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ABSTRACT

Over the last few decades, hindrances to performance and voltage scaling led to a shift from

uniprocessors to multicore processors, to the point where the on-chip interconnect plays a larger

role in achieving the desired performance and power goals. Shared memory multicores are subject

to data sharing concerns as each processor computes on data locally, and needs to be aware of

accesses by other cores. Hardware cache coherence addresses the problem, and provides superior

performance to software-implemented coherence, but is limited within practical constraints, i.e. area,

power, timing. Scaling coherence to higher core counts, presents challenges of unscalable storage,

high power consumption, and increased on-chip network traffic.

SC2EPTON targets the three challenges with three on-chip networks - SCORPIO, SCEPTER,

SB 2 . SCORPIO addresses the unscalable storage plaguing directory-based coherence, with a

36-core chip prototype showcasing a novel distributed global ordering mechanism to support

snoopy coherence over scalable mesh networks. Although the downsides of a directory are averted,

the network itself consumes a significant fraction of the total chip power, of which the router

buffer power dominates. SCEPTER is a bufferless mesh NoC that reduces the network power

consumption, and achieves high performance by intelligently prioritizing, routing, and throttling

flits to maximize opportunities to bypass on dynamically set, virtual single-cycle express paths. For

unicast communication, SCEPTER performs on-par with state-of-the-art buffered networks, however

broadcasts exacerbate the link contention at bisection and ejection links, limiting performance

gains. SB 2 addresses the broadcast traffic in bufferless NoCs with a TDM-based embedded

ring architecture that dynamically determines ring access, allows multiple sources simultaneous

contention-free access, and sets the control path locally at each node within the same cycle. The

three NoCs contribute key elements to the SC2EPTON architecture, resulting in a low-power and

high-performance bufferless snoopy coherent mesh network.
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CHAPTER 1

INTRODUCTION

he computing industry rapidly progressed over the last few decades, pervading every

aspect of life today. From mobile and embedded systems to servers, integrated circuits

are tailored to provide continued performance growth. A multitude of innovations in architecture,

circuits, devices and fabrication technologies converged to tackle the performance, area, and power

challenges of today. Gordon Moore, co-founder of Intel and Fairchild Semiconductor, observed a

trend, aptly named in retrospect as Moore's Law, where the number of transistors in an integrated

circuit approximately doubles every 18 months or 1 .5 years. Moore's I.aw set the pace for the

computing industry and coupled with transistor scaling rules such that an exponential increase in

performance was achieved each technology generation, over the last few decades. Robert Dennard

identified Metal-Oxide Semiconductor Field Effect Transistor (MOSFET) and circuit parameters for

providing systematic transistor improvements when scaling. [29] Reducing the minimum feature

size by 0.7 x, each process technology generation, provides a 2 x increase in transistor density. In

the early years, 1970s and 1980s, a new technology generation occurred every 3 years. Combined

with an increase in die area, the transistor count grew 4x every 3 years or as Moore observed,

transistor count doubling every 18 months. Figure 1-1 shows the clock frequency and transistor

count, for Intel microprocessors over the last three decades. The clock frequency steadily increased

until year 2010, and dropped thereafter as the computing industry encountered a critical point -

transistor scaling limits end the golden age of scaling, such that performance and power scaling is

not as easily achieved.

14



CPU Transistor Count and Clock Frequency
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Figure 1-1: Moore's Law and Slowing Clock Frequency Scaling

The Dennard scaling rules ensured that the total power remains constant when switching to the

next process generation. Table 1.1 shows Dennard's MOSFET scaling rules, where k is a unitless

scaling constant, and the electric field remains constant as the features scale. When scaling with a

factor of k = sqrt(2), feature size reduces by 1/k, transistor count doubles, and frequency increases

by 40% every 1.5 to 2 years. The power consumption of complementary MOS (CMOS) chips can

be modeled as in Equation 1.1, which is the sum of dynamic power and leakage power consumption,

where Q is the number of transistors, f is the clock frequency, C is the capacitance, V is the supply

voltage, and Ileakage is the leakage current.

p= Q * f * C * V 2 + V * 'leakage (1.1)

Each generation the power scales as P = 2 * k * (1/k) * (1/(k 2 )), assuming leakage is negligible,

thus constant power scaling is achieved when k = sqrt(2). The key to maintaining the constant

electric field and power density is voltage scaling, however recently it has reached its lower limit.

Dennard assumed the transistor threshold voltage(VT) would continue to scale by 1/k, but neglected

15
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the impact of subthreshold leakage on the chip power consumption. His assumption held true until

65 nm technologies were reached. At which point the subthreshold leakage consumed a significant

portion of the total power, prompting concerns on power scaling, and leading to numerous research

on low-power circuits and architectures. Power limits the gate oxide thickness(tox) scaling as well,

as gate oxide leakage is more pronounced with thinner dielectrics. Hence, Dennard scaling rules

break down and new avenues are necessary for continued feature size, performance and power

scaling.

While remarkable breakthroughs in strained silicon, high-k dielectrics and 3D FinFET transistors

have allowed leakage control up to 22 nm thus far, the supply and threshold voltage remain constant

and no longer scale. The power thus increases by a factor of 1.33 each generation for the same die

area, assuming the capacitance scales and the clock frequency is constant. Feature size reduction

still increases the transistor density each generation, however the clock frequency has hit a wall, and

scaling has slowed. Single chip performance does not improve if the clock speed is constant. Instead

the computational throughput can be increased if multiple processors are working in parallel, giving

rise to the many-core revolution. Architecting many-core chips involves the delicate challenge of

balancing physical constraints, area, timing and power while achieving high performance.

