and the dependency score of the second. We excluded

correlations involving dependency scores of genes for which we did not observe

consistent results between at least two shRNAs, resulting in 6,192 gene dependency

scores and 156,076,513 pairings in total. We calculated p-values for each correlation and

false discovery rate q-values to correct for multiple hypotheses.

We identified 2,375 significant copy-number:gene-dependency interactions with

q<0. 1 (Table 1). In 2,309 cases, these represented redundant data resulting from

associations between a gene dependency profile and identical copy-number profiles from

neighboring genes. After excluding these, we identified 66 independent significant copy-

number:gene-dependency interactions.

Approximately two-thirds (69.7%) of these significant interactions involved genes

on separate chromosomes (trans interactions). Trans interactions had both positive

(23/46) and negative Pearson correlations (23/46), indicating instances where cells were

sensitized to suppression of some gene by either copy-loss or gain respectively from a

different genomic region. In contrast, all but one interaction (19/20) between genes on the
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same chromosome (cis interactions) had positive Pearson correlations and indeed

involved copy-loss of a gene being associated with sensitivity to cells to further

suppression of that same gene. As a result, 63.6% of all 66 significant copy-number:gene-

dependency interactions were associated with copy-loss rather than gain (p=0.009).

Enhanced Identification of CYCLOPS Genes

The genes involved in cis interactions whereby copy-loss implies further

dependency on that same gene have previously been tenned CYCLOPS (copy number

alterations yielding cancer liabilities owing to partial loss) genes. Although they represent

less than 0.003% of all potential interactions, they constitute nearly one-third (28.8%) of

all significant interactions.

The prevalence of CYCLOPS vulnerabilities is partly the result of frequent

genomic loss in cancer genomes. We evaluated the fraction of the genome that undergoes

relative copy-loss across 10,570 cancers spanning 31 cancer types profiled by The Cancer

Genome Atlas, and found that 18.9% of the genome undergoes loss in the average cancer

(Figure S2.IA), mainly due to losses encompassing chromosome arms or entire

chromosome (Figure S2.1B) 17. Indeed, loss of a tumor suppressor often involves such

arm-level losses (Figure S2.1 C). The fraction of the genome lost ranged from an average

of 1.3% in thyroid cancer to 34.4% in ovarian cancer (Figure S2.1 D).

To enhance the identification of CYCLOPS genes, we specifically compared gene

dependencies for each gene between cell lines with and without loss of that gene. We

permuted class labels to calculate p-values and False Discovery Rate q-values, and
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considered q<O.1 to be significant. This analysis identified 124 candidate CYCLOPS

genes (Table S2).

Gene set enrichment analysis revealed candidate CYCLOPS genes were most

highly enriched for members of the spliceosome and the proteasome (Figure S2.1 E),

consistent with previous analyses '. Of the 124 CYCLOPS genes, II are members of the

proteasome and 20 are members of the spliceosome. These genes were distributed across

all autosomes (Figure S2.1 F) and were biased towards areas of frequent copy-loss (p

2.2x10-1 6), perhaps resulting from greater power to detect CYCLOPS genes in these

regions.
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Figure 2.1: Analysis of synthetic lethal interactions with copy-number. (A)

Schematic describing the approach to identify copy-number induced cancer

dependencies. (B) The number of CYCLOPS genes lost per tumor in the TCGA for

indicated tumor types. Horizontal black lines represent mean number of genes per tumor

type. (C) Schematic describing the approach to identify CYCLOPS genes. (D) Variance

of gene expression between all genes, essential genes and CYCLOPS genes.
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Figure S2.1, related to Figure 2.1: (A) Fraction of the genome undergoing copy loss in

10,570 tumors analyzed in the TCGA. (B) The fraction of deleted regions resulting from

deletion events of the indicated size. Most deleted regions undergo loss as a result of

losses involving whole chromosomes. (C) Schematic depicting the hemizygous loss of

passenger essential genes during biallelic inactivation of a tumor suppressor gene. (D)

The percent of the genome that is hemizygously lost in the indicated tumor types (E)

Summary of significantly enriched gene sets among CYCLOPS genes (F) Distribution of

CYCLOPS genes throughout the genome (G) (top) The average difference in dependency

scores of cell lines harboring mutations in the indicated genes when said gene is

suppressed. For CTNNB 1, APC mutations were considered in the two-class comparison.

(bottom)
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Strength and Prevalence of CYCLOPS vulnerabilities

To determine the relative strength of CYCLOPS dependencies in the Achilles

dataset, we compared CYCLOPS effects to that of the average strength of known

oncogene-induced dependencies. We calculated the strength of oncogene dependencies in

the Achilles dataset after suppression of the known driver gene between cell lines with

the driver gene alteration to those without the driver gene alteration (genes used were

BRAF, KRAS, NRAS, CTNNB I or PIK3CA mutant cell lines). At the typical rate of

genomic loss (18.9%), the CYCLOPS analysis obtained 99.5% power to detect cancer

vulnerabilities with 50% of the strength of the average oncogene dependency (Figure

S2. IG). In total we find 3 CYCLOPS genes with dependency scores greater than or

equal to the average mutated oncogene induced dependency.

Partial copy-loss of CYCLOPS genes are frequent events in cancer genomes.

Among the 7,232 TCGA cancers with ABSOLUTE data, 71.6% of tumors harbored loss

of at least one CYCLOPS gene (Figure 2.1 B). The average number of CYCLOPS genes

lost per tumor ranged from I in thyroid cancer to 47 in ovarian cancer. These data

suggest that a large fraction of patients may benefit from therapies that target CYCLOPS

vulnerabilities. Taken together these data suggest that CYCLOPS vulnerabilities are

common and often lead to oncogene-equivalent vulnerabilities.

Genomic Features Associated with CYCLOPS Genes

CYCLOPS genes displayed significantly less variability in gene expression values

across tissues. We surveyed RNA-sequencing data from 2,342 samples across 42 tissues

in the GTEX database to quantify the relative variance in expression of CYCLOPS genes.
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For every gene in the genome, we calculated their expression variance across all samples

and ranked their variance among the 20 genes with the most similar expression level. The

expression of both essential genes and CYCLOPS genes varied significantly less than the

average gene analyzed (p=3.4x1 0- and p=LW.8x10 respectively), but CYCLOPS gene

expression varied even less than essential genes (Figure 2.1 D, p=0.07). These data

suggest that CYCLOPS genes are consistently expressed across tissues, consistent with

their role as a subset of cell-essential genes.

SF3BJ is a CYCLOPS gene

SF3BJ was among the most significant candidate genes in our CYCLOPS

analysis (Table 1). SF3BI is an mRNA splicing factor that directs the U2 snRNP to

intronic branch-point sequences to determine 3' splice-site selection'8 . Cells with SF3BJ

copy-loss exhibited significantly reduced viability to SF3BJ suppression while cells

without SF3BI copy-loss did not from our CYCLOPS analysis (mean dependency scores

of -1.14 and 0.01 respectively, p<l xl0).

SF3BJ is partially lost in 10.8% of the 10,570 cancers from the TCGA PanCan

dataset (see Methods for definitions of copy number states). Losses were most frequent in

invasive breast adenocarcinoma (20.2%), urothelial bladder carcinoma (31.8%) and

chomophobe kidney carcinoma (71.2%). Genomic deletions of SF3BJ are rarely focal

events (2.1 % of cancers) and are never homozygous (0/ 10,570 cancers), consistent with

characterization of SF3BJ as an essential gene' 9' 20. Similarly, analysis of copy number

alterations from 1042 cancer cell lines in CCLE indicated 24.1% of cell lines harbor

hemizygous SF3BJ deletion, including 16/61 (26.2%) of breast cancer cell lines, but

never homozygous loss (0/1042 cell lines).
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We confirmed the vulnerability of SF3BJl"' cells to SF3BJ suppression in both

breast and hematopoietic lineages. We used at least two hairpins against SF3BJ targeting

separate regions of the gene and found they generated similar levels of SF3BJ

knockdown across ten breast cell lines (Figure S2.2A). We then tested the growth of six

of these lines using CelITiterGlo, including three lines with SF3BJ copy-loss (SF3B1's)

and three without either loss or gain of the gene (SF3BJ1"""rl). Upon SF3BJ suppression,

the SF3BJ1" cells exhibited significant growth defects but the SF3Bneutral cells did not

(Figure 2.2A).

We generated isogenic SF3Bl" cells from the SF3B""eur cell line Cal51 using

two independent methods by CRISPR (see Methods). The first cell line contained a frame

shift mutation inactivating one SF3B1 allele (CRISPRfameshift-loss). In a second cell line,

we generated a deletion of one copy of the SF3BJ locus by co-expressing two sgRNAs,

one upstream targeting a heterozygous SNP, and one downstream of SF3BI (CRISPRoPy

loss). In both cases (collectively called CRISPRss), CRISPR-mediated SF3B 1 loss

resulted in decreased growth upon SF3B1 suppression relative to cells that were

generated in parallel but did not produce inactivating alleles (CRISPRneutraI cells; Figure

2.2A and S2.2B).

