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Abstract

A suspension of network-forming, electrically conductive particles imparts electrical
conductivity to an otherwise insulating medium. This effect can be used to great

effect in many industrial applications. The ability to describe these networks and to

predict their physical properties is a key step in designing systems that rely on these
properties. In addition, many times these networks are suspended in a flowing fluid,
which disrupts existing networks and forms new ones. The extra layer of complexity
introduced by flow requires more sophisticated tools to model the effect on the network
and its properties.

In the first chapter, we derive a model for the full, tensorial effective conductivity
of a particle particle network as a function of a local tensor description of the par-
ticle network, the "fabric tensor." We validate our model against a large number
of computer-generated networks and compare its performance against an analogous
existing model in the literature. We show that the model accurately predicts the
isotropic magnitude, deviatoric magnitude, and deviatoric direction of a particle net-
work.

In the second chapter, we set out to model the effects of flow on a particle network.
We propose two frame-indifferent constitutive equations for the evolution of the fabric

tensor. We perform conductivity measurements of real flowing carbon black suspen-
sions and fit our models to the results by using the conductivity model derived in
chapter 1. We find that our models are able to reproduce out-of-sample experimental
results with a high degree of accuracy.

Thesis Supervisor: Kenneth N. Kamrin
Title: Assistant Professor
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Chapter 1

Modeling Tensorial Conductivity of

Particle Suspension Networks

Chapter 1 largely appeared in a publication by Olsen and Kamrin [34]. The chapter

here contains additional details.

1.1 Summary

Significant microstructural anisotropy is known to develop during shearing flow of

attractive particle suspensions. These suspensions, and their capacity to form con-

ductive networks, play a key role in flow-battery technology, among other applica-

tions. Herein, we present and test an analytical model for the tensorial conductivity

of attractive particle suspensions. The model utilizes the mean fabric of the network

to characterize the structure, and the relationship to the conductivity is inspired by

a lattice argument. We test the accuracy of our model against a large number of

computer-generated suspension networks, based on multiple in-house generation pro-

tocols, giving rise to particle networks that emulate the physical system. The model is

shown to adequately capture the tensorial conductivity, both in terms of its invariants

15



and its mean directionality.

1.2 Introduction

The electrical conductivity of heterogeneous materials has been extensively studied by

many different researchers over the years [5, 11, 44, 42, 261. The literature primarily

focuses on heterogeneous materials which are mixtures of two materials that each have

different, isotropic electrical conductivities. The most well-known result is that of

Maxwell, which is based on an effective-medium approximation for dilute suspensions

[301. Hashin and Shtrikman approached the problem in a different way. Rather than

attempt to solve for an exact expression for the effective conductivity of a randomly

structured material, they applied a variational method to derive upper and lower

bounds on the effective conductivity [221. They chose to use a variational approach to

derive bounds on the conductivity because solving the exact problem for an arbitrarily

structured heterogeneous material was analytically intractable. Torquato [44, 42, 43]

has studied the effective conductivity problem in great depth. He has improved the

bounds laid out by Hashin and Shtrikman, has solved for effective conductivity of

a number of different lattice types, and has expressed the exact tensorial effective

conductivity in terms of an infinite series of N-point probability functions, which can

be used to describe the microstructure of a heterogeneous material. The particular

case of a suspension consisting of a conductive particle network within an insulating

medium has been considered theoretically, to our knowledge, in one existing study

[26]. The approach they take assumes a spatially homogeneous potential gradient

field imposed upon the structure, leading to a model for the conductivity that can be

proven to be an upper bound.

Much of the aforementioned work is concerned with the isotropic conductivity of het-

erogeneous materials. In this work, we aim to model the full tensorial conductivity,

with a focus on suspended networks of conductive particles. These particle networks

are of practical importance, especially in flowable battery technology currently un-

16



der development by the Joint Center for Energy Storage Research (JCESR) 1141. In

these batteries, a conductive, flowing suspension of carbon black forms an integral

component of the system, see Figure 1-1(a). It has been shown in related systems

1251 that shearing flows induce anisotropy in a contact network of suspended particles,

as pictured in Figure 1-1(b). In instances where suspension conductivity arises from

particle-particle contacts, this structure anisotropy should give rise to conductivity

anisotropy. It is this behavior that we seek to describe. It has been shown experi-

mentally that the electrical conductivity of a suspension is highly sensitive to shear

rate[2], dropping by several orders of magnitude as shear rate increases. From this

observation and the evidence of particle microstructure changing in shearing flow, we

deduce that a suitably chosen description of the particle network should be sufficient

to predict the electrical conductivity of a suspension.

In the granular media literature, a great deal of attention has been given to describ-

ing the structure of the contact network between particles. Perhaps the simplest

structural measure for such a network that includes anisotropy is the fabric ten-

sor [33, 31, 371. While more complex structural measures exist, such as pair- and

higher-order particle correlation functions[44], whose use could enable greater accu-

racy in constructing a conductivity model, we shall show that a suitable model can

be achieved solely in terms of the fabric. Key to our model development is the so-

lution of a simple case, based on a network conforming to a lattice structure. The

results instruct the form for a new conductivity model, whose accuracy is then tested

against many thousands of random particle networks. To explore a range of particle

networks, we describe two distinct algorithms for creating random packings - one

for denser packings, and one for more dilute packings that closely resemble those

formed by carbon-black - and demonstrate the model's predictive capability against

thousands of packings generated from both algorithms.

17



(a) (b)

Figure 1-1: (a) Image of a carbon black particle network, an electrically conductive
suspension [24]. (b) Image of an effective two-dimenionsional suspension (attractive
polystyrene beads on a fluid surface), which has been subjected to shearing. Note the
formation of an anisotropic contact network between particles. [251

1.3 Homogenization

The tensorial form of Ohm's law relates the electric field vector E to the current

density vector J through a second-order conductivity tensor K, i.e.

J=KE (1.1)

The conductivity tensor is a symmetric, positive-definite tensor [431. An effective con-

ductivity for a representative volume Q of a heterogeneous material must be defined

prior to any analytical or numerical work. The effective conductivity of an ergodic

medium is defined by

(J) = K(E) (1.2)

where (E) and (J) are, respectively, the spatially-averaged electric and current density

fields over Q [431. To avoid a possibly over-reaching assumption of ergodicity -

our tests will be conducted on finite domains - we specify that (E) is imposed

by prescribing a linear boundary potential p(x E &Q) = -(E) -x, and that (J) is

redefined as the flux that is power-conjugate to KE). That is,

(E) . (J) -1J- V j dV (1.3)

18



where j is the local current density field. In the ergodic limit of the ensuing analysis,

(J) reduces to a standard spatial average.

Assuming that the current density obeys Kirchoff's current law and Ohm's law -

respectively, V -j = 0 and j = -aVp for some non-negative conductivity field U(x)

- a symmetric, positive-definite conductivity tensor K must exist that obeys (1.2).

By using the divergence theorem, Eq 1.3 can be transformed into

(E) - K (E) = J -Pj-ndA (1.4)

aQ

where n is the outward-pointing normal vector.

We model the particles as perfect conductors, the fluid as a perfect insulator, and we

suppose electrical resistance arises only at the contacts between particles. Likewise,

the field o is approximated as a constant within each particle but possibly varying

from particle to particle. The above integral can now be broken into a sum of integrals

over the boundary. In the locations where the boundary passes through free space

(i.e., not a particle), then we know that j is exactly 0. This leaves only the parts of

the boundary that pass through particles, which allows us to write the integral over

the set of boundary particles B, i.e.

(E) -K(E) = O j -n dA. (1.5)
iCB

where Qj is the intersection of the ith boundary particle with 0Q, and the potential

within particle i, denoted vo above, can be brought outside the integral since it is

constant within a particle. Although the precise nature of j is unknown within the

particle, the value of the integral faa j - n dA is the current that is flowing out of Q.

Denoting this current as Iu' we can write the final expression for the right-hand-side

of (1.4),

(E) -K(E) = - ojI""t. (1.6)
V iB
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The three independent components of Ke can be determined by performing multiple

simulations on the same particle network with three non-colinear choices of (E).

By our assumptions for the particle properties, the problem can be reduced further

to that of a resistor network. The network is defined by the set of particles acting as

the nodes, which are connected by a set of contacts acting as the edges, which carry

a resistance R,. In our model development and simulations, we assume that R, is

a constant at all contacts. In reality, this is not strictly the case since the contact

resistance is affected by the contact area between particles and the local structure of

the network. This was studied in detail by Batchelor[6. If the particles in question

were Hertzian elastic spheres compressed into a dense granular packing, spatially-

fluctuating contact forces arise causing fluctuating contact areas, and this issue may

be a factor to consider. However, for the suspensions of interest in this study, the

particles actually have an open, fractal structure, and form contacts only due to van

der Waals attraction. Absent any information to inform the size of the contact area

beside the ~ constant attractive force, we choose to use a constant contact resistance.

A schematic of an example network with 9 nodes and 12 edges can be found in figure

1-2. Supposing an N-particle sample and letting i represent the (signed) current

flowing from particle m to n, Ohm's and Kirchoff's law can be rewritten in their

simpler discrete form,

_, P - H nPm (1.7)

and

irn = 0 for all m. (1.8)

where Hmn is the adjacency matrix of the graph formed by the particle network.

Hmnn = 1 if there is an edge connecting particles m and n, and zero otherwise. These

equations define a sparse linear system that can be solved for the potential at each

particle after applying appropriate boundary conditions, which is described in a later

section. The resulting linear system is sparse, symmetric, and positive definite, so we

used a sparse Cholesky direct solver to compute the potential at each point. A trivial

20
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28,9

Figure 1-2: Schematic of a small resistor network with nodes and edges labeled ac-
cording to our conventions.

3.

Figure 1-3: Schematic of particles in contact showing contact vectors n(/).

post-processing step can be performed to compute the current through each contact.

Solving these linear equations for a given particle network enables us to calculate I'"*

in (1.6) and hence the conductivity tensor for the network.