1.1 Many-Core Revolution

In addition to the performance improvements of the single-core processors that arise from clock

frequency scaling, Instruction-Level Parallelism (ILP) provides performance benefits by increasing

the amount of work performed each cycle. However, there are three limits to performance gains: ILP

wall, memory wall and power wall. Computer engineers can no longer rely on the clock frequency

scaling due to the power wall, serial performance acceleration due to the ILP wall, and low memory

access latencies due to the memory wall.

ILP Wall. To yield improved serial performance of single-core processors, the key idea of ILP

is to increase parallelism with regard to the instructions processed. Increasing the word length and

number of instructions executed per cycle has been effective at scaling the performance. Duplicated

hardware speculatively executes future instructions before the results of current instructions are

known and provides safeguards to prevent data corruption errors caused by out of order execution.
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Table 1.1: Dennard Scaling

However, there is an increase in complexity and associated power consumption without linear

speedup. Thus, the performance acceleration from ILP has stalled.

Memory Wall. Up until the last decade, processor speed improved by 50-100% per year, while

DRAM speed improved by 7%. [41] The growing disparity of processor speed and DRAM memory

access latencies results in a doubling of the gap every 1-2 years. While there are more aggressive

ILP extraction techniques, the memory access latencies and slow DRAM performance scaling

overshadows the processor speed improvements. Processors employ a hierarchy of memories,

known as caches, to achieve low-latency access to memory and effectively mask high DRAM

memory access latencies, thus yielding higher application performance.

Power Wall. Up until 2004, microprocessor clock frequencies kept increasing and the diminish-

ing size of transistors readily allowed this. However, it became extremely challenging to reduce

the operating voltage, and remain within a reasonable power dissipation. Designers hit the power

wall and turned to multicore processors as a result. Rather than creating new single-core processors

that may not compute faster, higher performance can be gained by have many slower single-core

processors working in parallel. However, power consumption is a constant constraint, even for
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Figure 1-2: Microprocessor Core Count and Interconnection Topologies

multicore processors, and drives many circuit and system innovations.

Interconnecting the multiple processors on chip poses performance, power, and reliability

challenges. As the technology node size is decreasing, the dominant delay that is emerging

within multicore processors is not the gate delay, but rather wire delay. [42] Dennard articulated

interconnect resistance and capacitance scaling per unit length, depicted in Table 1.1, and further

identified the impact of RC delay scaling for unrepeated and repeated wires. Scaled interconnects

do not scale, and provide constant RC delays since the reduction in wire capacitance is countered by

an increase in wire resistance. Thus, multiple clock cycles are necessary to traverse from one edge

of the chip to the other. Yet, future multicore architectures require high-bandwidth communication,

scalability, modular designs, and low latency.

1.2 Scalable On-Chip Interconnects

Figure 1-2 depicts the evolution of on-chip networks for processors as the number of cores increased

over the last few decades. Global wires, that cross the chip, are problematic for large multicore
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systems and smaller features sizes, due to the delay and power consumption growing faster than

the logic gate delay. These global wires also introduce design and floor planning challenges as

a result of routing congestion and long critical path delays, resulting in difficult timing closure.

Traditional on-chip interconnects, such as buses and point-to-point networks, specifically rely

on global wires and are unable to support high-bandwidth communication. [25]. A modular tile

approach alleviates the need for global wires by utilizing routers to send messages/packets across

the on-chip network instead of on dedicated global wires. Packet-switched network-on-chips (NoCs)

enable scalable network designs for multicore processors. Such networks contain a topology of

routers connected via short point-to-point links. Centralized arbitration is displaced by distributed

arbitration performed at each router in the packet-switched NoC, enabling the multiplexing of

multiple communication flows across the network, resulting in higher communication bandwidth.

On-chip interconnect network design comprises of trade-offs between practical constraints and

performance goals. Unlike the off-chip network, on-chip networks present unique challenges where

power and area are first order design constraints for new network architectures. The routers in

on-chip networks consume the majority of the network power and latency cost, while in off-chip

networks the network links and transmitter and receiver circuitry dominates the power consump-

tion and latency cost. Over-provisioning the network routers may achieve higher performance,

however it does not comply with the practical constraints, yielding unfeasible NoC architectures.

Considerable research has been dedicated to router and network architectures to reduce latency,

increase bandwidth, and consume low area and power. Buffers within the network are the main

contributor to NoC area and power, yet they enable multiplexing of packets onto wires and are the

main reason behind NoCs' scalable bandwidth. Although many techniques attempt to reduce the

network buffer power overhead by power-gating or network buffer area by avoiding buffer writes at

bypassed routers, the ideal is to achieve high-performance network communication without any

network buffers. However, prior proposals advocated bufferless on-chip networks but targeted its

use for low and medium workloads, as they were unable to extract low-latency high-throughput

performance.

While on-chip packet-switched networks are developed to scale to many cores with ease,

hardware-based cache coherence schemes are impractical for high core counts. Primarily the direc-

tory associated with managing the on-chip sharers and serving as an ordering point, is detrimental
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to both the area overhead as well as performance. Whether distributed or centralized directories are

utilized, traversing to the remote directory, waiting for access, and being redirected to complete

the request, penalizes the network latency and overall on-chip communication performance. A

coherency wall [54] is observed for large core counts, leading to scalable cache coherence being

imperative for future manycore processors.

