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SUMMARY

Understanding how brain activation mediates behav-
iors is a central goal of systems neuroscience. Here,
we apply an automated method for mapping brain
activation in the mouse in order to probe how sex-
specific social behaviors are represented in the male
brain. Our method uses the immediate-early-gene
c-fos, a marker of neuronal activation, visualized by
serial two-photon tomography: the c-fos-GFP+ neu-
rons are computationally detected, their distribution
is registered to a reference brain and a brain atlas,
and their numbers are analyzed by statistical tests.
Our results reveal distinct and shared female and
male interaction-evoked patterns of male brain acti-
vation representing sex discrimination and social
recognition. We also identify brain regions whose de-
gree of activity correlates to specific features of social
behaviors and estimate the total numbers and the
densities of activated neurons per brain areas. Our
study opens the door to automated screening of
behavior-evoked brain activation in the mouse.

INTRODUCTION

Central to the understanding of brain functions is insight into the

distribution of neuronal activity that drives behavior. Local mea-

surements of brain activity in behaving mice can be made with

electrodes and fluorescent calcium indicators (Buzsáki, 2004;

Grewe and Helmchen, 2009), but such approaches provide in-

formation regarding only a very small fraction of the �70 million

neurons that comprise the mouse brain. The detection of

elevated levels of the immediate-early genes (IEGs) linked to

recent neuronal activity (Clayton, 2000; Guzowski et al., 2005)

is a more spatially comprehensive technique. While it lacks the

time resolution of electrophysiological recordings or calcium im-

aging, it does have the potential of providing a complete view of

recent whole-brain activity. Once determined, the whole-brain

IEG-based map can be used to generate structure-function hy-
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potheses to be probed by high-resolution recordings as well as

optogenetic and chemogenetic methods (Fenno et al., 2011;

Lee et al., 2014).

Here, we use a pipeline of computational methods that permits

automated unbiasedmapping of c-fos induction in mouse brains

at single-cell resolution, in a similar way as recently described for

mapping the induction of the IEG Arc (Vousden et al., 2014). Spe-

cifically, we use serial two-photon (STP) tomography (Ragan

et al., 2012) to image the expression of c-fos-GFP, a transgenic

c-fos green fluorescent protein reporter (Reijmers et al., 2007),

across the entire mouse brain. The activated c-fos-GFP+ cells

are computationally detected, their location ismapped at stereo-

taxic coordinates within a reference brain, and their numbers and

densities per anatomical brain areas are determined within the

Allen Mouse Brain Atlas. Finally, region of interest (ROI)-based

and voxel-based statistical tests are applied to identify brain

areas with behaviorally evoked c-fos-GFP activation.

To demonstrate the application of the computational pipeline

to the mapping of behavior-evoked brain activation, we focus

on mouse social behavior and generate activation maps repre-

senting sex-specific social behaviors in the male brain. Rodent

social behavior is an area of intense research, and c-fos map-

ping, lesion studies, and other functional approaches have

been used to identify brain regions that are activated and

contribute to male and female sexual behaviors as well as

male-male aggressive behaviors (Anderson, 2012; Bia1y and

Kaczmarek, 1996; Brennan and Zufall, 2006; Coolen et al.,

1996; Pfaus and Heeb, 1997; Veening et al., 2005; Yang and

Shah, 2014). Much less is known, on the other hand, about the

brain areas activated during the initial period of sex discrimina-

tion and social recognition before the manifestation of the cor-

rect behavioral response.

Here, we explore the question of sex discrimination and social

recognition by limiting the male-female and male-male interac-

tions to a brief 90 s period, during which the behavioral repertoire

comprises only social exploratory activity, such as anogenital

sniffing, close following, and nose-to-nose sniffing, without mat-

ing or aggression. A side-by-side comparison of the female

and male interaction-evoked whole-brain activation revealed (1)

a broad activation of areas downstream of both the main and

accessory olfactory bulb (MOB and AOB) in the male-female
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Figure 1. STP Tomography and Computa-

tional Detection of c-fos-GFP+ Cells

(A) Imaging and data processing pipeline for

mapping whole-brain activation in c-fos-GFP

mice.

(B) A sample 280-serial section data set of a c-fos-

GFP mouse brain imaged by STP tomography.

(C–H) Registration of CN-detected c-fos-GFP+

cells in the RSTP brain. (C) A coronal section

shows the autofluorescence signal, which is used

for registering the 3D reconstructed sample brain

(D) onto the RSTP brain (E). (F) A total of 2,177

c-fos-GFP+ cells were detected in the same

coronal section; scale bar, 1 mm. (G) A total of

360,183 c-fos-GFP+ cells were detected in the

whole brain, reconstructed in 3D, and (H) regis-

tered onto the RSTP brain using the image

registration parameters established in the (D) and

(E) step.
interaction and a bias toward structures downstream of the MOB

in themale-male interaction; (2) activation of structures related to

behavioral motivation during themale-female, but notmale-male,

interaction; and (3) sex-specific as well as shared hypothalamic

activation. Taking advantage of the cellular resolution of the

whole-brain data, we then identified brain regions whose level

of activation was correlated to specific features of the social be-

haviors, including regions linked to anogenital sniffing that lie

downstreamof the pheromone-activated AOBand regions linked

to close following that belong to the striatopallidothalamocortical

circuitry. Finally, we calculated the total numbers and the den-

sities of c-fos-GFP+ cells per activated brain region of the female-

and male-specific brain data sets, providing a quantitative

estimate of whole-brain activation evoked by social behaviors.

RESULTS

Whole-Brain Detection of c-fos-GFP+ Cells in STP
Tomography Data Sets
We have established an automated and quantitative whole-

brain method for mapping behaviorally evoked c-fos induction
Cell Reports 10, 292–305
in transgenic reporter mice expressing

c-fos-GFP from a recombinant c-fos

promoter (Reijmers et al., 2007) (Experi-

mental Procedures). This necessitated

the development and optimization of (1)

computational detection of c-fos-GFP+

cells in the mouse brain imaged by

STP tomography (Ragan et al., 2012),

(2) 3D registration of the STP data sets

to a reference mouse brain, and (3)

statistical analyses of the whole-brain

distribution of the c-fos-GFP+ cells

(Figure 1A).

