
Sampling-Based Motion Planning Algorithms for
Dynamical Systems

by
Jeong hwan Jeon

S.M., Massachusetts Institute of Technology (2009)
B.S., Mechanical and Aerospace Eng., Seoul National University (2007)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2015

c○ Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Aeronautics and Astronautics

August 20, 2015

Certified by. .
Prof. Emilio Frazzoli

Professor of Aeronautics and Astronautics
Thesis Supervisor

Certified by. .
Dr. Karl Iagnemma

Principal Research Scientist

Certified by. .
Prof. Russell L. Tedrake

Associate Professor of EECS

Accepted by .
Prof. Paulo C. Lozano

Associate Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Sampling-Based Motion Planning Algorithms for Dynamical

Systems

by

Jeong hwan Jeon

Submitted to the Department of Aeronautics and Astronautics
on August 20, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Dynamical systems bring further challenges to the problem of motion planning, by
additionally complicating the computation of collision-free paths with collision-free
dynamic motions. This dissertation proposes efficient approaches for the optimal
sampling-based motion planning algorithms, with a strong emphasis on the accom-
modation of realistic dynamical systems as the subject of motion planning. The
main contribution of the dissertation is twofold: advances in general framework for
asymptotically-optimal sampling-based algorithms, and the development of fast algo-
rithmic components for certain classes of dynamical systems.

The first part of the dissertation begins with key ideas from a number of recent
sampling-based algorithms toward fast convergence rates. We reinterpret the ideas in
the context of incremental algorithms, and integrate the key ingredients within the
strict 𝒪(log 𝑛) complexity per iteration, which we refer to as the enhanced RRT* algo-
rithm. Subsequently, Goal-Rooted Feedback Motion Trees (GR-FMTs) are presented
as an adaptation of sampling-based algorithms into the context of asymptotically-
optimal feedback motion planning or replanning. Last but not least, we propose a
loop of collective operations, or an efficient loop with cost-informed operations, which
minimizes the exposure to the main challenges incurred by dynamical systems, i.e.,
steering problems or Two-Point Boundary Value Problems (TPBVPs).

The second main part of the dissertation directly deals with the steering problems
for three categories of dynamical systems. First, we propose a numerical TPBVP
method for a general class of dynamical systems, including time-optimal off-road ve-
hicle maneuvers as the main example. Second, we propose a semi-analytic TPBVP
approach for differentially flat systems or partially flat systems, by which the com-
putation of vehicle maneuvers is expedited and the capability to handle extreme sce-
narios is greatly enhanced. Third, we propose an efficient TPBVP algorithm for con-
trollable linear systems, based on the computation of small-sized linear or quadratic
programming problems in a progressive and incremental manner.

Overall, the main contribution in this dissertation realizes the outcome of anytime
algorithms for optimal motion planning problems. An initial solution is obtained

3

within a small time, and the solution is further improved toward the optimal one. To
our best knowledge from both simulation results and algorithm analyses, the proposed
algorithms supposedly outperform or run at least as fast as other state-of-the-art
sampling-based algorithms.

Thesis Supervisor: Prof. Emilio Frazzoli
Title: Professor of Aeronautics and Astronautics

4

Acknowledgments

First and foremost, I would like to thank my advisor Prof. Emilio Frazzoli for his

generous support, diverse opportunities, inspirational advice, enthusiastic question-

ing, rigorous attitude to research, and patient guidance throughout the years of my

graduate study at MIT. I have been extremely lucky to be a student under the su-

pervision of such an insightful, untiring, and thorough researcher.

I am very grateful to other members in my thesis committee, Dr. Karl Iagnemma

and Prof. Russ Tedrake, for their feedbacks and encouragement on both my thesis

work and my career. I cannot form a better thesis committee with such perfect and

balanced depths, breadths, and perspectives in my research topics. The readers of

this dissertation, Prof. Sertac Karaman and Dr. Andrea Censi, cannot be thanked

enough for endless inspiration and conversations, as a former colleague, a current

colleague, and a faculty/staff member who have been the best source for learning

how to grow up as a graduate student and a junior researcher by close observation.

I owe many years of unconditional support and excitement to my academic collab-

orators, labmates, staffs, and friends. All the valuable names cannot be enumerated

in this limited space, but it is obvious that the years of my stay in Cambridge, MA

could not be even imaginable without such wonderful supporters. Last but not least,

my wife, parents, and sister have been the first and last resort and shelter during

all good and bad times. Without them, I could not have driven myself toward the

completion of my PhD degree.

This dissertation work was partially supported by the US Army Research Office,

MURI grant W911NF-11-1-0046. In addition, my graduate study at MIT was gener-

ously supported in part by the STX Scholarship Foundation. Any opinions, findings,

and conclusions or recommendations expressed in this dissertation are those of the

author and do not necessarily reflect the views of the supporting organizations.

A substantial portion of the material in this dissertation is written with and

without editing or rearrangement from the following papers.

c○ 2011 IEEE. Reprinted, with permission, from J. Jeon, S. Karaman., and

5

E. Frazzoli, Anytime computation of time-optimal off-road vehicle maneuvers using

the RRT*, In Decision and Control and European Control Conference (CDC-ECC),

2011 50th IEEE Conference on, Orlando, FL, December 2011.

c○ 2013 IEEE. Reprinted, with permission, from J. Jeon, R. V. Cowlagi, S. C. Pe-

ters, S. Karaman, E. Frazzoli, P. Tsiotras, and K. Iagnemma, Optimal motion plan-

ning with the half-car dynamical model for autonomous high-speed driving, In Amer-

ican Control Conference (ACC), 2013, Washington, DC, June 2013.

c○ 2015 IEEE. Reprinted, with permission, from J. Jeon, S. Karaman., and

E. Frazzoli, Optimal sampling-based feedback motion trees among obstacles for con-

trollable linear systems with linear constraints, In Robotics and Automation (ICRA),

2015 IEEE International Conference on, Seattle, WA, June 2015.

6

Contents

1 Introduction 17

1.1 Optimal Motion Planning . 17

1.2 Planning with Dynamical Systems . 21

1.3 Steering Methods . 23

1.4 Statement of Contributions . 25

1.5 Outline . 26

2 Enhanced RRT* Algorithms and Further Modifications for Dynam-

ical Systems 27

2.1 Toward Faster Convergence Rates than the RRT* 29

2.1.1 Abstract Form of Sampling-Based Algorithms 29

2.1.2 The RRT* Algorithm [57] . 31

2.1.3 Canonical Modifications for the RRT* 33

2.1.4 Graph-Based Propagation of Updated Information 38

2.1.5 Batch Processing . 43

2.1.6 Shortcuts or Smoothing . 51

2.2 Enhanced RRT* Algorithm . 55

2.3 Feedback Planning Algorithm . 61

2.3.1 GR-FMTs: Expansion Phase 62

2.3.2 GR-FMTs: Execution Phase 64

2.3.3 GR-FMTs: Efficient Replanning 65

2.4 Cost-Informed TPBVPs for Dynamical Systems 66

2.4.1 Rejection of Computation by the Informed Cost 68

7

2.4.2 Interruption of Computation by the Informed Cost 69

2.4.3 Reduction of Computation by the Informed Cost 70

2.5 Simulation Experiments . 70

2.5.1 Enhanced RRT* Algorithm 70

2.5.2 Feedback Planning Algorithm 74

2.5.3 Cost-Informed TPBVPs for Dynamical Systems 75

2.6 Conclusions . 76

3 Numerical Local Steering for Nonlinear Systems 77

3.1 Introduction . 77

3.2 Modifications to the RRT* . 79

3.2.1 Task Space Planning . 79

3.2.2 Steering Procedure . 79

3.2.3 Conditional Activation of the RRT* 82

3.2.4 Branch-and-Bound . 83

3.2.5 Reachability . 83

3.3 Application to High-speed Off-road Vehicles 83

3.3.1 Vehicle Dynamics . 84

3.3.2 Implementation details . 86

3.4 Simulation Results . 88

3.5 Conclusion . 90

4 Semi-Analytic Local Steering for Pseudo-Flat Systems 93

4.1 Introduction . 94

4.1.1 Motivation and Related Work 94

4.1.2 Contributions . 96

4.2 The Half-Car Model . 97

4.3 Local Steering for the Half-Car Model 101

4.3.1 Constraints on Pseudo-Flat Output Trajectories 102

4.4 Simulation Results and Discussion . 106

4.5 Conclusions . 110

8

5 Efficient Local Steering for Controllable Linear Systems 111

5.1 Introduction . 111

5.1.1 Contributions . 112

5.1.2 Related Work . 112

5.2 Definitions . 114

5.3 Flatness-Based Local Steering Algorithm 115

5.3.1 Differential Flatness . 115

5.3.2 State and Input Constraints 117

5.3.3 Local Steering Given a Terminal Time 117

5.3.4 Local Steering with the Terminal Time Search 121

5.4 Simulation Results . 123

5.4.1 Constrained 1D Double Integrator in Free Space 123

5.4.2 Constrained/Obstructed 2D Double Integrators 124

5.4.3 Landing of Constrained/Obstructed Helicopter 124

5.4.4 Torque-Limited Inverted Pendulum 126

5.5 Conclusions . 126

6 Conclusions and Remarks 127

6.1 Summary . 127

6.2 Future Research Directions . 129

6.2.1 Integration of the Proposed Ideas 129

6.2.2 Generalization of TPBVP Approaches 129

6.2.3 Further Specification and Characterization of Dynamics 130

6.2.4 Exact TPBVPs to Inexact Local Steering Problems 130

6.2.5 Deterministic to Stochastic . 131

6.2.6 Development of A Vehicle . 131

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

List of Algorithms

2.1 An Abstract Form of Sampling-Based Algorithms 30

2.2 The ConnectToBestVertex Procedure for the RRT* 32

2.3 The PropagateInfo Procedure for the RRT* 32

2.4 A Lazy Version of the ConnectToBestVertex Procedure 36

2.5 The RewireTreeVertices Procedure for the RRT# 41

2.6 The Sample Procedure for the RRT# 41

2.7 More Compact Form of Abstraction for the FMT* 48

2.8 The Sample Procedure for the FMT* 48

2.9 The Laziest ConnectToBestVertex Procedure for the FMT* 49

2.10 The SelectNeighbors Procedure for the RRT*-Smart 53

2.11 The RewireTreeVertices Procedure for the RRT*-Smart 53

2.12 The Sample Procedure for the RRT*-Smart 54

2.13 Main Loop of the Enhanced RRT* . 56

2.14 The Sample Procedure for the Enhanced RRT* 56

2.15 The SelectNeighbors Procedure for the Enhanced RRT* 57

2.16 The ConnectToBestVertex Procedure for the Enhanced RRT* 59

2.17 The PropagateInfo Procedure for the enhanced RRT* 60

2.18 The RewireTreeVertices Procedure for the Enhanced RRT* 60

2.19 GR-FMTs (Expansion) . 62

2.20 GR-FMTs (Execution) . 64

2.21 The Cost-Informed ConnectToBestVertex Procedure (RRT*) 67

2.22 The Cost-Informed ConnectToBestVertex Procedure (GR-FMTs) . . . 68

11

3.1 The TPBVP(𝑧1, 𝑧2) procedure based on shooting 81

3.2 The Repropagate(𝑧, 𝑧) procedure . 82

5.1 TPBVP Given 𝑇 (𝑧0, 𝑧𝑓 , 𝑇 , (𝑒 = ∅)) 120

5.2 TPBVP (𝑧0, 𝑧𝑓 , 𝐽upper, (𝑒best = ∅)) . 122

12

List of Figures

2-1 Consequences of the Branch and Bound Technique 35

2-2 Illustration of the RRT* and the RRT# 40

2-3 Illustration of Adjacent Cells and Near Cells 45

2-4 The Bug Trap Example with the RRT* and the FMT* 46

2-5 The RRT* and the FMT* in an Open Environment 47

2-6 The Outcome of Shortcuts or Smoothing Operations 52

2-7 The Outcome of Replanning with Forward Algorithms 65

2-8 The Outcome of Replanning with GR-FMTs 66

2-9 Admissible Heuristic for a Dubins’ Path 69

2-10 The Effect and Savings by the Branch and Bound Technique (red: best

path, white: obstacles or no samples, yellow: samples, blue: unreward-

ing samples) . 71

2-11 The Effects of the Algorithmic Components in the Enhanced RRT* . 72

2-12 The Bugtrap Example and the Components of the Enhanced RRT* . 73

3-1 The Half-Car Vehicle Model . 84

3-2 The RRT* Tree for 180-deg Turning 89

3-3 Anytime Computation for 90, 150, 180, and 270-deg Turning 89

3-4 Comparison Plots for 90, 150, 180, and 270-deg Turning 90

4-1 The half-car dynamical model: position vectors are in blue, velocity

vectors are in green, and forces are in red color. 97

4-2 Calculation of acceleration constraints on the co from (4.28). 105

13

4-3 Trajectories obtained within a specified computation time when the

RRT* uses two different implementations of Steer for the half-car

dynamical model. 106

4-4 Execution speed and resultant trajectory costs of the RRT* motion

planner with the proposed Steer (blue) compared to the Steer in

Chapter 3 (red). 107

4-5 Motion planning with the half-car model over a closed circuit. 109

4-6 Speed profile in m/s on a closed circuit similar to the Monza track . . 109

4-7 Total trajectory costs using a receding-horizon approach to motion

planning over the closed circuit shown in Figure 4-5a. 110

5-1 1D min-time double integrator. GR-FMTs with 2-DoF (red) and ∆𝑇=0.2

shortly generate a comparable motion to analytic solution (blue). . . 123

5-2 2D min-time double integrators, from the RRT* using analytic solu-

tions [56] (blue) and GR-FMTs (green, red) with DoFs and ∆𝑇=0.5. 124

5-3 Min-time landing of helicopter by GR-FMTs with DoFs and ∆𝑇 = 0.5 125

5-4 For a torque-limited linearized pendulum around (𝜋, 0), cost-to-go val-

ues 𝐽 =
∫︀

1 + 𝜃2 𝑑𝑡 are color-coded on vertices of GR-FMTs and grids. 125

14

List of Tables

2.1 Outputs from the SelectNeighbors Procedure in Algorithm 2.15 . . 58

2.2 Statistics for the execution phase of GR-FMTs (100 trials) 74

2.3 Computation Time (Relative Ratios) for the Cost-Informed TPBVPs 75

2.4 Searched Time Horizon (Relative Ratios) for the Cost-Informed TPBVPs 76

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

Chapter 1

Introduction

The three iterations of the DARPA Grand Challenge, culminating in the 2007 Ur-

ban Challenge, have successfully demonstrated autonomous robotic vehicles to the

general public. Most participating teams adopted computation-intensive perception

and planning frameworks, including motion planning algorithms [110, 81, 75]. In re-

cent decades, an unprecedented level of autonomy has been progressively achieved by

randomized algorithms such as Probabilistic RoadMaps (PRMs) [60, 18] and Rapidly-

Exploring Random Trees (RRTs) [74, 65] that tackled previously daunting tasks in

motion planning [119, 66, 4, 37, 105, 64, 67, 109]. Furthermore, robotic motions need

to approach the physical limits of the system, especially when the robotic tasks require

skilled capabilities to handle disasters, accidents, or cooperation [120, 50, 116].

We obtain robotic motions as answers to optimal motion planning problems with

dynamical systems. Our formulation of the motion planning problem assumes deter-

ministic models for the dynamical system.

1.1 Optimal Motion Planning

A typical definition of the motion planning [69, 26, 72] problem is, given an initial

state, a goal set, an obstacle set, and a description of the system dynamics, to find

time-parameterized trajectories of control inputs and resultant system states that

safely drive the system from the initial state to the goal set while avoiding any col-

17

lision with obstacles. This problem of navigating complex or cluttered environment

is one of the fundamental topics in robotics [69], with applications including, but

not limited to, autonomous driving [75], manipulation planning [5], logistics [109],

rapid prototyping [24], and robotic surgery [107]. Outside the domain of robotics,

the motion planning problem further finds its important applications, ranging from

verification to computational biology [15, 59, 4].

An algorithm is said to be complete, if it surely answers to solvable problems in

finite time. Otherwise, the complete algorithm has to report the non-existence of

solutions to the problem. Although motion planning problems are interesting from

a practical perspective, the problem is known to be computationally challenging for

complete algorithms to generate solutions. In fact, a simple version of the prob-

lem without dynamics, referred to as the Piano Mover’s Problem, was proven to be

PSPACE-hard [97], which implies that complete algorithms are destined to suffer

from computational complexity, as the system’s degree of freedom increases.

A long-standing challenge for several decades has been designing computationally-

efficient motion planning algorithms that can handle systems with high-dimensional

configuration spaces. Particularly tailored for this setting, sampling-based algorithms

such as PRMs [60, 18] have achieved great success in computationally challenging in-

stances, as multi-query solutions that keep reusing pre-computed roadmaps for queries

about different pairs of initial and goal configurations. Later, single-query algorithms

such as RRTs [74, 65] have better addressed planning of systems with non-holonomic

constraints, kinodynamic constraints, or uncertainties, especially in incremental and

on-line settings. Most sampling-based methods, including PRMs and RRTs, gain

computational tractability by relaxing the completeness requirement to probabilis-

tic completeness, meaning that the probability of finding a solution, if one exists,

converges to one as the number of samples tends to infinity. This probabilistically

complete algorithm cannot report its failure or inability to solve infeasible problems.

Another type of relaxation appears as a resolution complete algorithm, that finds an

existing solution if the resolution of grids or samples is fine enough. A resolution

complete algorithm cannot determine whether its failure originates from the infeasi-

18

ble problem or from the insufficient resolution. Resolution complete algorithms are

more common with grids [106, 61], but a sequence of deterministic samples allows the

adaptation with sampling-based approaches [25, 73].

Although PRMs and RRTs have managed to tackle previously challenging prob-

lems, none of the algorithmic variations in the past attain both the computational effi-

ciency and the solution optimality [57]. As an optimal variant of RRTs, the RRT* [57]

algorithm was proposed to ensure the asymptotic optimality of solutions while pre-

serving the probabilistic completeness and the computational efficiency of RRTs. The

RRT* enhances long-term behaviors of sampling-based algorithms with the asymp-

totic optimality, mathematically grounded on the Percolation theory [19] and Random

Geometric Graphs [87].

The first part of this dissertation further improves the optimal motion planning

algorithms, in terms of the convergence rates to the optimal solutions. For that

matter, we formally define the optimal motion planning problem as follows. Let

𝑋 ⊂ R𝑛 and 𝑈 ⊂ R𝑚 be compact sets that represent state and input spaces. Let

𝑋obs ⊂ 𝑋 and 𝑋free := 𝑋 ∖𝑋obs denote obstacle region and obstacle-free region. Let

𝑈feas ⊂ 𝑈 and 𝑋feas ⊂ 𝑋 be feasible inputs and feasible states that satisfy input and

state constraints. Let 𝑥0 ∈ 𝑋 be the initial state, and let 𝑋goal ⊂ 𝑋 be a feasible

goal region such that 𝑋goal ∩ 𝑋free ∩ 𝑋feas ̸= ∅. Then, a continuously differentiable

function 𝑓 with respect to both of its variables 𝑥 and 𝑢 such that

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)), 𝑥(0) = 𝑥0, (1.1)

defines a time-invariant dynamical system. Let a state trajectory x := 𝑥(0 ≤ 𝑡 ≤ 𝑇)

and an input trajectory u := 𝑢(0 ≤ 𝑡 ≤ 𝑇) be defined by a tuple (x,u, 𝑇) that satisfies

the function 𝑓 over 𝑡 ∈ [0, 𝑇]. More strictly, let the state and input trajectories consist

of feasible states in the obstacle-free region and feasible inputs, i.e.,

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)), 𝑥(𝑡) ∈ 𝑋free ∩𝑋feas, 𝑢(𝑡) ∈ 𝑈feas. (1.2)

Let 𝒳 and 𝒰 denote the set of x in 𝑋free ∩𝑋feas and the set of u in 𝑈feas for all real

19

values 𝑇 > 0. The set of tuples (x,u, 𝑇) is denoted 𝒯 as feasible trajectories. Given

Lipschitz continuous functions 𝑔 : (𝑋,𝑈) → R≥0 and ℎ : 𝑋 → R≥0, and feasible

trajectories x ∈ 𝒳 and u ∈ 𝒰 , then a cost functional

𝐽(x,u) = ℎ(𝑥(𝑇)) +

∫︁ 𝑇

0

𝑔(𝑥(𝑡), 𝑢(𝑡)) 𝑑𝑡 (1.3)

associates each feasible trajectory (x,u, 𝑇) ∈ 𝒯 with a cost, where 𝑇 is free to choose.

Problem 1.1 (Optimal Motion Planning) Given a state space 𝑋, an obstacle

region 𝑋obs, a feasible goal region 𝑋goal, feasible states 𝑋feas, feasible inputs 𝑈feas, an

initial state 𝑥0 ∈ 𝑋feas ∖ 𝑋obs, a dynamical system described as in (1.1), and a cost

functional 𝐽 : 𝒯 → R≥0 described as in (1.3), find a tuple (x,u, 𝑇) ∈ 𝒯 that satisfies

Equation (1.1) for all 𝑡 ∈ [0, 𝑇],

∙ starts from the initial state, i.e., 𝑥(0) = 𝑥0,

∙ reaches the goal region, i.e., 𝑥(𝑇) ∈ 𝑋goal,

∙ avoids collision, i.e., 𝑥(𝑡) /∈ 𝑋obs, ∀𝑡 ∈ [0, 𝑇],

∙ respects constraints, i.e., 𝑥(𝑡) ∈ 𝑋feas, 𝑢(𝑡) ∈ 𝑈feas, ∀𝑡 ∈ [0, 𝑇],

∙ and minimizes the cost functional 𝐽 over the trajectory.

In a similar setting, optimal feedback planning is defined as follows.

Problem 1.2 (Optimal Feedback Planning) Given a state space 𝑋, an obstacle

region 𝑋obs, a feasible goal region 𝑋goal, feasible states 𝑋feas, a region of interest

𝑍 ⊂ 𝑋feas ∖𝑋obs, feasible inputs 𝑈feas, a dynamical system described as in (1.1), and a

cost functional 𝐽 : 𝒯 → R≥0 described as in (1.3), find a feedback policy 𝜋 : 𝑍 → 𝑈feas

over the region of interest 𝑍 that

∙ outputs control inputs for the region of interest 𝑍, i.e., 𝑥(𝑡) ∈ 𝑍, 𝑢(𝑡) ∈ 𝑈feas

∙ reaches the goal region, i.e., 𝑥(𝑇) ∈ 𝑋goal where 𝑇 is free to choose

∙ avoids collision, i.e., 𝑥(𝑡) /∈ 𝑋obs, ∀𝑡 ∈ [0, 𝑇],

20

∙ respects constraints, i.e., 𝑥(𝑡) ∈ 𝑋feas, 𝑢(𝑡) ∈ 𝑈feas, ∀𝑡 ∈ [0, 𝑇],

∙ and minimizes the cost functional 𝐽 over the trajectory.

Definition 1.3 (Optimal Cost-To-Go and Cost-To-Come) In the optimal mo-

tion planning (Problem 1.1) or optimal feedback planning (Problem 1.2), let 𝐽(𝑧, 𝑧𝑓)

denote the optimal cost-to-go value (or the value function), i.e., the minimum of the

cost functional 𝐽 to reach the goal region starting from the state 𝑧. Similarly, let

𝐽(𝑧𝑖, 𝑧) denote the optimal cost-to-come value, i.e., the minimum of the cost func-

tional 𝐽 to reach the state 𝑧 starting from the initial state.

Definition 1.4 (CostToCome and CostToGo Procedures) In a forward tree with

its root at an initial state, let the CostToCome procedure, or shortly the Cost in the

forward tree, return the best cost-to-come value 𝐽(𝑧𝑖, 𝑧) by following tree edges. In a

backward tree to goal states, let the CostToGo procedure, or shortly the Cost in the

backward tree, return the best cost-to-go value 𝐽(𝑧, 𝑧𝑓) by following tree edges. We call

a trajectory from 𝑧𝑖 to 𝑧 is optimal if 𝐽(𝑧𝑖, 𝑧) is equal to Cost(𝑧) in the forward tree.

Similarly, we call a trajectory from 𝑧 to 𝑧𝑓 is optimal if 𝐽(𝑧, 𝑧𝑓) is equal to Cost(𝑧)

in the backward tree.

1.2 Planning with Dynamical Systems

In Problem 1.1 of optimal motion planning, the system is described as a differen-

tial equation (1.1), i.e., a general class of “dynamical systems”. However, a sub-

stantial portion of previous efforts have considered optimal “path” planning prob-

lems, by focusing on trivial systems such as �̇� = 𝑢 [57, 6]. Motion planning prob-

lems with dynamical systems, optimal or sub-optimal, have remained challenging for

realistic systems, particularly with non-holonomic constraints or kinodynamic con-

straints [30, 82, 70, 71, 74, 65]. Overall, a fairly limited amount of previous efforts have

addressed optimal motion planning problems with “dynamical systems” [56, 55, 54].

In that regard, we emphasize our consideration of dynamical systems in optimal mo-

tion planning, by selecting the redundant title with “dynamical systems”.

21

In this domain, most solution approaches involve relaxation of the optimality in

several different ways. The only exception comes from the literature of optimal control

theory [21], if the associated HJB equation is analytically solvable and the resultant

trajectory happens to be collision-free. Once the set of equations becomes analytically

intractable, resorting to numerical methods or optimization methods has been preva-

lent, e.g., as in numerical integration [93], Model Predictive Control (MPC) [22],

constrained Linear Quadratic Regulator (LQR) [11], and other optimization-based

approaches such as LQR-trees [108] and CHOMP [96]. Such approaches involve re-

laxation in numerically approximating the solution or in transcribing the original

problem into optimization problems with a tractable number of variables. Unless the

set of constraints induces a convex region, optimization-based approaches additionally

involve relaxation into locally optimal solutions.

Relaxation into resolution complete algorithms allows optimal path planning algo-

rithms in grids or lattices. Although Dijkstra [29] and A* [44] are originally designed

to search paths in graphs, their application to discretized grids or lattices still gen-

erates solutions for optimal paths, as long as the underlying graph representation

fully reflects the system’s available actions or paths. Recent variants such as D*,

Focused D*, and D*-Lite [106, 61] enhance their replanning performance by efficient

and focused propagation of updated information. Apart from the well-known curse

of dimensionality issue [10], we notice that the underlying graph representation of

motions is often insufficient to express all possible evolutions of the system dynamics.

Meshes and simplexes may be considered in place of grids [122, 121], but application

examples tend to remain in the domain of paths, not of dynamical motions.

Markov Decision Processes (MDPs) [94], typically represented on grids, handle

stochastic control problems. Due to the dependence on discretization, approximation,

or interpolation of time, state space, input space, or value function, MDPs involve

relaxation by fewer outcomes and less accurate transitions of states, than originally

described by the dynamics. Moreover, the inclusion of discount factor 𝛾 < 1 in the

formulation accelerates the convergence of the iterations, but results in an additional

relaxation of uniformly weighted solutions into future discounted solutions, from the

22

perspective of the cost functional 𝐽 defined in (1.3).

Relaxation to probabilistically complete algorithms is available as well. Prelimi-

nary work on extending the RRT* algorithm to handle systems with differential con-

straints has appeared in [56], which discussed application examples such as double

integrators and Dubins’ vehicle dynamics [31]. Practical issues in replanning scenarios

were addressed in [55], emphasizing the benefits of anytime algorithms. Additional

issues with non-holonomic constraints were addressed in [54]. However, the current

set of practical solutions remain fairly limited, thus we attempt to elaborate more on

this probabilistically complete algorithms, mainly with non-trivial dynamical systems

as the application examples.

1.3 Steering Methods

Steering problems, or Two-Point Boundary Value Problems (TPBVPs), take im-

portant roles as the crucial sub-routines in sampling-based motion planning algo-

rithms [60, 18, 74, 65, 57].

Problem 1.5 (Steering Problem, or TPBVP) Given a state space 𝑋, feasible

states 𝑋feas, feasible inputs 𝑈feas, an initial state 𝑥0 ∈ 𝑋feas, a final state 𝑥𝑓 ∈ 𝑋feas, a

dynamical system described as in (1.1), find a tuple (x,u, 𝑇) ∈ 𝒯 that satisfies (1.1)

for all 𝑡 ∈ [0, 𝑇],

∙ starts from the initial state, i.e., 𝑥(0) = 𝑥0,

∙ reaches the final state, i.e., 𝑥(𝑇) = 𝑥𝑓 ,

∙ respects constraints, i.e., 𝑥(𝑡) ∈ 𝑋feas, 𝑢(𝑡) ∈ 𝑈feas, ∀𝑡 ∈ [0, 𝑇].

Note that the problem definition does not require the steered trajectory to be

collision-free, i.e., a state 𝑥(𝑡) is not compared with an obstacle region 𝑋obs.

Problem 1.6 (Optimal Steering Problem, or Optimal TPBVP) Given a cost

functional 𝐽 : 𝒯 → R≥0 described as in (1.3), find a tuple (x,u, 𝑇) ∈ 𝒯 that satisfies

all requirements in Problem 1.5,

23

∙ and minimizes the cost functional 𝐽 over the trajectory.

By definition, steering problems or TPBVPs effectively imply motion planning

problems in an obstacle-free space. In the context of RRTs [74, 65, 76], the final

state 𝑥𝑓 needs not be reached exactly, thus steering problems do not necessarily

mean TPBVPs. With other algorithms that involve graphs, roadmaps, or rewiring

operations as in PRMs [60], the RRT* [57], and most of later algorithms, steering

problems are assumed to connect the initial state 𝑥0 and the final state 𝑥𝑓 exactly,

thus steering problems and TPBVPs become interchangeable.

In the absence of obstacle-induced constraints, solutions to certain classes of opti-

mal TPBVPs can be discovered in the literature of optimal control theory [21]. In [56],

the RRT* embeds the solutions for time-optimal TPBVPs of double integrators and

Dubins’ vehicle dynamics [31], for which the analytic optimal solutions are known.

The infinite-horizon LQR is employed as a steering solution in [89], but the exactness

of the final state 𝑥𝑓 is exchanged with the ease of computing the optimum by the

LQR solution. The follow-up work in [41] elaborates the finite-horizon LQR, but

the exactness of 𝑥𝑓 is still missing as briefly shown in [85]. A Gramian-based finite-

horizon optimal TPBVP solution for linear systems in [117] minimizes the weighted

cost of terminal time and control efforts, assuming the involved numerical integration

does not incur numerical issues. As an extension to non-linear systems, a successive

approximation approach in [43] obtains TPBVP solutions for the same cost to [117],

whereas each TPBVP requires more computation than previous approaches.

Optimization-based solutions with high precisions can serve as good approxima-

tions to the optimal TPBVP solutions, with alleviated local minima issues for the

overall trajectory. Note that a single optimization problem over the entire trajec-

tory is distinguished from a concatenation of optimized trajectory segments. In this

domain, our work in [51] numerically implements the methodology to obtain time-

optimal trajectories. Later, the work in [118] employs optimization tools, i.e., sequen-

tial quadratic programming (SQP) [17], to solve optimal TPBVPs.

Our interests exist in expanding the library of efficient TPBVPs, suitable as a sub-

routine for the RRT* and other sampling-based algorithms. The aforementioned work

24

in [51] targets general dynamical systems. The work in [49] exploits characteristics

of dynamical systems, such as the differential flatness [35]. The work in [50] further

utilizes the flatness and focuses on controllable linear systems.

1.4 Statement of Contributions

The main contributions of this dissertation are 1) practical and efficient adaptations

of optimal sampling-based motion planning algorithms, and 2) inclusion of non-trivial

dynamical systems as the subject of optimal motion planning. Our contributions on

the planning framework are summarized as follows:

∙ Chap 2.1, 2.2: In basic versions [57] of the RRT*, RRG, and PRM*, algo-

rithm descriptions are chosen to better address mathematical properties, than

practical issues. Accordingly, a large amount of research efforts have been in-

vested toward fast and efficient implementation, by the authors and by other

researchers. Our proposed integration aims to obtain the upper-envelope per-

formance of existing modifications, by carefully importing the key algorithmic

components into the context of incremental algorithms, while preserving the

ideal behaviors by the discussed algorithms.

∙ Chap 2.3: By simple and natural conversions of motion planning algorithms into

the backward structure that is prevalent in the literature of dynamic program-

ming, optimal control, and artificial intelligence, we enable feedback planning

or efficient replanning that reuses most of the previous computation.

