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ABSTRACT

People use different representational forms to organize different kinds of knowledge. In the
field of perceptual scaling, the two traditional techniques are multidimensional scaling (MDS),
which uses a metric space as its representational form, and hierarchical clustering, whichk uses
a tree. Both methods model subjects’ similarity ratings of stimuli. We discuss a newer
method, Trajectory Mapping (TM), that uses a connected graph as its representational form
and models subjects’ sequencing of stimuli. We compare TM with other scaling techniques
(especially MDS and hierarchical clustering), at both a theoretical and data-driven level, and
show that Trajectory Mapping models can offer insights that the traditional methods do not.

An algorithm for objectively generating trajectory maps from subject data is introduced and
analyzed. Trajectory maps constructed by the algorithm are compared with previously
published maps constructed by a manual heuristic and are seen to be satisfactorily equivalent,
if not better in the case of particularly complex data sets.

Finally, a trajectory mapping experiment on the domain of mental representations themselves
is described. Despite the usual division of representations into pictorial and linguistic
categories, our results emphasize the importance of “mixed” representations, i.e. those with
both pictorial and linguistic elements. The data also suggest that when subjects classify
representations based on use, they do so using computational, functional, and graphical
characteristics of the representaticns.
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Chapter 1

Modeling Mental Representations

Abstract

We compare several approaches to cognitive modeling and tieir representational forms,
including multi-dimensional scaling (metric space), hierarchical clustering (clusters), and
Trajectory Mapping (connected graph). Trajectory Mapping is explicitly contrasted with other
approaches, especially those that also use connected graphs.

Part I: Introduction

The Two Questions

People use different mental representations to orgarize different kinds of
knowledge. Our knowledge about the characteristics of various vegetables, for
example, is probably structured differently than our knowledge of a fairy tale
that we learned in childhood. Also, different people often use different mental
representations to organize the same knowledge. We are often vexed by the
different ways that other people structure spatial navigation information; some
people do not like maps, some people use north, south, east, and west but not
left and right, some people prefer pictorial representations, and some prefer
linguistic representations.

Two questions that follow naturally from these differences are:

1) What is the structure of someone’s mental representation of given domain?
and

2) Which characteristics of the domain are used to organize the mental
representation?

This thesis addresses these questions by exploring a relatively new method of
modeling mental representations, called Trajectory Mapping (TM), in the
context of two other common approaches. We suggest that TM fills an
important role in the field because it uses a connected graph as its structural
representation and because, unlike many other approaches to cognitive
modeling, it does not explicitly use similarity judgments as the data for its
model. We offer more details of our specific approach below; first, we define
our terms and motivate the two stated questions.

By the “structure” of a mental representation we mean a computational
structure, a structure that can be described mathematically and implemented
with a computer. We explicitly do not mean a neurological structure,
although the computational structures that we seek could be implemented in
neural hardware as well as computer hardware. By “domain” we mean a



conceptual category, as described by work in the area of conceptual structure
(e.g. Smith, 1989). Examples of domains are “fish”, “inanimate things”,
“colors”, “melodies”, etc. Lastly, when we ask what characteristics are used to
“organize” the mental representation, we ask which features of the exemplars in
the domain are used as the principal axes of or the basis for arranging the
exemplars within the structure. For example, we might say that the domain of
colors can be modeled as a three-dimensional coordinate space; “3-D metric
space” would be the computational structure. If the dimensions of that space
are hue, saturation, and brightness, then we say that those features are used to

organize the space.

Being able to answer these two questions reliably for any domain would be
enormously helpful not only for the field of cognitive science, but also for a
variety of applications. The line of research that aspires to answer these
questions is broadly called cognitive modeling. Cognitive modelers seek to
model various aspects of human knowledge so that we can both understand
better how the mind processes information and make accurate predictions
about human behavior. The range of the field can be well illustrated by the list
of different types of mental representations that have been proposed: cognitive
maps (Tolman, 1948), semantic nets (Quillian, 1968), production systems
(Newell, 1973), frames (Minsky, 1975), scripts (Schank & Abelson, 1977),
schemata (Rumelhart & Ortony, 1977), and mental models (Gentner & Stevens,
1983; Johnson-Laird, 1983). In the case of our two questions specifically, we
could learn easily what features people consider most salient in a novel
domain of knowledge.

The applications of cognitive modeling are numerous. An accurate model of
human knowledge organization could give us inspiration for building better
computerized processing of knowledge. Studying how we index our mental
representations might give us insight into indexing the plethora of knowledge
now available online. Good modeling of knowledge could provide educators
with more details about learning differences and guide curriculum design.
Marketers, of course, are also deeply interested in how we organize our
knowledge about their products.

The Direct vs. Indirect Approach

There are several potential approaches to answering the two questions above.
The first that might come to mind is the direct approach: to discover what
sorts of mental representations and features people use, simply ask them. One
might imagine experiments in which we present a subject with a collection of
20 vegetables and say, “Arrange these into some sensible organization that
seems natural to you” (question 1). After they have done so, we ask, “What
features or principles did you use to organize them?” (question 2). This
approach suffers from two basic problems. The first is that our success in
eliciting features depends strongly on the ability of subjects to introspect about
what they did and on their ability to verbalize their introspection. The large
range of these abilities in the typical subject population suggests that subjects’
tasks should be simpler and more consistent across subjects.
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The second problem with the direct approach is that any sort of grouping or
zlustering task is subject to getting caught in “local minima” as a result of the
initial steps. If a subject initially groups together all the green vegetables, for
example, he might not realize that the green pepper could also be put with the
jalapefio and the chili pepper. This example also points out the difficulty of
assigning stimuli to multiple groups (overlapping clusters) when grouping by
hand. These difficulties suggest an approach that asks subjects to interact with
only a few stimuli at a time, making judgments about “local” structure within
the stimulus set. The experimenter would then hopefully use this information
to make conclusions about the “global” structure within the stimuli.

Having explored the difficulties with a direct approach to modeling mental
representations, we describe an indirect approach that tries to alleviate these
difficulties. Contrasting and comparing versions of this approach will be one
goal of this thesis. The indirect approach, classically used in the research area
of psychophysics, typically involves the use of scaling techniques that use
subjects’ judgments to construct a model of the global structure of the stimuli.
To use a scaling technique, we might ask a subject to give numerical ratings for
the similarity of two stimuli or ask questions such as, “Of these three stimuli,
which two are moie closely related?” Given such data, a variety of scaling
techniques are available; each provides an algorithm which constructs a
computational model of these ratings, such as a Cartesian coordinate space, or
a network of nodes and links. The experimenter then searches the model
(based only on local judgments) for new global information about the stimuli.
This information might take the form of obvious axes in a coordinate space or
obvious clusters or chains in a network. By applying prior knowledge about
the domain, the experimenter can sometimes denote these parts of the model as
representing the most salient features of the domain.

The careful reader might protest that this approach is circular, since the
experimenter uses prior knowledge of the domain to label the “new”
knowledge of the domain. A simple example reveals that this is not the case.
In the domain of colors, the experimenter’s prior knowledge might consist of
knowing the frequency spectrum and that colors can be modeled by a three-
dimensional space with axes of red, green, and blue. These parameters may
have little to do with a subject’s mental representation of color, however. The
subject might have a mental representation based on hue and a mixture of
saturation and brightness, for example, or a representation that simply groups
colors into overlapping groups by general hue, and then has a separate group
of grays. If the scaling technique offers a good model of such representations,
the experimenter’s prior knowledge would be useful for figuring out how the
model was organized, but it would not be synonymous with the knowledge
inferred from the organization.

If this indirect approach succeeds, then we have found a reasonable method for
answering our two questions while overcoming the difficulties mentioned in
the direct approach: subjects make only simple judgments about only local
stimulus relations. The next issue that must be answered is how we can know



whether we succeed. The issue of success in modeling mental representations
is particularly difficult because knowledge of a given domain could easily
take several forms simultanecusly. Nevertheiess, there are two basic methods
of measuring the success of this approach. The first is find independent
confirmation of the results through a variety of other experimental techniques.
If a variety of techniques that do not use the same assumptions arrive at similar
answers, then the results can be considered successful. Secondly, if the
resulting model can be used to predict behavior accurately, especially about
non-tested domains, then the model can be considered successful as well.

Different approaches to cognitive modeling differ mainly in their choice of
computational structure and the type of data they solicit from subjects, or in
other words, what sort of data they are represent with what structure. Table 1
offers an cverview of various approaches and some of their differences. The
two most commonly used methods in the field (shaded) are rultidimensicial
scaling (MDS) and hierarchical clustering.

Once again, the goals of this thesis are to explore how well Trajectory Mapping
can help us answer the two questions, and to place it, as an approach, into the
context of the field and the other methods. As one can see in Table 1, a salicat
contribution of TM is that it offers an approach based on subject’s ordeariug of
stimuli instead of similarity judgments. The use of orderings makes intuitive
sense, since many mental representations that we would like to modei may be
based on propernes that specifically link objects together, such as “is smailer
than” or “contains”. Also, the computational structure assumed by iM differs
from those of MDS or clustering. A detailed comparison of met".sds wiet Mizix
computational structures follows.

Method Computational | oz of
Structure cubject Pail
Multidimensional Scaling metric space m faaiy uﬂg-meluts
hierarchical clustering nested clusters ity udgments
Trajectory Mapping connected graph coerings
Pathfinder connected graph sipiilarity judgments
NETSCAL connected graph simifre iy judgments
MAPNET connected graph simikuity judgments
Concept Mapping connected graph conceptual associations
Repertory Grid Theory list of constructs/features scalar judgmenis by feature

Table 1: Various approaches to modeling mental representations, the different coraputational
structures that they assume, and the type of data they demand from subjects. Most frequently
used methods are shaded.
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Part II: Introduction to the Top Two Methods and TM

Because we wish to contrast the computational structures used in each
approach, it is appropriate that the reader understand the difference between
the methods. In this part we describe two of the most traditicnal methods for
modeling mental representations of stimuli, MDS and hierarchical lustering.
We then introduce Trajectory Mapping as a technique and describe the
connected graph that it uses as a representation.

Multi-Dimensional Scaling (MDS)

Multi-Dimensional Scaling, first discussed by Torgerson (1952), Shepard
(1962), and Kruskal (1964), places stimuli in a metric space based on a matrix of
proximities. The proximities matrix contains either similarities or
dissimilarities between all the stimuli, and ti.e output is the spatial
arrangement of the stimuli that maximizes the fit between the distances in the
metric space and the proximities. Usually a non-linear function provides the
mapping between the two sets of measurements.

Several noteworthy assumptions must hold in MDS. The proximities matrix
must be symmetric, that is, the distance from A to B is the same as from B to A.
Also, it must be reasonable to assume that the stimuli could lie in a space in
which a uniform distance metric holds (typically Euclidean). The oniy
parameter in MDS is the dimensionality of the final metric space. The
algorithm provides a measure-of-fit diagnostic called the "stress", which can be
used to help choose the dimensionality. Because the stress inevitably decreases
with higher dimensions, the experimenter typically chooses the dimensionality
at the last appreciative decrease in stress.

Figure 1 shows an example of a typical similarity matrix for a simple domain of
black and white circles of different sizes, an example domain introduced by
Richards & Koenderink (1995). For this domain, one would show subjects each
possible pair of circles and ask, “On a scale from 1 to 7, how similar are these
two circles to each other?" The maximum similarity, 7, is shown shaded along
the diagonal. One can then use algorithms such as KYST2 (Kruskal, 1976) to
run MDS and produce the coordinates for the stimuli. Figure 2 shows the
result of MDS on our black and white circles example. The KYST2 algorithm
assigns coordinates to the circles so that the distances between them in the
space most closely reflects the similarity ratings (e.g. high similarity = small
distance).

Because MDS offers a representation of the stimuli with a lower dimensionality
than the original representation, researchers hope that MDS will produce a
space that might help one infer the primary features of the subjects’ conceptuatl
model of the stimuli. In Figure 2 one can see that MDS has generally captured
the two features of the circles, size and color: the white circles are further right,
the black ones are further left, the smaller ones are higher, and the larger ones
are lower. Ideally, MDS would position the circles such that the principal
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components of the space reflect these two features exactly; here, we are close,
but the axes are a little bit skewed.

We remind the reader that while it may seem useless to model a domain with
two obvious features and infer those same features from the model, we use this
domain to illustrate the techniques. Much work in this field is done initially
with simple artificial domains to test the robustness of the techniques. Once
proven, the techniques can then be used to explore novel or very complicated

domains.
O0O® o

®

6 .
7

ro

N oo

4
4
3
2

. ® 0@ OO0 e

Figure 1: An example of a similarity matrix of the sort that could be used for metric scaling or
hierarchical clustering. Circles with a higher similarity have highe: similarity values.
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Figure 2: The output of Multi-Dimensional Scaling (MDS) on the similarity values in Figure 1,
stress = 0.15. The axes generally reflect the two features of the circles, their color and size.

Hierarchical Clustering

Subjective visual inspection of Figure 2 suggests two clusters. Hierarchical
clustering, another classic scaling technique, makes this clustering explicit in
the form of a dendrogram or tree. This technique is much mathematically
simpler than MDS, but also has few formal mathematical properties. Typically
one begins clustering by considering each data point to be a cluster in itself
and then merges the clusters one-by-one iteratively until there is one cluster
that encompasses the entire data set. This form of bottom-up clustering is
called “agglomerative,” as opposed to “divisive” clustering, where one begins
with the entire data set and iteratively divides. The main parameter that must
be chosen with hierarchical clustering is the distance function that one will use
to determine which two clusters are closest at each iteration.

Depending on what sort of distance function is chosen, a variety of different
cluster partitions can result from the same data. Duda & Hart (1973) and
Corter (1996) offer a good explanation of the differences. Briefly, in single
linkage or connected trees, the distance is the minimum distance between two
points in the two clusters in question. Use of this distance function is aiso
called the nearest-neighbor algorithm. In complete linkage or compact trees,
the distance is the maximum distance between two points in the two clusters in
question. This method is also called the furthest-neighbor algorithm. Lastly,
some researchers use an “average” distance function which is based on the

13



average of the distances between points in the clusters. Most hierarchical
clustering in this paper use complete linkage, though the tree in our black and
white circles example (Figure 3) uses average linkage to better illustrate our
point.

2.0 -

1.5

O—

1.0

0.5 r—_l

0.0 - ‘
® [

O o

Figure 3: The output of hierarchical ciustering (average linkage) on the similarity values in
Figure 1. The top-most cluster reflects the color difference; the continuous feature of size is not
clearly iilustrated by this discrete representation.

It is worth noting the debate around the choice of representational form in the
history of this field. Shepard proposed his technique of non-metric MDS on
similarities in 1962, but later described six problems with finding the structure
in any similarity-based data (1974). Tversky published an alternate view of
similarity based on set-theory {(1977), adding weight to the problems posed by
Shepard. Tversky pointed out that similarity data often do not fuifill the basic
assumptions of metric theory, i.e. minimality, symmetry, and the triangle
inequality. He cited his classic example of asymmetry in similarity judgments:
North Korea is more similar to China than China is to North Korea. He
proposed that instead of embedding stimuli in a metric space, one could
describe them as members of categorical sets based on their common and
distiml:tive features. He favored clustering trees as a representation for such
stimuli.

14



Pruzansky, Tversky, and Carroll (1982) did a large comparison of
representations over 20 data s=is, moceling each with both clustering and MDS
and comparing the models u:iig c2veral obie e measurps, such as the
skewness of the distributior: of distances. They v.; - ~'= " " * ~lthough
similarity data can be modeled with both MDS and clustering, particular data
sets are modeled better by one method or the other Most notably, the fit of the
models depended on both the type of domain, e.g. perceptual vs. conceptual,
and on the method used for sampling the d: omain to choose the stimuli. MDS
was better for perceptual stimuli ana stimuli chosen in a factorial design, while
clustering seemed was more appropriate for conceptual stimuli, such as
semantic categories, that had been chosen by “natural sc.ction” (p- 18).

TM arises generally from this history. Originally moiivated by the uroblems
with similarity described by both Shepard and Tversky, T atte“npts to offer a
representation that, like metric spaces and clustering trees, allows researchers
to infer new information about the stimulus set and the features used by a
subject to organize the stimuli mentally. TM diverges from thes= approaches,
however, in that it does not build its representation directly from similarity
judgments. Because similarity judgments are pairwise data, we suggest that
traditional metric spaces and trees can fail to model serial aspects of a data set,
i.e. ordered relations across multiple stimuli. Lastly, before continuing to the
details of TM, we suggest that its representational form, a connected graph
with weighted links, combines advantageous aspects from both MDS and
clustering. Like in a hierarchical tree of clusters, the nodes in a trajectory map
are typically clustered into subgraphs, and similar to the ordering of stimuli in
an MDS metric space along dimensions, nodes are rank ordered within their
subgraph.

Trajectory Mapping (TM)

There are 3 stages to TM. The first is the experimental paradigm, i.e. collecting
the data. The second is analyzing the data, i.e. turning it into graphs. The third
is interpreting the data, i.e. deciding what the trajectories in the graphs imply
about the subject’s mental representations.

In the TM experimental method a subject initially surveys the entire range of
stimuli. The subject’s task in TM is to imagine a conceptual feature or
property that links a given pair of stimuli. The subject then extrapolates that
feature in both directions to pick two stimuli from the remaining set that
would be appropriate. The subject also picks an interpolant, i.e. a stimulus
that would fit well within the pair. We ask that the subject mentally use the
same feature in each choice.

To clarify the procedure, we offer again the example of seven black and white
circles of different sizes. The subject is first presented with the entire
collection. In each TM trial, a pair of circles would be chosen and designated
A and B (Figure 4). The subject is asked to note some feature that differs across
the two and to choose from the remaining stimuli a sample for each of the
blank spaces, an extrapolant in each direction and an interpolant.

15
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Figure 4: A typical TM trial; the subject chooses stimuli that fit in the blanks to make a good
quintuplet sequence. The subject also has the option to choose the “X”, meaninyg that she
considers it “not feasible” to make a sequence from the pair. The “~"” means that the subject
can imagine filling the slot with an appropriate stimulus, but it is “not available” in the set. The

“1” means that the subject has reached a “dead end” in the sequence, for example, if the
sequence were based on size and there were no smaller circles.
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Figure 5: Example TM trials from the circles data set. All possible pairs of circles are presented
as an A and B pair, and subjects are asked for extrapolants and an interpolant that complete a
sensible quintuplet sequence.
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Figure 5 shows some of the other trials. Note in the table that three special
cases arise in this paradigm, and the subject is allowed to mark them
appropriately. The first occurs when A and B are so dissimilar that the subject
feels uncomfortable choosing one particular feature that varies between the
two. We call this the "infeasible" case, marked with an “x”. The second case is
the "feasible, no sample" case (marked with a “~"), in which the subject can
easily imagine an appropriate extrapolant or interpolant, but it is not included
in the sample set. The third case, the "dead end" (marked by a “1”), occurs
when either A or B represent an extreme in the variability range of the chosen

feature.

Using these quintuplets of subject data, we use an algorithm based on
simulated annealing to generate a connected graph or trajectory map, such as
the graph in Figure 6. The links in the graph reflect frequent connections
found in the quintuplet data. By further analyzing the trajectory map and the
data that created it, we can note subgraphs that might represent features in the
data. The hatching within the links shows two such subgraphs or trajectories;
each trajectory represents a categorical feature (e.g. black circles) and each
trajectory itself is ordered by a continuous feature (size). These subgraphs,
although not always found in trajectory maps, offer a representation that
combines features of both metric scaling and clustering; the subgraphs are
ordered clusters.

Figure 6: The connected graph above is a trajectory map of the black and white circles. The
subgraphs, identified by hatching within the links, illustrate the salient features of the stimuli,
can be identified by thresholding and analyzing how the subject data fit along the trajectory
map.

To give additional flavor for the types of features that a subject can use during
TM, we offer several examples of three-element trajectories that one might find
in a TM experiment. Note that some elements occupy in the same basic-level
category, and the trajectory is formed by a simple feature within the category,
while other trajectories are based on more abstract relationships, such as
contains, generates, rules over, etc..

(big, medium, small)
(cool, tepid, warm)
(rat, cat, dog)

(house, living room, human body)
(professor, graduate student, undergraduate)
(grass, antelope, lion)

(park, zoo, jungle)
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Likewise, we offer some examples of pairs that would likely be deemed “not
feasible”. There are three basic reasons why a subject would indicate “not
feasible”: 1) the two stimuli are not in the same category or domain, and
therefore the subject can find any relationship between them (jigsaw, elephant),
2) the stimuli are in the same domain and do have a relationship, but it is not
the sort of relationship that can be used to form the basis of a sequence
(computer monitor, computer), and 3) the stimuli are in the same domain, but
they are too “far apart” in feature space for the subject to imagine a relationship
(in the domain of background noises: traffic jam, wind).