The mouse brains were imaged by

STP tomography as data sets of 280 se-

rial coronal sections, with x-y resolution

1.0 mm and z-spacing 50 mm, which
required an imaging time of �21 hr per brain (Figure 1B) (Ragan

et al., 2012). To achieve a reliable computational detection of

the c-fos-GFP+ cells throughout the whole brain, we used con-

volutional networks (CNs) that can learn to recognize image

features in complex data sets (V. Jain et al., 2007, IEEE, confer-

ence; Turaga et al., 2010) (Figure S1; Experimental Proce-

dures). Since nearby c-fos-GFP+ cells were sometimes merged

in the CN output, a postprocessing step was devised that could

separate such ‘‘touching’’ cells (Figure S1). The CN perfor-

mance was then quantified on a new set of marked-up fields

of view from a second c-fos-GFP brain using the F-score mea-

sure, which represents the harmonic mean of the precision and

recall (i.e., the false positive and false negative error rate),

where F score 1 is the best and 0 the worst. The CN perfor-

mance reached F-score 0.88 (precision 0.86, recall 0.90), which

was comparable to human interuser variability represented by

F-score 0.90 (precision 0.90, recall 0.90) (Figure S1; Experi-

mental Procedures). We conclude that the trained CN provides

an automated and highly accurate method for detection of

c-fos-GFP+ cells in whole mouse brains imaged by STP

tomography.
, January 13, 2015 ª2015 The Authors 293



Figure 2. ROI-Based Segmentation and

Sample Size Calculation

(A–D) ROI-based segmentation of the whole-brain

c-fos-GFP+ cell count. (A) Whole-brain view of

360,183 c-fos-GFP+ cells (same brain as in Fig-

ure 1H). (B and C) Examples of ABA ROI seg-

mentation (B) and the corresponding c-fos-GFP+

cell counts (C): hippocampus: dark blue; 33,508

cells; medial amygdalar nucleus: light blue; 3,035

cells; nucleus accumbens: green; 13,627 cells;

and infralimbic cortical area: red; 4,665 cells. (D)

Further segmentation of the infralimbic region by

cortical layers; top shows the layer ROIs, from

layer 1 (orange) to layer 6 (purple), and bottom

shows the c-fos-GFP+ cell counts (ILA1 = 223,

ILA2 = 243, ILA2/3 = 1,572, ILA5 = 1,731, ILA6 =

896 c-fos-GFP+ cells). The spacing between the

layers was enlarged for better visualization.

(E and F) Estimation of the sample size based on

power analysis of c-fos-GFP+ cell counts. (E) The

simulation of the relationship between the number

of sufficiently powered ROIs and the sample size

shows a steep increase until �N = 10, which then

begins to plateau. For the current study, we chose a sample size of N = 13 (dashed line). (F) The plot of the relationship between the statistical power of each ROI

and the effect size for N = 13 group. Of the total 763 ROIs analyzed, 601 (78.8%) showed sufficient statistical power at the effect size 0.6 and 699 (91.6%) at the

effect size 1.0.
Anatomical Registration of the Whole-Brain
c-fos-GFP Data
Results from the CN-based cell counting produce a number of

c-fos-GFP+ cells per the individual 280-section data sets, with

each cell having an xyz location. To be able to compare patterns

of c-fos activation between experimental groups in one common

brain volume, we created a Reference STP (RSTP) brain coregis-

tered to the digital Allen Brain Atlas (ABA) for 8-week-old C57BL/

6 mice (Sunkin et al., 2013) (Figure S2A; Experimental Proce-

dures; Movie S1). The image registrations were done by a 3D

affine transformation, followed by a 3D B-spline transformation

with Mattes Mutual information as the similarity measure (Mattes

et al., 2003). The 3D registration accuracy was calculated to be

65.0 ± 39.9 mm (mean ± SD; (Figures S2B and S2C; Experimental

Procedures), which is also the accuracy for the registration of all

STP experimental data sets to the RSTP brain for data analysis.

The alignment of the RSTP and ABA Nissl brains was further

improved by 2D affine and B-spline transformations using STP

tomography-imaged CAG-Keima brain, which has a Nissl-like

fluorescent labeling from the broadly expressing CAG (cytomeg-

alovirus-IE/chicken b-actin) promoter (Figure S3A; Experimental

Procedures). Finally, the alignment of many ABA anatomical la-

bels was validated, and in some cases manually corrected,

based on a comparison to brain structures delineated by tissue

autofluorescence or fluorescent protein expression in parvalbu-

min-, glutamic acid decarboxylase-, and somatostatin-specific

transgenic reporters (Taniguchi et al., 2011) (Figures S3B–S3D).

Calculation of the Sample Size for c-fos-GFP-Based
Mapping of Mouse Brain Activation
The RSTP brain allows us to calculate the number of c-fos-GFP+

cells per anatomical ABA regions in the 280-section data sets. To

estimate the required sample size for statistical comparisons, we

used power analysis on data from a baseline group of mice
294 Cell Reports 10, 292–305, January 13, 2015 ª2015 The Authors
(Experimental Procedures). The brains of 7 c-fos-GFP mice (no

experimental manipulation) were imaged by STP tomography,

warped to the RSTP brain, and the c-fos-GFP+ cells were

counted per each anatomical ROI. To determine the optimal

sample size, Monte Carlo methods were applied to this data to

simulate ROI counts for two groups at various effect sizes. As

shown in Figure 2, the number (N) of sufficiently powered ROIs

(a < 0.05, power > 0.80) increased at an approximately constant

rate until N = 10, where it started to plateau. We chose N = 12–13

as sample size per group, which assures high statistical power

for most ROIs.

The Selection of the Social Behavioral Protocols and
Characterization of c-fos-GFP Induction
Interactions between amale and a femalemouse, and between a

male and amalemouse, include initial common social behaviors,

such as anogenital sniffing and close following, and consequent

sex-specific behaviors, such mounting and fighting. In the cur-

rent study, we wished to focus on the comparison of brain acti-

vation evoked during the initial social exploration-based phase

of the male-female and male-male interactions, during which

the male is expected to recognize the social stimulus and to

discriminate the sex of the interacting partner.