We choose to use the fabric tensor as the measure of the network structure. The

particle-level fabric is a local quantity that can be defined for particle p by the relation

[37, 33, 311

where 0 denotes the dyadic product, and n is the unit vector connecting particle

centroids of the i'th contact on the particle. This is illustrated in Figure 1-3. To

homogenize over the entire particle network, or at least meso-sized region of it, the

average fabric tensor is defined as the system average of the particle fabric tensors.

l fNparticnes

A- =( A (1.10)
Nparticles
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The definition of the fabric tensor has some attractive features. It is symmetric and

positive-semidefinite, guaranteeing that the eigenvalues are non-negative and that the

eigenvectors are orthogonal. These properties are shared by the conductivity tensor

K, suggesting the fabric tensor could be an appropriate independent variable in the

conductivity's functional form.

An important concept that will be used later is that of a tensor deviator. The tensor

deviator is the trace-free part of a tensor, and it is useful to describe anisotropic

phenomena since it has the isotropic part removed. It is defined as

1
Ao = -A - -trA 1 (1.11)

d

where d is the spatial dimension and 1 is the identity tensor.

1.4 Lattice-Reduced Model

We propose an analytical model to elucidate the connection between electrical con-

ductivity and the fabric tensor based on a simplified lattice structure. We will test

this model's applicability to random packings in the later sections.

The particles are imagined to live on an idealized infinite, periodic lattice. The lattice

is parameterized by a set of numbers that describe the particle size and spacing.

These parameters are (1) particle diameter D,, (2) distance in x-direction between

chains do, (3) distance in y-direction between chains dy, (4) distance in z-direction

between chains d,. In 2D, only the first three parameters are used. An illustration

of a 2D lattice characterized by these parameters is shown in figure 1-4(a), with its

fundamental unit cell shown in figure 1-4(b).

Both the average fabric tensor and effective conductivity can be computed analyti-

cally. The average fabric tensor is defined as the spatial average of the fabric tensor

22



(a)

dy
DP

dX
(b)

Figure 1-4: Idealized particle lattice and unit cell from which fabric-conductivity
relation was derived. (a) Example 2D idealized particle lattice. (b) 2D lattice unit
cell and its resistor network analog. Neighboring unit cells are shown in gray dashed
lines.

for all of the particles in the unit cell and ultimately results in the formua

A = (1.12)
N + NY- o NY

In this expression, the key quantities to recognize are the number of particles in the

x-oriented chain, Nx = d /Dp, and the number of particles in the y-oriented chain,

N -= dy/Dp.

Next, the effective conductivity was derived for the unit cell. To do this, imagine

applying an arbitrary voltage difference across the x-oriented and y-oriented chains

separately. These voltages are Ay2 and Amy, respectively. By applying Ohm's law

through the corresponding chains, we can recover the components of the vector form

23



of Ohm's Law shown in (1.1). For example, for the x-oriented chain

j. = - ((VpX (1.13)

with (Vo)x = Agx/dx. Due to the geometry of the problem, we know that the off-

diagonal components of the conductivity tensor K are exactly zero. Therefore, we

can say

K1 . (1.14)

Similarly analysis yields
1

K22 = . (1.15)

Finally, the parameters Nx and N. can be algebraically eliminated to give the com-

ponents of K in terms of the components of A, yielding the tensorial relationship

1 trA - 2
K =A. (1.16)

R, det A

We refer to the formula in (1.16) as the "lattice model". A similar analysis can be

carried out for a three-dimensional unit cell, which will yield the following expression

for the conductivity tensor,

K 1 (trA - 2 )2A (1.17)
4DPRC det A

The formulae above apply when trA-2 is non-negative. Otherwise the solution is K

0. The matrix A/ det A can be understood as an approximate measure of how much

a lattice cell of given perimeter (area) deviates from a square (cube) configuration,

distributing proportionally less conductivity in directions where particle chains are

more separated and more conductivity in directions where chains are tightly spaced.

Despite its inspiration from the lattice structure, there are several reasons to consider

the applicability of the lattice model to more general particle networks. For one, the

formula purports codirectionality of the fabric and conductivity, i.e. the deviators
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of the two tensors are aligned, implying that the direction of anisotropy of one ten-

sor gives the anisotropy direction of the other, which to a first approximation ought

to match the behavior of general particle networks. Second, the results imply that

conductivity should vanish when trA < 2, which is sensible more generally (though

not strictly) because particles in a percolating chain, as needed to conduct current

across the sample, must have coordination number at least two. Above this thresh-

old, conductivity increases with trA in line with one's basic intuition for more highly

coordinated networks. In reality, islands of monomers, dimers, etc, enable the pos-

sibility of conductivity with an average coordination number less than two because

conductivity will be nonzero with any percolating chain of particles. However, the ge-

ometric assumption underlying this lattice model prevents this from being taken into

consideration. This shortcoming of the model is evident in our numerical results in

figure 1-9 where nonzero conductivity was observed for a small range of coordination

numbers below two.

We are aware of one other fabric-based analytical model for conductive particle net-

works, which was developed by Jagota and Hui [26]. In their work, a uniformity

hypothesis is made with regard to the potential gradient, which results in a conduc-

tivity model that is fully linear in the fabric tensor,

Nv, D2
K = A. (1.18)

2 Re

The above, which can be proven to be an upper-bound on the real conductivity, is for

a two-dimensional system and NV is the particle number fraction (per area in 2D).

In the isotropic case, (1.18) reduces to precisely the Hashin-Shtrikman upper bound

one finds for the limit of thin, conductive bridges (of net resistance R,) connecting

the centers of contacting particles [22, 431. The above model differs from ours most

notably in that the conductivity is not thresholded by the coordination number, the

formula depends explicitly on the particle area fraction as well fabric, and it does not

depend on the fabric determinant.
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1.5 Numerical Simulation

In order to perform numerical experiments and determine the generality of the lattice

model, a large number of random particle networks (packings) must be created. There

are a number of methods to do this already in the granular and particulate matter

literature. See the references for a broad summary of the currently available granular

packing algorithms[4]. Attractive suspensions have been modeled with the Diffusion-

Limited Aggregation (DLA) model of Witten and Sander[271. A common feature of

many of the granular statics methods is that they solve force equilibrium equations for

a system of particles This was not a feature that was required for this study, so these

types of methods were not used, in the interest of saving computational time. Instead,

we developed two methods for creating two-dimensional random contact networks of

particles, and we tested our model against numerous packings generated by each

method. Both methods allow us to influence the resulting anisotropic structure of

the packings.

Algorithm 1: Our first packing algorithm was designed to create a dense random

contact networks of particles. This is in contrast to a later algorithm, to be described

below, which created packings that resulted in much lower-density packings. The

dense packings were created by perturbing a 2D hexagonal close-packing of particles.

This was achieved by placing points into a triangular lattice, adding random noise to

the position of each point, and finally growing each particle as large as possible such

that no particles overlapped. Anisotropy can be influenced by shearing the points

with an affine transformation x' =F x before growing the radii. This process is

described in pseudocode below (Algorithm 1.1). An example of the resulting packing

overlaid by its analogous resistor network is shown in figure 1-5.
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Figure 1-5: Example (using a small number of particles) of a dense particle packing
resulting from Algorithm 1.1.

Algorithm 1.1
Seed L x L box with close-packed points

Perturb points with random noise

Move each point to new location x' by x' = F x

while Not all radii frozen do

Find smallest distance that any particle can grow

Grow all particles by this amount

Freeze radii of particles that come into contact

end while

Algorithm 2: This procedure was motivated by a need to better understand the con-

ductivity of carbon black suspensions in an insulating medium. The self-attraction

carbon black particles leads to fractal particle networks that are electrically percolat-

ing at low volume fraction (below 1 vol%)114].

To produce structures that more closely resemble carbon black suspensions, we devel-

oped our second packing algorithm, which is inspired by the "hit-and-stick" behavior

of the carbon particles. In addition, the new algorithm is able to include the effects

of particle Brownian motion but this is not essential to the algorithm.

First, clusters (single particles at this stage) are seeded randomly into a Ld box, where
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d is the number of spatial dimensions. Next, a linear velocity field is imposed directly

on each cluster's centroid according to

v = -B(x - O)+ VB (1.19)

where 0 is a point in the middle of the original box. This imposed velocity field

serves to pull all of the clusters together. The extra term, VB, is a random velocity

due to Brownian motion. The magnitude of this term can be tuned at runtime. The

matrix B is a d x d matrix that allows us to impose an anisotropic velocity field. This

allows us to influence (but not completely impose) the fabric tensor that results from

this packing method. After the velocity field is imposed, the particle positions are

updated by assuming a time step dt (computed at runtime). Then, the clusters are

checked to determine whether any contacts have been made with other clusters. If

so, the clusters are cohered into a single cluster for all future steps. This process of

imposing velocity, updating positions, and handling contacts is repeated until only a

single cluster remains. The process is outlined in pseudocode in Algorithm 1.2. An

example of a packing resulting from this process is shown in figure 1-6 and a larger

example is displayed in figure 1-8.

The box-counting fractal dimension [161 of the resulting packings was computed in

order to determine if they resembled real-life packings found in experiments. The

fractal dimension of packings produced by this method is approximately d = 1.75.

This was compared against the particle network image in figure 1-1. This network

has a fractal dimension of approximately d = 1.7 0.1. Uncertainty in the mea-

surement is due to the image processing techniques used to identify particles. Based

on these measurements, we are satisfied that this algorithm produces realistic pack-

ings, although more detailed correlation function measurements would be needed for

a firmer conclusion.
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Algorithm 1.2

Seed N clusters (particles) in L' square
while Natiters > 1 do

Move clusters according to v = -B(x - 0) + VB

Locate collisions between clusters
Combine clusters in contact and recompute centroids

end while

Figure 1-6: Example (using a small number of particles) of a packing resulting from
Algorithm 1.2 using a small number of particles.