We confirmed the vulnerability of the SF3B1'" cells to SF3BJ suppression using

a GFP-competition assay in which we compared the proliferation rate of uninfected cells

co-cultured with cells infected with a vector that co-expressed GFP and an shRNA

targeting either LacZ or SF3BJ. The expression of LacZ or SF3B] shRNAs did not result

in significant changes in proliferation of SF3BJ"""a cells in seven cell lines, including

the non-transformed mammary cell line, MCFIOA (Figure 22.B and S2.2C). However,
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SF3B1]"ss cells expressing SF3B] shRNAs we not compatible with long term culture

(Figure 2.2B and S2.2C) and are consistent with our previous growth assays (Figure

2.2A).

The SF3BJ CYCLOPS vulnerability is not recapitulated by suppression of other

SF3B complex members. We calculated Pearson correlation coefficients between

Achilles RNAi sensitivity data of each SF3B complex member in SF3B"OS cells. Besides

SF3BI suppression, we did not find strong correlations between copy-loss of SF3BJ and

sensitivity to suppression of a different SF3b member, suggesting that CYCLOPS effects

are specific to each gene hemizygously lost and suppression of that same gene (Figure

S2.2D)

Likewise, although multiple SF3b complex members are candidate CYCLOPS

genes (Table 1), copy-loss of these genes does not confer susceptibility to SF3BI

suppression (Figure S2.2D). Pearson correlation coefficients were calculated using

Achilles RNAi sensitivity data for each SF3b complex component and log2 copy number

ratios for another SF3b component. No association reached statistical significance.

Suppression of SF3BI leads to both cell cycle arrest and apoptosis in SF3B1""'

but not SF3 B""""l lines. We generated cultures containing a tetracycline inducible

system expressing hairpins targeting Luciferase or SF3BJ (TR-shSF3B 1 #3 and an

additional hairpin, TR-shSF3 B1#5, Figure S2.2E), enabling uS to discriminate SF3BI

suppression from infection with shRNA vectors. Consistent with stable SF3B]

suppression, inducible SF3B1 suppression retards SF3B1'"o cell growth and does not

affect SF3B1"eu1'(j growth (Figure S2.2F) and reduces cell viability in SF3B1 l"s cells but

not in SF3BI""eu"" cells (Figures 2.2C and 2.2D). SF3B I""v cells had significantly
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increased proportions of cells in G2/M phase after SF3BJ suppression, which did not

occur in SF3BJ"""" cells (Figure 2.2E). Subsequent to G2/M arrest, SF3Bs's cells

further exhibited a significant induction in apoptosis as determined by increased number

of AnnexinV/PI-positive cells that were not observed in SF3BneuraI cells (Figure 2.2F).

Expression of exogenous SF3BJ rescued the loss of cell viability in SF3B"""

cells, confirming the specificity of our shRNAs. We used a lentiviral construct expressing

a codon-optimized SF3BJ ORF, which is resistant to shRNA suppression, fused to an

IRES GFP sequence (SF3B1 w-IRES-GFP). When placed in competition, cells infected

and not infected with SF3B1 T-IRES-GFP maintained constant ratios over 10 days

(Figure 2G), suggesting that short-term expression of SF3B] does not alter cellular

fitness in either SF3 BIneutral or SF3B1'""s cells. Next, we concomitantly suppressed

endogenous SF3BJ in all cells and expressed SF3B1' T-IRES-GFP in -50% of cells.

While SF3Bneuol cells were not affected by SF3BJ suppression, SF3B1"OS cells

expressing shSF3BJ were not compatible with long-term culture. Importantly, SF3B10"""

cells expressing both shSF3B1 and SF3B WT-IRES-GFP persisted in culture (Figure

2.2H), indicating that re-expression of SF3B] is sufficient to prevent cell death mediated

by shRNA suppression of SF3B1. Furthermore, SF3B"Os cells expressing both shSF3BJ

and SF3BJ T-IRES-GFP had a 20 fold increased in GFP fluorescence, suggesting that the

exogenous SF3BJ construct was more highly expressed in SF3BI"OS cells after

suppression of endogenous SF3BJ (Figure S2.2G). Furthermore, stable exogenous SF3BJ

expression is sufficient to restore the proliferation of SF3BJl" cells expressing shRNAs

targeting SF3BJ (Figure 2.21 and Figure S2.2H). Taken together, data summarized in

Figure 2.2 support the characterization of SF3B1 as a CYCLOPS gene.
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SF3B1I copy-loss cells induced by CRISPR after treatment with siRNAs targeting LacZ

or SF3BI. (C) The effect of SF3BJ suppression on 6 breast and 5 hematopoietic cell lines

expressing shLacZ-GFP (black) or shSF3BI#4-GFP (grey). (D) Heatmap of Pearson

correlation coefficients indicating the relationship between copy loss of SF3B complex

members (columns) and sensitivity of those cells to suppression of SF3B complex

members by shRNA (rows). (E) Quantitative RT-PCR of SF3BJ expression in cells

expressing doxycycline-inducible SF3BJ shRNAs. (F) Cell Titer Glo growth assays in

cells expressing doxycycline-inducible SF3BJ shRNAs. (G) GFP fluorescence

quantification from cells expressing SF3B 1 -IRES-GFP constructs without and with

suppression of endogenous SF3BJ by doxycycline. (H) SF3B I immunoblot from

HCC1954 cells expressing LacZ or SF3B1.
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Figure 2.2: Characterization of SF3B1 as a CYCLOPS gene. (A) Cell-titer glo growth

assays in breast cancer cell lines expressing shLacZ (black) or shSF3B I (red and orange).

Data represents mean +/- SD, SF3B I l (n=6), SF31B I"" (n=5). (B) The effect of

SF3BJ suppression on the ratio of GFP+ cells expressing either shLacZ-GFP or

shSF3BI-GFP. Error bars represent +/- SD. (C) Propidium iodide viability from cells
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expressing shLacZ or two SF3BI hairpins (shSF3Bl#3 and shSF3Bl#4). Error bars

represent +/- SD. (D) Propidium iodide viability from cells expressing doxycycline

activated SF3B1 hairpins (TR-shSF3Bl#3 and TRshSF3B1#5), n=3 for each group. (E)

Cell cycle distribution upon SF3B1 suppression. Data are mean +/- SD, n=3 for each

group. (F) Quantification of apoptosis upon SF3BJ suppression by AnnexinV/P flow

cytometry. Data are mean +/- SD. (G) Change in ratio of cells expressing SF3BI-GFP or

uninfected cells. Representative experiment performed in duplicate. (H) Change in ratio

of cells expressing shSF3BI with or without expression of SF3B1 -GFP. Representative

experiment from two biological replicates. (I) Cell Titer Glo growth assay in LacZ or

SF3B1I expressing SF3BI"O" cells upon SF3BJ suppression. For all panels, *p<0.05

**p<0.0l ***p<0.00l. See also Figure S2.
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SF3Bneu"r"" cells contain excess SF3B1 beyond the requirement for survival

Analyses of SF3B1 mRNA indicates that SF3B]t"uial cells tolerate partial SF3BI

suppression because they express more SF3B1 I than they require. In both TCGA breast

adenocarcinoma data (777 samples) 21 and the Cancer Cell Line Encyclopedia (947 cell

lines) 15, SF3B]n""a samples had significantly higher expression of SF3BJ mRNA

relative to SF3B1l'"s samples (Figure 2.3A and S3A; TCGA Mann-Whitney p<l xl04,

CCLE Mann-Whitney p<l xl 04), suggesting excess mRNA over requirements for

survival. We validated that SF3B1"""" breast cancer cell lines (n=7) express

approximately twice as much SF3B1 mRNA as SF3BJ'"s cells (n=5) by quantitative PCR

(Figure 2.3B; p<1x10 4 ) and found similar SF3B1 expression changes between the

CRISPRnei tral and CRISPRO's lines; Figure S2.3B).

These differences in SF3BJ mRNA expression were recapitulated at the protein

level. Among breast cancer lines, Western blots indicated increased SF3B1 protein

expression in SF3B1""""' compared to SF3B'" S cells (Figure 2.3C) and these differences

were recapitulated in CRISPR,CtaI vs. CRISPR a..eshit-Oss cells (Figure 2.3D).

These observations suggest that SF3Be"tr"l cells tolerate partial SF3B1

suppression because moderate SF3B1 suppression leaves them with sufficient residual

protein for survival. Indeed, immunoblots of SF3B1"""" cells after SF3B I suppression

indicated detectable SF3B I levels, whereas no protein could be detected in SF3Bs'"

cells after SF3B1 suppression (Figure 2.3E).

