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Abstract

In scientific and engineering contexts, physical systems are represented by mathemat-
ical models, characterized by a set of parameters. The inverse problem arises when
the parameters are unknown and one tries to infer these parameters based on observa-
tions. Solving the inverse problem can require many model simulations, which may be
expensive for complex models; multiple models of varying fidelity and complexity may
be available to describe the physical system. However, inferring the parameters may
only be an intermediate step, and what is ultimately desired may be a low-dimensional
Quantity of Interest (QoI); we refer to this as the goal-oriented inverse problem. We
present a novel algorithm for solving the goal-oriented inverse problem, which allows
one to manage the fidelity of modeling choices while solving the inverse problem.

We formulate a hierarchy of models, and assume that the QoI obtained by inferring
the parameters with the highest-fidelity model is the most accurate QoI. We derive
an estimate for the error in the QoI from inferring the parameters using a lower-
fidelity model instead of the highest-fidelity model. This estimate can be localized to
individual elements of a discretized domain, and this element-wise decomposition can
then be used to adaptively form mixed-fidelity models. These mixed-fidelity models
can be used to infer the parameters, while controlling the error in the QoI.

We demonstrate the method with two pairs of steady-state models in 2D. In one
pair, the models differ in the physics included; in the other pair, the models differ
in the space to which the parameters belong. In both cases, we are able to obtain a
QoI estimate with a small relative error without having to solve the inverse problem
with the high-fidelity model. We also demonstrate a case where solving the inverse
problem with the high-fidelity model requires a more complex algorithm, but where
our method gives a mixed-fidelity model with which we can infer parameters using a
simple Newton solver, while achieving a low error in the QoI.

Thesis Supervisor: Karen Willcox
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

In scientific and engineering contexts, physical systems are represented by mathemat-

ical models, which often take the form of partial differential equations (PDEs). These

models are characterized by a set of parameters, and since they relate these parameters

to states that can be observed, they are referred to as forward models. The forward

problem, then, involves solving the PDEs for a given set of parameters. Inverse prob-

lems, on the other hand, arise when the parameters are unknown and one tries to infer

these parameters based on observations of the states or parameters [6, 25]. Inverse

problems appear in many contexts, such as heat transfer [3], medical imaging [5, 23],

contaminant source identification [24], and reservoir characterization [21].

In such applications the parameters may be numerous, and yet what is ultimately

of interest may be some low-dimensional Quantity of Interest (QoI). For example, we

may wish to infer the permeability field of an aquifer to form a numerical model that

can then be used to design an optimal management policy for the groundwater in the

aquifer [24]; in this case, the QoI might be the concentration of a contaminant at a

water well resulting from the implementation of a particular policy. In such a situation,

where the QoI is of greatly reduced dimensionality compared to the parameters, it may

not be necessary to fully resolve all the parameters to obtain the QoI accurately. We
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refer to the setting where the goal of inferring parameters is to use them in predicting

a QoI as a goal-oriented inverse problem. A diagram of the relationship between

parameters, observations, and the QoI is given in Figure 1-1.

  

prediction 
process

observation 
process

noise

quantity of interest
(QoI)

observations

parameters

+

Figure 1-1: The observation process, which often includes the forward model, relates
the unknown parameters to the observations, which are also contaminated by noise.
Once these parameters have been inferred from the observations, they are related to
the QoI through the prediction process.

In this spirit, one way to simplify the process of inferring the parameters is to

represent the physical system to a coarser degree. A given physical system can be

represented with varying degrees of fidelity by different models. A high-fidelity model

may, for example, take into account more physical laws or be more finely discretized,

and thus more accurately represent reality. However, a high-fidelity model is also

usually more difficult to solve. Since solving the inverse problems generally requires

many evaluations of the forward model, it may be cheaper to use a lower-fidelity model.

In addition, the inverse problem is often ill-posed without regularization; it may be

the case that even if one were to use the high-fidelity model, the additional resolution

(in space-time and/or physical laws) of the high-fidelity model might not even be

informed by the observations. Thus, it may not be necessary to infer the parameters

using the expensive, high-fidelity model in order to accurately calculate the QoI. Just

as we manage models to control the error in QoI predictions from solving the forward

problem, for example through mesh adaptation, our research here aims to manage the

fidelity of modeling choices in solving the inverse problem, so as to achieve a desired

level of accuracy in the QoI prediction, without necessarily resolving the parameters

14



accurately. We adaptively form a mixed-fidelity model with which we solve the inverse

problem by using models of different levels of fidelity in different parts of the domain.

In the next section, we describe existing work on goal-oriented approaches and

multifidelity modeling.

1.2 Previous Work

In this section, we describe previous work, first on goal-oriented approaches and then

on multifidelity modeling.

1.2.1 Goal-Oriented Approaches

Especially in engineering contexts, the ultimate goal of running a forward simulation

or inferring parameters is to calculate some low-dimensional quantity of interest; the

exact states or parameters may not otherwise be of interest. Goal-oriented approaches

prioritize accuracy in the QoI over accuracy in the states and/or parameters.

In the context of the forward problem, methods for goal-oriented mesh-refinement

using adjoints are described in [8, 22, 27]; an a posteriori error estimate in an output

functional is derived, and this estimate is used to guide adaptive mesh-refinement.

A framework for automated mesh-refinement to calculate a QoI to a prescribed ac-

curacy is described in [28]. In [20], a method using adjoints for the goal-oriented

forward problem is described; however, instead of targeting adaptive mesh refinement,

the method adaptively divides the domain into subdomains where models describing

different scales are applied.