∙ Chap 2.4: We provide an efficient computation scheme for informed TPBVPs,

with non-trivial dynamical systems and computationally demanding TPBVPs

in consideration. Our modified scheme significantly reduces the amount of total

computation needed for steering problems, thus more complicated dynamical

systems can be handled within the same computational budget.

Sampling-based motion planning algorithms rely on specific steering methods, or

TPBVP solvers. Our contributions in the domain of TPBVPs are as follows:

25

∙ Chap 3: For a general class of dynamical systems, we propose a numerical

method for TPBVPs. Time-optimal off-road vehicle maneuvers are shown as

the example.

∙ Chap 4: For pseudo-flat dynamical systems, we propose a semi-analytic solu-

tion for TPBVPs. Computation of time-optimal off-road vehicle maneuvers is

expedited, and more complicated scenarios can be handled as the result.

∙ Chap 5: For controllable linear systems, we propose an efficient method for

TPBVPs, based on the progressive and incremental computation of small-sized

linear or quadratic programming problems.

1.5 Outline

This dissertation is organized as follows. Contributions on the motion planning frame-

work are provided in Chapter 2, and the subsequent chapters describe specific TP-

BVP solutions. Chapter 3 discusses a numerical method for general dynamical sys-

tems. Chapter 4 proposes a semi-analytic solution for pseudo-flat dynamical systems.

Chapter 5 further utilizes the differential flatness and formulates small-sized linear or

quadratic programs for controllable linear systems, where the set of constraints grows

progressively. This dissertation concludes with summary and remarks in Chapter 6.

26

Chapter 2

Enhanced RRT* Algorithms and

Further Modifications for Dynamical

Systems

Representative algorithms in the evolution of sampling-based motion planning, namely

Probabilistic RoadMaps (PRMs) [60], Rapidly-Exploring Random Trees (RRTs) [74],

and the RRT* algorithm [57], have mainly elaborated answers for two subproblems:

1) neighbor selection (how the subset of samples are selected for processing), and 2)

sample processing (how the selected subset of samples are processed at iterations).

How to generate low-discrepancy and low-dispersion samples beforehand, by random

or deterministic sampling strategies, is a fairly decoupled topic despite its importance

in sampling-based algorithms. Interested readers may refer [73] for details.

The first subproblem of neighbor selection with grids, lattices, or 𝑛 samples in a 𝑑-

dimensional space has mostly relied on proximity queries or range queries. Successful

examples in the literature include adjacent (for grids or lattices) [29, 44, 106, 61],

nearest [74], k -nearest (k may be a constant or proportional to log 𝑛) [60, 57], and

in-range (range may be a constant or proportional to ((log 𝑛)/𝑛)1/𝑑) [60, 57] queries.

Prior to the RRT*, the second subproblem of processing the selected samples used

to be simpler, i.e., paired samples are assumed to be precisely connected [60, 57] or

approached as closely as possible [74]. The RRT* involves one more crucial processing

27

step of rewiring edges and vertices within a shrinking ball with its volume proportional

to (log 𝑛)/𝑛, or equivalently with 𝒪(log 𝑛) neighbors, to ensure the optimality of the

solution in the limit. Rewiring the tree is equivalent to assigning a better parent vertex

for the considered vertex, in a way the cost-to-come (the cost from the initial state

to the current state) value to the vertex is minimized by rewiring to the candidate

vertices within the considered volume proportional to (log 𝑛)/𝑛, or equivalently to

𝒪(log 𝑛) neighboring vertices.

The procedure of precisely connecting the paired samples in a configuration space

is called a steering problem in the literature, or equivalently a two-point boundary

value problem (TPBVP) in the case of precise connection. The steering problem is

trivially simple for trivial Euclidean systems �̇� = 𝑢, and the problem becomes fairly

hard to solve for general dynamical systems. Algorithms that rely on inexact steering

methods are out of the scope in this chapter, due the to lack of provable guarantees

and analyses. However, inexact steering solutions based on forward simulations are

often more convenient to obtain than exact TPBVP solutions. Interested readers may

refer [76], or the preceding work of ours in [51].

Although the RRT* practically belongs to anytime algorithms [123, 124, 57, 55]

that quickly obtain a first solution and continue to improve the solution toward the

optimal one, the convergence to the optimum is reportedly slow. As mentioned,

the execution further slows down when non-trivial steering solutions [51, 49] need to

replace the straight paths, namely the steering solutions for trivial systems �̇� = 𝑢.

Naturally, a significant amount of research efforts have proposed promising ideas for

faster convergence than the RRT* [83, 6, 48, 90, 39, 101, 40, 52]. We note that

the proposed modifications tend to remain as isolated algorithms with own benefits,

where the algorithmic advantages are difficult to combine together.

Within our abstract algorithmic framework, we first interpret the key contribu-

tions of aforementioned efforts toward the faster convergence, and we lead to unified

perspectives and modifications, i.e., the enhanced RRT* algorithm. In the context

of feedback motion planning, we also propose a sampling-based solution on the tree

data structure. In addition, a modification is proposed for the efficient inclusion of

28

dynamical systems in sampling-based motion planning algorithms.

This chapter starts with literature reviews in Section 2.1. Higher-level discussions

follow on grid-based algorithms and recent sampling-based algorithms that attempt

to achieve faster convergence rates toward the optima than the RRT* algorithm. Con-

tributions and implications of each approach are interpreted comparatively within a

higher-level structure, showing that each approach can be interpreted as a variant with

different sampling strategies and neighbor selection procedures. In Section 2.2, we

propose the enhanced RRT* algorithm that natively combines key factors of such al-

gorithmic variants within the RRT*’s simple procedures and 𝒪(log 𝑛) complexity per

iteration. Section 2.3 suggests a natural modification, named as Goal-Rooted Feed-

back Motion Trees (GR-FMTs), that efficiently generates feedback policies around

motion plans toward goals, with computational complexity same to the RRT*’s. Sec-

tion 2.4 substantially improves the loop of non-trivial steering attempts, i.e., when

general dynamical systems are considered for motion planning problems. Section 2.5

compares our algorithmic variants in simulation experiments, and Section 2.6 con-

cludes with remarks.

2.1 Toward Faster Convergence Rates than the RRT*

We begin by suggesting an abstract form of algorithms that can include grid-based

and sampling-based algorithms as the subsets. Our literature review is comparative

within the suggested structure, focusing on algorithms with proofs or claims for con-

vergence to the optimal solution [29, 44, 106, 61, 57, 83, 6, 48, 90, 39, 101, 40, 52].

Because our coverage suffices to explain all major algorithmic components, we neither

mention research efforts toward the relaxed optimality [3, 100] nor enumerate other

later algorithms with provable optimality guarantees.

2.1.1 Abstract Form of Sampling-Based Algorithms

Algorithm 2.1 is an abstract form of sampling-based motion planning algorithms, al-

lowing variations in the procedures Sample, SelectNeighbors, ConnectToBestVertex,

29

and PropagateInfo. We force the entire set of vertices 𝑉𝑖 and the entire set of edges

𝐸𝑖 to constitute a tree 𝐺𝑖 rooted at 𝑉𝑖=0(=Vertex(𝑧root)), by maintaining the infor-

mation about a single parent and children at each of the vertices 𝑉𝑖. In addition,

following the ancestor vertices and edges in the forward tree, each vertex stores the

cost-to-come value starting from the root 𝑉0. Hence, a set of vertices 𝑉𝑖, goal inside goal

regions are equivalent to the set of trajectories from 𝑉0 to goal regions and the cor-

responding trajectory costs. For convenience, 𝐺𝑖, 𝑉𝑖, 𝐸𝑖, 𝑉𝑖, goal, 𝑉𝑖, revisit, and 𝑉𝑖, remain

with subscripts 𝑖 are treated as global variables at 𝑖-th iteration, thus any procedure

can access the data for the current tree, vertices, edges, and goal-reaching trajectories.

𝑉𝑖, revisit and 𝑉𝑖, remain are reserved for later use. Variables with other explanatory sub-

scripts remain local and temporary. For instance, 𝑧samp and 𝑣samp denote the sample

state and the corresponding vertex at 𝑖-th iteration, and 𝑉near denotes a subset of 𝑉𝑖

near 𝑧samp. Lower-case variables such as 𝑣new and 𝑒new contain only one element, i.e.,

an updated vertex from 𝑣samp and an edge from 𝑣samp to the best parent vertex found

in 𝑉near. No element may be returned as 𝑣new or 𝑒new, if all paths to near vertices in

𝑉near are invalid due to obstacles or other violated constraints.

Globally Accessible Data: 𝑖, 𝐺𝑖, 𝑉𝑖, 𝐸𝑖, 𝑉𝑖, goal, 𝑉𝑖, revisit, and 𝑉𝑖, remain

1 𝑖← 0; 𝑉𝑖 ← Vertex(𝑧root); 𝐸𝑖 ← ∅; 𝐺𝑖 ← (𝑉𝑖, 𝐸𝑖); 𝑉𝑖, goal ← ∅;

2 while 𝑖++ < 𝑁 and Interrupted() = false do

3 (𝑧samp, 𝑣samp)← Sample();

4 𝑉near ← SelectNeighbors(𝑧samp, backward_reachable);

5 (𝑣new, 𝑒new)← ConnectToBestVertex(𝑣samp, 𝑉near);

6 𝑉near ← SelectNeighbors(𝑧samp, forward_reachable);

7 𝐺𝑖+1 ← (𝑉𝑖+1, 𝐸𝑖+1, 𝑉𝑖+1, goal)← PropagateInfo(𝑣new, 𝑒new, 𝑉near);

8 return Traj(𝑉𝑖, goal);

Algorithm 2.1: An Abstract Form of Sampling-Based Algorithms

Procedure names in Algorithm 2.1 and subsequent algorithms in this chapter are

set to be straightforward. The procedures Vertex and Edge create a vertex and

an edge respectively, provided sufficient information for the creation. The procedures

State and Cost provide the state and the cost-to-come value of a vertex in inquiry. At

30

each iteration unless interrupted, a sample 𝑧samp and the corresponding vertex 𝑣samp

are created in Sample, and the set of neighbors 𝑉near is selected in SelectNeighbors.

Note that neighbors reachable to the randomly drawn sample within a time or cost

horizon (or neighbors in the backward reachable set) generally differ from neighbors

reachable from the sample within the same horizon (or neighbors in the forward

reachable set). In ConnectToBestVertex, an edge 𝑒new is created to connect 𝑣samp

to a vertex in 𝑉near as a part of the tree 𝐺𝑖, in a way that the cost-to-come value to

𝑣samp is minimized. In the PropagateInfo procedure, further processing such as the

RRT*’s rewiring operation improves the underlying tree 𝐺𝑖 into 𝐺𝑖+1.

As a simple example, it is trivial to shape RRTs [74] into a variant of Algo-

rithm 2.1. By following the procedure names in [74], the SelectNeighbors procedure

is replaced by the NEAREST_NEIGHBOR, and the ConnectToBestVertex procedure is

roughly equivalent to the EXTEND. The PropagateInfo procedure is set to merely

update global variables 𝐺𝑖, 𝑉𝑖, 𝐸𝑖, and 𝑉𝑖, goal for later iterations.

We reorder routines and reshape some of the algorithms in [29, 44, 106, 61, 57, 83,

6, 48, 90, 39, 101, 40, 52] into variants of Algorithm 2.1, mainly with different imple-

mentations of the procedures Sample and SelectNeighbors. The RRT* [57] serves as

the baseline algorithm for the procedures ConnectToBestVertex and PropagateInfo.

2.1.2 The RRT* Algorithm [57]

A version of the RRT* algorithm is shown by assigning Algorithm 2.2 and 2.3 as

the ConnectToBestVertex and PropagateInfo procedures. Contrary to the original

representation of the RRT* in [57], this version does not construct the preliminary

edge to the randomly drawn sample from the nearest vertex in the tree, between

Line 3 and 4 in Algorithm 2.1. This version returns the identical tree to the original

version if none of such preliminary edges are in collision. Otherwise, this version of

the RRT* algorithm returns a tree with a larger number of vertices.

Algorithm 2.2 shows the ConnectToBestVertex procedure that creates the best

edge 𝑒 from a set of vertices 𝑉near and creates a vertex 𝑣 out of the inquired vertex 𝑣in.

As a generalized sub-routine, Algorithm 2.2 may be informed about 𝐽upper, an upper

31

bound on the cost of the potential edge 𝑒. Once the TPBVP procedure solves a TPBVP

that steers the system from the state of a vertex 𝑣near in 𝑉near to the state of the

inquired vertex 𝑣in, then the generated state trajectory, the required control inputs,

and the trajectory cost are stored in 𝑥near, 𝑢near, and 𝐽near. A loop with the vertices

in 𝑉near keeps track of the best TPBVP solution, if safe from collisions with obstacles.

The loop finally returns the best edge 𝑒 that contains the best TPBVP solution and

the created vertex 𝑣.

Input : 𝑣in, 𝑉near, and 𝐽upper (=∞ if unspecified)

Output: 𝑣 and 𝑒

1 𝑣 ← ∅; 𝑒← ∅;

2 for all 𝑣near ∈ 𝑉near do

3 (𝑥near, 𝑢near, 𝐽near)← TPBVP(State(𝑣near), State(𝑣in));

4 if Cost(𝑣near) + 𝐽near < 𝐽upper and ObstacleFree(𝑥near) then

5 𝐽upper ← Cost(𝑣near) + 𝐽near;

6 𝑣 ← 𝑣in; 𝑒← Edge(𝑣near, 𝑣, (𝑥near, 𝑢near, 𝐽near));

7 return (𝑣, 𝑒);

Algorithm 2.2: The ConnectToBestVertex Procedure for the RRT*

Input : 𝑣, 𝑒, and 𝑉near

Output: 𝑉𝑖+1, 𝐸𝑖+1, and 𝑉𝑖+1, goal

1 𝑉𝑖+1 ← 𝑉𝑖 ∪ {𝑣}; 𝐸𝑖+1 ← 𝐸𝑖 ∪ {𝑒}; 𝑉𝑖+1, goal ← 𝑉𝑖, goal ∪ VertexInGoals(𝑣);

2 for all 𝑣near ∈ 𝑉near do

3 (𝑣rewire, 𝑒rewire)← ConnectToBestVertex(𝑣near, {𝑣}, Cost(𝑣near));

4 if 𝑣rewire ̸= ∅ and 𝑒rewire ̸= ∅ then

5 𝐸𝑖+1
−← Edge(Parent(𝑣near), 𝑣near); 𝐸𝑖+1

+← 𝑒rewire;

6 𝑉𝑖+1 ← RewireTreeVertices(𝑣near, 𝑣rewire);

7 return (𝑉𝑖+1, 𝐸𝑖+1, 𝑉𝑖+1, goal);

Algorithm 2.3: The PropagateInfo Procedure for the RRT*

Algorithm 2.3 is the representation for the RRT*’s rewiring operation within the

set of vertices in 𝑉near. The VertexInGoals procedure returns the inquired vertex 𝑣

32

itself if the vertex is inside goal regions. Algorithm 2.3 generalizes the rewiring op-

eration using the ConnectToBestVertex procedure (Algorithm 2.2) as a sub-routine.

Note that {𝑣} contains only one element, thus ConnectToBestVertex does not con-

tain a loop in computation. The existing edge in the tree from Parent(𝑣near) to 𝑣near

is removed and re-routed via 𝑒rewire if the cost-to-come value to 𝑣near can be improved

by switching the parent vertex of 𝑣near into 𝑣. The RewireTreeVertices procedure

updates the existing vertex 𝑣near and its descendants with the information of the new

parent vertex 𝑣 and the improved cost-to-come value to each vertex.

The RRT* algorithm (Algorithm 2.1, 2.2, and 2.3 with the SelectNeighbors

procedure that returns 𝒪(log 𝑛) near neighbors) is asymptotically optimal, i.e.,

P
(︂{︂

lim sup
𝑖→∞

CostRRT*
(𝑉𝑖, goal) = 𝑐*

}︂)︂
= 1,

where 𝑐* is the optimal cost to reach a state in goal regions from the initial state.

2.1.3 Canonical Modifications for the RRT*

Algorithm 2.2 and Algorithm 2.3 represent the most basic representation for the

RRT*, focusing on the clear explanation of main ideas. In practice, there exist several

modifications that are considered canonical to speed up the RRT* [55, 2, 51] since the

inception of the RRT* algorithm. We elaborate a few widely-used modifications for

the speed-up, that do not sacrifice the solution quality at all. Note that we may not

explicitly write these modifications in the description of algorithms, to concentrate

on more important procedures without potential confusions.

Branch and Bound

The branch and bound algorithm [68] is a well-known technique in combinatorial

optimization. Robotics researches often implement the idea in conjunction with graph

search algorithms [99, 67]. The idea of avoiding any computation that cannot improve

the existing solution leads to efficient algorithms, and many successful algorithms

such as A* [44] and k-d tree [12] are grounded on the same philosophy. The earliest

33

applications of the branch and bound technique on the RRT* can be found in [55, 2,

51], and later work in [6, 90, 39, 101, 40] shape the same idea in different names and

contexts, e.g., pruning, rejection, bounded propagation, and informed sampling.

An admissible heuristic is an estimate of a function that maps each state 𝑧 to a

non-negative real number, where the estimate is less than or equal to the actual value

of the function. We consider admissible heuristics for both the cost-to-come value and

the cost-to-go value, i.e., the cost of the optimal trajectory that reaches goal regions

starting from 𝑧. A better approximation of the actual value leads to more effective

pruning of tree branches and rejection of samples, but most often, exact functions

are computationally expensive to get. In practice, even loose approximations enable

significant reduction of the computation by pruning and rejection. For instance, the

Euclidean distance from 𝑧 to goal regions can serve as the lower bound on the actual

trajectory length for a majority of dynamical systems.

We pretend the cost-to-go function is available for the simplicity of representation.

Let procedures CostToGo* and Cost* for a state 𝑧 or an existing vertex 𝑣(=Vertex(𝑧))

implement the admissible heuristic of the cost-to-go function and the cost-to-come

function. Let procedures CostToGo and Cost for an existing vertex 𝑣 compute the

cost-to-go from 𝑣 and the cost-to-come to 𝑣, following edges on the tree. Let 𝑣goal be

the lowest-cost vertex in goal regions, then the branch and bound technique is the

application of the following inequalities:

Cost(𝑣) + CostToGo*(𝑣) > Cost(𝑣goal), (2.1)

Cost*(𝑧) + CostToGo*(𝑧) > Cost(𝑣goal). (2.2)

A state 𝑧 or an existing vertex 𝑣(=Vertex(𝑧)) that satisfies (2.2) can be safely removed

or rejected, without losing a potentially better solution. If the state 𝑧 is a newly drawn

sample, an algorithm design may choose to project the sample to promising regions

such that

Cost*(𝑧) + CostToGo*(𝑧) < Cost(𝑣goal), (2.3)

instead of rejecting the sample.

34

(a) Before Pruning the Tree (b) After Pruning the Tree

Figure 2-1: Consequences of the Branch and Bound Technique

For an existing vertex 𝑣, any computation with (2.1) can be avoided permanently

or temporarily, depending on the closeness between the values Cost(𝑣) and Cost*(𝑣).

More specifically, the inequality (2.1) solely implies that the vertex 𝑣 in the current

tree cannot contribute to a better solution. Provided that the inequality (2.2) does

not hold, however, the same vertex 𝑣 in the future tree may or may not contribute to

a better solution than the current one. Therefore, whether to permanently remove or

temporarily ignore such an existing vertex in the tree is subject to the preference.

The main benefit of the branch and bound technique is the reduced computation

for proximity queries, e.g., 𝒪(log 𝑛) for the k-d tree, where 𝑛 is the number of ver-

tices. Figure 2-1 illustrates such benefits and consequences of the branch and bound

technique at a glance.

Remark 2.1 (Informed sampling) The Informed RRT* [39] utilizes the branch

and bound technique for direct sampling within a shrinking ellipsoidal region, com-

puted by the inequality (2.1) using the admissible heuristic and the best found cost to

goals. In [39], use of the cost functional based on the Euclidean metric between states

leads to the computation of the ellipsoidal region. Success rates by informed sampling

in a less cluttered environment are certainly higher than rejection sampling, whereas

the benefit vanishes as the ellipsoidal region becomes bigger than the environment of

interest in an extremely cluttered environment, e.g., a maze.

For cost functionals in general forms, i.e., with dynamical systems, approximation

35

of the ellipsoidal region for informed sampling becomes challenging, due to the large

difference between the Euclidean metrics and the pseudo-metrics. Instead, we may

choose to reject samples based on the inequality (2.2) and project the samples toward

promising regions.

Delayed or Lazy Computation

Reordering, delaying, and avoiding more expensive computation until the last moment

have been another source of efficient algorithms in the literature. Sampling-based mo-

tion planning algorithms have successfully adapted the idea, mostly by minimizing the

frequency of collision checks for trajectories [18, 67, 88, 48, 45]. In a loop, candidates

need to be sorted to enable delayed or lazy computation for expensive operations.

Input : 𝑣in, 𝑉near, and 𝐽upper (=∞ if unspecified)

Output: 𝑣 and 𝑒

1 𝑣 ← ∅; 𝑒← ∅;

2 for all 𝑣near ∈ 𝑉near do

3 (𝑥near, 𝑢near, 𝐽near)← TPBVP(State(𝑣near), State(𝑣in));

4 if Cost(𝑣near) + 𝐽near < 𝐽upper then

5 (𝐸sort, 𝐽sort)
+← (Edge(𝑣near, 𝑣in, (𝑥near, 𝑢near, 𝐽near)), Cost(𝑣near) + 𝐽near);

6 for all (𝑒sort, 𝐽) ∈ Sort(𝐸sort, 𝐽sort) do

7 if ObstacleFree(Trajectory(𝑒sort)) then

8 𝑣 ← 𝑣in; 𝑒← 𝑒sort;

9 return (𝑣, 𝑒);

Algorithm 2.4: A Lazy Version of the ConnectToBestVertex Procedure

Similar to [67, 88], a version of lazy computation for the ConnectToBestVertex

procedure is shown in Algorithm 2.4. Assuming TPBVPs are simpler to compute,

all TPBVPs are solved and sorted by the cost-to-come value to the vertex 𝑣in, to

minimize the number of calls for the ObstacleFree procedure. Note that TPBVPs for

dynamical systems may become more expensive to compute than collision checks, then

36

lazy computation for collision checking unnecessarily slows down the algorithm by

prioritizing more expensive computation over simpler operations. Careful observation

is required before modifying the algorithm with delayed or lazy computation.

Biased Samples

An occasional sampling bias toward goal regions, before finding the first solution that

reaches the goal regions, has been a widely-accepted modification for RRTs [74], thus

its inclusion in the RRT* has been inherent [2, 50]. Moreover, a local bias toward the

found trajectory reportedly accelerates the convergence to the optimum [2, 83, 50]. If

such types of biases become excessive, local minima issues, analogous to optimization-

centric approaches, may be induced as the trade-off. This modification is simple to

implement inside the Sample procedure of Algorithm 2.1, possibly incorporated with

preset or adaptive weightings for different types of biases.

Segmentation or Truncation of Lengthy Trajectories

In earlier phases of iterations, samples and vertices are distant from the nearest or near

neighbors. Thus, it is advisable to either divide a long trajectory into segments or limit

the maximum length of trajectories, especially if near neighbors are searched by range,

not in the ascending order of proximities. Although these minor modifications are

rarely mentioned in the literature [50], the level of exploratory behaviors, especially

in earlier phases, is affected by such modifications. A strategy that divides a long

trajectory into overly small segments quickly increases the number of vertices in

the tree, thus suffers from computational issues. In addition, many locally-biased

vertices along the found trajectories may attract the solution to local minima, similar

to optimization methods. Inspired by the RRT*’s rewiring ball radius, we advocate

the division of a lengthy trajectory based on the value ((log 𝑛)/𝑛)1/𝑑 that decreases as

𝑛 increases. This segmentation is a counterpart to the strategy in the RRT-connect

algorithm [65] that tries the previous control input again, upon its success, for the

next edge expansion. Remind that RRTs do not assume exact TPBVP solutions,

whereas the RRT* assumes and utilizes the exact TPBVP solutions.

37

Conditional Activation of Algorithmic Components

As shown with the branch and bound technique, quicker finding of a feasible solution is

beneficial, in order to focus subsequent computation into promising areas. One simple

but generic way to enforce exploratory behaviors is suppressing the loop of rewiring

operations in Algorithm 2.3. Another level of exploratory behaviors is enabled by find-

ing the nearest neighbor instead of near neighbors in the SelectNeighbors procedure.

In other words, we may run RRTs or the RRT* with no rewiring operationn, until a

first feasible solution is found. The conditional activation of algorithmic components

in the RRT* is supported by benchmark results [40] where RRTs are consistently

quicker in generating the first solution than other optimal variants of the RRT*.

Efficient Collision Checking and Free-Space Sampling

Readers may get benefits by referring the efforts for efficient computation of collision-

related operations in [16]. On the contrary, this dissertation largely focuses on the

computational modifications related to dynamical systems.

2.1.4 Graph-Based Propagation of Updated Information

Aforementioned modifications for the RRT* in Section 2.1.3 are largely inspired by or

imported from tree-based algorithms. By construction, the RRT* is an extracted tree

from the underlying graph, i.e., the Rapidly-Exploring Random Graph (RRG) [57].

Meanwhile, a notable perspective in [6] points out that the RRT* is not the best

tree out of the underlying RRG. More specifically, the RRT* maintains the tree-

based data structure, not the graph-based structure, thus any updated information

by rewiring operations is exclusively propagated to descendants of the rewired vertex

by the RewireTreeVertices procedure in Algorithm 2.3. As the outcome, non-

descendant neighbors to the rewired vertex and their descendants cannot receive

the updated information, and missed opportunities for potential re-routing by such

neighbors differentiate the RRT* and the best possible tree extractable from the RRG.

Remark 2.2 (Asymptotic optimality of the RRG [57] and the RRT# [6]) The

38

RRG algorithm and the RRT# algorithm (in our representation, Algorithm 2.1, 2.2,

2.3, 2.5, and 2.6 with the SelectNeighbors procedure that returns 𝒪(log 𝑛) near

neighbors) are asymptotically optimal, i.e.,

P
(︂{︂

lim sup
𝑖→∞

CostRRG(𝑉𝑖, goal) = 𝑐*
}︂)︂

= P
(︂{︂

lim sup
𝑖→∞

CostRRT#

(𝑉𝑖, goal) = 𝑐*
}︂)︂

= 1,

where 𝑐* is the optimal cost to reach a state in goal regions from the initial state.

Remark 2.3 (Maximal propagation of updated information over the graph)

Given the same sequence of samples during 𝑖 iterations,

𝑐* ≤ CostRRG(𝑉𝑖, goal) = CostRRT#

(𝑉𝑖, goal) ≤ CostRRT*
(𝑉𝑖, goal) ≤ CostRRT(𝑉𝑖, goal).

Note that the inequality holds at 𝑖-th iteration [6], not necessarily after spending the

same amount of computation.

Compared to the RRT*, the RRT# algorithm requires extra computation inside

the RewireTreeVertices procedure, while propagating the updated information to

neighbors in the underlying graph by similar recursions to the Lifelong Planning A*

(LPA*) [62]. The RRT# may be understood as an efficient algorithm that maintains

the minimum spanning tree (MST) [42] from the RRG, rooted at the initial state.

Given a new sample (the red vertex located at the center of a ball), Figure 2-2

compares the tree-based propagation by the RRT* and the graph-based propagation

by the RRT#, with respect to the updated information triggered by a successful

rewiring operation for the green vertex. Dotted lines do not belong to edges in the

tree of either the RRT* or the RRT#, but comprise parts of edges for the underlying

RRG. As designed, the RRT* iteration connects the new sample to the existing tree

and rewires the tree, particularly the green vertex in the illustrated example. In

addition to the RRT* iteration, the RRT# in Figure 2-2c recursively but efficiently

propagates the updated information to non-descendant neighbors as well, e.g., the

bottom-right vertex in magenta, thus the magenta vertex switches its parent vertex

to lower its cost-to-come value.

39

(a) New Sample (Red Vertex) (b) After the RRT* Iteration (c) After the RRT# Iteration

Figure 2-2: Illustration of the RRT* and the RRT#

There exist trade-offs between graph-based operations and tree-based operations.

Starting from a sample, the RRT* finishes the iteration earlier than the RRT# and

draws a new sample for the next iteration, at the same moment the RRT# still prop-

agates updated information more thoroughly over the graph. On the other hand,

exploiting the thorough knowledge of vertices and edges in the graph is often more

beneficial than adding new samples to the tree. For instance, the operation by the

RRT# in [6] tends to report faster convergence rates to the optimum than the RRT*.

While the LPA*-like recursions are partly achieved by the branch and bound tech-

nique, the idea of graph-based propagation by the RRT# often remains more reward-

ing than the RRT*, unless the sampling strategy is able to adapt the next sample in

a way the same or larger improvement of the tree can be expected.

We attempt to build a bridge from the RRT# (graph-based) to the RRT* (tree-

based) within the abstraction Algorithm 2.1, by re-designing the Sample proce-

dure. Let the RewireTreeVertices procedure (Algorithm 2.3) fill in the globally

accessible data 𝑉𝑖, revisit with non-descendant neighbors of the rewired vertex. Algo-

rithm 2.5 shows the overridden definition of the RewireTreeVertices procedure for

the RRT#, where the UpdateDescendants procedure in Line 1 is identical to the

RewireTreeVertices procedure for the RRT*. As proposed, the remainder of Al-

gorithm 2.5 adds non-descendant neighbors of the rewired vertex 𝑣old(=𝑣rewire) into

the set of vertices 𝑉𝑖, revisit if the cost-to-come value can be improved by switching its

parent vertex (Line 5). Based on the expected total cost to goal regions via each ver-

40

tex, the set 𝑉𝑖, revisit is sorted for later use by the Sample procedure (Algorithm 2.6).

For simpler representation, we first update the rewired branch of the tree in Line 1,

and later check non-descendant neighbors for potential improvement. To prevent re-

peated updates over large branches of the tree, concerned users may propagate the

updated information up to a single depth and frequently sort the list of candidates

to be revisited.

Input : 𝑣old and 𝑣rewire

Output: 𝑉𝑖+1 and 𝑉𝑖+1, revisit

1 𝑉𝑖+1 ← UpdateDescendants(𝑣old, 𝑣rewire); 𝑉𝑖+1, revisit ← 𝑉𝑖, revisit;

2 𝑉near ← SelectNeighbors(State(𝑣old), forward_reachable);

3 for all 𝑣near ∈ 𝑉near ∖ Children(𝑣old) do

4 (𝑥near, 𝑢near, 𝐽near)← TPBVP(State(𝑣old), State(𝑣near));

5 if Cost(𝑣near) > Cost(𝑣rewire) + 𝐽near then

6 (𝑉𝑖+1, revisit, 𝐽revisit)
+← (𝑣near, Cost(𝑣rewire) + 𝐽near + CostToGo*(𝑣near));

7 Sort(𝑉𝑖+1, revisit, 𝐽revisit);

8 return (𝑉𝑖+1, 𝑉𝑖+1, revisit);

Algorithm 2.5: The RewireTreeVertices Procedure for the RRT#

Output: 𝑧samp and 𝑣samp

1 if 𝑉𝑖, revisit = ∅ then

2 𝑧samp ← SampleRandom(); 𝑣samp ← Vertex(𝑧samp);

3 else

4 𝑣samp ← PopTheBest(𝑉𝑖, revisit); 𝑧samp ← State(𝑣samp);

5 return (𝑧samp, 𝑣samp);

Algorithm 2.6: The Sample Procedure for the RRT#

The Sample procedure in Algorithm 2.6 interprets and implements the graph-

based propagation of the RRT# as the revisit to the set 𝑉𝑖, revisit updated in Algo-

rithm 2.5. The PopTheBest procedure returns a vertex 𝑣samp with the lowest ex-

pected cost in the set 𝑉𝑖, revisit and removes the vertex from the set 𝑉𝑖, revisit. For clear

41

representation of main ideas, duplicate calls for SelectNeighbors and TPBVP remain

in descriptions of Algorithm 2.1, 2.2, and 2.5. Note that such inefficiencies are sim-

ple to bypass or remove in implementation. Our representation of the RRT# is an

intermediate step toward our enhanced RRT*.

Proposition 2.4 (Equivalence of the RRT# [6] and our representation) Let

our representation of the RRT# be the composition of Algorithm 2.1, 2.2, 2.3, 2.5, and

2.6 with the SelectNeighbors procedure that returns 𝒪(log 𝑛) near neighbors. Then,

given the same sequence of random samples, the RRT# [6] and our representation of

the RRT# algorithm find the same trajectory from the initial state to goals.