A systematic analysis of shRNA-induced mRNA suppression across SF3BJ )1"L'"l

and SF3B]""I lines indicated that SF3BI mRNA levels can be reduced by -60% from

SFB1""eutrl cell basal levels before proliferation defects are apparent (Figure 2.3F). We
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suppressed SF3BJ using shRNAs with different potency to generate a range of SF3BJ

suppression in neutral and copy-loss cells. Although similar reductions in SF3BI

expression were obtained in SF3B neutral and SF3BJ "s lines, the elevated basal levels of

SF3BJ expression in SF3B"""'"' lines enabled them to retain sufficient SF3BJ for

proliferation despite shRNA expression.
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Figure 2.3: SF3B1'l" cells have reduced SF3B sub-complex to butler U2 snRNP

assembly. (A) SF3B] expression from 777 breast adenocarcinomas segregated by SF3BI

copy number. (B) Quantitative RT-PCR of SF3BJ expression in breast cancer cell lines.

Data points represent individual cell lines, horizontal line indicates mean and error bars

are +/- SD. (C) SF3B1I levels in breast cancer cell lines by western blot. (D) Serial

dilution of lysates from CRISPR UrIa and CRISPR'mes ia-loss cells probed by immunoblot

for SF3B1. (E) SF3B1 immunoblot from SF3Blne t nI and SF3B"s cells without and

with TR-shSF3B 1#5 induction. (F) Schematic combining data indicating reduction in

proliferation by cell titer glo assay (red=high proliferation, blue=low proliferation), and

relative level of SF3Bl expression before and after SF313I suppression detected by
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qPCR. Data points with multiple arrows represent individual cell lines with more than

one SF3B1I shRNA assayed. Dashed line represents the minimum threshold of SF3BI

expression required for survival. For all panels, *p<0.05 **p<0.01 ***p<0.001. See also

Figure S3.
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Figure S2.3, related to Figure 2.3: (A) SF3BJ expression from 974 cell lines classified

by SF3BJ copy-number status. *p<0.0001. (B) SF3B 1 RNA expression measured by

qPCR in isogenic cells engineered to be SF3BI. CRISPR cell lines refer to cell lines in

which one allele was inactivated by CRISPR.
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SF3B1 copy-loss selectively reduces the abundance of the SF3b complex

We next asked whether the reduction of SF3BI protein expression in SF3BI loss

cells preferentially altered specific SF3B -containing complexes. SF3B1I is a component

of the seven-member SF3b sub-complex of the U2 snRNP. Incorporation of SF3b into the

U2 snRNP 12S "core" forms the 15S U2 snRNP, which combines with SF3a to form the

full 17S U2 snRNP (Figure 2.4A) 2.

We therefore interrogated expression levels of native SF3B1-containing

complexes from whole-cell extracts by glycerol gradient sedimentation and gel filtration

chromatography. We were able to resolve protein complexes from 29-650 kDa and 650-

2,000 kDa using 10-30% glycerol gradients and Sephacryl S-500 gel filtration

chromatography, respectively (Figure S4A-B). This enabled resolution of SF3B I -

containing complexes ranging from monomers (155 kDa) to the SF3b sub-complex (450

kDa) to the 15S and 17S U2 snRNPs (790 and 987 kDa, respectively) . We compared

these elution profiles between patient-derived and isogenic SF3B1'" V and SF3BIl'eral

cells.

We observed substantially lower levels of SF3BI-containing complexes in the

SF3B1]"" cells in glycerol gradient fractions corresponding to ~450 kDa (fractions 4-6;

Figure 2.4B-C) and in gel filtration chromatography fractions corresponding to the lowest

masses (Figure S2.4C). We then asked if SF3B1 copy-loss reduced all SF3B 1-containing

complexes equally by comparing dilution series from pooled gradient fractions 4-6, 12-14

and 25. Western blots from diluted fractions revealed SF3B1' cells had dramatically

reduced SF3BI complexes in fractions 4-6 and Q2-14, but only a modest, if any,

reduction in fraction 25 (Figure 2.4D). Importantly, suppression of SF3BJ in SF3BI neutral
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cells phenocopies the reduction of SF3BJ in precursor complexes observed in SF3B1I'

cells (Figure 2.4E). Immunoprecipitation of SF3B1 Ifrom glycerol gradient fractions 24-

25 resulted in the co-precipitation of the U2 snRNP components SNRPB2 and SF3A3,

suggesting these fractions contain the fully assembled U2 snRNP (Figure S2.4E).

Molecular characterization of the protein complex components suggests SF3b is

in excess in SF3B"""t cells. Independent evaluation by native western blotting from

pooled glycerol gradient fractions corroborated the loss of a single SF3B 1 complex

approximately 450 kDa in mass in SF3BI" cells (Figure 2.4G), corresponding to the

theoretical molecular weight of the SF3b complex. To examine the components of the

excess 450 kDa complex present in SF3BkleutraI cells, we immunoprecipitated SF3B1I

from glycerol gradient fractions 4-6 in copy-neutral cells. SF3Bl immunoprecipitation

resulted in the co-precipitation of SF3B3 and SF3B4, but not U2 snRNP members

SNRPB2 and SF3A3 (Figure S2.4E). Based on the estimated mass of the complex and

presence of SF3B3 and SF3B4 by immunoprecipitation, we conclude that copy loss of

SF3B1I reduces the abundance of the SF3b complex as a precursor to U2 snRNP

formation.

Conversely, it appears that U2 snRNP levels are only modestly decreased in

SF3B1's lines. At >790 kD, the U2snRNP would be expected to be in fraction 25 of the

glycerol gradients, in which SF3Bl levels were similar between SF3BneLtral and

SF3B1Oss lines (Figure 2.4D). U2 snRNA levels are known to track with U2 snRNP

levels, and we also did not observe a significant difference in U2 snRNA abundance

between SF3BJ neutral and SF3B1"OS lines, although there was a trend towards lower

expression in the SF3B"Os lines (Figure 2.4F p=0.39, two-tailed t-test). These data
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suggest that copy-loss of SF3B1 only modestly affects U2 snRNP abundance but

substantially decreases levels of U2 snRNP precursor complexes.
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Figure 2.4: SF3B1" cells have reduced SF3B sub-complex to buffer U2 snRNP

assembly. (A) Diagram of U2 snRNP assembly. Glycerol gradient fractionation of native

whole-cell lysates probed by western blot in breast cancer cell lines (B) and isogenic

copy cells generated by CRISPR (C). (D) Serial dilution of pooled glycerol gradient

fractions probed for SF3B 1 by immunoblot. (E) Glycerol gradient fractions from

sF3Beu"tral cells without and with SF3BJ suppression compared to SF3B1 '"" without

suppression. (F) Quantitative RT-PCR for U2 snRNA expression in three SF3BW"L"r"" and

three SF3B'I"" breast cancer cell lines. Ns = not significant, p=0.39, data represent mean

+/- sd. (G) (left) SF3BI Native PAGE immunoblot of pooled glycerol gradient fractions.

(right) denaturing silver stain of total protein from pooled fractions shown on right.

135

SF3B1



A Glycerol Gradient Standards B Gel Filtration Elution Profiles

100- Carbonic Anhydrase (29 kDa) --- Blue

S-a- ADH (150 kDa) E -a- Thyrog
E Apoferrtin (450 kDa) 41 Carbo
- + Thyroglobulin (650 kDa)

.6c 50- -Blue Dextran (2,000 kDa)

U O a 0

0 10 20 0 20 40 60 80
Fraction # Fracton number

fraction
C Cal51 (SF31"") HCC1954 (SF3B1") D 24-25

Fraction 3
number 38L.

-\O

SF31B1
GAPDH

SNRP82

E Fractions 4-6
IP:

SF3B1 i

SF3B4

SF3B3

SF3A3

SNRPB2

Dextran (2000 kDa)
lobulin (650 kDa)

nic Anhydrase (29 kDa)

SF3B1 

SNRPB2

SF3A3
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SF3B1 suppression selectively reduces U2 snRNP abundance in SF3BJ'oss cells

We reasoned that for the viability of cells to be affected by SF3BI suppression,

splicing function and therefore U2 snRNP complex assembly must be impaired by SF3B1

deficiency. We therefore subjected whole cell extracts to glycerol density gradients and

immunoblotted for proteins to identify the stages of U2 snRNP assembly. Upon SF3BJ

suppression, SF3B'Oss extracts contained decreased abundance of SNRPB2 and SF3A3

from the gradient inputs, suggesting a reduction in the fully assembled U2 snRNP (Figure

2.5A). We then examined if partial SF3BI suppression preferentially removed precursor

sub-complexes instead of the assembled U2 snRNP. Upon SF3BJ suppression, there was

a more substantial reduction of SF3B1 in fractions 4-6 than fraction 25 suggesting that

SF3BJ knockdown reduced smaller SF3B 1-containing protein complexes, likely

corresponding to the SF3B sub-complex, instead of the assembled U2 snRNP (Figure

2.5B-C). Further, SF3B"s cells exhibited dramatic reductions in SF3A3 and SNRPB2 in

fraction 25 that do not occur in SF3B]"eutrCI cells (Figure 2.5C). These data indicate that

upon SF3BJ suppression, copy-loss cells have decreased amounts of fully assembled U2

snRNP that does not occur in copy-neutral cells.