The social comparison was based on two experimental

groups. In the male-female interaction group, an ovariectomized

(OVX) conspecific female was introduced for 90 s in the home

cage of a naive c-fos-GFP+male, while in themale-male interac-

tion group, a conspecific male was used as the 90 s stimulus

(Movie S2). As described before in studies of social recognition

(Ferguson et al., 2000, 2001), the brief interaction period

included exploratory behavioral activities of anogenital sniffing,

close following, and nose-to-nose sniffing, but no sexual

behavior or aggression (Figure S4). The OVX female, which

was recognized by the male as a social stimulus comparable



to an intact female (Figure S4), was chosen to limit experimental

variability due to the estrous cycle (Ferguson et al., 2000; Win-

slow, 2003).

For control, we included four groups. Baseline group included

mice that were not handled or otherwise manipulated. The

handling group included mice that were transferred to the exper-

imental area for 90 s, the object group included mice that

received a novel object for 90 s, the olfactory group included

mice that were exposed for 90 s to a novel object enriched

with banana-like odor (isoamyl acetate [ISO]; note that ISO is a

monomolecular odor and as such it is likely to induce simpler

activation patterns compared to complex volatile odors.).

In order to characterize the time course of c-fos-GFP induc-

tion, we used the 90 s ISO stimulation and tested c-fos-GFP

increase in the main olfactory bulb at 0.5, 1.5, 3, and 5 hr post-

stimulus. This protocol revealed a peak induction at 3 hr after

the stimulation, which returned to the baseline level at 5 hr (Fig-

ures S5A–S5C). The time of 3 hr poststimulus was selected for

analysis of all behavioral experiments.

In order to compare the c-fos-GFP signal to native c-fos signal,

we analyzed female interaction-driven induction in eight selected

brain regions by anti-c-fos immunohistochemistry in wild-type

C57BL/6 mice and by STP tomography in c-fos-GFP mice

(note that the c-fos signal was analyzed at 1 hr poststimulus

because of the short half-life of the native c-fos protein). Overall,

the c-fos-GFP signal represented 59% ± 6% (mean ± SEM) of

anti-c-fos immunosignal, indicating that the direct c-fos-GFP

fluorescence detects approximately 60% of all c-fos induced

cells (Figures S5D–S5I). Importantly, the female interaction-

driven increase was also highly comparable between the wild-

type and c-fos-GFP mice (Figures S5D–S5I).

ROI- and Voxel-Based Statistical Analyses
The distribution of the c-fos-GFP+ cells among the different

behavioral groups was compared using ROI- and voxel-based

statistical tests corrected for multiple comparisons by false dis-

covery rate (FDR) (Experimental Procedures). The 694 ROIs

analyzed represent the segmentation of the RSTP Brain volume

by the ABA anatomical regions and the c-fos-GFP cell counts are

compared ROI-to-ROI between the experimental groups (Exper-

imental Procedures). The RSTP brain voxelization (done by over-

lapping sphere voxels of 100 mm diameter) generates discrete

digitization unbiased of anatomical regions and the c-fos-GFP

cell counts are compared voxel-to-voxel (Experimental Proce-

dures). The voxel-based statistics can reveal ‘‘hot spot’’ areas

of activation and subregional differences within the anatomical

ROIs (Figure S6).

In the first ROI analysis, the comparison of the male-female,

male-male, olfactory, and handling groups to the baseline group

revealed broad patterns of brain activation, with �69%, 76%,

79%, and 35% of ROIs activated by the respective manipula-

tions (Table S1). Since all ROIs activated in the handling group

were also activated in the other three groups, the handling-

induced brain activation represents nonspecific shared stimuli,

such as moving the cage to the experimental area. In order to

determine the stimulus-specific brain activations, we next

compared the male-female, male-male, and olfactory groups

to the handling group by both ROI and voxel-based analysis.
C

Female and Male Interaction-Evoked Brain Activation
It has been proposed that the detection of volatile pheromones

by the main olfactory epithelium (MOE) and MOB is necessary

for sex discrimination (Baum and Kelliher, 2009) (see Discus-

sion). However, the mechanism of such detection at the level

of downstream brain structures is not known. A comparison of

the female and male interaction-evoked activation by ROI sta-

tistics revealed largely overlapping c-fos-GFP induction among

MOB-connected brain regions, including the anterior olfactory

nucleus (AON), piriform cortex (PIR), nucleus of the lateral olfac-

tory tract (NLOT), anterior amygdala area (AAA), piriform-amyg-

dala area (PAA), anterior and posterior lateral cortical amygdala

(COAa, COApl), and entorhinal cortex lateral (ENTl), in addition

to a female specific activation of taenia tecta (TT) and postpiri-

form transition area (TR) (Figure 3; Table S2; note that the heat

map data in Figures 3, 4, and 5 show statistical significance,

while the magnitude of c-fos upregulation is provided in Fig-

ure S7). A further analysis by voxel-based statistics revealed a

mainly dorsal MOB activation by both stimuli and a clear dor-

sal-ventral separation between the two stimuli in the PIR and

ENT (Figures 3C–3F; it should be noted that overlapping voxel

activation between the male and female data sets, seen as yel-

low areas in Figures 3C–3F, represents activation of the same

area, but not necessarily the same neurons). These data sug-

gest that spatial organization of the dorsal MOB outputs leads

to activation of distinct neuronal populations in the PIR and

ENT, which may contribute to sex discrimination in the male

brain.

The sensing of nonvolatile pheromones by the vomeronasal

organ (VNO) and AOB has been proposed to play a critical role

in mate recognition and behavioral motivation (Baum and Kel-

liher, 2009). Our analysis of brain regions downstream of the

AOB revealed a strong bias toward the female interaction-

evoked brain activation, including the AOB granular cell layer

(AOBgr), the posterior medial cortical amygdala (COApm), the

entire medial amygdala (MEA), bed nucleus of the accessory ol-

factory tract (BA), and bed nuclei of the stria terminalis (BST) (Fig-

ure 4; Table S2; Movie S3). In contrast, male-male interaction

induced activation in fewer AOB-linked areas, including the BA

and MEA anterior dorsal (ad), anterior ventral (av), and posterior

dorsal (pd) (Figure 4; Table S2). Voxel analysis revealed focal

activation in the AOB in the male-male interaction (Figure 4C)

and a largely overlapping activation in the MEAad, av, and pd

in the male-female and male-male data sets (Figures 4D and

4E; Table S2; Movie S3).