Proof (Sketch) The formulation in [6] maintains locally minimum cost-to-come esti-

mates (lmc values). A vertex is defined stationary if the lmc value matches with the

cost-to-come value on the underlying RRG. A queue is maintained for non-stationary

vertices, and LPA*-like recursions make each vertex in the queue stationary.

Our Cost procedure returns the cost-to-come value by following the existing tree.

After a successful rewiring, discrepancies between our Cost procedure and the cost-

to-come value on the underlying RRG are invoked by non-descendant neighbors of the

rewired vertex. Our maintenance and revisit to 𝑉𝑖, revisit make such vertices stationary

and eliminate discrepancies between the tree and the graph. �

To our best knowledge, both the graph-based propagation of updated informa-

tion by the RRT# [6] and our interpretation of the RRT# as a revisiting procedure

to vertices in the queue 𝑉𝑖, revisit inside the Sample procedure are new perspectives

in the literature. The RRT# propagates the updated information more thoroughly

than the RRT*, and our interpretation imports the idea into the context of tree-

based algorithms. Later than the RRT#, Sampling-Based A* (SBA*) algorithms [90]

adapt the connection to 𝒪(log 𝑛) neighbors as a generalization of A* to sampling-

based algorithms. By propagating updates on graphs, SBA* algorithms implicitly

achieve similar benefits to the RRT# starting from the A*’s point of view. Variations

of SBA* mainly focus on generating samples that balance between exploration and

exploitation, informed by previous iterations and current distributions.

42

Readers should note that the RRT# obtains same solutions to the RRG and better

solutions than the RRT*, with an expense of maintaining the graph, instead of the

tree. The number of edges for the RRT# increases as 𝒪(𝑛 log 𝑛), not as 𝒪(𝑛). In our

representation that avoids storing the entire edges in the graph, the expense appears

as extra calls for SelectNeighbors and TPBVP procedures on demand. We attempt

to absorb the perspective into our re-designed sampling procedure.

2.1.5 Batch Processing

The choice in computation between batch processing and incremental processing may

remain as a preference, not a general answer, especially given different circumstances

or under uncertainties on computational budgets. Benchmarks may not directly com-

pare these two different processing styles, reflecting that batch processing generates

a data point after an execution whereas incremental processing provides a trajectory

of data points during the execution. However, if the computational budget and the

required computation for the batch are assumed to be precisely known, benchmark

results in the Fast Marching Tree algorithm (FMT*) [48] suggest that batch process-

ing gains computational benefits in certain circumstances. Inspired by the FMT*,

Batch Informed Trees (BIT*) [40] progressively generates new batch of samples, try-

ing to tune the algorithm between batch and incremental algorithms. We attempt to

incorporate beneficial behaviors of batch algorithms into our incremental algorithm.

Remark 2.5 (Asymptotic optimality of batch algorithms) The PRM* [57], the

single-batch BIT* [40], and the FMT* [48] algorithms are asymptotically optimal, i.e.,

P
(︂{︂

lim sup
𝑛→∞

CostPRM*
(𝑉𝑛, goal) = 𝑐*

}︂)︂
= P

(︂{︂
lim sup
𝑛→∞

Cost1−BIT*
(𝑉𝑛, goal) = 𝑐*

}︂)︂
= 1,

P
(︁{︁

lim
𝑛→∞

CostFMT*
(𝑉𝑛, goal) > (1 + 𝜖)𝑐*

}︁)︁
= 0 for all 𝜖 > 0,

where 𝑉𝑛, goal is the set of vertices in goal regions after processing a batch of 𝑛 samples,

and 𝑐* is the optimal cost to reach a state in goal regions from the initial state.

According to the statement in [48], the asymptotic optimality of the FMT* is math-

43

ematically weaker than the PRM* and the single-batch BIT*, due to its lazy collision

checks toward the best open neighbor vertex only. However, the relative weakness in

the convergence may not matter in practice as claimed in [48], provided a limited

number of samples.

The single-batch BIT* with a batch of infinitely many samples, different from the

claim in [40] but clarified to a stronger claim, obtains the same solution with the

PRM*, not the FMT*, owing to its more exhaustive connections than the FMT* to

both open and closed neighbor vertices.

Remark 2.6 (Extracted tree from roadmap) With the same batch of 𝑛 samples,

𝑐* ≤ CostPRM*
(𝑉𝑛, goal) = Cost1−BIT*

(𝑉𝑛, goal) ≤ CostFMT*
(𝑉𝑛, goal),

𝑐* ≤ CostPRM*
(𝑉𝑛, goal) = Cost1−BIT*

(𝑉𝑛, goal) ≤ Costk−PRM(𝑉𝑛, goal),

where 𝑘 for the 𝑘-nearest PRM is smaller than the number 𝒪(log 𝑛) used by other

optimal variants. Note that the inequalities hold after processing a batch of 𝑛 samples,

not necessarily after spending the same amount of computation.

The single-batch BIT* extracts the minimum spanning tree from the underlying

roadmap PRM*. The FMT* may be understood as an algorithm that lazily extracts its

tree from the PRM*. Its extracted tree rooted at the initial state is not the minimum

spanning tree out of the roadmap PRM*.

Proposition 2.7 (Sub-optimality of grid-based approaches) The application of

Dijkstra [29], A* [44], D* [106], D*-Lite [61], and other optimal search algorithms on

grids, with virtual connections to adjacent cells only, generates sub-optimal paths if

the number of adjacent cells 𝑘 is smaller than the number of available control actions

and the number 𝒪(log 𝑛) determined in [57].

Proof (Sketch) The proof is based on the sub-optimality of 𝑘-nearest PRM [57], and

the batch of samples is generated at each center of cells in grids. �

Proposition 2.8 (Asymptotic optimality of grid-based approaches) The ap-

plication of Dijkstra [29], A* [44], D* [106], D*-Lite [61], and other optimal search

44

algorithms on grids, with virtual connections to 𝑘 nearby cells, generates asymptoti-

cally optimal paths if 𝑘 is determined by the number 𝒪(log 𝑛) as in [57].

Proof (Sketch) The proof is based on the asymptotic optimality of the PRM* [57],

and the batch of samples is generated at each center of cells in grids. �

(a) Adjacent (𝑘 = 8) (b) Near (𝑘 ∝ log 𝑛)

Figure 2-3: Illustration of Adjacent Cells and Near Cells

Algorithms such as Dijkstra [29], A* [44], D* [106], and D*-Lite [61] are optimal

in searching for the best path on the inquired graph. In Proposition 2.7, the source

of the sub-optimality is the representation of grids with connections to adjacent cells

only. The Theta* algorithm [28] is one of the research efforts to resolve the issue

by shortcuts or smoothing, thus obtaining more straight paths. Results in [57] and

Proposition 2.8 suggest more fundamental remedies, adapted by SBA* [90] (mentioned

in Section 2.1.4) as a generalization of A* to sampling-based algorithms.

Queries for adjacent cells are efficiently computed if all cells are allocated in the

data structure that scales exponentially in dimension and the degree of discretiza-

tion. On the contrary, the data structure for proximity queries is incremental as

the number of vertices increases, while the complexity of near-neighbor queries scales

as 𝒪(log 𝑛). Although we advocate the incremental use of both computation and

storage for practical issues, it is noticeable that grid-based algorithms can attain the

asymptotic optimality as well, but by considering the increased number of nearby cells

𝑘(∝ log 𝑛) for the finer discretization of grids. Figure 2-3 illustrates the difference.

Figure 2-4 illustrates the behaviors by the RRT* and the FMT* for the bug trap

example, assuming the same set of samples for both, but with an unfortunate sequence

45

of samples for the RRT*. Given initial and goal samples (red) along with a batch of

samples (blue), the FMT* finds its way out from the trap. On the contrary, the RRT*

may receive rare samples along the narrow corridor at early iterations, thus fails to

grow the tree outward. Consequently, samples outside the trap remain wasted due to

the attempts to connect with vertices inside the trap as dotted lines in Figure 2-4a.

(a) The RRT* (Bad Case) (b) The FMT*

Figure 2-4: The Bug Trap Example with the RRT* and the FMT*

The bug trap example suggests the importance of rare samples, particularly in the

presence of narrow passages. Batch algorithms are designed for the maximal use of

drawn samples, thus narrow passages can be overcome better by batch algorithms [48]

than incremental algorithms, if the same number of samples are generated without

adaptation to the environment. Inspired by the example, our enhanced RRT* algo-

rithm will not discard failed samples immediately. Section 2.2 will describe the details

on how to reuse failed samples in different ways from [48] or [40].

On the contrary, Figure 2-5 illustrates the behaviors by the RRT* and the FMT* in

an open environment, assuming the same set of samples for both, but with a fortunate

sequence of samples for the RRT*. Initial and goal samples (red) are located at upper-

left and lower-right corners respectively, and a batch of samples (blue) are given. The

RRT* receives rewarding samples at early iterations, and other subsequent samples

do not contribute to better solutions. The FMT*, by its design, thoroughly sweeps

the batch of samples before reaching the goal. In this example, the sweeping behavior

becomes disadvantageous.

46

(a) RRT* (Good Case) (b) FMT*

Figure 2-5: The RRT* and the FMT* in an Open Environment

The example in Figure 2-5 leads to the discussion why incremental sampling-based

algorithms, particularly RRTs, have been practical in high dimensions. As pointed

out in [73], low-discrepancy and low-dispersion samples are keys to resolution com-

plete algorithms, which become complete algorithms as the resolution gets sufficiently

higher. However, resolution complete algorithms are directly connected to the curse

of dimensionality in high dimensions and with fine discretization. Meanwhile, RRTs

stimulate exploration toward unvisited regions and do not intend to sweep the space

thoroughly, meaning that the best-case computation may not be subject to the curse

of dimensionality issue whereas the worst-case computation still involves the issue.

The RRT* efficiently improves the transient and asymptotic behaviors of RRTs, but

remind that low-discrepancy and low-dispersion samples are assumed in the limit for

the RRT*. Thus, the curse of dimensionality issue is inevitable to the RRT* as well.

Claim 2.9 (The curse of dimensionality) We understand that the curse of di-

mensionality is inevitable in the long run and the transient behavior becomes more

important for sampling-based algorithms, especially under uncertainties on computa-

tional budgets. In Section 2.2, we aim to propose an algorithm that finds the first

solution quickly as in RRTs and switches its behavior toward optimal algorithms as

in the RRT*, in incremental and anytime manners. Our enhanced RRT* algorithm

in Section 2.2 never rejects long trajectory edges, which may happen more frequently

at early iterations. In addition, we suppress algorithmic components such as rewiring

47

operations and near neighbor queries until the first solution is found, as mentioned in

Section 2.1.3.

1 𝑉𝑛 ← Vertex(𝑧root); 𝐸𝑛 ← ∅; 𝐺𝑛 ← (𝑉𝑛, 𝐸𝑛); 𝑉𝑛, goal ← ∅;

2 while Interrupted() = false do

3 (𝑧samp, 𝑣samp)← Sample();

4 𝑉near ← SelectNeighbors(𝑧samp, backward_reachable);

5 (𝑣new, 𝑒new)← ConnectToBestVertex(𝑣samp, 𝑉near);

6 𝐺𝑛 ← (𝑉𝑛, 𝐸𝑛, 𝑉𝑛, goal)← UpdateData(𝑣new, 𝑒new);

7 return Traj(𝑉𝑛, goal) or Failure;

Algorithm 2.7: More Compact Form of Abstraction for the FMT*

Output: 𝑧samp and 𝑣samp

1 if Initialized() = False then

2 𝑉𝑛, open ← 𝑉n; 𝑉𝑛, closed ← ∅; 𝑉𝑛, remain ← SampleBatch();

3 𝑣𝑛, now ← ∅; 𝑉𝑛, ing ← ∅;

4 while 𝑉𝑛, ing = ∅ do

5 𝑉𝑛, open
−← 𝑣𝑛, now; 𝑉𝑛, closed

+← 𝑣𝑛, now; 𝑣𝑛, now ← BestInCost(𝑉𝑛, open);

6 if 𝑣𝑛, now = ∅ or 𝑣𝑛, now ∈ 𝑉𝑛, goal then

7 return Interrupt;

8 𝑉𝑛, ing ← 𝑉𝑛, remain ∩ SelectNeighbors(𝑣𝑛, now, forward_reachable);

9 𝑉𝑛, ing
−← (𝑣samp ∈ 𝑉𝑛, ing); 𝑧samp ← State(𝑣samp); 𝑉𝑛, remain

−← 𝑣samp;

10 return (𝑧samp, 𝑣samp);

Algorithm 2.8: The Sample Procedure for the FMT*

48

Input : 𝑣in, 𝑉near, and 𝐽upper (=∞ if unspecified)

Output: 𝑣 and 𝑒

1 𝑣 ← ∅; 𝑒← ∅;

2 for all 𝑣near ∈ 𝑉near ∩ 𝑉𝑛, open do

3 (𝑥near, 𝑢near, 𝐽near)← TPBVP(State(𝑣near), State(𝑣in));

4 if Cost(𝑣near) + 𝐽near < 𝐽upper then

5 (𝐸sort, 𝐽sort)
+← (Edge(𝑣near, 𝑣in, 𝑥near, 𝑢near, 𝐽near), Cost(𝑣near) + 𝐽near);

6 if ObstacleFree(Trajectory(𝑒sort ← BestInCost(𝐸sort))) then

7 𝑣 ← 𝑣in; 𝑒← 𝑒sort; 𝑉𝑛, open
+← 𝑣;

8 else 𝑉𝑛, remain
+← 𝑣in ;

9 return (𝑣, 𝑒);

Algorithm 2.9: The Laziest ConnectToBestVertex Procedure for the FMT*

Our representation of the FMT* algorithm (Algorithm 2.7, 2.8, and 2.9, with

the SelectNeighbors procedure that returns 𝒪(log 𝑛) near neighbors) reproduces

the FMT* within our abstract form in Algorithm 2.1. Note that Algorithm 2.7 is a

simplified form of Algorithm 2.1. As before, variables with subscripts 𝑛 are treated as

globally accessible data whereas variables with other explanatory subscripts remain

local and temporary. Let 𝑉𝑛 denote the union of 𝑉𝑛, open and 𝑉𝑛, closed, and let 𝑉𝑛, goal

collect the set of vertices in the goal regions. To accommodate later algorithmic

variations by simple modifications in ConnectToBestVertex, the SelectNeighbors

procedure returns near neighbors in 𝑉𝑛, not in 𝑉𝑛, open. Compare that the FMT*

finds near neighbors in 𝑉𝑛, open, but in our representation, the loop in Algorithm 2.9

considers the intersection of 𝑉near and 𝑉𝑛, open instead. Note that PropagateInfo in

Algorithm 2.1 is simplified to UpdateData in Algorithm 2.7, to emphasize that no

rewiring operations are needed for this batch algorithm.

In Algorithm 2.8, we pretend to provide a new sample, based on the batch of

samples created during the initialization. The sampling pool 𝑉𝑛, remain, which initially

stores the batch of samples, is depleted as the existing samples are drawn. The

variable 𝑣𝑛, now stands for the vertex with the best cost-to-come value among open

49

vertices 𝑉𝑛, open in the tree. Once all of samples 𝑉𝑛, ing in neighborhood to 𝑣𝑛, now are

drawn, the vertex 𝑣𝑛, now is closed. Note that the drawn sample may fail in connecting

to the tree, then the sample is restored to 𝑉𝑛, remain in Algorithm 2.9, but not to 𝑉𝑛, ing.

Algorithm 2.9 shows the laziest version of the ConnectToBestVertex procedure

that only focuses on the best connection to nearby open vertices 𝑉near∩𝑉𝑛, open. Com-

pare the procedure with the basic version in Algorithm 2.2 and the lazy version in

Algorithm 2.4, then note that this lazyness is the source for both the weaker conver-

gence result mentioned in Remark 2.5 and the potential speed-up in execution [48].

The choice among several versions of ConnectToBestVertex is subject to the trade-off

between the running time and the stronger convergence guarantees.

Proposition 2.10 (Equivalence of the FMT* [48] and our representation) Let

our representation of the FMT* be the composition of Algorithm 2.7, 2.8, and 2.9,

with the SelectNeighbors procedure that returns 𝒪(log 𝑛) near neighbors. Then,

given the same batch of 𝑛 random samples, the FMT* [48] and our representation of

the FMT* are equivalent and generate the same solution.

Proof (Sketch) Our representation of the FMT* is segmented to abstract actions

Sample, SelectNeighbors, ConnectToBestVertex, and UpdateData, but produces

the same algorithmic flow as the FMT* [48]. Thus, neglecting redundancies for seg-

mented procedures, two algorithms are equivalent and generate the same result, given

the same batch of samples. �

If the laziest computation in Algorithm 2.9 toward the best open candidate only

is replaced by the lazy computation in Algorithm 2.4, our representation of the FMT*

generates the same or better solution than the FMT*, by connecting to both open

and closed vertices 𝑉𝑛 = 𝑉𝑛, open ∩ 𝑉𝑛, closed in the tree. Then, Remark 2.5 extends to

𝑐* ≤ CostPRM*
(𝑉𝑛, goal) ≤ Costour(𝑉𝑛, goal) ≤ CostFMT*

(𝑉𝑛, goal).

Depending on the implementation choice for ConnectToBestVertex, our representa-

tion is equivalent to either the FMT* (with Algorithm 2.9) or the single-batch BIT*

50

(with Algorithm 2.4). Also, the trajectory cost by our algorithmic representation is

lower bounded by the PRM*.

The choice of batch processing or incremental processing, i.e., an ordered sweep

over candidate vertices or incremental inclusion of candidates into data structure, is

subject to trade-offs depending on the circumstances. In order to import the behavior

of ordered sweeping, incremental algorithms may choose to delay the propagation of

updated information.

However, the maximal use of samples, especially the potential reuse of rare sam-

ples, is noticeable from the perspective of incremental algorithms, as motivated by

the bug trap example in Figure 2-4. Algorithm 2.8 shows the intermediate step to-

ward our enhanced RRT* to provide intuitions from batch algorithms. Before the

presentation of our enhanced RRT* in Section 2.2, a different type of modification is

considered in Section 2.1.6.

2.1.6 Shortcuts or Smoothing

Shortcuts or smoothing of jagged paths have been one of the canonical post-processing

techniques for RRTs [74, 65]. The technique was repeated in the RRT* context [83, 52],

but was attempted as algorithmic components to accelerate the convergence rate. In

the RRT*-Smart [83], the PathOptimization procedure smooths the newly found

trajectory if the cost is lower than the current best. In the process, beacons are defined

and identified as centers for occasional biased sampling similar to Section 2.1.3. Later,

the RRT*-Quick [52] augments the set of near neighbors with their ancestors up to

the depth 𝑑, resulting in shortened or smoothed trajectories from the current sample’s

perspective. Benefits and worst-case losses by these modifications are rather obvious.

Remark 2.11 (Asymptotic optimality by shortcuts) The RRT*-Smart [83] and

the RRT*-Quick [52] are asymptotically optimal, i.e.,

P
(︂{︂

lim sup
𝑖→∞

CostSmart(𝑉𝑖, goal) = 𝑐*
}︂)︂

= P
(︂{︂

lim sup
𝑖→∞

CostQuick(𝑉𝑖, goal) = 𝑐*
}︂)︂

= 1,

51

where 𝑐* is the optimal cost to reach a state in goal regions from the initial state.

Per iteration, shortcuts or smoothed trajectories are still considered as post-processed

results, on top of normal operations by the RRT*.

Remark 2.12 (Further processing on trajectories) Given the same sequence of

samples during 𝑖 iterations,

𝑐* ≤ CostRRT*−Smart(𝑉𝑖, goal) ≤ CostRRT*
(𝑉𝑖, goal)

𝑐* ≤ CostRRT*−Quick(𝑉𝑖, goal) ≤ CostRRT*
(𝑉𝑖, goal).

Note that inequalities hold at 𝑖-th iteration, not necessarily after spending the same

amount of computation. Inequalities are straightforward results from the triangle

inequality along trajectories

Cost(𝑎, 𝑏) + Cost(𝑏, 𝑐) ≤ Cost(𝑎, 𝑐) (2.4)

in metric spaces. The RRT*-Quick augments the set of near vertices with ancestors

up to the depth 𝑑, as a global operation. In other words, the RRT*-Quick considers at

least (𝑑 + 1) multiples of 𝒪(log 𝑛) vertices per iteration. The RRT*-Smart considers

shortcuts along the best found trajectory only, as a local bias.

(a) Before Shortcuts (b) After Shortcuts

Figure 2-6: The Outcome of Shortcuts or Smoothing Operations

52

Figure 2-6 illustrates the outcome of smoothing along trajectories. The triangle

inequality guarantees that the operation never generates worse solutions than before.

However, in the worse-case scenario such as an extremely complicated maze, shortcuts

may collide with obstacles with high probabilities. Therefore, it is easy to realize that

additional computation for shortcuts is not always rewarding, depending on problem

circumstances. Such procedures may remain as tunable operations, considering trade-

offs between potential wastes and potential speed-ups.

The RRT*-Smart is reproduced within our abstraction, by slightly modifying

Sample, SelectNeighbors, and RewireTreeVertices procedures. Note that revis-

iting vertices along a trajectory to goals is equivalent to smoothing the trajectory if

the considered neighbors include ancestor vertices up to the specified depth 𝑑.

Input : 𝑧samp, forward/backward, and the depth 𝑑

Output: 𝑉near

1 𝑉near ← NearNeighbors(𝑧samp, forward/backward, 𝑉𝑖);

2 for all 𝑣near ∈ 𝑉near do

3 𝑣now ← 𝑣near;

4 for 𝑘 = 2; 𝑘 ≤ 𝑑; k++ do

5 𝑣now ← Parent(𝑣now); 𝑉near
+← 𝑣now;

6 return 𝑉near;

Algorithm 2.10: The SelectNeighbors Procedure for the RRT*-Smart

Input : 𝑣old and 𝑣rewire

Output: 𝑉𝑖+1 and 𝑉𝑖+1, revisit

1 𝑉𝑖+1 ← UpdateDescendants(𝑣old, 𝑣rewire); 𝑉𝑖+1, revisit ← 𝑉𝑖, revisit;

2 if Cost(𝑣 ∈ 𝑉𝑖+1, goal) < Cost(𝑣 ∈ 𝑉𝑖, goal) then

3 𝑣now ← BestInCost(𝑉𝑖+1, goal);

4 while 𝑣now ̸= ∅ do

5 𝑉𝑖+1, revisit
+← 𝑣now; 𝑣now ← Parent(𝑣now);

6 return (𝑉𝑖+1, 𝑉𝑖+1, revisit);

Algorithm 2.11: The RewireTreeVertices Procedure for the RRT*-Smart

53

Algorithm 2.10, 2.11, and 2.12 show one way of generalization for the RRT*-Smart

within our abstraction Algorithm 2.1, where 𝑑 = 2 is implied in the RRT*-Smart de-

scription [83]. Similar to the RRT# in Section 2.1.4, the RewireTreeVertices pro-

cedure of Algorithm 2.3 fills in the globally accessible data 𝑉𝑖, revisit with vertices on

the best found trajectory to goals. The difference from the RRT# is that the RRT*-

Smart adds vertices on the solution trajectory to 𝑉𝑖, revisit, instead of non-descendant

neighbors of the rewired vertex. The Sample procedure in Algorithm 2.12 assigns the

revisit opportunity to the set 𝑉𝑖, revisit obtained in Algorithm 2.11, potentially result-

ing in shortcuts along the solution trajectory. The SelectNeighbors procedure in

Algorithm 2.10 augments the set of 𝒪(log 𝑛) near vertices with their ancestor ver-

tices up to the depth 𝑑, thus revisits in the Sample procedure natively attempt to

create shortcuts. As before, our representation of the RRT*-Smart is an interme-

diate step toward our enhanced RRT*, providing more intuitions than the practical

implementation itself.

Output: 𝑧samp and 𝑣samp

1 if 𝑉𝑖, revisit ̸= ∅ then

2 𝑣samp ← PopTheBest(𝑉𝑖, revisit); 𝑧samp ← State(𝑣samp);

3 else if BiasToBeacons() = true then

4 𝑧samp ← SampleInBeacons(); 𝑣samp ← Vertex(𝑧samp);

5 else

6 𝑧samp ← SampleRandom(); 𝑣samp ← Vertex(𝑧samp);

7 return (𝑧samp, 𝑣samp);

Algorithm 2.12: The Sample Procedure for the RRT*-Smart

Proposition 2.13 (Equivalence with the RRT*-Smart [83]) Let our represen-

tation of the RRT*-Smart be the composition of Algorithm 2.1, 2.2, 2.3, 2.10, 2.11,

and 2.12 with the NearNeighbors procedure that returns 𝒪(log 𝑛) near neighbors.

Then, given the same sequence of random samples, our representation of the RRT*-

Smart generates the same or better solution to the RRT*-Smart [83], with different

schemes and amounts of computation.

54

Proof (Sketch) The PathOptimization procedure in [83] finds shortcuts along the

solution trajectory. Our maintenance and revisit to 𝑉𝑖, revisit overgeneralize the RRT*-

Smart’s PathOptimization operation, due to the inflated output of the SelectNeighbors

procedure by including ancestors of 𝒪(log 𝑛) near vertices similar to the RRT*-Quick,

i.e., more than direct ancestors of the inquired vertex only. Therefore, the obtained

cost is at least the same to the RRT*-Smart, or better. �

Our SelectNeighbors procedure in Algorithm 2.10 considers the same set of

(𝑑 + 1)𝒪(log 𝑛) vertices to the RRT*-Quick, thus costlier than the RRT*’s 𝒪(log 𝑛)

neighbors. Our enhanced RRT* attempts to maintain the balance between the

breadth-first inclusion (near neighbors) and the depth-first inclusion (direct ances-

tors) of vertices, within the 𝒪(log 𝑛) complexity per iteration. Cost-to-come values

of vertices and admissible heuristics for edge costs are key factors to such balancing.

2.2 Enhanced RRT* Algorithm

Through comparative literature reviews in Section 2.1, ideas for the enhanced RRT*

algorithm have been enumerated to accelerate the RRT* within incremental 𝒪(log 𝑛)

operations per iteration. First, we revisit parts of vertices to propagate information

over the underlying graph, not over the tree. Second, we reuse failed samples that are

point-wise collision-free and promising in expected costs. Third, connection to ances-

tor vertices may shorten the trajectory. In addition, early iterations behave similar

to RRTs by considering the nearest vertex only, before obtaining the first solution to

goals. Canonical modifications in Section 2.1.3 are implied without explicit mentions.

Algorithm 2.13 – 2.18 describe the enhanced RRT* algorithm. Most procedures are

restated with minor changes from previous forms, while Algorithm 2.14 and 2.15

contain major changes, perhaps as generalized sampling and neighbor selection.

Compared to the previous form in Algorithm 2.1, the main loop of the enhanced

RRT* in Algorithm 2.13 additionally requires a parameter 𝑑, the maximum depth for

inclusion of ancestors or descendants. For convenience, the Sample only returns a

vertex 𝑣samp, and the SelectNeighbors takes the vertex 𝑣samp as an input.

55

The Sample procedure in Algorithm 2.14 summarizes the generalized strategy

to draw a sample for an iteration. Note that revisits and retries do not involve

new randomized sampling. In this procedure, sampling in goals (Line 2), revisiting

a vertex (Line 3), retrying a previously failed sample (Line 4), sampling around a

solution trajectory (Line 6), and projecting a sample into promising regions (Line 9)

are attempted with biases, while randomized sampling is the basic strategy (Line 8).

Globally Accessible Data: 𝑖, 𝑑, 𝐺𝑖, 𝑉𝑖, 𝐸𝑖, 𝑉𝑖, goal, 𝑉𝑖, revisit, and 𝑉𝑖, remain

1 𝑖← 0; 𝑉𝑖 ← Vertex(𝑧root); 𝐸𝑖 ← ∅; 𝐺𝑖 ← (𝑉𝑖, 𝐸𝑖); 𝑉𝑖, goal ← ∅;

2 while 𝑖++ < 𝑁 and Interrupted() = false do

3 𝑣samp ← Sample();

4 𝑉near ← SelectNeighbors(𝑣samp, backward_reachable);

5 (𝑣new, 𝑒new)← ConnectToBestVertex(𝑣samp, 𝑉near);

6 𝑉near ← SelectNeighbors(𝑣samp, forward_reachable);

7 𝐺𝑖+1 ← (𝑉𝑖+1, 𝐸𝑖+1, 𝑉𝑖+1, goal)← PropagateInfo(𝑣new, 𝑒new, 𝑉near);

8 return Traj(𝑉𝑖, goal);

Algorithm 2.13: Main Loop of the Enhanced RRT*

Output: 𝑣samp

1 if 𝑉𝑖, goal = ∅ and BiasToGoals() = true then

2 𝑧samp ← SampleInGoals(); 𝑣samp ← Vertex(𝑧samp);

3 else if BiasToRevisits() = true then 𝑣samp ← PopOne(𝑉𝑖, revisit) ;

4 else if BiasToReuse() = true then 𝑣samp ← PopOne(𝑉𝑖, remain) ;

5 else if 𝑉𝑖, goal ̸= ∅ and BiasAroundTraj() = true then

6 𝑧samp ← SampleAroundTraj(Traj(𝑉𝑖, goal)); 𝑣samp ← Vertex(𝑧samp);

7 else

8 𝑧samp ← SampleRandom(); 𝑣samp ← Vertex(𝑧samp);

9 if {Cost*(𝑧samp) + CostToGo*(𝑧samp) > BestInCost(𝑉𝑖, goal)} or

{ObstacleFree(𝑣samp)} then 𝑣samp ← ProjectSample(𝑣samp) ;

10 return 𝑣samp;

Algorithm 2.14: The Sample Procedure for the Enhanced RRT*

56

Input : 𝑣samp and fwd/bwd_reachable

Output: 𝑉near

1 if 𝑉𝑖, goal = ∅ then

2 if bwd then return 𝑉near ← NearNeighbor(𝑣samp, bwd, 𝑉𝑖) ;

3 else if fwd then return 𝑉near ← NearNeighbor(𝑣samp, fwd, 𝑉𝑖, remain) ;

4 else if 𝑉𝑖, goal ̸= ∅ and bwd then

5 𝑉cand ← NearNeighbors(𝑣samp, bwd, 𝑉𝑖); 𝑙 = |𝑉cand ∩ Ancestors(𝑣samp)|;

6 for all 𝑣cand ∈ 𝑉cand ∖ Ancestors(𝑣samp) do

7 𝑘 = 1; 𝑣now ← 𝑣cand;

8 while {𝑘 = 1 and 𝑣samp ∈ 𝑉𝑖 and Timestamp(𝑣now) < Timestamp(𝑣samp)}

or {𝑘 ≤ 𝑑 and Cost(𝑣now) + Cost*(𝑣now, 𝑣samp) > Cost*(𝑣samp)} do

9 𝑘++; 𝑣now ← Parent(𝑣now);

10 if 𝑘 ≤ 𝑑 and 𝑣now ̸= ∅ then 𝑉near
+← 𝑣now ;

11 else 𝑙++ ;

12 for 𝑘 = 1; 𝑘 ≤ 𝑙; k++ do 𝑉near
+← GrandParent(𝑣samp, 𝑘 + 1) ;

13 else if 𝑉𝑖, goal ̸= ∅ and fwd then

14 𝑉cand ← NearNeighbors(𝑣samp, fwd, 𝑉𝑖 ∪ 𝑉𝑖, remain);

15 𝑙 = |𝑉cand ∩ Descendants(𝑣samp)|;

16 for all 𝑣cand ∈ 𝑉cand ∖ Descendants(𝑣samp) do

17 𝑘 = 1; 𝑣now ← 𝑣cand;

18 while {𝑘 = 1 and 𝑣samp ∈ 𝑉𝑖 and Timestamp(𝑣samp) < Timestamp(𝑣now)}

or {𝑘 ≤ 𝑑 and Cost(𝑣samp) + Cost*(𝑣samp, 𝑣now) > Cost*(𝑣now) do

19 𝑘++; 𝑣now ← RandomChild(𝑣now);

20 if 𝑘 ≤ 𝑑 and 𝑣now ̸= ∅ then 𝑉near
+← 𝑣now ;

21 else 𝑙++ ;

22 for 𝑘 = 1; 𝑘 ≤ 𝑙; k++ do

23 𝑣now ← RandomGrandChild(𝑣samp); 𝑉near
+← 𝑣now;

24 return 𝑉near;

Algorithm 2.15: The SelectNeighbors Procedure for the Enhanced RRT*

57

backward_reachable forward_reachable

With no solution 𝒪(log 𝑛) near, 𝑉𝑖 𝒪(log 𝑛) near, 𝑉𝑖, remain

With solutions
𝒪(log 𝑛) near, 𝑉𝑖 𝒪(log 𝑛) near, 𝑉𝑖 ∪ 𝑉𝑖, remain

modified with ancestors modified with descendants

Table 2.1: Outputs from the SelectNeighbors Procedure in Algorithm 2.15

The SelectNeighbors procedure in Algorithm 2.15 contains computation for four

different combinations of inputs, depending on the existence of a solution trajec-

tory and the backward/forward reachability from the sample of interest. Table 2.1

summarizes the outputs for each input combination. Before obtaining the first solu-

tion trajectory to goals, near neighbors are returned among tree vertices (backward

reachable, Line 2) or previously failed samples (forward reachable, Line 3), to fo-

cus efforts on finding the first solution quicker than the RRT*. We do not bypass

the PropagateInfo procedure in Algorithm 2.13, and instead, we try connections

to previously failed samples 𝑉𝑖, remain from the current sample 𝑣samp. Once the first

solution trajectory is obtained to goals, near neighbors are returned among tree ver-

tices (backward reachable, Line 5) or the union of tree vertices and previously failed

samples (forward reachable, Line 14). The set of near neighbors is further modified

or augmented in the following lines. In Line 8 or 18, based on timestamps of vertices

(if 𝑘 = 1 and 𝑣samp ∈ 𝑉𝑖), we can replace some of previously attempted vertices with

their parents or children. Similarly, still in Line 8 or 18, lower bounds on expected

costs (if 𝑘 ≤ 𝑑) can determine to replace unhelpful vertices with their parents or

children. Such considerations are up to the depth 𝑑, and remaining quotas are as-

signed to direct ancestors or descendants of the vertex 𝑣samp. This modification and

augmentation of the set 𝑉near maintain the balance between the breadth-first inclu-

sion (ancestors/descendants of near neighbors) and the depth-first inclusion (direct

ancestors/descendants), without increasing the 𝒪(log 𝑛) complexity per iteration by

a factor (𝑑 + 1). Inclusion of ancestors or descendants in 𝑉near leads to shortcuts of

existing trajectories via the ConnectToBestVertex procedure.