Work has also been done on goal-oriented methods for the inverse problem. Mesh-

refinement in the goal-oriented inverse problem1 is addressed in [9]; in this work,

Becker and Vexler derive an a posteriori estimate of the error in the QoI caused by

discretizing the infinite dimensional inverse problem, and this error estimate is used to

1What we refer to as the goal-oriented inverse problem is referred to as the problem of model
calibration in [9].
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adaptively refine the mesh. In [16], Lieberman and Willcox describe, for a discretized

linear inverse problem, a low-dimensional subspace of the parameter space that is both

informed by observations and informative to the QoI; this subspace is used to produce

a low-dimensional map from the observations directly to the QoI, sacrificing accuracy

in the inferred parameters for accuracy in the QoI that is computed from them.

1.2.2 Mixed-fidelity Models

A particular physical system can be represented with varying degrees of fidelity by

different models. Often a lower-fidelity model will be cheaper to solve. However, it will

also describe reality to a lesser degree of accuracy; it may include fewer physical laws

(for example, the Euler equations ignore viscosity) or describe phenomena at a coarser

scale (for example, a model of linear elasticity does not treat individual atoms). A

mixed-fidelity model can combine higher- and lower-fidelity models in a way so as to

be more tractable than the high-fidelity model, while maintaining accuracy.

Two main strategies exist for combining models: hierarchical and concurrent meth-

ods. Hierarchical methods (also known as information-passing or sequential methods)

take the results of a simulation using the high-fidelity model and use them to in-

form a lower-fidelity model that is used globally (for example, modeling the molecular

structure of a material to determine parameters for constitutive equations [13]). Con-

current methods simultaneously solve the high-fidelity model in some small portions

of interest of the domain and the low-fidelity model in the remainder of the domain;

for example, in [14] atomistic models capable of describing bond-breaking behaviors

are applied to small clusters of atoms in regions relevant to the formation of fractures,

while a continuum model is applied in the rest of the domain.

In our approach, we focus on concurrent methods of combining models. In general,

the different models need not depict different scales. For example, in [26] a mixed-

fidelity model is formed by dividing the domain into subdomains where either the

linear Stokes equation (low-fidelity) or the nonlinear Navier-Stokes equation (high-

fidelity) is solved, based on an a posteriori estimate of the error in a QoI. The different
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models also need not represent different physical phenomena. For example, in [17],

the domain is decomposed into regions with and without shocks, and a reduced-order

model is developed for each region independently and later combined; in [4], balanced

truncation model reduction is applied to the part of the domain outside of where the

optimization variables are located in order to reduce the overall cost of a forward

solve. The manner in which the different models are interfaced is problem-dependent;

in [1, 2], a “handshake” region is used to couple concurrent particle and continuum

models, and in [2], interface coupling models are introduced to reconcile uncertainties

in the different models.

1.3 Thesis Objectives

We aim to combine the ideas in goal-oriented methods for inverse problems, and goal-

oriented model adaptivity approaches for forward modeling. The objective of this

work is to formulate a method that allows one to systematically manage the use of

multiple models in the context of the goal-oriented inverse problem, so as to minimize

the error in a QoI prediction. To do this, we first assume that solving the inverse

problem with the highest-fidelity model would result in the most accurate QoI, but

that solving this inverse problem is prohibitively expensive. We derive an estimate for

the error in the QoI from inferring the parameters using a lower-fidelity model. This

estimate can be localized to individual elements, and the element-wise decomposition

can then be used to guide the formation of mixed-fidelity models with which to solve

the inverse problem, while minimizing the error in the QoI. This process is illustrated

in Figure 1-2.

1.4 Thesis Outline

In Chapter 2, we define the goal-oriented inverse problem, derive an a posteriori error

estimate for the QoI, and discuss its use for model adaptivity in the context of the goal-

17



  

Observations

High-fidelity

QoI

(a) High-fidelity

  

Low-fidelity

QoIObservations

(b) Low-fidelity

  

Mixed-fidelity

Observations QoI

(c) Mixed-fidelity

Figure 1-2: For a given QoI (e.g. average concentration in a region of an aquifer) and a
set of observations (e.g. concentration measurements from wells), solving the inverse
problem with a mixed-fidelity model (c), formed by using the high-fidelity (a) and
low-fidelity (b) model in different parts of the domain, may give a QoI estimate with
low error relative to that obtained from inferring the parameters with the high-fidelity
model.

oriented inverse problem. In Chapter 3, we apply the error estimate to adaptively form

a mixed-fidelity model for two-dimensional convection-diffusion-reaction examples. In

Chapter 4, we give a summary of the thesis, and suggest directions for future work.
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Chapter 2

Mathematical Formulation

In Section 2.1, we define the goal-oriented inverse problem. In Section 2.2, we derive

an a posteriori estimate for the error in the QoI, as compared to that which would

have resulted from solving the inverse problem with a high-fidelity model. In Section

2.3, we discuss the limitations of the error estimate.

2.1 Problem Setup

Consider a model for which the Galerkin formulation of the weak form is written as

a(u, q)(φ) = `(q)(φ), ∀φ ∈ U, (2.1)

where u ∈ U is the state, q ∈ Q are the unknown parameters, φ is a test function, and

U,Q are Hilbert spaces. The form a and functional ` are linear with respect to the

arguments in the second pair of parentheses.