The male-female interaction also showed strongly evoked

activation of brain areas linked to behavioral motivation, in-

cluding the olfactory tubercle (OT) and nucleus accumbens shell

(ACBsh) of the ventral striatum, prelimbic, infralimbic, and orbital

medial (PL, ILA, and ORBm) prefrontal cortical areas, agranular

insular cortex (AI), substantia innominata (SI; also known as

ventral pallidum), medial dorsal thalamus (MDm), hippocampal

ventral subiculum (SUBv), and serotonergic dorsal raphe (DR)

(Figure 5A; Table S2). In contrast, the male-male interaction

had a comparable induction only in the AI; much weaker activa-

tion in the prefrontal cortices, SI, OT, and SUBv; and no signifi-

cant activation in the MDm and DR (Figure 5B; Table S2).

Voxel-based analysis revealed that activation in the medial
ell Reports 10, 292–305, January 13, 2015 ª2015 The Authors 295



Figure 3. Social Behavior-Activated Areas: The MOB and Its Direct Downstream Circuitry

(A and B) ROI analysis:.The male-female (A) and male-male groups (B) are compared to the handling group and significantly activated ROIs downstream of the

MOB are displayed. Most of the regions were activated by both stimuli. Heatmap in (A) represents FDR corrected statistical significance. Numbers in (B) represent

bregma A/P coordinates. See Table S2 for ROI full names.

(C–F) Voxel-based analysis revealed activation pattern selective for the female stimulus (red), the male stimulus (green), and shared by both stimuli (yellow). (C)

Both male and female stimuli induced dorsal activation in theMOB. (D–F) Dorsoventral separation was detected between themale- and female-evoked activation

in the PIR (D and F) and ENT (E and F).

See also Movie S3 for the full data set.
prefrontal cortices in themale-male interaction was limited to su-

perficial cortical layers (Figure 5C; Movie S3). We also observed

a focal activation in the DR at a specific A/P bregma location in

the male-female data set (Figure 5E; Movie S3).
296 Cell Reports 10, 292–305, January 13, 2015 ª2015 The Authors
The activation of the septal and hypothalamic nuclei is

known to mediate both sexual and defensive/aggressive be-

haviors (Anderson, 2012; Swanson, 2000). We therefore asked

whether the brief interaction used in our experiments was



Figure 4. Social Behavior-Activated Areas: the AOB and Its Direct Downstream Circuitry

(A and B) ROI analysis. The male-female (A) and male-male groups (B) are compared to the handling group, and significantly activated ROIs downstream of the

AOB are displayed. The female stimulus activated all AOB downstream regions, while the male stimulus induced only a partial activation of these areas. Heatmap

in (A) represents FDR-corrected statistical significance. Numbers in (A) represent bregma A/P coordinates. See Table S2 for ROI full names.

(C–E) Voxel-based analysis revealed a largely overlapping activation pattern (yellow) in the coactivated AOB (C), MEAad and MEAav (D), and MEApd (E), and

selective female-evoked activation in the MEApv and COApm (E).

See also Movie S3 for the full data set.
sufficient to activate these regions even though it lacked overt

mating and fighting. The ROI analysis revealed that the female

stimulus induced activation of the rostral lateral septum (LSr)

and neuroendocrine nuclei, including the medial preoptic nu-

cleus (MPN), medial preoptic area (MPO), ventral premammil-

lary nucleus (PMv), ventrolateral part of the ventromedial

nucleus (VMHvl), paraventricular hypothalamic nucleus (PVH),

dorsomedial hypothalamus (DMH), anteroventral periventricu-

lar nucleus (AVPV), posterior periventricular hypothalamic nu-

cleus (PVp), and tuberal nucleus (TU) (Figure 6A; Table S2).

The male stimulus activated the VMHvl, DMH, PVH, PVp,

and TU from the structures of the male-female data set, in

addition to a male-specific activation of the dorsomedial part

of the ventromedial nucleus (VMHdm), the anterior, preoptic,

and intermediate periventricular nuclei (PVa, PVpo, PVi), retro-

chiasmatic area (RCH), subparaventricular zone (SBPV), su-

praoptic nucleus (SO), and arcuate nucleus (ARH) (Figure 6B;

Figure S7; Table S2). Voxel-based analysis revealed very
C

distinct and focal LSr activation at A/P coordinates be-

tween +0.345 and �0.145 (Figure 6C; Movie S3). The activa-

tion in the VMHvl, which was previously shown to play a role

in both sexual and aggressive behaviors (Lin et al., 2011),

was highly overlapping between the male-female and male-

male data sets (Figure 6D; Movie S3). In addition, only a medial

part of the PMv was activated in the male-male data set, sug-

gesting a functional subdivision within this structure (Figure 6E;

Movie S3).

Finally, among additional brain areas, the claustrum (CLA), ba-

somedial amygdala (BMA), and intercalated amygdala (IA) were

activated by both the female and male interactions; the capsular

central amygdala (CEAc), basolateral amygdala (BLA), and

thalamic parataenial nucleus (PT) were activated only in

response to the female stimulus; and the temporal associational,

perirhinal, and ectorhinal (TEa, PERI, and ECT) cortical areas

were activated only in response to the male stimulus (Table

S2). The activation of the hippocampal CA2 region linked to
ell Reports 10, 292–305, January 13, 2015 ª2015 The Authors 297



Figure 5. Social Behavior-Activated Areas: Motivational Circuitry

(A and B) ROI analysis. Themale-female (A) andmale-male groups (B) are compared to the handling group, and significantly activated ROIs previously implicated

in behavioral motivation are displayed. The female stimulus activated frontal cortical areas (PL, ORBm, ILA, AI), ventral striatum (OT, ACB, SI), midline thalamus

(MDm), ventral hippocampus (SUBv), and seretonergic DR, while the male stimulus activated AI; only superficially layer of PL, ORBm, and ILA; and weakly SI, OT,

and SUBv. Heatmap in (A) represents FDR corrected statistical significance. Numbers in (A) represent bregma A/P coordinates. See Table S2 for ROI full names.