1.5.1 Aside: Packing dependence on diffusion

While using algorithm 1.2, we noticed that the strength of the diffusion term vB had

a large impact on the final volume fraction of the resulting packing. To explore this

effect in more detail, we defined a non-negative dimensionless parameter F, jokingly

called the "fluffy factor." F is defined as

D
F = (1.20)

where D is the standard diffusion coefficient for Brownian motion. By examining the

definition of F, we see that F = 0 corresponds to pure advection by the sink defined by

B, and F - oo corresponds to the case of pure diffusion. We then performed a series
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Figure 1-7: Packing volume fraction resulting from algorithm 1.2 as a function of F.

of 10000 three-dimensional simulations spanning F C [010]. The resulting volume

fractions were binned by F value and plotted in figure 1-7. The plot shows that the

average volume fraction of a packing decreases with F. Additionally, the deviation

from the mean behavior is extremely small, on the order of 0.5%, indicating that F

is strongly predictive of the volume fraction of a packing.

The utility of this observation rests in the one-to-one correspondence of F and packing

fraction. It provides a means of observing an existing packing and inferring the

strength of diffusion relative to advection during the formation of the packing. This

could, for example, provide some insight into the presence of flow during the formation

of a packing of particles for which the diffusion constant is known. Similarly, it can

provide an estimate of the diffusion coefficient if the flow conditions during packing

formation are known. However it can be used, it is an interesting relationship that

merits further study at a later time.

Applying boundary conditions: In order to apply the solution method described above

to an arbitrary packing of particles, appropriate boundary conditions must be applied.

In these simulations, a prescribed voltage was applied to particles all around the

boundary. This process consists of two steps: first, the boundary must be identified,
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Figure 1-8: Example 10,000-particle packing (from Algorithm 2) with its associated

x-position histogram and the boundary selected by the method.

and second, the linear system must be updated to reflect the known voltages.

For the first packing algorithm, identifying the boundary is a trivial process, since

the particle locations are known a priori. For algorithm 1.2, however, the particle

positions are not known. A boundary can be located visually quite easily at the end

of the simulation process, but performing this step manually would be prohibitively

slow. In order to expedite and automate the simulation process, the following method

was devised to locate the boundary.

First, histograms of the particle x and y positions were separately created. To find

the "left" and "right" boundaries, denoted x- and x+ respectively, the histogram of

x positions was thresholded. The value x- is defined as the smallest x value where

the histogram reaches 50% of its maximum value. The value x+ is defined as the

largest x value that meets the same criterion. The top and bottom boundaries, y+

and y-, are found in the same manner using the histogram of particle y coordinates.

The threshold value 50% was determined emperically to locate the same boundary

that one would identify visually. An example packing and its associated x-position

histogram is shown below in figure 1-8 to demonstrate the efficacy of the method.

Once the location of the boundary has been identified, all particles whose centers fall

less than one radius away from the lines are marked as being "boundary particles".

The expression in (1.6) can be computed easily from the solution of the particle net-
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work, so by judiciously choosing (E), the components of Ke can be extracted. In

two dimensions, the effective conductivity tensor has three independent components,

so three simulations are sufficient to extract all of the components. The K1 com-

ponent can be extracted by setting (E) = e_. This corresponds to evaluating the

integral for an applied boundary voltage of o = -x. The remaining tensor compo-

nents may be similarly extracted by applying specific potential fields at the boundary

and evaluating the summation given in (1.6).

1.6 Tests

The previously described packing algorithms and solution procedures for the cur-

rent/potential have been implemented in Matlab. Algorithm 1.1 was used to create

50,000 separate 400-particle packings. In all of these packings, the F11 and F22 compo-

nents of the affine transformation F equalled 1.0. The F12 component that controlled

the shearing of the packing ranged between 0 and 0.5 in increments of 0.01. Any par-

ticles that were sheared out of the original bounding rectangle were reflected to the

other side of the box to return the packing to a rectangular geometry. We find pack-

ing fractions in the range 0 C [0.65,0.80]. Algorithm 1.2 was used to create 10,000

separate 5,000-particle packings. In the B matrix, the B11 component remained 1.0,

and the B22 component was varied in [1.0, 1.9] in increments of 0.1 to influence the

level of anisotropy of the resulting packings. The approximate range of packing frac-

tions we find is 0 E [0.45, 0.'70]. After applying the previously described procedure to

each packing to obtain the effective conductivity tensor and average fabric tensor for

each packing, the data were analyzed to determine how well the results agree with

the model's predictions for the isotropic magnitude, the deviatoric magnitude, and

the direction of conductivity. If the model is successful, then for any choice of A, the

model should match the ensemble average conductivity of all packings having that

fabric A. Below, for ease of demonstration, we bin the data based on scalar invari-

ants of A, and show either the ensemble average of the conductivity data at different
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choices of those scalars, or simply show scatter-plot comparisons against the full set

of tests when it is more illustrative to do so. These tests are described next, and

thereafter we shall proceed to show how well the lattice model performs compared to

the existing model, equation (1.18).

The isotropic behavior of the conductivity can be investigated by taking the trace

of both sides of (1.16). The average coordination number is the most natural inde-

pendent variable when examining the isotropic behavior, so in addition to taking the

trace of both sides of (1.16), both sides were multiplied by det A in order to make

the right-hand side a single-valued function of trA. This results in (1.21).

R, trK det A = (trA - 2) trA (1.21)

The results of the simulations are scatter-plotted together with the analytical curve

given by (1.21) in figure 1-9. It was found that the analytical solution is usually an

upper bound on the measured conductivity. This can be explained by the fact that

the analytical model was derived from an idealized system where the chains span a

unit cell in a straight line. Since the total resistance of a chain is proportional to

the number of contacts in the chain, it follows that the shortest chain between any

two points is the lowest resistance path, and therefore most conductive. Since the

model was derived from a straight-chain idealization, it implies an upper bound on

the conductivity. This logic is less valid in low-coordinated systems, which have many

disconnected groupings of one or two particles; low-coordinated systems rarely if ever

occur from Algorithm 2 or in actual carbon black suspension networks. In this case,

the trace of the system's fabric can be less than 2 but percolating chains may still

exist to produce small but non-zero conductivity. This effect is evident in the figure

in the data of Algorithm 1.

Next, we determine the extent the analytical lattice model predicts the anisotropy

of the conductivity. To remove the influence of the isotropic behavior, we take the
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deviator of both sides of (1.16). In this case, the most natural independent variable is

the magnitude of the fabric deviator, so the resulting equation was manipulated to be

a single-valued function of this quantity. After manipulation, (1.16) can be written

as (1.22).

(1.22)RKO: Ao det A
lAol (trA - 2 I

where a subscript 0 denotes the deviator of the tensor, and the term A is commonly

referred to as the direction or sign of the tensor A0 . The left hand side was plotted

against |Aol by binning all the test data by lAol and ensemble averaging in each bin.

It can be seen in figure 1-10 that, although there is a large amount of noise in the

measurements, the model captures the average behavior very closely.

The final prediction that must be examined is the notion of codirectionality. The

analytical model in (1.16) predicts that the fabric and conductivity tensors have the

same eigenvectors. To examine this, the angle difference between the fabric and con-

ductivity deviators was calculated, which is equivalent to the (signed) angle between

the eigenvectors corresponding to the largest eigenvalues of the two tensors, denoted

eK and eA. The deviators were chosen because, in 2D, the eigenvector correspond-
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Figure 1-10: Predicted relationship between effective magnitude of the anisotropy of
the conductivity and the invariants of the fabric. Error bars show one standard
deviation.

ing to the positive eigenvalue can be unambiguously chosen. The probability density

function of the angle difference as a function of AO is plotted in figure 1-11. It can

be seen that this distribution is symmetrically centered around zero, indicating that

the fabric and conductivity are strongly codirectional.

Finally, we also compared the lattice model, (1.16), to the existing model by Jagota &

Hui[26l shown in (1.18). For the same 60,000 packings generated using both packing

algorithms, we computed the relative error of the prediction of the trace and the

determinant of the conductivity using each model and plotted the results in figures

1-12 and 1-13. In every case, we found that the new lattice model predictions were

closer to the true values from the numerical experiments than the previous model by

Jagota & Hui. On the other hand, the Jagota & Hui model maintains a strong upper

bound on both invariants of the conductivity tensor, whereas the lattice model is

not strictly an upper bound, as previously discussed. In addition, since the isotropic

part of the Jagota & Hui model is identical to the Hashin-Shtrikman upper bound

on conductivity, Figure 1-12 also indicates that the Lattice Model is falling within

this bound. To be more precise, the lattice model prediction for the isotropic part of
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Figure 1-11: PDF of angle differences are distributed around zero, indicating codirec-
tionality of the fabric and conductivity tensors, as predicted by the analytical model,
i.e. (1.16).

conductivity is always less than the Hashin-Shtrikman upper bound computed for a

given packing.

1.7 Discussion and Conclusions

In this paper we have derived and tested a new model relating the structure of a

packing of particles to its tensorial electrical conductivity. The assumptions implicit

in the model are that the suspending medium is a perfect insulator and that electri-

cal resistance arises only at particle contacts. The structural measurement used was

the fabric tensor, and the model arises from a straightforward analysis of a represen-

tative problem involving a lattice structure. The resulting model takes a nonlinear

functional form, and was tested multiple ways against numerical simulations of many

thousands of random particle packings. The agreement in its predictions of the var-

ious scalar properties and tensorial orientation is significant, especially in light of

the simplistic nature of the fabric tensor being the sole independent variable for the
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Figure 1-13: Plot of the relative error of the determinant of conductivity. (Left)
Relative error from packings created with Algorithm 1.1. (Right) Relative error from
packings created with Algorithm 1.2.

model. In our tests, the lattice model's accuracy was shown to be higher than an

existing conductivity model, a model which requires more structural input data than

the lattice model. While it is definitely possible to write a more accurate model by

including dependences on more structural variables - some of our data spread is

due to the finite nature of the datasets, but some is surely due to modeling error -

the current simplicity of the lattice model is an advantage for its usage in engineer-

ing applications involving flowing suspension networks. Modeling frameworks for the

evolution of anisotropy tensors in flowing media have been developed over the last

decades[20, 17, 351; keeping our model in terms of fabric, then, suggests a path to the

simulation of simultaneous flow and current transfer fields in nontrivial systems by

coupling a fabric evolution rule and a rheology with our conductivity model. Such a
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capability would be key in the targeted application of modeling flow battery systems,

which rely on a flowing conductive suspension that closely resembles the idealized

system that we considered. A second direction for future work would be to apply the

same idea of simultaneous flow and anisotropy modeling to other transport phenom-

ena. For example, incompressible flow through a deforming granular media would

have a similar mathematical formulation, albeit with reversed spatial assumptions

since the impermeable grains play the role of the insulating medium here. The fabric

tensor could be used as a surrogate to describe the structure of the pore space, which

would relate to anisotropic permeability.
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Chapter 2

Suspension Microstructure Evolution

2.1 Introduction

Material anisotropy has been an active area of interest in many fields for decades.