1.3 Coherency Wall

As the number of cores increase in a cache coherent system, the cost associated with supporting

coherence continues to grow. The rate of growth may reach a point where it is no longer feasible

to maintain hardware-based coherence. The point at which this happens is referred to in [54] as

the Coherency Wall. A cache coherent system is "scalable" if the rate of growth is (at most) on the

order of the core count. Key concerns that emerge while scaling coherence are:

1. Storage Overhead - cost of tracking on-chip sharers

2. Uncore (Caches+Interconnect) Scaling - on-chip network latency and bandwidth

3. Area and Power Consumption - impact of coherence support on the full system cost

Directory protocols for handling cache coherence initially contained a centralized directory

which serialized all requests. To keep track of the on-chip sharers of a cache block, the full-bit

directory schemes allocate a directory memory proportional to the product of the total memory

size and number of processors. Thus the directory size grows as e(N 2 ), where N is the number of

processors. Distributing the full-bit directory across the network, improves the directory bandwidth

and reduces the delay associated with serializing requests.

Scalahle directory coherence protoco require the storage requirements is alleviated in these

full-bit directory schemes. Limited-pointer directory [9] protocol avoids the high memory overhead

of full-bit directory protocol by allowing only a constant number of simultaneously cached copies

of a cache block. The size grows as E(N log N) with processor core count. Since only a fixed

number of pointers are allocated per entry, the storage overhead is bound but the network traffic

may increase due to invalidations.
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The coherent traffic sent on the interconnect requires a scalable network capable of providing

high bandwidth while scaling to many cores. Read misses are independent of the number of cores

as the request is forwarded to a single core within the multicore system. Write misses incur a worst

case of 2N messages for N sharers representing the invalidation and acknowledgement messages

when all cores are sharers of a block. Each write miss that causes N messages is preceded by

N previous read misses. Thus the traffic overhead associated with a write miss is offset by the

prior read misses. [17] The analysis is primarily from the coherence protocol standpoint. However,

overall performance suffers as a result of contention within the network and the waiting delay at

the ordering point or the directory in this case. Overall scalability suffers due to the high storage

requirements.

Snoopy coherence is widely used in small multicore processors interconnected together via

a shared bus. While snoopy coherence protocols broadcast each coherence transaction to all

cores, they are still attractive since they allow for cache-to-cache transfers, improving performance.

Snoopy coherence completely eliminates the need for the large storage overhead of directories,

which becomes costly as core count increases.

The main limitations of utilizing snoopy coherence are the reliance on ordered, unscalable

interconnects and the bandwidth requirement associated with broadcasts. Transitioning from ordered

bus-based on-chip interconnects to packet-switched networks provides the necessary evolution to

scalable on-chip networks. However, packet-switched NoCs do not inherently support ordering of

requests, and hence snoopy coherence usually requires the use of ordered interconnects, such as

buses and crossbars. The challenge lies in extending snoopy coherence to scalable, mesh, unordered

interconnects while considering practical constraints, and pushing it towards the ultra low power

and area goals.

1.4 Thesis Statement and Contributions

Snoopy coherence is a high performing, simple protocol that is easily accepted and understood by

programmers and designers. It inherently provides wonderful properties of the transparency of all

requests and sequentially consistent behavior in multicore systems. It is already a low cost solution

to coherence, as directory coherence requires an unscalable directory to maintain coherence states,
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however the network itself consumes a significant fraction of the tile area/power for high bandwidth

communication. Of which, the input router buffers are the primary reason as they contribute to

approximately 50% of the router area/power.

Figure 1-3 showcases the entire thesis, which culminates into the SC2EPTON (Snoopy-Coherent,

Single-Cycle Express Path, and self-Throttling Ordered Network) architecture - a low-power

bufferless architecture capable of high performance communication for snoopy coherence over an

ordered mesh network. SCORPIO is a novel NoC architecture that supports snoopy coherence on a

mesh network with the use of common knowledge for distributed global ordering. The ordering

mechanism and 36-core chip prototype development is detailed in Chapter 4. Although SCORPIO

outperforms directory-based approaches, the chip prototype reveals the high cost of the router

buffers even with minimal sizing for good performance. SCEPTER addresses this problem with

a high performance bufferless NoC that leverages asynchronous repeated links, and maximizes

opportunities to zoom along these express paths. However, SCEPTER is tailored for unicast
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communication, such that broadcasts are sent as multiple unicast messages. This results in increased

network contention and high latencies for broadcasts. SB2 is a bufferless broadcast embedded ring

that allows flits un-contended network and ejection port access with a time-division multiplexed

approach for distributed arbitration.

The major contributions of this dissertation are summarized below:

1. High Performance and Scalable, Snoopy Coherent Mesh Network. Snoopy coherence is

supported on unordered mesh interconnects by decoupling the message delivery from the

message ordering. All nodes are notified of incoming coherence request sources such that a

global common knowledge is established. Subsequently, each node locally orders requests in

a consistent manner to achieve distributed global ordering. The ordering priority rotates each

time interval as all nodes maintain synchronized time intervals.

2. 36-Core SCORPIO Chip Prototype. The chip demonstrates the ease of integration of many

in-order snoopy coherent cores with a scalable network that ensures global ordering. It

provides further insight into the feasibility of the approach and usefulness for the quick

development of real-world multicore processors. A simple, intuitive, and scalable multicore

design shows that such a high-performance cache-coherent many-core chip can be realized at

low power and area overheads.