We define an observation operator C : U → Rnd that maps the state to nd predicted

observations; we denote the actual observations by d ∈ Rnd . The unknown parameters

can then be inferred by minimizing the difference between the predicted and actual

observations. This inverse problem is often ill-posed; the observations are noisy and

sparse and thus insufficiently informative to uniquely determine the parameters. To
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remedy this, regularization is used to inject prior information or beliefs about the

parameters. The inverse problem with regularization can be written as a constrained

optimization problem

min
q,u

J(q, u) = 1
2
‖d− C(u)‖2

2 +R(q)

s.t. a(u, q)(φ) = `(q)(φ), ∀φ ∈ U,
(2.2)

where we aim to minimize the cost function J , which includes the mismatch between

predicted and actual observations and a regularization penalty term R(q), subject to

the state u and parameters q satisfying the model in Equation (2.1).

In the case of a goal-oriented inverse problem, the ultimate purpose of inferring

the unknown parameters is to calculate some Quantity of Interest (QoI). Assuming a

single scalar QoI, we denote this QoI by I(q, u), where I : Q× U → R is a functional

that maps the parameters and state to our QoI.

In the following derivation, we assume a is three times continuously differentiable

with respect to the state u and parameters q, C is three times continuously differen-

tiable with respect to the state u, R is differentiable with respect to the parameters

q, and I is differentiable with respect to the state u and parameters q.

2.2 Error Estimate for a Goal-Oriented Inverse

Problem

A given physical system need not have a unique model that can describe it; there

may be various models of different fidelities. For a given hierarchy of models, consider

the QoI calculated from inferring the parameters with the highest-fidelity model; we

take this QoI to be the value with which we compare other QoI estimates. In this

section we derive an a posteriori estimate for the error in the QoI from inferring the

parameters with a lower-fidelity model, as compared to that which would have resulted

from solving the inverse problem with the highest-fidelity model.
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2.2.1 Augmented Lagrangian

The inverse problem can be written as a constrained optimization problem, described

in Equation (2.2). Solving this constrained optimization problem is equivalent to

finding the stationary point of the corresponding Lagrangian

L(q, u, z) = J(q, u)− (a(u, q)(z)− `(q)(z)), (2.3)

where z ∈ U is the adjoint.

Let ξ = (q, u, z) be called the primary variables. Following the work of Becker

and Vexler in [9], we introduce a set of auxiliary variables χ = (p, v, y) ∈ Q× U × U

corresponding to these primary variables, and define an augmented Lagrangian

M((q, u, z), (p, v, y)) = I(q, u) + L′quz(q, u, z)(p, v, y), (2.4)

where L′quz(q, u, z)(p, v, y) denotes the Fréchet derivative of the Lagrangian about the

primary variables (q, u, z), in the direction of the auxiliary variables (p, v, y). Let

Ψ = (ξΨ, χΨ) denote the stationary point ofM, where ξΨ and χΨ refer to the primary

and auxiliary variables at Ψ, respectively. Note that

M(Ψ) = I(q, u), (2.5)

since taking variations of M with respect to the auxiliary variables gives that ξΨ is a

stationary point of L.

2.2.2 Expression for QoI Error

Consider two models with which we can infer parameters: a high-fidelity (HF) model

and a lower-fidelity (LF) model. We then have a specific form of Equation (2.1) for

the high-fidelity model:

aHF (uHF , qHF )(φHF ) = `HF (qHF )(φHF ), ∀φHF ∈ UHF , (2.6)
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where uHF ∈ UHF and qHF ∈ QHF . Similarly, the inverse problem in Equation (2.2)

has the specific form

min
qHF ,uHF

JHF (qHF , uHF ) = 1
2
‖d− CHF (uHF )‖2

2 +RHF (qHF )

s.t. aHF (uHF , qHF )(φHF ) = `HF (qHF )(φHF ), ∀φHF ∈ UHF ,
(2.7)

for which we have the Lagrangian

LHF (qHF , uHF , zHF ) = JHF (qHF , uHF )− (aHF (uHF , qHF )(zHF )− `HF (qHF )(zHF )).

(2.8)

Letting ξHF = (qHF , uHF , zHF ) and χHF = (pHF , vHF , yHF ), we can thus define for

the high-fidelity model an augmented Lagrangian

MHF (ξHF , χHF ) = I(qHF , uHF ) + L′HF,ξHF
(ξHF )(χHF ), (2.9)

the stationary point of which we denote by ΨHF . In a similar fashion, the lower-fidelity

model is described by

aLF (uLF , qLF )(φLF ) = `LF (qLF )(φLF ), ∀φLF ∈ ULF , (2.10)

where uLF ∈ ULF and qLF ∈ QLF , and its corresponding inverse problem can be

written

min
qLF ,uLF

JLF (qLF , uLF ) = 1
2
‖d− CLF (uLF )‖2

2 +RLF (qLF )

s.t. aLF (uLF , qLF )(φLF ) = `LF (qLF )(φLF ), ∀φLF ∈ ULF ,
(2.11)

for which we have the Lagrangian

LLF (qLF , uLF , zLF ) = JLF (qLF , uLF )− (aLF (uLF , qLF )(zLF )− `LF (qLF )(zLF )), (2.12)
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and, letting ξLF = (qLF , uLF , zLF ) and χLF = (pLF , vLF , yLF ), an augmented La-

grangian

MLF (ξLF , χLF ) = I(qLF , uLF ) + L′LF,ξLF
(ξLF )(χLF ), (2.13)

the stationary point of which we denote by ΨLF . We assume some degree of com-

patibility between the two models; namely, we assume that ΨLF will be in a space

admissible to M′
HF,Ψ, and that the QoI functional I is applicable to both (qHF , uHF )

and (qLF , uLF ).