It plays a critical role in such fields as biomechanics 18, 131, plasticity [171, granular

materials [3, 12, 31, 33, 35, 37, 41], liquid crystals [401, and more. Some materials,

such as elastic composites, have fixed anisotropy that does not evolve over time.

However, other materials may develop anisotropy due to deformation, as in the well-

known kinematic hardening plasticity theory of Armstrong and Frederick 117]. Still

others may develop anisotropy due to an externally-applied field, such as an electric

field. This behavior is typical of liquid crystals [40J.

Of particular interest in this study is the flow-induced anisotropy in colloidal sus-

pensions. Suspensions of carbon black, an electrically-conductive form of carbon

that has recently found application in a new class of batteries called "flow batteries"

114, 461. The carbon black creates an electrically conductive network inside the flow-

ing electrolytes of the battery, allowing for much higher reaction rates and overall

system efficiency. However, it has been experimentally demonstrated that the net-

works in these carbon suspensions are highly sensitive to shearing 11, 2, 7, 38]. In
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these studies, the conductivity of the carbon network drops precipitously with shear

and recovers dynamically when brought to rest. This has serious implications for

battery performance if the evolution of network structure and conductivity are not

properly handled during design. Recent studies [39] on optimizing the efficiency of a

flow battery have neglected the effect of a shear-induced drop in suspension conduc-

tivity. In addition to the drop in conductivity, it has been shown that suspensions

become anisotropic during shearing flow, which can lead to anisotropic conductiv-

ity [25, 32, 45]. In this study, we will develop a frame-indifferent constitutive law

for the evolution of a tensor-valued measure of network anisotropy and combine this

model with previous conductivity modeling work to make quantitative predictions of

conductivity evolution during flow.

2.1.1 Necessary Background

To describe the structure of the particle network in suspension, we use a tensor-

valued measure called the "fabric tensor." It was originally devised to describe the

contact network inside a dense granular material [31, 33, 37]. The fabric tensor is a

second-order tensor that can be defined at the particle level with the relation

Neontacts

AP =n(' o n(' (2.1)

where 0 denotes the dyadic product of contact unit normal vectors ni. This is

illustrated in figure 2-1. Often, however, it is more illustrative to examine the average

fabric of a group of particles rather than the particle-level information. The averaging

can be done in
Nparticles

A = N 3 (AP), (2.2)

This definition of the fabric tensor yields a number of useful properties. First, the

trace of A' is equal to the coordination number of contacts on a particle. Con-

sequently, trA represents the average coordination number, usually denoted Z, of
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Figure 2-1: Schematic of particles in contact showing contact vectors n(').

a group of particles. Second, this definition of A results in a symmetric, positive

semi-definite tensor. This means that the eigenvalues of A are non-negative, and the

eigenvectors are orthogonal. This is appealing, because these properties are shared

by the conductivity tensor K.

In previous work [34], we modeled the conductivity tensor of a network as a function

of the average fabric tensor A. To do this, we assumed that a particle network could

be represented by a regular lattice of particles with the same average fabric tensor.

It is simple, then, to compute the effective conductivity and average fabric tensors of

the regular lattice in terms of the lattice dimensions. We then inverted the fabric-

lattice relationship to obtain the conductivity in terms of the fabric tensor directly.

See Olsen and Kamrin 2015 1341 for a more detailed explanation. We found that

K = k (trA 2)2 A. (2.3)
det A

2.2 Evolution Law

Faced with the aforementioned experimental evidence that the contact network of a

suspension changes due to flow, we set out to develop a continuum model that can

accurately characterize the evolution of the network under arbitrary flow fields. Al-

though the fundamental quantity that we model, the particle network, is composed

of discrete units, we make a continuum approximation. In the continuum approxi-

mation, quantities at a point really represent averages of quantities, such as velocity

or fabric, that are defined discretely at much smaller length scales. This is a valid
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approximation since typical applications of these particle networks are several orders

of magnitude larger than the constituents of the networks. As a concrete example,

the particles of carbon black are - 100nm, while the features in a flow battery are

~ 1mm. Therefore, we can use the language of modern continuum mechanics to

describe the evolution of the fabric tensor 1191. We define the velocity gradient L, the

stretching (strain-rate) tensor D, and the spin tensor W below.

L = (2.4)

D sym(L) = (L + LT) (2.5)

1
W = skw(L) = (L - LT) (2.6)

We postulate a fabric evolution law of the form A f(A, L), where A denotes

the material time derivative of A. In order for an evolution law such as this to be

indifferent under a change in an observer's frame of reference, the evolution law must

be of the form

i=WA - AW + f(A, D) (2.7)

where where A denotes the material time derivative of A and f is an isotropic function

of the fabric tensor and the stretching tensor [201. Using the Caley-Hamilton theorem,

Rivlin derived a representation theorem for 3 x 3 symmetric tensors as a function of

two other 3 x 3 symmetric tensors 1361. Using this, we can write the evolution law as

+ AW - WA cC11+ c 2 A + c3D + 4A2 + c5 D2 + c(AD + DA)

+c 7 (A 2 D + DA 2 ) + c8(AD 2 + D2 A) + c9(A 2D 2 + D2 A 2 ) (2.8)

In this expression, the coefficients ci are scalar functions of 'A,D, a full set of simul-
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taneous invariants of A and D .

trA, trA2 , trA3

trD, trD 2 , trD 3  (2.9)

trAD, trA2D, trAD 2 , trA 2 D2

The left-hand side of (2.8) is known as the co-rotational time derivative of the tensor

field A. In the solid mechanics literature, it is frequently referred to as the Jaumann

rate, and is given the symbol A. In general, the left-hand side can be any objective

time derivative of the tensor field, and it can be shown that they are all specializations

of the Lie derivative [291. We chose to use the co-rotational time derivative so that

we, as modelers, retain full control over the evolution of A in its principal frame.

Other objective rates, such as the contravariant or covariant time derivatives, contain

terms that would contribute in this way 1191.

2.2.1 Specialization of Constitutive Equation

The fully general form of the evolution law, shown in (2.8), has a large number of

scalar functions that must be specified. In order to reduce the risk of overfitting our

model; we chose to set ci - 0 for i > 4. This leaves us with all of the tensorially

linear terms and their associated coefficients.

A= c 1 1 + c 2A+ c 3D (2.10)

The task of modeling, therefore, is reduced to choosing the coefficients ci, c2, and c3

in a physically meaningful way.

Physical Intuition and Constraints

By examining the effect of each term on the evolution of the fabric, some intuition

and observation can be applied to reduce the space of possible coefficients ci. There
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are some key observations that must be qualitatively matched before any more de-

tailed modeling work can proceed. First, at steady state, the fabric will be positive,

isotropic, and unchanging in the absence of flow. This requires that any anisotropy

induced by flow relax away over time. Second, contacts are formed on the compres-

sive axis of shearing flow and broken on the extension axis. This was experimentally

observed by Hoekstra et al.1251. Lastly, we observe that the electrical conductivity of

a suspension decreases with increasing shear rate. However, the conductivity never

reaches zero. Since we have derived a model, (2.3), for electrical conductivity in terms

of the fabric tensor, we can use this to put further constraints on the evolution law.

We can translate these observations directly into constraints on the coefficients. The

condition that the fabric relaxes to an isotropic steady state in the absence of flow

implies the following two constraints.

c1(IA,D) >0 VA,D (2.11)

C2(IA,D) < 0 V A,D (2.12)

If either of these constraints were violated, then the fabric would either decay away to

a non-positive isotropic state or diverge. The precise nature of the decay or divergence

depends on the functional forms of ci and c2 and will be examined in greater detail

in the following sections where these functions are specified.

The sign of c3 can be identified from the second observation. By examining the pure

shear evolution of A in the principal basis of D, it becomes clear that in order for

the observations in Hoekstra[25l and Morris 1321 to be correctly represented, c3 must

obey

C3(IA,D) <0 V A, D. (2.13)

A third constraint can be formed from the experimental observation that conductivity

never entirely disappears, even at high shear rate[2]. Based on the conductivity model

assumption in (2.3), this implies that trA remains above 2 at all times. To find the

44



conditions on the evolution law coefficients that must be true, we take the trace of

(2.10) and solve for the steady-state trace of the fabric trA,,. The flow is assumed

to be incompressible, so trD = 0.

0 = 3 c, + C2 trA,8

trA, =- > 2
C2

cl 2
- - ->- VA,D (2.14)

c 2  3

The final constraint is of mathematical origin. By closely examining the definition

of the fabric tensor in (2.1), it quickly becomes evident that no diagonal component

of A can have a negative value. A physical interpretation of this property of A

is that it is not possible to have a negative number of contacts in any principal

direction. Consequently, this condition also prevents any negative diagonal values

of conductivity, and in so doing prevents negative dissipation, which would be a

violation of the second law of thermodynamics. A constraint can be formed from

this by examining the steady-state values of the diagonal components of A in an

incompressible, spin-free flow (i.e. W = 0).

O = c 1 1 + c 2A+ c 3 D

1
A = -- (c11 + c3D)

C 2

Without loss of generality, we can examine the component Al and set it to be > 0.

1
An = -- (c1 + c3DI) > 0 (2.15)

C2
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Again, without loss of generality, we can take D to be

A 0

D= 0 A 2

0 0

0

0

-(A, + A2)]

Using the identity ND= D/IDI, where ND is a unit tensor giving the direction of D,

we can rewrite (2.15) as

1

C2 (
+ c3IDI A) >0

IDI -

Using our knowledge that - > 0, we can say that the argument inside the paren-
C2

theses in (2.17) is > 0. Next, we maximize the value of A1/DI to constrain the value

of c . We can compute IDI directly from (2.16).