The ConnectToBestVertex procedure in Algorithm 2.16 is similar to Algorithm 2.2,

58

with its main difference in adding the failed collision-free sample 𝑣in to the set 𝑉𝑖, remain.

Note that the growth of the set 𝑉𝑖, remain is discouraged by adding 𝑣in in the laziest

manner, i.e., by skipping to add any vertex 𝑣in that can be safely connected to one of

𝒪(log 𝑛) near neighbors in 𝑉𝑖, remain.

Input : 𝑣in, 𝑉near, and 𝐽upper (=∞ if unspecified)

Output: 𝑣 and 𝑒

1 𝑣 ← ∅; 𝑒← ∅;

2 for all 𝑣near ∈ 𝑉near do

3 (𝑥near, 𝑢near, 𝐽near)← TPBVP(State(𝑣near), State(𝑣in));

4 if Cost(𝑣near) + 𝐽near < 𝐽upper and ObstacleFree(𝑥near) then

5 𝐽upper ← Cost(𝑣near) + 𝐽near;

6 𝑣 ← 𝑣in; 𝑒← Edge(𝑣near, 𝑣, 𝑥near, 𝑢near, 𝐽near);

7 if 𝑣 = ∅ and 𝑒 = ∅ and 𝑣in /∈ 𝑉𝑖 and ObstacleFree(𝑣in) then

8 𝑉near ← SelectNeighbors(𝑣samp, forward_reachable, 𝑉𝑖, remain);

9 for all 𝑣near ∈ 𝑉near do

10 (𝑥near, 𝑢near, 𝐽near)← TPBVP(State(𝑣in), State(𝑣near));

11 if ObstacleFree(𝑥near) then return (∅, ∅) ;

12 𝑉𝑖, remain
+← 𝑣in;

13 return (𝑣, 𝑒);

Algorithm 2.16: The ConnectToBestVertex Procedure for the Enhanced RRT*

The PropagateInfo procedure in Algorithm 2.17 is identical to Algorithm 2.3,

whereas its sub-routine RewireTreeVertices in Algorithm 2.18 contains an inte-

gration of Algorithm 2.5 and 2.11. Instead of storing non-descendant neighbors to

the rewired vertex, Line 2 stores the rewired vertex 𝑣rewire to the set 𝑉𝑖, revisit. This

modification embraces the previous computation in Algorithm 2.18 and incurs addi-

tional attempts for further refinement or shortcuts from the rewired vertex. Line 6

stores vertices along the improved trajectory to goals for revisits, expecting further

refinement or shortcuts.

59

Input : 𝑣, 𝑒, and 𝑉near

Output: 𝑉𝑖+1, 𝐸𝑖+1, and 𝑉𝑖+1, goal

1 𝑉𝑖+1 ← 𝑉𝑖 ∪ {𝑣}; 𝐸𝑖+1 ← 𝐸𝑖 ∪ {𝑒}; 𝑉𝑖+1, goal ← 𝑉𝑖, goal ∪ VertexInGoals(𝑣);

2 for all 𝑣near ∈ 𝑉near do

3 (𝑣rewire, 𝑒rewire)← ConnectToBestVertex(𝑣near, {𝑣}, Cost(𝑣near));

4 if 𝑣rewire ̸= ∅ and 𝑒rewire ̸= ∅ then

5 𝐸𝑖+1
−← Edge(Parent(𝑣near), 𝑣near); 𝐸𝑖+1

+← 𝑒rewire;

6 𝑉𝑖+1 ← RewireTreeVertices(𝑣near, 𝑣rewire);

7 return (𝑉𝑖+1, 𝐸𝑖+1, 𝑉𝑖+1, goal);

Algorithm 2.17: The PropagateInfo Procedure for the enhanced RRT*

Input : 𝑣old and 𝑣rewire

Output: 𝑉𝑖+1 and 𝑉𝑖+1, revisit

1 𝑉𝑖+1 ← UpdateDescendants(𝑣old, 𝑣rewire); 𝑉𝑖+1, revisit ← 𝑉𝑖, revisit;

2 𝑉𝑖+1, revisit
+← 𝑣rewire;

3 if Cost(𝑣 ∈ 𝑉𝑖+1, goal) < Cost(𝑣 ∈ 𝑉𝑖, goal) then

4 𝑣now ← BestInCost(𝑉𝑖+1, goal);

5 while 𝑣now ̸= ∅ do

6 𝑉𝑖+1, revisit
+← 𝑣now; 𝑣now ← Parent(𝑣now);

7 return (𝑉𝑖+1, 𝑉𝑖+1, revisit);

Algorithm 2.18: The RewireTreeVertices Procedure for the Enhanced RRT*

Proposition 2.14 (Asymptotic optimality of the enhanced RRT*) The enhanced

RRT* (Algorithm 2.13 – 2.18) is asymptotically optimal, i.e.,

P
(︂{︂

lim sup
𝑖→∞

CostEnhanced−RRT*
(𝑉𝑖, goal) = 𝑐*

}︂)︂
= 1,

where 𝑐* is the optimal cost to reach a state in goal regions from the initial state.

Proof The enhanced RRT* generalizes procedures of the RRT*, in such ways that

the convergence guarantees and the 𝒪(log 𝑛) complexity per iteration are not affected.

60

All of practical modifications enhance the best-case convergence rate to the optimum,

while the worst-case performance is unchanged. �

Remark 2.15 (Further processing per sample) Given the same sequence of 𝑖

randomized samples with no remaining element in 𝑉𝑖, revisit,

𝑐* ≤ CostEnhanced−RRT*
(𝑉𝑗, goal) ≤ CostRRT*

(𝑉𝑖, goal) ≤ CostRRT(𝑉𝑖, goal).

Note that the inequality holds after processing 𝑖 randomized samples, not necessarily

after spending the same amount of computation. The different index 𝑗 ≥ 𝑖 for the

enhanced RRT* indicates the additional iterations triggered without randomly drawn

samples, by revisiting vertices or retrying previously failed samples.

The enhanced RRT* integrates ideas that are summarized, inspired, and adapted

in Section 2.1, within incremental 𝒪(log 𝑛) complexity per iteration. Due to trade-offs

by modifications, certain algorithm may perform the best among compared algorithms

in one environment, while performing the worst in another environment. Section 2.1

illustrates such scenarios, and our enhanced RRT* aims to avoid the worst by properly

merging advantageous behaviors and by diluting disadvantageous behaviors. Some

simulation experiments will follow in Section 2.5.

2.3 Feedback Planning Algorithm

In this section, we propose a tree-based feedback planning framework, GR-FMTs, as

a simple but practical adaptation of the RRT*. GR-FMTs may be used for efficient

replanning during the execution of planned trajectories, instead of generating feedback

policies as a feedback planning algorithm. GR-FMTs are grounded on a goal-rooted

backward RRT* structure with two main modifications: 1) on-demand feedback policy

generation by connecting to the best vertex in the neighbor set, and 2) efficient

mixture of lead-time, off-line, and on-line computation. Given solutions for optimal

TPBVPs, GR-FMTs generate feedback policies that accomplish safe, dynamically

61

feasible, and asymptotically optimal trajectories without resorting to discretization

or interpolation schemes.

GR-FMTs consist of two phases: expansion (Algorithm 2.19) and execution (Al-

gorithm 2.20), where the former phase grows the set of optimal motions off-line, in

lead time, or during idle time between execution phases, and the latter phase runs

on-line to generate feedback policies out of the available set of optimal motions.

In the previous setting, the procedures Cost and CostToGo* computed the cost-

to-come value in a forward tree and the cost-to-go value estimate to goals. In the

backward setting of GR-FMTs, let the Cost and CostToCome* procedures compute

the cost-to-go value to goal vertices in a backward tree and the cost-to-come value

estimate from the initial state.

2.3.1 GR-FMTs: Expansion Phase

Globally Accessible Data: 𝑖, 𝑑, 𝐺𝑖, 𝑉𝑖, 𝐸𝑖, 𝑉𝑖, initial, 𝑉𝑖, revisit, and 𝑉𝑖, remain

1 𝑖← 0; (𝑉𝑖, 𝐸𝑖)← (Vertex(𝑧goal), ∅) ∪ (Vertex(𝑧 ∈ 𝑍goal), 𝐸goal); 𝐺𝑖 ← (𝑉𝑖, 𝐸𝑖);

2 𝑉𝑖, initial ← ∅; 𝑉𝑖, revisit ← ∅; 𝑉𝑖, remain ← ∅;

3 while 𝑖++ < 𝑁 and Interrupted() = false do

4 𝑣samp ← Sample();

5 𝑉near ← SelectNeighbors(𝑣samp, forward_reachable);

6 (𝑣new, 𝑒new)← ConnectToBestVertex(𝑣samp, 𝑉near);

7 𝑉near ← SelectNeighbors(𝑣samp, backward_reachable);

8 𝐺𝑖+1 ← (𝑉𝑖+1, 𝐸𝑖+1, 𝑉𝑖+1, initial)← PropagateInfo(𝑣new, 𝑒new, 𝑉near);

Algorithm 2.19: GR-FMTs (Expansion)

Algorithm 2.19 shows the main loop of GR-FMTs in the expansion phase, in

a similar description to the RRT* (Algorithm 2.1) and the enhanced RRT* (Algo-

rithm 2.13). Algorithm 2.19 differs from our previous representation in two aspects:

1) in populating 𝑍goal, a set of samples in goal regions and 2) in building trees rooted

at goals. Assuming the state 𝑧goal represents the goal, vertices out of 𝑍goal are inserted

to trees and treated as virtual roots, where the edges to the parent are set to contain

costs ℎ (see (1.3)), i.e., penalty costs for final state discrepancy. This insertion of

62

penalty costs natively introduces trade-offs in heading to an ultimate goal in the goal

set.

Variables in the description of Algorithm 2.19 are similar to previous algorithms.

Due to the backward setting, 𝑉𝑖, initial replaces the role of 𝑉𝑖, goal, and the sampled

vertex 𝑣samp is connected to neighbors in the forward reachable set, instead of the

backward reachable set. Note that some of the procedures need minor replacement

of notations from previous forms, e.g., from 𝑉𝑖, goal to 𝑉𝑖, initial.

The Sample procedure follows the Sample procedure for the enhanced RRT*, as

in Algorithm 2.14. Accordingly, returned samples may depend on heuristics that

are weighted higher for goals, existing verticies in the tree for revisits, previously

failed samples for reuse, the initial state, or around the best found trajectory. The

SelectNeighbors procedure may imply the enhanced SelectNeighbors procedure

as in Algorithm 2.15 or the simple NearNeighbors procedure that returns 𝒪(log 𝑛)

near neighbors, depending on the user’s preference. Due to fundamental difficulties

with cost-to-go values as the pseudo-metric, small-time reachable sets ℛ(𝑧, 𝑡𝑓) or

ℛ(𝑧,−𝑡𝑓) with finite 𝑡𝑓 may be considered as a superset of the 𝒪(log 𝑛) vertices if

the integrand 𝑔 in (1.3) is always positive. In the absence of efficient algorithms

to estimate actual costs or small-time reachable sets, using the Euclidean distance

metric potentially degrades the performance due to failed steering attempts that are

avoidable by other metrics. The ConnectToBestVertex procedure may imply any of

previous descriptions in Algorithm 2.2, 2.4, 2.9, 2.16, 2.21, or 2.22. Similarly, the

PropagateInfo procedure implies Algorithm 2.3 or 2.17.

Proposition 2.16 (Completeness and Optimality of GR-FMTs) Seen from each

vertex in trees toward goals, the expansion phase of GR-FMTs is probabilistically com-

plete and asymptotically optimal as the number of vertices tends to infinity. Moreover,

the expected computation time to find a feasible trajectory and the convergence rate

to the optimum do not differ for forward and backward.

Proof Note that proofs and guarantees in [57] are identical for the RRT* with forward

trees and backward trees. �

63

2.3.2 GR-FMTs: Execution Phase

Algorithm 2.20 shows the triggered on-demand computation of feedback policies,

based on GR-FMTs constructed off-line, in lead time, or during idle time between ex-

ecution phases. The algorithm obtains feedback policies by means of steering toward

𝒪(log 𝑛) near vertices, i.e., trying to minimize the overall future trajectory cost. The

execution phase of GR-FMTs effectively exploits the system knowledge on TPBVP

solutions. Contrary to interpolation-based approaches, GR-FMTs ignore contribu-

tions from nearby vertices that are unreachable within small time. More specifically,

some vertices are rejected by conservative reachability checks, and other vertices fail

to generate better trajectories than the trajectories to reachable neighbors.

1 𝑧 ← CurrentState();

2 if 𝑇delay > 0 then

3 𝑧 ← Simulate(𝑧, 𝑈sim, 𝑇delay);

4 𝑉near ← SelectNeighbors(Vertex(𝑧), forward_reachable);

5 (𝑣new, 𝑒new)← ConnectToBestVertex(Vertex(𝑧), 𝑉near ∪ {𝑣last});

6 𝑣last ← Parent(𝑣new);

7 [𝑢(0), 𝑢(𝑇)]← OutputControl(𝑒new, 𝑇);

8 if 𝑇delay > 0 then

9 𝑈sim
+← [𝑢(0), 𝑢(𝑇)];

Algorithm 2.20: GR-FMTs (Execution)

The CurrentState procedure observes or estimates the current state. If the ac-

tuation delay 𝑇delay>0 is not negligible, the queue 𝑈sim of delayed signals is simulated

forward to predict a future state, at which control signals computed in the current

iteration will be in effect. Line 6 stores the parent vertex 𝑣last obtained by steer-

ing solution in Line 5, to inform the next iteration in Line 5. In a loop inside the

ConnectToBestVertex procedure, this 𝑣last is attempted first for the TPBVP, and

if successful, computation for subsequent TPBVP procedures in the loop decreases by

the updated upper bound 𝐽upper. More details for the cost-informed TPBVP loop

are explained in Section 2.4. Finally, first 𝑇 portion of the best found solution is

64

commanded in the OutputControl procedure, and is appended to the queue 𝑈sim for

later simulation if 𝑇delay is not negligible. GR-FMTs generate outputs in a similar

manner to MPC, but in an incremental and efficient way that entirely reuses the

previous computation.

The execution phase of GR-FMTs inserts a vertex at the current state 𝑧, in effect.

From 𝑧 to goals, probabilistic completeness and asymptotic optimality still remain as

the number of vertices in trees tends to infinity.

2.3.3 GR-FMTs: Efficient Replanning

For real-time applications, sampling-based algorithms often require replanning out of

the previous trees at a high frequency, to account for dynamically changing environ-

ment, large deviations from the planned trajectory, emergency scenarios, etc. This

idea of replanning has been reportedly successful and practical for the use and reuse of

forward RRTs in an efficient manner [34, 67]. More recently, the work in [55] success-

fully demonstrated replanning using the RRT*. We note that more advance is avaiable

by incorporating the backward algorithmic structure that is prevalent in dynamic pro-

gramming [10, 13], optimal control [21], and artificial intelligence [29, 44, 106, 61].

(a) Previous Iteration (b) Replanning

Figure 2-7: The Outcome of Replanning with Forward Algorithms

Figure 2-7 illustrates the replanning process with forward trees. In following a

trajectory from the lower-left vertex to the goal region in the upper-right corner in

65

Figure 2-7a, the dynamical system may deviate from the planned trajectory signifi-

cantly, to a degree the system cannot be stabilized over the planned trajectory. Then,

new edges need to be constructed via TPBVPs from the deviated state to parts of

the previous trees to reuse the previous trees as in Figure 2-7b, resulting in the loss of

large branches due to failed TPBVP attempts with reasons such as collision, violation

of constraints, limited reachability of the system, and so forth.

(a) Previous Iteration (b) Replanning

Figure 2-8: The Outcome of Replanning with GR-FMTs

On the other hand, Figure 2-8 illustrates the replanning process with GR-FMTs.

To maintain the connectivity with the previous trees after a large deviation from the

planned trajectory, the execution phase of GR-FMTs naturally attempts to connect to

𝒪(log 𝑛) near neighbors in the backward trees. In effect, the replanning process with

GR-FMTs (in fact, the execution phase in Algorithm 2.20) returns another trajectory

from the deviated state in a principled way that minimizes the cost functional over the

new trajectory, while effectively keeping most of the previous trees after replanning.

2.4 Cost-Informed TPBVPs for Dynamical Systems

As previously noted, dynamical systems induce expensive TPBVPs for sampling-

based motion planning algorithms. For an affordable sampling-based algorithm with

dynamical systems, we enhance the procedure ConnectToBestVertex into an efficient

loop of cost-informed TPBVPs and collision checking as collective steering. Note that

66

the previous descriptions in Algorithm 2.2, 2.4, 2.9, and 2.16 can be similarly enhanced

by informing the TPBVP procedure about 𝐽upper − Cost(𝑣near), i.e., the upper bound

cost for the TPBVP, as in Line 3 of Algorithm 2.21 and 2.22. More specifically, a

TPBVP solution (𝑥near, 𝑢near, 𝐽near) with

𝐽near > 𝐽upper − Cost(𝑣near) (2.5)

cannot contribute in connecting to the best vertex in 𝑉near. Therefore, such a connec-

tion attempt can be rejected before computation or interrupted during the computa-

tion, without sacrificing the solution quality. Or often, the amount of computation

required for the TPBVP is reduced by knowing the bound 𝐽upper − Cost(𝑣near).

Input : 𝑣in, 𝑉near, and 𝐽upper (=∞ if unspecified)

Output: 𝑣 and 𝑒

1 𝑣 ← ∅; 𝑒← ∅;

2 for all 𝑣near ∈ 𝑉near do

3 (𝑥near, 𝑢near, 𝐽near)← TPBVP(State(𝑣in), State(𝑣near), 𝐽upper − Cost(𝑣near));

4 if Cost(𝑣near) + 𝐽near < 𝐽upper and ObstacleFree(𝑥near) then

5 𝐽upper ← Cost(𝑣near) + 𝐽near;

6 𝑣 ← 𝑣in; 𝑒← Edge(𝑣near, 𝑣, 𝑥near, (𝑢near, 𝐽near));

7 if 𝑣 = ∅ and 𝑒 = ∅ and 𝑣in /∈ 𝑉𝑖 and ObstacleFree(𝑣in) then

8 𝑉𝑖, remain
+← 𝑣in;

9 return (𝑣, 𝑒);

Algorithm 2.21: The Cost-Informed ConnectToBestVertex Procedure (RRT*)

For clear and comparative representation, both Algorithm 2.21 for the RRT* (for-

ward tree) and Algorithm 2.22 for GR-FMTs (backward tree) are shown, with minor

notational differences in Line 3 and 6 only. The cost-informed loop of TPBVPs in

Algorithm 2.21 and 2.22 differs from previous descriptions in Algorithm 2.2, 2.4, 2.9,

and 2.16, only in Line 3. We pass the upper bound cost 𝐽upper− Cost(𝑣near) in Line 3

for the TPBVP procedure, prevent unrewarding TPBVP attempts, and update the

bound in Line 5 if a better connection is found.

67

Input : 𝑣in, 𝑉near, and 𝐽upper (=∞ if unspecified)

Output: 𝑣 and 𝑒

1 𝑣 ← ∅; 𝑒← ∅;

2 for all 𝑣near ∈ 𝑉near do

3 (𝑥near, 𝑢near, 𝐽near)← TPBVP(State(𝑣near), State(𝑣in), 𝐽upper − Cost(𝑣near));

4 if Cost(𝑣near) + 𝐽near < 𝐽upper and ObstacleFree(𝑥near) then

5 𝐽upper ← Cost(𝑣near) + 𝐽near;

6 𝑣 ← 𝑣in; 𝑒← Edge(𝑣, 𝑣near, 𝑥near, 𝑢near, 𝐽near);

7 if 𝑣 = ∅ and 𝑒 = ∅ and 𝑣in /∈ 𝑉𝑖 and ObstacleFree(𝑣in) then

8 𝑉𝑖, remain
+← 𝑣in;

9 return (𝑣, 𝑒);

Algorithm 2.22: The Cost-Informed ConnectToBestVertex Procedure (GR-FMTs)

Computational savings by cost-informed TPBVPs may happen in three ways. Due

to difficulties in generalizing every possible type of TPBVP solutions, explanations

are based on examples.

2.4.1 Rejection of Computation by the Informed Cost

For the actual cost 𝐽near of the edge from 𝑣in toward near vertices 𝑉near in Line 3, a

lower bound or an admissible heuristic is often available. For instance, a minimum-

time or minimum-distance solution for Dubins’ paths [31]

�̇� = cos 𝜃,

�̇� = sin 𝜃, (2.6)

𝜃 = 𝑢, −𝑢max ≤ 𝑢 ≤ 𝑢max,

is shown to be one of the six possibilities in concatenating path segments: LRL, RLR,

LSL, LSR, RSL, and RSR, where L denotes a left turn, R denotes a right turn, and

S denotes a straight segment. Then, it is trivial that the length of Dubins’ paths is

68

lower bounded by the Euclidean distance between start and end states, i.e.,

∫︁ 𝑡𝑓

𝑡0

√︀
�̇�(𝑡)2 + �̇�(𝑡)2 𝑑𝑡 ≥

√︁
(𝑥(𝑡𝑓)− 𝑥(𝑡0))2 + (𝑦(𝑡𝑓)− 𝑦(𝑡0))2, (2.7)

thus the Euclidean distance serves as an admissible heuristic for the actual trajectory

length. Then, any connection that satisfies the inequality

√︁
(𝑥(𝑡𝑓)− 𝑥(𝑡0))2 + (𝑦(𝑡𝑓)− 𝑦(𝑡0))2 ≥ 𝐽upper − Cost(𝑣near) (2.8)

cannot be a candidate for the best connection to near vertices. As a simple example,

the length of the dotted line in Figure 2-9 is simple to compute as the Euclidean

distance, and if the distance is longer than 𝐽upper−Cost(𝑣near), such a connection can

be rejected before computing six types of paths and finding the best out of six. Note

that computational savings by rejection are enabled by informing the TPBVP about

the upper bound cost, which is not a typical approach in TPBVPs.

Figure 2-9: Admissible Heuristic for a Dubins’ Path

2.4.2 Interruption of Computation by the Informed Cost

Computation of an optimal solution often combines several optimal solutions for parts.

For instance, a minimum-time solution for two-dimensional double integrators

�̈� = 𝑢𝑥, −𝑢max ≤ 𝑢𝑥 ≤ 𝑢max,

𝑦 = 𝑢𝑦, −𝑢max ≤ 𝑢𝑦 ≤ 𝑢max, (2.9)

first computes minimum-time solutions for each dimension, and later slows down the

faster dimension to match the terminal time. Therefore, if the terminal time for any

69

dimension is longer than 𝐽upper − Cost(𝑣near), such a connection will surely have a

terminal time longer than 𝐽upper − Cost(𝑣near). For the 2D double integrators, there

are two opportunities to interrupt the TPBVP.

Note that this interruption cannot be implemented without informing the TPBVP

about the upper bound cost, which is not a typical approach in TPBVPs.

2.4.3 Reduction of Computation by the Informed Cost

TPBVP solvers often need to determine or search the terminal time for the trajectory.

For instance, solvers in [117] or in Chapter 5 are subject to search for terminal time

𝑇 in the range 𝑇min ≤ 𝑇 ≤ 𝑇max. Thus, better specification of the upper bound cost

𝐽upper− Cost(𝑣near) determines the upper bound 𝑇max more tightly, and consequently

reduces computational efforts for terminal time search in the range 𝑇min ≤ 𝑇 ≤ 𝑇max.

2.5 Simulation Experiments

All computation results in this section are based on the processor Intelr CoreTM2

Extreme Q9300 @ 2.53GHz with 4GB RAM.

2.5.1 Enhanced RRT* Algorithm

As previously noted, it is sometimes not fair to directly compare two different al-

gorithms with a large difference in implementation details. We attempt to compare

some of our algorithmic components while constraining other parts as the same, in

order to clearly show contributions by components. For that purpose, two million

samples in the state space are randomly drawn and stored. Then, only the algo-

rithmic components of interest are modified and compared using the stored random

samples.

70

Branch and Bound

Section 2.1.3 presented the branch and bound technique in several forms. Figure 2-10

shows the effect and savings by the branch and bound technique, for the shortest

path in a reasonably obstructed 2D environment. As a way of implementation for

the branch and bound, informed sampling [39] in Figure 2-10b shrinks the region of

sampling as an ellipse by the inequality (2.2). A more strict version of the branch

and bound in Figure 2-10c considers the inequality (2.1) as well, in addition to the

informed sampling. If the inequality (2.1) is considered alone without (2.2), note that

the distribution of useful (yellow) and unrewarding (blue) samples would be different.

Note that the visualization in Figure 2-10 is arranged to progressively strengthen the

algorithmic component, to illustrate the order of savings by branch and bound.

(a) Base (b) Informed Sampling [39] (c) Branch and Bound

Figure 2-10: The Effect and Savings by the Branch and Bound Technique (red: best
path, white: obstacles or no samples, yellow: samples, blue: unrewarding samples)

Figure 2-11a, the comparison plot for the execution statistics, shows the contribu-

tion by the branch and bound technique (the mild version with the informed sampling

only) in the same 2D environment to Figure 2-10. For better visualization, log scales

are set for both x and y axes, where the excess cost percentage of the y axis is com-

puted with respect to the actual shortest distance 10.163344 when moving a point

mass from (0, 0) to (8, 6). The plot immediately shows that roughly 10 times of

computation time is needed to achieve the same quality of solutions with the excess

cost less than 5%. Such a specific number differs for various environmental setups

71

and systems of interest, but an order of magnitude difference in computation time

is noticeable from a practical point of view. All the subsequent experiments in this

section will assume the branch and bound technique as the default component.

0.001 0.01 0.1 1

0.1

1

10

100

Computation Time (s)

E
x
c
e
s
s
 C

o
s
t
(%

)

Base

Branch and Bound

(a) Savings by the Branch and Bound

0.01 0.1 1

0.1

1

10

100

Computation Time (s)

E
x
c
e
s
s
 C

o
s
t
(%

)

Branch and Bound

+ Revisit

+ Modified Neighbors

(b) Components of the Enhanced RRT*

Figure 2-11: The Effects of the Algorithmic Components in the Enhanced RRT*

Revisit to Vertices and Modification of Near Neighbors

Two of the main components in the enhanced RRT* are compared in Figure 2-11b:

1) revisit to vertices as a graph-based propagation, and 2) modification for the set of

near neighbors using ancestor and descendant vertices. Such components are added

progressively, i.e., the blue line is by the branch and bound only, the red line combines

the branch and bound technique and the revisit, and the green line contains the near

neighbor modification in addition to the components for the red line. The magnitude

of difference is certainly smaller than Figure 2-11a, but note that the potential room

for improvement decreases as more algorithmic components are combined.

Per randomly drawn sample, better results are expected if more algorithmic com-

ponents are combined in an inclusive manner. Therefore, the plot in Figure 2-11b

is shown for computation time, instead of the number of randomly drawn samples.

Roughly speaking from the plot, more algorithmic components incur some delays in

the beginning, but long-term results get benefited.

72

Reuse of Failed Samples

As previously explained, the importance of rare samples, or the benefit of batch

algorithms, becomes more explicit with the bugtrap example or the narrow corridor.

In Figure 2-12, the remaining component of the enhanced RRT*, i.e., the reuse of

failed samples, is finally included in the comparison experiment to handle the bugtrap

example. Figure 2-12a follows the same convention to the previous Figure 2-10, i.e.,

red lines represent the best found path, white space implies obstacles or no samples,

and yellow markers show the samples added to the trees. Note that the narrow

corridor toward the outside space has a nearly invisible width of 0.1.

(a) Bugtrap Example (yellow: samples)

0.1 1 10 100

0.1

1

10

100

Computation Time (s)

E
x
c
e
s
s
 C

o
s
t
(%

)

Branch and Bound

+ Reuse of Failed Samples

+ Revisit, Modified Neighbors

(b) Components of the Enhanced RRT*

Figure 2-12: The Bugtrap Example and the Components of the Enhanced RRT*

The excess cost percentage of the y axis in Figure 2-12b is assessed with respect

to the actual shortest distance 38.984437 when moving a point mass outward from

(0, 0) to (8, 6). The comparison plot immediately shows that the reuse of failed

samples helps to find the first solution roughly 100 times faster or more. Including

other components of the enhanced RRT* as well, the green line shows more improved

results than the red line in longer terms.

73

All Components

Despite the danger of oversimplification, it is fair to summarize that the branch and

bound technique is an overwhelming modification, i.e., the overhead for additional

computation is negligible compared to the computational savings; the revisit to ver-

tices and the modification of near neighbors are subject to trade-offs in results for

shorter and longer terms; and the reuse of failed samples mostly affects the early

phase until solutions with all homotopy classes are included in the trees.

2.5.2 Feedback Planning Algorithm

The expansion phase of GR-FMTs is not different from the RRT* or the enhanced

RRT*, in terms of the computational complexity or execution statistics. The critical

portion is the execution phase of GR-FMTs if real-time applications are concerned.

Depending on the computation time, the execution phase may be used for replanning

purposes at a low frequency or as a unified feedback planner at a high frequency.

Examples in this chapter are considered rather trivial for this purpose, thus we borrow

the example of torque-limited pendulum from Chapter 5.

Table 2.2 summarizes the statistics for simulated closed-loop executions using

GR-FMTs as the feedback planner. With 0.1s of actuation delays and gaussian noises

𝒩 (0, 0.012) for both 𝜃 and 𝜃, all of 100 trials were able to reach and stabilize around

the upright position. Since we lack efficient algorithms for searching 𝒪(log 𝑛) near

vertices using the pseudo-metric 𝐽 , we conservatively considered a larger number of

vertices than necessary and saturated the number by 1500 or 500. Table 2.2 pro-

𝐽 =
∫︀ 𝑇𝑓
0

1 𝑑𝑡 𝐽 =
∫︀ 𝑇𝑓
0

1 + 𝜃2 𝑑𝑡
non-linear pendulum linearized pendulum

Computation Time 8.24 ± 3.86 ms 14.72 ± 8.18 ms
for Control Signal [2.76 ms, 37.88 ms] [4.62 ms, 44.89 ms]
Number of Nodes 957.9 ± 189.5 382.9 ± 127.8
in Collective Steering [420, 1499] [5, 500]

Relative Cost 100.15 ± 0.23 % 100.01 ± 0.09 %
[100%, 104.16%] [100%, 104.48%]

Table 2.2: Statistics for the execution phase of GR-FMTs (100 trials)

74

𝒪(log 𝑛) neighbors 𝒪(log 𝑛) neighbors
by the Euclidean metric by the actual cost

Rejection 0.4435 ± 0.1764 0.1584 ± 0.1165Dubins’ Paths (Combinatorial)
Interruption 0.5596 ± 0.1821 0.3415 ± 0.09092D Double Integrators (Analytic)

Table 2.3: Computation Time (Relative Ratios) for the Cost-Informed TPBVPs

vides the relative cost to the case with unsaturated number of vertices. The statistics

contains promising numbers for real-time applications, considering that several inef-

ficiencies are present with less optimized codes.