3. Low-Power and Intelligent Bufferless On-Chip Communication with Single-Cycle Ex-

press Paths. Achieving cache coherence with a low-cost network is very desirable. Without

the overheads of the directory, snoopy coherence already places reduced storage burden

within the processor. However, for performance reasons the network routers are filled with

buffers. SCEPTER is a bufferless network architecture that pushes towards high performance

by intelligently prioritizing, routing, and throttling flits to maximize opportunities to bypass

on dynamically set, virtual express paths. It performs on-par with state-of-the-art buffered

networks.

4. Dynamic TDM-based Bufferless Broadcast Communication. Broadcasting on top of

already bandwidth-constrained bufferless networks, prompts performance concerns as snoopy

coherence may not benefit as much from cache-to-cache transfers. SB2 achieves broadcast
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communication on a bufferless ring using synchronized time intervals and a time-division

multiplexed network access policy. All nodes are notified of sources that require network

access, where each determines the control signals for the local router.

5. Completely Bufferless Coherent Many-Core Architecture. The three-fold NoCs - SCOR-

PIO, SCEPTER, SB 2 - contribute key elements to the SC2EPTON completely bufferless and

coherent network. This network pushes towards high performance cache coherence, while

eliminating the directory storage overhead, lowering power consumption, and reducing the

on-chip network traffic from broadcasts.
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CHAPTER 2

BACKGROUND

n overview of the necessary background on on-chip interconnection networks , cache

coherency, and memory consistency is provided as a foundation for understanding

the rest of the dissertation. Please note that due to the large scope of these topics, every aspect

cannot be exhaustively described and mentioned here.

2.1 Network-on-Chip

The network-on-chip (NoC) is a on-chip communication fabric that serves as a medium for messages

sent from one core to another or off-chip to main memory.

Packet-switched NoCs are becoming the de-facto standard for providing scalable bandwidth at

low latency for multicore systems. Each message sent from a processor core is divided into packets,

and even smaller units known asflow-control units(flits), for distribution across the network to the

destination(s). A flit is composed of one or more physical-digits, known as phits which are the

number of bits capable of transmission on a physical link in a single cycle. As shown in Figure 2-1,

flits may arrive out of order and at any time at the destination(s), depending on the routing algorithm

and network traffic/contention. The NoC consists of a sea of routers interconnected via links and

form the basic communication fabric of packet-switched interconnects, where each router manages

the multiplexing of flits from different input links onto the desired output links. NoC designs require

consideration of the topology, routing, flow control, microarchitecture, and network interface.
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Network-on-Chip

Figure 2-1: Network Communication with Packets

1. Topology. Physical layout and connection between routers and links.

2. Routing. Algorithm that determines the path a flit will take to reach its destination(s).

3. Flow Control. Responsible for the allocating and de-allocating of router buffers and links to

different input flits.

4. Router Microarchitecture. Components contained within a router and the pipeline

5. Network Interface. Interface between the network and other components, such as the

processor core.

The most universally applicable metrics of on-chip networks are latency, bandwidth, power

consumption, and area usage. Latency and bandwidth can be classified as performance metrics,

while power consumption and area usage are the cost factors. The zero-load latency is the lower

bound on the average network latency as it refers to the network latency when there is no resource

(router buffers and links) contention. The zero-load latency is the product of the average number of

hops or routers from source to destination and the delay incurred by those routers and links. The

network latency and bandwidth vary based on the topology.

Circuit-switching is an alternative to packet-switching where multiple links are preallocated for

the entire message using a reservation probe to preset the links from the source to destination. It

removes the need for buffers and has the advantage of low latency but is unable to provide high

bandwidth. Packet-switching thus dominates as multiple traffic flows can be serviced simultaneously.
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2.1.1 Topology

The physical layout of the routers and the connections between them via links is referred to as the

topology. The number of routers and links between nodes and the communication latency is directly

affected by the chosen topology. Figure 2-2 shows a few interconnection network topologies used in

packet-switched NoCs. The topologies are evaluated by the number of links at each node (degree),

number of unique paths between source and destination (path diversity), average number of hops

between source and destination (average hop count), maximum traffic the network can support

(bisection bandwidth), and ease of layout and physical implementation. The ring interconnect is

very simple and only requires simple routers and few links. The torus on the other hand is more

difficult to realize, but yields a smaller average hop count and increased path diversity.
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Degree. The number of links at each node, or degree, is a metric used to represent the cost of

the network. A higher degree means there are more ports at each router, requiring more buffers,

utilizing wider crossbar switches, and increasing overall design overhead. The ring topology has

two links per node (degree = 2), and torus has four links per node (degree = 4). While some

topologies, such as mesh, do not have a uniform degree for all nodes.

Hop Count. The diameter of the network defined as the largest minimal hop count for all

source-destination pairs, is an indicator of the average hop count of the network. For example, for a

ring that is bidirectional and has 9 nodes, the worst-case hop count is four. While a mesh would

also have a worst case hop count of four for a 9-node network, a torus would reduce it to two hops.

However, when interconnecting more nodes the mesh begins to surpass the ring in terms of average

latency.

Path Diversity. The higher the path diversity, the more robust the NoC, due to the varying paths

a flit may take in the event of failures. Traffic is also well-balanced across the network when there

are multiple paths to a destination and adaptive routing is employed. The mesh is the most popular

NoC topology as it is scalable, easy to layout, and offers path diversity.