(jigsaw, elephant)
(kumquat, mutual fund)
(computer monitor, computer)
(traffic sounds, wind sounds)
(Museum of Fine Arts, shoe shop)

Summary of Part II

The methods of Multi-Dimensional Scaling (MDS), hierarchical clustering, and
Trajectory Mapping (TM) have been introduced. Each method can be
distinguished well by noted what representational form the method uses to
represent what sort of subject data. MDS represents similarity judgments in
terms of a metric space. Hierarchical clustering represents similarity
judgments in terms of hierarchical clusters, often represented with a tree or
dendrogram. TM represents orderings with a connected graph, thus
distinguishing itself from MDS and hierarchical clustering in two ways. We
noted briefly how a trajectory map can offer some of the advantages of each of
the other methods: subgraphs of the trajectory map often represent clusters of
stimuli (as in hierarchical clustering) that have been ordered by some feature
(as in MDS).

Part III: TM vs. Potentially Similar Methods

In this part we compare TM with the other methods listed in Table 1 at the
beginning of the chapter. These methods should be carefully distinguished
from TM because they share some characteristic. Most of them are similar in
that they use a connected graph as their representational form. Repertory Grid
Theory is somewhat similar to TM in the form of data it collects from subjects;
both methods ask subjects to make judgments that require them to consider
specific features of the stimuli.

Pathfinder, NETSCAL, & MAFNET

Researchers have long pursued graphs as representation for similarity (Harary,
1964) or for knowledge representation (Augustson & Minker, 1970; Collins &
Loftus, 1975). Several more recent efforts work with graphs that are similar

18



enough in their purposes to TM that we should examine the differences
between the various methods. The other relevant graph-based scaling
techniques are called Pathfinder (Cooke, Durso, & Schvaneveldt, 1986; Cooke,
1992), NETSCAL (Hutchinson, 1989), and MAPNET (Klauer, 1989; Klauer &
Carroll, 1989, 1991).

The Pathfinder algorithm builds a connected graph from a similarity matrix in
such a way that the minimum-length paths between nodes i and j in the graph
are inversely proportional to their similarities. (This goal is similar to the goal
of MDS; instead of metric distances, Pathfinder uses graph distance.) Arriving
at this solution means choosing both which links the graph will contain and
what the weights should be on those links. Various powers of the Mikowski
distance metric are tried as the mapping function between the similarities and
the graph distances. The power, r, of the distance metric serves as one of the
parameters for Pathfinder, and the other parameter, g, is related to the
maximum number of links permitted in a path between nodes.

Because it is not obvious what measure one might use to compare whether a
Pathfinder graph or an MDS metric space offers a better fit to given similarity
data, Cooke, Durso, & Schvaneveldt (1986) and Cooke (1992) compare
Pathfinder with MDS by testing which algorithm produces a model that better
predicts reaction times in semantically related tasks. They find that Pathfinder
models predict behavior better than MDS models in tasks demanding serial
and free recall of lists, a task asking whether two stimuli share category
membership, and a task asking the relation of two stimuli along a given
dimension, i.e. greater or lesser. This performance illustrates that Pathfinder
offers a good model of the features that subjects find useful in those tasks, but it
does not tell us about the features that subjects might use to organize the
stimuli in their mind. The authors suggest that Pathfinder usually represents
“local relations” while MDS represents “global relations”. We suggest that TM
can span this range by clustering based on global relations and ordering the
stimuli within the clusters according to local relations.

Hutchinson (1989) introduced NETSCAL as a solution to modeling
asymmetric proximity data. Like Pathfinder, NETSCAL constructs a graph
such that the minimum path lengths between nodes approximate the
dissimilarities as closely as possible. NETSCAL has two parameters also, each
part of the function that maps the proximities onto the minimum path lengths.
Hutchinson demonstrates the robustness of the algorithm by fitting various
Monte Carlo simulations of networks that have had noise added. Hutchinson
highlights the asymmetric similarity modeling ability of NETSCAL with
clothing and alcoholic drink datasets.

As Hutchinson points out, the NETSCAL graphs offer a better representation
than MDS when many of the similarity values between pairs equal zero; MDS
has no way of representing very many maximal distances in two or three
dimensions. The NETSCAL graphs can also demonstrate some degree of
hierarchy. In a stimulus set of birds that includes type of bird, e.g. robin, ou!
as well as the concept bird, one finds bird in the center of the graph where all
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links meet. Similar to Pathfinder, however, these graphs have difficulty
illustrating any large scale structure within the graph. If there were multiple
domains in the stimulus set, with several levels of category and several
exemplars at each level, it would soon become difficult to distinguish which
nodes were superordinate and which were subordinate.

Also in 1989, Klauer and Carroll introduced the graph fitting algorithm that
they would later call MAPNET (Klauer & Carroll, 1991). Like the other
algorithms, MAPNET provides a graph which provides the best possible fit
between the minimum path lengths between nodes and the similarity values.
MAPNET is different, however, in that instead of determining the ideal
number of links as part of the solution, MAPNET maximizes the goodness of fit
for a user-specified number of links. Klauer and Carroll (1991) test MAPNET
with some of the same Monte Carlo techniques and data sets as Hutchinson
(1989), maintaining that MAPNET models account for more variance than
NETSCAL in each data set. Overall, MAPNET produces similar graphs to
NETSCAL, and therefore has the similar disadvantages in terms of finding
feature-based structures within the graphs.

It is worth noting from the outset that the primary difference between TM and
all of the other methods is that the others build graph-based modeis of
similarity judgments, whereas TM builds a graph-based model of feature
extrapolations, which can then be used to svnthesize approximate similarity
judgments. This difference manifests itself in the graphs themseives: while
Trajectory Maps (TM graphs) often contain meaningful chains of nodes,
meaningful linking in graphs from the other algorithms often appears
distinctly pairwise. We suggest that because the other algorithms are indeed
trying to model pairwise data, they do not take full advantage of the graph
representational form to illustrate salient features of the nodes by showing any
ordering within the graph. Also, because the similarity between two stimuli
can encompass many features, while TM orderings refer usually to more
specific features of the stimuli, similarity judgments are more prone to being
skewed by the context of other stimuli in the data set.

Concept Mapping

Concept Mapin g is a technique described by Novak and Gowin (1984) for
externalizing knowledge about  particular domain. The technique has been
used mainly in the disciplines of education research, library science, and
expert systems development and is very similar to the notion of a semantic net
(Quillian, 1968). Basically, the technique involves a subject’s deciding what the
relevant concepts are in a given domain. The subject then orders these
concepts according to their specificity, linking them in a hierarchical graph
structure if possible. Finally, the subject assigns relevant meanings to the links.
An example from Novak and Gowin (1984) is shown in Figure 7.
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Figure 7: A concept map from Novak & Gowin (1984) for the knowledge associated with
water.

We introduce concept mapping for the purpose of comparison to TM, since
the output of the two techniques nominally resemble each other. Despite this
resemblance, the two techniques differ in many ways. Firstly, concept
mapping undertakes to represent a broader set of mental knowledge than TM.
It aspires to represent the organizing principles of entire domains of
knowledge, such as basketball, library reference resources, and culture (Novak
& Gowin, 1984; Sherratt & Schlabach, 1990; Henderson, Patching & Putt, 1994).
TM, on the other hand, attempts tc infer the salient features used to organize
exemplars of a single concept, e.g. Western musical intervals, colors, sound
textures, musical intervals, or tourist attractions.

Secondly, concept mapping makes few claims about knowledge representation
in general. It was originally designed for educational purposes, to help
students structure their knowledge and allow teachers to see how they think
about a domain. Much of the benefit of a subject’s constructing a concept map
is described as the subject’s own gain in awareness of her knowledge. In this
sense, concept mapping is more a tool to aid an individual’s introspection
about the knowledge domain than an analysis of the domain in general. It is
worth noting, however, that the lI_EE;'esentationa] form of concept maps, i.e.
concept nodes with association links, appears in a variety of Al approaches to
knowledge representation, notably semaritic networks (Quillian, 1968).

Repertory Grid Theory

Kelly (1955, 1970, as cited in Latta & Swigger, 1992) developed Repertory Grid
Theory from his Personal Construct Theory that he used in psychotherapy.
Because it involves rating stimuli along a variety of featural scales, it can also
be used to cluster stimuli and generate similarity matrices. The techniqgue has
been widely used in fields of expert system development and decision-
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modeling (Batty & Kamel, 1995; Latta & Swigger, 1992; Nicholson, 1992), as well
as in areas of marketing that are interested in discovering the features of a
consumer experience (e.g. tourist packages or retail sales floors) that are
important to the consumer (Mansfeld & Ginosar, 1994; Scott, 1993).

To construct a repertory grid of a collection of stimuli, various triads of
stimuli are selected and shown to a subject. For each triad, the subject chooses
one of the stimuli to be the “odd man out,” i.e. the stimulus that doesn’t quite
fit with the others. The subject is then asked to supply a description of the
difference, and a description of the similarity of the remaining two stimuli.
These descriptions are called the two poles of a feature of the stimuli called a
construct. After an unspecified number of constructs have been created, the
subject goes through each stimulus and rates it on a scale between the poles of
each construct. The results of the ratings form the repertory grid. The grid in
Figure 8 offers a hypothetical example in the domain of vegetables. While the
repertory grid approach asks subjects to define features explicitly, traditional
similarity-based techniques such as MDS or clustering could be described as
implicitly defining features, though the experimenter eventually attempts to
define features based on the model.
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expensive | 7 1 3 7 3 4 5 3 | inexpensive
goesonpizza | 7 1 7 4 1 4 4 7 not on pizza

often peeled | 1 6 2 1 4 4 6 1 unpeeled

no seeds 1 7 7 7 7 7 1 1 has seeds

mushy | 7 4 7 6 1 1 5 1 crisp

Figure 8: A hypothetical repertory grid in the domain of vegetables. The rows are the
“constructs”, and the columns are stimuli. Each stimulus is rated according to where it falis
within the construct. In this example, a rating of 7 means the left characteristic is very
appropriate, and 1 means the right characteristic is very appropriate.

In the table above, vegetables were rating higher if the description on the left
was more true for them. The column of ratings for each vegetable could be
then used as a vector in a five-dimensional coordinate space to establish
distances (and presumably dissimilarities) between the vegetables. These
proximities could then be used with MDS to determine whether the stimuli
could be better described by a lower number of dimensions.
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Batty & Kamel (1995) discuss various problems associated with repertory grid
theory. Here we review some of these problems in comparison with TM. As in
the case of the concept mapping technique, the main problem with repertory
grid theory is its subjectivity. Although sukbjects are providing ratings, just
like in traditional similarity-gathering experiments, the rating scales
(constructs) are defined by each subject. Not only does this individual
variance make it difficult to compare data across subjects, but it also allows for
the creation of constructs that greatly vary in their level of abstraction,
independence, and consistency of scale.

Some constructs will be binary or discrete, such as “has seeds/not”, while
others will be continuous, such as “mushy/crisp”; if the researcher intends to
do typical MDS or clustering with the data, this mix of types can be
problematic. Repertory grid theory has difficulty characterizing categorical
features, even if they are not mixed with continuous features. A construct
trying to describe the speed of a maminal’s gait might likely have just three or
four values in the rating scale: one for walk, trot, gallop, and perhaps canter.
Because TM is by nature a discrete method, both types of features could be
accommodated. Another problem with allowing untrained subjects to
characterize the constructs is the difference between unipolar constructs, like
“young/not young” vs. the bipolar construct “young/old”. Depending on the
domain, unipolar constructs can easily appear. Batty & Kamel maintain that
such constructs violate the assumptions of the method, and suggest that they
should be disallowed. Lastly, a repertory grid often has problems with features
that span more than one dimension, such as color or musical timbre. Poles
generated from such higher-dimensional features would be frustrating to use
as the basis for a rating scale. The poles “red” and “green” could likely appear
from the method of creating constructs through triads, but it would not be very
informative to represented the colors of other objects as a rating between just
these two colors.

We suggest that for the purposes of modeling a mental representation of
organized stimuli, TM offers many of the advantages of repertory grid theory
without the limitations stemming from its subjectivity and assumptions. The
variety of feature types that TM allows is larger, and the fact that the subjects
do not bias their answers by defining their own features likely leads to more
robust solutions.
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Part IV: Chapter Summary & Thesis Overview

Trajectory Mapping (TM) has been compared with other similar scaling
techniques: Pathfinder, NETSCAL, MAPNET, Concept Mapping, and
Repertory Grid Theory. Although all methods except the last use a connected
graph as their representational form, TM distinguishes itself though the form of
its data; instead of modeling similarity values or high-level associations, TM
subjects give orderings of stimuli. Combined with Part Ii, this comparative
theoretical analysis of TM defends its role in the field as a method which
complements hierarchical clustering and MDS in a different way than the
methods described above.

In Chapter 2, we offer a data-driven comparison of MDS, hierarchical
clustering, and TM. We present the results of using each model on
experimental data from a variety of domains to illustrate the advantages and
disadvantages of each approach.

Chapter 3 focuses on an algorithm for processing TM subject data and its
assumptions. This algorithm has been created in part as a model of the manual
technique of trajectory map construction suggested by Richards & Koenderink
(1995). We also provide several diagnostic measures that can be used to
compare the success of a model and the different trajectory maps that may
result from different subjects.

Chapter 4 runs the algorithm through its paces and compares its resulting
trajectory maps with trajectory maps generated manually. In the process, we
introduce a variety of new data sets.

Chapter 5 analyzes representations in general, taking advantage of the TM
technique to suggest that the traditional description of representations as either
diagrammatic or sentential (Larkin & Simon, 1987) may need to be amended.

In Chapter 6, we summarize. The appendices that follow discuss theoretical
work still in progress, several TM data sets that require further analysis, and
some of the computer code used in the TM algorithm.
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Chapter 2

A Data-Driven Comparison of TM with
MDS and Hierarchical Clustering

Abstract

To illustrate how TM complements the current array of scaling techniques, we illustrate the
use of multi-dimensional scaling, hierarchical clustering, and TM on three different data cets.
We demonstrate that TM can offer valuabl: inferences about data that other methods would
neglect, and that TM is particularly useful for more abstract, conceptual stimuli.

Introduction

In this chapter we model subjects' conceptual representations of various
domams usin each of the three modeling techniques, MDS, clustering, and
?s are to illustrate the advantages of each approach and to derive
a broad rubric for advising the use of the three methods. There are two basic
means of comparing these methods: we could devise quantitative measures
that choose one technique over another based on an independent cross-
approach measure of data explained, or we could quantitatively examine the
degree to which each technique explains a data set that we already
understand. Pruzansky, Tversky, & Carroll (1982) take the first a proach in
their paper comparing MDS and clustering. Because it is difficult to develop
an independent fitness measure for all three techniques, however, we take the
latter approach. We examine two familiar domains, Boston subway stations
and musical intervals, and one less familiar domain, a collection of sound
textures. Success in the case of novel domains can be qualitatively measured
by the number of “sensible” features that the model suggests.

We chose these data sets because they represent a range of cognitive
abstraction. Subways stations are a conceptual stimulus; each represents a
physical location as well as an experience. Stations can have many features
associated with them. Musical intervals are definitely perceptual stimuli;
each interval can be identified as one of 12 intervals which Western listeners
are used to hearing whether they were conscious of the names of the intervals
or not. Finally, sound textures are close to purely sensorial stimuli, since
although one can name the causal process behind the sound, the sound
textures themselves are not something for which we have explicit perceptual
categories. We will not be exploring each data set fully; we want mainly to
offer some concrete examples that illustrate the differences i in methods. For
each domain we explore the data of one subject.

Subway Stations

A set of 10 subway stations of Boston is a relatively abstract domain.
Although there are certainly domains that could be thought of as more
abstract or conceptual, such as historic events or tourist attractions, subway
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stations qualify as abstract because they can be thought of in several contexis.
They have several levels of features that must be understood for the subject to
grasp all of these contexts. Where are the stops in relation to each other?
Where are the stops in relation to the city above them? Are the stops on the
same train line? Note how each of these questions is answered best by a
different representation.

The subway stations in this example are Boylston, Central, Charles 5t.,
Copley, Downtown Crossing, Harvard, Kendall, Park St., Science Place, and
South Station.

Figure 1 is an MDS plot that comes from asking a subject for the “geographic
similarity” of each puir of stations, e.g. “How near is this station to that station,
on a scale from 1 to 10?” An algorithm called Multi-Dimensional Scaling
(MDS) can turn these data into a metric space. The space illustrates quite well
the geographic aspect of subway station knowledge, where the stations are in
relation to each other. The dimensions of the space could be vaguely
described as North-South and East-West, although they appear slightly
skewed here.

Note, however, that this plot tells us nothing about which stops are connected
to each other (the “routes”), or where city boundaries lie (the “clusters”).
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Figure 1: This MDS plot of the similarity data for the subway stations illustrates quite well the
geographic nature of subway station knowledge. The dimensions (though somewhat warped
as described by Lynch, 1960) are similar to the North-South-East-West axes of a traditional
map of the Boston area.

Figure 2 is the tree of hierarchical clusters representing the same similarity
data as Figure 1. Here, the stations can be seen to be clustered by geographic
region. The pair of stations in lower right corner represent the core of
downtown Boston. The four right-most stations make up a broader
downtown area; the five right-most stations are those in main Boston area.
The Kend-Char-Sci P cluster are those along the Charles river, and the left-
most two stops are those deep in Cambridge. These are the groupings that
this particular subject makes when he thinks about the subway stops. These
clusters answer the question, “Where are the stops in relation to the city?”

Note that we still don’t know about which stations are cn the same lines.
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Figure 2: This hierarchical cluster tree of the subway station data reveals clusters based on
geographic region. The pair of stations in lower right corner represent the core of downtown
Boston. The four right-most stations make up a broader downtown area; the five right-most
stations are those in main Boston area. The Kend-Char-Sci P cluster are those along the
Charles river, and the left-most two stops are those deep in mid-Cambridge.

Figure 3 shows the trajectory map of the subway data. By overlaying the
orderings of subject data over the graph, we can see which nodes form
trajectories. In this case, there are two trajectories that overlap at the Park
station. This graph reveals the subway lines themselves, scmething neither of
the other approaches could do. The nodes running from S.S. to Harv are on
the Red Line, and Copl through SciP are on the Green Line. The Park node,
as it is indeed shown, is an intersection point where riders may change trains.
Our clean division of clusters likely stems from the subject mentally moving
from station to station along single train lines. If the subject lived at Copley,
however, and traveled to Charles St. for work, then the data would have led
us to see Park as a node where the paths “turn corners”, and we may not have
found the division of train lines. Nevertheless, domains with stimuli that can
be thought of as varying along separate but overlapping clusters, like subway
stations, are very appropriate for TM.
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Figure 3: This trajectory map of the subway data reveals the subway lines themselves,
something neither of the other approaches could do. The rodes running from SS to Harv are
on the Red Line, and Copl through SciP are on the Green Line.

For this domain, each scaling technique contributes a different insight into the
data. MDS illustrates where the stops are in geographic relation to each other.
The hierarchical clustering tree groups stops together that have relevance tc
their area in the city. TM shows which stops are connected to each other, and
in which order. This comparison illustrates that each method can plays a part
in the analysis and that TM complements the traditional methods well.

Musical Intervals

As an example of the perceptual level of stimuli, we choose the domain of
musical intervals. Data here were collected for Gilbert and Richards (1994).
We consider the domain of musical intervals to be slightly more abstract than
a purely psychophysical domain such as sound textures or colored lights;
unlike these lower-level domains, which are simply percepts, musical
intervals are stimuli which involve a previously learned structuring system
(that of the music in our society) that will influence the way subjects consider
the stimuli no matter what their musical ability. The question thus becomes,
how do subjects organize their knowledge of musical intervals? Can the
scaling techniques reveal what the subjects might have learned from their
environment of Western music?



Musical intervals are made up of simply two simple tones. For musicians, the
relationship of the tones stimulates a learned percept such as “major 3rd.” In
the figures below, stimuli are designated with a small “m” to indicate
“minor” and a large “M” to indicate “major”. “P” indicates “perfect”. Thus,
the intervals are, in order of increasing size, minor 2nd, major 2nd, minor 3rd,
major 3rd, perfect 4th, tritone, perfect 5th, minor 6th, major 6th, mirwor 7th,
major 7th, and octave. Subjects used a Hypercard software interface with
buttons that played the various intervals. At each trial, the subject would see
three buttors, labelled “A,” “B,” and “X” and be asked, “Is A or B more
harmonically similar to X?” These data were transformed to a similarity
matrix according to the Method of Triads (Torgerson, 1952).