2.5.3 Cost-Informed TPBVPs for Dynamical Systems

This section compares the normal loop of TPBVPs with the cost-informed TPBVPs,

in a reasonably obstructed environment as in Figure 5-2. In fact, the existence of

obstacles rarely affected this comparison result because the time was recorded only

for the computation related to TPBVPs. The 𝒪(log 𝑛) near neighbors were obtained

by both the Euclidean metric and the cost-based pseudo-metric.

Rejection or Interruption of Computation by the Informed Cost

Table 2.3 summarizes the relative ratios for the computation time spent by the cost-

informed TPBVPs. The relative ratios effectively correspond to the speed-up of 1.79

to 6.31 times, compared to the normal loop of TPBVPs. Notably, the efficiency gets

more significant when the cost-based 𝒪(log 𝑛) near neighbors can be obtained.

Reduction of Computation by the Informed Cost

Table 2.4 summarizes the relative ratios for the time horizon actually searched by the

cost-informed TPBVPs. As promised, better information about 𝐽upper − Cost(𝑣near),

i.e., the upper bound cost for the TPBVP, leads to tighter bounds for terminal time

search. Although the searched horizon does not directly imply the computation time,

the factor of 15.6 to 53.8 is remarkable as the potential speed-up result. In this

75

𝒪(log 𝑛) neighbors 𝒪(log 𝑛) neighbors
by the Euclidean metric by the actual cost

Reduction 0.0641 ± 0.0548 0.0186 ± 0.01612D Double Integrators (Flatness)

Table 2.4: Searched Time Horizon (Relative Ratios) for the Cost-Informed TPBVPs

example, the TPBVP was solved by the flatness-based approach as in Chapter 5.

2.6 Conclusions

This chapter elaborated on our contributions to the framework of optimal sampling-

based motion planning algorithms. Based on the comparative literature reviews

within our algorithm abstraction, key factors of the state-of-the-art algorithms were

identified and properly integrated as the enhanced RRT*, an incremental algorithm

that improves the RRT*’s convergence rates strictly with the 𝒪(log 𝑛) complexity

per iteration. Next, as a sampling-based feedback planning algorithm or an efficient

replanning method, GR-FMTs were proposed to generate collision-free, dynamically

feasible, and asymptotically optimal feedback policies given the solutions for TPB-

VPs. Lastly, the loop of cost-informed TPBVPs was designed to significantly reduce

the computation time with dynamical systems, by means of rejection, interruption,

or reduction of the expensive TPBVP computation.

76

Chapter 3

Numerical Local Steering for

Nonlinear Systems

In this chapter, we provide a methodology for the steering problem of dynamical

systems, described by nonlinear differential equations that involve high-dimensional

state spaces. As an application example, time-optimal maneuvers for a high-speed

off-road vehicle taking tight turns on a loose surface are studied using the RRT* al-

gorithm. Our simulation results show that the aggressive skidding maneuver, usually

called the trail-braking maneuver, naturally emerges from the RRT* algorithm as the

minimum-time trajectory. In general, this integration of the RRT* and a TPBVP

solver may serve as an anytime computation framework for nonlinear optimization

problems in the presence of geometric constraints.

3.1 Introduction

There have been attempts to analyze and reproduce specialized human driving tech-

niques, e.g., a minimum-time lane change, a minimum lap-time trajectory, a trail-

braking maneuver, using optimal control theory [21], usually based on numerical

optimization methods [46, 23, 115, 114]. Although earlier work focused on posing the

problem as an optimization over a sequence of steady-state trim conditions, more re-

cently, transient phases of extreme operating conditions were also taken into account

77

using high-fidelity modeling [23].

Although these approaches are successful in describing and realizing certain as-

pects of the said vehicle maneuvers, the computation is usually carried out offline

with careful transcription to numerical optimization formulations. Most algorithms

of this class must be started with a feasible initial solution, which is usually hard to

generate in the first place. Moreover, some numerical optimization methods suffer

from local optimality, except for few unrealistic problem instances. While handling of

differential constraints is efficient in most nonlinear programming methods (e.g., in a

collocation-based algorithm), imposing geometrical constraints in configuration space,

e.g., road boundaries, turns out to be challenging [58]. In this chapter, we use motion

planning methods to generate optimal trajectories for minimum-time maneuvering of

high-speed off-road vehicles.

This chapter focuses on using the RRT* algorithm to solve the optimal motion

planning with probabilistic guarantees for complex dynamical systems with high-

dimensional state spaces. Systems of this nature include those that have high ma-

neuvering capabilities, such as race cars and aerobatic airplanes. Earlier work in [56]

had assumed that the existence of a “steering” function that can find a control input

that exactly connects an initial state to a final state, which is usually non-trivial to

construct for such systems. Our first contribution is to extend the RRT* algorithm by

relaxing this assumption to allow “approximate” steering functions. Second, we inter-

pret the RRT* as an anytime computation framework for optimization problems with

complex differential and geometric constraints. Third, using the resulting algorithm,

we numerically analyze time-optimal maneuvers for a high-speed off-road vehicle.

This chapter is organized as follows. In Section 3.2, several extensions of the RRT*

algorithm are introduced to handle systems with differential constraints and high-

dimensional state spaces. Implementation details for an off-road rally car dynamics

are provided in Section 3.3, and simulation results are discussed in Section 3.4. The

chapter concludes in Section 3.5.

78

3.2 Modifications to the RRT*

In this chapter, the original version of the RRT* [57] serves as the baseline algorithm.

Compared to our representation of the basic RRT* in Chapter 2 (Algorithm 2.1, 2.2,

and 2.3 with the SelectNeighbors procedure that returns 𝒪(log 𝑛) near neighbors),

this version constructs the preliminary edge from the nearest vertex to the sample

before selecting and connecting to near vertices. This section discusses several modifi-

cations to the RRT* algorithm to allow planning for systems with complex differential

constraints involving high-dimensional state spaces.

3.2.1 Task Space Planning

To effectively deal with high-dimensional state spaces, the RRT* algorithm operates

in a task space, which has a smaller dimension when compared to the state space

𝑋 ⊂ R𝑛 (see [103] for a discussion on task spaces). More precisely, let 𝑇 ⊂ R𝑛′ be a

compact set. Recall that the set of inputs 𝑈 ⊂ R𝑚 is a subset of the 𝑚-dimensional

Euclidean space. Usually, 𝑛′ is much smaller than 𝑛. For practical purposes, it is

tacitly assumed that there exists a surjective mapping 𝒯 : 𝑋free → 𝑇 that maps each

collision-free state to its equivalent in the task space. Moreover, the Sample procedure

returns i.i.d. random samples from the task space, and the steering procedure operates

in the task space as explained below.

3.2.2 Steering Procedure

In the description of the RRT* algorithm, it is assumed that for any given 𝑧1, 𝑧2 ∈

𝑋free, the TPBVP(𝑧1, 𝑧2) procedure returns an optimal trajectory that starts from 𝑧1

and reaches 𝑧2 exactly, when such a trajectory exists. Finding a trajectory that con-

nects 𝑧1 and 𝑧2 in this manner may be computationally challenging, since it amounts

to solving a two-point boundary value problem for an ordinary differential equa-

tion. For certain dynamical systems, e.g., single integrator, a double integrator, or a

curvature-constrained car (i.e., Dubins’ vehicle) [31], analytic solutions to this bound-

ary value problem do exist [31, 13]. However, an analytic solution to this problem is

79

not available for most dynamical systems [20].

In what follows, we provide the implementation details of a steering procedure

that is approximate in the following sense: the trajectory 𝑥 : [0, 𝑇]→ 𝑋free generated

by the TPBVP(𝑧1, 𝑧2) procedure is such that (i) 𝑥 starts at 𝑧1, i.e., 𝑥(0) = 𝑧1, (ii)

reaches a neighborhood of 𝑧2 in the task space, i.e., there exists some 𝛿 ≥ 0 such

that 𝒯 (𝑥(𝑇)) ∈ 𝐵(𝒯 (𝑧2); 𝛿)
1, and (iii) has cost 𝑐* + 𝜖, where 𝑐* is the cost of the

optimal trajectory that starts from 𝑧1 and reaches 𝑧2. Here, the parameters 𝛿 and 𝜖

are bounds on the connection error and sub-optimality of the trajectory, respectively.

Our steering function is based on numerical methods for solving differential equa-

tions [93] described in detail below.

Piecewise-constant Input

The steering function considers only constant inputs. More precisely, the trajectory

𝑥 : [0, 𝑇]→ 𝑋free returned by TPBVP(𝑧1, 𝑧2) is such that �̇� = 𝑓(𝑥(𝑡), �̄�) and 𝑥(0) = 𝑧1

for some �̄� ∈ 𝑈 .

Shooting Method

The steering procedure proposed in this chapter is based on the shooting method [93],

which can be used with either the bisection method or the false position method in

order to determine the constant input value �̄� for local steering. If the method does not

converge within a given number of iterations, the connection is regarded as infeasible.

Before providing the shooting method, let us note the following definitions. Given

a constant input �̄� ∈ 𝑈 and an initial state 𝑧 ∈ 𝑋, let 𝑥(𝑡; 𝑧, �̄�) denote the resulting

trajectory of the dynamical system when started from initial state 𝑧 under constant

input �̄�, i.e., �̇�(𝑡; 𝑧, �̄�) = 𝑓(𝑥(𝑡; 𝑧, �̄�), �̄�) for all 𝑡 ∈ [0,∞) and 𝑥(0, 𝑧, �̄�) = 𝑧. Given

some 𝑡 ∈ R≥0, let 𝑥([0, 𝑡]; 𝑧, �̄�) denote the restriction of the trajectory 𝑥(·; 𝑧, �̄�) to

the interval [0, 𝑡]. Let Term : 𝑇 → {false, true} denote a termination condition

that associates a terminal condition with each task space state. Finally, let Bisect :

1In the sequel, for a subset 𝐴 of the 𝑑-dimensional Euclidean space, the set 𝐵(𝑎, 𝑟) ⊂ 𝐴 denotes
the closed ball of radius 𝑟 ∈ R≥0 centered at 𝑎 ∈ 𝐴, i.e., 𝐵(𝑎, 𝑟) := {𝑎′ ∈ 𝐴 | ‖𝑎′ − 𝑎‖ ≤ 𝑟}.

80

(𝑧1, 𝑧2, 𝑧3, 𝑢)→ 𝑢′ be a bisection algorithm that returns an increment for the input so

as to steer the terminal state of the dynamical system towards 𝑧2, when the dynamical

system is started at state 𝑧1 and the current constant input 𝑢 under consideration

steers the system to state 𝑧3.

1 �̄�← 0;

2 for 𝑖 = 1 to 𝑀 do

3 𝑡← inf𝑡∈[0,∞){𝑡 |𝑥(𝑡; 𝑧1, �̄�) ∈ Term(𝒯 (𝑧2))};

4 𝑧 ← 𝑥(𝑡; 𝑧1, �̄�);

5 if 𝒯 (𝑧) ∈ 𝐵(𝒯 (𝑧2); 𝛿) then

6 return 𝑥([0, 𝑡]; 𝑧1, �̄�);

7 else

8 �̄�← �̄�+ Bisect(𝑧1, 𝑧2, 𝑧, �̄�);

Algorithm 3.1: The TPBVP(𝑧1, 𝑧2) procedure based on shooting

The shooting method is given in Algorithm 3.1. The algorithm initially starts

with the zero input (Line 1). The state where the trajectory of the system starting

from 𝑧1 enters Term(𝒯 (𝑧2)), i.e., the terminal set associated with 𝑧2, is determined in

Lines 3-4. This state is denoted as 𝑧. If 𝑧 is within the 𝛿-neighborhood of 𝒯 (𝑧2), then

the algorithm returns the trajectory that reaches 𝑧 (Line 6). Otherwise, a new input

is selected using the Bisect function (Line 8), and the procedure is continued until

the maximum number of iterations (denoted as 𝑀 in Algorithm 3.1) is reached.

Repropagation

Since the steering function is approximate, i.e., can only reach a neighborhood of the

final state, the rewiring procedure of the RRT* cannot be implemented directly as

errors induced by the steering function in the rewiring step causes inconsistency in

the states of descendant nodes. To handle this issue, corresponding descendant nodes

are re-simulated using the stored sequences of inputs.

Before presenting the repropagation procedure, let us note the following defini-

tions. Recall that (𝑉,𝐸) denotes the graph maintained by the RRT* algorithm. Given

81

a state 𝑧 ∈ 𝑉 in the tree, let Children(𝑧) denote the set of all children vertices of

𝑧, i.e., Children(𝑧) := {𝑧′ ∈ 𝑉 | (𝑧, 𝑧′) ∈ 𝐸}. Given an edge 𝑒 = (𝑧1, 𝑧2) ∈ 𝐸,

let Input(𝑒) denote the input that drives the dynamical system from the state 𝑧1

to the state 𝑧2, and Time(𝑒) denote the time it takes for this trajectory to reach 𝑧2

starting from 𝑧1. Clearly, Children, Input, and Time functions can be populated in-

crementally as the RRT* algorithm proceeds. Hence, these functions can be evaluated

quickly, e.g., without re-running the Steer procedure.

The repropagation procedure is given in Algorithm 3.2, called whenever the exten-

sion towards an existing node 𝑧 ∈ 𝑉 reaches a deviated state 𝑧 ̸= 𝑧. This procedure

recursively calculates the new state, denoted by 𝑧new, for all the descendants of 𝑧.

1 for all 𝑧′ ∈ Children(𝑧) do

2 𝑧′new ← 𝑥(Time(Edge(𝑧, 𝑧′)); 𝑧, Input(Edge(𝑧, 𝑧′)));

3 Repropagate(𝑧′, 𝑧′new);

4 𝑉 ← 𝑉 ∖ {𝑧};

5 𝑉 ← 𝑉 ∪ {𝑧new};
Algorithm 3.2: The Repropagate(𝑧, 𝑧) procedure

Clearly the repropagation may render some marginally-safe trajectories collide

with adjacent obstacles. However, we have observed in experiments that the tree

quickly recovers the lost edges with better trajectories.

3.2.3 Conditional Activation of the RRT*

In order to find a feasible solution quickly, we run the RRT algorithm until the algo-

rithm returns a feasible solution. Once a feasible solution is obtained, the RRT* algo-

rithm is run as is. More precisely, until a feasible solution is found, the SelectVertices

procedure returns the nearest vertex only. Note that this modification is one of the

algorithmic components of the enhanced RRT* in Chapter 2.

82

3.2.4 Branch-and-Bound

As mentioned in Section 2.1.3, application of the branch-and-bound algorithm [68]

in graph search algorithms reduces the size of data structure and consequently the

required computation [99, 67, 55]. In general, a cost-to-go function close to the

optimal cost is computationally expensive to get. However, in practice, even loose

approximations contribute to significant pruning of the search tree. We assume that

a cost-to-go function is available and the CostToGo(𝑧) procedure implements the

computation. Once a solution and its end state 𝑥𝑠𝑜𝑙𝑛 in the goal region are available,

then any vertex 𝑧 with Cost(𝑧) + CostToGo(𝑧) > 𝐽(𝑥𝑠𝑜𝑙𝑛) can be removed, without

degrading the solution quality.

3.2.5 Reachability

Systems subject to non-honomic differential constraints and input saturation have

smaller reachable sets (e.g., in terms of Lebesgue measure) when compared to holo-

nomic dynamical systems. Motivated by the assumption that sampling is relatively

cheaper than edge expansion, reachability information had been used to improve the

RRT algorithm [104]. Clearly, the RRT* attempts to expand more edges when com-

pared to the RRT. Moreover, the cost of edge expansion becomes even larger with

higher fidelity trajectory simulation. Therefore, the knowledge of the reachable set

must be useful for the RRT*, especially for systems with a high-dimensional state

space. In general, computing reachable sets exactly is known to be computation-

ally challenging [7]. However, system-specific approximations thereof usually can be

computed rather easily.

3.3 Application to High-speed Off-road Vehicles

In this section, a nonlinear half-car vehicle dynamics is considered to simulate a rally

car driving on loose surface. Specifically, a set of cornering maneuvers for various

road curvatures are generated. The half-car model is less general than a full-body

83

dynamics with suspensions, but it sufficiently captures the longitudinal load transfer

phenomenon that takes an important role in cornering maneuvers [115].

3.3.1 Vehicle Dynamics

Figure 3-1: The Half-Car Vehicle Model

Let 𝑚 and 𝐼𝑧 denote the mass and the inertia of the vehicle. Let 𝐼𝑖, 𝑟𝑖, and 𝜔𝑖

(𝑖 ∈ {𝐹,𝑅}) denote the moment of inertia, the tire radius, and the angular velocity,

respectively, where the subscripts 𝐹 and 𝑅 denote the front or rear wheels. Let 𝑥 and

𝑦 denote the position of the vehicle’s center of gravity and 𝜓 denote the yaw angle,

in the inertial reference frame. Let 𝑉 denote the speed of the vehicle. Let 𝑓𝐹𝑥 and

𝑓𝐹𝑦 denote the longitudinal and lateral forces acting on the front wheel, and 𝑓𝑅𝑥 and

𝑓𝑅𝑦 denote those acting on the rear wheel. Let 𝛽 denote the side-slip angle. Let 𝛿

and 𝑇𝑖 (𝑖 ∈ {𝐹,𝑅}) denote the steering angle and the torque acting on each wheel,

respectively. See Figure 3-1 for a depiction of these variables.

Then, the equations of motion can be written as follows:

𝑚�̈� = 𝑓𝐹𝑥 cos(𝜓 + 𝛿)− 𝑓𝐹𝑦 sin(𝜓 + 𝛿) + 𝑓𝑅𝑥 cos𝜓 − 𝑓𝑅𝑦 sin𝜓, (3.1)

𝑚𝑦 = 𝑓𝐹𝑥 sin(𝜓 + 𝛿) + 𝑓𝐹𝑦 cos(𝜓 + 𝛿) + 𝑓𝑅𝑥 sin𝜓 + 𝑓𝑅𝑦 cos𝜓, (3.2)

𝐼𝑧𝜓 = (𝑓𝐹𝑦 cos 𝛿 + 𝑓𝐹𝑥 sin 𝛿)𝑙𝐹 − 𝑓𝑅𝑦𝑙𝑅, (3.3)

𝐼𝐹 �̇�𝐹 = 𝑇𝐹 − 𝑓𝐹𝑥𝑟𝐹 , 𝐼𝑅�̇�𝑅 = 𝑇𝑅 − 𝑓𝑅𝑥𝑟𝑅. (3.4)

84

The tire force 𝑓𝑖𝑗 (𝑖 ∈ {𝐹,𝑅}, 𝑗 ∈ {𝑥, 𝑦}) depends on the normal force 𝑓𝑖𝑧 (𝑖 ∈ {𝐹,𝑅})

and the friction coefficient 𝜇𝑖𝑗 (𝑖 ∈ {𝐹,𝑅}, 𝑗 ∈ {𝑥, 𝑦}) determined by Pacejka’s Magic

Formula [8]. The equations are

𝑓𝑖𝑗 = 𝜇𝑖𝑗𝑓𝑖𝑧, (𝑖 = 𝐹,𝑅, 𝑗 = 𝑥, 𝑦); (3.5)

𝜇𝑖𝑗 = −𝑠𝑖𝑗
𝑠𝑖
𝜇𝑖(𝑠𝑖), (𝑖 = 𝐹,𝑅, 𝑗 = 𝑥, 𝑦); (3.6)

𝜇𝑖(𝑠𝑖) = 𝐷𝑖 sin(𝐶𝑖 tan−1(𝐵𝑖𝑠𝑖)), (𝑖 = 𝐹,𝑅). (3.7)

The slip ratio, denoted by 𝑠𝑖, is calculated as follows:

𝑠𝑖 =
√︁
𝑠2𝑖𝑥 + 𝑠2𝑖𝑦, (𝑖 = 𝐹,𝑅); (3.8)

𝑠𝑖𝑥 =
𝑉𝑖𝑥 − 𝜔𝑖𝑟𝑖
𝜔𝑖𝑟𝑖

, (𝑖 = 𝐹,𝑅) (3.9)

𝑠𝑖𝑦 =
𝑉𝑖𝑦
𝜔𝑖𝑟𝑖

, (𝑖 = 𝐹,𝑅). (3.10)

The velocities at the wheels are calculated by

𝑉 =
√︀
�̇�2 + �̇�2, (3.11)

𝛽 = tan−1

(︂
�̇�

�̇�

)︂
− 𝜓, (3.12)

𝑉𝐹𝑥 = 𝑉 cos(𝛽 − 𝛿) + �̇�𝑙𝐹 sin 𝛿, (3.13)

𝑉𝐹𝑦 = 𝑉 sin(𝛽 − 𝛿) + �̇�𝑙𝐹 cos 𝛿, (3.14)

𝑉𝑅𝑥 = 𝑉 cos 𝛽, (3.15)

𝑉𝑅𝑦 = 𝑉 sin 𝛽 − �̇�𝑙𝑅. (3.16)

Finally, on a flat surface, normal forces are calculated by

𝑓𝐹𝑧 =
𝑙𝑅𝑚𝑔 − ℎ𝑚𝑔𝜇𝑅𝑥

(𝑙𝐹 + 𝑙𝑅) + ℎ(𝜇𝐹𝑥 cos 𝛿 − 𝜇𝐹𝑦 sin 𝛿 − 𝜇𝑅𝑥)
(3.17)

𝑓𝑅𝑧 = 𝑚𝑔 − 𝑓𝐹𝑧 (3.18)

where ℎ is the height of the vehicle’s center of gravity.

85

We assume that both input signals, namely the steering angle 𝛿 and the en-

gine/brake torque 𝑇𝑖 (𝑖 ∈ {𝐹,𝑅}), are limited to ranges, i.e., 𝛿 ∈ [𝛿min, 𝛿max] and

𝑇𝑖 ∈ [𝑇𝑖,min, 𝑇𝑖,max]. Vehicle parameters are set identical to those given in [115].

3.3.2 Implementation details

In this subsection, several technical details are described in applying the RRT* algo-

rithm and its extensions to the nonlinear half-car vehicle dynamics.

Cost Functional

As the cost functional to be minimized for each trajectory, the total travel time is

used since we aim to acquire the minimum-time cornering maneuver. Edges in the

tree are constructed by forward simulation of the dynamics with time steps 0.005s.

Sampling Strategy

The full state space consists of 8 variables 𝑥, 𝑦, �̇�, �̇�, 𝜓, �̇�, 𝜔𝐹 , and 𝜔𝑅. Our sampling

happens uniformly at a 4-dimensional task space (𝑥, 𝑦, 𝑉, 𝜓) to enable the false po-

sition method with piecewise-constant inputs. The position (𝑥, 𝑦) is sampled on free

space, and the velocity and the yaw angle are sampled within ranges 𝑉 ∈ [𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥]

and 𝜓 ∈ [𝜓𝑚𝑖𝑛, 𝜓𝑚𝑎𝑥]. The yaw angle 𝜓𝑡 of the road tangential guides the 𝜓 range

such that 𝜓 ∈ [𝜓𝑡 −∆, 𝜓𝑡 + ∆] where ∆ is chosen sufficiently large.

Distance Metric

In searching the nearest neighbor or nearby vertices within a ball, a metric is necessary

for distance evaluation between two vertices. We define the distance metric as the

Euclidean distance divided by the average speed. More precisely, given two states 𝑧𝑖 =

(𝑥𝑖, 𝑦𝑖, �̇�𝑖, �̇�𝑖, 𝜓𝑖, �̇�𝑖, 𝜔𝐹 𝑖, 𝜔𝑅𝑖) ∈ 𝑋 for 𝑖 ∈ {1, 2}, the distance function is computed as

d(𝑧1, 𝑧2) =

√︀
(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

(
√︀
�̇�21 + �̇�21 +

√︀
�̇�22 + �̇�22)/2

. (3.19)

86

The choice is aligned with the discussion in [74] that the optimal cost-to-go is likely

to be a good choice.

Reachability

Exact estimation of the reachable set is a computationally intensive task. However,

most often, computationally-efficient conservative estimates of the reachable set of a

dynamical system are available. In the sequel, an estimate of the reachable set is said

to be conservative if it includes the reachable set itself. For a more precise definition,

let 𝑇 ∈ R>0 and 𝑧 ∈ 𝑋. Given a dynamical system of the form in Equation (3.1)-(3.4),

an initial state 𝑧, and a control input 𝑢 ∈ 𝒰 , recall that 𝑥(𝑡; 𝑧, 𝑢) denotes the unique

solution of the differential equation with initial state 𝑧 and input 𝑢. Then, the 𝑇 -

reachable set of a dynamical system described by this differential equation is defined

as the set of all states that are reachable from 𝑧 by some admissible control input

before time 𝑇 , i.e., ℛ𝑇 (𝑧) = {𝑧′ ∈ 𝑍 | ∃𝑢 ∈ 𝒰 , 𝑡 ∈ [0, 𝑇] such that 𝑥(𝑡; 𝑧, 𝑢) = 𝑧′}.

Below, we provide a procedure for computing a conservative estimate ℛ̂𝑇 (𝑧) of

the reachable set of the dynamical system described in Section 3.3.1. This estimate

assumes that bounds on the acceleration of the car as well as the yaw rate are known,

and denoted by �̇�max and �̇�max, respectively. For notational convenience, we describe

computing the complement of ℛ̂𝑇 (𝑧). Given two states 𝑧1, 𝑧2 ∈ 𝑋, we have 𝑧2 /∈

ℛ̂𝑡(𝑧1) whenever at least one of the following holds:

∙ average yaw rate is greater than the maximum allowed, i.e.,⃒⃒⃒⃒
𝜓2 − 𝜓1

d(𝑧1, 𝑧2)

⃒⃒⃒⃒
≥ �̇�max;

∙ average acceleration is greater than the maximum allowed, i.e.,⃒⃒⃒⃒
𝑉2 − 𝑉1
d(𝑧1, 𝑧2)

⃒⃒⃒⃒
≥ �̇�max;

∙ 𝑧2 is “behind” 𝑧1, i.e., (𝑥2, 𝑦2) ∈ 𝐻(𝑥1,𝑦1),𝜓1 , where 𝐻(𝑥1,𝑦1),𝜓1 is the half-space

with normal vector (cos(𝜓1), sin(𝜓1)) that has (𝑥1, 𝑦1) on its boundary.

87

This estimate of the reachable set is a conservative estimate for all small 𝑇 , i.e.,

for any 𝑧 ∈ 𝑋, there exists some 𝑇 ∈ (0,∞) such that ℛ𝑡(𝑧) ⊆ ℛ̂𝑡(𝑧) for all 𝑡 ∈ [0, 𝑇].

Branch-and-Bound

For CostToGo(𝑧) in the branch-and-bound algorithm, the minimum distance from

each node to the goal region is divided by the maximum achievable velocity so that

the function never overestimates the actual cost.

3.4 Simulation Results

The algorithm is evaluated in 90-, 150-, 180-, and 270-degree turns, on a laptop with

Intelr CoreTM2 Extreme Q9300 @ 2.53GHz processor and 4GB RAM. The time to

complete the maneuver by reaching the end of the road is used as the cost function.

Figure 3-2 shows the RRT* tree (projected on the 𝑥-𝑦 coordinate space) for

minimum-time 180-deg cornering. The solid black line represents the solution trajec-

tory of the center of gravity. The branch-and-bound procedure makes the part of the

tree close to the finish line relatively sparse due to pruning.

Figure 3-3 shows the anytime behavior of the RRT* algorithm applied to the

cornering maneuver. The solution quality is improved as more computation is allowed.

Figure 3-4 compares trajectories, speeds, and vehicle slip angles of the turning

maneuver for several turning angles. Plots show some regional non-smoothness be-

cause the algorithm did not grow the total number of vertices in the tree more than

60,000. It is noticeable that the time-optimal solution of 150-deg turning does not

involve much skidding while solutions for other angles heavily involve the skidding

regime. We observe that the characteristics of the optimal maneuver depends on the

road shape and other conditions. Roughly speaking, trail-braking maneuvers by input

parametrization in [115] can be characterized as two synchronized V-shapes in the

speed and the slip angle. Our time-optimal 180-deg turning maneuver shows the syn-

chronization of two V-shapes, meaning that the time-optimal maneuver for 180-deg

turning (with an initial speed 60 km/h on a loose surface with a friction coefficient

88

(a) 11793 Nodes (b) 20946 Nodes

(c) 30520 Nodes (d) 59542 Nodes

Figure 3-2: The RRT* Tree for 180-deg Turning

0.5 1 1.5 2 2.5 3 3.5 4
6

7

8

9

10

11

12

13

14

15

log t

lo
w

e
s
t

c
o

s
t

90deg

150deg

180deg

270deg

Figure 3-3: Anytime Computation for 90, 150, 180, and 270-deg Turning

89

−30 −20 −10 0 10 20 30

−30

−25

−20

−15

−10

−5

0

5

10

15

20

(a) Trajectories. Vehicle is shown at every 0.5s.

0 2 4 6 8 10 12
15

20

25

30

35

40

45

50

55

60

65

70

t(sec)

V
(k

m
/h

)

90deg

150deg

180deg

270deg

(b) Vehicle Speed

0 2 4 6 8 10 12
−50

−40

−30

−20

−10

0

10

t(sec)

b
e

ta
(d

e
g

)

90deg

150deg

180deg

270deg

(c) Vehicle Slip Angle

Figure 3-4: Comparison Plots for 90, 150, 180, and 270-deg Turning

𝜇 = 0.52) closely reproduces the trail-braking maneuver. For other road conditions

and initial speeds, we expect other turning angles would result in the trail-braking

maneuver as the time-optimal solution.

3.5 Conclusion

This chapter extended the application domain of the RRT* to systems with com-

plex differential and geometric constraints with high-dimensional state spaces. The

proposed methodology was applied to generate aggressive skidding maneuvers as

90

minimum-time solutions for high-speed off-road vehicle cornering on loose surfaces

with a low friction coefficient.

In this work, any rewired vertex with motion gaps immediately triggered the re-

propagation procedure (Algorithm 3.2). Instead, readers may choose to ignore gaps

in the tree or delay the repropagation as in [76]. On the other hand, if more com-

putational resources and efficient sub-routines become available after years, readers

may choose to enhance the approximate TPBVP solver into an optimization-based

TPBVP solver as in [118].

91

THIS PAGE INTENTIONALLY LEFT BLANK

92

Chapter 4

Semi-Analytic Local Steering for

Pseudo-Flat Systems

In this chapter, we provide a methodology for a class of dynamical systems that are

differentially flat under certain assumptions, i.e. “pseudo-flat” systems. As an ex-

ample, we discuss an implementation of the RRT* for the half-car dynamical model

similar to Chapter 3. To develop fast solutions of the associated local steering prob-

lem, we observe that the motion of a special point (namely, the front center of os-

cillation) can be modeled as a double integrator augmented with fictitious inputs.

We first map the constraints on tire friction forces to constraints on these augmented

inputs, which provides instantaneous, state-dependent bounds on the curvature of

geometric paths feasibly traversable by the front center of oscillation. Next, we map

the vehicle’s actual inputs to the augmented inputs. The local steering problem for

the half-car dynamical model can then be transformed to a simpler steering problem

for the front center of oscillation, which we solve efficiently by first constructing a

curvature-bounded geometric path and then imposing a suitable speed profile on this

geometric path. Finally, we demonstrate the efficacy of the proposed motion planner

via numerical simulation results.

93

4.1 Introduction

Motion planning for autonomous mobile vehicles [26] has traditionally focused on

relatively simple unicycle-type kinematic models, owing both to the sufficiency of

the resultant plans for low-speed vehicle motion, and to the computational efficiency

afforded by these models. However, the resultant trajectories do not exploit the vehi-

cle’s maneuvering capabilities, and motion planning based on such vehicle models is

unsuitable for enabling autonomous high-speed motion of car-like vehicles in complex

and dynamic environments.