Bisection Bandwidth. The bandwidth supplied by a network is a standard metric used for

comparison. This is determined by splitting the N-node network in two groups of N/2 nodes such

that the number of channels is minimal. Thus the maximum bandwidth supplied by the network

is usually constrained by these bisection links. For example, a ring network with N nodes has a

bisection of 2 due to the minimal bisection intersecting two channel links. In N-node mesh network

the bisection bandwidth is thus sqrt(N) times the link bandwidth.

2.1.2 Routing Algorithm

Once the topology is fixed, the routing algorithm is responsible for determining the path a flit should

traverse in the network from its source to destination. While these paths could be deterministic

and choose the same route from a source to a particular destination, they could also adapt to the

network conditions and choose alternate paths while hopping through the network. Three main

classifications of routing algorithms are: deterministic, adaptive, and oblivious.

Deterministic. Deterministic routing schemes are straightforward and simple as there is a

set route irrespective of the network traffic contention. Dimension-ordered routing is a popular
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deterministic routing algorithm due its simplicity. A flit traverses along one dimension, X or Y,

completely, prior to traversing the other dimension to reach the desired destination node. For

example, a flit injected at node (x=1,y=1) would like to be sent to node (x=2,y=4). With XY routing,

the flit would move one hop in the X direction followed by three hops in the Y direction. Deadlock

freedom property is maintained if the permitted routes are free of cycles. [34] Permitted turns are

shown in Figure 2-3 as it illustrates that a routing cycle is impossible.

Adaptive. Packets traverse different paths between the same source-destination pair when using

adaptive and oblivious routing algorithms. Adaptive routing uses the state of the network when

determining the selected path. Minimally-adaptive routing limits the selected paths to those with

the shortest distance from the current node to the destination. Non-minimally adaptive routing

considers other paths, even those that result in the packet diverting from the minimal route. To

ensure deadlock freedom, adaptive routes consist of certain restrictions that prevent routing cycles.

Oblivious. In contrast to adaptive routing, oblivious routing does not utilize the network state

when determining the flit route. Valiant [79], an oblivious routing protocol, randomly selects an

intermediate node to route to, from which it routes to the destination. This spreads the traffic such

that it is uniformly distributed across the network. A higher latency cost is paid to achieve the load

balancing.

Deterministic and oblivious routing algorithms are low overhead solutions for route computation.

On the other hand, adaptive routing implementations are non-trivial as deadlock freedom must be

ensured and large routing tables may be necessary.

(a) XY Routing (b) Cycle Deadlock (c) West-First Routing

Figure 2-3: Avoid Deadlock with Permitted Turns that Prevent Cycles

29



2.1.3 Flow Control

Flow control determines the allocation of network resources such as buffers and channels to flits. A

good flow control mechanism reduces the latency for low loads without high overhead. Throughput

is also sensitive to the flow control mechanisms as effective sharing of network resources ensures

higher bandwidth.

In store-and-forward flow control, the entire packet, composed of multiple flits, is entirely

buffered at a node prior to being sent to the next node. It incurs high network latencies; making it

unsuitable for on-chip networks. Virtual cut-through flow control tackles this problem by allowing

flits to be sent prior to receiving all the flits, within the packet, at each node. However, the flow

control is performed at the packet-level, where the packets only move forward if there is enough

buffer space for the whole packet.

Wormhole flow control is a flit-level flow control scheme that allows buffer allocation and

channel traversal to be performed flit by flit. Hence, flits are able to move along to the next router

even before the entire packet is received at the current router. Bandwidth and buffer space is

managed on a fine grained scale of flits, much smaller than packets. Since buffers are allocated

on a flit-basis, the required per-router buffer space is much lower than packet-level flow control.

However, links are held until the entire packet reaches the destination. Thus it is susceptible to

head-of-the-line blocking, where a flit behind a blocked packet is unable to use the idle links.

Virtual-Channel (VC) flow control alleviates this problem by using virtual channels. A virtual

channel is a separate flit queue within the router where multiple VCs arbitrate for access to the

outgoing physical links. Thus if a packet is blocked in one VC, another VC's flit is still able to

access the links and be sent through to the next router.

Since the network should not allow the dropping or loss of packets, the flow control must ensure

an arriving packet has the necessary bufferspace available Twn xmmcn y-Nf Qi-hierng this

is on-off or credit-based signaling. In on-off signaling, downstream routers inform the current

router of the buffer status by toggling a bit. If the bit is asserted, the number of free buffers is

above a threshold value, otherwise it is below that threshold. In credit-based signaling, a count

is maintained at each router, indicating the number of free buffers at the downstream router in a

certain direction. Each time a flit is sent, the count is decremented. When the downstream router
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buffer space becomes available, it sends a credit back to the upstream router which then increments

the credit count.

Buffer turnaround time is the minimum delay between when a buffer is occupied, and flit leaves,

to the arrival of the next flit to be buffered. The delay consists of (1) indication of a free buffer, via

on-off or credit signaling (credit/on-off propagation delay), (2) update the credit count at upstream

router (credit/on-off pipeline delay), (3) send the flit because buffer space is available at downstream

router (flit pipeline delay), (4) leave the router to be sent to downstream router (flit propagation

delay). Thus, longer router pipelines and interconnecting wires lead to poorer buffer utilization

keeping buffers unused longer.

2.1.4 Router Microarchitecture

To meet the latency and throughput goals, the router must be carefully designed as it directly

affects the network latency, maximum frequency of the network, and network area/power. The

microarchitecture of the virtual-channel router is shown in Figure 2-4. Each input port contains
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multiple VCs, all able to arbitrate for outgoing links. In the mesh network shown, the router has

five input and output ports corresponding to the neighboring directions, east (E), west (W), north

(N), south (S), and the port connected to the local node (L).