Figure 4 shows the MDS plot for similarity judgments of a non-musician
subject. The Octave and Perfect Fifth share almost the same coordinates. We
find again that the MDS plot of similarity judgments gives us some salient
features along each of the dimensions. The Y axis increases with the size of the
interval. The X axis increases with the Western tonality of the interval. (The
major 3rd, octave, perfect fifth ,and perfect fourth are traditionally very
common in tonal Western music.)

The tree plot in Figure 5 of the hierarchical clustering of the musical intervals
similarity data reveals the same features as MDS. The top clusters divides the
intervals by size, and the subclusters group stimuli of similar tonality. The
tree is more helpful than MDS at visualizing which smaller subsets of stimuli
belong together. The perfect fifth and the octave, arguably the two most
salient harmonic structures in Western music, are matched. The major 3rd
and the perfect 4th, two other harmonically important intervals, are also
paired. We also see that the minor 2nd and the tritone, two notoriously
dissonant intervals, are clustered together.
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Figure 4: MDS plot of similarity judgments for musical intervals. The y-axis increases with
the size of the interval, and the x-axis increases with the Western tonality of the interval.
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Figure 5: A tree plot based on hierarchical clustering of the musical intervals similarity data.

The top division groups the intervals by size, and the subclustzrs group them by similar
tonality.




Fi%ure 6 illustrates the trajectory map of musical intervals for the same
subject. For the TM task, subjects used a different Hypercard interface with
buttons for each interval. In each trial, two intervals were chosen out of the 12,
and subjects were told to “think of a feature that varies across the two
intervals. Pick an extrapolant by choosen an interval that would best continue
that change.” By overlaying the orderings of subject data over the subject’s
graph, we find three distinct trajectories that overlap. The first trajectory runs
from m2 to M3. The second runs from M3 to mé, and then branches to m7 and
Mé. The small ® sign indicates that no data run along the nearby branches,
e.g. (m7, m6, M6). The last trajectory runs from m7 to O. The nodes of the
graph are arranged to highlight the breaks between the trajectories. Links are
also hatched accordingly.

Figure 6: Trajectory map of the musical intervals. Trajectory clusters distinguish low, middle,
and higher intervals, breaking at points probably based on the tonal relations of each group.

The trajectories can be seen to represent clusters of smaller intervals, medium
intervals, and larger intervals. The ordering of the trajectories themselves, as
well as the stimuli, show that the subject was using size, the most salient
feature of intervals, to order them. The boundaries between trajectories,
however, illustrate some intuitions about tonality. The intervals at each end
of the scale, such as the 2nds and the 7ths, sound much more dissonant when
played one after another than those in the middle. In the middle we find the
building blocks of more tonal harmony, the major 3rd, the perfect 4th, the
perfect 5th, the major 6th, and the minor 7th. (The minor 7th is often present
in chords, though when played alone, especially in contrast other nearby
intervals, it sounds strongly dissonant.)

In this domain, in which there are basically two features, interval size and
degree of harmony, each technique sheds similar light on the data. The
harmonic feature is complex, however, as we see in the confusing tree.
Because TM is based on sequences, the trajectory map represents mainly the
feature of interval size and offers only small indications of harmonic
preferences. In this domain, MDS seems to be the best representation, given
that our criteria at this level of comparison is based on the degree to which the
representation would illustrate the features we know are important to an
experimenter who did not have as much prior knowledge.
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Sound Textures

As an exainpie from the sensory domains, we illustrate below each of the
scaling methods with sound textures. Sound textures are sounds that play a
similar role as visual textures; they form a recognizable patterned percept not
through an individual aspect of the texture, but through its periodic
repetition. Sound textures are often what the lay persen would call
“background noise”. In an experiment done with Saint-Arnauld (1995), we
coilected similarity data and TM data on 10 sound textures. Each of the plots
below illustrates the data of the same individual.

In both experiments subjects used digitized sounds represented by icons in a
Macintosh interface. To calculated similarities, subjects were given a series of
screens with one sound icon (A) set apart from the others. Subjects were told
to choose the sound most similar to A from the set remaining and drag it
toward A. Subjects then chose the next-most similar sound to A, etc., until all
sounds were ordered in terms of similarity to A. This procedure was
repeated for each sound. To collect TM data, subjects were presented with a
pair of sound icons and the set of icons for the remaining sounds, Subjects
were told to “listen to the two reference sounds, and choose a characteristic
which differentiates the two. From the rest of the set, try to find a sound that
fits between/would go after/before the reference sounds, according to the
characteristic you choose.” Subjects dragged the appropriate icons in place
as the extrapolants and interpolant.

The 10 sound textures are whispers (many people whispering), crickets
(hundreds of crickets chirping), wind, A/C (the droning hum of an air
conditioning unit), stream (the flowing water), snare (a snare drum roll),
bubbles (water bubbling), crowd (the noise of a crowd milling and talking),
applause (the sporadic clapping of a small crowd), and traffic (car engines
and honking horns). Each sound is approximately five seconds long.

Figure 7 is an MDS plot based on the similarity judgments. It reveals two
feature axes quite nicely; the X axis can be seen to be irregularity of the period
of the sound textures, e.g. the period of sporadic applause is more irregular
than the motor of an air conditioning unit. The Y axis can be seen to be the
distinctiveness of the beats within the texture; as the axes increases, the texture
beats become more subtle. The snare drum and air conditioning unit have
distinct beats, but the whispering texture (many people whispering) flows
quite smoothly; it would be difficult to say where the period begins or ends.
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Figure 7: MDS plot based one subject’s similarity judgments on sound textures. X axis can be
seen to be irregularity of the period of the sound textures; the Y axis can be seen to be the
distinctiveness of the beats within the texture.

Figure 8 shows a hierarchical clustering tree of the sound texture data. The
stimuli can be seen to be organized again roughly by aspects of periodicity.
The two largest clusters group textures according to whether they are
periodic. The traffic, crowd, and applause sounds have arbitrary outbursts of
horns, shouts and bursts of claps. The other cluster contains periodic sound
textures, seemingly sub-clustered by the degree of their regularity. The air
conditioning unit and the snare drum are matched, their both being generated
by an regular process. The two water sounds are also paired, having a similar
generating process and therefore similar levels of regularity. It is unclear why
crickets and wind are clustered together.
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Figure 8: This hierarchical tree clustering of the sound texture similarity data. Two major
clusters divide periodic and aperiodic textures. Periodic textures may be grouped by
regularity of period, e.g. A/C and snare are both very regular.

Figure 9 contains the trajectory map of the sound textures. The map
illustrates some of the same information as both the MDS and cluster plots.
By looking at locally neighboring nodes, we can see how the nodes cluster,
and by looking at the pathways, we can see some of the feature as in the MDS
plot: periodicity and regularity of period. The aperiodic sounds lie at the
top end. Near the bottom lie the most regular periodic sounds, with the
regularity of the period decreasing as one moves up the graph (away froin
snare and wind). Moving from whispers though bubbles to traffic we see a
path perhaps representing the increasing distinctiveness of the beats in all of
these aperiodic sounds. Because the triplet data reveal no separate clusters in
the trajectory map, we can infer that the features moving along the trajectories
are reasonably complex, i.e. it is possible to consider the stimuli lying in the
middle of the trajectories as belonging to several contexis.
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Figure 9: The trajectory map of the sound textures shown ebove iilustrates knowledge from
both of the MDS and Tree plots. Aperiodic sounds are near the top, very regular periodic at
the bottom. The regularity of the period decreases along the graph (away from snare and
wind). There are no separate clusters in this trajectory map.

Note that MDS, hierarchical ciustering, and TM all offer information about
the periodicity of the stimuli, and the regularity of their patterns. The tree is
not a particularly good representation, however, because it doesn’t give an
idea of the continuity and variability of the features. MDS and TM do offer
this variability. TM gives a reasonable impression of the multidimensionality
of the data through the branches which are not separate clusters. MDS also
gives an idea of the dimensionality, but lacks the local connections. Because
each representation offers a valuable aspect of the information, the most
informative representation in this case would be a combined plot of the
trajectory map over the MDS data.

Summary of Part I

We have presented three representations of data from the domains of subway
stations, musical intervals, and sound textures. For the subway station data, it
appeared that each representation offered a different of information
about the data, suggesting that all three methods should be used to maximize
the return of information. For musical intervais, MDS offered the solution
most consistent with our prior knowledge: the data have only two salient
features, and because the features were continuous, they could be well
represented along the dimensions of the metric space. For sound textures,
because all the features of the data seemed to make little sense in discrete
clusters, MDS and TM were the better techniques. We compare the three
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methods at a more theoretical level below, and in Chapter 4 we describe
further trajectory maps from variety of other data sets.

PART II: TM Orderings vs. Similarity

We will now briefly discuss the relationship of TM data (orderings) and

similarity data. Since older methods are largely based on similarity, it would
be noteworthy if similarities could be derived from either the TM subject data

or from the Trajectory Maps themseives.

Adjacencies

A matrix of proximities can indeed be derived from TM data. A value x, of
the matrix is the number of times that stimulus i appeared next to stimulus j
in the quintuplet data. We call these values the adjacencies of the subject
data. One mr t then wonder how similar the TM adjacencies matrix for a
data set would be to a similarity matrix gathered from the same subject.

To explore this issue, we offer data from seven subjects from four different
data sets. At separate sittings, each subject gave both similarity values for
each stimulus pair and TM quintuples. For thiz comparison, we assume
symmetrical matrices for botn the similarity matrices and the adjacencies
matrices. We offer below a table of Spearman’s rank correlation on vectors
made up of the rows of the upper triangles of each matrix. All correlation
values were significant with p < 0.01; for most, p was several orders of
magnitude less. Note that there is almost always a correlation of at least 0.4,
between the matrices of the same subject, often as high as 0.7.

Data Set Rank Correlation of
Similarity and
Adjacency Matrices

Boston Tourist Sites A 0.66

Boston Tourist Sites B 043

Circles A 0.82

Circles B 0.54

Musical Intervals A 0.33

Musical Intervals B 0.58

Sound Textures A 0.46

Subway A 0.63
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Why are the matrices not more correlated, and why are the correlations lower
on some data sets than others? We suggest that correlations will be lower for
data sets in which stimuli can be easily sequenced according to features that
would not typically be used in judging similarity. For example, in the case of
musical intervals, intervals can be easily sequenced by their size, but subjects
likely judge their similarity based on any of several harmonic relations.
Likewise in the case of the Boston tourist site data, subjects may sequence sites
based on the order they might visit them, or their physical proximity to each
other while reporting similarity values based on thematic similarity.

Manipulations Allowed on Each Representation

Our choice of mental representation can make an enormous difference in the
way that we analyze a problem, conduct a search, or convey instructions or
ideas to a colleague (Larkin & Simon, 1987; Winston, 1980; Norman, 1993). A
good train schedule, for example, allows a traveler to discover what the best
connecting trains would be for her particular trip. We offer here a brief
analysis of metric spaces, hierarchical clusters, and trajectory maps in these
terms, describing some of the advantages of each representation.

Metric spaces make it easy to see which stimuli are most similar, and least
similar, to a chosen stimulus. One can simply look at the distance from the
chosen stimulus. Assuming that one has meaningful labels on the
dimensions, the metric space also gives an indication of how two points
differ. If one would like to learn where a novel stimulus would fit in the
space, knowing only the similarity between the novel stimulus and any one
current stimulus constrains the location significantly (to a circle). Knowing
the relationship of two current points to the novel stimulus constrains the
novel’s location further (to two points), and knowing three similarity values
anchors it. Learning more global information, however, such as how many
stimulus grouping there are, or whether there are significant relationships
that span more than two stimuli, requires clustering or TM.

A tree representing hierarchical clusters enables simple checking on which
stimuli belong to the same grouping as a chosen stimulus. One can gain a
vague idea of how similar any two stimuli are by looking at how far away
they are in the tree, but this graphic information can be deceptive because of
the non-determined order of tree branches. The hierarchical nature of the
clusters makes it easy to see which stimuli share many features with each
other, which share fewer features with each other, and which share few or no
features. If one would like to place a novel stimulus in the tree and doesn’t
mind simply appending a branch onto to an existing cluster (as opposed to
rearranging to tree to remain binary, etc.), then one can sometimes include the
novel stirnulus with just one similarity relation to a current stimulus (i.e.
when it is very similar to a current stimulus). Other times, one might require
numerous similarity relations to place the novel stimulus appropriately (i.e.
when the relations one has are all large dissimilarities from stmuli in one
branch of the tree). Note that it is difficult from a tree to know how two
stimuli are different, even when you know their similarity value.
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A trajectory map allows the researcher to see the order in which stimuli can
be sequenced. Because the sequencing was inevitably done by the subject
according to some feature, and because similarity judgments must be done by
examining features, one can read a measure of stimulus similarity from the
orderings, though the notion of similarity is slightly weaker than in metric
spaces or hierarchical clustering. Like in clustering, if one would like to
place novel stimulus into the trajectory map, the amount of information
required can vary. If one knows that the novel stimulus can be sequenced
directly between two neighboring stimuli ir the trajectory map, then it can be
placed. Likewise, if one knows that the novel stimulus can be sequenced
between two stimuli on trajectories that otherwise do not intersect, then it is
necessary to create a new trajectory that spans them and incorporates the
novel stimulus. If one knows only information from more distant stimuli on
the same trajectory, however, more information is required. Like a metric
space, however, one can usually tell how any two stimuli in the trajectory
map are different.

Part III: Conclusions

Having seen the different types of information offered by metric spaces,
hierarchical clusters, and connected graphs, it seems not unreasonable to
explore each representation when exploring an unfamiliar domain. Indeed,
had we not expiored the subway stations using TM, we would not have
known that there were important connections between them that could not
always be inferred from their geographic layout. Similarly, without looking
at the MDS plot for the musical intervals, we would not have known how
similar the Octave and Perfect Fifth were (the tree and trajectory map had no
relevant ordering).

Technique | Type of features best suited for technique

MDS | continuous features, independent
H. Clustering | categorical features, hierarchical
TM | continuous & categorical features that sequence stimuli

Table 1: The three techniques and the types of features that they best model.

While we have not offered quantitative measures to choose between MDS,
clustering, and TM, our comparisons have illustrated some basic tendencies
of each method. Table 1 lists the type of features that are best modeled by
each method. If stimuli are expected to have features that might order them
in semi-linear fashion, then TM should be performed. If the stimuli are
known to have no salient discrete features, then hierarchical clustering might
be neglected, since it will not likely offer new information over the other two
methods. Since TM can handle some multiple feature-contexts (through its
overlapping trajectories), TM can be recommended for more abstract,
conceptual stimuli that are likely to have many features. There is not always a
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sure-fire treatment, however; the musical intervals and their complex feature
of tonality illustrated that even TM breaks down in the face of features too
complex to order easily.

In comparison to similarity-based methods, we believe that TM offers an
important contribution to feature scaling by constructing a representation of
stimuli based on a measure other than similarities. By giving subjects an
cpportunity to sequence the stimuli within the contexts of different pairs,
rather than compare them two-by-two alone, TM can model distinct features
that might get grouped into the generic feature “similarity” in other methods.
Also, TM combines some advantages of both metric spaces and clustering: its
semi-linear, rank-ordered clusters can model both continuous and categorical
features.
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Chapter 3

An Objective Approach to Trajectory Mapping through
Simulating Annealing

Abstract

Trajectory Mapping (TM)} was introduced in 1995 as a new experimental
paradigm and scaling technique. Because only a manual heuristic for
processing the data was included, we offer an algorithm based on simulated
annealing that combines both a computational approach to processing TM data
and a model of the human heuristic used by Richards and Koenderink. We
describe the details of the algorithm itself, present several diagnostic measures,
and analyze the assumptions made by choice of the representation and the cost
function.

Introduction

Psychologists have often explored how people organize their knowledge about
different objects. A variety of experimental paradigms, such as Multi-
Dimensional Scaling (MDS) and hierarchical clustering, have been used to try
to elicit the features of stimuli that subjects find important.

In 1995 Richards and Koenderink proposed a new scaling technique called
Trajectory Mapping (TM). Broadly speaking, TM is an experimental paradigm
that asks subjects for judgments about the features of stimuli and then models
the subjects’ conceptual structure with a connected graph. Richards and
Koenderink describe the paradigm generally and give several examples, but
do not offer a detailed algorithm for deriving the graphs from the subject data.
We hope to offer a complete experimental TM procedure by describing and
analyzing such an algorithm. The graphs resulting from this algorithm
resemble those of Richards & Koenderink previously made by hand using
various heuristics.

Part I: Overview of the Approach

In this section we present the basic steps of going from subject data to a
trajectory map. First, the quintuplets described above are broken down into
triples. Of a quintuplet A - B - C - D - E, for example, the triples would be
A-B-C,B-C-D,and C-D-E. The number of times each triple occurs in the
quintuplet data is assigned as the weight on that triple. The weights are
normalized by the maximum possible weight (n for n stimuli) so that the
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maximum weight is 1.0. Alternate methods of counting triples have been tried
and are described in Appendix A.

The triples are used to build graphs through overlaps (Figure 1). If triple (1, 5,
3) occurs frequently (has a high weight), and triple (5, 3, 4) occurs frequently,
then we connect them to form the chain 1 - 5 - 3 - 4. If we could continue to
connect tggles until we formed a complete graph, then the process would be
simple. en triples conflict, however. There are two main ambiguities that
must be resolved in the triple linking process. The first conflict is called a
“split-or-fit.” If our next heavily weighted triple is (5, 3, 2), for example, we
aren’t sure what to do with 4 and 2. We could have each branch from 3
(splitting the chain), or we could fit them both into the same straight chain,
giving less importance to the coherence of one of the triples, e.g. 1-5-3-4- 2.

Triples to Resuiting
satisfy graph so far
.59 03030
(5,3,4)

(5,3,2)

(5, 4, 3) ?7?? (conflicting tripie)

Figure 1: Building a trajectory map from the triples can be difficult because of decisions about
branching and conflicting triples.

The other type of ambiguity is simply called a “conflicting triple,” i.e. when
two triples suggest different ordering for the same three stimuli. In our
example, (5, 4, 3) would be a conflicting triple since it contradicts (5, 3, 4).
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Conflicting triples can indicate noisy subject data, since a subject who does not
behave consisiently wouid generate more conflicting triples, but they can also
arise from two stimuli close enough to each other in the feature space that the
subject considers the two orderings interchangeable. Usually conflicting
triples cannot both be satisfied in a graph, although it sometimes makes sense
to include them both by fitting them in a small triangular cycle.

Solving the problem of finding the best graph given the triples is a
combinatorial optimization problem. Richards and Koenderink solve this
problem through a manual heuristic that involves systematic trial and error,
resulting in what is subsequently taken to be the “simplest” graph, given the
data, while allowing for some inconsistent triples. We offer a algorithm
that make this procedure objective, using a simulated annealing paradigm.
Both the manual and the algorithimic methods convert a subject’s triples to a
graph (Figure 2). We use a diagnostic measure of fit (described below) to
determine a “noise level” in the data that we use to decide which triples to
include in modeling the graph. We typically do not include triples with
frequency 1 or 2, for example. The resulting graph is then examined; by
thresholding the weakest links and tracking where the triples lie on the graph,
salient subgraphs can be discovered. When these subgraphs can be seen as
chains, we calf them trajectories.

47



Quintupletn Trajectory Map

87510~ 81-~49
148685 ~878 -~
13~68 X4X10X
~21510 241¢6
412387 24187
8142~ 24357

=

Triples
freq. 8 freq. 3
7510 35§57
314 487
418
Te5 198

135
578 [ N X J

569

Figure 2: Summary of the Trajectory Mapping procedure. Note that nodes 1 and 5 appear in
two trajectories, suggesting that two separate features (for each) are used to organize the data.

PART II: The Algorithm

The goal of the algorithm, as described above, is to find the best possible graph
as a model of the triples. In our approach, we begin by constructing an initial
unit-link graph with all the links that would be necessary to satisfy all the
triples. We then optimally adjust this graph for the %ven triples and for a
certain cost function. This optimization takes place by carrying out simulated
annealing using Gibbs sampling (Press, et al, 1988). The state variable that we
optimize is a bi link-matrix, stochastically adding and removing links to
minimize the cost function. After finding the optimal unit-link graph
according to the annealing process, we then adjust the parameters of the cost
function and begin again. After iterating this process over a large space of cost
function parameters, we have a collection of unit-link graphs that are each
optimal for their particular parameter settings. (We discuss below how the
various parameters affect the optimal graphs.) To calculate the final trajectory
map, with a range of weights on the links, we average the optimal unit-link
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graphs over the space of the cost function parameters. See Figure 3 for an
overview of the procedure.