Extending the property in Equation (2.5) to the specific cases in Equations (2.9)

and (2.13), we can write the error in the QoI from solving the inverse problem with a

lower-fidelity model rather than the high-fidelity model as

I(qHF , uHF )− I(qLF , uLF ) =

MHF (ΨHF )−MHF (ΨLF ) +MHF (ΨLF )−MLF (ΨLF ). (2.14)

We rewrite the first two terms MHF (ΨHF ) −MHF (ΨLF ) in Equation (2.14) by ex-

tending the work of [9] to the context of multiple models.

In [9], Becker and Vexler consider the error in the QoI from solving the inverse

problem with a discretized model instead of the infinite-dimensional model. They

describe the discretized model by

a(uh, qh)(φh) = `(qh)(φh), ∀φh ∈ Uh ⊂ U, (2.15)

where uh ∈ Uh is the discrete state and qh ∈ Q are the unknown parameters, and Uh

is a finite-dimensional space constructed from finite element functions on a mesh with

element size h. The infinite-dimensional model is as described in Equation (2.1). For

these two models (2.1) and (2.15) they derive the expression

I(q, u)− I(qh, uh) =
1

2
M′

Ψ(Ψh)(Ψ−Ψh) +R(e3) (2.16)
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where Ψ is the stationary point of the augmented LagrangianM as defined in Section

2.2.1 and Ψh is its discretized counterpart, and where R is a remainder term that is

third-order in the error e = Ψ−Ψh. Using Equation (2.5), we can also write Equation

(2.16) as

M(Ψ)−M(Ψh) =
1

2
M′

Ψ(Ψh)(Ψ−Ψh) +R(e3) (2.17)

Given our assumptions, Equation (2.17) holds when the infinite-dimensional model

and discretized model are replaced with our more general higher- and lower-fidelity

models, respectively. This allows us to write

MHF (ΨHF )−MHF (ΨLF ) =
1

2
M′

HF,Ψ(ΨLF )(ΨHF −ΨLF ) +R(e3), (2.18)

where R is a remainder term that is third-order in the error e = ΨHF − ΨLF . Com-

bining Equations (2.14) and (2.19) we obtain

I(qHF , uHF )− I(qLF , uLF ) =

1

2
M′

HF,Ψ(ΨLF )(ΨHF −ΨLF ) +MHF (ΨLF )−MLF (ΨLF ) +R(e3). (2.19)

In the work of Becker and Vexler in [9], the term Ψ−Ψh in Equation (2.16) is estimated

using interpolation. In our case, we cannot similarly address the term ΨHF −ΨLF in

Equation (2.19), since we now have different models instead of different discretizations

of the same model.

2.2.3 QoI Error Adjoint Formulation

As adjoints have been used to estimate the error in an output of a forward model, we

take an adjoint approach to obtain the term 1
2
M′

HF,Ψ(ΨLF )(ΨHF − ΨLF ) by viewing

it as an error in a linear output of some system. As ΨHF is a stationary point of M,

it satisfies M′
HF,Ψ(ΨHF )(Φ) = 0; we write this equation in residual form as

R(ΨHF )(Φ) = 0, ∀Φ ∈ (QHF × UHF × UHF )2, (2.20)
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and define an output

Q(Φ) =M′
HF,Ψ(ΨLF )(Φ) (2.21)

that is linear in its argument Φ. We can then solve the adjoint equation corresponding

to the output in Equation (2.21) for the system in Equation (2.20), given by

R ′Ψ(Φ)(ΨHF ,Λ) = Q(Φ) =M′
HF (ΨLF )(Φ), ∀Φ ∈ (QHF × UHF × UHF )2, (2.22)

for the supplementary adjoint Λ. The error in the output Q defined in Equation (2.21)

can thus be expressed as a dual-weighted residual

M′
HF,Ψ(ΨLF )(ΨHF −ΨLF ) = −M′

HF,Ψ(ΨLF )(Λ). (2.23)

2.2.4 Error Estimate

Combining Equations (2.19) and (2.23), we obtain a third-order expression for the

error in the QoI from solving the inverse problem using a lower-fidelity model instead

of the high-fidelity model:

I(qHF , uHF )− I(qLF , uLF ) =

− 1

2
M′

HF,Ψ(ΨLF )(Λ) +MHF (ΨLF )−MLF (ΨLF ) +R(e3). (2.24)

The error estimate (2.24) is general and the lower-fidelity model can also be a

mixed-fidelity model that combines the high- and low-fidelity model. Given a low-

fidelity model and a high-fidelity model, an intermediate, mixed-fidelity (MF) model

can be formed by using the high-fidelity model in some parts of the domain, and the

low-fidelity model in the rest of the domain. Just as error estimates can be used to

guide mesh-refinement [8], the error estimate (2.24) can be localized to give elemental

contributions and used to guide the division of the domain for a mixed-fidelity model.

The error estimate can be calculated again, using the mixed-fidelity model as the lower-

fidelity model. This process can be repeated, successively increasing the proportion of
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the domain in which the high-fidelity model is used, until some threshold is reached.

2.2.5 Approximations in Practice

Although Equation (2.24) is exact, the error estimate that can be calculated in practice

will not generally be exact. Let us refer to a goal-oriented inverse problem as linear

when the state u and parameters q are linearly related, the observation operator C

is linear in u, the regularization term R is at most quadratic in the parameters, and

the QoI functional I is linear in u and q. The remainder term R(e3) is included in

Equation (2.24) but would not, in practice, be calculated; in the case of a linear goal-

oriented inverse problem, the remainder term disappears, but it is nonzero in general.

In addition, the QoI error adjoint problem (2.22) involves linearization about ΨHF ,

which is not available, so in the case of a nonlinear goal-oriented inverse problem, the

QoI error adjoint problem must be approximated by linearizing about ΨLF instead.