For a basic router, the pipeline consists of five logical stages. When the head flit arrives at a

router, it is decoded and buffered, known as buffer write (BW), and occurs in the first pipeline stage.

In the second pipeline stage, the route computation (RC) is performed to determine the desired

output port(s) of the packet. The flit then arbitrates for a virtual channel (VC) at the corresponding

output port. If the VC was successfully allocated, the flit is able to proceed to switch allocation

(SA) where crossbar switch access is determined. Finally the flit traverses the crossbar switch

and link to the next router in the following two cycles. Body and tail flits go through the same

pipeline stages except for route computation and VC allocation as it is predetermined for the head

flit. Using lookahead routing [33], the route is pre-computed, one hop in advance, which reduces

the pipeline to 4 stages. After the BW stage, flits are able to perform VC allocation, followed by the

SA, ST, and LT. To further reduce the pipeline depth, the VA and SA can be performed in parallel

by speculatively performing the switch allocation after the BW stage. The pipeline is shown in

Figure 2-5. The flit arbitrates for the switch access while also determining if there is a free VC

available at the downstream router. If a VC could not be allocated, the speculative SA fails and

the process repeats until success ensues. Fair allocation is essential to ensure certain flits are not

starved.
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Figure 2-5: State-of-the-Art Virtual Channel Router Pipeline
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2.1.5 Network Interface

To interface the network with the outside world, namely the cpu/caches, directory, and memory

controllers, a network interface is required. The network interface (NIC) typically connects directly

between the router and private LI or L2 cache in a shared memory system. The multicore system

communicates via messages, which are converted by the network interface, shown in Figure 2-6,

into packets to be sent across the NoC. Each message from the processor core is encapsulated into

packets with regard to the network specific details of channel-width and routing algorithm. For

instance, a data response message, consisting of the entire 32-byte cache line, is sent from the

on-chip sharer to the requester. If the packet size is 16 bytes, the message must be divided into two

packets. Packets are divided into flits, and sent into the network, one by one. Each packet consists of

a head flit that holds the destination address, multiple body flits, and a tail flit. Assuming a flit size

of 64 bits, the 16-byte packet is divided into 2 flits, ignoring the encapsulation of network routing

information. Thus, three flits are necessary to incorporate part of the cache line and the destination

and flow control information. The flits remain in the NIC's virtual channel buffers awaiting access

to the network. Using credit signals, the router indicates to the NIC the status of the buffer space in

the NIC input port, such that a flit is sent to the router if space is available.

Once the destination receives all the flits, the packet parser combines the flits into a packet and

parses through the contents. The interface to the core is responsible for converting packets into

messages, and communicating the message to the core. Many processor cores contain standard
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interfaces, such as OCP [2] and ARM AMBA [1], which utilize standard communication protocols

to send and receive messages. OCP and ARM AMBA 4 (ACE) supports coherent messages such

that cores compliant with these interfaces are able to share memory and system-wide coherency is

maintained.

2.2 Bufferless Networks

On-chip networks are becoming prominent in multicore systems, however the consideration of

area/power overheads is affecting the performance potential. Designs attempt to reduce the power

of interconnects by low-swing signaling, power gating, and DVFS. However, upon closer inspection

of the router area and power consumption, it is evident that the input buffers consume a significant

portion of the total tile area/power.

Bufferless NoCs eliminate the need for buffers within the network. Flits contending for the

same ports are either deflected towards other ports, or dropped awaiting retransmission by an upper

layer protocol. As a result, bufferless NoCs have in the past traded off performance for low area

and power overheads. The baseline bufferless NoC router is shown in Figure 2-7. The two-stage

router pipeline performs route computation and priority output port allocation (referred to as switch

allocation throughout this paper) in the first pipeline stage, followed by switch and link traversal in

Switch Allocator (SA)
head ST

Route Compute (RC) Router LT
n

body/ ST
N tail LT

head

E Router n+1

W XBAR body/ ST
Ip I i Itail LT

Figure 2-7: Bufferless Router and Pipeline
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the second pipeline stage. Flits are temporarily held in pipeline registers within each router and

between each router pipeline stage, until an output port allocation is performed.

2.2.1 Deflection Routing

Bufferless networks and deflection routing have been developed and used in the Internet and

optical networks, and is more commonly known as hot-potato routing (see Chapter 5 for more

background on bufferless networks in other domains). Recently, bufferless NoCs have become

appealing due to tight on-chip power constraints. Similar to hot-potato routing, deflection routing

in NoCs requires that a flit does not reside in a router, thereby it continually moves within the

network. Since flits cannot be buffered, all the flits arbitrating at the router, in this cycle, need to

be assigned an output port and leave the router. If the assigned output port does not lead closer to

the destination, it is known as a deflection. The baseline bufferless NoC is based on BLESS [65], a

deflection-based bufferless NoC where the route is computed using deterministic XY or YX routing.

The deflections intrinsically achieve adaptive routing because flits can be routed along multiple

paths to the destination.