It is important to note the two different spaces that we work in: the first is the
space of all urit-link graphs, given a certain cost function (in which we find the
optimal graph). and the second is the space of all reasonable cost functions (the
optimal graphs of which we average across to find the final trajectory map).
Nexi we present the cost function and a description of its parameters.

input triples as
constraints
AL— have we -
choosa parameters no explored the yes average optimai
for cost function whole parameter graphs
e Space? o
calculate initial output
graph & its cost yes Trajectory Map
4! have we
cool temperature no cooled the
by factor temperature
I enough?
choose candidate yes
link to drop or add no
JL have we
calculate graph cost iterated enough
with candidate link times at this
temp.?
no
>

{Gibbs sampling)

switch candidate
link

Figure 3: Overview of the sitnulated annealing portion of the TM algorithm.
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The Cost Function

The cost function is a mathematicai model of our choice of how to settle the
various ambiguities that may arise when trying to link triples as described
above (Figure 1). We noted the split-or-fit issue and the issue of conflicting
triples. Our cost function also represents an attempt to model the manual
heuristic of linking triples that Richards and Koenderink (1995) suggest.

The cost function contains five costs, each of which is based on an assumption
about the constraining triples. To summarize the cost function, graphs can
differ depending on whether the cost parameters emphasize satisfying all the
triples (giving a more connected graph) or keeping the graph structure simple
(giving a graph with more linear chains and fewer satisfied triples). To break
down this issue, we have costs of three types, constraint costs, metric costs, and
topological costs.

Constraint Costs

A constraint cost is based on the degree to which the constraints in this
optimization problem (the triples) are satisfied. For example, if the we need to
satisfy the triple 1 - 5 - 3 and the current graph is the one shown below, then
because 3 is closer to 1 than 5, that triple is not satisfied. We have one term in
the cost function, called the FailedTriple cost, to penalize for unsatisfied
constraints. Because we want to emphasize the priority of satisfying triples
with higher weights, the FailedTriple cost is the sum of the logs of the weights
of the triples that the graph left unsatisfied. This cost stems from the initial
idea that the graph should be a good representation of the triples from the
subject data.

(1,5, 3) Failed Triple

Metric Costs

There are two terms to penalize for metric costs, the UnequalSpacing cost and
the FarSpacing cost. We suggest the graph incurs metric costs if it includes a
triple within the graph, but it does not allow the nodes of the triple to be direct
neighbors. If the nodes of a triple are unequally spaced or spaced quite far
apart, e.g. 1 - 5 - 3 is satisfied, but the graph distance between 1 and 5 is 1, while
the graph distance between 5 and 3 is 4, then the graph has incurred an
UnequalSpacing cost. If the nodes are spaced far apart, but are equally spaced,
then the graph has incurred a FarSpacing cost (see below). The
UnequalSpacing cost for a given triple is the difference between the number of
nodes between the three triple nodes, multiplied by the weight of the triple.
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The FarSpacing cost for a given tritgle is the number of extra nodes petween the
triple nodes, again multiplied by tn€ weight of the wriple. These metric costs
gtem from our agsumption iR TM that when the subject performs the
extrapolations and interpolation in the original qu'mtuplet, she would prefer to
pick stimuli that result in close, equidistant quintuplets-

Unequal _
(1,59 Spacing =3
Far . 4

Topo\ogical Costs

There are also tWO terms to penalize for topological costs within 2 given graph.

The TotalLinks cost is equivalent to a “price” per link; each additional link has

a cost. The MaxL’mkSPerNode cost encourages links to be spread across nodes

instead of stemming from just one Of two individual nodes by assigning 2
nalty proportionate to the greatest aumber of links on any one node (see

simpleét graph possible should be used 0 model the dafa (Ockham’s Razor)-
The Maxl_.mL’ perNode cost stems from the assumption that it would be rare

for one stimulus within a domain 0 have many more features associated with
it than the other stimuli.

MaxLinksPerNode =5
(node 3)
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Thus, the cost function can be expressed as:

COSt=WaXp + WXy +WeXe +WaXy+ WXy

where
constraint cost x, = FailedTriple cost
. x,, = UnequalSpacing cost
metric cost { x, = FarSpacing cost
x4 % TotalLinkscost

topological cost { = ) ode cost

The Parameters of the Cost Function

Each of the five terms includes a parameter w which weights that term in
relation to the others. Each vector of parameters W defines a graph space in
which we can perform simulated annealing. A good way to think about the
parameters is as a set of priorities about whether to satisfy triples or cut down
on links. The fewer links there are, the fewer satisfied triples there can be. For
example, if the FailedTriple parameter is very low (allowing triples to fail pell-
mell) or if the TotalLink parameter is very high (reducing the number of links
drastically), then the graph will likely have very few links at all, let alone
chains that could make meaningful trajectories. Likewise, if the FailedTriple
parameter is very high or the TotalLink parameter is very low, then links will
flourish and the graph will be a dense, a.lly-connected mess. Figure 4
schematically illustrates some of the different optimal graphs one might get by
varying the FailedTriple and TotalLink parameters while holding the other
parameters constant.
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Figure 4: A schematic illustration of the trade-off between satisfying triples and keeping graphs
simple. The plot shows hypothetical graphs generated from various points in
FailedTriple/TotalLinks plane of the parameter space (while holding other parameters
constant). The dotted lines mark contours of graphs with equal number of links.

The two spacing parameters, UnequalSpacing and FarSpacing, generally
correlate strongly; it is often the case that triples that are badly spaced are also

spaced too far and vice-versa. They also tend to cancel each other out, i.e. if

one of the spacing parameters is high when the other is low, the overall spacing

penaltty will be somewhat similar to if they had both been set to the average.
Therefo

re when exploring the graph structure we usually adjust just

FarSpacing, and leave UnequalSpacing alone.
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When the spacinglfrarameters are low, the graphs tend to stretch out, becoming
entirely linear if allowable. When spacing parameters are high, the graph will
bunch up, forcing the members of no triple to be more than one link apart.
Thus, the spacing parameters have the effect of shifting the contour lines of
equal-link graphs radially about the origin of the FailedTriple-TotalLinks

origin (Figure 5).

the same contour
of 8-link graphs

at varying spacing
parameters

Failed
Triple
cost

A4

TotalLinks cost

Figure 5: The same contour line of 8-link graphs in FailedTriple-TotalLink space under different
spacing parameters. The differences in the graphs are subtle; note that internode distances are
overall higher in graphs with lower spacing parameters (sometimes 4) than in graphs with
higher spacing parameters (mostly 2 with some 3).

Because most of our subject data so far leads to graphs that are already well-
distributed in terms of density, the MaxLinkPerNode cost does not assist us
greatly in finding optimal graphs. Therefore we will not discuss the effect of
the MaxLinksPerNode parameter on the parameter space at this time.

Thus we can cover a useful area of the parameter space by exploring a three-
dimensional subspace of the five-dimensional parameter space by using just
the three parameters for FailedTriples, TotalLinks, and FarSpacing. Because
graphs can vary so dramatically in this space, the algorithm runs at a wide
range of parameter settings and then averages the resulting graphs. “Average”
means that if link 1 - 3 occurred in 50% of the graphs in the sampled parameter
space, then the output graph has a weight of 5.0 (of 10.0) on link 1 - 3.
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The question remains as to how to determine this range of settings. The current
sampling of settings has been carefully chosen through trial and error on a
variety of different types of data. We run the algorithm over a sufficiently
wide area of space that we are assured that it reaches extremes in all directions.
The extrema can be recognized when graphs are fully connected, or when there
are no connections at all. The sampling is not completely uniform; at lower
values of the parameters we sample more densely, because smaller changes in
that range have a significant effect on graphs. We believe that the ideal
subspace within the parameter space varies slightly uepending on various
attributes of the stimulus domain, but our experiments in that area are not yet
finished. Even if the ideal subspace ‘were found, results would not change
dramatically; all the stronger trajectories would emerge the same. More subtle
paths might be able to be identified more accurately, however.

Once we have a graph, the experimenter can iteratively threshold the giaph
(remove links below a certain weight) to see how the graph breaks into
trajectories. Because the graphs that appear through gradually increasing the
threshold approximate the graphs that one finds in the weight space as one
moves from the areas of very dense graphs to the areas of less dense graphs, the
TM output graph can be seen as a single representation of a set of the graphs in
the parameter space.

Our algorithm outputs the graph as a text file that is structured to be read by
the Dot and Neato graph-drawing software of Bell Labs (Koutsofios & North,
1993; North, 1992).

PART III: Diagnostic measures

As with any data collection and analysis procedure, diagnostic measures are
important for answering questions like, “How well does my model fit the
data?”, “How noisy is the data to begin with?”, and “How similar are these two
subjects’ models?” Below we describe three diagnostic measures created for
TM. The first is a simple test for whether a set of triples is random or not. The
second measures the explanatory power of the resulting trajectory map. The
third provides a method of comparing different trajectories maps of the same
data.

Measure of Randomness

It is helpful to have a measure of randomness of the subject data. We measure
randomness by comparing the distribution of the triple weights from the
subject’s data with the distribution of weights that would occur if data were
created arbitrarily, i.e. created by hundreds of Monte Carlo simulations of
subjects.. If the two distributions differ significantly according to a chi-
squared test, then we can conclude that the subject’s data is worth examining.
In passing we note that in a Monte Carlo subject, even with medium-sized N
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(N=15), the likelihcod of generating a triple with weight greater than 4 is very
small (< 2.4 x 10°), so any subject data that we find with even one triple with a
weight of 4 or greater is already likely to be far from random, as we see in

Figure 6.
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Figure 6: The distribution of triples by weight for various numbers of stimuli (N). Each
distribution is the average Monte Carlo simulations of either 200 and 400 subjects (larger subject
set for N > 9).

In Figure 7 we illustrate the power of the Monte Carlo simulations as a
test for “noisy” data. If a TM subject ignored our instructions and answered
randomly, the weight distribution of the triples derived from his data would
match the Monte Carlo distribution closely; all z-scores would likely fall
within the dotted lines in the bottom plot of Figure 7, which represent the two-
tailed 99% confidence interval {z = 2.58).
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Figure 7: A comparison of data from the Boston tourist attractions data set (15 stimuli) with the
Monte Carlo distribution for 15 stimuli (summed from 400 simulations). The figure on the
bottom shows the z-scores derived from the difference between each data point and each point
in the Monte Carlo distribution (top). These smaller differences are actually the most
significant, since variance of the Monte Carlo distribution means decreases dramatically with
higher weights.
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Measure of Trajectory Map Fit to the Data

Once we are satisfied with input data, we need a measure of fit, a number
which measures how well the output of the TM algorithm models the data. To
calculate measure of fit between a set of triples from a subject and the resulting
trajectory map, we make a list of the triples held within the model and
compare the two lists. See Figure 8. First, to generate a simple trajectory map
for this example, links are weighted with the maximum of the weights of the
triples that include them. For example, as illustrated in Parel B of Figure 8,
link 3-5 has weight 3 because triple 1 3 5 has weight 3 (even though triple 2 3 5,
which also passes through 3-5, only has a weight of 2). To assign weights to the
model-based triples, costs that are inversely proportional to the link weights
are assigned to the links. See the [bracketed values] in Panel B. Panel C lists
the triples contained in the graph with their costs. The cost of a triple consists
of the cost of all links traversed while moving from the first node to the third
node. Once the model-triples (Panel D) are ordered, we can compare this list
of triples with the original data (Panel A).

. in graph 2.
Subject [ . o - 135 [4)
eight 3
data | " ':935 """""" .__.-253 5]
weight 2 -___.—':.__,.354 (5]
2538 L 254 [6]
354 -° 132 7]
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235 ."x rank 152 [7]
COfT. 154 [7]
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134 (7]
135 [4]
152 [7]
154 [7)
253 [5)
254 (6]
354 (5]

Figure 8: To measure the fitness of graph to its data, we assign costs to each link that are
inversely proportional to the weights (Panel B). We note the triples that are present in the
graph and their costs (Panel C). Our measures of fit are based on comparing the rank ordered
lists of model-triples (Panel D) and data-triples (Panel A).
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Two different measures are used to assess fit, each based on a comparison of
these two lists of triples. The first is simply the percentage of unmatched
triples, i.e. the percentage of the data triples that were not included in the
model. In Figure 8 (Panel A), this measure is 25%, since the model contains 3
out of the 4 data triples (triple 2 3 5 remained unexplained). This measure does
not penalize the model for containing additional triples beyond the data,
however, and thus a fully-connected model would satisfy 100% of the triples
while offering little insight into the domain.

The second measure of fit is based on ranking the triples in the two lists, and
then calculating the Kolmogorov-Smirnov statistic, D, (Press et al, 1988; Siegel,
1956) for the two cumulative distributions of the two lists of ranks. D equals
the maximum difference between the two distributions (Figure 9). If the model
contained exactly the same triples as the data, weighted in the same order, the
statistic would be zero. As the model adds additional triples (as it often does
just because of the necessary topology of a graph that models other triples), the
distribution of model-triple ranks becomes distorted in comparison to the
ranks of the data-triples. Thus, this measure penalizes for the additional triples
in a model that the matched-triple measure does not take into account. We
hope in general that the statistic shows that the two distributions are not
significantly different, though even if they are, we have a normalized measure
of difference that can be compared across domain.
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Figure 9: A plot of the cumulative distribution functions of the rank orderings of the two licts of
triples. The KS-statistic shows that the distributions of model-triples and data-triples are not
significantly different. The data are from the Loop data set, Chapter 4).

Both of these measures are key for determining the level of “noise” in the data.
Because it is likely that lower-weighted triples contain more noise, triples
weighted belcw a certain threshold are removed before using them as input for
the algorithm. The measures of fit are used to determine the threshold. The
algorithm is run on sets of triples based on all possible thresholds, and the two
measures of fit are calculated for each of the resulting models. Note that the
measure the number of matched triples is based on a comparison of the model-
triples with all data triples, even if the model was based on only triples of
weight 3 and above, etc. Figure 10 shows a plot of the percentage of
unmatched triples for models that have been created from different subsets of
the data-triples, each subset thresholded at a different value. The number
“dropped” indicates the number of nodes that are dropped from the model.
The model from data thresholded at 4, for example only includes 16 of the 18
nodes.

Loop data (18 nodes)
Tripies Unmatched by threshold
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Figure 10: Plot of unmatched triples for models created from data triples thresholded at various
values. Number “dropped” refers to the number of nodes dropped from the trajectory map at
each threshold. The number above each point is the raw number of triples unmatched. This
plot is for the Loop data set.
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Figure 11: Values of the KS-statistic for the models from data thresholded at different values.
This plot is also for the Loop data set.

Figure 11 shows a plot of the KS-statistic (D) for the TM models created by the
algorithm at each hold. The p = 0.01 and p = 0.05 significance levels of D
are shown as well, illustrating that our D values are not significant. (A larger D
means a greater difference in distributions and a more significant difference.)
In other words, the algorithmic model car be considered to adequately
account for the triples.

Using both plots (Figure 10 and Figure 11), we can see that the TM model at
threshold = 4 would be the best model. It ignores the most triples (assumed
noise) without increasing the number of unmatched triples, and the D value at
4 (although higher than at lower thresholds) is not significantly higher. If the D
value su def:nly passed the significance threshold at 4, we would retreat to a
threshold of 3.
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Measure of Similarity of Two Trajectory Maps

Because we have proposed a new model for representing subject data, it is
important that we also propose a measure for rating the similarity of two
different models. Given two trajectory maps, we look at the lists of the
weighted links for both graphs, and reward for common links and punish for
distinctive links. To differentiate between graphs with identical topology but
differently weighted links, we also penalize for the difference between weights
on the common links. The range of this measure is [-1.0, 1.0], where 1.0 implies
identical graphs.

(X common link weights — ¥ distinct link weights — ¥ diff. in common link weights)
3 all weights

Using such a measure, we can compare the trajectory maps of two subjects and
decide whether they might be using similar features to construct their maps. It
is important to note that our feature measure focuses explicitly on individual
links, as opposed to overall graph structure. In Figure 12 we compare a set of
unit-link graphs to give an intuition for the measure. Graph A has a similar
overall topology to Graph C, for example, but because their links are actually
completely different, they have a similarity value of -1.0. Graph D, on the other
hand, has a very different topological structure, but because it is identical to
Graph A with the excepticn of one link, A and D have a similarity of 0.8.
Graph B is a version of Graph A that has “absorbed” node 4 into its chain and
reversed the order of two of its nodes. The similarity of A and B is only 0.2.
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Figure 12: Note that the similarity measure is based on common and distinctive links, and not
on the overall! graph structure; A and D have similar links, for example, while one is a
branching tree and the other contains a cycle.

Summary

The TM algorithm described above was designed to build trajectory maps
from subject data objectively. Based on the simulated annealing, the algorithm
tunaf es derived from subject data as constraints that can be used t¢ find an
zr connected graph. Cost function parameters were chosen so that the
orithm models manual heuristics followed by Richards & Koenderink
(1995) Lastly, three diagnostic measures for trajectory maps were described: a
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measure of subject data noise, a measure of fit for a trajectory map its data, and
a measure of similarity between two trajectory maps. We suggest that this
algorithm offers an useful methed of creating trajectory maps that closely
mimics the original intentions of Richards & Koenderink.
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Chapter 4

Testing the Algorithm:
Automatic vs. Manual Trajectory Maps

Abstract

We compare Trajectory Maps generated with the algorithm with maps constructed using a manual
heuristic which the algorithm was designed to imitate. In doing so we illustrate TM results in various
domains, and show that the algorithm offers satisfactory results for all data sets, and often clearer
solutions than the manual technique for more complex data sets.

Introduction

In this chapter we challenge the TM algorithm by comparing its results to Trajectory
Maps made by hand in several domains. The comparison not only illustrates the
general robustness of the algorithm, but also allows us to describe the more subtle
nuances of the algorithm by pointing out the differences between the two types of
results. We do not focus on analyzing the data sets themselves; several of the data
sets have already been analyzed in other papers. After introducing each data set, we
take one subject’s data, and provide a trajectory map done by the algorithm and
done by hand. We compare using the diagnostic measures described at the end of
Chapter 3, providing a measure of fit for each graph and a measure of comparison
between the two graphs for each data set.

The Manual Heuristic

Before continuing to examine particular data, we will briefly describe the manual
heuristic of constructing trajectory maps. Note that this construction is always done
with arbitrarily numbered nodes, so that the experimenter’s manual construction
will not be biased by knowledge of the data set. For previously published trajectory
maps, MDS scaling and some contextual information were often used to assist
construction (e.g. see color data set in this Chapter or visual texture data in
Appendix B).

1. Start with the most heavily-weight triples, e.g. triple (1 3 5) with weight 5. Draw
the nodes 1, 3, and 5, and connect them with five lines each.

2. Select the next triple of equal weight, if availble: draw and connect those nodes.
When you find a triple that references nodes that have already been drawn, just
append the new nodes to them. Work your way down through the triples, ﬂ!rom
highest to lowest weights.



3. If you find a triple that cannot easily be satisfied within the graph that you've
constructed so far, e.g. (1 5 3), then note that triple as a conflict that needs to be
resclved and go on.

4. When you get down to lesser weighted triples (typically below about 1/4 the
maximum weight), stop and consider your graph so far. Redraw it so that no
links cross, if possible. It's okay to have longer links that curve around so as to
avoid crossed links.

5. If you encounter a situation where you can either have 2 short paths between 2
nodes, or can collapse the paths into one slightly longer path, then collapse the
paths, esp. if the triples that formed the 2 paths were of equal, high weighting.
For example, (6 4 7) and then (4 8 7).

6. Ignore triples of weight 1; they’re likely just noise. Add links from weight 2
triples if they help define the structure of the graph usefully or help resolve the
conflicting triples that you noted. It is useful to add them with singie dotted
lines to indicate their weakness.

7. Go over the entire set of triples again, keeping in mind the conflicting triples. If a
conflicting triple has equal weight to its “opponent” that is already drawn, do
not give preference to the opponent just because it is on paper. Look for
indications in other triples (even those of weight 2) that would put a priority on
the conflicting triple or on its opponent. You ma, ave to start over completely.
Iterate this process several times to make sure that you've satisfied the conflicts as
best as possible.