A summary of our overall approach is presented in Algorithm 1, with the estimated

absolute relative error chosen as a stopping criterion.

2.3 Limitations

In motivating our approach, it is assumed that one can most accurately calculate the

QoI from the parameter values inferred using the highest-fidelity forward model avail-

able, but that solving the inverse problem with this model is prohibitively expensive.

It is also assumed that solving the inverse problem with a mixed-fidelity model, where

this highest-fidelity model is only used in a portion of the domain, will be cheaper.

There is a cost incurred by using our approach to design such a mixed-fidelity model,

however, and it will sometimes be the case that the cost of obtaining this mixed-fidelity

model exceeds that of just solving the inverse problem with the highest-fidelity model

directly. Naively, if the auxiliary variables χ have n degrees of freedom, they can be

found by solving an n × n linear system, while the supplementary adjoint Λ can be

found by solving a 2n × 2n linear system. The cost of solving for the auxiliary vari-
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Algorithm 1 An algorithm to adaptively build a mixed-fidelity model for low error
in the QoI.

1: Define maximum acceptable absolute relative QoI error errTol
2: Define maximum number of adaptive iterations maxIter

3: procedure BuildMF(HF model, LF model, errTol, maxIter)
4: Let the model MF0 be the LF model applied everywhere in the domain.
5: i← 0
6: Solve for stationary point ΨMF0 of augmented Lagrangian MMF0

7: Solve QoI error adjoint equation, linearized about ΨMF0 , for
supplementary adjoint Λ0 (see Equation (2.22))

8: Compute QoI error estimate
ε0 = −1

2M
′
HF,Ψ(ΨMF0)(Λ0) +MHF (ΨMF0)−MMF0(ΨMF0)

9: Calculate QoI I(qMF0 , uMF0)
10: while i < maxIter and |εi/I(qMFi , uMFi)| > errTol do
11: Localize eI,i and use this element-wise decomposition to guide formation

of new mixed-fidelity model MFi+1
12: i← i+ 1
13: Solve for stationary point ΨMFi of augmented Lagrangian MMFi

14: Solve QoI error adjoint equation, linearized about ΨMFi , for
supplementary adjoint Λi (see Equation (2.22))

15: Compute QoI error estimate
εi = −1

2M
′
HF,Ψ(ΨMFi)(Λi) +MHF (ΨMFi)−MMFi(ΨMFi)

16: Calculate QoI I(qMFi , uMFi)
17: end while
18: return model MFi and QoI estimate I(qMFi , uMFi)
19: end procedure

ables can be reduced by using a technique described in [9], and the cost of solving for

the supplementary adjoint Λ can be reduced by reusing preconditioners. In general

there are no guarantees that obtaining a mixed-fidelity model that meets the desired

QoI error criterion will be less costly than just solving the inverse problem with the

high-fidelity model. However, our approach targets problems for which solving the

inverse problem with the high-fidelity model is prohibitively expensive, in which case

it is expected that the cost of obtaining a satisfactory mixed-fidelity model will be

comparatively low. Even in the case where a mixed-fidelity model for which the QoI

error is adequately small cannot be found before another limit (for example, a maxi-

mum number of adaptive iterations) is reached, one still has an estimate for the error

in the QoI without solving the prohibitively expensive inverse problem.
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The derived error estimate is applicable to a large class of models. The lower-

fidelity model could, for example, be a simplified model including fewer physical phe-

nomena, be a reduced-order model, or have a reduced parameter space. The two

models could also correspond to two levels of mesh-refinement, though in this case

the method described in [9] would be more efficient, since interpolation could be used

to estimate ΨHF − ΨLF instead. The derived error estimate is not applicable to all

models, however. The two models must have a weak form, so this cannot be applied

to, for example, a model of chemical reactions using kinetic Monte Carlo. The weak

form, observation operator, regularization term, and QoI functional must also have

the degrees of differentiability noted in Section 2.1. The two models must also have

some degree of compatibility, as previously described in Section 2.2.2.

28



Chapter 3

Numerical Results

In this chapter we demonstrate some results from applying our approach to pairs of

steady-state models, implemented using the libMesh library [15]. In Section 3.1, we

demonstrate the results using two models that differ in the physics modeled. In Section

3.2, the two models differ in the space to which the parameter belongs. In Section 3.3

we discuss the numerical costs of our approach.

3.1 Convection-Diffusion and Convection-Diffusion-

Reaction Models

In this section, we demonstrate the method derived in Section 2.2 for two models

which differ in the physics included. We first describe the problem setup, and then

present results from applying our approach.

3.1.1 Problem Setup

The high- and low-fidelity models are restricted to a rectangular domain Ω, defined as

Ω(x1, x2) = [0, 5]×[0, 1], where x1 and x2 are the spatial coordinates. The high-fidelity

model is a single-species convection-diffusion-reaction equation with a nonlinear reac-
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tion term, described by

kd∇2u− ~V · ∇u+ kru
2 = f(q), (3.1)

where the state u is the species concentration, f(q) is a forcing field described by the

parameters, kd = 0.1 is a diffusion coefficient and kr = −42.0 is a reaction coefficient.

The low-fidelity model

kd∇2u− ~V · ∇u = f(q) (3.2)

differs only in the removal of the reaction term. Both models share a common velocity

field, described by ~V (x1, x2) = (2x2(1−x2), 0). To form the mixed-fidelity models, we

divide the domain into complementary subdomains, ΩHF and ΩLF , where the high-

and low-fidelity models are solved, respectively. The resulting mixed-fidelity models

can be described by

kd∇2u− ~V · ∇u+ kMF
r u2 = f(q), (3.3)

where kMF
r is a piecewise-constant reaction coefficient

kMF
r =

−42.0 if x ∈ ΩHF

0 if x ∈ ΩLF .