We verified the observation of decreased U2 snRNP abundance in copy-loss cells

after SF3B1 suppression by gel filtration chromatography and quantification of U2

snRNA expression. Native protein extracts from SF3B neutral and SF3Bh"I" cells after

SF3BJ suppression were fractionated on Sephacryl-S500 columns assayed for U2 snRNP

components SF381 and SNRPB2 in fractions containing complexes from 700-2,000 kDa

that contain assembled U2 snRNP 24. Immunoblots of fractions from copy-neutral cells

after SF3BJ suppression contained both SF3B1 and SNRPB2, while copy-loss cells had
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no detectable U2 snRNP components (Figure 2.5D-E). Quantitative PCR from SF3B1O'

cells resulted in significantly reduced U2 snRNA expression after SF3BJ suppression that

was not observed in SF3BneutraI cells (Figure 2.5F), indicating reduced U2 snRNP

abundance in copy-loss cells.
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Figure 2.5: Reduced spliceosome precursors and U2 snRNP abundance upon SF3B1

suppression in SF3B1 I"" cells. (A) Western immunoblots without and with SF3B]

suppression prior to glycerol gradient fractionation. (B) Western immunoblots from

pooled glycerol gradient fractions 4-6 (protein complexes -150-450 kDa). (C) Western
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Immunoblot from lysates prior to gel filtration chromatography. (E) Immunoblot of gel

filtration fractions 18-26 (protein complexes >650kDa) from lysates with SF3B1

suppression. (F) Quantitative RT-PCR for U2 snRNA expression without and with

SF3BJ suppression. For all panels, *p<0.05 **p<0.01 ***p<0.001. See also Figure S5.
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RNA-sequencing reveals loss of splicing function after SF3BJ suppression

SF3Bl is a well-established mRNA splicing factor 25.26, therefore we evaluated

transcriptomes of both SF3B1I"'s and SF3Beura cells before and after suppression of

SF3Bl. Suppression of SF3BJ in SF3B]elmt cells reduced SF3BJ expression

comparably to steady-state levels in SF3B"'" cells. Upon SF3B] suppression, 513 genes

were differentially expressed at an FDR <10% and only 306 genes were differentially

expressed in SF3B]nefral cells. These data are consistent with the hypothesis that SF3B]

suppression more severely impacts the transcriptome of SF3BO'SS cells.

defects in mRNA splicing occurred at time points prior to the reduced viability

observed in SF3B1'"" cells (day 4 post SF3B1 suppression, Figure 2C-D). We performed

RNA-sequencing to characterize the transcriptome-wide effects of SF3BJ suppression in

SF3BI neutral and SF3B11 ' cells. The baseline mRNA expression of SF3B1 in SF3B1""eutra

cells was greater than in SF3B1"' cells (Figure 2.6A), consistent with previous

experiments (Figure 2.3A-B; S2.3A-B).

Due to the role of SF3BI in pre-mRNA splicing, we sought to quantify the extent

of splicing disruption in SF3B""""' and SF3B1'""" cells. Intron retention has been

reported LpO1 treatment of cells with spliceosorne inhibitors 6 and in patients harboring

SF3B1 mutations 1. We used juncBase 27 and a novel statistical framework to analyze

50,600 splice junctions for intron retention in SF3B1"""al and SF3B"'" cells upon

SF3B I suppression (see Methods). All cells showed evidence of increased intron

retention following SF3B1 suppression (p<10). However, splicing was significantly

more affected in SF3B1" " cells compared to SF3Bwneutral cells. Upon SF3B1 suppression,

632 transcripts in SF3B1' cells showed evidence of significantly (q<0.0l) increased
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intron retention relative to SF3Bnetral, whereas only I1 transcripts showed evidence of

increased intron retention in the reverse direction (Figure 2.6C, p=4.9x1 0-17 1)

We confirmed the alterations in mRNA splicing by RT-PCR. Primers were

designed for two ubiquitously expressed genes that flanked short introns amenable to

PCR detection if they are improperly retained (Figure 2.6D). Upon SF3BJ knockdown,

SF3BI1 cells contained RPS18 and CALR transcripts with retained introns that were not

observed in SF3Beural cells (Figure 2.6E), consistent with our RNA-seq analysis.

Furthermore, loss of SF3BJ expression can potently alter the alternative splicing of

MCL1, converting it to a shorter isoform (MCL I -s) defective in anti-apoptotic function

28. RT-PCR of SF3BIlneutral and SF3B]Ioss cells after SF3BJ suppression resulted in

significantly increased ratio of the MCL 1-s isoform only in SF3BI"OS cells (Figure 2.6F-

G).

We next examined if alterations to the organization of nuclear speckles occurred

after SF3BJ suppression by SC-35 immunofluorescence. Spliceosome components,

including SF3B 1, are thought to assemble and function in sub-nuclear compartments

known as nuclear speckles 29. We performed an unbiased quantification of the number

and size of SC-35+ speckles per nucleus using a custom image analysis pipeline with

CellProfiler software 30. SF3Bneual cells did not display changes in SC-35+ speckles

after SF3BJ suppression, however SF3B''1 nuclei contained significantly fewer speckles

and increased speckle area (Figure 2.6H-J). The formation of enlarged 'mega-speckles'

were previously observed in cells treated with either mRNA splicing or transcriptional

inhibitors 6'' and suggest defects in spliceosome assembly and function. The presence of
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defective alternative splicing, intron retention and formation of mega-speckles uniquely

in SF3B1'"o" cells after SF3BJ suppression suggests gross defects in mRNA splicing.

Taken together, these data demonstrate that defects in pre-mRNA processing

(Figure 2.6B-G) and nuclear speckle localization (Figure 2.5H-J) occur only in copy-loss

cells upon SF3B] suppression. These splicing defects are a result of decreased U2 snRNP

abundance (Figure 2.5) after SF3B] suppression and suggest that SF3B I is a limiting

factor to U2 snRNP assembly and function in SF3BI I"' cells.
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Figure 2.6: Transcriptome-wide analysis reveals reduced pre-mRNA processing in

SF3B'" cells after SF3BJ suppression. (A) SF3BI expression quantified by RNA-

Sequencing upon SF3B1 suppression in SF3BIneural and SF3BJl"s cell lines. (B) Number
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suppression. (y-axis) Significance of the difference in effect of SF3Bl suppression on
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intron retention between SF3B "wal and SF3B1'""'. (D) Schematic of primer locations.

Arrowheads indicate the locations of primers used for intron retention. (E) RT-PCR for

RPS18 and CALR in cells without and with shSF3BI induction by doxycycline. Arrows

indicate PCR products corresponding to retained introns. (F) Representative RT-PCR

from SF 3B1neuraI and SF3Bl"ss cells after SF3BI knockdown. "c" are LacZ control

hairpins, "sh" are shSF3Bl#4 hairpins. (G) Densitometric quantification of the ratio of

MCL I-S:MCL l-L from 3 biological replicates. (H) Immunofluorescent images of

nuclear spackles by anti-SC35 (SRSF2) staining. Scale bars = 10 uM. (I) Quantification

of number of nuclear speckles per cell in panel (F). (J) Quantification of nuclear speckle

area in panel (F). For all panels, *p<0.05 **p<0.0l ***p<0.00l. See also Figure S6.

Suppression of SF3B1 reduces tumor growth in SF3B'"" xenografts

To explore the potential of SF3B I as a therapeutic target, we evaluated existing

SF3b inhibitors that target SF3B1. We tested the sensitivity of CRISPR-induced copy

loss cells, and SF3BIfe"tra cells with partial SF3B I suppression to treatment with

spliceosome inhibitors. Neither approach exhibited increased sensitivity to SF3b

inhibitors or NSC95397, a compound reported to inhibit splicing activity by an SF3b-

independent mechanism (Figure S2.5A-D)3 2 . Therefore, we evaluated the effect of

SF3B I suppression on xenograft tumor growth using the doxycycline-regulated shRNA

system.