8. Finally, redraw the graph so as to emphasize the heavily-weighted
chains/trajectories and to illustrate the overall topology of the graph.

Note that the iterative process of dealing with conflicting triples can become very
complicated with a higﬁ number of nodes and triples. It is in these cases that the
algorithm can become quite useful.

An additional step which can ease the graphic layout of a complex trajectory map is
drawing the map over nodes that are positioned in a metric space derived from the
adjacencies. As described in Chapter 2, a matrix of proximities can be derived from
the number of times that each stimulus appears next to another one in the original
quintuplet data. This matrix, called the adjacencies matrix, often correlates strongly
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with ar independently derived similarity matrix of the data. By plotting the
trajectory map over the MDS space from the adjacencies, we can at least usually
derive a simple trajectorv map with few crossing links (see texture data set in
Richards & Koenderink, 1995). We can sometime draw additionai inferences from
the MDS space as well. This step can obviously be performed with both manual and
algorithmic trajectory maps.

The Data Sets

The following data sets were chosen both to illustrate the abilities of the TM
technique and to provide domains with different levels of cognitive abstraction. We
first describe a token example domain of black and white circles. We then offer the
domain of kinship terms, e.g. “uncle” or “grandmother”, a high-level cognitive
domain that can be difficult to order. Next, we describe data on colors, a low-level
perceptual domain. Finally, we describe data from sound textures, a medium-level
domain in that the sounds not only provide the basic aural percept, but also
stimulate users to build a model of the source process for each sound. With each
data set, we hope to demonstrate the quality oF the TM algorithm, and illustrate the
features of data that TM can reveal in general.

Circles

This is a data set used largely as an example of our comparison technique. It is the
example used as an explanatory example of Trajectory M?ping in Richards &
Koenderink. The stimuli are 9 circles of differing sizes and color. 4 are clearly
black, 4 are clearly white, and the smallest one could be a tiny circle of either cclor
{because of the black border on the white circles). Figure 1 shows a trajectory map
for one subject. By overlaying the subject triples over the trajectory maps, one can
divide the map into subgraphs, as shown by the different hatching patterns of the
links. No triples cross the small dot in the middle, though trajectories from each
side stop at it. This trajectory map is a good example of how trajectories can be seen
as ordered clusters. The two clusters are black circles and white circles, and each
cluster is ordered by size.

O"\Q;O-o- ...,

Algorithm solution
Fit: matched 12/12 triples (0% unmatched)

‘ O - O -OmOom.—0-@ -

Manual solution
Fit: matched 12/12 triples (0% unmatched)

Figure 1: Trajectory maps of circle data. A comparison of the graphs reveals a similarity of 0.93, with
8 common links and 3 meore links in the algorithmic solution.
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Discussion -

One might wonder why the algorithmic solution contained the 3 weak side links,
especially if the rank correlation was higher without them. It is important to
remember, at this point, that the rank correlation of the triples, i.e. the order of their
weighting according to the graph vs. according to the data, is not of supreme
importance. We want the value to be relatively high, meaning that the triples with
maximum weight in the data are the most heavily weighted triples in the graph, but
we also must acknowledge noise that can arise in the manual from serial
construction, i.e. beginning with one triple and then adding others. By satisfying the
ordering of the subject’s triples very closely (as is done in the manual technique), we
actually find a less intuitive link structure.

For example, the manual result contains heavy links between the smaller white
circles, and only medium weight links everywhere else. This asymmetry results
from that particular triple having a heavier weight than the others. The algorithm
generalized over the triples, establishing heavy links throughout the salient
structure of the graph.

Lastly, one might consider the weak side links of the algorithmic solution to be an
indication that subjects are ambivalent about which circle of a given color should be
the “middle” circle, given the largest and the 4th largest.

Kinship Relatiocns

This data set of English kinship terms was originally used in a free-sorting task by a
variety of cognitive anthropologists (see Tyler, 1969); it has more recently been
analyzed by John Daws using MDS and cluster analysis (1996). The terms are
grandmother, grandfather, mother, father, aunt, uncle, daughter, son, niece, nephew,
granddaughter, grandson, and cousin. We had subjects perform TM with the
stimuli as comparison to the clusters that Daws presents.

Figure 2 shows a clustering solution based on the original Rosenberg and Kim data,
as presented by Daws. Although it could be that Rosenberg & Kim'’s subjects were
using a different measure of similarity than we have, their clustering solutions does
not seem conceptually appealing; it represents the features of neither gender nor
generation. It seems mainly to group terms by proximity in a typical family tree,
with the assumption that two grandparents and two grandchildren are equally close,
for example.

In our TM solutions for one subject below (Figure 3), we see how TM is particularly
appropriate for this data, since its tendancy to form ordered clusters illustrates the
two main features of this data set. The genders are clustered, males on the left and
females on the right, and the generations are roughly ordered within each cluster.
Cousin, because it is genderless, spans the gap between the clusters of the two sexes.
We predict that languages have only gendered terms for cousin, such as German,
would have the cousin terms included in the appropriate clusters.
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Figure 2: A hierarchical clustering of kinship terms according to Daws’s cluster analysic (1996). Note
that this clustering does not explicitly represent gender; each linguistically complementary pair of
terms is clustered, but that does not tell us that one member of each pair have something in common.
It also does not represent generations. The main features of this tree seem to be based on proximity in
a typical family tree.

It should be noted that subjects found these stimuli particularly difficult to work
with during TM because of the changing reference frames of the terms. One subject
reported localizing himself as “son” and performing the entire TM task in that
context.
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Algorithm solution
Fit: matched 79/113 triples (30% unmnatched)

Manual Solution
Fit: matched 98/113 triples (13% unmatched)

Figure 3: Trajectory maps of kinship data. A comparison of the graphs reveals a similarity of 0.58,
with 16 common links and 4 distinct links on each graph.

Discussion

| Here we see that the graphs fit only about half of the triples in data! Such low

| numbers indicate a significant number of directly conflicting triples in the subject
data. Such conflicts ca1: be easily understood within the context of this data set,
since the issue of different referance frames could be confusing for subjects. If
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subjects do nat choose a consistent way of interpreting the stimuli, then they will
likely producing conflicting triples.

The difference in links is not overwhelming; the most heavily weighted paths of the
graphs are similar. Only weaker links differ. It seems that the subject had a bias
towards the matriarchy of the family. It is worth noting that the twoe solutions had
the same number of links, but the manual solution satisfied three more triples than
the algorithmic solution. This difference is a sign either that the algorithm is still
imperfectly modeling the manual procedure, or that the algorithm has produced
the result of various local minina. Future work would attempt to pin down the
cause of this difference.

Colors

This data set of colors was introduced by Richards and Koenderink (1995). They
chose 38 colors from the LJG uniform color space described by the Optical Society
of America (OSA). All colors lie on or just adr)?acent to the equilightness plane where
L = 0. The manual solution below is a close approximation of the solution presented
in their paper. The trajectory map solutions (Figure 4 and Figure 8) for pooled
subject data have been drawn over the colors as they lie in the LJG uniform color
space to provide some intuition into what the paths represent. There are so few
triples in this data set (27) because the triples of weight 1 are not available in
Richards & Koenderink.

There are three points of interest in this data. First, note that we have divided the
graph into three regions that overlap by one node at the boundaries. One region sits
mostly in the red half of the plane, bound at nodes 12 and 27; the cther region sits in
the green half of the plane, bound at 13 and 27. A small subgraph spanning nodes
12, 5, and 13 completes the trajectory map. These regions are based on the layout of
the subject’s triples over the graph; no triples cross the region boundaries. The
regions are a good example of TM’s ability to find ordered clusters of stimuli; each
region or cluster, though not strictly linear, has an explicit ordering within it that
can be used to infer features of the clusters. Note also that TM builds clusters that
can overlap; the boundary nodes (12, 13, 27) are all shared by both of their bordering
regions.

Secondly, none of the most salient trajectories travel through the color gray, which
lies at the origin of the space. The main paths travel around the gray region. We can
infer from this fact that the subject would find it conceptually difficult to interpolate
between red and green or between yellow and blue, although gray is a fine
computational solution. Finally, the fact that the yellow-blue axis seems to divide
the space, as opposed to the red-green axis or any other axis presents a research issue
worth further exploration. This division is supported by the smallest region that
does cross the yellow-blue axis, but does not connect with the other regions.
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Figure 4: Algorithm solution
Fit: matched 18/27 triples (33% unmatched)
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Figure 5: Manual Solution
Fit: matched 18/27 triples (33% unmatched)

A comparison of the graphs reveals a similarity of 0.68, with 31 common links, 2 distinct links on the
manual solution, and 4 distinct links on the algorithmic solution.

Discussion

We notice that these two solutions are basically identical, which gives reassurance
that the algorithm is useful, since it is particularly difficult to construct the
trajectory map of this complex data set by hand. Some of the main differences
between the two solutions (e.g. links 18-30 and 21-29 in the manual solution) stem
from quintuplets that contained the “not available” response. The current algorithm
does not accommodate “not available” and “dead end” responses robustly, whereas
an experimenter can accomplish this by hand.
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Sound Textures

This data set of sound textures was introduced by Nicolas Saint-Armaud (1995). He
defines a sound texture as “an acoustic signal characterized by its long-term
properties” (1995, p. 12). Often when people use the word “sounds” they imply
short duration sounds that carry a message of some sort, such as a computer’s beep,
or a duck’s quack, or a referee’s whistle. Sound textures, on the other hand, are
longer duration sounds that usually carry no succinct meaning, such as the sounds
of a waterfall, a humming refridgerator, or wind.

The trajectory maps of this data set (Figure 6) come from a subject different than the
subject whose data was used in Chapter 2. The maps reveal two main divisions of
the stimulus set. The upper region in each map (as drawn here) contains sound
textures which are continuous and have distinct pulses of sound that one can
distinguish; the nodes within the region change from more distinguishable pulses
(air conditioner motor) to barely seperable pulses (swarm of crickets). Although the
rhythm of pulses is not always completely regular, this region can roughly be called
periodic. The lower region contains a set of aperiodic textures which run from
being discrete (applause) to continuous (wind).

As the algorithmic solution illustrates, the two regions overlap in some areas. The
reader may wonder how the boundary textures might be perceived as both periodic
and aperiodic. One can imagine this perception most easily with applause, perhaps;
near the end and beginning of an applause, the sound is more discrete; one can hear
individuals. When an entire audience claps, however, the sound texture becomes a
continuous sound in which one can hear waves of clapping emerge from the overlap
of each individual’s clapping rhythm. Even at this point, however, one can aiso still
hear the claps themselves. A thousand crickets give off the same wave-like sound,
except it is more difficult to hear individual chirps. The significant overlap can also
be explained by the high-dimensionality of the sound texture feature space; because
each texture has so many features that the subject could attend to, her perception of
a given texture is likely to be significantly influenced by the context of the pair of
textures in each trial.
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Figure 6: A comparison of the graphs reveals a similarity of 0.71, with 10 common links, and 1
distinct link on the algorithmic solution, and 2 distinct links on the manual solution.

Manual Solution
Fit: matched 55/68 triples (19% unmatched)

Discussion

Again, as we saw in the case of the kinship data set, many of the triples seem to have
conflicts with each other. The only links of difference in our case are the two
additional ones in the algorithmic solution: stream-whispers and a weak bubbles-
applause. One explanation for the lack of these links in the manual solution is that
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when carrying out the manual technique, one generally strives for simpler, more
linear solutions. Thus, the topology of the algorithmic solution, with the double
loop and links crossing near snare, would be less likely to be arrived at by
{)iecemeal consfruction. In effect, this is an example of the experimenter arriving at a
ocal minimum while constructing by hand. Because the algorithm uses simulated
annealing, a more cost-effective, though more complex solution could be found.

Test Loop

This is a simulated data set created originally to test the algorithm. It was based
loosely on the London subway map; our goal was to have a loop and also several
intersections where triples could “turn corners.” It turns out to be a good test data
set for the manual heuristic; the data are complex enough that it becomes difficult
not to become trapped in a local minimum of fit while constructing the graph, as a
manual constructer did in this case. To create the quintuplets for the algorithin,
interpolants and extrapolants were selected for all pairs from a figure much like
algorithmic solution. We see the trajectory maps for one simulated subject in Figure
7 and Figure 8. It is important to note that the quintuplets were purposefully
completed so that the quintuplets turned the corners of the map, e.g. not just (9 4 3 2
1), a “straight” quintuplet, but also (4 3 5 7 6). This goal led to there being no truly
separate trajectories; unlike the Boston subway data in Chapter 2, where we see a
separation of train lines, we do not find different “loop” lines and “crossing” lines.

Figure 7: Algorithm solution
Fit: matched 155/156 triples (1% unmatched).
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Figure 8: Manual solution
Fit: matched 148/156 triples (5% unmatched)

A comparison of the graphs reveals a similarity of 0.45, with 18 common links and 3 more links in the
algorithmic solution and 5 more in the manual solution.

Discussion

The main differences between the algorithmic and manual solutions are the position
of node 5, and the low weights on the “spur” links. Node 5 is likely in the wrong
place because the complexity of this data set makes it difficult to reach the final
global minimum solution without stopping at a local minimum. The spur links, i.e.
those connecting nodes 15, 16, 17, and 18, are low in weight because the marnual
heuristic suggests that one ignore triples that have a weight significantly lower than
the maximum triple weight. This rule is sensible, siiice lower-weighted triples are
usually due to noise. In this simulation, however, since all triples were consistent,
even triples of weight 1 were useful, and they might have assisted the constructor.
Also, information about dead ends would have been helpful for the manual
construction. Note that the spur nodes will likely be present in at least half as many
triples as nodes that have multiple links attached to them, thus, because the lower
weighted triples were ignored, triples containing the confirming information about
the spur nodes were ignored. The algorithm, on the other hand, takes all triples into
account, but can discount their influence on the graph logarithmically.

Overall Summary & Conclusions

We have introduced five different domains of data, and compared trajectory maps
created by the simulated annealing algorithm and through the manual heuristic in
each one. The summary statistics (as developed in Chapter 3) are shown below in
Table 1. We offer statistics for both data sets in this chapter and some additional
data sets discussed in other chapters and in Appendix B. It is worth noting again the
subtleties of each measure. The rank correlation is high if the triples in the
trajectory map are weighted in the same order as triples in the subject data. The



more important triples measure is the percentage of triples in the subject data that
the trajectory map satisfies. Note that most graphs satisfy a high percentage of
triples. The number of satisfied triples is unusually low in the representations data
set because of the way subject data was pooled, adding noise (see Chapter 5). By
examining the data sets for which we have manual constructions, measures show
that both methods of constructing trajectory maps can provide a model that
represents the data well, and that their results are usually similar.

algorithm ~ ‘manual  similarity. of
triples . triples - maps
matched ‘ ed
Circles 100% 0.42
Kinship Terms 70% o 8T% 0.68
Colors 67% 6% 0.68
Sound Textures 72% 81% o 0.80
Loop Test 99% 95% 0.45
Musical Intervals 98% e
Subway Stations 100%
Representations 46%
Boston Sites* 83%
Visual Textures* 56%

Table 1: Measures of fit for algorithmic solutions and manual solutions, with a measure of similarity
of the two for several datasets. Measures of algorithmic fit are provided for other data sets mentioned
in the thesis. Those marked with and asterisk (*) appear in Appendix B.

By achieving simiiar trajectory maps with the algorithm, we have shown that our
model of what assumptions and goals the manual heuristic entails is at least
sufficient enough to achieve these results. To review (from Chapter 3), our
algorithm model assumes that the trajectory map should 1) satisfy as many triples as
possible, emphasizing the higher weights with a log scale, 2) connect the nodes of
triples with as short and even a spacing as is possible, and 3) collapse parailel or
bifurcating paths when possible so as to maximize simplicity. Because each TM
data domain allows us to infer features of the data that MDS or clustering would not
necessarily have revealed on their own (see Chapter 2), we recommend TM as a
complementary approach to traditional scaling techniques.
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Chapter 5

A “Meta” Problem:
Representational Forms & Functions

Abstract

Knowledge access and ease of problem-solving depends on our choice of representation. Because of
our unique facility with language and drawings, linguistic and pictorial descriptions are typically
taken as the simplest, most abstract categories of representa: ~n. We note the importance of mixed
representations and offer evidence that when subjects organize representations according to their use,
they categorize not just as this pictorial level of characterization, but at multiple levels:
computational, functional, and pictorial.

Introduction

Our choice of mental representation can make an enormous difference in the way
that we analyze a problem, conduct a search, or convey instructions or ideas to a
colleague (Winston, 1980; Larkin & Simon, 1987; Moray, 1990; Norman, 1993). We
have a large variety of representations available to us, and in this paper we explore
how people relate them to each other. Our ability to choose appropriate
representations given a problem demonstrates that we employ a mental
representation of representations.

Several researchers have proposed theoretical frameworks for classifying
representations, often focusing specifically on one aspect of the representations
without adequately distinguisling their different characteristics. Bertin (1967),
Twyman (1979), and Lohse, et al. (1994), for example, offer frameworks for
representations based on their external visual ?Elpearance or “physical structure”
(Lohse, et al. p. 36). Their frameworks are useful for graphic classification purposes,
but do not tell us how people might organize the representations for efficient
cognitive use. Cox & Brna (1993), in an effort to explore the different uses between
“graphical and linguistic” representations, clustered 87 representations into
categories according to both computational and external characteristics, but did not
distinguish these levels of analysis.

To clarify the different aspects of representations that one might consider, we
suggest the three characteristics shown in Figure 1. We will use the term
representational form to refer to the computational framework of a representation
which offers the infrastructure for carrying out the organizing principle on the
content. Some examples of representational forms are list, Euclidean metric,
hierarchical clusters, and sets. We use this term to distinguish these computationai
structures from graphic or external depictions, the physical entities that illustrate
representational forms, e.g. grid, sketch, or icon. Lastly, one can also characterize a
representation by its function (intended or otherwise) and content.
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representation

representational form function external depiction
(computational) (based on content) (pictorial/percepiual)

3

table seating chart onid of chair icons with
textual names in each
chair
TV guide, programs grid of celis with text
ordered by channel
iy 20 MO

Figure 1: There are three salient aspects of a representation that should be distinguished: its
representational form, its function, and its external depiction.

We want to explore which characteristics subjects consider to be salient when
organizing representations according to their use, as well as what types of features
they use within those levels. If we have subjects use a variety of representations, for
example, will the subjects later group them by their function, their computational
structure, or their external depiction?

To examine this question, we have solicited subjects’ judgments about the
relationship between 17 different representations. This approach differs from
previous work in two ways: 1) we solicit subjects’ judgments according to the use of
the forms, and 2) we use trajectory mapping (Richards & Koenderink, 1995) as an
experimental approach (instead of a scaling technique based on similarity). We use
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trajectory map(ring (TM) because it forces subjects to think about the specific
e

features shar

Method
The 17 representations were chosen to be examples of a wide variety of

representational forms. To prevent subjects from using pictorial parameters to

by forms instead of their general “pictorial” similarity.

judge the representations, we presented each representation through a short verbal

description. For example, for the representational form “linear ordered sequence of
both textual and pictorial elements”, we would write, “graphics and text that
instruct assembly, e.g. instruction manual.” The complete list of cur representations
appears in Table 1,

A
C

(")

K
M
o)

Q

telephone directory
(names, not yellow pages)

map of US cities and states

phylogenetic tree
(e.g- of an animal or plant species)

logical/mathematical proof
with lemmas & corollaries

the world-wide web
(both text and images)

histogram/bar graph
(e.g. stock market prices by month)

stores inside a 3-story mall or
office locations within Media Lab

a TV guide (tables showing each channel's
schedule each hour each day)

Venn diagrams

subway map

periodic table of elements

Roget style thesaurus

or Wordnet

graphics and text that instruct assembly

(e.g. instruction manual)

architect’s floor plan drawings/blueprint

Lib.of Congress cataloging system

zip codes

a processing flow diagram
(e.g. for a chemical plant)

Table 1: The 17 stimuli presented to subjects. Each stimulus describes a representation which uses a
certain representational form.
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Our subjects were eight MIT graduate students and one professor. They were first
introduced to the method using a TM task based on a simple set of black and white
circles (see Chapter 1). A week or so following this practice session we introduced
the subjects to Table 1. As is standard in TM, subjects were given data sheets of
stimulus pairs in the form of “___J G __”, etc. Subjects were told that for each
pair, they should first imagine using the representations specified to accomplish a
task of their choosing. Then they should then imagine the two stimuli forming a
sequence of some sort, and pick a stimulus from the remaining representations that
would make an appropriate third element in the sequence, filling in the right-hand
blank. See Table 2. We call this stimulus the right extrapolant. Subjects are asked to
then reverse the process, imagining a sequence going in the other direction and
choosing a stimulus for the left-hand blank (the left extrapolant). Finally, subjects
choose a stimulus for the middle blank (the interpolant).