(C–E) Voxel analysis showed that (C) the entire ventral part of PL and dorsal half of ILA was activated by the female stimulation, while only the upper layers of the

same regions were activated bymale stimulation. (D) Ventral striatum (ACB, SI, OT) showed a patch-shaped, strong activation pattern by female stimulus, but not

by male stimulus. (E) Voxel analysis pinpointed the maximal activation in the DR by the female stimulus at A/P coordinate �4.78.
social memory (Hitti and Siegelbaum, 2014) was also detected in

both the male-female and male-male data sets (Table S2).

Social Behavior-Specific Brain Activation
In addition to the male versus female comparison described

above, we also asked which of the activated brain regions are

specific to social behavior, i.e., are shared between the male-fe-

male and male-male data sets and are not activated in response

to a nonsocial stimulus represented by a novel object enriched

with a volatile odor (banana-like ISO).

First, we compared the ISO data set to the handling control.

This analysis revealed the expected activation of the PIR and

other areas downstream of the MOB, which was similar to the

social behavior-evoked activation (Table S2). The activation

throughout the rest of the brain, however, was highly divergent

from the pattern evoked by the social stimuli, as it included

many cortical areas, the entire hippocampus, and the hypotha-
298 Cell Reports 10, 292–305, January 13, 2015 ª2015 The Authors
lamic subfornical organ (SFO) regulating autonomic functions

(Smith and Ferguson, 2010); the suprachiasmatic nucleus

(SCH) regulating sleep, waking, and locomotor activity (Saper

et al., 2005); and the arcuate nucleus (ARH) linked to feeding

(Sternson, 2013) (Table S2).

Second, we compared the shared male-female and male-

male brain activation to the ISO data set. This analysis revealed

the subset of areas specific to social behavior, which included

the amygdalar regions BA, COApl, MEAav, MEApd, BMAp,

BLAv, and PA, the hypothalamic VMHvl and PVH, and the SI (Fig-

ure 7; Table S3).

Correlation of c-fos Activation to Time Spent in Social
Behaviors
The time spent in a specific behavioral activity may be expected

to correlate to the number of c-fos-GFP+ cells in brain regions

driving this activity. We next tested whether this correlation



Figure 6. Social Behavior-Activated Areas: Septal and Hypothalamic Activation

(A and B) ROI analysis. The male-female (A) and male-male groups (B) are compared to the handling group, and significantly activated ROIs of the septum and

hypothalamus are displayed. The female stimulus activated the rostral lateral septum (LSr), AVPV, medial preoptic area (MPO, MPN), PVH, TU, VMHvl, posterior

and ventral DMH, PMv, and PVp. The male stimulus also activated the PVH, VMHvl, DMH (anterior part), TU, and PVp, in addition to a selective activation of the

periventricular hypothalamic nuclei (PVpo, PVi), SBPV, RCH, SO, ARH, and VMHdm. Heatmap in (A) represents FDR-corrected statistical significance. Numbers

in (A) represent bregma A/P coordinates. See Table S2 for ROI full names.

(C and D) Voxel analysis. (C) A distinct voxel activation was observed in the LSr only by female stimulation. (D) VMHvl showed largely overlapping activation by

both stimuli, while VMHdm and ARH showed activation only by the male stimulus.

(E) PMv is highly activated by the female stimulus, while the medial part of PMv was also activated by the male stimulus.

See also Movie S3 for the full data set.
may be used to functionally link the activated brain areas in the

male-female and male-male data sets to specific features of

the social behavior.

The correlation to the time spent in anogenital sniffing identi-

fied mainly areas connected to volatile and nonvolatile olfactory

signaling, such as the COAa, COApl, COApm, MEA, and BST,

and hypothalamic neuroendocrine areas including the MPN,

PMv, and VMHvl (Table 1). Correlation to the time spent in close

following identified some of the same areas, such as the MEA

and BST, but also areas linked to behavioral motivation,

including the ACB, OT, SI, ILA, PL, ORBm, MDm, and DR (Table

1). Finally, the correlation to the time spent in nose-to-nose sniff-

ing did not identify any positive association, suggesting that this

behavioral feature is not quantitatively linked to any brain regions

in our data sets. These data suggest that distinct aspects of the
C

social behavior engage distinct sets of brain areas and that

whole-brain cellular c-fos-GFP analysis is able to reveal this

structure-function relationship.

Calculation of the Density of c-fos-GFP+ Cells per ROIs
While the above analyses identified the activated brain areas,

the cellular resolution of our data allowed us to also estimate

the total numbers and the densities of c-fos-GFP+ cells per

anatomical ROIs. Since the z planes in the 280-section data

sets are spaced 50 mm apart, we transformed the serial 2D

data into 3D whole-brain estimates with a stereological

method (Williams and Rakic, 1988) applied to a high-resolution

5,600-section data set with z spacing of 2.5 mm (Experimental

Procedures). The obtained 2D-to-3D conversion factor of

2.5 was then used to multiply the 2D ROI counts in order to
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Figure 7. Social Behavior-Specific Brain Areas

Brain areas activated by both female and male stimulus, but not by ISO stimulation, are displayed as ROIs. Unique social behavior-activated areas included the

amygdalar BA, COApl, MEAav, MEApd, BLAv, BMAp, PA, hypothalamic PVH, VMHvl, and ventral pallidum (SI).
estimate the total numbers of c-fos-GFP+ cells, and the

total counts were divided by the ROI volumes in order to esti-

mate the densities of c-fos-GFP+ cells per activated ROIs

(Figure S7).

The average cell density in the structures significantly acti-

vated in the female and male data sets were, respectively,

4,993 ± 400 and 4,519 ± 283 per cubic mm (mean ± SEM),

whereas the average density in these structures in the handling

control was 3,127 ± 201 per cubic mm (Figure S7). Therefore,

the social interactions evoked on average �1,500 to 2,000 c-

fos-GFP+ cells per cubic mm compared to the handling control,

suggesting a sparse activation of a few percent of neurons per

brain areas (see Discussion).