Suppression of SF3BI in SF3B1I'"s cells reduces xenograft growth in vivo. We

generated luciferase-labeled cell lines from the CRISPR frameshifrt-ioss and CRISPRetItraI cells

containing TR-shSF3B1#3. Animals were placed on doxycycline upon detection of
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established tumors. Suppression of SF3B1 only reduced the growth of xenografts from

CRISPRframeshift-Ioss cells and did not affect growth of CRISPRneu cells or

CRISPRframeshift-loss cells without doxycycline (Figure 2.7A-B).
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Figure 2.7: SF3B1 suppression inhibits the growth of SF3B1'"' cells in-vivo. (A)

Growth of nude mouse xenografts of isogenic CRISPRframeshift-loss and CRISPRneuti cell
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lines. (B) Growth of nude mouse xenografts of isogenic CRISPR frameshift-loss and

CRISPRneutral cell lines with suppression of SF3Bl using a tetracycline inducible shRNA.

Discussion

Genomic features affecting CYCLOPS genes

We identified 170 CYCLOPS genes from the Achilles RNAi viability screen

across 216 cell lines. However we expect these findings to under estimate the number of

true CYCLOPS genes in cancer genones. Our ability to precisely suppress gene

expression by approximately 50% is limited by the characteristics of shRNAs used in the

Achilles data set. Genes could not be evaluated if the hairpins targeting their expression

either did not effectively suppress expression, or completely ablated their expression.

Indeed, the number of genes for which we could accurately evaluate cell viability across

all cell lines was 8,321. Furthermore, we are unlikely to have identified tumor-type

specific CYCLOPS genes due to the relatively small numbers of cell lines screened in

each cell lineage.

Shared molecular features of among CYCLOPS genes may have aided in their

identification. We identified that CYCLOPS genes tend to be more uniformly expressed

throughout normal tissues (Figure 1 D), suggesting that their consistent expression across

cell lines aided in the accurate determination of cell line sensitivity after gene

suppression. CYCLOPS genes also frequently comprise components of multi-protein

complexes. It is possible that the stoichiometric equilibrium of precursors to multi-protein

complexes are disrupted in cancer cells but do not affect the assembled complex's

function. Therefore, aneuploid cancer cells may not need to compensate for expression
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changes as a result of copy number alterations. However after further gene suppression,

essential multi-protein complexes can have reduced function and unveil CYCLOPS

vulnerabilities.

SF3B1 as a CYCLOPS gene and therapeutic target

The observation that SF3B1"OS cells depend on the remaining SF3B1 expression

for survival suggests SF3BJ is a novel therapeutic target in cancers harboring

hemizygous SF3B1 deletion. A recent unexpected finding also suggests that SF3B1

mutated cancer cells do not depend on the mutated SF3BJ allele, but rather the remaining

wild-type copy 3. Taken together, these data support the notion that SF3B1I inhibitors

may have therapeutic benefit in cancers with SF3B1I copy-loss or mutation. Surprisingly,

current compounds that target SF3BI and the SF3B sub-complex do not appear to

differentially kill SF3B1"S cells (Figure 2.4H and S2.4G) and whether these compounds

are more effective in SF3 B 1 mutated cancers remains unclear.

Compounds with different mechanisms of action than current "SF3B1I inhibitors"

likely will be required to treat SF3B1 -dependent cancers. The observation that

hemizygous loss of SF3B1 reduces SF3B precursor sub-complexes, and not assembled

U2 snRNP, suggests that current inhibitors function to inhibit splicing by disrupting U2

snRNP activity. These observations are consistent with previous work demonstrating that

E7107, a pladienolide D derivative, prevents an ATP-dependent conformational change

in the U2 snRNP . Instead, we predict that chemical approaches to disrupt the

incorporation of SF3B1 into spliceosomeal complexes, or down-regulate SF3B I

expression would be needed to target the SF3B1 CYCLOPS vulnerability. However

147



substantial opportunities still exist to use existing splicing inhibitors in cancer therapy

and perhaps use the existing pharmacophores to develop compounds that can target the

SF3Bl CYCLOPS vulnerability.

Potential approaches to target CYCLOPS genes

Partial genomic loss of CYCLOPS genes occur frequently in cancers. It is

possible that many non-specific chemotherapies, such as flavopiridol which inhibits

transcription, exert some of their cytotoxic effects by further reducing CYCLOPS gene

expression in cells with hemizygous loss of CYCLOPS genes. Other existing compounds

may also be selectively cytotoxic in aneuploid cancers when expression of the target of

inhibition is reduced. This is particularly appealing when considering many CYCLOPS

genes function in the same essential cellular complexes such as the spliceosome,

proteasome and ribosome. It is possible that current spliceosome, proteasome or

ribosome inhibitors could selectively treat cancers undergoing partial copy-loss of the

small-molecule target. Further investigation into the development and understanding of

inhibitors targeting these pathways could provide novel opportunities for identifying

patient populations that can benefit from these drugs.

Recent work also suggests that partial reduction of essential gene expression

results in a "therapeutic window" that can be targeted pharmacologically; an important

observation for the development of CYCLOPS-based therapies. For example, treatment

of myeolodysplastic syndrome harboring hemizygous deletion of CSNKIA1 confers

sensitivity to CSNKlAl inhibitors '. Similarly, partial gene deletion of POLR2A can

sensitize cancer cells to treatment with alpha-amanitin, an inhibitor of POLR2A 36. Our
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work and the aforementioned studies support the idea that partial inhibition of essential

genes represents novel cancer targets and that their inhibition can be well tolerated to

provide a therapeutic window.

Cellular and molecular basis mediating cell death in SF3B1I"' cells

SF3B"Os cells arrest in G2/M and subsequently initiate apoptosis upon SF3BJ

suppression (Figure 2.2E-F), however the molecular mechanisms mediating these

processes remain largely unknown. Recent work suggests that the sister chromatid

cohesion factor, CDCA5 (Sororin), is highly dependent on SF3B 1 for its mRNA splicing

37, and may provide a mechanism for M-phase arrest upon splicing factor suppression.

Our data corroborate those findings, as CDCA5 is one of the most differentially expressed

genes in SF3B]O'"S cells after SF3BJ suppression.

Apoptosis induction is crucial for mediating the effects of the SF3B1 CYCLOPS

vulnerability. We have yet to characterize the molecular components required for

apoptosis induction upon SF3B] suppression in SF3BI"s cells. Our observations and the

work of others on the role of alternative splicing in apoptosis induction suggests that

BH3-domain containing proteins, including MCLI and BCL2L1, are potently regulated

by alternative splicing (Figure 2.5A; 28,38,39. The role of these genes as essential

downstream effectors of cell death after SF3B1 suppression remains unexplored.

Experimental Procedures

Analysis of Genome-Wide Copy-Number Induced Cancer Dependencies
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For each gene dependency score in Achilles, pearson correlation p-values were calculated

for association with copy number at 22,202 loci using cor.test in R. All analyses were

conducted in the R programming language. Correction for multiple hypotheses was

performed with the Benjamini and Hochberg method.

CYCLOPS Analysis

Gene level, log2 relative copy number fror 1043 cell lines were downloaded from

the CCLE portal (http://Nww.broadinstitute.org/ccle, data version 5/27/2014). Samples

were assigned one of two classifications: 1) copy loss cell lines had log2relative copy

number ratio <=-0.35, and 2) copy neutral cell lines had log relative copy number ratio

>=-0.35. 214 cell lines with copy number data were also profiled for genome-wide RNAi

viability in Project Achilles (version 2.4.3). Data copy number data and RNAi viability

data were integrated using R statistical software.

Evaluation of differential sensitivity to gene suppression based on copy loss was

done using lineage controlled permutation tests. Briefly, cell lines from each tumor type

were classified as copy neutral or copy loss for each gene. The relative viability between

the two classes were calculated by using the mean ATARiS score for each group 16

Significance was determined by permuting class labels between the two groups.

Correction for multiple hypotheses was performed using the Bejamini and Hochberg

method.

Classification of length and amplitude for copy number alterations

For relative log2 normalized copy number data analyzed from 10,570 tumors from

TCGA (including hyperdiploid samples), the following thresholds were used for copy
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number classification: homozygous loss log2 values <-1.07, hemizygous loss 10g2 <=-0. 1.

Broad SCNA events are defined as a copy number region of greater than half a

chromosome anm, all other smaller events are considered focal. For cancer cell lines used

in functional studies: copy-loss cells had log2 copy number <=-0.35, and copy neutral

cells had log2 copy number >-0.2 and <0.2.

Tissue Culture

Human cancer cell lines were maintained in RPM 1-1640 supplemented with 10%

fetal bovine serum and I % penicillin and streptomycin and were assayed to be free of

mycoplasma. Non-transformed MCFIOA and HMEC cells were cultured in Mammary

Epithelial Growth Medium (CC-3150, Lonza). For cells expressing tetracycline-regulated

shRNAs, tetracycline-approved fetal bovine serum (Clonetech) was used.