(3.4)

Homogeneous Dirichlet boundary conditions are applied on the entire boundary of the

domain.

We let the unknown parameters we wish to infer correspond to the forcing field,

so that f(q) = q. Observations d = (u(0.35, 0.35), u(1.56, 0.61), u(3.1, 0.5)) from three

points in the domain are artificially generated by running the high-fidelity model on
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a finer mesh with a piecewise constant source term ftrue

ftrue(x1, x2) =


1.0 if (x1, x2) ∈ [0.125, 0.375]× [0.125, 0.375]

0.8 if (x1, x2) ∈ [2.375, 2.625]× [0.375, 0.625]

0 otherwise.

(3.5)

The QoI we wish to calculate is the integral of the state,

I(q, u) =

∫
(x1,x2)∈ΩI

u dA, (3.6)

over a region ΩI = [0.625, 0.875] × [0.375, 0.625]. The locations of the observations

and the region ΩI over which the QoI is calculated is shown in Figure 3-1. Since the

inverse problem is ill-posed, we use Tikhonov regularization [11]; the regularization

term is β
2

∫
Ω
‖∇f(q)‖2

2 dA, where β = 10−5 is a regularization coefficient.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

x

y

 

 

Ω
I

Observations

Figure 3-1: Locations of the observations and the QoI region.

For the numerical simulations, we use the libMesh library [15]. The domain is

discretized by a regular mesh of quadrilaterals, with 50 and 250 elements along the

short and long boundaries, respectively, for a total of 12,500 elements. We implement

the finite element method (FEM) for a continuous Galerkin formulation using a linear

nodal basis, for a total of 76,806 degrees of freedom. The Péclet number never exceeds

0.1 in any part of the domain, so we do not require stabilization.

3.1.2 Adaptive Model Refinement

Once the QoI error estimate is calculated using Equation (2.24), the error estimate

is then localized to each element to give an element-wise decomposition of the error.
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Here we calculate the contribution to the estimated error by a particular element κ

by simply considering all area integrals in the error estimate expression, limited to

that element. As described in Algorithm 1, based on this element-wise decomposition,

we increase the proportion of the domain in which the high-fidelity model is used

until the estimated absolute relative error in the QoI is less than 1%. In this case,

once an element is assigned to the high-fidelity portion of the domain ΩHF , it remains

assigned as such for all future subsequent mixed-fidelity models. Figure 3-2 shows the

element-wise decomposition of the error estimate, as well as the subdomains where

the low- and high-fidelity models are used, for the series of mixed-fidelity models thus

generated. The true and estimated absolute relative errors in the QoI for these same

mixed-fidelity models are shown in Figure 3-3, while the effectivity index for the error

estimate, defined by

effectivity index =
estimated QoI error

true QoI error
, (3.7)

is shown in Figure 3-4.

It can be seen that in this case, while the error estimates are not exact due to

the nonlinear reaction term in the high-fidelity model, the error estimates are fairly

accurate. In addition, the QoI that would have been obtained from solving the inverse

problem with the high-fidelity model can be replicated to within 1% with a mixed-

fidelity model where the high-fidelity model is used in only 15% of the domain.

3.1.3 Interaction of Observations and QoI

The element-wise decomposition of the error estimate (2.24) suggests the use of the

high-fidelity model in areas of the domain where the parameter field is both informed

by the observations and informative about the QoI. To see this, we compare the

element-wise decomposition of the error estimate for three sizes of the QoI region ΩI

given the same set of observations, and for three sets of observations given the same

QoI region. Again we increase the proportion of the domain in which the high-fidelity

32



x

y

Division of Domain

0 1 2 3 4 5
0

0.5

1

0 1 2 3 4 5
x

Elemental Decomposition of QoI Error Estimate

 

 

0

1

2

3

x 10
−5

(a) MF0 (0% HF)

x

y

Division of Domain

0 1 2 3 4 5
0

0.5

1

0 1 2 3 4 5
x

Elemental Decomposition of QoI Error Estimate

 

 

0

1

2

3

x 10
−5

(b) MF1 (5% HF)

x

y

Division of Domain

0 1 2 3 4 5
0

0.5

1

0 1 2 3 4 5
x

Elemental Decomposition of QoI Error Estimate

 

 

0

1

2

3

x 10
−5

(c) MF2 (10% HF)

x

y

Division of Domain

0 1 2 3 4 5
0

0.5

1

0 1 2 3 4 5
x

Elemental Decomposition of QoI Error Estimate

 

 

0

1

2

3

x 10
−5

(d) MF3 (15% HF)

Figure 3-2: Element-wise decomposition of error estimate (right) and domain divi-
sion (left; low-fidelity convection-diffusion model used in red portion, high-fidelity
convection-diffusion-reaction model used in blue portion) for mixed-fidelity models.

model is used until the estimated absolute relative error in the QoI is less than 1%.

The element-wise decomposition of the error estimates (from the first three iterations)

for the three sizes of the QoI region ΩI given the same set of observations is shown

in Figure 3-5, and for the three sets of observations given the same QoI region is

shown in Figure 3-6. For the three cases where the observations were fixed but the

QoI region allowed to vary, more iterations were required as the QoI region expanded;

only the first three iterations are shown in Figure 3-5. For the three cases where the

QoI region was fixed but the set of observations allowed to vary, only three iterations

were required to achieve an estimated absolute relative QoI error of less than 1%; all
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Figure 3-3: True and estimated absolute relative error in QoI, plotted as a function
of the percentage area of the domain in which the high-fidelity convection-diffusion-
reaction model is used.
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Figure 3-4: Effectivity index of QoI error estimate, plotted as a function of the percent-
age area of the domain in which the high-fidelity convection-diffusion-reaction model
is used.

three iterations are shown in Figure 3-6.