D= V2 + A+ A, A2 (2.18)

By factoring IA, out of (2.18), one can minimize the resulting expression in terms of

A2/Aj.

min v1 AI
A2/11

1 A+ ( 2 (2)+1 A,

This, in turn, maximizes A/IDI, thus yielding a constraint on c3 . The resulting

expression is

c < 3 I sign(A)
C3

Note that the left-hand side of (2.20) is negative. Thus, when A1 < 0&-which is the

condition for compressive flow in this direction-the condition is trivially satisfied.

When A1 > 0, we obtain a constraint on the relative values of ci and c3 in terms of

IDI. A simpler statement of this constraint is

C _ -DI.
C3 3

(2.21)
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The following sections will present two specializations of the scalar functions ci that

satisfy the model constraints.

Linear Model

The first specialization of the scalar functions ci was constructed by finding the sim-

plest set of functions that satisfy all constraints given by (2.11), (2.12), (2.13), (2.14),

and (2.21). The set of functions chosen is

ci (a, + a2IDI) (2.22)

C2= - (b1 + b2 1DI) (2.23)

C3 = const < 0 (2.24)

where a,, a 2, bi, b2 are positive constants that must be fit to experimental data. The

constraints can be applied to these functions in order to derive constraints on the new

parameters. The resulting constraints, written in compact form, are

2
a1 > -bi > 0 (2.25)

3
2

a2 > -b 2 > 0 (2.26)
3

a2 ;> - c3 > 0 (2.27)

With these functions for ci, c2 , and c3 , we can write out the first fully-specified

evolution law for the fabric tensor, termed the "Linear Model."

A = (a, + a2 1DI) 1 - (b1 + b2ID1) A + c3 D (2.28)

The name "Linear Model" communicates the fact that ci and c 2 are linear functions

of |D|. Later model refinement leads to nonlinear functions, so this distinction is

convenient.
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By writing (2.28) in a different way, we can assign some physical significance to groups

of the parameters. Consider the following grouping:

A = (all - blA) + (a21 - b2A) IDI+ c3D (2.29)

The first observation is that the first group on the right-hand side of (2.29) is the

only part that does not depend on the flow. This term represents the influence of

fabric rearrangement due to non-flow-related stimuli, such as thermal interactions.

By noting the similarity of the evolution law in the absence of flow and the analogous

scalar ordinary differential equation A= a - bA, we can see that this model predicts

an exponential decay of fabric to its steady-state value with a time scale set by 1/bi.

The second and third terms in (2.29) reflect the influence of flow on the fabric re-

arrangement. Similarly to how we examined the evolution behavior under thermal

rearrangement, we can note that the model predicts an exponential decay to steady

state, even in the presence of flow. However, when the flow terms are dominant, the

time scale for this decay is 1/(b2 1DI). The implication of this is that steady state

is reached at a different rate when particle motion is driven by flow rather than by

thermal motion alone. This is a key prediction of the model that will end up being

verified by our experiments. Results demonstrating this phenomenon are shown in a

later section.

Next, we take the trace of both sides of (2.29) to gain more insight into the significance

of the model parameters. The result, after some rearrangement, is

trA = b1 (+a trA + b21DI 3a2 - trA (2.30)

From this expression, we notice two very important quantities. First is the group 3a.

This is the steady-state value of the trace of A when there is no flow. We call this the

static coordination number, Zo. Physically, this is the average number of contacts

per particle at steady state in the absence of shear. Similarly, we can see the group

3a2 in the second term. By taking the limit of (2.30) as IDI -+ oc, we can see that
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this is the value of the trace of A at infinite shear. We call this the infinite shear

coordination number Z,,. A quick re-examination of the model constraints (2.25) and

(2.26) reveals that these quantities will never fall below 2 with a properly-chosen set

of parameters.

Nonlinear Model

The second specialization of the scalar functions ci, was created after analyzing the

results from the Linear Model. In the results shown later in figure 2-6, we noticed

that the predicted decay back to static steady-state did not agree well with the

experimentally observed decay. Motivated by this, we employed the discrete particle-

aggregation code that we used in Olsen and Kamrin [341 to probe the nature of the

rate of fabric evolution over time in the absence of flow.

In the code, 10,000 spherical particles were seeded into a three-dimensional box with

periodic boundaries such that the volume fraction of particles was 1.5%, which was the

same volume fraction as our physical experiments. Next, the particles were allowed

to diffuse simultaneously. Particles and clusters were assigned velocities such that

the distance that a cluster moved in a single time step was drawn from a Gaussian

distribution with variance DAt, where D is the diffusion coefficient, and At is the

time step used in the simulation. Any clusters that came into contact were joined

permanently, in order to mimic the "hit-and-stick" behavior that is typical in diffusion-

limited aggregation [28]. As clusters grew, the diffusion coefficient of the cluster was

adjusted according to D = DO/N, where Do is the diffusion coefficient for a single

particle, and N is the number of particles in a cluster. This scaling arose from the

combination of the drag on a rod in Stokes flow 121],

FD 87rp aFD r ir (2.31)
ln(2a/b) + 0.5

where a is the rod length and a/b is the rod aspect ratio, and the Stokes-Einstein
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relation [151,

D MkBT (2-32)

where M is the mobility of a particle defined as M = V/FD. Rearranging, we can

say that

D kBT (2.33)
pta

From (2.31), we can say that the mobility is approximately inversely proportional

to the length of the rod, with a weak nonlinear correction due to the aspect ratio.

Based on (2.32), the diffusion coefficient for a particle cluster is approximately in-

versely proportional to its length scale. The precise nature of the proportionality is

geometry-dependent. We take the length scale associated with our clusters to be the

total particle length of the cluster. That is to say, a = N Dp. Thus, when scaling

diffusion coefficients in the code, it would be sufficient to scale by the inverse of the

number of particles in a cluster to obtain a qualitatively correct relationship. The

code already makes many simplifications from a real physical system, so we feel that

a more precise scaling of the diffusion coefficient would not be informative. More

detailed calculations would require a more realistic particle solver such as a Stokesian

Dynamics code [9, 10].

The code allowed us to examine the evolution of the trace of the fabric tensor over

time. This plot, shown below in figure 2-2 shows that the decay to steady state is

linear when plotted in log-log space. This conclusively shows that the evolution of

trA is not exponential. Rather, it follows a power law that can be fit by computing

the slope of the linear portion of the plot. The power law that fits this data is

log(trA, - trA) = -0.745 log(t) + 3.249 (2.34)

Armed with the knowledge that the diffusion-driven part of the fabric evolution re-

sults in power-law, not exponential, decay, we set out to modify (2.28) to give the
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Figure 2-2: Log-log plot of trA, - trA vs time shows power-law nature of trA decay

to steady state.

desired response. Our pre-existing knowledge about the behavior of the Linear Model

provided a strong jumping-off point for the new model. The key observation is the

form of the non-flow-dependent terms in (2.30). Ultimately, the exponential decay

is due to the fact that - trA) is raised to exactly a power of 1 rather than

some general power. To create the desired behavior in the trA evolution, we modified

(2.28) to be the following

A = (a, (Zo - trA)" + a2 ID )1 - (b1 (Zo - trA)n + b2JDJ)A + c3D (2.35)

where n is a new model parameter that controls the power-law nature of the trA

decay. The parameters a,, a 2, bi, b2, and c 3 all still obey the constraints listed in the

Linear Model section in (2.25), (2.26), and (2.27). It can be recognized by comparing

the form of (2.35) to the form of (2.10) that

c1 = (a, (Zo - trA)' + a2ID 1) (2.36)

C2 = -(b1 (Zo - trA)n + b2|DJ) (2.37)

C3 = const < 0 (2.38)
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In the same way that we call (2.28) the "Linear Model," we call (2.35) the "Nonlinear

Model" due to the fact that the scalar functions ci and c2 are now nonlinear functions

of 'A,D- It should be noted that the Nonlinear Model reduces to the Linear Model in

the case of n = 0.

We can now connect the power law observed in figure 2-2 to the new parameter n by

solving for the evolution of trA in the absence of flow. By taking the trace of (2.35)

and rearranging terms, we obtain

tri b1 (Zo - trA)n"l + b2 JDI (Z, - trA) (2.39)

where Zo and Z, are defined the same as the groups in (2.30). Taking the case where

DI 0, we now have an ODE that yields a power-law decay to steady state for trA.

Integrating this equation, we obtain a relation for the static recovery of trA.

(Zo - trA) = (n b1 t)-1 /" (2.40)

By plotting (2.40) in log-log space, we notice that the slope of the line would be

-1/n. Comparing this to (2.34), we can see that n = 1.34. This value for n will be

used in comparisons to experimental data in upcoming sections, and we show that it

produces data fits that are far superior to those of the Linear Model.

Note that there were other ways to achieve the desired ODE for trA in the absence

of flow. One such way was to simply multiply the entire right-hand-side of (2.28) by

(Zo - trA)'. However, this suffers from the unjustifiable weakness that if trA = Zo,

then nothing-not even flow-can ever change trA. This is not a feature that we

wanted to build into the model, so the only way to keep a functional form similar to

(2.28) and reproduce the power-law decay of trA was to multiply (Zo - trA)" into

only the non-flow-dependent terms.
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2.3 Methods

In this section, we describe the physical setup used to conduct conductivity experi-

ments and the numerical procedures used for fitting the model.

2.3.1 Experimental Setup

The system studied is a carbon black suspension prepared in the absence of any

dispersant by mixing carbon black particles (Cabot Vulcan XC72R of specific gravity

1.8) in a light mineral oil (Sigma-Aldrich, specific gravity 0.838, viscosity 20 mPa-s)

as described in reference 1181 at a weight concentration of 8%w/w. The suspension

was sonicated for one hour and mixed vigorously prior to each test to minimize the

effects of sedimentation.

Simultaneous rheo-electric measurements were performed using a custom setup on

an ARG2 torsional stress-controlled rheometer with a parallel plate geometry. This

custom setup uses liquid metal (EGaIn) to create a low-friction continuous electrical

connection to the rotating shaft [23]. DC potentiostatic tests with < 100mV were

performed using a Solartron S11287 potentiostat. The plates (d 40mm, Ra=

0.10pm), acting as a two-electrode system, are coated with gold to reduce contact

resistance. All rheo-electric tests were performed at gap h - 0.75mm and T =

26 O.3C. A schematic of the device used to perform the rheo-electric measurements

is shown in figure 2-3.