Motion planning for higher-dimensional, higher-fidelity vehicle dynamical mod-

els is, in general, difficult. Whereas computationally efficient motion planning in

high-dimensional state spaces is made possible via randomized sampling-based al-

gorithms [60, 74], these algorithms ignore the quality of the resultant motion, and

often result in highly sub-optimal motion plans. Recent developments in optimal ran-

domized sampling-based planning [57], and in deterministic approaches that include

vehicle dynamical constraints [27] promise fast computation of near-optimal paths

with higher-fidelity vehicle dynamical models. Both of these approaches, however,

rely on the availability of a local steering algorithm – a two-point boundary value

problem (TPBVP) solver – that computes a near-optimal control input to steer the

vehicle between specified initial and final states, neither of which is necessarily an

equilibrium state.

The main contributions of this chapter are a fast local steering algorithm specific

to the half-car dynamical model [80], which captures yaw dynamics and normal load

transfer of wheeled vehicles, and the implementation of the RRT* motion planning

algorithm using this local steering algorithm.

4.1.1 Motivation and Related Work

Whereas the local steering problem is difficult to solve in general, in some specific

cases, it is possible to exploit the structure of the dynamical system to develop a fast

solution algorithm suitable for real-time implementations. In particular, the property

94

of differential flatness [35] may be advantageously used. The states and inputs of

differentially flat dynamical systems can be fully recovered from the so-called flat

outputs of the system (and their derivatives).

In the context of motion planning, differential flatness of the vehicle dynamics

model is particularly useful when the flat outputs are workspace1 coordinates of a

point associated with the vehicle. In such cases, the vehicle dynamical behavior

may be inferred from workspace trajectories of this point. Conversely, the problem

of motion planning subject to vehicle dynamical constraints may be transformed

to a workspace trajectory generation problem, which is beneficial owing to the low

dimensionality of the workspace and to the ease of collision checking with (workspace)

obstacles.

For a half-car model of front-steered vehicles that incorporates wheel slip, spe-

cial points associated with the model, called the front and rear Huygens centers of

oscillation (co) are associated with differential flatness [36, 38, 91]. A crucial phys-

ical property of a co is that its acceleration is independent of one of the lateral tire

friction forces [1]. The coordinates in a body-fixed frame of the velocity of the rear

co have been identified as flat outputs of a half-car model that incorporates wheel

slip but does not consider normal load transfer [38].

More pertinent to motion planning, the coordinates in an inertial frame of the

position of the front co have been identified as “pseudo-flat” outputs for the half-

car model [91]. The mapping from these outputs and their derivatives to the states

and inputs of the vehicle involve not only algebraic equations, but also differential

equations. The position coordinates of front and/or rear co have been considered as

reference inputs for trajectory tracking controllers in [102] (rear co), in [47] (both

front and rear co with four-wheel steering), and in [63] (front co). The notion of

“pseudo-flatness” is closely related to the notion of near-identity diffeomorphisms [84],

wherein stabilization and tracking of non-holonomic systems are discussed. The cru-

cial difference between the proposed work and [84] is that we address the more involved

TPBVP of optimal trajectory generation. In this context, numerical optimal control

1The workspace is the planar region in which the mobile vehicle operates.

95

techniques have been applied in [115] for reproducing a trail-braking maneuver, and

in [23] for generating a minimum-time double lane-change maneuver. The generation

of a minimum-time speed profile for a half-car traversing a given geometric path has

been addressed in [112]. Preliminary results on the implementation of the RRT* algo-

rithm for the half-car model have appeared in [51], where the local steering problem

was solved numerically in a lower dimensional state space of the vehicle.

4.1.2 Contributions

The main contributions of this chapter are as follows. Firstly, we provide a fast local

steering algorithm for the half-car dynamical model, which may be applied indepen-

dently in conjunction with motion planners different from that considered in this

chapter (RRT*). The key idea that enables this fast local steering is its separation

into a geometric path planning step and an optimal time parametrization step, while

always maintaining guarantees of feasibility vis-a-vis the dynamical constraints and

input constraints of the half-car model. This separation provides a significant advan-

tage in the implementation of the RRT*: rough collision checking can be performed

after the geometric path planning step, and the computationally intensive optimal

time-parametrization step can be skipped for cases where collisions are detected. The

proposed local steering algorithm and the resulting RRT*-based motion planner con-

stitute vast improvements in computation time over the implementation of [51], and

enables the solutions of problems that were found to be impractically slow to solve

using the approach of [51].

Secondly, we drop the simplifications to the half-car model adopted in [38, 91]:

specifically, we allow normal load transfer between the front and rear tires – a phe-

nomenon commonly utilized by rally racing drivers to control the yaw dynamics [115]

– and we consider as inputs the longitudinal tire slips instead of the longitudinal tire

forces. Manipulating the longitudinal tire slips (with thrust/brakes) is more realistic

than manipulating longitudinal forces because these forces depend on the total tire

slips, not the longitudinal slips alone.

Thirdly, we map the constraints on tire friction forces to equivalent constraints on

96

the flat output trajectory. This mapping is itself a novelty in the context of differential

flatness-based trajectory generation and control algorithms for the half-car, because

friction force constraints are ignored in similar earlier works [38, 91].

Finally, we study an implementation of the RRT* with the proposed local steering

algorithm, which is a fundamental way to develop an autonomous high-speed driving

system that fully utilizes the vehicle’s maneuvering capabilities.

The rest of this chapter is organized as follows. In Section 4.2, we describe the

half-car dynamics model and discuss its differential flatness properties. In Section 4.3,

we discuss an efficient local steering algorithm for the half-car model. In Section 4.4,

we provide simulation results of the said implementation of the RRT*. Finally, we

conclude the chapter in Section 4.5 with remarks.

4.2 The Half-Car Model

𝑥

𝑦

pcg pco

𝐹r𝑥
𝐹r𝑦

𝐹f𝑥

𝐹f𝑦ℓf

ℓr

ℓco

v

𝑣𝑦

𝑣𝑥

𝜓

𝛽cg

𝛿
co

Figure 4-1: The half-car dynamical model: position vectors are in blue, velocity
vectors are in green, and forces are in red color.

The half-car dynamical model is used in applications where the vehicle’s position,

heading, and sideslip are of primary interest (cf. [80, 38, 115, 91] and references

therein). We rearrange the half-car model presented in Chapter 3, in a way that the

97

equations lead to a simpler form. A half-car model is shown in Figure 4-1, with mass

𝑚, and yaw moment of inertia 𝐼𝑧. We denote by pcg the position vector of the center

of gravity (cg) with respect to a pre-specified inertial axis system; by 𝜓 the heading

of the vehicle, and by 𝑣x and 𝑣y the components in a body-fixed axis system of the

velocity v of the cg. We denote by ℓf and ℓr, respectively, the distances of the centers

to the front and rear wheels from the center of gravity; by ℎ the height of the cg;

and by 𝐹𝛼𝛽, 𝛼 ∈ {f, r}, 𝛽 ∈ {𝑥, 𝑦}, the components in axes attached to the tires (with

the 𝑥-axis in the plane of the tire) of frictional forces of the front and rear tires. The

equations of motion for the half-car model are:

𝑚�̇�𝑥 = (𝐹f𝑥 cos 𝛿 − 𝐹f𝑦 sin 𝛿 + 𝐹r𝑥) +𝑚𝑣𝑦�̇�, (4.1)

𝑚�̇�𝑦 = (𝐹f𝑥 sin 𝛿 + 𝐹f𝑦 cos 𝛿 + 𝐹r𝑦)−𝑚𝑣𝑥�̇�, (4.2)

𝐼𝑧𝜓 = ℓf (𝐹f𝑥 sin 𝛿 + 𝐹f𝑦 cos 𝛿)− ℓr𝐹r𝑦, (4.3)

where 𝛿 is the steering angle of the front wheel, which we consider a control input. In

what follows, we denote by 𝜉 the state of the vehicle, i.e., 𝜉 = (𝑝cg,𝑥, 𝑝cg,𝑦, 𝜓, 𝑣𝑥, 𝑣𝑦, �̇�).

The lateral slips 𝑠f𝑦 and 𝑠r𝑦 of the front and rear tires are:

𝑠f𝑦 =
(𝑣𝑦 + ℓf�̇�) cos 𝛿 − 𝑣𝑥 sin 𝛿

𝑣𝑥 cos 𝛿 + (𝑣𝑦 + ℓf�̇�) sin 𝛿
, (4.4)

𝑠r𝑦 =
𝑣𝑦 − ℓr�̇�

𝑣𝑥
, (4.5)

We consider as control inputs the longitudinal tire slips 𝑠f𝑥 and 𝑠r𝑥. The total tire slips

are then given by 𝑠𝛼 =
√︀
𝑠2𝛼𝑥 + 𝑠2𝛼𝑦, 𝛼 ∈ {f, r}, and the tire friction forces 𝐹𝛼𝛽 are:

𝐹𝛼𝛽 = 𝜇𝛼𝛽𝐹𝛼𝑧, 𝛼 ∈ {f, r}, 𝛽 ∈ {𝑥, 𝑦}, (4.6)

where 𝐹𝛼𝑧 are the normal tire loads given by (cf. [115]):

𝐹f𝑧 =
𝑚𝑔 (ℓr − 𝜇r𝑥ℎ)

ℓf + ℓr + ℎ (𝜇f𝑥 cos 𝛿 − 𝜇f𝑦 sin 𝛿 − 𝜇r𝑥)
, (4.7)

𝐹r𝑧 = 𝑚𝑔 − 𝐹f𝑧, (4.8)

98

and 𝜇𝛼𝛽 are coefficients given by Pacejka’s formula [8]:

𝜇𝛼𝛽 := −𝑠𝛼𝛽
𝑠𝛼

𝜇𝛼 (4.9)

with 𝜇𝛼 (𝑠𝛼) = 𝐷𝛼 sin
(︀
𝐶𝛼 tan−1 (𝐵𝛼𝑠𝛼)

)︀
, (4.10)

for 𝛼 ∈ {f, r}, 𝛽 ∈ {𝑥, 𝑦}, where 𝐵𝛼, 𝐶𝛼, and 𝐷𝛼 are constants. Note that (4.7)-(4.8)

capture the load transfer effect, i.e., the normal tire loads depend upon the front and

rear longitudinal tire slips, which relate to thrust/brake inputs.

Following the work of Peters et al. [91], we consider as a candidate flat output the

position pco of the front co [1], which is a point defined by

pco =

⎡⎣ 𝑝co,𝑥

𝑝co,𝑦

⎤⎦ := pcg +𝑅(𝜓)

⎡⎣ ℓco

0

⎤⎦ , (4.11)

where ℓco := 𝐼𝑧/𝑚ℓr and 𝑅(𝜓) is the rotation matrix. It may be shown (cf. [91]) that

p̈co = 𝑅(𝜓)

⎡⎣ �̇�𝑥 − �̇�𝑦�̇� − ℓco�̇�2

�̇�𝑦 + �̇�𝑥�̇� + ℓco𝜓

⎤⎦ . (4.12)

We designate as an augmented input u := p̈co the inertial acceleration p̈co of the

co, and we denote by (𝑢t, 𝑢n) the body-axis coordinates of the augmented input.

To map the augmented input to the vehicle control inputs (𝑠f𝑥, 𝑠r𝑥, 𝛿), note that, by

(4.1)-(4.3) and (4.12),

⎡⎣𝑢t
𝑢n

⎤⎦ =
1

𝑚

⎡⎣𝐹f𝑥 cos 𝛿 − 𝐹f𝑦 sin 𝛿 + 𝐹r𝑥 −𝑚ℓco�̇�2

(ℓf + ℓr) (𝐹f𝑥 sin 𝛿 + 𝐹f𝑦 cos 𝛿) /ℓr

⎤⎦ . (4.13)

Firstly, observe that (4.13) is an under-determined system of equations, which

implies that the three vehicle control inputs (𝑠f𝑥, 𝑠r𝑥, 𝛿) cannot be determined uniquely

from the trajectory 𝑡 ↦→ pco(𝑡) of co. (Note that the forces 𝐹𝛼𝛽, 𝛼 ∈ {f, r}, 𝛽 ∈ {𝑥, 𝑦}

depend on 𝑠f𝑥𝑎𝑛𝑑𝑠r𝑥 via (4.4)-(4.10).) However, we may treat one of the three inputs

as an “exogenous” input, and subsequently determine the other two inputs.

99

Secondly, observe that the computation of 𝜓 and �̇� involves the solution of the

ODE (4.3). Consequently, the mapping from pco and its derivatives to the vehicle

control inputs is a system of coupled algebraic-differential equations, and pco may

thus be considered a “pseudo-flat” output. In what follows, we outline an analytic

solution, if one exists, of (4.13), without recourse to numerical means of solution.

To this end, we first non-dimensionalize the physical quantities involved by di-

viding all lengths by ℓf + ℓr, all velocities by
√︀
𝑔(ℓf + ℓr), all angular velocities by√︀

𝑔/(ℓf + ℓr), all accelerations by 𝑔, and all forces by 𝑚𝑔. In a minor abuse of no-

tation, all symbols in the remainder of the chapter represent non-dimensionalized

quantities. For analytical simplicity, we assume as an exogenous input the rear tire

longitudinal slip 𝑠r𝑥, which may be manipulated independently of pco(𝑡). To compute

the other two control inputs – the steering angle 𝛿 and the front tire longitudinal slip

𝑠f𝑥 – after selecting 𝑠r𝑥, we perform the following computations.

Equations (4.6)–(4.9) may be manipulated to show that

𝐹f𝑧 = − ℎ

ℓf + ℓr

(︂
𝑢t −

ℓr
ℎ

+ ℓco�̇�
2

)︂
, (4.14)

and that

𝑅(𝛿)

⎡⎣ 𝑠f𝑥

𝑠f𝑦

⎤⎦ 𝜇f

𝑠f
= −

⎡⎣ 𝜎1(𝜉, 𝑠r𝑥)

𝜎2(𝜉)

⎤⎦ , (4.15)

where the maps 𝜎1(𝜉, 𝑠r𝑥) and 𝜎2(𝜉) are defined as follows:

𝜎1(𝜉, 𝑠r𝑥) :=
1

ℎ

(︂
ℓr − ℎ𝜇r𝑥

𝐹f𝑧

− (ℓf + ℓr)

)︂
+ 𝜇r𝑥, (4.16)

𝜎2(𝜉) :=
ℓr𝑢n

(ℓf + ℓr)𝐹f𝑧

. (4.17)

We may compute the friction coefficient 𝜇f of the front tire by (4.15) as

𝜇f =
√︁
𝜎2
1(𝜉, 𝑠r𝑥) + 𝜎2

2(𝜉), (4.18)

and the total slip 𝑠f of the front tire may then be computed from (4.10). After further

100

algebraic manipulations, we arrive at the following equation in 𝛿:

− 𝑣𝑥𝑠f𝜎2(𝜉) cos2 𝛿 + (𝑣𝑦 + ℓf�̇�)𝑠f𝜎1(𝜉, 𝑠r𝑥) sin2 𝛿

+ (𝑣𝑥𝜎1(𝜉, 𝑠r𝑥)− (𝑣𝑦 + ℓf�̇�)𝜎2(𝜉))𝑠f sin 𝛿 cos 𝛿

− (𝑣𝑦 + ℓf�̇�)𝜇f cos 𝛿 + 𝑣𝑥𝜇f sin 𝛿 = 0. (4.19)

Following an appropriate transformation of variables, (4.19) may be transformed to

a quartic polynomial equation, which may be solved analytically for 𝛿. Finally, the

longitudinal slip 𝑠f𝑥 of the front tire may be computed using (4.4).

4.3 Local Steering for the Half-Car Model

Informally, the problem of optimal motion planning involves the determination of

admissible control inputs for a nonlinear dynamical system such that (a) the state

of the system is transferred from a pre-specified initial state 𝜉0 to a pre-specified

final state 𝜉f , (b) the resultant state trajectory does not intersect with a pre-specified

subset of the state space, called the obstacle space, and (c) a pre-specified integral

cost is minimized along the resultant state trajectory.

The RRT* algorithm [57] solves the optimal motion planning problem by con-

structing a tree of state trajectories of the system. Each vertex of this tree is asso-

ciated with a state of the nonlinear dynamical system, and each edge is associated

with an admissible control input. Initially the aforesaid tree contains only one vertex

associated with the initial state 𝜉0. At each subsequent iteration, the RRT* algorithm

samples a new state, extends the tree towards this state, and attempts to reassign

the parent of each nearby vertex. The edge construction between vertices is achieved

by a local steering algorithm (which we denote by Steer).

We note the following key issues [57]: (a) the number of times that the RRT*

invokes Steer is 𝒪(log 𝑛) per iteration, or 𝒪(𝑛 log 𝑛) overall; and (b) the state

trajectory that corresponds to the control input found by Steer is subject to a

further collision check to be included in the collision-free tree. It follows that a

101

fast Steer is crucial to the speed of the overall motion planner; furthermore, the

computation time expended for instances of Steer that fail the subsequent collision

check may be counted as “wasted” time, because these execution instances do not

further advance the motion planner.

To design a fast Steer, we leverage the “pseudo-flat” nature of the system to

transform the steering problem for the half-car model to a steering problem for the

simpler particle model p̈co = u that describes the motion of the co. To this end,

we map the constraints on the tire friction forces to equivalent constraints on the

augmented input 𝑢𝑥. These constraints on 𝑢𝑥 impose bounds on the lateral acceler-

ation of the co, which in turn correspond to speed-dependent curvature bounds on

paths that the co can feasibly traverse. Next, we approximate a time-optimal trajec-

tory for the co by first constructing a curvature-bounded geometric path and then

by imposing a minimum-time speed profile on this path. Finally, we determine the

acceleration 𝑢𝑥 of the co for tracking this trajectory, and we map 𝑢𝑥 to the vehicle

inputs using the computational procedure outlined in Section 4.2.

As we will discuss in Section 4.4, the proposed approach for Steer is faster than

a numerical optimal control-based approach. Furthermore, it also enables significant

savings of the aforementioned “wasted” computation time by allowing collision checks

to be performed after the (fast) geometric path planning step and before the (relatively

slow) optimal time parametrization step.

4.3.1 Constraints on Pseudo-Flat Output Trajectories

The magnitude 𝐹𝛼, 𝛼 ∈ {f, r}, of the total friction force at each tire, depends on

the friction coefficient and the normal load on that tire: 𝐹𝛼 = 𝜇𝛼𝐹𝛼𝑧. It follows

that 𝐹𝛼 =
√︀
𝐹 2
𝛼𝑥 + 𝐹 2

𝛼𝑦 ≤ 𝜇*
𝛼𝐹𝛼𝑧, where 𝜇*

𝛼 is the maximum value of the tire friction

coefficient. In what follows, we show that the acceleration 𝑢𝑥 of the co is constrained

to lie within an ellipse, the dimensions of which depend on the vehicle state (in

particular, the sideslip 𝛽cg := tan−1 (𝑣𝑦/𝑣𝑥), and the yaw rate �̇�), the maximum value

𝜇*
f of the front tire friction coefficient, and the rear tire longitudinal slip 𝑠r𝑥, which

was chosen in Section 4.2 as an “exogenous” input.

102

To this end, let 𝑘1 := −ℎ/(ℓf + ℓr), 𝑘2 := (ℓf + ℓr)/ℓr, and define the map

𝜎3(𝜉) := 𝑘1(ℓco�̇�
2 − ℓr/ℎ). (4.20)

Note that, by (4.14),

𝐹f𝑧 = 𝑘1𝑢t + 𝜎3(𝜉), (4.21)

and that, by (4.13),

𝑢2t +
𝑢2n
𝑘22

= (𝐹f𝑥 cos 𝛿 − 𝐹f𝑦 sin 𝛿 + 𝐹r𝑥 − ℓco�̇�2)2 + (𝐹f𝑥 sin 𝛿 + 𝐹f𝑦 cos 𝛿)2. (4.22)

The r.h.s. of (4.22) involves the front and rear tire lateral and longitudinal forces,

and we may use (4.6), (4.9), and (4.21) to express the r.h.s. of (4.22) in terms of 𝜉,

𝑠r𝑥, and 𝜇f to arrive at the following equation:

(︂
𝑢t + 𝜎4(𝜉, 𝑠r𝑥, 𝜇f)

𝜎5(𝜉, 𝑠r𝑥, 𝜇f)

)︂2

+

(︂
𝑢n

𝜎6(𝜉, 𝑠r𝑥, 𝜇f)

)︂2

= 1, (4.23)

where 𝜎4, 𝜎5, and 𝜎6 are maps whose detailed expressions are provided as

𝜎4(𝜉, 𝑠r𝑥, 𝜇f) :=
(𝜇r𝑥𝑘1 + 1)(ℓco�̇�

2 + 𝜇r𝑥(𝜎3 − 1))− 𝜇2
f 𝑘1𝜎3

𝜎2
7

, (4.24)

𝜎5(𝜉, 𝑠r𝑥, 𝜇f) :=
𝜎6
𝑘2𝜎7

, (4.25)

𝜎6(𝜉, 𝑠r𝑥, 𝜇f) := 𝑘2

√︁
𝜇2
f 𝜎

2
3 − (ℓco�̇�2 + 𝜇r𝑥(𝜎3 − 1))2 + (𝜎4𝜎7)2, (4.26)

𝜎7(𝜉, 𝑠r𝑥, 𝜇f) :=
√︁

(𝜇r𝑥𝑘1 + 1)2 − 𝜇2
f 𝑘

2
1. (4.27)

Note that the values of these maps define the location of the center and the dimensions

of an ellipse in the 𝑢t−𝑢n plane. The constraints on the individual tire friction forces

may now be mapped to the following elliptical constraint2 on the acceleration of

the co: (︂
𝑢t + 𝜎4(𝜉, 𝑠r𝑥, 𝜇

*
f)

𝜎5(𝜉, 𝑠r𝑥, 𝜇*
f)

)︂2

+

(︂
𝑢n

𝜎6(𝜉, 𝑠r𝑥, 𝜇*
f)

)︂2

≤ 1. (4.28)

2It is straightforward to show that for any 𝜇f1 , 𝜇f2 with 𝜇f1 ≤ 𝜇f2 , the ellipse defined by (4.23)
with 𝜇f = 𝜇f1 is completely contained within the ellipse defined by (4.23) with 𝜇f = 𝜇f2 .

103

Proposition 4.1 (Existence of real roots to (4.19)) There exists at least one real

root to (4.19) whenever 𝑢t and 𝑢n satisfy (4.28).

Proof The algebraic manipulations involved in arriving at (4.19) from (4.15)-(4.18)

include the equation

𝑠2f𝑥 + 𝑠2f𝑦(𝜉, 𝛿) =
1

𝐵2
f

tan2

(︂
1

𝐶f

sin−1

(︂
𝜇f

𝐷f

)︂)︂
, (4.29)

and it follows that

(𝑣𝑦 + ℓf�̇� ∓ 𝜎8𝑣𝑥) cos 𝛿 + (∓𝜎8(𝑣𝑦 + ℓf�̇�)− 𝑣𝑥) sin 𝛿 = 0, (4.30)

where

𝜎8 :=

√︃
1

𝐵2
f

tan2

(︂
1

𝐶f

sin−1

(︂
𝜇f

𝐷f

)︂)︂
− 𝑠2f𝑥. (4.31)

Equation (4.19) is obtained from (4.30) by eliminating 𝑠f𝑥 from (4.30) using (4.15),

and consequently, the existence of real roots of (4.19) is equivalent to the existence

of real roots of (4.30). It easy to show that, following an appropriate transformation

of variables, that (4.30) is equivalent to a quadratic equation that has real roots

whenever

(𝑣𝑦 + ℓf�̇� ∓ 𝜎8𝑣𝑥)2 + (∓𝜎8(𝑣𝑦 + ℓf�̇�)− 𝑣𝑥)2 > 0, (4.32)

which holds true whenever 𝜎8 is real, which in turn holds true whenever |𝜇f | ≤ 𝐷f =

𝜇*
f . By (4.18), and by the arguments leading to the constraint (4.28), it follows that

0 ≤ 𝜇f ≤ 𝜇*
f whenever 𝑢t and 𝑢n satisfy (4.28), and the result follows. �

Informally, Proposition 4.1 states that whenever the commanded acceleration of

the front co satisfies the constraints imposed by the ground-tire friction force char-

acteristics, there exists at least one solution to the system of nonlinear equations in

(4.13). We reiterate that all computations involved in computing the vehicle control

inputs (𝑠f𝑥, 𝑠r𝑥, 𝛿) from the acceleration u of the co (i.e., the second derivatives of

the flat output) are simple, and that none of these computations involve any compu-

tationally expensive numerical optimization or root-finding.

104

-0.4 -0.2 0 0.2 0.4 0.6

-0.4

-0.2

0.0

0.2

0.4

𝑢t

𝑢
n

𝛽co

Figure 4-2: Calculation of acceleration constraints on the co from (4.28).

Let 𝛽co denote the sideslip of the co, i.e., the angle between ṗco and the body

𝑥-axis. It can be shown that 𝛽co = tan−1
(︁

(𝑣𝑦 + ℓco�̇�)/𝑣𝑥

)︁
. Then, the intersections

of the line of inclination 𝛽co passing through the origin of the 𝑢t − 𝑢n plane with

the boundary of the elliptical region described by (4.28) provide the upper and lower

bounds on the pure tangential acceleration of the co. Similarly, the intersections of

the line of inclination 𝛽co + 𝜋
2

passing through the origin of the 𝑢t − 𝑢n plane with

the boundary of the elliptical region described by (4.28) provide bounds on the pure

lateral acceleration of the co (see Figure 4-2).

Geometric paths traversed by a particle with bounded lateral acceleration have

bounded curvature. Specifically, the curvature bounds for left and right turns, respec-

tively, are 𝑣2/𝑢max
⊥ and 𝑣2/|𝑢min

⊥ |, assuming 𝑢max
⊥ > 0 and 𝑢min

⊥ < 0. The construction

of the shortest curvature-bounded path with asymmetric (about the origin) bounds

on the curvature is straightforward: it has been shown in [9] that the shortest path is

contained within the Dubins’ family of paths. The Dubins’ family of paths consists

of continuously differentiable paths that are obtained by concatenating at most three

sub-paths, each of which is either a straight line segment or a circular arc of radius

of equal to the minimum radius of turn.

Similarly, the minimum-time speed profile on a prescribed curve for a particle

with an elliptical acceleration constraint has been discussed in, for instance, [113].

Briefly, the approach in [113] involves determining switching points along the pre-

105

scribed curve, such that, between two consecutive switches, the particle either travels

with maximum possible tangential acceleration, or travels with maximum possible

tangential deceleration, or travels at the critical speed. This critical speed is defined,

point-wise along the prescribed curve, as the speed at which the centripetal accelera-

tion required for the particle to change its direction of travel at the rate prescribed by

the instantaneous curvature equals the maximum lateral acceleration of the particle.

4.4 Simulation Results and Discussion

(a) From Chapter 3 (b) Proposed

Figure 4-3: Trajectories obtained within a specified computation time when the RRT*

uses two different implementations of Steer for the half-car dynamical model.

The proposed motion planner is fast, and its speed of execution makes it suitable for

real-time implementations. To corroborate this claim, we present sample numerical

simulation results for the proposed motion planner, including simulations with hard

upper bounds on the execution time.

A preliminary implementation of the RRT* for the half-car dynamical model was

discussed in Chapter 3, where numerical methods were used in a reduced dimen-

sional state space to implement Steer. Figure 4-3 illustrates a sample simulation

result comparing the coverage of the state space achieved by the RRT* algorithm

implemented using the local steering method of Chapter 3 against that using the

106

0.1 1 10

0

0.2

0.4

0.6

0.8

1

Computation time (s)

(︂ #
tr

ia
ls

w
it

h
a

so
ln

.
#

to
ta

lt
ri

al
s

)︂

(a) Ratio of finding at least one solution over 20
trials within time.

0.1 1 10
10

11

12

13

14

15

Computation time (s)

C
os

t
of

be
st

tr
aj

ec
to

ry
(s

)

(b) Mean and standard deviation over 20 trials
of the best known cost.

Figure 4-4: Execution speed and resultant trajectory costs of the RRT* motion plan-
ner with the proposed Steer (blue) compared to the Steer in Chapter 3 (red).

proposed method. Both of these algorithms were executed for a fixed period of time.

As expected, the proposed implementation of the RRT* achieved significantly better

coverage than that discussed in Chapter 3.

The data in Figure 4-4 was obtained over 20 trials for the problem of planning

the 180-degree turn in Figure 4-3. In particular, Figure 4-4a shows that, within an

execution time of 1s, no feasible trajectory was found in any of the trials by the

implementation of Chapter 3, whereas feasible trajectories were found in all but two

trials of the proposed implementation. In these simulations, the ratio of the average

time required to find a first feasible solution with the implementation of Chapter 3

to that with the proposed implementation was 21.23. Moreover, the ratio of the

maximum time required to find a first feasible solution with the implementation of

Chapter 3 to the minimum time required with the proposed implementation was

226.3. Figure 4-4b shows the statistics for the costs of best trajectories achieved by

the two implementations within specified execution times.

As discussed in Section 4.2, we chose the rear tire longitudinal slip 𝑠r𝑥 as an

“exogenous” input, and we set it to a constant value 𝑠r𝑥,0. Consequently, the proposed

implementation of the RRT* converges asymptotically to an optimal control input

within the class of admissible control inputs with 𝑠r𝑥 = 𝑠r𝑥,0. In comparison, the

107

implementation of the RRT* in Chapter 3 converges asymptotically to a globally

optimal control input (at the cost of slower execution).

The speed of execution of the proposed motion planner enabled the solution of

problems that were found to be impractically slow with the approach in Chapter 3.

For example, Figure 4-5 illustrates the application of the proposed approach to motion

planning on a closed circuit, similar to a race track. Figure 4-5a illustrates the

geometric path corresponding to a sample resultant trajectory, along with the vehicle’s

orientation (to indicate sideslip). Figure 4-5b shows the speed profile over the sample

resultant trajectory, and Figure 4-5c shows the decreases in resultant trajectory cost

with the progress of the algorithm, for three different trials. In addition, a speed

profile planned for a more involved example is shown in Figure 4-6, on a closed

circuit similar, but not identical, to the Monza F1 circuit [92].

As previously mentioned, the proposed Steer allows for a primary collision check

(for the position of the front co) to be performed immediately after the geometric path

planning step. A secondary collision check (considering the finite size of the half-car

and the heading angle) can be performed after the time-parametrization step. The

computational advantage of this two-step collision check is that a large number of

potential collisions can be detected before the relatively slow time-parametrization

computations. For the particular case of 180-degree turn illustrated in Figure 4-3

over 20 trials, 98.76± 0.05% of the detected collisions were found immediately after

the geometric path planning step. For the closed circuit case in Figure 4-5, the ratio

was higher as 99.02± 0.08%.

To anticipate future real-time implementations with hard bounds on the execution

time, we implemented the solution of the closed circuit motion planning problem using

a receding-horizon approach. In this approach, the motion planner first computes,

within a pre-specified computation time 𝑡comp, a trajectory over a pre-specified horizon

of length along the circuit. Next, the vehicle’s motion is simulated for a pre-specified

execution time and the process is repeated. Figure 4-7 shows the total trajectory

cost obtained by the aforesaid receding-horizon planner, over a range of values of

𝑡comp. The total trajectory costs thus obtained are comparable to the trajectory costs

108

−50

−40

−30

−20

−10

0

10

20

−80−70−60−50−40−30−20−1001020

(a) Geometric path and vehicle orientation: the red segments
indicate braking; the blue segments indicate acceleration.

0 50 100 150 200
6

8

10

12

14

16

Distance along path (m)

Sp
ee

d
(m

/s
)

(b) Speed profile

2 4 6 8 10 12
22

24

26

28

30

32

34

No. of iterations (×104)

C
os

t
of

be
st

tr
aj

ec
to

ry
(s

)

(c) Reductions in trajectory cost

Figure 4-5: Motion planning with the half-car model over a closed circuit.

Figure 4-6: Speed profile in m/s on a closed circuit similar to the Monza track

109

0 2 4 6 8 10
24

25

26

27

28

29

30

31

𝑡comp (s)

T
ot

al
tr

aj
ec

to
ry

co
st

(s
)

Figure 4-7: Total trajectory costs using a receding-horizon approach to motion plan-
ning over the closed circuit shown in Figure 4-5a.

shown in Figure 4-5. A similar planner using the implementation of Chapter 3 was

unable to find feasible trajectories for any of these values of 𝑡comp. The value 𝑡comp

implies 𝑡comp seconds of computation on Intelr CoreTM2 Extreme Q9300 @ 2.53GHz

processor with 4GB RAM.