The convective aspect of the models causes information to flow with the velocity

field, and the diffusive aspect causes information to spread locally. Thus, it is expected

that it would be most important to use the high-fidelity model in the QoI region, and in

areas around observations upstream and just downstream of the QoI region. Using the

high-fidelity model around observations is expected to become less important as the

observations are placed further downstream from the QoI region. These expectations

are supported by the results. For this pair of models and a QoI that is the integral of
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Figure 3-5: Compare the element-wise decomposition of the error estimates (b-e),
given the same observations (teal points in (a)) and varying QoI region (purple box
in (a)).
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Figure 3-6: Compare the element-wise decomposition of the error estimates (b-e),
given the same QoI region (purple box in (a)) and varying observations (teal points
in (a)).
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the state over a region, an appropriate mixed-fidelity model could have been designed

by intuition. However, the interaction between the observations and the QoI may not

always be so intuitive, and it is in these cases that a rigorous method for forming a

mixed-fidelity model would be most helpful.

3.1.4 Highly Nonlinear Problems

For a highly nonlinear high-fidelity model, it may sometimes be the case that solving

the inverse problem requires a more complex or specialized optimization algorithm;

for example, one may need to use continuation methods (such as in [7]), or utilize a

problem-specific preconditioner (such as in [12]). However, solving the inverse problem

with a mixed-fidelity model, where this high-fidelity model is only used in a small

portion of the domain, may be achievable using a simpler optimization algorithm. In

this subsection, we give an example of such a case.

To solve the inverse problem, we use the default nonlinear solver in libMesh (New-

ton’s method with Brent line-search) to solve the optimality conditions of the corre-

sponding optimization problem (see Equation 2.2). Keeping most of the setup de-

scribed in Section 3.1.1, we consider a different high-fidelity model, one where the

magnitude of the reaction coefficient in Equation (3.1) is increased from kr = −42 to

kr = −442; let this new model be denoted by HF442. We can no longer simply use

the default nonlinear solver in libMesh to solve the inverse problem with this new,

more nonlinear high-fidelity model, as the solver fails to converge. Convergence can be

achieved by using continuation; we solve the inverse problem for a sequence of models,

varying the reaction coefficient in Equation (3.1) from kr = −42 to kr = −442 at

intervals of 50, and using the solution of one problem as the initial guess for the next.

Alternatively, we use Algorithm 1 to generate a series of mixed-fidelity models

using the low-fidelity model and the HF442 model. The inverse problem can be solved

for these mixed-fidelity models using the default nonlinear solver, and we are able to

achieve an estimated relative QoI error of less than 1% with a mixed-fidelity model

where the high-fidelity model is used in only 25% of the domain, as shown in Figure 3-7.

37



Figure 3-8 gives the effectivity index of the error estimates.
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Figure 3-7: Estimated absolute relative error in QoI, plotted as a function of the
percentage area of the domain in which the high-fidelity convection-diffusion-reaction
model, with kr = −442, is used.
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Figure 3-8: Effectivity index of QoI error estimate, plotted as a function of the percent-
age area of the domain in which the high-fidelity convection-diffusion-reaction model,
with kr = −442, is used.

3.2 Constant versus Field Parameters

In this section, we consider two models which differ in the space to which the parameter

belongs. We first describe the problem setup, and then present results from applying

our approach.
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3.2.1 Problem Setup

The high-fidelity model

kd∇2u− ~V · ∇u+ kru
2 = f(q), q ∈ U, (3.8)

is again a single-species convection-diffusion-reaction equation with a nonlinear re-

action term, where kd = 0.1 is a diffusion coefficient and kr = −4.2 is a reaction

coefficient. The low-fidelity model

kd∇2u− ~V · ∇u+ kru
2 = f(q), q ∈ R (3.9)

differs from the high-fidelity model only in that the parameter q is a constant instead

of a field. Then the intermediate mixed-fidelity models have parameter fields which

are non-constant in only portions of the domain. For ease of implementation, we re-

quire that the resulting parameter field remain continuous at the interface between

the low-fidelity and high-fidelity subdomains, although this constraint is not neces-

sary for the theory to hold. The velocity field and boundary conditions, as well as

the observations, unknown parameters to be inferred, and QoI, remain the same as

described in Section 3.1. As the inverse problem is ill-posed, except for perhaps in

the case where the low-fidelity model is used throughout the domain, regularization is

added; the Tikhonov regularization term is β
2

∫
Ω
‖∇f(q)‖2

2 +f(q)2 dA, where β = 10−3

is a regularization coefficient. For this case, the domain is discretized by a regular

mesh of quadrilaterals, with 15 and 75 elements along the short and long boundaries,

respectively, for a total of 11,250 elements. The Péclet number never exceeds 0.34 in

any part of the domain, so we do not require stabilization.

3.2.2 Adaptive Model Refinement

Based on the element-wise decomposition of the estimated error, we increase the pro-

portion of the domain in which the high-fidelity field representation model is used

39



until the estimated absolute relative error in the QoI is less than 5%. In this case,

we allow an element assigned to ΩHF in one mixed-fidelity model to be reassigned

back to ΩLF in subsequent mixed-fidelity models if its contribution to the error is not

large enough. Figure 3-9 shows the element-wise decomposition of the error estimate,

as well as the subdomains where the low- and high-fidelity models are used, for the

first six of the series of mixed-fidelity models thus generated. The true and estimated

absolute relative errors in the QoI for these same intermediate models are shown in

Figure 3-10, while the effectivity index of the error estimate is shown in Figure 3-11.