2.2.2 Allocation

BLESS uses an Oldest-first prioritization rule to arbitrate among the incoming flits. A global

consistent order is maintained by using this age-based approach. However, this approach requires

a timestamp/age to be propagated with every packet, and a priority sorting that incurs a long

arbitration critical path. The timestamp must be wide enough to account for the largest in-flight

window, i.e thousands of cycles for a 256 node NoC, if not more, as it depends on the number of

requests in the network, timestamp rollover/reuse, and traffic pattern. Flits are processed in order

of priority, where the highest priority flit obtains the desired output port and the other flits choose

among the unallocated ports, where productive ports are prioritized over non-productive ones. Using

age-based prioritization, livelock freedom is ensured as the globally oldest flit will always win its

desired output port allocation at each hop.
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2.2.3 Injection

Within a bufferless router the incoming flits must be assigned to an output port. Thus, flits are

constantly moving around the network until the destination is reached. It provides deadlock freedom

guarantees but does not ensure that a local node, i.e. network interface of core or cache, is always

able to inject a flit into the network when necessary. For a flit to be injected, there must be an idle

input slot on one of the North, South, East or West links. This guarantees that the local flit will

obtain an output port during switch allocation. This prompts starvation and fairness concerns as

other cores' traffic may monopolize the network bandwidth and prevent certain cores from injecting.

Processor 0 Processor 1 Processor 2 Processor 3
B: Modified 8: Invalid

A: Invalid A: Shared A: Shared

Interconnection Network

A: |0 11 -

Mernory Controller

Figure 2-8: The Problem of Incoherence in Shared Memory Systems

2.3 Cache Coherent Interconnects

In a shared memory system the data responses and integrity should be guaranteed and uncorrupted.

However, this is quite challenging when multiple processors are all accessing and computing on

shared memory. To illustrate this incoherence problem, consider the 4-core system in Figure 2-8,

but for now ignore the cache block state information shaded. Processor 3 (P3) and processor 2 (P2)

both load cache block A into their private caches. Processor 1 (P4) retrieves and stores cache block
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B, and processor 1 (P1) is idle. Assume P2 performs a write to the cache block A, it will update the

value in its private cache. Since P3 is also caching block A, it retrieves the data from its private

cache, computes on it, and writes it back to its local cache block A. Now, we have two processors

that are unaware of the modifications made by other caches. P1 wishes to retrieve cache block A

into its local cache to compute on it. What is the correct value to send to P1 - the result of P2's

write or P3's write?

The solution is to maintain the coherence single-writer, multiple-reader invariant; that is, there

is only a single writer at a time, while there may be multiple readers of a cache block. The result

of a read to a memory location must return the value from the last write to that memory location.

Otherwise, cores use the stale data and incorrectly compute with that data. In the example provided,

P3 computes with stale data and when that data is written to A's location, it will affect the entire

program and yield incorrect results.

Cache coherence protocols are used to assure the data integrity in shared memory multicores.

Each cache block stored in a local processor's caches are assigned a state representing the permis-

sions granted to this processor. Thus, P3 should not be granted permission to modify the value of A

prior to being informed of the previous write by P2. The valid states given to cache blocks vary

based on the coherence protocol used. A simple one is the MSI protocol, where the three states

represents if the cache block is invalid, shared, or modified within the private cache.

" Modified (M): The cache block is within the private cache, and is granted both read and write

access. This cache is responsible for responding to any requests pertaining to this cache block.

" Shared (S): The cache block is within this private cache, and is granted read access only.

" Invalid (I): The cache block in the private cache is not valid. The contents are not usable and

if needed, the cache block should be retrieved first.

Transitioning from one coherence state to another, for instance state Shared to state Modified

upon a write operation, begins with the core fetching and decoding the respective load or store

instruction. The coherence transaction is sent out of the core if the local cache does not have the

correct permission to service the type of request. For instance, a load instruction is generated by

the core, however the cache block has an Invalid state and the data must be obtained from main
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memory. A request is generated and sent to main memory. Prior to the arrival of the data response,

and after the generation of the request, the cache block is in a "transient" state. It differs from the

three "stable" states (MSI) mentioned as it does not reside in either of these states while the request

is being serviced. Upon reception of a data response, the cache block state shifts from Invalid to

Shared. The coherence transaction is completed once the data is appropriately moved and the state

is updated.

When a processor performs a write operation to a cache block, in the S state, the state needs

to transition to M. To ensure we do not encounter the incoherency problem, other caches with the

cached copy of the data needs to be invalidated prior to performing the data write. Invalidation

messages are sent to other caches informing them to change their cache block states from S to I.

Multiple processors can read block copies from main memory safely until one processor updates its

copy. At this time, all cache copies are invalidated and the memory is updated to remain consistent.

The coherence protocols are improved for performance by adding additional states. The

Exclusive (E) state indicates that this is the only cached copy of the block within the multicore

system. Thus, writes can be implicitly performed without invalidations. The Owned (0) state is

granted to a cache that is responsible for responding to remote coherence requests to this cache

block. Thus, eliminating the need to obtain the cache block from main memory when it is serviced

by another cache on-chip. Various common coherence protocols are formed by combining the

"stable" states, e.g. MSI, MESI, MOSI, and MOESI. Table 2.1 lists a few common transactions as a

result of certain coherent actions observed or initiated.

Table 2.1: Common Coherence Transactions

GetShared (GetS) Obtain block in Shared (read-only) state
GetExclusive (GetX) Obtain block in Exclusive (read-write) state
PutClean (PutC) Evict unmodified cache block
PutDirty (PutD) Evict modified/dirty block

There are two basic protocol types: (1) Write-invalidate, and (2) Write-update. The write-

invalidate process was briefly mentioned earlier. Whenever a write is performed, all other locally

cached blocks, pertaining to the same memory address, are invalidated. Write-update protocols

do not utilize invalidations, rather the updated data block is broadcast to all caches with a locally

cached block. Throughout this dissertation, write-invalidate coherence protocols can be assumed,
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unless mentioned otherwise.