2.3.2 Experiments Performed

Two sets of experiments were performed using the setup descrbed in section 2.3.1.

The first was a set of steady-state current measurements taken at nominal shear

rates ranging from jo E [0, 300] s-1. At each shear rate, the current was allowed to

equilibrate for ten minutes before the measurement was recorded to ensure that it had
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Figure 2-3: Schematic of device used to perform rheo-electric measurements.

relaxed to its steady-state value. The shear rates were swept in descending order to

mitigate the effects of complications that arise at low shear rates, below %O ~ 20s-1.

A more detailed discussion of these phenomena may be found in Helal et al 1231. The

purpose of this test was to provide a set of steady-state current data to which the

evolution laws (2.28) and (2.35) could be fit.

The second dataset was a collection of transient ramp tests wherein current data was

collected continuously for the duration of the test. Each ramp test is characterized

by a starting nominal shear rate 1, and ending nominal shear rate 2, and a ramp

time tR. For each test, a shear rate of -1 was applied for five minutes. Then, the

shear rate was linearly ramped from '1 to 2 over a duration of tR. Next, the shear

rate was held at '2 for five minutes. Finally, the plates were abruptly stopped,

imposing y = Os-I. Current measurements were collected for an additional fifteen

minutes. At the beginning of each test, the sample was pre-sheared at = 100s1 for

5 minutes and left to equilibrate for 20 minutes prior to the start of data collection.

This ensures that any "memory" of previous tests is removed and that all tests have

consistent initial conditions. The purpose of these tests was to demonstrate that the

evolution law correctly predicts not only the steady-state current values, but also the

transient dynamics of transitions between flow rates.
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2.3.3 Model Fitting

The Nonlinear Model has six parameters that govern the fabric evolution, plus one

parameter for the conductivity model (2.3). As mentioned before, the Linear Model

can be taken as a special case of the nonlinear model, with n = 0. These parameters

must be chosen in a sensible way before the model may be used to quantitatively pre-

dict the evolution of fabric, and therefore conductivity, during flow. These parameters

were chosen by fminunc, a Matlab nonlinear optimization routine, to minimize the

difference between predicted and measured electrical currents. The predicted current

is calculated by evaluating the integral

I(t) = 27r R z(A(r, 0) r dr (2.41)

where Kaz is the component of conductivity perpendicular to the plate, 0 is the

applied potential difference across the plates, h is the plate separation, and R is the

plate radius. The key part of this expression is that the fabric tensor is a function of

radial position; each point along a radius is subjected to a different shear rate due to

the applied torsional motion, and thus evolves differently.

The form of (2.41) can be modified slightly in order to solve for the current at steady

state for a given nominal shear rate :yo.

ISS(o) = 27r Kz (As (M)) r dr (2.42)

In the above equation, A, is the steady-state fabric tensor, which is a function of

the local shear rate ' = (r/R)%O. Approximating this integral with a Riemann sum

requires the computation of A, at many values of r. A,, can be computed using the

procedure laid out in algorithm 2.1.
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Algorithm 2.1 Computation of A, for given simple-shear strain-rate '

Input: Simple-shear strain-rate '.

Output: Steady-state fabric A,,

Construct L = i ® .

Define D = 1 (L + LT), W = j (L - LT).

Solve nonlinear equation (2.39) for trA,.

Compute ci and c2 from trA,, and IDI using (2.36), (2.37).

Use algebraic solution of (2.10) with A 0 to find A,.

To fit the model, we minimize the squared error between the model prediction and

experimental values. The procedure for calculating this error is given in algorithm 2.2.

Algorithm 2.2 Objective function for evolution law optimization routine

Input: a1 , a2, bl, b2 , c3 , n, ki

Output: Squared error = Score

Score <- 0

for all %,j E {Experimental shear rates} do

Compute I8,(jO,j) using (2.42) and algorithm 2.1.

Compute error between model and experiment: err - (Is( O',) _- Iexp(yoi)) 2.

Score - Score + err

end for

return Score

The following algorithm outlines the high-level procedure for fitting the evolution laws

(2.28) and (2.35) to a set of experimental data. It relies heavily on the preceeding

procedures laid out in algorithm 2.1 and algorithm 2.2.
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Algorithm 2.3 Procedure for fitting (2.28) and (2.35) to experimental data

Input: List of {o, Ie,,} pairs from steady-state experiments

Output: Evolution law coefficients {ai, a2, b1 , b2, c3 , ki}

Estimate b1 based on relaxation time of transient ramp tests.

Choose n to match discrete particle simulations (see section 2.2.1).

Call fminunc with an objective function given by algorithm 2.2.

{ai, a2, b2, c3 , ki} <- Output from fminunc.

Verify that constraints (2.25), (2.26), (2.27) are satisfied.

Adjust b1 estimate and repeat until %0 = 0 transient is well-matched.

To simulate the electrical current for a transient test, the evolution law (2.35) must

be directly integrated at each point on the radius where the conductivity will be

evaluated. To do this, one must first construct a function for the nominal shear rate

as a function of time, yo(t). This can be constructed directly from the experimental

protocol for the test that you wish to replicate. The evolution law was numerically

integrated using the 4th-order Runge-Kutta method implemented in the Matlab func-

tion ode45. After the fabric is known for all time at each point along the radius, (2.41)

can be approximated directly using a Riemann sum to give the predicted current as

a function of time. This process was used in the last step of algorithm 2.3 as a way

to test the quality of the b1 estimate.

2.4 Results

2.4.1 Linear Model

Model Parameters

The model-fitting procedure described in section 2.3.3 was carried out using the Linear

Model. The resulting parameters are shown below in table 2.1. The parameters given
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satisfy the physical constraints of the model given by (2.25), (2.26), and (2.27), so

they are considered to be a valid set of parameters.

Table 2.1: Parameters used to fit the Linear Model to the experimental data

a1 a2 b1 b2 c3 n ki

0.0393 0.0014 0.0133 0.0013 -0.0011 0 0.0241

Steady-state Experiments

The following plots show the results of the linear model fit to the steady-state ex-

periments described in section 2.3.2. The results show that the linear does a good

job predicting the current measurements in the experiment. However, the model does

undershoot some of the current measurements around the Io C (50, 200)s- 1 range and

overshoot beyond that point. Figure 2-4 shows the fit of the Linear Model to experi-

mental data. Figure 2-5 shows the predicted transverse conductivity in a hypothetical

simple shear experiment.
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Figure 2-4: Linear Model fit
shear rates.

of steady-state current measurements at different nominal
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Figure 2-5: Linear Model prediction of steady-state transverse conductivity as a func-
tion of shear rate in simple shear.

Transient Ramp Experiments

The Linear Model was tested to see how well it predicted the transient ramp experi-

ments described in section 2.3.2. In these experiments, samples were subjected to the

previously-described ramp protocol with the sets of parameters shown in table 2.2.

Each experiment was simulated using the Linear Model, and the results are shown

in figures 2-6, 2-'7, 2-8, 2-9, 2-10, and 2-11. The figures show the current, normalized

by the static current measurement, plotted as a function of time. The transitions

between different shear rates are quite noticeable from the shape of the curve. The

initial plateau is the normalized steady-state current at A1 (A1 = 50s- 1 in all cases).

The second plateau is the steady value at A2. The transition between the first and

second plateaus is the ramp period, and spans a duration of 30, 60, or 300 seconds

depending on the test. The region after the second plateau is the abrupt stop to zero

shear. It is from this region that the time scale for the relaxation, given by bi, is

determined. See section 2.3.3 for details on this procedure.

The figures show that the Linear model predicts the experiment quite well for most

of the curve. The most noticeable breakdown in the quality of the fit is in the last
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Table 2.2: Parameter sets for the transient ramp experiments.

''i [s-i] 1 T2 [S-1] ta [s]
50
50
50
50
50
50

100
100
100
200
200
200

30
60

300
30
60
300

segment of the experiment when the conductivity is relaxing back to its static value.

Here, the shape of the relaxation is not correct. As mentioned in section 2.2.1, the

fabric relaxation in the Linear Model is exponential. This is inconsistent with the

experiments, and is most noticeable here. The mismatch in these results was the

factor that prompted the development of the Nonlinear Model.

The linear model does, however, verify a key prediction from section 2.2.1. Namely,

the difference of equilibration times during flow and under static conditions. Recall

that the model predicts that the time scale for fabric relaxation under flow-dominated

conditions is 1/(b2IDI), and the time scale for diffusion-driven relaxation is 1/bi. The

impact of this is most easily seen when %O changes from 50s-1 to 100s- 1. The con-

ductivity takes much less time to equilibrate in this transition than for the transition

to 'o = 0.
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Figure 2-6: Linear Model prediction of normalized current as a function of time during
30 second ramp experiment with = 50s-1 and 2 =100s-1 .
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Figure 2-7: Linear Model prediction of normalized current as a function of time during
60 second ramp experiment with 41 50s- and 2= 100s-1 .
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Figure 2-8: Linear Model prediction of normalized current as a function of time during
300 second ramp experiment with j1 = 50s-1 and 2 = 100s-1.
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Figure 2-9: Linear Model prediction of normalized current as a function of time during
30 second ramp experiment with '1 50s-1 and Y2 =200s-i.
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Figure 2-10: Linear Model prediction of normalized current as a function of time
during 60 second ramp experiment with '1 50s- and 'y2= 200s.
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Figure 2-11: Linear Model prediction of normalized current as a function of time
during 300 second ramp experiment with '1 = 50s 1 and '2 = 2003-1

2.4.2 Nonlinear Model

We also fit the same experimental data with the Nonlinear Model to see the difference

in performance between the two models. Parameters found to fit the data are shown
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below in table 2.3. Recall that the n parameter was determined a priori using out

discrete model, so the number of parameters we must determine through experimental

fitting is the same as for the Linear Model. As with the Linear Model, the constants

satisfy the constraints (2.25), (2.26), and (2.27), so this is a valid set of parameters.

These parameters were used to generate all of the following plots for the Nonlinear

Model.