DISCUSSION

While the general organization of the brain structures regulating

sexual and aggressive behavior is beginning to be understood

(Anderson, 2012; Sokolowski and Corbin, 2012), much remains

unknown about how information is processed from the sensory

periphery (the olfactory system in rodents) to give rise to sex-

specific behavioral responses. Here, utilizing a pipeline of

computational methods, including ROI-based whole-brain map-

ping of c-fos activation, voxel-basedmapping of subregional dif-

ferences in c-fos activation, and correlation analysis linking ROI

activation to behavior, we compared brief female interaction-

evoked activation in the brain of a male mouse to the activation

evoked by brief interaction with a male. Some more salient find-

ings from our analyses are discussed below following the

method discussion, while the complete ROI- and voxel-based

results are provided as a resource in Tables S1, S2, and S3

and Movie S3.

The Method Pipeline for c-fos-GFP-Based Mouse Brain
Screening
The entire method pipeline is automated, highly standardized

and operates at a reasonably high-throughput: the imaging

time per one brain is �21 hr, while the imaged processing and

computational analyses take �24 hr that occur in parallel with

the STP imaging (Ragan et al., 2012; Vousden et al., 2014).
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The first key part of the computational pipeline is the detection

of c-fos-GFP+ cells in the STP data sets. We chose to use CNs,

because these algorithms rely on the learning procedure to ac-

count for signal to noise ratio variability and improved perfor-

mance is achieved by simply increasing the training data set

(V. Jain et al., 2007, IEEE, conference; Turaga et al., 2010). The

trained CN performance (F-score = 0.88) was in fact close to hu-

man expert performance (F-score = 0.9), demonstrating the po-

wer of this approach for analysis of fluorescent labeling in STP

tomography-imaged mouse brains. We have also tested two

other cell detection methods—cell counting in the Volocity Im-

age analysis software (Perkin Elmer) and cell counting based

on watershed algorithm (Kopec et al., 2011)—but these were

considerable less reliable (F score < 0.5) compared to the CN-

based detection.

The second critical step of the method is the registration of the

data sets to the RSTP Brain and the AllenMouse Brain Atlas. Fix-

ation-induced tissue autofluorescence provides rich image con-

tent for the registration by the warping algorithm Elastix (Mattes

et al., 2003). As a result, we were able to achieve a high level of

precision (�60 mm jitter) for the registration of the experimental

data sets to the RSTP brain (Figure S2). The alignment of the

ABA Nissl-stained sections to the RSTP brain was further helped

by the use of the transgenic CAG-Keima brain with a cellular fluo-

rescent protein labeling that matched in most brain regions the

cellular Nissl signal and by several interneuron-specific reporter

mice (Taniguchi et al., 2011) that helped to validate and improve

the matching of the labels to specific brain nuclei (Figure S3).

Consequently, the precision ABA labels became closely aligned

to the RSTP brain, as judged based on brain landmarks, such

as the corpus callosum, hippocampal pyramidal layers, and

many structural borders visible in the autofluorescence signal

(Figure S3).

The last part of the method pipeline includes statistical ana-

lyses of the brain-wide c-fos-GFP+ cell counts. Since it was first

established in rat models of seizure, the inducibility of c-fos has

been utilized to map neuronal activation in many behavioral and

pharmacological experiments, demonstrating that c-fos can be

used as an activity reporter in most if not all areas of the brain

(Dragunow and Robertson, 1987; Morgan et al., 1987). The



Table 1. c-fos-GFP Count to the Social Behavioral Correlation

ROIs Anogentical Sniffing Close Following

Isocortex

ILA +

PL + ++

ORBm + ++

TT ++

Olfactory area

DP ++

AOBgr ++

COAa +

COApl +++ +

COApm +++ +

PAA +++ +

TR +

Hippocampal formation

ENTmv ++

CA3 +

Cortical subplate

EP + +

BLAa ++ +

BLAp +

BLAv ++

BMAa ++

BMAp +++

PA +++

Cerebral nuclei

ACBsh +

OT + ++

AAA +

LSr +

CEAc + +

IA ++

MEAad +++

MEAav +++

MEApd +++ +

MEApv +++ +

SI +

BSTmg + ++

BSTv + ++

BSTp ++

Thalamus

MDm +

PT +

Hypothalamus

AVPV ++ +

MPN ++ +

PMv +++ +

VMHvl +

TU ++

Table 1. Continued

ROIs Anogentical Sniffing Close Following

Midbrain

DR +

Pearson correlation between the time spent in anogenital sniffing and

close following and c-fos-GFP cell counts in the regions activated in

the male-female and male-male data sets. Significance is based on

FDR q value adjusted for multiple comparisons: (+) = 0.01 % FDR q <

0.05; (++) = 0.001 % FDR q < 0.01; and (+++) = FDR q < 0.001.

C

ROI- and voxel-based statistical analyses established here

transform the traditional laborious immunostaining or in situ hy-

bridization based c-fos mapping into an automated whole-brain

assay.

In addition to the current application, these methods can also

be used to detect and quantify other fluorescent protein-ex-

pressing transgenic mouse brains by simply training new CN

on a different ground-truth data. This makes our pipeline easily

adaptable to many other applications in quantitative whole-brain

mapping, such as the generation of whole-brain cell counts in

cell type-specific GFP reporter mice (Taniguchi et al., 2011).

Female- and Male-Evoked Maps of Whole-Brain
Activation in the Male Brain
By focusing on the initial period of social exploratory behaviors

between a naive male and a novel conspecific female or male

mouse, we set out to determine the brain activation patterns

that underlie social recognition and sex discrimination in the

male brain. Our results revealed that while the brief interactions

led to an activation of the expected sex-specific response at

the hypothalamic level (indicating that the behaviors were suffi-

cient for correct sex discrimination), the upstream patterns of

brain activation strongly diverged between the two stimuli.