4.5 Conclusions

In this chapter, we discussed a fast motion planner that incorporates the half-car

dynamical model for wheeled vehicles. The key to an efficient implementation of the

RRT* for the half-car model is a fast local steering algorithm that we introduced

here. The constituent algorithms involved in the proposed local steering method—

namely, the computation of a curvature-bounded geometric path, the imposition of a

minimum-time speed profile, and the mapping of u to (𝑠f𝑥, 𝑠r𝑥, 𝛿)—are all fast. Cru-

cially, the proposed method for local steering, by construction, results in trajectories

that are dynamically feasible and satisfy input constraints. Finally, the proposed ap-

proach enables motion planning in the space of the coordinates of pco and ṗco, instead

of the full state space.

110

Chapter 5

Efficient Local Steering for

Controllable Linear Systems

In this chapter, we propose an efficient method for local steering, based on polynomial

basis functions and segmentation, with its application to controllable linear systems

subject to linear state/input constraints. The main computational procedures for

our flatness-based local steering include linear or quadratic programs with a small

number of variables, where inequality constraints are added progressively after being

identified by root-finding in low or medium order of polynomials.

5.1 Introduction

The RRT* [57], an asymptotically optimal extension of RRTs, provided remarkable

answers to minimum-time and minimum-length motion planning problems of single

integrators, double integrators, and Dubins’ paths, by importing analytic solutions for

optimal local steering problems from optimal control theory [21, 56]. Unfortunately, a

local steering problem, or equivalently a two-point boundary value problem (TPBVP),

that steers a system between two specified states in a configuration space, does not

generally allow analytic optimal solutions for dynamical systems with differential

constraints. Recently, numerical [51] and semi-analytic [89, 117, 41, 43, 49] local

steering methods with the RRT* have expanded the application areas of optimal

111

motion planning. However, some of the following issues have been unavoidable in the

absence of analytic TPBVP solutions: accumulated errors (or motion gaps) at tree

vertices, implicitness of state/input trajectories, sub-optimal handling of state/input

constraints, lack of generality in cost functionals, or impractically large computation.

To avoid such issues, local steering methods need to be fast, exact at start/end states,

and optimal, while strictly satisfying the imposed state/input constraints.

5.1.1 Contributions

In this chapter, we propose a flatness-based local steering algorithm for control-

lable linear systems with the following advantages: fast in computation, exact at

both boundary states, and strictly constrained by linear state and input constraints.

Opposed to optimization-centric approaches [111, 79, 32, 78] for differentially flat

systems [35], we avoid a large optimization problem to better account for the non-

convexity of obstacle-free space. We progressively add constraints by detecting locally-

maximal violation of constraints, instead of adding constraints at many collocation

points. Based on symbolic mappings into free coefficients of polynomial basis func-

tions, linear or quadratic objective functions for the optimization over the free co-

efficients are determined by the cost functionals that combine terminal time and

quadratic state/input penalties. Our mappings among states, inputs, and trajectories

are consistent and exact without numerical integration, thus the obtained solutions

are not subject to accumulated errors or motion gaps at both boundary states for

which we solve the local steering problem. If the proposed algorithm solves TPBVPs

in the RRT* and GR-FMTs, the obtained solution attains the asymptotic optimality

within a set we define in Section 5.2.

5.1.2 Related Work

The constrained Linear Quadratic Regulator (LQR) [11], with its mathematical ori-

gin on Model Predictive Control (MPC) [22], possesses most of the capability that

is needed to solve optimal motion planning problems, except obstacle avoidance.

112

Although MPC and its quadratic programming formulation have been remarkably

practical and widely applicable, the non-convexity of obstacle-free space imposes fun-

damental difficulties to solution approaches that rely on a large optimization. On

the contrary, approaches in [117, 41, 43] natively deal with the non-convex free space

within the sampling-based framework, and the associated TPBVPs are solved semi-

analytically by referring to optimal control theory. However, apart from the sensitivity

to numerical issues, local steering methods that check the satisfaction of constraints

afterwards and reject constraint-violating trajectories have difficulties in converging

to the optimum given binding constraints.

Conceptually, progressive constraints in [33] play similar roles to our progressive

procedure. A main distinction exists in that our application to linear systems and

constraints is guaranteed to converge or terminate. Polynomial-based approaches in

the past [95, 98, 86] share parts of formulations and techniques with our approach,

but those approaches focus on generating a single extended trajectory fast.

LQR-trees [108] probabilistically cover the state space of interest, with a small

number of optimization-based trajectories that are locally stabilizable by time-varying

LQR controllers. The approach demonstrates provably-safe maneuver executions

close to intended motions, whereas our work intends to keep obtaining new opti-

mum from the current state, with potentially more computation and book-keeping.

By construction, both approaches natively satisfy state and input constraints.

Markov Decision Processes (MDPs) [94] handle stochastic control scenarios and

return feedback policies, but with dependence on discretization, approximation, or

interpolation of time, state space, input space, or value function. Moreover, with

discount factor 𝛾 < 1, MDPs minimize the cost functional with less weighting on

future costs, thus the obtained solutions are different from the intended ones from the

definition of the cost functional. As process noises vanish, maintaining the same level

of consistency among time, state, input, and trajectory requires more computation

or storage due to discretization issues.

This chapter is organized as follows. Section 5.2 provides supplementary defini-

tions, in addition to definitions in Chapter 1. Section 5.3 proposes a local steering

113

algorithm for controllable linear systems subject to linear state/input constraints.

Section 5.4 shows simulation results with proposed algorithms, and we conclude with

remarks in Section 5.5.

5.2 Definitions

We closely follow our previous definitions in Chapter 1, with some supplementary

definitions. In this chapter, we elaborate the cost functional (1.3)

𝐽(x,u) = ℎ(𝑥(𝑇)) +

∫︁ 𝑇

0

𝑔(𝑥(𝑡), 𝑢(𝑡)) 𝑑𝑡,

by specifying the functions 𝑔 and ℎ as

𝑔(𝑥, 𝑢) = 1 + 𝑥𝑇𝑄𝑥+ 𝑢𝑇𝑅𝑢, (5.1)

ℎ(𝑥) = 𝑥𝑇𝑄𝑓𝑥, (5.2)

i.e., a combined cost of the terminal time and quadratic state/input penalties. Our

framework supports more general expressions for cost functionals 𝐽 , but discussions in

this chapter are focused on the terminal time and quadratic penalties by (5.1)-(5.2).

Moreover, we restrict the dynamical system (1.2)

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)), 𝑥(𝑡) ∈ 𝑋free ∩𝑋feas, 𝑢(𝑡) ∈ 𝑈feas,

into a controllable linear system [53]

�̇� = 𝐴𝑥(𝑡) +𝐵𝑢(𝑡), (5.3)

where the 𝑛× 𝑛 matrix 𝐴 and the 𝑚×𝑚 matrix 𝐵 together satisfy the condition

rank
(︀[︀
𝐵 𝐴𝐵 𝐴2𝐵 . . . 𝐴𝑛−1𝐵

]︀)︀
= 𝑛. (5.4)

We emphasized in Chapter 1 that any optimal solution in the literature, except

114

analytic optimal solutions, relaxes the optimality definition. Such a relaxation often

comes with discretization, numerical integration, basis functions, and others. We

define the optimality property we achieve in this chapter as follows:

Definition 5.1 (Optimality of Concatenated Trajectory) Within a set of tra-

jectories defined by maximum time duration ∆𝑇 of segments and 𝑛 extra basis func-

tions, we call a trajectory is ∆𝑇 -optimal with 𝑛-DoF (Degree of Freedom) if no better

trajectory can be concatenated with segments longer than or equal to ∆𝑇 .

For more succinct discussions, we define the small-time reachable set as follows:

Definition 5.2 (Small-Time Reachable Set) Letℛ(𝑧, 𝑡𝑓) denote a forward small-

time reachable set from a state 𝑧 within time 𝑡𝑓 , and let ℛ(𝑧,−𝑡𝑓) denote a backward

small-time reachable set to 𝑧 within 𝑡𝑓 :

ℛ(𝑧, 𝑡𝑓) = {𝑥(𝑡)|(x,u, 𝑡) ∈ 𝒯 , 𝑡 ≤ 𝑡𝑓 , 𝑥(0) = 𝑧}, (5.5)

ℛ(𝑧,−𝑡𝑓) = {𝑥(0)|(x,u, 𝑡) ∈ 𝒯 , 𝑡 ≤ 𝑡𝑓 , 𝑥(𝑡) = 𝑧}. (5.6)

In this chapter, we often utilize that ℛ(𝑧, 𝑡𝑓) with a certain 𝑡𝑓 value or larger be-

comes a superset of the forward NearNeighbors procedure, if the nearness in the

NearNeighbors procedure is measured by the pseudo-metric 𝐽 defined in Chapter 1.

Similarly, ℛ(𝑧,−𝑡𝑓) may be used as a superset of the backward near neighbors.

5.3 Flatness-Based Local Steering Algorithm

5.3.1 Differential Flatness

A nonlinear system �̇� = 𝑓(𝑥, 𝑢), 𝑥 ∈ R𝑛, 𝑢 ∈ R𝑚 is called differentially flat [35] if

there exists a flat output

𝑧 = Ψ𝑧(𝑥, 𝑢, �̇�, . . . , 𝑢
(ℓ)), 𝑧 ∈ R𝑚 (5.7)

115

such that 𝑥 = Ψ𝑥(𝑧, �̇�, . . . , 𝑧
(𝑝)), 𝑢 = Ψ𝑢(𝑧, �̇�, . . . , 𝑧

(𝑞)), where 𝑧(𝑘) denotes the 𝑘-th

derivative of 𝑧. The definition implies that trajectories of 𝑧 := (𝑧, �̇�, . . . , 𝑧(𝑟)), a

tuple of the flat output 𝑧 and its derivatives where 𝑟 = max(𝑝, 𝑞), are mapped into

trajectories of 𝑥 and 𝑢 via the maps Ψ𝑥 and Ψ𝑢. Hence, a trajectory of state 𝑥

obtained via the map Ψ𝑥 is realizable by executing a trajectory of input 𝑢 obtained

via the map Ψ𝑢, given a desired trajectory of the flat output 𝑧.

Controllable linear systems with single input are flat, as the state-space repre-

sentation in controllable canonical form immediately affirms. With multiple inputs,

a system can be linearly transformed and decomposed into blocks of multiple sub-

systems. Diagonal blocks represent subsystems in single-input controllable canonical

forms, and non-diagonal blocks weakly connect such subsystems [77]. By selecting

flat outputs for subsystems in the same manner with the single-input cases, multi-

input controllable linear systems are flat as well. Nilpotent or not, examples in [117]

of linear systems are flat.

Remark 5.3 Controllable linear systems are flat. Flat outputs are identified as least-

differentiated variables in controllable canonical forms. Refer [77] for details in multi-

input cases.

In illustrative examples below, flat outputs are 𝑧 = 𝜃 in linearized pendulum (5.8)

and 𝑧 = (𝑥, 𝑦) in 2D double integrators (5.9). Note that four blocked subsystems

in (5.9) are decoupled by null matrices in non-diagonal blocks, but subsystems are

weakly connected in general cases.⎡⎣𝜃
𝜃

⎤⎦ =

⎡⎣0 1

𝑔
ℓ
− 𝑏
𝑚𝑙2

⎤⎦⎡⎣𝜃 − 𝜋
𝜃

⎤⎦ +

⎡⎣ 0

1
𝑚𝑙2

⎤⎦𝑢, (5.8)

⎡⎢⎢⎢⎢⎢⎢⎣
�̇�

�̈�

�̇�

𝑦

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥

�̇�

𝑦

�̇�

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
0 0

1 0

0 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣𝑢𝑥
𝑢𝑦

⎤⎦ . (5.9)

116

5.3.2 State and Input Constraints

For a trajectory to be certified as dynamically feasible, imposed state/input con-

straints need to be satisfied at all points along the trajectory. In the literature, a

canonical way to enforce state/input constraints is adding the state/input constraints

at dense collocation points as constraints in the optimization problem [79, 32]. As-

suming the resolution of collocated points is set to be fixed as a small number, the

approach implies that local steering with a larger terminal time tends to contain a

larger number of constraints in optimization.

In our approach, the best trajectory is obtained tentatively, by optimizing the

cost functional with active constraints only. If the tentative trajectory violates any

state/input constraints, additional constraints are added progressively to the opti-

mization problem at the point of the locally-maximal violation for constraints. The

loop of progressive constraints returns success if the tentative trajectory never vi-

olates a constraint, or failure if the active constraints lead to infeasible problems.

Section 5.3.3 provides more detailed implementation of progressive constraints.

5.3.3 Local Steering Given a Terminal Time

Standard local steering methods for flat systems involve basis functions [111, 79, 32,

78]. For the obtained solution to satisfy boundary conditions, the number of bases

is at least the same as the number of boundary conditions. Typically, optimization-

centric approaches increase the number of extra bases significantly. In our approach,

the number of free coefficients for extra bases (or DoF) 𝑛 is set to be small in the be-

ginning, and the number may be incrementally or selectively increased for refinement

purposes. Note that the setup is analogous to finding a (𝑛-1)th-order hold control

input 𝑢 that reaches the final state at the terminal time, where the exact recovery of

the state is hard to achieve [51]. On the contrary, our approach with basis functions

exactly recovers the states at boundaries, while state and input constraints along the

trajectory need to be checked carefully.

For brevity and clarity, we describe the exemplary procedure for a single-input

117

system with 1-DoF polynomial basis functions, and add general statements. In an

ℓ-dimensional space of a flat output 𝑧 and its derivatives 𝑧 = (𝑧, �̇�, . . . , 𝑧(ℓ−1)), the

minimal number of bases required to connect two states 𝑧(0) and 𝑧(𝑇) is 𝑁 = 2ℓ,

given a terminal time 𝑇 . We employ

𝑧(𝑡) =
2ℓ∑︁
𝑖=0

𝑎𝑖𝑡
𝑖, for 𝑡 ∈ [0, 𝑇], (5.10)

with 𝑁 = 2ℓ + 1 polynomial bases, where 𝑎2ℓ is the free coefficient without loss of

generality. Boundary conditions

𝑖! 𝑎𝑖 = 𝑧(𝑖)(0), for 𝑖 = 0, . . . , ℓ− 1, (5.11)

at 𝑡 = 0 immediately determine first ℓ coefficients, and an invertible (guaranteed if

𝑇 ̸= 0) matrix equation

⎡⎢⎢⎢⎣
𝑇 2ℓ−1 · · · 𝑇 ℓ

...
(2ℓ−1)!
ℓ!

𝑇 ℓ · · · ℓ!
1!
𝑇 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑎2ℓ−1

...

𝑎ℓ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑧(𝑇)− 𝑎2ℓ𝑇 2ℓ −

∑︀ℓ−1
𝑖=0 𝑎𝑖𝑇

𝑖

...

𝑧(ℓ−1)(𝑇)− (2ℓ)!
(ℓ+1)!

𝑎2ℓ𝑇
ℓ+1 −

∑︀ℓ−1
𝑖=ℓ−1

(𝑖)!
1!
𝑎𝑖𝑇

𝑖−ℓ+1

⎤⎥⎥⎥⎦ (5.12)

follows from boundary conditions at 𝑡 = 𝑇 . With 𝑎2ℓ as the variable to be determined,

(5.12) turns into functions of 𝑎2ℓ

𝑎𝑖 = 𝑓𝑎,𝑖(𝑎2ℓ; 𝑇, 𝑧(0), 𝑧(𝑇)), for 𝑖 = ℓ, . . . , 2ℓ− 1, (5.13)

where 𝑓𝑎,𝑖 is linear in 𝑎2ℓ. For an increased DoF 𝑛, each function 𝑓𝑎,𝑖 is still linear in

free coefficients 𝑎2ℓ, . . . , 𝑎2ℓ+𝑛−1.

118

Each linear state/input constraint 𝑐(𝑥, 𝑢) ≤ 0 at 𝑡 = 𝑡𝑟𝑇 , 0 ≤ 𝑡𝑟 ≤ 1 leads to

𝑐(𝑥, 𝑢) = 𝑐(Ψ𝑥(𝑧(𝑡𝑟𝑇)),Ψ𝑢(𝑧(𝑡𝑟𝑇))) = Ψ𝑐 (𝑎2ℓ, 𝑓𝑎,ℓ, . . . , 𝑓𝑎,2ℓ−1; 𝑡𝑟, 𝑇, 𝑧(0), 𝑧(𝑇))

= Ψ𝑐 (𝑎2ℓ; 𝑡𝑟, 𝑇, 𝑧(0), 𝑧(𝑇)) ≤ 0, (5.14)

where Ψ𝑐 is also a linear mapping. The time ratio

𝑡𝑟 =
1

𝑇
argmax
𝑡𝑎𝑇≤𝑡≤𝑡𝑏𝑇

𝑐(Ψ𝑥(𝑧(𝑡)),Ψ𝑢(𝑧(𝑡))) (5.15)

of locally maximal violation is identified by root-finding in (2ℓ-1)th or smaller order

polynomials and the constraint at 𝑡 = 𝑡𝑟𝑇 is added to the optimization formulation

over 𝑎2ℓ. The intersection of constraints defines the feasible region of 𝑎2ℓ as an in-

terval. For an increased DoF 𝑛, progressive constraints are linear in free coefficients

𝑎2ℓ, . . . , 𝑎2ℓ+𝑛−1, and defines the feasible region as a convex polytope.

In our choice of the functions 𝑔 and ℎ in (5.1)-(5.2), we allow the symmetric matri-

ces 𝑄 and 𝑅 to be zero, as a special case for pure minimum-time problems. Otherwise,

positive-semidefinite 𝑄 and positive-definite 𝑅 matrices are required. After symbolic

integration over time [0, 𝑇], 𝐽 becomes a quadratic function of 𝑎2ℓ as follows:

𝐽 = Ψ𝐽 (𝑎2ℓ, 𝑓𝑎,ℓ, . . . , 𝑓𝑎,2ℓ−1; 𝑇, 𝑧(0), 𝑧(𝑇))

= Ψ𝐽 (𝑎2ℓ; 𝑇, 𝑧(0), 𝑧(𝑇)) (5.16)

The 1-DoF optimization result can be algebraically calculated over the feasible

interval of 𝑎2ℓ. For an increased DoF 𝑛 or multi-input cases, Ψ𝐽 still remains as

quadratic over free coefficients 𝑎2ℓ, . . . , 𝑎2ℓ+𝑛−1 or across free coefficients 𝑎𝑖, 𝑏𝑖, . . . from

other flat outputs, thus leading to a quadratic programming problem subject to linear

constraints obtained in (5.14). Let �̄� = (𝑎2ℓ, . . . , 𝑎2ℓ+𝑛−1, 1) denote a vector of free

coefficients and a constant 1, then the overall problem is

minimize �̄�𝑇𝑆�̄�, s.t. 𝐶�̄� ≤ 𝐷 (5.17)

119

where 𝑛, 𝑇 , 𝑧(0), 𝑧(𝑇) determine the positive-definite matrix 𝑆, and progressively

added constraints (5.14) determine 𝐶 and 𝐷 matrices. For min-time problems, only

linear programming problems are needed to check the constraints along the trajectory.

1 𝑐← AddConstraints(𝑧0, 𝑧𝑓 , 𝑇, {0, 1} ∪ Violated(𝑧0, 𝑧𝑓 , 𝑇, 𝑒));

2 while Feasible(𝑐) do

3 (𝑒, 𝐽)← Optimize(𝑐, 𝑒);

4 if 𝑡𝑟 ← Violated(𝑧0, 𝑧𝑓 , 𝑇, 𝑒) = ∅ then

5 return ({𝑧0, 𝑧𝑓 , 𝑇, 𝑒}, 𝐽);

6 else

7 𝑐
∪← AddConstratints(𝑧0, 𝑧𝑓 , 𝑇, 𝑡𝑟);

8 return ({𝑧0, 𝑧𝑓 ,∞, ∅},∞);

Algorithm 5.1: TPBVP Given 𝑇 (𝑧0, 𝑧𝑓 , 𝑇 , (𝑒 = ∅))

Algorithm 5.1 summarizes the fixed-time local steering between two states 𝑧0 and

𝑧𝑓 , while the outer loop Algorithm 5.2 specifies the arrival time 𝑇 . Let 𝑒 denote the

set of free coefficients 𝑎2ℓ, . . . , 𝑎2ℓ+𝑛−1, or the edge that contains sufficient information

to connect two states given boundary conditions and arrival time. For the designated

free coefficients 𝑒, the Violated procedure detects 𝑡𝑟 values at which constraints

are locally violated the most. The AddConstraints procedure adds constraints at

𝑡𝑟 values. The algorithm returns the best found cost and sufficient information to

recover such a trajectory.

Proposition 5.4 Suppose a single-input linear system, a terminal time 𝑇 , linear

state/input constraints, and 2ℓ+𝑛 (or 𝑛-DoF) polynomial bases. Checking constraints

at 𝑡 = 𝑡𝑟𝑇 , 0 ≤ 𝑡𝑟 ≤ 1 is equivalent to root-finding in (2ℓ+ 𝑛− 2)th or smaller order

polynomials. Quadratic programming problems over free coefficients 𝑎2ℓ, . . . , 𝑎2ℓ+𝑛−1

contain 𝑛 variables to optimize. For multi-input cases, the number of variables in

optimization increases accordingly, while the complexity of checking constraints is

unchanged.

120

Remark 5.5 Let 𝑎2ℓ, . . . , 𝑎2ℓ+𝑛0−1 be a local steering solution with 𝑛0-DoF. Then, any

local steering with DoF 𝑛 > 𝑛0 has a feasible solution based on 𝑎2ℓ, . . . , 𝑎2ℓ+𝑛0−1, by

setting additional coefficients 𝑎2ℓ+𝑛0 , . . . , 𝑎2ℓ+𝑛−1 = 0. Thus, warm start with feasible

solutions is guaranteed when refining solutions with larger DoFs.

In checking the feasibility of linear constraints, we exploit dual formulations for

primal problems with pivoting methods such as simplex algorithm [14]. Especially

with larger number of constraints than DoFs, incremental addition of constraints is

handled efficiently. Specifically, for the pair

minimize 𝑐′𝑥 maximize 𝑝′𝑏

s.t. 𝐴𝑥 ≥ 𝑏, s.t. 𝑝′𝐴 = 𝑐′

𝑝 ≥ 0,

(5.18)

of primal and dual problems, dual indices for basic variables by the previous iteration

remain basic after progressively adding more constraints by (5.14). Thus, the current

computation effectively continues from the last effort. In addition, by the duality the-

ory [14], a feasible dual solution and nonzero dual variables lead to a primal solution,

obtained by active primal constraints corresponding to dual indices. Unbounded dual

solutions inform the infeasibility of primal problems. Infeasible dual solutions suggest

unbounded or infeasible primal problems, but the situation is hardly relevant to our

formulation with more primal constraints than variables.

5.3.4 Local Steering with the Terminal Time Search

The fixed-time local steering (Algorithm 5.1) needs to be encapsulated by a search

procedure (Algorithm 5.2) for the terminal time. Previous work is either limited to

fixed (or infinite) time scenarios [89, 41, 111, 79, 32] or subject to time search [51,

117, 43, 49, 78] for generality. We efficiently shrink the search range by informing and

updating the bound, as introduced in the collective steering scheme (Algorithm 2.22).

Lower and upper bounds for time search, 𝑇L and 𝑇U, can be computed by exploit-

ing the non-negativity of 𝑔 in (5.1), boundary conditions, state/input constraints, and

121

costs of any or best found local steering solution. Accordingly, the TimeRange proce-

dure in Line 2 and 7 finds and updates the range [𝑇L, 𝑇U], and effectively decreases the

portion of unrewarding attempts for fixed-time local steering. Empirically, the search

resolution 𝑑𝑇 can be chosen crudely and further refined if promising. For a lengthy

trajectory, Line 8 checks the time duration, divides into smaller ones, and attempts to

refine each segment by calling the Algorithm 5.2 again, with 𝑒seg as the upper-bound

edge upon no success in refinement. As a result, time duration of any edge is shorter

than or equal to ∆𝑇 , and our algorithm achieves the following property.

1 𝐽best ←∞;

2 (𝑇L, 𝑇U)← TimeRange(𝑧0, 𝑧𝑓 , 𝑒best, 𝐽upper);

3 for 𝑇 ∈ [𝑇L : 𝑑𝑇 : 𝑇U] do

4 (𝑒, 𝐽)← Algorithm5.1(𝑧0, 𝑧𝑓 , 𝑇);

5 if 𝐽 < min(𝐽upper, 𝐽best) then

6 𝑒best ← 𝑒; 𝐽best ← 𝐽 ;

7 (𝑇L, 𝑇U)← TimeRange(𝑧0, 𝑧𝑓 , 𝑒best, 𝐽best);

8 if ∆𝑇 < 𝑇 (𝑒best) then

9 (𝑍0, 𝑍𝑓 , 𝐽seg, 𝐸seg)← DivideTrajectory(𝑒best);

10 (𝑒refine, 𝐽refine)← (∅, 0);

11 for 𝑧𝑠0 ∈ 𝑍0, 𝑧𝑠𝑓 ∈ 𝑍𝑓 , 𝐽s ∈ 𝐽seg, 𝑒seg ∈ 𝐸seg do

12 (𝑒refine, 𝐽refine)
+← Algorithm5.2(𝑧𝑠0, 𝑧𝑠𝑓 , 𝐽s, 𝑒seg);

13 return min ((𝑒best, 𝐽best), (𝑒refine, 𝐽refine));

14 return (𝑒best, 𝐽best)

Algorithm 5.2: TPBVP (𝑧0, 𝑧𝑓 , 𝐽upper, (𝑒best = ∅))

Proposition 5.6 Assume RRT* or GR-FMTs employ Algorithm 5.2 for the TPBVP.

Then, the best found trajectory approaches 𝑛-DoF ∆𝑇 -optimal trajectory in the limit.

Note that division and refinement of a lengthy trajectory do not immediately

construct a 𝑛-DoF ∆𝑇 -optimal trajectory between two states. Instead, outer loop

attempts and finds better concatenation of trajectory segments in the limit.

122

The threshold ∆𝑇 for trajectory division matters in early iterations, and later

iterations generate trajectories shorter than ∆𝑇 . Thus, revisiting and refining edges

with an increased DoF or decreased ∆𝑇 provably improve the quality of solutions

by enhancing the defined class of optimality, but with increased computation. Our

current implementation does not change DoFs and ∆𝑇 .

5.4 Simulation Results

Our simulation is based on a laptop with Intelr CoreTM i5-4200U (1.60GHz) processor

and 4GB RAM. For all examples, although feedback motion trees are constructed,

only selected trajectories are displayed for clear visualization.

5.4.1 Constrained 1D Double Integrator in Free Space

0.01 0.1 1 10 100

3.0

3.1

Computation time (s)

C
os

t

opt
DoF1
DoF2

(a) Averaged Costs (10 Trials)

0 1 2 3 4

0

2

𝑥

𝑥

𝑡𝑓 (opt) = 3.0s, 𝑡𝑓 = 3.00023s

opt
DoF2

(b) Motions from (0,0) to (4,0)

Figure 5-1: 1D min-time double integrator. GR-FMTs with 2-DoF (red) and ∆𝑇=0.2
shortly generate a comparable motion to analytic solution (blue).

Figure 5-1 shows min-time trajectories of a double integrator with constraints

|�̇�| ≤ 2, |�̈�| ≤ 2. Note that analytic optimal solutions, if available, are always better

and faster than others, and the comparison is only to demonstrate our comparable

results in an anytime fashion [55] that finds the first solution in a short time and

improves the best found solution to optimality given time. For 1 and 2 DoFs, TPBVP

123

was called 13±2 and 0.18±0.008 million times in parts of 10 seconds.

5.4.2 Constrained/Obstructed 2D Double Integrators

0.001 0.01 0.1 1 10 100
5

7

9

11

Computation time (s)

C
os

t

RRT*+analytic
DoF1
DoF2

(a) Averaged Costs (10 Trials))

0 2 4 6 8

0

2

4

x
y

RRT*+analytic
DoF2

(b) Motions from (0,0) to (8,4)

Figure 5-2: 2D min-time double integrators, from the RRT* using analytic solu-
tions [56] (blue) and GR-FMTs (green, red) with DoFs and ∆𝑇=0.5.

For min-time 2D double integrators (5.9), the RRT* with analytic solutions [56]

provides asymptotically optimal results. With constraints |�̇�| ≤ 2, |�̇�| ≤ 2, |�̈�| ≤ 2,

|𝑦| ≤ 2, Figure 5-2 compares our approach to the approach in [56]. Remind that ana-

lytic optimal solutions, if available, are always faster and better, while our approach

is general to controllable linear systems (without analytic solutions) in an anytime

fashion. For analytic solutions and 1-to-3 DoFs, TPBVP was called 102±10, 48±5,

1.8±0.09, 0.66±0.08 million times in parts of 100 seconds.

5.4.3 Landing of Constrained/Obstructed Helicopter

Minimum-time helicopter landing using a linearized model

�̈� = −𝑏𝑥�̇�− 𝑔𝜃, 𝜃 = −2𝜁𝜃𝜔𝜃𝜃 − 𝜔2
𝜃𝜃 + 𝜔2

𝜃𝜃ref ,

𝑦 = −𝑏𝑦�̇� + 𝑔𝜑, 𝜑 = −2𝜁𝜑𝜔𝜑�̇�− 𝜔2
𝜑𝜑+ 𝜔2

𝜑𝜑ref ,

𝑧 = −𝜇�̇� + 𝜇𝜔ref , (5.19)

124

(a) Landing Trajectory

0.1 1 10 100 1000
8

10

12

14

16

Computation time (s)

C
os

t

DoF1
DoF2
DoF3

(b) Averaged Costs (20 Trials)

Figure 5-3: Min-time landing of helicopter by GR-FMTs with DoFs and ∆𝑇 = 0.5

is shown in Figure 5-3, with bounded 𝜃ref , 𝜑ref , 𝜔ref . Expected trade-offs by DoFs are

clear for computation and asymptotic solution quality. For 1 to 3 DoFs, TPBVP was

called 51±6, 29±2, 5±1 million times in parts of 1,600 seconds.

(a) Tree (70064 Vertices) (b) Computed on Grids

Figure 5-4: For a torque-limited linearized pendulum around (𝜋, 0), cost-to-go values
𝐽 =

∫︀
1 + 𝜃2 𝑑𝑡 are color-coded on vertices of GR-FMTs and grids.

125

5.4.4 Torque-Limited Inverted Pendulum

For a linearized pendulum (5.8) with |𝑢| ≤ 𝑢max, Figure 5-4 shows GR-FMTs with

1-DoF and ∆𝑇=0.15 that minimize 𝐽 =
∫︀

1 + 𝜃2 𝑑𝑡. GR-FMTs do not require grids,

and cost-to-go values are shown for visualization purposes only. Obtained feedback

policies are comparable to the constrained LQR [11], but with more generality toward

obstructed scenarios.

5.5 Conclusions

The application areas of the RRT* and GR-FMTs are largely expanded or limited

by the performance of the associated local steering methods. It may be surprising

that analytic solutions for local steering — the fastest possible form of local steering

solutions — are unavailable for controllable linear systems with linear state/input

constraints. For the problem, our proposed computation of a relaxed local steering

remains light, and it leads to asymptotically ∆𝑇 -optimal solutions with DoFs. In the

presence of obstacles with unspecified or uncertain computational budgets, our local

steering approach embedded in an anytime planner such as the RRT* or GR-FMTs

has clear advantages over other approaches.

126

Chapter 6

Conclusions and Remarks

In this dissertation, we have presented a set of contributions to sampling-based motion

planning algorithms. The first part (Chap 2) consists of a review for the state of the

art, a proposed generalization of optimal sampling-based motion planning algorithms

including modifications aimed at improving the performance, and the ability to handle

dynamical systems more efficiently. The second part (Chap 3, 4, and 5) developed sub-

routines that are essential to sampling-based motion planning for dynamical systems,

i.e., efficient solution approaches to Two-Point Boundary Value Problems (TPBVPs).

Specifically, TPBVP solution approaches were presented for three classes of dynamical

systems with demonstrating examples.

In this chapter, we first summarize the contributions of this dissertation, and then

discuss promising ideas for future research directions.