Table 2.3: Parameters used to fit the Nonlinear Model to the experimental data

a,

0.0137

a2

0.0025

b0

0.0040

b28

0.0028

C3

-0.0020

n

1.34

ki

0.022

Steady-state Experiments

The following plots show the results of the Nonlinear Model fit to the steady-state

experiments described previously in section 2.3.2. Figure 2-12 shows the fit of the

Nonlinear Model predicted current to experimental data. Figure 2-13 shows the

transverse conductivity predicted in a hypothetical simple shear experiment. The

results indicate the Nonlinear Model does an excellent job predicting the steady-state

current measurements given a suitable set of parameters. This model succeeds in

capturing the steady-state behavior over the entire tested range of %0, whereas the

Linear Model gets close but is not able to quite capture the right behavior.

64



0.025

0.02

0.015

0.01!

0.005'
0 50 100 150 200 250 300

Figure 2-12: Nonlinear Model fit of steady-state current measurements at different
nominal shear rates.
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Figure 2-13: Nonlinear Model prediction of steady-state transverse conductivity as a
function of shear rate in simple shear.

Transient Ramp Experiments

The Nonlinear Model was tested to determine how well it predicted the transient

experiments outlined in section 2.3.2. The datasets used here were the same as those
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compared against the Linear Model in section 2.4.1, with the ramp parameters given

in table 2.2. Like before, the results shown in figures 2-14, 2-15, 2-16, 2-17, 2-18, and

2-19. show the current normalized by the static current measurement plotted as a

function of time.

The figures show that the Nonlinear Model is capable of making accurate, quantita-

tive predictions for the transient behavior of the normalized current. The model and

the data are virtually indistinguishable over the majority of the experiment, and the

model even reproduces the relaxation behavior correctly. This is a marked improve-

ment over the Linear Model, which proved unable to reproduce this key feature.

I.

200 400 600
Time (s)

Experiment
Model

800 1000 1200

Figure 2-14: Nonlinear Model prediction of normalized current as a function of time
during 30 second ramp experiment with i, = 50s- 1 and Y2 = 100s- 1.
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Figure 2-15: Nonlinear Model prediction of normalized current as a function of time
during 60 second ramp experiment with y1 50s- 1 and j 2 = 100s1.
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Figure 2-16: Nonlinear Model prediction of normalized current as a function of time
during 300 second ramp experiment with 41 50s-1 and 12 = 100s 1 .
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Figure 2-17: Nonlinear
during 30 second ramp
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Figure 2-18: Nonlinear Model prediction of normalized current as a function of time
during 60 second ramp experiment with 1 = 50s-1 and 2 = 200s- 1 .
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Figure 2-19: Nonlinear Model prediction of normalized current as a function of time
during 300 second ramp experiment with 1 = 50s-1 and A2 = 200s-1.

2.5 Discussion and Conclusions

We have continued our previous work of modeling the electrical conductivity of sus-

pensions. In the previous study, we derived an elegantly simple relationship between

the conductivity tensor K and the fabric tensor A given, in three dimensions, by

K - ki (trA - 2)2K k A.det A
(2.43)

In this work we have proposed a frame-indifferent constitutive equation for the evo-

lution of the fabric tensor under flow. We proposed that the evolution of fabric is a

function of the current fabric state and the local velocity gradient of the flow.

A = f(A, L) (2.44)
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Using standard arguments from continuum mechanics and by making some simplify-

ing assumptions, we arrived at the following general form for the evolution law

A =c 1 1 + c 2 A+ C3 D (2.45)

where the coefficients ci, c2, and c3 are scalar functions of the joint invariants of A

and D, and A denotes the co-rotational time derivative of A.

From here, we proposed two evolution laws that are similar in character but yield

important differences when simulating experiments. First, we proposed the Linear

Model, so named due to the function coefficients' linear dependence on the invariants

of A and D.

A = (a, + a2 |DI) 1 - (b1 + b2IDI) A + c3D (2.46)

This model did a good job predicting the steady-state behavior of the suspension

conductivity, but its predicted transients did not match experiments very well. The

second proposed model is the Nonlinear Model, predictably named due to its function

coefficients' nonlinear dependence on the invariants of A and D.

A (ai (Zo - trA) + a2ID 1) 1 - (b 1 (Zo - trA) + b2IDI) A + c3D (2.47)

In this model, a single new parameter, n, was introduced with the intent of modifying

the transient behavior of (2.46). It was selected to match computer simulations, and

it was hoped that this agreement would lead to better prediction of the experiments.

Both models were fit to experimental data using the procedure outlined above in

section 2.3.3. While both models do a good job predicting the measured current in

the experiments described in section 2.3.2, it is the Nonlinear Model that clearly is

better able to capture the dynamics of the system.
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2.5.1 Future Work

With the fabric-conductivity and fabric-evolution models in hand, we now have a pow-

erful tool for designing systems which rely on flowing, electrically-active suspensions.

The primary use for the models is to design a semi-solid flow battery 114, 24, 39],

which depends heavily on such a suspension to transport electrical charge within the

flowing electrodes. Given that the shear-induced conductivity loss is quite strong at

even moderate shear rates (eg, near 66% drop in conductivity from its static value

at = 150s1 in the system studied, as shown in figure 2-13), the particle network

evolution can have a severe impact on the performance of the battery during flow.
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Appendix A

Selected Source Code: nparticle.cpp

The following is a listing of the main function in nparticle.cpp, the discrete particle

aggregation code used throughout this work. Supporting data structures are not

included since the main logic of the program can be grasped without the details of

the implementation underlying data structures such as the Cluster object or utility

routines such as write data file. Note, this code will not compile without these

supporting functions.

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

<stdio . h>

<stdlib.h>

<sys /time .h>

<iostream>

<vector>

<cmath>

<signal .h>

<st r in g .h>

<random>

<string>

<limits >
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#include "cluster.hpp"

#include

#include

" particle utils .hpp"

" PackingParameters . hpp"

using namespace std;

/ global stuff

particlet *P;

PackingParameters

void signal _handler (int signum)

char buf[128;

memset (buf ,

sprintf (buf,

() ) ;

'\O' , 128) ;

"%s _ interrupt" params . getPackingFname () . c

vector<contact _t> contacts;

calculate _ contacts (P,

write _ data _ file (P, pa

exit (signum) ;

params. getNParticles () ,

rams. getNParticles () , co

contacts) ;

ntacts , buf

int main(int

if (argc >=

argc , char **argv)

2) {

params. parseConfigFile (argv 11);

}

pararns. print (cont );
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char imgnamebuf[ 1 281;

memset (imrgnamebuf , '\O , 128)

char datanamebuf[128l;

memset (datanamebuf, '\O' , 128)

7/set up signal handlers

struct sigaction sa;

sa . sa_ handler = &signal _ handler;

sa. sa _ flags = SA_RESTART;

s ig fills e t (&sa .sa_mask) ;

if( sigaction (SIGTERM, &sa, NULL) -1) {

perror (" error : could-not-connect-SIGTERM")

}

if (sigaction (SIGINT, &sa, NULL) -1) {

perror (" error :-could-not-connect-SIGINT")

}

P new particle _t [params. getNParticles () j;

vector<Cluster*> clusters ;

double L = params. getBoxRatio (*pow(params. getNParticles ()

1.0/params. getDimensions () )*params. getParticleRadius ()

/seed rand w/ usec of current time

struct timeval tv ;

gettimeofday(&tv, NULL);

default _ random engine generator ( tv . tv _usec)
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uniform real -distribution<double> uniformRand (0 ,1.0) ;

//need global bounding

double globalxmin = L;

double globalxmax

box for image writing

-1;

double globalymin = L;

double globalymax = -1;

for(int i=O; i<params. getNP articles()

PI i . pos.x

P[ i J. pos .X

PI iJ. pos .y Ph i* 0s . Z

L*uniformRand (generator) ;

if (params. getDimensions () >=2)

PIi j. pos.y = L*uniformRand(generator);

if (params. getDinensions () >=3)

PI i . pos. Z L*uniformRand (generator);

P[ i J.R = params . getParticleRadius () ;

clusters .push-back( new Cluster(P,

globalxmin

]. pos .x;

globalxmax

1. pos.x;

globalymin

1.pos.y;
globalymax

I. pos.y

(globalxmin

(globalxmax > P[ i . pos . x)

(globalymin < P[iI.pos.y)

( globalymax >P ii. pos .y)

? globalxmin

? globalxmax

? globalymin

? globalymax

}
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int iter=-0;

int imgiter=0;

bool progress [101;

memset(progress , f

bool movement = tr

compute

double magB

"stable" time step

= abs (params. get Bxx () )+abs (params . get Bxy () )+abs

(params. getBxz()) +

abs (params . getByx ) +abs (params. getByy () )+abs (params.

getByz()) +

abs (params . getBzx ) +abs (params. getBzy () )+abs (params.

getBzz () ) ;

double dt= numeric

i f (magB !:

limits <double >:: i n f in i t y ()

0.0)

dt = params. getParticleRadius ()/L/magB;

use randCoeff (fluffy factor) to compute

diffusion constant

double DiffConst params. getRandCoeff() *

params. getParticleRadius ()*params. get ParticleRadius (*

magB;

if (DiffConst

DiffConst =

0)

1;

T

alse , 10) ;

ue;

a real



stable timestep is min of convection and diffusion

stable steps

dt = min(dt, 0.1*params.getParticleRadius (/DiffConst);

double BrownianVariance = dt*DiffConst;

normal_ distribution<double> normalRand (0.0, sqrt (
BrownianVariance)) ;

vector<string> vtkFnames;

vector<int> vtkTirnes;

int nparticles = params. getNP articles ();

while( clusters . size () > params. getClusterCutoff() &&

movement) {

/jcheck writing image

if(iter % params.getImageFreq() 0 && params.

getWritelmages () ) {

if (params . getOutputMode () PackingParameters

TMAGEOUTPUT) {

double diffx = globalxmax-globalx min;

double diffy = globalymax-globalymin;

double mindiff = (diffx < diffy) ? diffx diffy;

int maxdim = (params. getlmageWidth ()>params.

getlmageHeight () ?