J G
_—J __GA adding the left extrapolant
CJd_GA adding the right extrapolant
CJd HGA adding the interpolant

Table 2: The progress of a TM trial: the subject fills in first one extrapolant, then the other, then the
interpolant.

The TM method also allows three other options for filling in the blanks of a trial.
The first occurs when the elements of the pair are so dissimilar that the subject feels
uncomfortable imagining a sequence based on them. This the "infeasible" case. The
second case is the "feasible, but no sample"” case, in which the subject can easily
imagine an appropriate extrapolant or interpolant, but it is not included in the
stimulus set. The third case, the "dead end”, occurs when either element of the
original pair represents an extreme in the variability range of the chosen feature. For
the extrapolant near that element, the subject would indicate “deacd 2nd.”

Care was made to stress that it was the use of the representations which was of
interest. The subjects then proceeded to form quintuples from all 136 pairs of these
17 exemplars. Because the 136 trials was too tedious for any one subject, the pairs
were broken down into 9 groups of 15 trials (135). Each student then filied out a
sheet with 30 pairs, two of the 15-trial groups, thus leading to two complete sets of
quintuplets (a couple trial sets were adjusted to accommodate the one leftover trial).
Each trial was done by two different subjects. The two sets were processed as if they
were one subject who had done the experiment twice. Combining data in this way
can be done legitimately as long as individual quintuplet trials are done by a single
person. By combining data across subjects, we gain information about which
features all subjects consider to be salient, but we typically lose the detailed
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information about the features of secondary and tertiary importance to individual
subjects (especially when they do not agree on these featuresg. Also, the noise level
typically increages in such data.

Results

Figure 4 shows the z-scores of each point in the distribution of triple weights in the
data (a la Chapter 3); if the data were random, these points would fall below the
dotted line with 99% probability. Although our triples data contain only one triple
with weight 6, the significance skyrockets because of the rarity of a weight 6 triple in
a random simulation.

A trajectory map was generated by triples with weights of 3 and above. This
threshold was cf\osen using the measure of unmatched triples and the Kolmogorov-
Smirnov statistic as described in Chapter 3. The data resulted in the trajectory map
shown in Figure 2 (using the algorithm described in Chapter 3). This map satisfies
only 46% of the triples; we suggest that this lower percentage of satisfaction (lower
than any data set based on one subject’s data) arises from our data pooling method
(see above). Nevertheless, the data do significantly differ from a gimulated random
subject (Figure 4),

Because no data chains pass through the phonebook, phylogenetic tree, world-wide
web, or mall nodes (highlighted with concentric ovals), the grafh can be divided
into five overlapping clusters, or trajectories. Each cluster has links with a diffezent
hatching pattern. The nodes in this figure have been arranged in this figure to
highlight these ciusters. The links between subway and phylogenetic tree, and
phylogenetic tree and LC catalog have been split in order to illustrate the separate
but overlapping trajectories that begin at world-wide web. Figure 3 shows the same
trajectory map with the trajectories separated. Several stimuli were left “floating”;
they were not attached to the main body of the graph by any links above the noise
levei. We will explore the fate of these nodes below.
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Figure 2: The trajectory map of representations. Stimuli with double ovals are “dead ends,” i.e. no
data paths pass through them. Three distinct trajectories emanate from phonebaok, as denoted by the
link hatching. The upper right trajectory contains static hierarchical representations, the upper left
trajectory contains representations of a process or flow, and the lower trajectory coatains table-like
representations. In all three trajectories, complexity /dimensionality increases along the trajectory.
There are also two minor trajectories beginning at world-wide web.



tabig-ilke

I

LC catalog

Figure 3: The trajectory map separated into separate trajectories. The three major trajectories are
shown at the top.
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Figure 4: Z-scores of distribution of triples in the subject data show that the data differ strongly from
a random subject. Random data would fail below the doited 99% confidence interval.

The main topological features of the trajectory map are the three branching clusters
emanating from phonebook (See Figure 2). Because of the nature of the stimuli
within each of the clusters, we hypothesize that the larger cluster at the upper left
(with assembly) contains representations of a process or flow, the smaller upper
right cluster (with Roget’s thesaurus) contains static hierarchical representations,
and the lower “stem” cluster (with TV guide) contains tabular figures. There are
also two smaller trajectories involving the world-wide-web and the phylogenetic
tree. Because each trajectory is based on a single triple, we separate them from the
three more salient trajectories. Nevertheless, the two small trajectories offer the
interpretation that the world-wide web can be considered to be more path-like
(adjacent to subway map), or more hierarchical through cross-references (adjacent to
LC catalog).

Another important aspect of the graph is the ordering within the larger clusters. If
one considers phonebook to be at the “root” of each cluster, then we see that the
nodes within each cluster increase in complexity or dimensionality as one moves
along the cluster away from the root. A phonebook is a one-dimensional listing of
names, addresses, and phone numbers, which can be considered slightly
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hierarchical if the addresses and phone numbers are subordinate to the names. In
the hierarchical trajectory we move then to Roget’s thesaurus, a list of words that is
cross-referenced, to Library of Congress catalog and phylogenetic tree, which are
both fully branching. Similarly, in the trajectory of prucess/flow representations, a
mathematical proof and assembly instructions are quasi-linear sequences of
transformations. The flow chart, floor Ilan, subway map, and US map are all two-
dimensional depictions, with varying degrees of network structure. A US map, for
example, could be a map focusing on state and county boundaries, or it could focus
on the interstate highways and rail lines. Finally, a representation of a 3-story mall is
likely either a network or a 3-D configuration of some sort.

Before discussing our basic result further, we would like to investigate the extra
“floating” stimuli. There are two basic reasons why stimuli can be detached from
the main trajectory map: either the subjects marked most pairs involving these
stimuli as “infeasible” (they couldn’t think of how to form sequences using these
stimuli), or subjects used these stimuli as “good fits” in many different contexts
(more than two for this data set), resulting in no highly weighted links for any
particular contexts. In this particular case, no stimulus has an unusually high
number of infeasible judgments. Thus, we look to the data for different contexts of
linking.

The “adjacencies” in the subject data are useful for exploring this issue. By counting
the number of times that each stimulus appears adjacent to each of the other stimuli
in the subject quintuplets, one can build an adjacencies matrix that resembles the
proximities matrix used in similarity-based techniques. (As described in Chapter 2,
TM-based adjacencies tend to have a rank correlation of approximately 0.5 £ 0.2 with
similarities gathered for the same stimuli in separate experiments.) Figure 5
contains the adjacencies matrix for the representation data.
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Figure 5: The adjacencies for the representational forms data. The adjacencies measure for two
stimuli is the frequency of those stimuli appearing next to each other in the quintuplet data.

The adjacencies show that zip codes was indeed used in several contexts. The zip
codes stimulus seems to have been considered to be a simple list of numbers by
some (22 times neighboring phonebook), while others considered it to be a map-like
(10 times neighboring US map), or a hierarchy (12 times neighboring LC catalog).
The Venn diagram was found relatively often near US map and periodic table. In
both cases we suspect that the cost of linking these three nodes in the final trajectory
map was too high, since they would have to be attached to nodes that are ctherwise
quite distant.

To explore this issue further, we perform hierarchical clustering on the adjacencies,
as if they were a similarities matrix. Figure 6 shows a tree based on hierarchical
clustering of the TM adjacencies matrix using average linking (Duda & Hart, 1973).
The floating stimuli are shaded gray. The tree supports our trajectory map; the
three major clusters of the trajectory map are also clustered in the tree.
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Figure 6: Hierarchical clustering tree based on adjacencies of TM data. The four “table-like” stimuli
among the floating nodes of Figure 2 can be seen clustered together.

A rultidimensional scaling plot (Shepard, 1962; Kruskal, 1964) of the adjacencies
data (Figure 7) offers a nice framework for combining the information from the
above two figures. Here we can see both the trajectories (links) and the three major
clusters from the tree (gray shaded) again. We do not draw the smaller trajectories
that include the world-wide mveb for the purpose of clarity. The trajectory of
hierarchical representations lies “behind” the phonebook to math proof link
according to the multidimensional scaling (MDS) plot in 3-D, which shows each of
the three clusters occupying a part of the surface of a rough sphere. We hesitate to
draw many conclusions about the data from the MDS plot itself because of its high
stress (0.52 in 2-D, 0.41 in 3-D), but even at this high degree of instability, one can see
that the x-axis can be described as a linguistic-pictorial dimension.
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linguistic - pictorial

Figure 7: An MDS plot of the adjacencies data offers a framework for combining all three
representational forms, the trajectory map, the clusters, and the MDS metric space. Forms can be seen
to vary from linguistic from pictorial along the x-axis.

Discussion

These results lead us to two salient conclusions. The first is that despite the
importance of work that has been done exploring the cognitive differences in
processing pictorial vs. linguistic representations (Cox & Brna, 1993) or
diagrammatic vs. sentential representational forms (Larkin & Simon, 1987), subjects
did not find these characterizations most valuable for grouping our 17
representations. (The process/flow trajectory of representations contains at least one
for each of these characterizations.) Related to this idea is the importance of “mixed”
representations, i.e. those containing both graphics and text. The process/flow
trajectory contains the complete range of pictorial-linguistic axis; only the most
outer forms are close to pure; most are mixed. Likewise, the linguistic-pictorial x-
dimension of the MDS plot does not reveal that representations are grouped on one
side or the other. Representational forms could also be mixed (in terms of
diagrammatic expressions and sentential expressions), but these seem raier. An
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example is the procf of the Pythagorean theorem described by Tufte (1990) that
includes both a verbal argument that includes graphics and a main graphic as well.

The second conclusion we offer is that when classifying representations for the
purposes of use, rather than for graphic or computational purposes, subjects use
features from all three levels of analysis described earlier: computational structure,
external or graphic structure, and functionality. The trajectory of process/flow
forms is a functional category. The hierarchical trajectory makes up a
computational category, and the tables are a graphic, external depiction category.

As an illustration of the differences between the categorizing done by our subjects
and a traditional categorization, we introduce a classification matrix based on
Twyman (1979). His original matrix, designed to classify “graphic language,”
proposed 28 different categories laid out in a 4 x 7 matrix. The distinguishing
dimensions were linear to non-linear (seven categories) and verbal to pictorial (four
categories). The verbal to pictorial dimension included mixtures of both, plus
sketches or diagrams. The linear to non-linear dimension included lists, branching
structures (such as both textual and pictorial trees), tables, and multiple scale
representations, such as a newspaper where there are large headlines and separate
articles in small text, or pictures with varying levels of detail. Examples of the 28
cells of the matrix were provided, although some were quite uncommon or
"strained”. Figure 8 shows a slightly abridged version of Twyman's scheme. (Here
the schematic and picture distinctions are merged, as well as two non-linear
distinctions and the pure and interrupted linear distinctions.) Our stimuli have
been placed in the cells as appropriately as possible, and the cells have been hatched
by their exemplars’ cluster in the trajectory imnap.

matrix/ ,
table non-linear

verbal/ TV|gui (front page
numerical news)
verbal & (comic strip)
pictonial
pictoriai & (music notation) | (airline emerg. (org. chart
schematic brochure) w/o text)

Figure 8: A classification matrix for graphic representations based on Twyman. When the 17
representations are placed within it, along with hatching according to their cluster, one can see by
the patterns of hatching that subjects clustered based on three different types of characteristic:
computational, functional, and external (or pictorial).
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The patterns of hatching illustrate well the differences in the level of categorization
of the three clusters in our data. The trajectory of process/flow stimuli, because
they share mainly function in common, instead of any external attribute of
Twyman’s rows or columns, snakes through the table from corner to corner, not
fitting in any one column or row. This diagonal path shows that the trajectory
includes graphic and linguistic representations, as well as mixed ones (Twyman's
rows). If Twyman’s columns can be seen roughly to increase in complexity and
dimensionality, the process/flow trajectory can be seen to span the range of
complexity here just as in the trajectory map. Our hierarchy trajectory can be
appropriately seen to cccupy mainly the “branching” column of Twyman’s matrix, a
category which was intended as a graphic characteristic, but which could also
describe the computational nature of a hierarchy. Lastly, our tables can be seen to
occupy the matrix/table column, a very good match since our term “tables” is a
pictorial description.

Conclusion

Our original intent was to examine which type of characteristics subjects would use
to organize representations for efficient use: computational, functional, or external.
Our main result of dividing the representations into process/flow representations,
hierarchical representations and tagle-like representations suggests that when we
organize for use, we use all three of our suggested characteristics of representations
to do so. This result offers an important contrast to classification work that focuses
more on one characteristic, assuming that the researchers are interested in more
features than just those that we use to organize the representations graphically.

Another approach to explore how subjects organize representations for use is
examine how they switch from cne representation to another during problem
solving. Cox, Stenning, and Oberlander (1995) have some preliminary data on this
question. They analyze “work scratchings” of subjects solving GRE analytical
problems. Their main result is finding individual differences among students: one
type tended to use a linear approach, whereas the others proceeded piecemeal with
subcomponents of the problein resolved first, and then these components were
integrated (i.e. a divide-and-conquer strategy). They also studied they way students
switched from one representation to another when offered a variety of computerized
representations. This work has been limited to only a few GRE problems so far,
however, and we must wait to make any general conclusions.

They, like Cox & Brna (1993) however, categorize students’” work scratchings as
either pictorial or linguistic. It would be worthwhile to carry out further such
experiments on representation switching and analyze whether subjects share this
mental categorization of the representations. Our results suggest that even if they
used the labels “pictorial” and “linguistic” as extremes in their space of
representations, they would include a wide variety of mixed representations in
between them.
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Chapter 6

Conclusion & Summary

Introduction

Whenever communication takes place, each participant builds a model of the
other lparticipant’s “mindset” in order to choose the most meaningful form of
knowledge representation. Put in an evigiday context, this mutual modeling
means that one might use less complicated words when talking about life
with a 3rd-grade cousin, because one’s model maintains that he wouldn’t
otherwise understand. It means that one doesn't tell the clerk at 7-11 about a
friend’s favorite CDs, because one’s model suggests that she is probably not
interested.

To perform this type of modeling artfully is to communicate effectively, but
unfortunately our modeling abilities tend to vary widely across individuals
and even across content domains within the same individual. Our poor
performance in modeling the “mindset” of others manifests itself in many
aspects of our lives, from the best-selling pop—gsychology book You Just
Don’t Understand (Tannen, 19990) to students who fall behind in the classroom
because the teacher doesn’t provide examples expressed in structures that
they understand.

This thesis addresses an aspect of this toyic by offering an algorithm for
exploring the different representational forms that people use to structure
their knowledge. The same individual typically uses different forms for
different types of knowledge, and different individuals often use different
forms for the same knowledge. For example, if a friend were to invite you to a

at his house, you might request information about how to find it. The
friend could offer a variety of representations for navigating to his house. He
could give you a street map or a hand-sketched personalized map. He could
give you directions based on landmarks, or directions based on North, South,
East, and West.

Each of the forms of navigational aid are a different representational form of
the same information. If the friend were clever, he would offer you the form
that you are most accustomed to using; part of his model of you might be,
“This person likes to navigate using lancfmarks.” This cleverness is also a goal
that we can asrire to in the realm of technology; if the technology designer is
clever, she: will offer an interface that anticipates the various mental
representations held by the user. The same is true in fields such as digital
libraries, where it is important to index data using the appropriate
representations for people, so that they can easily find the information that
they seek.
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More Specifics: Spaces, Clusters, and Networks

In this field of perceptual and conceptual scaling, researchers have focused
on two particular representations for knowledge: metric spaces and
hierarchical clusters. An example of a metric space is the 3-dimensional space
of all colors of light, where the axes are red, green, and blue. Each color can
be defined by specifying a certain amount of red, green, and blue. More
generally, in a metric space, items have coordinates in an n-dimensional
space, where each dimension is scme feature of the objects. The distances
between the objects can be seen as inversely proportional to their similarity to
each other.

An example of a hierarchical clustering representation is the Macintosh file
system, in which files sit within folders, which sit within other superordinate
folders, which sit within a dick drive, which sits on the Desktop. In
hierarchical clusters, each object belongs to a single cluster (overlapping
clusters are not allowed), and each cluster belongs to a single superordinate
cluster, except the root cluster, which stands alone and includes that entire set
of objects. Hierarchical clusters are often represented graphically by trees.

A given set of stimuli can be arranged in either of these representations, and a
researcher can choose the representation according to the prior assumptions
about the structure of the data. If these two representations completely
spanned the space of all possible representations, then this forced choice
would pose only the problem of deciding on the representation. The two
representations leave a significant gap in the representation space, however,
which is the network or connected graph.

Metric spaces and hierarchical clustering also have the disadvantage that they
are traditionally constructed from similarity data. Using similarity creates a
variety of difficulties (Shepard, 1974), such as their assumption that stitnuli
are symmetrically similar, i.e. A is just as similar to B as B is to A. Secondly,
similarity judgments are often ambiguous; it is unclear which features a
subjects uses to choose the similarity value.

What's New: The Contributions of Trajectory Mapping

To help alleviate the difficulties associated with simnilarities and to offer an
approach that uses the traditionally ignored network representation, this
thesis shows the advantages of using Trajectory Mapping (TM) as a
complementary or supplementary technique. By using the connected graph
or network, TM allows different features of a stimulus each to play a role;
contexts set by other stimuli can intersect. Thus, TM can often tease apart the
features that otherwise would be burdled together in ~mibjects’ judgments of
the most generic feature, similarity. Directed graphs alsc follow as a natural
extension, removing the assumption of reflexive symmetry in sequencirg
judgments.

TM also offers somne of the advantages of both older techniques. Trajectories
can be seen as clusters of stimuli, revealing features much like hierarchial
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clustering. The stimuli within the trajectory clusters are ordered, suggesting
features much like MDS. Lastly, the adjacencies in the TM data serve as an
approximation of the same sort of proximities matrix that the olde- meiieds
require (Chapter 2).

Because the original TM approach (Richards & Koenderink, 1995) did not
supply an objective algorithm for constructing trajectory maps, we have
offered such an algorithm (Chapter 3). Based on the simulated annealing, the
algorithm uses triples derived from subject data as constraints that can be
used to find an optimal connected graph. We have chosen parameters of the
cost function so that the algorithm models the manual heuristics followed by
Richards & Koenderink. The computer code for the algorithm and most
processing steps can be found in Appendix C. It is also available from the
author and soon to be online.

After comparing trajectory maps constructed manually with trajectory maps
constructed by gxe algorithm, we find them to be similar: tests in five
domains of data revealed a positive correlation between 0.42 and 0.80 for ail
sets (Chapter 4). With simpler data sets a human being can sometimes do
better than the algorithm through a better sense of the conceptual structure of
the data (e.g. kinship terms: manual solution matched 87% of tripies,
algorithm only 70%). For more complex data sets, however, the algorithm can
often provide a clearer solution (e.g. London subway loop: manual solution
matched 95%; algorithm matched 99%).

Inspired by the issue of the degree to which metric spaces, hierarchical
clusters, and trajectory maps span the space of representational forms, we
collected subjects’ judgments about 17 representations (Chapter 5). Our goal
was to model the subjects” mental organization of these representations for the
purposes of their use. Taking advantage of all three of the scaling methods
discussed above, we concluded that subjects classified the 17 representations
into three main categories, each according to a different characteristic of
representations. The process/flow trajectory is a functional, content-based
category; the hierarchical trajectory is a computational category; and the
table-like trajectory is a depictive category. The data also emphasized the
importance of “mixed” representations, i.e. representations that consist of
both pictorial and textual elements.

Summary

The most salient contributions of this work are: 1) a thorough analysis of
Trajectory Mapping as a scaling technique, 2) an algorithm which makes
Trajectory Mapping a more objective technique, 3) both a theoretical and
data-driven comparison of various scaling techniques, and 4) experimental
results that both suggest the importance of representations with a mixture of
textual and pictorial elements and characterize representations at multiple
levels of abstraction.
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Appendix A

Deeper Analysis of the TM Algorithm:
Work in Progress

In this appendix, we discuss various issues surrounding TM and the TM
algorithm that we have not yet resolved or which are still work in progress.

Part I: Diagnostics of TM Subject Data

There are four useful parameters to consider when analyzing TM input data.
These parameters are calculated from the triples that are derived from the TM
quintuplets.