Correlation analysis of copy-loss of SF3B genes with cell dependencies upon

suppression of other SF3B complex genes

We determined relative copy number and ATARiS gene dependency scores after

knockdown of each SF3B complex member for 189 cancer cell lines. We performed

linear regression analysis and calculated Pearson correlation coefficients for copy number

of each SF3B complex gene with knockdown of every SF3B component.

Quantitative and reverse transcription PCR

RNA was extracted using the RNeasy extraction kit (Qiagen) and subjected to on-

column DNase treatment. cDNA was synthesized with the Superscript II Reverse

Transcriptase kit (Life Technologies) with no reverse transcriptase samples serving as

negative controls. Gene expression was quantified by Power Sybr Green Master Mix

(Applied Biosystems). Primers for all genes were determined to be equally efficient over
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5 serial two-fold dilutions. Gene expression values were normalized to ACTB and the fold

change calculated by the AAC, method. For quantification of the U2 snRNA, the above

method was used except total cellular RNA was extracted with Trizol (Life

Technologies). A table containing primer information and sequences can be found as

Table S4.

shRNAs targeting SF3B1

Lentiviral expression constructs for shRNA-mediated suppression of SF3BI were

obtained through the RNAi-consortium (http://www.broadinstitute.org/rnai/public/). The

clone ID's and names used in our studies are as follows: shSF3B 1 #2

(TRCN0000320576), shSF3B1 #3 (TRCN0000320566), shSF3B1 #4

(TRCN0000350273), shSF31B1 #5 (TRCN0000320636).

Generation of Inducible SF3BI shRNA expression system.

Sense and anti-sense oligonucleotides were annealed and cloned into the AgeI and EcoRI

restriction sites of the pLKO-Tet-puro vector (Addgene, plasmid #21915). The

oligonucleotide sequences were:

LacZ (sense) 5'-

CCGGTGTTCGCATTATCCGAACCATCTCGAGATGGTTCGGATAATGCGAACAT

TTTTG,

LacZ (anti-sense) 5'-

AATT7CAAAAATGTTCGCATTATCCGAACCATCTCGAGATGGTTCGGATAATGC

GAACA,

TR-shSF3Bl#3 (sense) 5'-

CCGGCAACTCCTTATGGTATCGAATCTCGAGATTCGATACCATAAGGAGTTGT

TTTTG,
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TR-shSF3BI#3 (anti-sense) 5'-

AATTCAAAAACAACTCCTTATGGTATCGAATCTCGAGATTCGATACCATAAG

GAGTTG,

TR-shSF3B1#5 (sense) 5'-

CCGGCCTCGATTCTACAGGTTATTACTCGAGTAATAACCTGTAGAATCGAGGT

TTTTG,

TR-shSF3BL#5 (anti-sense) 5'-

AATTCAAAAACCTCGATTCTACAGGTTATTACTCGAGTAATAACCTGTAGAAT

CGAGG

Cellular Growth Assays

Cells were plated in 96 well plates at 1000 cells per well. Cell number was

inferred by ATP-dependent luminescence by Cell Titer Glo (Promega) and nonnalized to

the relative luminescence on the day of plating. For short-term lentiviral infections, cells

were infected 24 hours prior to plating.

GFP Competition Assays

Oligonucleotides encoding LacZ or SF3B1 shRNA#4 hairpin sequences were

annealed and cloned into the pLKO. I derivative vector TRC047 (pLKO.3pgw) and

verified by Sanger sequencing. Cells were infected with serial dilutions of virus to

achieve -50% GFP-positive cells. Cells with approximately equivalent ratios of GFP-

positive -and negative cells were assayed by flow cytometry 3 days post infection and at

subsequent time-points. The fold change in GFP+ cells was normalized to the percentage

present 3 days after infection. For competition assays re-introducing exogenous SF3BJ,
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we expressed a human codon-optimized SF3B] by lentivirus. Cells were infected as

described above and treated with doxycycline two days after infection.

Propidium Iodide Cell Viability Assays

Cells were treated with either short-term lentiviral infection or tetracycline-

inducible SF3BJ shRNAs. After treatment, cells were trypsinized and pelleted including

any cells in suspension. Cells were resuspended in propidium iodide viability staining

solution (lx PBS, 1% BSA, 2.5 ug/mL propidium iodide) and quantified by live-cell flow

cytometry. The change in viability was normalized to the percent of viable cells

quantified on the first day of the assay.

Determination of Cell Cycle Distribution by Propidium Iodide

Cells were trypsinized, washed and fixed with ice-cold 70% ethanol for a

minimum of 15 minutes at 4C. Cells were incubated in propidium iodide cell cycle

staining solution (lx PBS, 1% BSA, 50 ug/mL propidium iodide, 100ug/mL RNAse A)

for 15 minutes and analyzed by flow cytometry. Debris and aggregates were gated out

and cell cycle stage was quantified using Modfit (Varity Software House).

Annexin-V Apoptosis Assays

Cellular apoptosis was quantified by live-cell flow cytometry using Alexa-Fluor

488 conjugated Annexin-V (Life Technologies) and propidium iodide. Cells were

incubated in Annexin binding buffer containing propidium iodide (10 mM Hepes, 140

mM NaCl, 2.5 mM CaCl2 , 2.5 ug/mL propdium iodide) for 15 min, washed and

resuspended in FACS buffer (Ix PBS, 1% BSA and 50 mM EDTA). Determination of the

stage of apoptosis by gating was as follows: viable cells (Annexin-V~/PI~), early apoptosis

(Annexin-V+/Pl~), late apoptosis (Annexin-V+/PIl), and dead cells (Annexin-V-/PI).
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Generation of heterozygous SF3BI"" cells by CRISPR-Cas9

Short guide RNAs targeting the first constitutively expressed coding exon of

SF3BJ (exon 2) were designed with the aid of the Zhang laboratory's web-based

application (http://crispr.mit.edu/). Sense and anti-sense oligonucelotides were annealed

and cloned into BbsI site of pX458 (Addgene) and verified by Sanger sequencing.

Oligonucleotide sequences were as follows: 5' CACCGCATAATAACCTGTAGAATCG

(forward), 5' 5'AAACCGATTCTACAGGTTATTATGC (reverse). pX458 was

transfected with LipoD293 (SignaGen) into the diploid breast cancer cell line, Cal51. 3-4

days post transfection, single GFP+ cells were sorted by FACS and plated at low density

for single cell cloning.

19 monoclonal cell lines were genotyped for Cas-9 induced mutations by Sanger

sequencing cloned PCR products. All monocolonal lines had either no mutations or

harbored biallelic mutations in SF3BJ. The genotypes of the Cal5I CRISPR cell lines

used from this method of generation were: SF3BJ deIr36rdeIr36 (CRISPRneutral #1) and

SF3B deIT36/A23fsX20 (CRISPR frameshi ft-loss).

A Cas9 construct co-expressing two sgRNAs was used to delete a 57 kb region

encoding SF3B . The guide RNA targeting the 5' upstream of SF3B1 used a mismatch

from a heterozygous SNP (rs3849362) in Cal5M to bias towards mono-allelic deletion of

SF3BJ. Oligonucleotides were cloned in a similar fashion as above (with Bbsl

overhangs). The sequences are as follows: For the 5' guide targeting SNP, 5'

CACCGCGCATTATAGATTATGGCCC (forward) and 5'

AAACGGGCCATAATCTATAATGCGC (reverse). For the 3' targeting guide:
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5'CACCGCGGAGTTTCATCCGTTACAC (forward),

AAACGTGTAACGGATGAAACTCCGC (reverse)

The control cell line (CRISPRnetra #2), was a monoclonal culture derived from a

cell that expressed the Cas9 construct, but did not have the SF3B 1 deletion. The induced

SF3B1 ""' line (CRISPR0'PIOS #2) was validated by PCR to harbor a 55 kb deletion

encoding SF3Bl.

Western Blotting

For denaturing protein immunoblots, cells were washed in ice cold PBS and lysed

in lx RIPA buffer (10mM Tris-CI Ph 8.0, 1 mM EDTA, 1% Triton X-100, 0.1% SDS

and 140 mM NaCl) supplemented with lx protease and phosphatase inhibitor cocktail

(PI-290, Boston Bioproducts). Lysates were sonicated in a bioruptor (Diagenode) for 5

minutes (medium intensity) and cleared by centrifugation at 15000 x g for 15 min at 4C.

Proteins were electrophoresed on polyacrylamide gradient gels (Life Technologies) and

detected by chemiluminescence. For native western blotting, cells were washed in ice

cold PBS and lysed in lx sonication buffer (10% Glycerol, 25 mM HEPES pH 7.4, 10

mM MgCl2) supplemented with protease and phosphatase inhibitors. Coomassie blue

native PAGE western blots were run according the manufacturer's instructions (Life

Technologies).