As in the previous example, the error estimates are only approximate due to the

nonlinear term in both the low- and high-fidelity models. In this case, the high-fidelity

model must also be used in a larger portion of the domain (60%) before the estimated

relative error in the QoI reaches the desired level.

3.3 Cost Analysis

In both the examples discussed in Sections 3.1 and 3.2, the high-fidelity model is simple

and solving the inverse problem with the high-fidelity model is easily achievable. Doing

so actually requires less computational time than using Algorithm 1 to rigorously form

a mixed-fidelity model with which to solve the inverse problem instead. However, as

discussed in Section 2.3, we assume in motivating our approach that solving the inverse

problem with the high-fidelity model is prohibitively expensive; although there is no

benefit, in terms of computational cost, to using our approach in the given examples,

one would likely see such benefits for more complex models. Such a benefit is suggested

in Section 3.1.4, where the inverse problem using the high-fidelity model is difficult to

solve but our approach allows one to construct a mixed-fidelity model for which the

inverse problem can be solved with a simple algorithm and yet produce a QoI with a

small estimated relative error.
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Figure 3-9: Element-wise decomposition of error estimate (right) and domain division
(left; low-fidelity constant-parameter model used in red portion, high-fidelity field-
parameter model used in blue portion) for mixed-fidelity models.
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percentage area of the domain in which the high-fidelity field-parameter model is
used.
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Chapter 4

Conclusion

In this chapter we summarize the main contributions of the thesis and discuss future

work.

4.1 Thesis Summary

The contribution of this work is an error estimator that can be used to adaptively

create a mixed-fidelity model with which to solve a goal-oriented inverse problem,

so as to minimize the error in the QoI calculated from the inferred parameters. We

applied this method to pairs of models, one that differed in the physics included and

one that differed in the space to which the parameters belonged. In both cases, we

were able to obtain a value for the QoI with a small relative error without having to

solve the inverse problem with the high-fidelity model. In these cases, the element-wise

decomposition of the error estimate also indicated regions of the parameter field that

were both informed by the observations and informative to the QoI.

The inverse problem with the high-fidelity models examined were not so expensive

to solve as to warrant the adaptive formation of a mixed-fidelity model; however, based

on existing work with concurrent multi-fidelity models, savings in computational cost

are expected in cases where the high-fidelity model is more complex and solving the

inverse problem with the high-fidelity model is less tractable. We demonstrated a case
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where the inverse problem with the high-fidelity model could not be solved without

a more complex nonlinear solver, but where our method resulted in a mixed-fidelity

model for which the inverse problem could be solved with a simple nonlinear solver,

with a small relative error in the QoI.

4.2 Future Work

An immediate direction for extension of this work is to the case of the statistical inverse

problem. Thus far in this work, we have considered the deterministic inverse problem,

as described in Section 2.1; we seek to infer the parameter values that optimally fit

the observations and the prior beliefs embedded in the regularization. However, we

can rarely, if ever, be certain that the inferred values are correct, whether this be

due to epistemic uncertainty from a lack of knowledge or aleatoric uncertainty from

inherent variability in the physical system, or both [19]. One may attempt to capture

the uncertainty in the inferred parameters by representing them as random variables

with a probability distribution; inferring the distribution of the parameters given some

observations is the statistical inverse problem.

A popular approach to solving the statistical inverse problem is to apply a Bayesian

framework. Bayes’ rule is used to combine a prior distribution, which captures prior

beliefs about the parameters, and a likelihood distribution, which captures the likeli-

hood of observations given an instance of the parameter values and a model of noise

in the observations, to give a posterior distribution on the parameters. Since there is

generally no analytical expression for this posterior distribution, it is usually character-

ized by samples from the distribution. Sampling methods like the widely-used Markov

chain Monte Carlo (MCMC) method require many evaluations of the forward model,

and since the number of samples needed grows exponentially with the dimension of

the parameter space, this problem becomes intractable for large parameter spaces.

In engineering contexts, it is still usually the case, however, that we are ultimately

interested in a low-dimensional QoI, and it is the uncertainty in this low-dimensional
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quantity that we wish to capture; this low-dimensional distribution is referred to as

the predictive posterior.

One way we could potentially apply this work to the statistical inverse problem is by

reducing the parameter space that needs to be sampled. Such a direction is suggested

by the results presented in Section 3.2, where the mixed-fidelity model had significantly

fewer degrees of freedom in its parameter field than the high-fidelity model, and thus

a smaller parameter space. In the case of a linear model and observation operator

with a Gaussian prior and additive Gaussian noise, there are parallels between the

objective function of the deterministic inverse problem with Tikhonov regularization

and the mode of the posterior distribution. In [18], a method is described for creating

proposal distributions, drawing from these parallels; both the linear Gaussian and

nonlinear cases are addressed. Similarly, these parallels could potentially be drawn

upon to extend this work to the creation of an alternative statistical inverse problem

that, by utilizing a mixed-fidelity model with fewer degrees of freedom in its parameter

field, requires exploration of a small parameter space with minimal compromise in the

predictive posterior.

Another potential approach would be to extend our method to the creation of

mixed-fidelity models that are used as surrogates; these surrogate models can be eval-

uated in place of the high-fidelity model, thus decoupling the number of expensive

forward evaluations of the high-fidelity model needed from the number of posterior

parameter distribution samples that is desired [10]. The samples obtained using such a

surrogate might sacrifice accuracy in representing the posterior parameter distribution

for accuracy in representing the predictive posterior distribution.
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