6.1 Summary

In Chap 2, we started with an extensive literature review for sampling-based motion

planning algorithms that equip with optimality guarantees. Such algorithms were

reviewed and interpreted within an abstract algorithmic framework, in order to allow

component-wise comparisons of improved algorithms. Key ideas of the compared

algorithms were adapted into incremental procedures that are suitable with the RRT*,

and we presented our enhanced RRT* by integrating the discussed adaptations to the

127

RRT*. The enhanced RRT*, an incremental algorithm that enhances the RRT*,

substantially improved the convergence rates to the optimum, especially within the

strict 𝒪(log 𝑛) complexity per iteration.

The second focus of Chap 2 was on feedback motion planning, based on the tree-

based incremental sampling-based algorithms we had considered. The modification

of the forward tree-based algorithm into the backward algorithm, accompanied with

the local connection attempts to 𝒪(log 𝑛) neighbors only, allows efficient replanning

and feedback planning with guarantees on the asymptotic optimality of the feedback

policies and the expected closed-loop trajectories. By design, the proposed feedback

planning algorithm efficiently maintains and reuses substantial parts of the previous

computation.

The third focus of Chap 2 was the re-design for the loop of TPBVPs, in or-

der to efficiently handle computationally expensive TPBVPs for dynamical systems.

Largely inspired by the well-known branch and bound technique, our re-designed loop

of cost-bounded TPBVPs significantly reduced the overall computation required for

TPBVPs, thus enabled the consideration of more complicated dynamical systems for

motion planning, while using the same amount of computation.

In Chap 3, we started the discussion of TPBVP solution approaches, by propos-

ing a numerical method that utilizes the influence of control inputs to states in a

lower-dimensional task space. Time-optimal off-road vehicle maneuvers were con-

sidered as the main examples for aggressive cornering scenarios with several turning

degrees. The results in this chapter demonstrated and suggested the necessity of

computationally efficient TPBVP solutions that exactly connect two states.

In Chap 4, we proposed a semi-analytic TPBVP solution for pseudo-flat dynamical

systems. By identifying a suitable change of coordinates that transforms the system

into a pseudo-flat system, computation of the time-optimal off-road vehicle maneuvers

was expedited. As a result, more complicated scenarios could be considered, e.g., for

closed race tracks. This chapter demonstrated the benefits of mapping constraints to

the flat output space.

In Chap 5, the idea of mapping constraints to the flat output space was deepened

128

for a subset of differentially flat systems, i.e., controllable linear systems. The map-

pings from constraints, constraint violations, and the cost functional to the flat output

space transformed the TPBVP into an incremental computation of small-sized lin-

ear or quadratic programming problems, subject to progressively added constraints.

Combined with the feedback planning algorithm in Chap 2, the TPBVP approach

could generate asymptotically optimal feedback policies for linear systems, with guar-

antees for the collision-free trajectories.

6.2 Future Research Directions

In this section, we discuss promising directions for further research and development.

6.2.1 Integration of the Proposed Ideas

The implementation and the simulation examples in Chap 2 mainly focused on fair

comparisons among key ideas that accelerate the solution’s convergence to the op-

timum. Such algorithmic modifications as a whole, or at least the enhanced RRT*

algorithm for trivial systems (straight path segments), may be potentially provided

to the general public as an open source library.

In addition, the implementation and the simulation results in Chap 3, 4, and 5

actually precede the inception of most ideas in Chap 2, as hidden driving forces to

develop and elaborate the speed-up ideas in Chap 2. From the practical point of view,

applying the entire set of ideas in Chap 2 back to the implementation in Chap 3, 4,

and 5 has great potentials for improved computational performance.

6.2.2 Generalization of TPBVP Approaches

TPBVP solution approaches in Chap 3, 4, and 5 may be further generalized. This

dissertation described the solution approaches based on examples, thus further ab-

straction may prevent trials and errors by readers for other extended examples.

First, Chap 3 and 4 presented TPBVP solutions for a specific dynamical system,

129

i.e., half-car model. The numerical method for dynamical systems and the semi-

analytic method for pseudo-flat systems could be described as a principled procedure

with more generality. Perhaps, the procedure could be generalized, but only based

on the categorization of dynamical systems.

Second, Chap 5 presented TPBVP solutions for linear systems, using polynomial

basis functions of time. Other types of basis functions may be considered and com-

pared for better performance and more suitable computation, especially in searching

for the terminal time of the trajectory segment.

Third, the approach in Chap 5 utilized the differential flatness, by focusing on

linear systems, of which the constraints in the flat output space could be represented

and managed suitably. The approach may be attempted for an extension to differen-

tially flat systems, although the inclusion of constraints in the problem formulation

becomes more challenging. Another type of potential extension would be based on the

successive approximation of general dynamical systems using flat or linear systems.

6.2.3 Further Specification and Characterization of Dynamics

Chap 4 utilized the characteristics of the considered dynamical system, i.e., the cen-

ter of oscillation for the coordinate transformation. Further specification for dy-

namical systems, as opposed to the generalization suggested in Chap 6.2.2, typically

contributes to more efficient algorithms or computation for TPBVPs, by coordinate

transformation, simplifying assumptions, simplifying control inputs, and so forth.

6.2.4 Exact TPBVPs to Inexact Local Steering Problems

Chap 3 briefly mentioned an alternative solution approach to ignore motion gaps in

the tree or delay the repropagation procedure that eliminates the motion gaps. By

relaxing the TPBVP that exactly connects two points into the local steering problem

that does not necessarily require an exact connection of two points, a larger set

of approaches and modified methods can be attempted for local steering problems

and sampling-based algorithms. One of the prerequisites for inexact methods is the

130

mathematically correct way to estimate the region in which the connection can be

considered to be exact, or to estimate the connection cost that accounts for the

remaining motion gap.

6.2.5 Deterministic to Stochastic

The algorithms in this dissertation are currently applicable to deterministic models,

which may not be realistic in the scenario with autonomous vehicles on unknown

terrain models. Future work would involve extending the current approach to handle

uncertainties and modeling errors. As the majority of methods for stochastic systems

internally employ deterministic solutions as the starting or guiding points, further

extension to stochastic methods may be naturally made.

6.2.6 Development of A Vehicle

Each chapter in this dissertation was deeply motivated by examples of autonomous

ground vehicles. The development of an autonomous ground vehicle and the valida-

tion of the proposed algorithms in this dissertation on the vehicle would be a natural

procedure to be followed.

We had assumed that the cost functional to minimize was known for motion

planning. In the actual vehicle’s case, identifying the passenger’s preference as the

cost functional would become an important procedure beforehand.

131

THIS PAGE INTENTIONALLY LEFT BLANK

132

Bibliography

[1] Jürgen Ackermann. Robust decoupling, ideal steering dynamics and yaw stabi-
lization of 4WS cars. Automatica, 30(11):1761–1768, 1994.

[2] Baris Akgun and Mike Stilman. Sampling heuristics for optimal motion plan-
ning in high dimensions. In 2011 IEEE/RSJ International Conference on In-
telligent Robots and Systems, September 2011.

[3] Ron Alterovitz, Sachin Patil, and Anna Derbakova. Rapidly-exploring
roadmaps: Weighing exploration vs. refinement in optimal motion planning.
In IEEE International Conference on Robotics and Automation, May 2011.

[4] Nancy M. Amato and Guang Song. Using motion planning to study protein
folding pathways. Journal of Computational Biology, 9(2):149–168, 2002.

[5] Nancy M. Amato and Yan Wu. A randomized roadmap method for path and
manipulation planning. In IEEE International Conference on Robotics and
Automation, 1996.

[6] Oktay Arslan and Panagiotis Tsiotras. Use of relaxation methods in sampling-
based algorithms for optimal motion planning. In IEEE International Confer-
ence on Robotics and Automation, May 2013.

[7] Eugene Asarin, Thao Dang, Goran Frehse, A. Girard, Colas Le Guernic, and
Oded Maler. Recent progress in continuous and hybrid reachability analysis. In
Computer Aided Control System Design, 2006 IEEE International Conference
on Control Applications, 2006 IEEE International Symposium on Intelligent
Control, 2006 IEEE, pages 1582–1587, October 2006.

[8] E. Bakker, L. Nyborg, and H. B. Pacejka. Tyre modelling for use in vehicle
dynamics studies. In SAE International Congress and Exposition, 1987.

[9] Efstathios Bakolas and Panagiotis Tsiotras. Optimal synthesis of the asymmet-
ric sinistral/dextral Markov-Dubins problem. Journal of Optimization Theory
and Applications, 150(2):233–250, 2011.

[10] Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

133

[11] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N. Pistikopou-
los. The explicit linear quadratic regulator for constrained systems. Automatica,
38(1):3–20, 2002.

[12] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[13] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena
Scientific, 1995.

[14] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, 1997.

[15] Amit Bhatia and Emilio Frazzoli. Incremental search methods for reachability
analysis of continuous and hybrid systems. In Hybrid Systems: Computation
and Control, volume 2993 of Lecture Notes in Computer Science, pages 142–156.
Springer-Verlag, 2004.

[16] Joshua John Bialkowski. Optimizations for sampling-based motion planning
algorithms. PhD thesis, Massachusetts Institute of Technology, February 2014.

[17] Paul T. Boggs and Jon W. Tolle. Sequential quadratic programming. Acta
numerica, 4:1–51, 1995.

[18] Robert Bohlin and Lydia E. Kavraki. Path planning using lazy prm. In IEEE
International Conference on Robotics and Automation, volume 1, pages 521–528
vol.1, April 2000.

[19] Bela Bollobas and Oliver Riordan. Percolation. Cambridge University Press,
2006.

[20] Arthur E. Bryson, Jr. Optimal control - 1950 to 1985. IEEE Control Systems
Magazine, 16:26–33, Jun 1996.

[21] Arthur E. Bryson, Jr. and Yu-Chi Ho. Applied Optimal Control. Hemisphere
Publishing Corporation, 1975.

[22] Eduardo F. Camacho and Carlos Bordons. Model Predictive Control. Springer,
1999.

[23] D. Casanova, R. S. Sharp, and P. Symonds. Minimum time manoeuvring: The
significance of yaw inertia. Vehicle System Dynamics, 34:77–115, 2000.

[24] Hsuan Chang and Tsai-Yen Li. Assembly maintainability study with motion
planning. In IEEE International Conference on Robotics and Automation, 1995.

[25] Peng Cheng and Steven M. LaValle. Resolution complete rapidly-exploring
random trees. In IEEE International Conference on Robotics and Automation,
2002.

134

[26] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and
S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementa-
tions. The MIT Press, 2005.

[27] Raghvendra .V. Cowlagi and Panagiotis Tsiotras. Hierarchical motion planning
with dynamical feasibility guarantees for mobile robotic vehicles. Robotics,
IEEE Transactions on, 28(2):379–395, 2012.

[28] K. Daniel, A. Nash, S. Koenig, and A. Felner. Theta*: Any-angle path planning
on grids. Journal of Artificial Intelligence Research, 39:533–579, 2010.

[29] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[30] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning.
Journal of the ACM, 40:1048–1066, November 1993.

[31] L. E. Dubins. On curves of minimal length with a constraint on average curva-
ture, and with prescribed initial and terminal positions and tangents. American
Journal of Mathematics, 79:497–516, 1957.

[32] Nadeem Faiz, Sunil K. Agrawal, and Richard M. Murray. Trajectory planning of
differentially flat systems with dynamics and inequalities. Journal of Guidance,
Control, and Dynamics, 24(2):219–227, 2001.

[33] P. Ferbach. A method of progressive constraints for nonholonomic motion plan-
ning. In IEEE International Conference on Robotics and Automation, 1996.

[34] D. Ferguson, N. Kalra, and A. Stentz. Replanning with RRTs. In IEEE Inter-
national Conference on Robotics and Automation, Orlando, FL, May 2006.

[35] Michel Fliess, Jean Lévine, Philippe Martin, and Pierre Rouchon. Flatness and
defect of non-linear systems: introductory theory and examples. International
Journal of Control, 61(6):1327–1361, 1995.

[36] Michel Fliess, Jean Lévine, Philippe Martin, and Pierre Rouchon. A Lie-
Bäcklund approach to equivalence and flatness of nonlinear systems. Automatic
Control, IEEE Transactions on, 44(5):922–937, 1999.

[37] Emilio Frazzoli, Munther A. Dahleh, and Eric Feron. Real-time motion plan-
ning for agile autonomous vehicles. AIAA Journal of Guidance, Control, and
Dynamics, 25:116–129, 2002.

[38] Stefan Fuchshumer, Kurt Schlacher, and Thomas Rittenschober. Nonlinear
vehicle dynamics and control – a flatness based approach. In Proceedings of
the 44th IEEE Conference on Decision and Control, pages 6492–6497, Seville,
Spain, December 12–15 2005.

135

[39] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. In-
formed RRT*: Optimal sampling-based path planning focused via direct sam-
pling of an admissible ellipsoidal heuristic. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, September 2014.

[40] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. Batch
Informed Trees (BIT*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs. In IEEE International
Conference on Robotics and Automation, May 2015.

[41] G. Goretkin, A. Perez, Robert Platt, Jr., and G. Konidaris. Optimal sampling-
based planning for linear-quadratic kinodynamic systems. In IEEE Interna-
tional Conference on Robotics and Automation, May 2013.

[42] R.L. Graham and Pavol Hell. On the history of the minimum spanning tree
problem. Annals of the History of Computing, 7(1):43–57, Jan 1985.

[43] Jung-Su Ha, Ju-Jang Lee, and Han-Lim Choi. A successive approximation-
based approach for optimal kinodynamic motion planning with nonlinear dif-
ferential constraints. In 52nd IEEE Conference on Decision and Control, De-
cember 2013.

[44] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. Systems Science and Cybernet-
ics, IEEE Transactions on, 4(2):100–107, July 1968.

[45] Kris Hauser. Lazy collision checking in asymptotically-optimal motion planning.
In IEEE International Conference on Robotics and Automation, May 2015.

[46] J.P.M. Hendrikx, T.J.J. Meijlink, and R.F.C. Kriens. Application of optimal
control theory to inverse simulation of car handling. Vehicle System Dynamics,
26:449–461, 1996.

[47] Toshihiro Hiraoka, Osamu Nishihara, and Hiromitsu Kumamoto. Automatic
path-tracking controller of a four-wheel steering vehicle. Vehicle System Dy-
namics, 47(10):1205–1227, 2009.

[48] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast
marching tree: A fast marching sampling-based method for optimal motion
planning in many dimensions. The International Journal of Robotics Research,
2015.

[49] J. Jeon, R. V. Cowlagi, S. C. Peters, S. Karaman, E. Frazzoli, P. Tsiotras, and
K. Iagnemma. Optimal motion planning with the half-car dynamical model
for autonomous high-speed driving. In Proceedings of the American Control
Conference, Washington, DC, June 2013.

136

[50] J. Jeon, S. Karaman, and E. Frazzoli. Optimal sampling-based feedback motion
trees among obstacles for controllable linear systems with linear constraints. In
IEEE International Conference on Robotics and Automation, Seattle, WA, June
2015.

[51] Jeong hwan Jeon, Sertac Karaman, and Emilio Frazzoli. Anytime computation
of time-optimal off-road vehicle maneuvers using the RRT*. In 50th IEEE
Conference on Decision and Control and European Control Conference (CDC-
ECC), Orlando, FL, December 2011.

[52] In-Bae Jeong, Seung-Jae Lee, and Jong-Hwan Kim. RRT*-Quick: A motion
planning algorithm with faster convergence rate. In Robot Intelligence Tech-
nology and Applications 3, volume 345 of Advances in Intelligent Systems and
Computing, pages 67–76. Springer International Publishing, 2015.

[53] Thomas Kailath. Linear Systems. Prentice-Hall, New Jersey, 1980.

[54] S. Karaman and E. Frazzoli. Sampling-based optimal motion planning for non-
holonomic dynamical systems. In IEEE International Conference on Robotics
and Automation, Karlsruhe, Germany, May 2013.

[55] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime motion
planning using the RRT*. In IEEE International Conference on Robotics and
Automation, Shanghai, China, May 2011.

[56] Sertac Karaman and Emilio Frazzoli. Optimal kinodynamic motion planning
using incremental sampling-based methods. In IEEE Conference on Decision
and Control, Atlanta, GA, December 2010.

[57] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The International Journal of Robotics Research, 30(7):846–
894, June 2011.

[58] Timur Karatas and Francesco Bullo. Randomized searches and nonlinear pro-
gramming in trajectory planning. In Proceedings of the 40th IEEE Conference
on Decision and Control, December 2001.

[59] Lydia E. Kavraki. Geometry and the discovery of new ligands. In Workshop on
the Algorithmic Foundations of Robotics, 1996.

[60] Lydia E. Kavraki, Petr Švestka, Jean-Claude Latombe, and Mark H. Over-
mars. Probabilistic roadmaps for path planning in high-dimensional configura-
tion spaces. Robotics and Automation, IEEE Transactions on, 12(4):566–580,
Aug 1996.

[61] Sven Koenig and Maxim Likhachev. D* Lite. In Proceedings of the 18th National
Conference on Artificial Intelligence, 2002.

137

[62] Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong planning A*. Arti-
ficial Intelligence, 155(1):93–146, 2004.

[63] Krisada Kritayakirana and J. Christian Gerdes. Using the centre of percussion
to design a steering controller for an autonomous race car. Vehicle System
Dynamics, 50(sup1):33–51, 2012.

[64] James Kuffner, Koichi Nishiwaki, Satoshi Kagami, Masayuki Inaba, and Hi-
rochika Inoue. Motion planning for humanoid robots. In Robotics Research.
The Eleventh International Symposium, pages 365–374, 2005.

[65] James J. Kuffner, Jr. and Steven M. LaValle. RRT-connect: An efficient ap-
proach to single-query path planning. In IEEE International Conference on
Robotics and Automation, 2000.

[66] James J. Kuffner Jr, Satoshi Kagami, Koichi Nishiwaki, Masayuki Inaba, and
Hirochika Inoue. Dynamically-stable motion planning for humanoid robots.
Autonomous Robots, 12(1):105–118, 2002.

[67] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How. Real-
time motion planning with applications to autonomous urban driving. Control
Systems Technology, IEEE Transactions on, 17(5):1105–1118, September 2009.

[68] Ailsa H. Land and Alison G. Doig. An automatic method of solving discrete
programming problems. Econometrica, 28(3):497–520, Jul 1960.

[69] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers,
1991.

[70] J.-P. Laumond, P. E. Jacobs, M. Taïx, and R. M. Murray. A motion planner
for nonholonomic mobile robots. Robotics and Automation, IEEE Transactions
on, 10:577–593, October 1994.

[71] J.P. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in nonholonomic
motion planning for mobile robots. In Robot Motion Planning and Control,
volume 229 of Lecture Notes in Control and Information Sciences, pages 1–53.
Springer-Verlag, 1998.

[72] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[73] Steven M. LaValle, Michael S. Branicky, and Stephen R. Lindemann. On the
relationship between classical grid search and probabilistic roadmaps. The In-
ternational Journal of Robotics Research, 23(7–8):673–692, 2004.

[74] Steven M. LaValle and James J. Kuffner, Jr. Randomized kinodynamic plan-
ning. The International Journal of Robotics Research, 20(5):378–400, May 2001.

138

[75] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L. Fletcher,
E. Frazzoli, A. Huang, S. Karaman, O. Koch, Y. Kuwata, D. Moore, E. Olson,
S. Peters, J. Teo, R. Truax, M. Walter, D. Barrett, A. Epstein, K. Maheloni,
K. Moyer, T. Jones, R. Buckley, M. Antone, R. Galejs, S. Krishnamurthy, and
J. Williams. A perception driven autonomous urban vehicle. Journal of Field
Robotics, 25:727–774, 2008.

[76] Zakary Littlefield, Yanbo Li, and Kostas E. Bekris. Efficient sampling-based
motion planning with asymptotic near-optimality guarantees for systems with
dynamics. In 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, November 2013.

[77] David G Luenberger. Canonical forms for linear multivariable systems. Auto-
matic Control, IEEE Transactions on, pages 290–293, June 1967.

[78] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and
control for quadrotors. In IEEE International Conference on Robotics and Au-
tomation, May 2011.

[79] Mark B. Milam, Kudah Mushambi, and Richard M. Murray. A new computa-
tional approach to real-time trajectory generation for constrained mechanical
systems. In Proceedings of the 39th IEEE Conference on Decision and Control,
2000.

[80] William F. Milliken and Douglas L. Milliken. Race Car Vehicle Dynamics. SAE
International, 1995.

[81] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, and
D. Haehnel. Junior: The Stanford entry in the Urban Challenge. Journal of
Field Robotics, 25:569–597, 2008.

[82] Richard M. Murray and S. Shankar Sastry. Nonholonomic motion planning:
Steering using sinusoids. Automatic Control, IEEE Transactions on, 38(5):700–
716, 1993.

[83] J. Nasir, F. Islam, U. Malik, Y. Ayaz, O. Hasan, M. Khan, and M. S. Muham-
mad. RRT*-SMART: A rapid convergence implementation of RRT*. Interna-
tional Journal of Advanced Robotic Systems, 10, 2013.

[84] Reza Olfati-Saber. Near-identity diffeomorphisms and exponential 𝜖-tracking
and 𝜖-stabilization of first-order nonholonomic se(2) vehicles. In Proceedings of
the American Control Conference, volume 6, pages 4690–4695, 2002.

[85] Brian Paden, Sze Zheng Yong, Jeong hwan Jeon, and Emilio Frazzoli. A gen-
eral formula for obtaining input and state trajectories from flat outputs of linear
systems. In IEEE Conference on Decision and Control, December 2015. Sub-
mitted.

139

[86] Jun Peng, Wenhao Luo, Weirong Liu, Wentao Yu, and Jing Wang. A suboptimal
and analytical solution to mobile robot trajectory generation amidst moving
obstacles. Autonomous Robots, 2015.

[87] Mathew Penrose. Random Geometric Graphs. Oxford University Press Oxford,
2003.

[88] A. Perez, S. Karaman, A. Shkolnik, E. Frazzoli, S. Teller, and M. R. Wal-
ter. Asymptotically-optimal path planning for manipulation using incremental
sampling-based algorithms. In 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, San Francisco, CA, September 2011.

[89] A. Perez, Robert Platt, Jr., G. Konidaris, L. Kaelbling, and T. Lozano-Perez.
LQR-RRT*: Optimal sampling-based motion planning with automatically de-
rived extension heuristics. In IEEE International Conference on Robotics and
Automation, May 2012.

[90] Sven Mikael Persson and Inna Sharf. Sampling-based A* algorithm for robot
path-planning. The International Journal of Robotics Research, 33(13):1683–
1708, 2014.

[91] Steven C. Peters, Emilio Frazzoli, and Karl Iagnemma. Differential flatness of
a front-steered vehicle with tire force control. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, San Francisco, CA, September
2011.

[92] G. Petrone, C. Hill, and M. E. Biancolini. Track by track robust optimization
of a F1 front wing using adjoint solutions and radial basis functions. In 44th
AIAA Fluid Dynamics Conference, 2014.

[93] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes: The Art of Scientific Computing. Cambridge Univer-
sity Press, 2007.

[94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, 1994.

[95] Zhihua Qu, Jing Wang, and Clinton E. Plaisted. A new analytical solution
to mobile robot trajectory generation in the presence of moving obstacles.
Robotics, IEEE Transactions on, 20(6):978–993, December 2004.

[96] Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha Srinivasa.
CHOMP: Gradient optimization techniques for efficient motion planning. In
IEEE International Conference on Robotics and Automation, pages 489–494,
2009.

[97] John H. Reif. Complexity of the mover’s problem and generalizations. In Pro-
ceedings of the 20th Annual Symposium on Foundations of Computer Science,
pages 421–427, 1979.

140

[98] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial trajectory planning
for aggressive quadrotor flight in dense indoor environments. In Proceedings
of the International Symposium of Robotics Research (ISRR 2013), December
2013.

[99] Gideon Sahar and John M. Hollerbach. Planning of minimum-time trajectories
for robot arms. The International Journal of Robotics Research, 5(3):90–100,
September 1986.

[100] Oren Salzman and Dan Halperin. Asymptotically near-optimal RRT for fast,
high-quality, motion planning. In IEEE International Conference on Robotics
and Automation, May 2014.

[101] Oren Salzman and Dan Halperin. Asymptotically-optimal motion planning
using lower bounds on cost. In IEEE International Conference on Robotics and
Automation, May 2015.

[102] Pradeep Setlur, John R. Wagner, Darren M. Dawson, and David Braganza. A
trajectory tracking steer-by-wire control system for ground vehicles. Vehicular
Technology, IEEE Transactions on, 55(1):76–85, 2006.

[103] Alexander Shkolnik and Russ Tedrake. Path planning in 1000+ dimensions
using a task-space voronoi bias. In IEEE International Conference on Robotics
and Automation, May 2009.

[104] Alexander Shkolnik, Matthew Walter, and Russ Tedrake. Reachability-guided
sampling for planning under differential constraints. In IEEE International
Conference on Robotics and Automation, May 2009.

[105] Thierry Siméon, Jean-Paul Laumond, Juan Cortés, and Anis Sahbani. Ma-
nipulation planning with probabilistic roadmaps. The International Journal of
Robotics Research, 23(7-8):729–746, 2004.

[106] Anthony Stentz. The focussed D* algorithm for real-time replanning. In Pro-
ceedings of the 14th International Joint Conference on Artificial Intelligence,
1995.

[107] Russell H. Taylor and Dan Stoianovici. Medical robotics in computer-integrated
surgery. Robotics and Automation, IEEE Transactions on, 19(5):765–781, Oc-
tober 2003.

[108] Russ Tedrake, Ian R. Manchester, Mark Tobenkin, and John W. Roberts. LQR-
trees: Feedback motion planning via sums-of-squares verification. The Interna-
tional Journal of Robotics Research, 29(8):1038–1052, July 2010.

[109] S. Teller, M. R. Walter, M. Antone, A. Correa, R. Davis, L. Fletcher, E. Frazzoli,
J. Glass, J. P. How, A. S. Huang, J. Jeon, S. Karaman, B. Luders, N. Roy, and
T. Sainath. A voice-commandable robotic forklift working alongside humans in

141

minimally-prepared outdoor environments. In IEEE International Conference
on Robotics and Automation, Anchorage, AK, May 2010.

[110] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan,
D. Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert,
T. M. Howard, S. Kolski, A. Kelly, M. Likhachev, M. McNaughton, N. Miller,
K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski, B. Salesky, Y. Seo, S. Singh,
J. Snider, A. Stentz, W. R. Whittaker, Z. Wolkowicki, J. Ziglar, H. Bae,
T. Brown, D. Demitrish, B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang,
J. Struble, M. Taylor, M. Darms, and D. Ferguson. Autonomous driving in
urban environments: Boss and the Urban Challenge. Journal of Field Robotics,
25:425–466, 2008.

[111] Michael J. van Nieuwstadt and Richard M. Murray. Real-time trajectory gen-
eration for differentially flat systems. International Journal of Robust and Non-
linear Control, 8(11):995–1020, 1998.

[112] E. Velenis and P. Tsiotras. Optimal velocity profile generation for given acceler-
ation limits: The half-car model case. In Proceedings of the IEEE International
Symposium on Industrial Electronics, pages 361–366, Dubrovnik, Croatia, June
20–23 2005.

[113] E. Velenis and P. Tsiotras. Minimum-time travel for a vehicle with acceleration
limits: Theoretical analysis and receding horizon implementation. Journal of
Optimization Theory and Applications, 138(2):275–296, 2008.

[114] Efstathios Velenis, Emilio Frazzoli, and Panagiotis Tsiotras. Steady-state cor-
nering equilibria and stabilization for a vehicle during extreme operating con-
ditions. Int. Journal of Vehicle Autonomous Systems, 2010.

[115] Efstathios Velenis, Panagiotis Tsiotras, and Jianbo Lu. Optimality properties
and driver input parameterization for trail-braking cornering. European Journal
of Control, 4:308–320, 2008.

[116] M. R. Walter, M. Antone, E. Chuangsuwanich, A. Correa, R. Davis, L. Fletcher,
E. Frazzoli, Y. Friedman, J. Glass, J. P. How, J. Jeon, S. Karaman, B. Luders,
N. Roy, S. Tellex, and S. Teller. A situationally aware voice-commandable
robotic forklift working alongside people in unstructured outdoor environments.
Journal of Field Robotics, 32(4):590–628, 2015.

[117] Dustin J. Webb and Jur van den Berg. Kinodynamic RRT*: Asymptotically
optimal motion planning for robots with linear dynamics. In IEEE International
Conference on Robotics and Automation, May 2013.

[118] Christopher Xie, Jur van den Berg, Sachin Patil, and Pieter Abbeel. Toward
asymptotically optimal motion planning for kinodynamic systems using a two-
point boundary value problem solver. In IEEE International Conference on
Robotics and Automation, May 2015.

142

[119] Jeffery H. Yakey, Steven M. LaValle, and Lydia E. Kavraki. Randomized path
planning for linkages with closed kinematic chains. Robotics and Automation,
IEEE Transactions on, 17(6):951–958, Dec 2001.

[120] Holly A Yanco, Adam Norton, Willard Ober, David Shane, Anna Skinner,
and Jack Vice. Analysis of human-robot interaction at the DARPA Robotics
Challenge Trials. Journal of Field Robotics, 32(3):420–444, 2015.

[121] Dmitry S. Yershov and Emilio Frazzoli. Asymptotically optimal feedback plan-
ning: FMM meets adaptive mesh refinement. In Workshop on the Algorithmic
Foundations of Robotics, 2014.

[122] Dmitry S. Yershov and Steven M. LaValle. Simplicial Dijkstra and A* algo-
rithms for optimal feedback planning. In 2011 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, September 2011.

[123] Shlomo Zilberstein. Operational rationality through compilation of anytime
algorithms. AI Magazine, 16(2):79–80, 1995.

[124] Shlomo Zilberstein. Using anytime algorithms in intelligent systems. AI Mag-
azine, 17(3):73–83, 1996.

143

	Introduction
	Optimal Motion Planning
	Planning with Dynamical Systems
	Steering Methods
	Statement of Contributions
	Outline

	Enhanced RRT* Algorithms and Further Modifications for Dynamical Systems
	Toward Faster Convergence Rates than the RRT*
	Abstract Form of Sampling-Based Algorithms
	The RRT* Algorithm Karaman.Frazzoli.IJRR11
	Canonical Modifications for the RRT*
	Graph-Based Propagation of Updated Information
	Batch Processing
	Shortcuts or Smoothing

	Enhanced RRT* Algorithm
	Feedback Planning Algorithm
	GR-FMTs: Expansion Phase
	GR-FMTs: Execution Phase
	GR-FMTs: Efficient Replanning

	Cost-Informed TPBVPs for Dynamical Systems
	Rejection of Computation by the Informed Cost
	Interruption of Computation by the Informed Cost
	Reduction of Computation by the Informed Cost

	Simulation Experiments
	Enhanced RRT* Algorithm
	Feedback Planning Algorithm
	Cost-Informed TPBVPs for Dynamical Systems

	Conclusions

	Numerical Local Steering for Nonlinear Systems
	Introduction
	Modifications to the RRT*
	Task Space Planning
	Steering Procedure
	Conditional Activation of the RRT*
	Branch-and-Bound
	Reachability

	Application to High-speed Off-road Vehicles
	Vehicle Dynamics
	Implementation details

	Simulation Results
	Conclusion

	Semi-Analytic Local Steering for Pseudo-Flat Systems
	Introduction
	Motivation and Related Work
	Contributions

	The Half-Car Model
	Local Steering for the Half-Car Model
	Constraints on Pseudo-Flat Output Trajectories

	Simulation Results and Discussion
	Conclusions

	Efficient Local Steering for Controllable Linear Systems
	Introduction
	Contributions
	Related Work

	Definitions
	Flatness-Based Local Steering Algorithm
	Differential Flatness
	State and Input Constraints
	Local Steering Given a Terminal Time
	Local Steering with the Terminal Time Search

	Simulation Results
	Constrained 1D Double Integrator in Free Space
	Constrained/Obstructed 2D Double Integrators
	Landing of Constrained/Obstructed Helicopter
	Torque-Limited Inverted Pendulum

	Conclusions

	Conclusions and Remarks
	Summary
	Future Research Directions
	Integration of the Proposed Ideas
	Generalization of TPBVP Approaches
	Further Specification and Characterization of Dynamics
	Exact TPBVPs to Inexact Local Steering Problems
	Deterministic to Stochastic
	Development of A Vehicle