SF3BI Gene expression analysis from TCGA and CCLE datasets

Relative copy number and Affyrmetrix expression data for SF3BJ were

downloaded from the CCLE portal (http://www.broadinstitute.org/ccle/home). TCGA

breast adenocarcinoma data were downloaded from the cBioPortal

(http://wvw .cbioportal.org/public-portal/index.do) 4"4'. For both datasets, samples

156



lacking either gene expression or copy-number were removed. As described above copy-

loss was defined as samples with log2 normalized relative copy number of <-0.35, copy

gain was defined as >=0.3.

Glycerol Gradient Sedimentation

Glycerol gradient sedimentation was performed as previously described with

slight modifications for use with whole-cell lysates 42. Briefly, linear 10-30% glycerol

gradients were formed by layering a 10% glycerol gradient buffer (20 mM Hepes-KOH

(pH 7.9), 150 mM NaCl, 1.5 mM MgCl2 10% glycerol) atop a 30% glycerol solution with

identical salt concentrations. Gradients were formed using a Gradient Station (Biocomp

Instruments) according to manufacturers instructions. Cells were lysed in "IP lysis

buffer" (50mM Tris, 150 mM NaCl and 1% Triton X-100). 400 uL containing 1-3 mg of

crude lysate was loaded per gradient in SW55 centrifuge tubes and spun at 55,000 RPM

for 3.5 hours at 4C. 200 uL fractions were collected by manually pipetting from the top of

the gradient. Recombinant proteins of known mass were run in parallel gradients as

controls.

Gel Filtration Chromatography

Sephacryl S-500 (17-0613-05, GE Healthcare) columns were packed into a 50 x

1.5 cm column and equilibrated with column buffer (10 mM Tris, 60 mM KCI, 25 mM

EDTA, 1% Triton X-l00 and 0.1% sodium azide). Whole-cell lysates were collected in

IP lysis buffer (as described above) and incubated with 0.5mM ATP, 3.2 mM MgCl2 and

20 mM creatine phosphate (di-Tris salt) and incubated for 20 min at 30C to dissociate

multi-snRNP spliceosomal complexes. 2 mL of lysate containing 5 mg of protein was

loaded on columns and 90 1.5 mL fractions were collected overnight at 4C.
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Immunoprecipitation

Immunoprecipitations were performed with pooled glycerol gradient fractions.

The Fc region of mouse anti-SF3BI (Medical and Biological Laboratories, D221-3) was

directionally cross-linked to protein G Dynabeads (Life Technologies) using 20 mM

dimethyl pimelimidate (DMP). IgG isotype controls were cross-linked and processed

identically. Proteins were elUted with elution buffer (15% glycerol, 1% SDS, 50mM tris-

HC1, 150mM NaCI pH 8.8) at 80C and subjected to western blot analysis.

Nuclear speckle quantification by SC-35 Immunofluorescence with CellProfiler

image analysis

Cells were plated on 35 mm glass bottom dishes with #1.5 cover glass (D35-14-

1.5-N, In Vitro Scientific). Cells were fixed and stained with anti-SC-35 antibody

(S4045, Sigma-Aldrich) at 1:1000 dilution and detected with Alexafluor488 secondary

antibody at 1:1000 (Life Technologies). Nuclei were counterstained with Hoescht dye.

Monochromatic images were captured under identical conditions and pseudo-colored

using Photoshop. A custom image analysis pipeline was empirically adapted from a pre-

existing pipeline designed for detecting H2AX foci using CellProfiler N. Measurements

of nuclear speckles were generated from at least 15 random microscopic fields. A

minimum of 100 nuclei identified by CellProfiler were used for quantitation per

treatment.

Library preparation and RNA-sequencing

Total RNA was extracted with the RNeasy mini extraction kit (Qiagen) and

treated by on-column DNAse digestion. RNA quality was determined with a bioanalyzer
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(Agilent) and samples with RIN values >7 were used for sequencing. mRNA were

enriched with the NEBNext Poly(A) mRNA Magnetic Isolation Module (New England

BioLabs, #E7490S). Library preparations for paired end sequencing were performed

using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England

BioLabs, #E7420S) according to manufacturer's specifications. Samples were pooled and

75bp paired reads were generated using a NextSeq 500 sequencer (Illumina).

Approximately 50 million reads per sample were generated.

RNA sequencing analysis

FASTQ files were aligned using TOPHAT v1.4 with parameters "--mate-inner-

dist 300 -- mate-std-dev 500 --no-sort-bam -- no-convert-bam -p 4". juncBase was used to

identify read counts at splice junctions.
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Chapter 4: Perspectives and Future Directions

Therapeutic implications of intratumoral heterogeneity

An important goal of cancer research is to understand mechanisms of cancer

evolution and in particular, metastasis. We performed exome sequencing of endometrial

cancers to assess the extent of intratumoral heterogeneity and to catalogue the alterations

in metastases. We found that mutations in certain cancer driver genes such as ARIDIA

were frequently heterogeneous between biopsies, suggesting targeted therapies aimed at

these alterations may be less effective.

We have argued that therapies that attempt to reverse the effects of mutations that

are not shared by all cells in the tumor are likely to have limited efficacy. Two ideas

contribute to the intuition behind this argument: (i) the fitness of cancer cells that do not

harbor mutations in these genes is unlikely to be affected by a drug that reverses the

effect of the mutation in question; and (ii) cancer cells that do harbor a driver gene

mutation that is heterogeneous may not display functional dependence on that alteration,

as their ancestors were able to undergo malignant proliferation before acquisition of the

alteration. However, one can imagine conditions under which these assumptions are not

true, and the presence of a tumor subclone may be essential to tumor growth. For

example, a subpopulation of cancer cells may provide non-cell-autonomous fitness

advantage to neighboring tumor cells. A recent study assessed the growth of breast cancer

xenografts with different proportions of 18 genetically engineered subclonal populations'.

The tumors grew more rapidly and were more metastatic when a small proportion of the

tumor was composed of a subclone that secreted defined growth factors or cytokines,



such as IL-Il or CCL5. When subclones expressing other soluble factors were mixed

with the parental cell line, the tumors had different histologies as well'. These findings

suggest that therapeutics targeting a subclonal population may be effective in slowing

disease progression.

Therapeutic targeting of heterogeneous mutations may be particularly effective in

hematopoietic cancers due to their unique population dynamics. Cancer cells must

compete with one another for resources in a nutrient-limited environment, and in

hematopoietic cancers, the population is well-mixed. Therefore, a single clone with

greater fitness can perform relatively rapid clonal sweeps2 . One can imagine that the

proportion of a leukemia cells representing a subclone harboring a druggable driver gene

mutation could increase over time. These cancer cells may then assume some degree of

oncogene-addiction to the new alteration, rendering susceptible to pharmacologic

inhibition of said alteration. In such a case, treatment with a targeted therapy could kill

off a substantial portion of the tumor cells and allow the patient sufficient time to

undergo bone marrow transplantation. Indeed, case reports depicting this scenario have

been presented.

Implications for metastasis-specific driver genes

One could imagine that mutation of certain genes involved in cell migration or

differentiation could promote metastasis. We searched for evidence of such mutations in

endometrial tumors, but were unable to find any genes with sufficient statistical evidence

of positive selection by mutation. It is possible that these mutations occur, but that we

lacked statistical power to detect mutations associated with metastasis. There may be
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many such genes that are recurrently mutated in metastases, but the individual frequency

of mutation of each gene is so low that very large number of primary-metastasis pairs

would need to be sequenced to detect any statistically significant metastasis-specific

driver genes. It is also possible that phenotypic programs, such as the epithelial-

mesenchymal transition, are the predominant means to metastatic potential. A frequently

occurring metastasis-specific driver mutation would be useful as in shedding light on the

functional bottlenecks to metastasis. With precise information on the biological functions

required for metastatic cells, one could in principle design drugs that inhibit some or all

of these activities. If there are no frequently occurring metastasis-specific mutations, the

possibility of developing drugs to inhibit the metastatic phenotype seems further away.

The future of CYCLOPS genes

In the absence of metastasis-specific alterations, the best way to treat metastases

is to find new ways to treat cancers as a whole. One way to identify new therapeutic

vulnerabilities is to search for vulnerabilities associated with patterns of somatic copy

number alteration in cancer genomes. We identified a class of interaction called

CYCLOPS vulnerabilities in which copy loss of a gene sensitizes cells to its further

suppression.

Since we began work on this project, several other groups have identified other

CYCLOPS vulnerabilities. A recent study identified POLR2A as a CYCLOPS gene'.