At the level of the AOB andMOB signaling, the female stimulus

evoked activation of all downstream connected brain structures,

while the male stimulus showed activation of all MOB-linked

structures but only a subset of the AOB-linked structures. The

strong MOB-driven brain activation in both behaviors agrees

with the role of volatile signaling in sex discrimination proposed

by studies using chemical lesion of the MOE (Keller et al., 2006)

or genetic disruption of cellular signaling in the MOE (Mandiyan

et al., 2005). The finding that the male and female stimuli activate

different parts of the PIR and ENT areas suggests that topolog-

ically distinct MOB cortical outputs may discriminate the sex-

specific stimuli. This dorsoventral separation is an example of

a novel spatial organization in the piriform cortex, which until

now has been considered to lack gross sensory input-based to-

pology (Ghosh et al., 2011; Sosulski et al., 2011).

The role of the VNO and AOB-driven activation in social be-

haviors appears to be less clear than that of the MOE/MOB

signaling. Lesioning of the VNO failed to affect sex discrimination

in male mice (Pankevich et al., 2004), even though it did impair

vocalization after nasal contact with female urine (Bean, 1982),

while genetic disruption of VNO signaling caused male-male

mounting instead of aggressive behavior without affecting

male-female behavior (Stowers et al., 2002). Our data point to

a more prominent role of the AOB-connected brain structures
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in the male-female interaction, as MEA, BST, BA, and COApm

were all activated in the male-female data set, but only MEA

and BA were activated in the male-male data set. The selective

BST activation in themale-female data set included the posterior

division nuclei (principal, interfascicular, and transverse) pro-

posed to function in reproductive behaviors (Dong and Swan-

son, 2004), and themagnocellular nucleus of the anterior division

proposed to control neuroendocrine functions and pelvic func-

tions, including penile erection (Dong and Swanson, 2006).

The female, but not the male, stimulus also evoked activation

of brain areas of the striatopallidothalamocortical circuit known

to positively regulate behavioral motivation (Ikemoto, 2007;

Sesack and Grace, 2010), including the ventral striatum (OT,

ACB), ventral pallidum (SI), thalamus (MDm), and prefrontal cor-

tex (ILA, PL, ORB). While we did not detect activation of the

dopaminergic neurons of the ventral tegmental area (VTA),

which are known to reinforce ACB functions within this circuit

during sexual behavior (Ikemoto, 2007; Sesack and Grace,

2010), we did detect activation of the serotonergic DR, which

was recently shown to be necessary for ACB functions in social

reward (Dölen et al., 2013). The switch between the DR and

VTA modulation of ventral striatum may contribute to a transi-

tion between exploratory and consummatory male-female

behavior.

The analysis of the hypothalamic brain areas revealed activa-

tion of structures regulating sexual and aggressive behaviors

(Anderson, 2012; Swanson, 2000): the MPN and PMv regulating

male reproductive behavior (Simerly, 2002; Yang and Shah,

2014) were selectively activated in the male-female data set,

the VMHvl regulating both male sexual behavior and aggression

(Anderson, 2012; Lin et al., 2011; Yang et al., 2013) was activated

in response to both female and male stimuli, and the VMHdm

regulating male defensive behaviors (Lin et al., 2011; Sokolowski

and Corbin, 2012) was activated only in the male-male data set.

Since the brief social interactions did not comprise mating or

aggression, these data show that the activation of the hypotha-

lamic nuclei can precede themanifestation of these behaviors as

part of the male-female and male-male social exploration-based

behaviors.

The Quantification of the Whole-Brain Activation Maps
at Cellular Level
The cellular resolution of our data also allowed us to search

for correlations between behavioral activity and brain activa-

tion and to estimate the density of activated cells per brain

area.

The correlation between behavior and c-fos activation can be

expected to identify the most behaviorally relevant brain regions

in which the number of c-fos activated cells reflects the behav-

ioral performance in individual animals. In agreement with this

hypothesis, regions correlated to the time spent in anogenital

sniffing included mainly amygdalar and hypothalamic areas of

the vomeronasal sensory-motor system transforming the che-

mosensory information into sexual or aggressive behavior

(Swanson, 2000), while the brain areas correlated to the time

spent in following included the structures linked to behavioral

motivation and described above as part of the striatopallidotha-

lamocortical circuit.
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The correlation analysis can be used to add functional signifi-

cance to activated regions that were not previously known to be

involved in social behaviors. For example, the activation of the

amygdalar IA and CEAc nuclei was correlated to the anogenital

sniffing time, while the PT thalamus activation was correlated

to following. Since both IA and CEAc can inhibit the medial cen-

tral amygdala (CEAm), which is the output fear pathway (Pitkä-

nen et al., 1997), these data suggest that the IA and CEAc are

activated by chemosensory cues and may act to modulate fear

behaviors during social exploration. The PT, a part of the dorsal

group of thalamic nuclei, projects to the ACB (Kelley and Stinus,

1984) andmay play a role inmotivational modulation of themale-

female social behavior.

Finally, the quantification of the numbers of c-fos-GFP+ cells

per brain area can provide information about the approximate

percentage of neurons behaviorally recruited in the identified

brain areas. For example, we observed on average 2-fold in-

crease (�3,600 c-fos-GFP+ cells per cubic mm) in the prefrontal

cortical areas in the male-female data sets, compared to the

handling control (Figure S7). Since neuronal density in themouse

cortex is estimated at �80,000–100,000 per cubic mm (Hercu-

lano-Houzel et al., 2006; Keller and Carlson, 1999; Meyer et al.,

2010), these data suggest less than 5% of neurons is recruited

in response to the female social stimulus. Further, as most brain

areas showed similar c-fos-GFP+ densities, the behavioral

recruitment of a few percent of neurons is likely a general feature

of c-fos activation. This may represent c-fos induction occurring

only in the most strongly activated cells, and such sparse c-fos

induction may be relevant for the proposed sparse coding of

sensory inputs (Olshausen and Field, 2004).