Top Weight

The first measure is the top weight, i.e. the highest weight of the set of triples,
normalized by the maximum possible weight. It turns out that for N stimuli,
the maximum frequency a triple can have is N. Thus the top weight is a
number (0,1] that gives a measure of how strong a pattern is present in the
triple data. If there is a strong pattern, the top weight will be high, and triples
will be distributed in exponentially growing numbers (see measure of
randomness, Chapter 3). If the data set has no real pattern, random noise will
generate some weights of 2 and sometimes 3, but top weight will be low. In
our experience thus far, a top weight greater than 0.4 indicates a strong
pattern.

It is unclear, however, what it would mean if the distribution of weights is
simply shifted higher. The two sets of triples below, for example, result in the
same trajectory maps with almost identical weights on the links.

w3 wb
123 123
245 245
wl w3
235 234
Degree of Conflict

The second measure is the degree of conflict in the triples. Given a triple
such as (1 3 4), then we say that (1 4 3) and (3 1 4) conflict with it. Triple (43 1)
does not conflict; it’s simply a reversal. Triples conflict when it would be
impossible to have three nodes that are ordered according to both triples
simultaneously. We are unsure whether to try to normalize by the maximum
possible number of conflicts, which changes complicatedly with N.
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Variance of Triples

The next measure is the variance of the distribution of triple weights. If the
variance is high, we can assume that there is more noise in the data, that is,
that the subject has a certain structure in mind (the “signal”) and that one of
two cases is true. Either the subject is uncertain about the structure and
allows the non-important stimuli to distract him, or he sees a weak structure
in some of the stimuli in addition to the most salient structure. Both of these
cases would lead to a set of triples with low weights alongside a set of triples
with higher weights. A set of simulations is required to confirm this
phenomenon.

Part II: Noise and TM

In an effort to examine how robust the TM algorithm is with respect to noise,
we have analyzed the trajectory maps that result from fitting data that is
generated with different amounts of noise from a pre-defined trajectory map.
We tested under two different levels of homoschedastic noise, and one type of
heteroschedastic noise (that varied across the generative map from low to
high). The main result of the noise is various shifts in the ordering of stimuli
within the graph; the overall shape of the graph remains the same, however.

Another type of data interference occurs if a subject violates one of the two
assumptions of TM. As noted above, the first assumption is that the subject
should use the same features when comparing stimuli within a given trial.
Secondly, the subject should choose extrapolants and an interpolant that are
appropriately spaced.

To investigate the problems that arise when a subject does not use the same
feature within a given trial, we note the quintuplet below. It is conceivable
that in a fruit and vegetable scaling experiment, a subject could have chosen
this quintuplet with the following features in mind: going from apple to
orange to banana, “color”; going from orange to apple to bell pepper, “lobe-
ishness in shape”; and going from orange to pear to apple, smoothness of peel.
If the subject consistently chose stimuli using a variety of features like this,
then it is unlikely that any heavily weighted triples would arise.

bell pepper apple pear orange banana

Violating the spacing assumption creates a similar result as the noise
described above; depending on the degree of violation. With violations on
only some trials, the model will likely have the correct overall shape but have
some nodes interchanged. With consistent violations, the model will likely be
quite distorted.
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Combining Subject Data

We know that combing subject data can be a useful method of highlighting
the features common to both subjects, although it adds noise to the less salient
features, but we have not done a complete analysis of data pooling.

Part III: The Parameter Weight Space

The graphs of the varying graphs in the cost function parameter space
(Chapter 3) suggest the three parameters that we varied might be able to be
represented by a single parameter, rendering the process of estimating the
optimal weight space less complicated. The algorithm would also likely
require less processing time, since it would iterate only over one dimension.
This potential should be explored.

Since our algorithm’s task is a combinatorial optimization probiem, the
parameter space is not uniform; there are a variety of phase transitions. As
one moves through the phase plateaus, the optimal graph does not change.
This parameter space should be fleshed out thoroughly.

Part IV: Ambiguities in the graph representation

Unfortunately, the original choice of a representation for trajectory maps
includes some ambiguities. Rather than present an alternate representation in
this paper, we will simply note the ambiguities and the ways of getting
around them.

Branching vs. Intersection

Consider the graph below in Figure 1. Node 3 could be the hub of three
different branching trajectories that all meet at 3 and find a dead end. Or,
there could be two trajectories, the longer of whichis6-5-4-3-7-8.
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Cycle vs. Parallel Paths

Similarly, ambiguity can arise when confronted with graphs such as the one
below in Figure 2. Should one consider it to be a cycle with a spur, in which
one trajectory is 1 - 2 - 3, and then another is the cycle3-8-7-6-5-4-3? Or
is it two parallel and somewhat overlapping trajectories, the first being 1-2-3
-4 -5- 6 and the other being 1-2-3-8-7-6?

Figure 2

Resolving the Ambiguities

The thresholding process can often indicate the roles of different branches as
they break apart. There are several more subtle methods of identifying these
roles, however. One way is to tag the nodes which the subject considered to
be dead ends. In all following graphs in this paper, nodes which are seen as
dead ends in any quintuplet will be drawn as a diamond instead of an oval or
circle. This standard usually solves the cycle vs. parallel path ambiguity, in
that if node 6 is a dead end and node 3 is not, then one would lean towards the
parallel path interpretation in Figure 2. The dead ends do not usually solve
the branching vs. intersection ambiguity, however, because even if node 3 is a
dead end in Figure 1, it might play that role only in the 8 - 7 - 3 trajectory,
while being just a normal node in the 1 -2 -3 - 4 - 5 - 6 trajectory.

To solve this latter problem, one can confer with the original list of triples. If
there are no triples which span node 3, then it is likely a dead end for all 3
branches. If you do find heavily weighted triples like 2-3 -7 or 1 - 3 - 8, then
one can hypothesize that those trajectories join to form a longer path.

We believe that future uses of TM will include directed links, which would
assist in resolving the ambiguity, especially that of the cycles.
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Part V: Future Work

There are many possibilities for honing this approach. Some are more subtle
suggestions for future work, while others would change the TM approach
significantly. First we describe the more subtle points.

Counting Triples

An obvious issue arises from how we count our triples from the quintuplets.
To review, when we see quintuplet (A B C D E), we consider the triples to be
(ABC), (BCD), (CDE). This makes sense if the quintuplet is a continuous
chain of stimuli, but since subjects often do not stop to check the full fit of
each quintuplet, using the triples that the subject actually considered, triples
(A BD), (BDE), and (B C D), might be more appropriate. We have found in
brief pilot experiments that this different counting method does not matter
enormously, but we must do additional tests to confirm this hypothesis.

Spacing Assumptions

We currently asE subjects to choose stimuli for the quintuplets such that they
are as equally spaced as possible. Because we explain the goal of having an
equally-spaced quintuplet, we assume that all elements of the quintuplets are
equally spaced in the subject’s mental map, like this:

A B C D E

Depending on the subject’s interpretation of our instructions, however, it
could be that only the triples that the subject considers are equidistant,
resulting in a quintuplet such as:

A B C D E

Josh Tenenbaum (personal communication) has suggested another alternative
to the equal-spacing assumption. Instead of asking subjects to choose samples
which are equal spaced from one another, we should ask subjects simply to
pick the sample which would represent the nearest sample to the pair. This
instruction might provide less ambiguous results.

An obvious issue arises from how we count our triples from the quintuplets.
To review, when we see quintuplet (A B C D E), we consider the triples to be
(A BC), (BCD), (CD E). This makes sense if the quintuplet is 2 continuous
chain of stimuli, but since subjects often do not stop to check the full fit of
each quintuplet, using the triples that the subject actually considered, triples
(A B D), (B DE), and (B C D), might be more appropriate. We have found in
brief pilot experiments that this different counting method does not matter
enormously, but we must do additional tests to confirm this hypothesis.

Josh Tenenbaum has suggested that instead of using the equai spacing
assumption, that is, that subjects automatically choose extrapolants that are
equally spaced from the pair as the pair elements are from each other, we



should ask subject simply to pick the sample which would represent the
nearest sample to the pair. We would take this instruction into account
within the simulated annealing cost function.

We have considered asking subjects for confidence judgments along with
their extrapolations and interpolations so that we might use them to make
better judgments of the mental distance between the stimuli. The TM process
is already laborious enough, however.

We want to investigate other experimental methods for collecting the triples
data. We wonder whether subjects really need to undergo all the TM
ordering trials, or whether the results be similar if we instructed them, “group
the stimuli as you wish, and then order each group by a salient feature.”
Perhaps the results would be similar for some types of data, but not others. If
this were *rue, we could better estimate the usefulness of applying TM to a
given data set before applying it. Experiments should also explore whether
asking subjects only for triples instead of quintuplets would change results.
This ability would be important for distinguishing feature trajectories that do
not span more than three stimuli within a small stimulus set. Currently, the
quintuplet format makes identifying such trajectories impossible.

If is important to try to expand TM to accommodate directed graphs. Only
with directed graphs can we handle asymmetric sequencing judgments. The
adjacencies from a directed trajectory map would then generate the
asymmetric proximity values, and we could explore the extent to which TM
models contain asymmetric similarity judgments implicitly.

The algorithm should take advantage of dead ends and infeasibles to help
constrain the graphs.
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Appendix B
Additional TM Data Sets

In this appendix we discuss three additional data sets that still require further
analysis. One data set is for Boston tourist attractions (cited in Lokuge,
Gilbert, & Richards, 1996). Another is a data set of historical events, used in
coordination with a class of undergraduates studying the social implications
of the events. The third is the data set of visual textures described in Richards
& Koenderink, 1995; we suggest an alternative analysis of that data.

Boston Tourist Sites

This data set was chosen as an appropriate test for TM’s ability to illusirate
valuable information about conceptual stimuli, as opposed to perceptual
stimuli. Subjects were given a written list of 15 tourist attractions in Boston.
Subjects had all lived in the area long enough to be familiar with the
attractions. We illustrate one subject’s trajectory map in Figure 1 because of
its interesting structure.

The stimuli were Sports Museum, Children’s Museum, Science Museum,
Aguarium, Swan Boats (boat tour of Public Gardens), Newbury Street
(elegant shopping), Quincy Market (outdoor historic mall), Trinity Church
(historic site), Magic Show, Salem (nearby historic town), Harvard University,
Museum of Fine Arts, Zoo, Fenway Park (baseball stadium), and Arboretum
(nature preserve).

This trajectory map satisfies 83% of the triples, a successful fit. It is interesting
to note the structure; although all stimuli are in the same trajectory or cluster,
there are distinct dead ends in the graph. No triple data flow through Zoo or
Harvard. There are also several “corners”, or paths through intersections that
are not taken. They are marked with a ®, i.e. Trinity Church, Salem, Harvard,;
Fine Arts Museum, Quincy Market, Swan Boats; and Quincy Market, Swan
Boats, Aquarium. Triples do flow across all other intersections completely.

In Figure 2 we show the same trajectory map if we duplicate the dead end
stimuli at the gray bars and unfold the map. Various feature categories can be
found in the map, such as “outdoor vs. indoor”, “for adults vs. for children”,
and “active vs. passive” activity. Detailed analysis can be found in Lokuge,
Gilbert, & Richards (1996).
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Figure 1: Trajectory map of Boston tourist attraction data. It is interesting to note thci
although the stimuli are all on the same trajectory, subject orderings dc n¢  flov, aciou: oo
or Harvard (gray bars). They also do not flow through intersections on th+ cicie the' “aey are
marked ® , e.g. from Fine Arts Museum to Quincy Market to Sweic Bo..o.

Figure 2: The same trajectory map as in Figure 1, cut at the gray lines and duplicating the
dead end stimuli Harvard and Zoo.
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Historical Events

In an effort to explore whether TM might be useful at detecting changes in
knowledge, we collaborated with Professor Stephan Chorover at MIT, who
teaches a course that includes a segment in which students explore a large and
detailed historical timeline using software written by Chorover. rart of their
work with the timeline is to write an essay about the interrelationships they
say between historical events.

We hypothesized that if we had students do TM historical events that seemed
unrelated to the layman, then their traiectory maps would be different before
and after the course, assuming the interrelationships they studied applied to
these events. Using historical events as stimuli would also be a test for the
ability of TM to elucidate information in a set of extremely multi-featured
and abstract stimuli. The events are quotations from the timeline software.

Unfortunately, because we wanted the students to be able to perform the TM
relatively quickly (20-30 minutes), we had to limit the number of trials, which
limited the number of stimuli to 7. As we later discovered based on other
data sets, 7 stimuli is really too few to get a clear idea of features in the
resulting trajectory map, especially one of complex stimuli. We will not
present the data here, since they still require further analysis, but we present
the stimuli (Table 1) to document the high level of abstraction that we expect
TM to handle.

The oriental yang/yin philosophy of nature is founded b(
A Chinese emperor Fu Hsi. It says that health and tranquillity
require perfect equilibrium.

More than 200,000 people of all races march for civil rights
B in Washington, D.C. Speaking from the steps of the Lincoln
Memorial, Dr. Martin Luther King tells of his dream.

The National Audubon Society is founded to Hrotst the
C commercial hunting of birds, and more Fenera , the
indiscriminate slaughter of U.S. wildlite.

In the most destructive U.S. earthquake since San Francisco
D 1906, the Bay Area is shaken by a quake reasuring 7.1 on

the Richter scale. In all, nearly a hundred le are killed.

Property losses are estimated at around $6 billion.

Catherine Genovese is beaten and murdered in the streets of
E New York; 38 people hear her screams and see it happen but

don’t do anything,
A new c;)j?er smelting plant without emission controls is
F scheduled for start-up soon in Mexico, not far from the U.S.

border. Despite complaints, the EPA makes no immediate
plans to take any action.

Smallpox kills an estimated 60 million Europeans in the
G 18th century.

Table 1: Historical events used for TM project with Professor Stephan Chorover.
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Visual Textures

Richards & Koenderink (1995) described the results of a TM experiment with
Brodatz visual texture patterns, e.g. bark, reptile skin, grass, water, marble,
etc. Use of the TM algorithm sheds new light on this complex data set. We
present our trajectory map below both to add information to the previous
analysis, and to describe an unusual type of trajectory map that we have not
seen in other domains. This trajectory map satisfies only 56% of the triples,
most likely because of the data-pooling method described in Richards &
Koenderink.

wood mud
grain2 cracks

= ®
crocodile
cloth ®\ skin
reptile
sea fan skin
®
@ plastic
quilt bubbles
Q
#92 leaf veins soap
hubbles ice
®
bark &)
fieldg®ne grass fiber

wood \g
graini marble
” ‘\
D

Figure 3: A confusing trajectory map of visual textures. There are many discrete clusters (sece
hatching along links), as well as “untraveled comers.”
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The trajectory map in Figure 3 gives an idea of how complicated the data set
is. This map has an unusual number of small discrete clusters and
intersections where triples travels one only one or two of the possible paths
through the intersection.

fieldstone 2 -woodgraini =~ 70 ice 100
reptile skin 3 soapbubbles 73~ grass fiber 110
crocodile skin 10 doth 76 plastic bubbles 111
bark 12 seafan - leaf veins 137
water 37 [ quilt 138
marble 63 fur - mud cracks 139
wm - 2 68 -, - .\1"‘ L B R

Table 2: A table of the corresponding stimuli numbers in Richards & Koenderink to our
labels.
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Appendix C
Algorithm Codec and Details

Part I: The Processing Narrative

We take the reader through a typical data precessing cession using as an example
domain the kinship data examined in Chapter 4. We provide the commands used to
go from subject data to a trajectory map. The software used in the process is Splus
(a statistics and mathematics environment, Statistical Sciences), tina (my trajectory
1Iapmg algorithm), neato (graph-drawing algorithm courtesy of Ste 1% en North,
Labs), and kyst (multidimensional-scaling software, Bell Labs). The basic stages
of processing are:

input and parse a file of subject quintuples (Splus)

calculate triples in the data and write the file in a format for tma (Splus)
run the trajectory mapping algorithm (tma)

threshold the resulting graph and view it (neato)

run MDS on the adjacencies if desired (kyst)

calculate the diagnostics described in Chapter 3 (Splus)

AN e

The code for any customized Splus functions called in the series of commands
below lies in Part II. The code for tma is available from the author.

In the narrative, all code and data files will be presented in courier font. Splus
commands will be preceded by “Splus>* anc}D Unix commands preceded by
“Unix$”. Comments are often preceded by “#”. The ASCI text of data files will be
bounded by “------~---------

Lastly, those unfamiliar with Splus will likely understand the gist of many
commands given the knowledge that the underscore “_" serves as the assignment
operator (what many people use “=“ for). The command below, for example, sets
the variable x equal to 5. Those very familiar with Splus will notice that we leave
some unimportant and simple-to-compute details of the data manipulation.

Splus> x_5
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1. Collect subject data.

## 15 kin relations

Splus> kin.labels c('grandfather’, 'grandmother’, 'grandson’,
'‘granddaughter’, 'brother', 'sistcer’, ' father’,
'‘mother', 'son', 'daughter’, 'nephew’, 'niece’,

‘uncle’, ‘aunt’, 'cousin')

4% Create a file for data entry that contains lines such as
Splus> makeTMtrials(1:15, 'kin.quints’)
## The file looks something like this, but contains all

## possible pairs in random order. If (3,12) is
## included, pair (12,3) is *not*.

---------------- kin.quints
3 12
10 1
2 7

## After subject WR has completed the quintuplets, input the ## file.

Splus> wr.kin.data_scan('kinWR.quints')
Splus> wr.kin.data_matrix(wr.kin.data,ncol=5, byrow=T)

2. Calculate triples and write them out.

## Calculate the triples within the quintuplets, as well
#%# as the infeasible cases (nogos).

Splus> wr.kin.trips_triples(wr.kin,addDEs=1)
Splus> wr.kin.nogos_getNoGos (wr.kin)

## Write the triples and nogos to a file that tma will
#% understand.

Splus> trip2ann(wr.kin.trips,wr.kin.nogos, file='kinWR.trip')

## The file looks something like this ("w 2" means that
## triples with weight=2 follow):
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# generated by Splus at Wed Oct 23 18:22:58 EDT 1996

w2
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3. Run tma, the trajectory mapping algorithm.

## Now feed the triples file to tma.

10
10
11
13
15

14
15

## Also give tma a parameters file that specifies how it will #2 run. The 0 is a binary flag

the indicates whether or not
## file will be written out for the optimal graph at each
## setting of the cost function parameters.

Unix% tma tmpar 0 kinWR.trip
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#% Below is the tmpar file that we choose for all of our data
## collection after much experiwentation. This is not to say
28 it could not be improved.

## nimulated annealing and general parameters

oracle g # metropolis alg. vs. gibbs sampling
initTemp 0.5 ¢ initial temperature

amnealFactor 0.9 # annealing factor at each temp. change
annealSteps 75 # max. number of annealing steps

maxTryFac 100 # max. number of tries at one temp.
maxChangeFac 10 # max states changes at one temp.
scaleWeights 1 # should triple weights be normalized?
nogoThreshFac .3 ¢ factor used if wNoGos != 0 (below)
ignoreDummies 1 # should dummy nodes be ignored?

## costfunction parameters

#2% The syntax has 3 options:

88 -- enter a single positive value to be used
## -- enter a series of values: -1 s [(# of them]) (¢ # ...)
#% -- enter a range: -1 r (# of them] (min max)

wFailedTriples -1 r 10 (.1 5)

wBadSpacing 1

wFarSpacing -1 s 7 (.001 .005 .01 .1 1 2 3)
wMaxLinkNode 1

wlotalLinks -1 8 10 (.1 .25 .5 ,75 12 3 4 5 6)
wDeadEnds 0

wNoCos 0

wSpurs 0

## We sample the space of cost parameters at 700 points, and
## repeat each optimization twice, so that makes 1400
## optimizations.

## Note that we have not used tma to take dead ends or nogos

#%# (infeasibles) into account. That’s a good goal for the
## next version.

## Running the algorithm produces several files:

#H kinWR.pDot

a kinWR.gDot.

" kinWR.sp

H kinWR.log

H kinWR.avglinks
## kinWR.max1inks
# kinWR.totallinks

## The first 3 files hold the same information in different
## formats: they describe links between nodes and the

## weights on those links. The *.pDot and *.gDhot files are
## formatted for the neato graph-drawing software to read in
## and return PostScript and GIF output, respectively.

## The *.sp file is has no formatting tokens and is used

84 by my program sp.
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$# wWeights range from 0 - 10.