POLR2A lies on chromosome 17p in close proximity to TP53. Thus, POLR2A is

frequently co-deleted with TP53 loss. The authors showed that colorectal cell lines with

loss of POLR2A were more sensitive to POLR2A inhibition than cell lines that had two
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copies of the gene. Importantly, they showed that alpha-amanitin, a small molecule

inhibitor of POLR2A was able to reproduce the vulnerability demonstrated by RNA

interference. POLR2A was a statistically significant CYCLOPS gene in our survey, but it

was not included as a focus of our research effortss.

A second study has validated a CYCLOPs gene in the commonly deleted region

of 5q implicated in 5q-del myelodysplastic syndrome 4. Copy loss of casein kinase,

encoded by CSNKJAJ, sensitizes cells to further suppression of CSNKJAI. In this case as

well, the authors were able to identify a small compound, lenalidomide, that was able to

degrade casein kinase and specifically inhibit the growth cells with hemizygous deletion

of the gene. We did not identify CSNK1A.1 as a CYCLOPS gene in our analysis, most

likely because none of the cell lines we analyzed harbored hemizygous deletions of

CSNKJA 1. However, we found that amplifications of CSNK]A 1 were associated with

greater resistance to its suppression, consistent with features of a CYCLOPS gene.

Our failure to find CSNKJAJ highlights the limited sensitivity of our analysis to

find CYCLOPS genes. Our analysis of CYCLOPS genes was based on the copy number

profiles and gene dependency scores of 179 cell lines. The current release of Achilles

data includes 384 cell lines, which should give us much more power to detect CYCLOPS

vulnerabilities. In addition, our prior analysis used data from a 55K array of shRNAs,

which has since been expanded to lOOK shRNAs. The current release of gene solutions

includes 21,901 gene solutions compared to the previous 9,047. Therefore, we are now

able to analyze many more genes for evidence of CYCLOPS vulnerability than before. At

this sample size, it is possible that we will now be able to identify lineage-specific

CYCLOPS vulnerabilities.
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Future experiments should include determining whether the inhibition of multiple

CYCLOPS genes on the same hem izygously deleted chromosome leads to additive or

synergistic effects. A major goal of future research will be to translate the observations of

these vulnerabilities based on gene suppression into small molecules. The finding that

certain thalidomide derivatives can modulate ubiquitin ligase activity to degrade proteins

is an exciting lead. Perhaps similar approaches can be adapted to induce the therapeutic

degradation of CYCLOPS genes. Other exciting new pharmacologic strategies, such as

protacs, provide a general framework for the creation of compounds that can degrade any

protein to which a small molecule can bind 5. Alternatively, advances in the delivery of

nucleic acids could allow for RNA interference to be used directly. These are just some

of the many therapeutic possibilities that could be used to target CYCLOPS

vulnerabilities.

Potential issues with CYCLOPS genes

There are two main concerns with using CYCLOPS vulnerabilities to treat

cancers. First, the therapeutic window created by these vulnerabilities may be small.

Second, many CYCLOPS genes may not represent readily druggable targets.

One concern about CYCLOPS vulnerabilities is that the therapeutic window they

create may be too small for drugs to be effective. Without feedback mechanisms,

hemizgous loss of a CYCLOPS gene would result in a two-fold reduction in the amount

of protein present. Such a reduction in the amount of protein present may not provide an

adequate therapeutic window between normal cells and cancer cells. One reason that a

half-reduction in protein may not be adequate, is that different tissues may display
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different requirements for the CYCLOPS gene being targeted. Indeed, certain tissue types

may normally express the CYCLOPS gene at similar or even lower concentrations than

cancer cells harboring hemizygous deletion of the gene. Certain tissues may express

normal concentrations of CYCLOPS genes, but may be more dependent on the function

of these genes for cell survival than cancer cells originating from other tissues are.

Indeed, some Mendelian diseases associated with mutations in one allele of CYCLOPS

genes display phenotypes specific to certain tissues 6 . Therefore, tissue-specific

sensitivities to perturbation of CYCLOPS gene function may dominate the therapeutic

window afforded by these vulnerabilities and limit the doses of therapeutic compounds

that can be safely administered to patients. Conversely, lineage-based expression

differences could be used to our advantage if the cancer comes from a lineage with low

expression of a CYCLOPS gene. The lineage-controlled permutations we performed

were able to minimize the probability of identifying tissue-specific vulnerabilities that are

frequently deleted in the tissue in question. However, lineage-controlled permutations

may nominate CYCLOPS candidates where different tissues display different

dependencies on the gene in question. The current data that we have do not support the

concern about variation in the dependence of different tissues on CYCLOPS gene

function, as most CYCLOPS genes were statistically significant in both lineage-

controlled and non-lineage-controlled permutation tests.

Another concern regarding CYCLOPS vulnerabilities is that few of these genes

represent readily druggable targets. A large proportion of CYCLOPS genes tend to be

members of macromolecular complexes. As such, many CYCLOPS genes play

predominantly structural roles rather than enzymatic roles. For example, in the case of
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SF3B 1, the relative expression of the fully assembled spliceosome is unaffected in

SF3B1 I" cells. Therefore, small molecules that inhibit the enzymatic action of the fully

assembled spliceosome will not strike at the relative vulnerability between diploid cells

and cancer cells with loss of SF3B 1. Optimally, we would devise a strategy that targets

the relative depletion of SF3B1 I in subcomplexes. Two possible strategies include

degrading the protein encoded by the CYCLOPS gene product, or preventing the protein

from associating assembling with other complex members. Unfortunately, current

technology does not allow for the reliable production of small molecules to induce

degradation or inhibit protein-protein interactions 7. Therefore, in many cases, it is

unlikely that small molecules will be able to reproduce the vulnerability unveiled by gene

suppression.

Promise of allele-specific vulnerabilities in cancer genomes

Many cancers inactivate tumor suppressor genes through either copy-neutral loss

of heterozygosity (LOH) or uncompensated copy loss, both of which produce allelic loss.

One strategy to target this distinction would be to create allele-specific inhibitors against

essential genes that harbor frequent polymorphisms in humans. The main advantage of

allele-specific inhibitors is that the therapeutic window is categorical, not quantitative as

in CYCLOPS vulnerabilities.

One could imagine that coding differences between two germline alleles of

essential genes could cause differential binding to a small molecule inhibitor. We have

been performing a search for these variations across human populations. The search

involves several steps, which are described below.
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First, we must define essential genes. We have used a variety of data sources as

evidence of cell-essentiality for human genes. For instance, we are using data from

CRISPR screens to find genes that severely impact cellular fitness when inactivated. We

are also examining disruptions observed in cancer genornes. If a gene is biallelically

inactivated in any cancer genome, either through inactivating mutation or gene deletion,

the gene cannot be essential in human cells. Similarly, we can leverage sequencing data

from populations with a degree of inbreeding, such as Iceland8 , to attempt to identify

genes with homozygous mutation in healthy individuals. Orthogonal evidence comes

from shRNA screens and the literature. We have used machine learning tools trained on

these features to identify approximately 2,000 high confidence essential genes in humans.

A second task was to map human variation onto these essential genes. We have

used the Exome Aggregation Consortium (ExAC) to find common variation in these

essential genes. Next, we had to prioritize candidates based on the probability that we can

identify a variant that might represent a druggable difference between two alleles. An

optimal candidate would occur in a region of an essential protein that is close to the

active site, and would have pre-identified small molecules that bind to the region in

question. We used databases of catalytic active sites in proteins, structural database and

pharmacology databases to prioritize our candidates. We also manually reviewed the

structures of these candidates to identify hydrophobic pockets into which a small

molecule could bind.

In the future, we will attempt to find small molecules that distinguish between two

alleles of an essential gene. A potential method would be to screen small molecule

libraries against recombinant protein from the essential gene in question. A counterscreen

170



against the same essential gene with the variant allele could also be performed. DNA

encoded libraries could be particularly useful for this9 . One could also generate isogenic

cell lines with CRISPR technology whose only difference is the variant in question. In-

vitro screens for cell viability could then be performed with candidate small molecules as

well.

Conclusion

We have performed a sequencing analysis of endometrial cancer metastasis. We

showed that certain driver genes such as ARIDJA tend to be heterogenous in these tumors

and that metastases tend to be more related to one another than would be expected by

chance. Despite the latter finding, we were unable to identify and genes that were

significantly recurrently mutated specifically in metastases. These data shed light on the

biology of metastasis and have important implications for the design of therapeutics.

We have also performed an analysis of cancer vulnerabilities associated with

SCNAs. CYCLOPS vulnerabilities are the most enriched class of vulnerabilities

associated with SCNAs. We validated this vulnerability for a core splicing factor, SF3B1.

A reservoir of SF3BJ protein protected SF3Bne"tra cells from the effects of SF3B1 I

suppression. Future studies will focus on translating these vulnerabilities into effective

therapeutics. We hope that these studies will inspire future progress on synthetic lethal

opportunities in cancer therapy.
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