params. getlmageWidth () params. getlinageHeight ()

sprintf(imgnanebuf, "%s_%06d.png",params.
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getImageBasename () . cstr () , imgiter ) ;

write _image file (P, params. getNParticles ()
params . getImageWidth () ,

params. getImageHeight ()
globalxmin ,

globalymin ,

maxdim/mindiff,

imgnamebuf);

}
else if (params .getOutputMode () PackingParameters

VK_OUTPUT) {
sprintf(imgnamebuf, "'s_%06d.vtu",params.

getlmageBasename () . cstr () , imgiter)

vector<contactt> contacts;

calculate _contacts (P, nparticles contacts)

write-vtk file (P, nparticles , contacts , imgnamebuf)

vtkFnames. emplace_back ( s t ring (imgnamebuf));

vtkTimes . push _back( imgiter)

}
++imgiter;

}

/>1move clusters

movement = false;

double clusterxmin=L;
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double clusterxmax=-1;

double clusterymin=L;

double clusterymax=-1;

for (unsigned i=0; i<clusters . size () ; ++i) {

vector t v;

v.x = v.y = v.z = 0;

vector _ t X;

X.x (clusters[ i->centroid .x - 0.5*L)

X.y (clusters IiI->centroid.y - 0.5*L)

X. z (clusters [ iI->centroid .z - 0.5*L)

v.x

-params. getBxx () *X. x

- params. getBxy ()*X. y

- params.getBxz(*X.z

+ normalRand (generator )/dtj sqrt (clusters[ ij->getSize

() ) ;
if (params. getDimensions() >= 2)

V .y =

-params . getByx ()*X. x

- params. getByy () *X. y

- params. getByz () *X. z

+ normalRand (generator )/dt/sqrt (clusters[ ij->getSize

() ) ;

if (params. getDimensions () >=3)

v.z =

-params. getBzx ()*X. x

- params. getBzy () *X. y

- pararns. getBzz () *X. z
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+ normalRand(generator)/dt/'sqrt ( clusters I iI->getSize

()) ;

vector t dx = vecmult(v,

double magdisp = sqrt(dx.x*dx.x + dx.y*dx.y + dx.z*dx.z

movement movement I

clusters I ii->move(dx) ;

bool doPeriodieMove false;

dx.x = dx.y = dx.z 0;

if( clusters [ iJ->centroid .x > L)

dx.x =-L;

doPeriodicMove

{

true;

}

else if( clusters [i]->centroid .x < 0)

dx.x L;

doPeriodicMove true;

I
if( clusters il->centroid .y

dx.y =-L;

doPeriodicMove

> L) {

true;

I
else if (clusters[ i->centroid.y <

dx.y L;

doPeriodicMove

0) {

true;

I
if( clusters I ij->centroid. z

dx.z = -L;

> L) {
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doPeriodicMove = true;

}

else if (clusters I i-->centroid .z < 0) {

dx.z =L;

doPeriodicMove = true;

}

if(doPeriodicMove) {

clusters [ i-->move(dx)

}

clusterxmin =

clusterximin

clusterxmax =

clusterxmax

clusterymin =

clust erymin

clusterymax

clusterymax

(clusterxmin<clusters [i]->getXMin())

: clusters[ i->getXMin();

(clusterxmax>clusters [ ij->getXMax()

: clusters I iJ->getXMax ();

(clusterymin<clusters [ ij->getYMin())

: clusters [ i]->getYMin () ;

(clusterymax>clusters I i->getYMax()

: clusters [ i]->getYMax();

}

/ 1 check collisions

for(unsigned i=G; i<clusters size () ; ++i) {
unsigned j=i+1;

while(j<clusters . size () ) {

if ( clusters [ i->intersects (* clusters [Ij 1) {

clusters I i]-->merge(* clusters Ij);

delete clusters [jI;

clusters .erase ( clusters begin ()+j )

}
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else {

+-j

}
}

}

if( params . getImageZoom() &&

(clusterxmax-clusterxmin)

globalxmax-globalxmin)

(clusterymax-clusterymin )

globalymax-globalymin)

globalxmax clusterxmax;

globalxmin clusterxmin ;

globalymin clusterymin ;

globalymax clusterymax;

}

< params. getZoomRatio ()*(

< params. get ZoomRatio () *(
{

7check to see if need to write incremental progress file

for(int i=1; i<10; +-+i){

if(! progress li -1] &&

((double) clusters . size ())/params. getNParticles () <

((double) i /10.0) ) {

sprintf(datanamebuf, "Vs_%02d" , params.

getPackingFname() . cstr () , 10-i);

fprintf (stdout , "writing-%s\n" , datanamebuf);

write _ datafile (P, params. getNP articles ()

datanamebuf) ;

progress [i -1]=true;

}
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}

-+iter ;

} end while loop

/data output (always do this)

vector <contact _ t> contacts ;

calculate _contacts (P, nparticles , contacts)

write_ datafile (P, params. getNParticles () , contacts , params

getPackingFname () . cstr ()

if (params. getWriteImages () && params . getOutputMode ()==

PackingParameters ::VTK_OUTPUT) {

write_ pvd file (params. getlmageBasename () , vtkFnames,

vtkTimies)

}

for (unsigned i =0;

delete clusters

I

CLEANUP

i<clusters . size () ; ++i ) {
iI;

delete P;

return 0;

}
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Appendix B

Selected Source Code:

fit steadyState nonlinear.m

The following is a listing of the high-level Matlab routine that implements the proce-

dure that fits the fabric evolution law to experimental data. This high-level function

relies calls to many lower-level functions whose source codes are omitted for brevity.

Comments have been added in the code, denoted by "%", that clarify the meaning of

variables or where source code for important functions has been omitted.

function [model, model2l =

r_ offset , coffset , set

if(nargin <

fname =

fit _steadvState _nonlinear( fname,

values , set-mask )

3)

'06302015/steadystate _sweep/yIpairs. csv

roffset = 0;

c _offset = 0;

goodrow = 1;

end
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if(nargin < 5)

bI 1/250; %1//75;

n = 1.34

set-values = [1,0,0,bl,0,0,nI;

set _mask =t , ,O ,1 ,,0 O ,1I;

end

setmask = logical (setmask);

model = struct ( 'ki ' 0, 'al ' 0, 'a2 ',0 , 'bi ' ,0, 'b2 ',0, 'c3 ',0);

dat = dlmread(fname, ',' ,r_offset coffset)

gooddat = dat ;%[dat (2,:) ;dat (goodRow:end,:) 1;
shearRate = gooddat (: , 1);

currentData = gooddat (: ,2) ; %data in file is A

R = 0.02; % plate radius = 2.0cm = .02m

h = 0.00075; % plate gap = 0.75mnvn .00075m

phiO .1; %V

Jo = currentData (1)

kO Io*h/(phiO*(pi*R*R));

% Initial guess for

kIG = .001;

a1O = 2;

a20 = 1;

blO = 1;

b20 = .1;

c30 = -1;

n0 = 0;
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cO = [klO alO a20 blO b20 c30 n0l;

cO(setmask) = set _values(set mask);

% Unconstrained optimization (finds

starting point)

c = fminunc( objFunc, cO, opts)

%model.kl

model . al

model. a2

model. bI

model. b2

model. c3

model. k1

2)^2);

model. n =

mode 12

model2

model2

mode 12

model2

mode 12

k1 =

albI

a2bl

b2bl

c3bl

1 =

good solution w/ good

c (2)*bl;

c (3)*bl;

bl;

c (5) *bl;

c (6) *bl;

kO *((model. al /model. bl) ^2) /((3* model. al /model. bl -

n;

model.k1;

= C (2);

= C (3);

= C (5);

= C (6);

n ;

% This objective function is outlined in algorithm 2.2

function f = objFunc(c)

dR = R/100;

r = 0:dR:R;
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c (set _ mask)

%k c (1) ;

al c (2)*bl;

a2 c(3)*bl;

bI c(4);

b2 c(5)*b1;

c3 c(6)*bl;

n = (7)

set _ values (set mask)

k1 = kO*((al/b1)^2)/((3*a1/b1 - 2)^2);

computedCurrent

% for each shear

value

for ii =

yO =

Kzzve

for r

d

y

zeros (size (currentData));

rate , integrate current at each R

1: length (shearRate)

shearRate (ii);

c = zeros(size(r));

i =1:length(r)

= D(r(ri), R, yO);

= ydot(r(ri), R, y

% The following 13 lines implement algorithm

2.1, computing the steady-state fabric

tensor

% Compute the nonlinear part of evolution law

magD = norm(d, 'fro ');

if (n -- 0 magD -- 0)

factor 1;
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else

% This function computes trA at steady

state by solving equation (2.39)

trAss caIc_ trAss(al,a2,b,b2,n,magD);

factor abs(3*al/bl - trAss)^n;

end

ci = C1(al*factor , a2, d); % c= (al*(ZO -

trA)^n + a2*/D)

c2 = C2(bl*factor , b2, d); % c2 = -(bl*(ZO -

trA)^n + b2*/D/)

A = Fabric(ci , c2 , c3, y); % This function

solves equation (2.10) at steady state for

the full fabric

K = Conductivity (ki, A); % This function

evaluates the conductivity according to

the 3D Lattice Model

Kzzvec (ri) K(3,3)

end

%integrate (phi0'h)*Kzzvec*r*dr*dtheta from [0,R

], [0,2pi]

kzzr = Kzzvec.*r;

computedCurrent( ii) = (2*pi*phiO/h)*dR*(kzzr (1) +

2*sum(kzzr(2:end-1)) -+ kzzr(end))/2;

end

% compute sum of squared squared-differences cost

f = sum((abs(currentData - computedCurrent). ^2));
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end

end

function c = C1(al, a2, D)

C = (al + a2*norm(D, 'fro'));

end

function C C2(bl, b2, D)

c = -(bi + b2*norm(D, 'fro '))

end

function y = ydot (r , R-, yO)

y = yO*(r/R);

end

function d = D(r,R,yO)

d = zeros (3) ;

d(2,3) = yO*r/'(2*R);

d(3,2) = d(2,3);

end

function K Conductivity (ki,

K = ki * A*( (max(O, sum(diag (A)) -2)

end
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