Caveats of the Current Study
There are several caveats associated with our study. First, while

the behavior is limited to 90 s, our assay cannot determine

whether the observed c-fos-GFP induction occurred entirely

during this brief time period or whether some downstream acti-

vation occurred during a longer time interval. Second, the behav-

ioral paradigm includes both the introduction and removal of the

stimulus animal from the home cage of the c-fos-GFP male, and

some of the observed activation pattern thus may reflect stress

induced by these manipulations. Third, the use of the OVX fe-

males in our study restricts the interpretation of the male-female

activation data to social exploration that lacks the effects of

estrous hormones. Thus, male-female interaction with, for

example, estradiol-induced OVX mice may be expected to

induce brain activation partially distinct from the one described

in the current study. Fourth, since the c-fos-GFP reporter labels

�60% of all c-fos+ cells detected by immunostaining, it is

possible that some areas with native c-fos activation were

missed in our assay. Finally, fifth, c-fos is a member of a family

of IEGs regulated by neuronal activity, and the detection of other

IEGs (such as Arc, homer-1A, or zif-268) can be expected to

reveal partially overlapping activation maps compared to the

c-fos-GFPmap identified in our paper. Because neuronal activa-

tion in some brain areas may induce other IEGs but fail to induce

c-fos, the c-fos-GFP-based network of brain areas described

here should not be interpreted as a complete brain activation

map evoked by social behavior.



CONCLUSIONS

Our method of c-fos-GFP-based screening generates cellular-

resolution maps of behaviorally evoked whole-brain activation

in the mouse. The patterns of female and male interaction-

evoked brain activation revealed clear separation between the

two stimuli, including at the level of brain structures downstream

of both volatile and nonvolatile chemosensory signaling. These

activation patterns were also markedly different from the activa-

tion pattern evoked during nonsocial olfactory-enhanced ex-

ploratory behavior. These findings demonstrate that our method

can be used for screening behavior-evoked whole-brain activa-

tion, and we envision that future experiments will yield brain-

map-like descriptions for other innate behaviors, such as

aggression and defensive behaviors, or cognitive behaviors,

such as attention and decision making. Further, the same

method can be applied to genetic mouse models of neurodeve-

lopmental disorders with the aim of identifying circuit deficits

underlying changes in social, cognitive, and other higher-order

brain functions.

EXPERIMENTAL PROCEDURES

Animals

Animal procedures were approved by the Cold Spring Harbor Laboratory An-

imal Care and Use Committee. The c-fos-GFP mice, Tg(Fos-tTA,Fos-EGFP)

line, were obtained from The Jackson Laboratory. In our study, we used the

direct c-fos-GFP signal, whereas several other studies used the tTA protein

to drive other reporter molecules (Garner et al., 2012; Liu et al., 2012; Matsuo

et al., 2008; Reijmers et al., 2007).

Behavioral Tests and c-fos-GFP Induction Time Course

Heterozygous c-fos-GFPmale mice (8–11 weeks old) were individually housed

for 1 week before the test. The behavioral stimuli were transfer of the animal to

the experimental arena (handling control) or plus introduction of an OVX

conspecific female (male-female group), conspecific male (male-male group),

50 ml falcon tube (object group), and 50 ml falcon tube with a side opening in

which was cotton ball with isoamyl acetate (1:100 in mineral oil, 40 ml per

experiment, freshly made each day). The stimulus was placed in the home

cage for 90 s and then removed. The behavior was video-recorded and manu-

ally scored. After the behavioral stimulus was removed, the mice remained

in the home cage for additional 3 hr and then killed by transcardial perfusion.

For the time course of c-fos-GFP induction, isoamylacetate was introduced

into the mouse home cage for a brief period of 90 s. The mice were killed at

selected time points of 0.5, 1.5, 3, and 5 hr poststimulation.

Brain Preparation, STP Tomography Imaging, and Data Processing

The brains were prepared as described in our previous study (Ragan et al.,

2012). Briefly, the brains were embedded in oxidized 4%agarose, crosslinked,

and imaged as 280 serial sections. The raw image tiles were corrected for illu-

mination and stitched in 2D in MATLAB and aligned in 3D in Fiji (Ragan et al.,

2012). The CNs for detection of c-fos-GFP+ cells was trained based on ground

truth data marked up by an expert biologist. The CN performance was scored

based on the F-score (the harmonic mean of the precision and recall). Stereo-

logical procedure was used to calculate how CNs 2D based counting can be

converted into 3D counting to calculate the densities of c-fos-GFP+ cells per

activated ROIs. 3D registration methods with Elastix were the same as

described previously (Ragan et al., 2012), but with modified parameters. See

the Supplemental Experimental Procedures for more details.

c-fos Immunohistochemistry and Comparison to c-fos-GFP+ Cell

Counting

Wild-type C57BL/6 mice (8–10 weeks old) underwent the same behaviors as

the c-fos-GFP mice of the male-to-female and handling groups. The mice
C

were killed and perfused 1 hr later and the brains were fixed overnight in 4%

paraformaldehyde, then cut as 50 mm coronal sections. For immunohisto-

chemistry, sections were exposed to rabbit anti-c-fos antibody (1:10,000,

Santa Cruz SC052) and labeled by DAB solution. FIJI (ImageJ) and Volocity

(Perkin-Elmer) were used for cell counting.

Statistics

We ran statistical comparisons between different behavioral groups based on

either ROIs or evenly spaced voxels. Voxels were overlapping 3D spheres with

100 mmdiameter each and spaced 20 mmapart from each other. The cell count

of each voxel was calculated as the number of nuclei found within 100 mm from

the center of the voxel in all 3D. To account for multiple comparisons across all

voxel/ROI locations, we thresholded the p values and reported FDRs. For cor-

relation between c-fos-GFP cell counts and social behavior, Pearson correla-

tion R values were calculated between c-fos-GFP cell counts and time spent in

social behaviors. See the Supplemental Experimental Procedures for more

details.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, three tables, and three movies and can be found with this article

online at http://dx.doi.org/10.1016/j.celrep.2014.12.014.
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Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nat. Neuro-

sci. 7, 446–451.

Clayton, D.F. (2000). The genomic action potential. Neurobiol. Learn. Mem. 74,

185–216.

Coolen, L.M., Peters, H.J., and Veening, J.G. (1996). Fos immunoreactivity in

the rat brain following consummatory elements of sexual behavior: a sex com-

parison. Brain Res. 738, 67–82.
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