#1 1.0 are automatically deleted.

graph G (
size="7.5,10";
ratio=compress;
1 -- 7 [style='setlinewidch(2.34)°]);

WO ~NNARTAUMU U &b WNNDNDN R R

11 [style="setlinewidth(1.19)"};
13 [style="setlinewidth(1.21)°];
14 [style=‘getlinewidth(2.31)"]);
3 [style="getlinewidth(1.29)°];
9 [style="setlinewidth(3.37)°};
11 ([style=‘*getlinewidth(3.69)"];
14 (style=‘getlinewidth(3.01)");
11 {style=‘'getlinewidth(3.71)°);
8 [style=‘getlinewidth(1.45)°];
10 {style=‘getlinewidth(3.26)"];
6 [style="getlinewidth(2.61)"];
8 [style="getlinewidth(2.56)"};
15 [stylex'getlinewidth(1.99)°];
10 [styles='getlinewidth(3.39)"};
14 [style=‘getlinewidth(1.29%)*];
15 [style="setlinewidth(2.64)°];
10 (style="setlinewidth(3.40)");
12 [style="setlinewidth(2.67)"];
14 [style="setlinewidth(2.75)"];

#8 The *.log file is a file that describes the parameters of

Links with weights less than

## each of the 1400 optimizations. The *links files are
## ascii files that constain statistics about the optimal
## graphs at each of the 1400 cost parameter settings.

¥# The first 3 columns are the cost parameters, and the
## last column is either the average links per node,

## the maximm number of links per node, or the total

#2 number of links in the optimal graph at that parameter
## setting.

0.100000
0.250000
0.500000
0.750000
1.000000
2.000000
3.000000
4.000000

3.911111
3.911111
3.911111
3.911111
3.911111
3.911111
3.911111
3.911111

0.001000
0.001000
0.001000
0.001000
0.001000
0.001000
0.001000
0.001000

4.000000
3.500000
3.500000
3.000000
3.500000
3.000000
2.000000
0.0600000
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4. Threshold the graph and view it.

## To view the graph, use neato software to convert data file
#% to either GIF or PostScript, and then use either xv or

## ghostscript (shareware), respectively.

Unix% neato -Tgif kinWR.gDot | xv -

#% or

Unix$ neato -Tps kinWR.pDot > kinWR.ps
Unix% ghostview kinWR.ps

5. Calculate adjacencies and run MDS.

#¢ Build the adjacencies matrix, and write its lower
## triangle out in a format that will be friendly to kyst,
## the MDS algorithm.

Splus> wr.kin.adj_adjacencies(wr.kin)
Splus> writelowerTri(wr.kin.adj, 'wr.kin.adj')

## Using emacs, insert wr.kin.adj into a data file

## wr.kin.kyst with data cards for kyst, the MDS program.
## The kyst manual comes with examples of data files.

6. Calculate diagnostics on data and graphs.

S840 00888484¢ Comparing alg and by-hand

#% compare the by-hand graph and the algorithm graph
Splus> campareGraphs('kinWR.hand.sp', 'kinWR.sp')
$sim:

[1]) 0.6817525

Snumcomm:
[1] 16

$distinctl:
{1] 4

$distinct2:
{1) 4
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## get the fit of the alg. graph to the triples

Splus> getFitMeasure('kinWR.spout',wr.kin.trips)
$Srankcor:
{1] 0.6470588

$p.value:
[1] 0.01589629

Smatched.trips:
(1} 16

$total.trips:
{1] 35

## get the fit of the by-hand graph to the triples
Splus> getFitMeagure('kxinWR.hand.spout',wr.kin.trips)
Srankcor:

(1) 0.6070176

$p.value:
[1] 0.01206246

Smatched.trips:
[1) 19

Stotal.trips:
[1] 35

## Calculate noise level in triples data.

Splus> wr.kin.caomb_trip2comb(wr.kin.trips, 15)

Splus> wr.kin.comb

[1) 1252 78 16 8 3 5 1 1 1

Splus> wr.kin.cd wr.kin.comb/sum(wr.kin.comb)

Splus> wr.kin.cd

[1} 0.9172 0.0571 0.0117 0.0059 0.0022 0.0037 0.0007 0.00607 0.0007

Splus> rsl5.400norm
[1] 0.8052 0.1775 0.0163 0.0009 2.3810e-05 O

N_wr.kin.cd[1:5]
n_rsl5.400norm([1:5)

Splus> pchisq(sum( (N - n)*2/n ), 5)
[1] 0.002842245
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Part IT: Code

Pieces of actual code that are referred to in the processing narrative. Subroutines
that are included in a given piece of code are described immediately below.

HEHHHHHRS A Splus code

## "makeT™trials" takes a vector and makes the randomly sorted
## pairs for filling in.

makeTMtrials_function(vec, filename)
{

pairs_getPairs(vec)

n_nrow(pairs)

nh_flcor(n/2)

pairs_rand.sort (pairs)

pairs_rbind(pairs(1l:nh,],cbind(pairs| (nh+l):n,2]},pairs((nh+1):n,1]))
pairs_rand.sort (pairs)

x_cbind(rep(® °®,n),
pairs(,1),rep{(®" *.,n),pairs(,2),rep{(* ",n))

write(format(t(x)), filename, ncol=5)

)

#% “getPairs” takes a vector of numbers and returns all
## the possible pairs. If revflag=T, it includes
## pairs in both orders.

getPairs_function(x, revflag=F)
{

n_length(x)

base n+l

minfold_l*base + 2
maxfold _n*base + n-1
fold_seg(minfold, maxfold)
num_length(fold)

coll_floor(fold/base)
col2_floor(fold - coll*base)
allcol_cbind(coll, col2)

bad_(1:num) [coll == col2]
if (lrevflag) bad_c(bad, (1:num) ({col2 < coll])

bad_c(bad, (1:num) [coll

== 0]})
bad_c(bad, (1:num) [col2 =

0])

matrix(x{allcol{-unique(bad),] },ncol=2)
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$3438823888822 getting triples

# "triples®" identifies the triples acrcss rows within a matrix and
# gives frequency counts for them.

# from the original 5 colum datarow, 1 2 3 4 5:

# method 0 is subsets, all possible ordered cambog (10 triples)
# method 1 is adjacencies, ( (1,2,3), (2,3.,4), (3,4,5) }

# method 2 is only the triples that the subject “considered*:

; ( (1,2,4), (2,3,4), (2,4,5) )

# addDEs is "add dead ends®; if it's 1, then dead ends are

# converted to triples with new dummy nodes according to

# the specified triple method.

#

triples_function(data, thresh-2,matflag=F,method=1, addDEs=0)
(
nr_nrow(data)
nc_ncol (data)
n_max(data)
mat_array(0,c(n,n,n))
for (i in c(1l:nx))
if (method==2) ( trips_getTripsAB(data(i,]) }
else {
datarow_parseiMrow(data(i,])
if (methodsz0) ( trips_getSubsets(datarow,3) }
if (method==1) ({ trips_getAdj{datarow,size=3) }
}
if (length(trips)) (
for (j in c(l:nrow(trips))) {
if (trips(j,1] > trips[j,3]) trips(j,]}_rev(trips[j.])
mat( trips[j,1}, trips(j,2], trips[j,3} ]_
mat{ trips(j,1], trips(j,2], trips(j,3]1 ] + 1
)
}
)
res_tallyArray (mat, thresh)
if (addDEs) (
deadEnds _insertDummies (getDeadEnds (data,method) )
if (!is.null(deadBnds}) {
res_unlist(list (res,deadBnds), recursive=F)
}
}
if (matflag) list(res,matrix=mat)
else res

)
### subroutines of triples

# °getTripsAB® takes a vector fram T and returns a MxSize matrix
If the vector is E1 A I B E2, is returns

El1AB, AIB, and A B E2.

It assumes -1 should be a "stop" flag and that a -2 should be
skipped over.
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getTripsAB_function(vec)
{
res_mmeric(0)
if (vec(1l] > 0) (
res_rbind(res,cbind(vec(1],vec(2],vec(4]))
)
if (vec(3] > 0) (
res_ybind(res,cbind(vec([2],vec(3]),vec(4]))
}
if (vec{5) > 0) {
res_rbind(res,cbind(vec(2],vec(4],vec(5]))
)
res
}

# ‘parseTMrow" takes a row of T data and returns the row without
# -1's or -2's as appropriate.

pareeTMrow_function (vec)

(
if (vec[3]==-1) return(numeric())
else vec(vec > 0]

}

# "getSubsets®” takes a vector and returns the combinations that
# you would expect from ( n take m ) terminology. It includes A B
# but not B A, unless rev=T. It’s recursive.

getSubsets_function (x, num=2, rev=F)
{
if (num > length(x) || length(x)==0) return(numeric())
r_numeric (0)
if (num > 1) (
for (1 in (1:(length(x)-num+1l)) ) (
prev_cbind(x[i],getSubsets (x(~(1:1)}, (mum-1)) )
r_rbind(r, prev)
}
num_num-1
}
else {
for (1 in (l:length(x)) ) {(
r_rbind(r,cbind(x[1i]))
}
}
if (rev) (
r_rbind(r,r(, (ncol(r):1)1])
}
elge {
r
}
}

# “getAdj® takes a vector and returns a NxSize matrix in which

# each row is an adjacent subset of the vector of length °“gize-".
# It assumes -1 ghould Le a "stop” flag and that a -2 should be
¢ skipped over. It's used by the adjacencies and the triples

# function, among others.
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getAdj_function(vec,size=2)

{

)

n_length(vec)
res_mmeric(0)
il
while (i <= (n-size+l) ) (
if (vecli]== -1 || veclil== -2) {i_i+l; next )
group_vec (i)
j_0
while (length{(group) < size) ({
j_Jj+1
if (i+j > n) { group_rep(-1,s5ize); next }
if (vec(i+j)== -1) ( group_rep(-1,size); next }
while (vec[i+jl== -2 & i+j <=n) Jj_j+l
if (i+j > n) ( group_rep(-1,size); next }
group_c{group,vec(i+j])
}
if (group[l)== -1) (i_i+l; next )
res_rbind(res, group)
i_i+l
}

res

“taliyArray® takes an array/matrix and, if the array is 3-D,

# for example, assumes that element (2,4,9)’s having a

# value of 5 means that the triplet 2,4,9

# occurred 5 times somewhere, and it returns a list of

# all triples that occurred [thresh] times, [thresh+l] times,

# etc. It assumes an NxNxNx... array of arbitrary dimensionality.

tallyArray_function(mat, thresh=2)

{

Ld

L_length(mat)
nn_max (mat)
n_dim(mat) [1]
res_vector(*list®, (nn-thresh+l))
names (res)_paste(*bin®, (thresh:nn),sep='")
for (i in c(thresh:mmn)) (
trip.list_(1:L) [(mat==i]
for (i in trip.list) (
r_rev(unfold(j,n))
ri-1)_r([-1])+1
res{[i-thresh+1]]_rbind(res([[i-thresh+1]],r)
}
}
res

*getDeadBEnds® gets the nodes which are dead ends and lists their
penultimate nodes; if the data has -1 B C D E,
method=1 takes C B -1, while method=2 takes D B -1, and
method=0 takes both, ags well as E B -1. Likewise in reverse.

It builds a matrir where (x,x) has the mmber of times node

x is a deadend. The other mumbers in row x are the mumber of
times that col y is a penultimate node for x.
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getDeadEnds_function(data,method=2)

(

maxd_max (data)

data_dataldata(,3] > 0,]

nr_nrow(data)

mat_matrix (0, nrow=maxd, ncol=maxd)

for (i in (1:nr)) ¢

if (datali,1l)== -1) {
mat{data(i,2),data{i,2]]_mat[data[i,2]),data(i,2]]+1
if (method != 1) {

}

mat (data({i,2],data(i,4]]_mat(data(i,2],data(i,4]]+1

if (method != 2) (

)

mat[data(i,2],data[i,3]])_mat[data[i,2],datafi,3]]+1

if (method==0 & data[i,5] > 0) {

)
}

mat (data(i,2),data(i,5]]_mat{data[i,2],data{i,S5]]+1

if (data(i,S]l== -1) {(
mat(data[i,4],data(i,4)]_mat(data[i,4],data(i, 4]]+1
if (method != 1) (

)

mat[data(i,4],data[i,2)]_mat(datal[i,4],data[i, 2]]+1

if (method != 2) {(

}

mat(data(i,4),data(i,3]]_matidata[i, 4], ,data(i,3]]+1

if (method==0 & datali,l] > 0) {(

mat [data(i,4],datafi,1]]_mat[data[i,4],data(i,1])]+1

"insertDumnies” takes a matrix from getDeadEnds and
turns it into triples with dummy nodes with higher
numbers for the dead ends. The weights are by
frequency of the A B x triple.

with one dummy per normal node. Plus, the
weight of the pair = the number of dummiesn the
normal node had.
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insertDymmies_function(demat, oneper=T)
{
if (! (max(demat))) { return(NULL} }
nr_nrow(demat)
nextnode_nr+l
nodiagmat_demat-diag(diag(demat))
if (!'oneper) maxbins_max(nodiagmat)
else maxbins_max (demat)
res_vectorx (*list®,maxbins+1)
names (res)_c(1:maxbins, "drmnies®)
for (i in (1:nxr))
if {(demat[i,i})} {
if (!oneper) (
for (j in (l:nr)[nodiagmat(i,]>0])
res[[demat({i,jl))_rbind(res[{demat(i,j]]],c(i, ], nextnode))
nextnode_nextnode+1
)
)
else (
res[[demat{i,i]))])_rbind(res[[demat([i,1]])],c(0, i, nextnode))
nextnode_nextnode+1
}
}
}
resSdummies_c((nr+l), (nextnode-1))
res
}

# "getNoGos® takeg s matrix of quints (IM data) and
# returns a twe colum matrix of those rows that had
# -1 in the middle
getNoGos_function(data)
{

data_data{data(,3]== -1,]

if (!is.null(dim(data))) cbind(data[,2],datal,4])
}

¢ "trip2ann® cdumps triples out in format that tma
# (the sim annealing code) would like tc¢ read
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trip2amn_function(liist,nogos=NJLL, file)

{

bins_names(1iist)
nc_3
cat (*# generated by Splus at®,date(),"\n",file=file}
for (i in (1l:length(liist)}) (
if (length(liist{{i]]) & substring(bins([i],1,3)=="bin") {
cat ("w®,substring(bina(1i],4), "\n", file=file, append=T)
write(format(t(1iist([1])]})), file,ncol=nc, append="T)
}
if (bins(i)=="duzmnies") (
cat (*dummies®, liist$dummies[1], "to®,liist$Gmmies(2], *\n"*,
file=file, append=T)
}
if {length(liist{[i]]) &
tis.na(match (substring(bins(i],1,1), (0:9)}))
cat(*dw*,bins{i],*\n", file=file, append=T)
write(format(t(liist[([i]])),file,ncol=nc,append=T)
}
}
if (!is.mill(nogos)) (
cat (*nogos\n",file=file, append=T)
write(format (t (nogos)), file,ncol=2, append=T)
}
else cat(*no nogos.\n")

*adjacencies® counts adjacent pairs in quintuplet data.

Plus, it deals with -1°'s and -2's. A -2 between

two numbers is ignor:d, and they're counted as a neighboring
pair. A -1 is a dead end. If the as.considered flag

is false, it takes neighboring adjacencies, ie 1 2, 2 3, 3 4, 4 5.
If it's true, it takes them based on the triples that the subjects
considered, ie 12, 24, 23, 34, 24, 45.

adjacencies_function(data, as.considered=F)

(

nr_nrow (data)
nc_ncol (data)
n_max({data)
mat_matrix(0,nrow=n,nccl=n)
for (i in c(l:nr)) {

if (as.considered) ( pairs_getAdjAB(data(i,]) }

else { pairs_getAdj(data(i,]) }

if {length(pairse)) (

for (j in c(l:nrow(pairs))) (
mat( pairs(j,1], pairs(j,2] ).
mat{ pairs(j,1], pairs(j,2} 1 + 1
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# "writeLowerTri® writes the lower triangle of a matrix to a file

writeLowerTri_function(mat, filename)
{

n_ncol (mat)
if (n != nrow(mat)) stop('ERROR: matrix must be sguare')

vE_format (mat(2,])
write(vf(1], filepame,ncol=1)
for (1 in (3:n)) (
vec_format (mat(i,])
write(t(vec[l:(i-1)]}), filename,ncol=4, append=T)
)
}

$3080RL004080040888 dlagnostice functions

#% The goal here {s build a measure of comparison across graphs

## Sim = (sum of common link weighte - distinctive weights)

sun(weighta in both graphs)

#8 if the graph data is in Splus, it's a either a square
## link-weight matrix or a 3-colum matrix in the format of
## *FromNode ToNcde Weight®. This function assumss the latter.

## If you have the other,run mat2list. If you feed it a string,

#2 it'll try to load that sp file.
L 1]
## This file currently assumes digraphs (bidirectional links)

compareGraphs_function(spl, sp2)
{
if (is.character(spl))(
spl_scan(spl)
spl_matrix(spl,ncol=3,byrow=T)
}
if (is.characteri{sp?))(
8p2_scan(sp2)
sp2_patrix(sp2,ncol=3, byrow=T)
}

¢ normalize weights
spl(,3]_normalize(spl(,3],.1,1)
sp2(,3)_normalize(sp2(,3},.1,1)

n_max(spl(,1:2],sp2(,1:2])
base_n+1

allpairs_getPairs(1:n)

allfold base*allpairs(,1] + allpairs(,2]
splfold base*spl(,1] + splf,2]
spllabels_match(splfold,allfold)

sp2fold base*sp2(,1] + sp2(,2])
sp2labels_match(sp2fold,allfold)
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coeomm. spl__
{1:1engch(spllabels)) (1is.na (match(spllabels, sp2labels)))
comm. 8p2_,
(i:length(ep2labels)) [!is.na(match(sp2labels, spllabels) )]
num. camm_length (comm. spl)
if (num.comm) (
com . spl_spl (comm.spl, 3]
comid . sp2_sp2 [comm. sp2, 3]
camm_sum( (comniW. spl + comniMd.sp2)/2)
distinct_sum(spl{-comm.epl, 3),sp2[-comm.sp2,3])
# penalize for diffs in common weights
distinct_distinct + sum(abs (commi.spl-comsuid.sp2) )
)
else (
commi¥.spl_0
comid . sp2_0
distinct_sum(epl(,3]),s8p2[,3])
}
8im_(sum(conmid.spl, conmiW.sp2) - distinct)/sum(spl(,3].ep2(,3])

list (sim=3im, numcomm=num. comm, distinctl=nrow(spl) -num.comn,
distinct2=nrow(sp2) -num. comm)

# start with a *.gp file
# then run sp on sp file to get a spout file.

getFitMeasure_function(spoutfile, trips)

{
spfit_scan(spoutfile)
spfit_metrix(spfit,ncol=5, byrow=T)
n_max(spfit(,1:3])
usedTrips_spfit(spfit(,5]==1,1:5])
usedTrips_usedTrips[,1:4)
usedTrips_usedTrips[oxder (usedTrips(,4]),])

rtrips_rankTrips (trips)
allTrips_makeTrips(l:n)

usedTrips.lab_labelTrips (usedTrips,allTrips)
usedRanks_usedTrips.labl,1]

rtrips.lab_labelTrips(rtrips,allTrips)
dataRanks_rtrips.labl[, 1]

match.ud_match(usedRanks,dataRanks)
match.ud match.ud(!is.na(match.ud))
# In what order do the common rtrips occur in the usedTrips?
# numbered according to rtrips.lab

match.du_

{(1:length(dataRanks)) [!is.na(match (dataRanks,usedRanks)) ]
# the orcder that these same trips (common cnes) appear in the
# data, also numbered according to rtrips.lab

128



n2_length (match.du)
r_rankcor (match.du, match.ud)

# rankcor is distributed like student-t dist with n-2
# Numerical Recipss, p. 508
# pt() is ths cumilative prob. of the t-dist.

r.t_r*(sqrt((n2-2)/1-r"2))
r.p_1 - pt(r.t,n2-3)

list (rankcor=r,p.value=r.p,matched. tripa=n2,
total.tripesnrow(rtrips) )
}

trip2comb_function(trips,n)
(
camb_0
nbins_length(tripa)

if (as.numeric(substring(names(trips)(1],4)) != 1)
stop('triplea data should include trips with weight 1.\n‘)

for (i in 1:nbins) (
if (is.null (nrow(trips{(i]]))) camb_c(camb,0)
else comb_c(comb,nrow(trips((i}}))

}

comb(1l)_n*(n-1)*({n-2)/2 - sum(comb[2: (nbins+1)])
coamb
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