Two main classifications of cache coherence protocols are snoopy protocols and directory

protocols. Each is developed with basic assumptions of the underlying architecture. Snoopy

protocols assume all the coherence controllers are able to snoop or see the requests from other cores.

They tend to be fast if enough bandwidth is available for the broadcast of all transactions. The

drawback is that it is not scalable as broadcasts cannot be sustained for large multicore systems.

Directory protocols assume a directory is present to maintain the coherence state of each cache

block. These protocols tend to have longer latencies as each request has 3 phases: request, forward,

respond, but consumes less bandwidth since point-to-point messages are used rather than broadcasts.

2.3.1 Snoop-based Protocols

Snoop-based coherence protocols are popular in multicore systems due to its simplicity and low

overhead. All coherence controllers snoop transactions generated by other cores and memory

controllers. Thus, every update to a cache block is visible to all processors. Each processor then

behaves appropriately based on the transactions observed. For instance, upon observation of a write

request, the processors check if the matching cache block is locally cached. If so, the cache block is

invalidated in the case of write-invalidate protocols. For write-update protocols, the updated value

is obtained from the write transaction observed, and each locally cached copy is replaced with the

new value.

Blocks are required to arrive in order, such that the coherence is appropriately enforced. The

bus and tree are natural networks for snoopy coherence as transactions are ordered and broadcast to

all. Additionally, the ordering eases memory consistency models, especially sequential consistency

where total ordering of memory transactions is desired. Recent work on coherence protocols have

pushed towards having the network and coherence integrate tighter to optimize transactions.

2.3.2 Directory-based Protocols

A directory-based cache controller issues a transaction that is sent to the directory. The directory

looks up the state of the cache block and subsequently the request is forwarded to the owner of

the cache block. The owner is possibly a processor core on-chip or the main memory. Since a
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sharer list is maintained for each block, requests do no need to be broadcast to all cores. Similar to

snoop-based protocols, the memory accesses to the same location need to be ordered. The directory

serves as an ordering point as requests are serialized and processed.

Full-map directories store enough states for each block in global memory such that every cache

is able to locally cache a copy of any block of data. Each directory entry for a cache block contains

N bits, where N is the number of processors in the system. In this bit vector, an asserted bit

represents the presence of a cached copy of the block in the corresponding processor. An additional

bit specifies if a processor on-chip has write access to the cache block. Full-map directories are no

scalable since the space required for the bit vectors in all entries is immense. A limited directory

solves this by using a fixed directory size. Rather than bit vectors, the limited directory uses a few

pointers to represent the sharers of a cache block. Thus, only a limited number of caches is able to

locally cache the same block simultaneously. If a new load request arrives at the directory but all

pointers are accounted for, one of the caches will need to be evicted in order to assign a new pointer

in its place and complete the load request.

Further optimization of directory coherence includes tracking data sharers in a coarse granular-

ity. [16] Multiple cores are within a region where a region bit vector is stored in each directory entry.

Thus, coherence requests are broadcast to all cores within a region if the presence bit is asserted,

indicating at least one sharer is within that region. The AMD Hypertransport [23] commercial

coherence protocol relies on the broadcast of requests as the directory only indicates if the sharer is

on-chip or off-chip. These hybrid coherence protocols trades network bandwidth for storage space.

2.3.3 Protocol-Level Deadlock Avoidance

Assuming all requests and responses utilize the same set of VCs, there is a potential for deadlock.

If a request was initiated by the L2 cache and sent into the network. The response is sent by

another node or the directory. The network is full of requests dependent on the outcome of a

previous request, which in turn is awaiting the response from the network to complete the coherent

transaction. However, the response is trapped behind these requests within the network and is

unable to make forward progress.

To resolve this problem, virtual networks (vnets) are used. Each type of coherent transaction in

the network is placed into exclusive message classes. Each message class maps to a virtual network
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in the router. Virtual networks are essentially a grouping of VCs dedicated to transactions pertaining

to a message class. For instance, a simple snoopy protocol consists of only requests and responses,

and requires two message classes to achieve protocol-level deadlock avoidance. Although requests

and responses are stored in separate set of VCs, they still all arbitrate for access to the same physical

links.

2.3.4 Memory Consistency

Single-core processors provide a simple and intuitive view of the memory to the programmer as

instructions appear to execute in program order, even if out-of-order cores are utilized. However,

memory consistency in multicore processors is not as straightforward and incurs additional hardware

challenges. The memory consistency model of a multicore processor provides a specification of the

memory system to the programmer. It bridges the gap between the expected and actual behavior

of the system. Intuitively, a read should return the value of the "last" write to the same memory

location. The last write is simply defined by the program order, order of memory accesses in the

program, for single-core processors. For multicore processors, the "last" write is not as obvious as it

could have originated from another processor.

The most intuitive memory consistency model for multicore processors is sequential consistency,

defined in 1979 by Leslie Lamport as follows. [56]

Definition [A multicore system is sequentially consistent if] the result of any execution is the same

as if the operations of all the processors were executed in some sequential order, and the operations

of each individual processor appear in this sequence in the order specified by its program.

The definition includes two aspects of sequential consistency: (1) program order must be

maintained for individual processors, and (2) a global order is maintained of operations of all

processors. In other words, the system is sequentially consistent if the operations of all processors

appear to execute in a sequential order, and the program order is maintained for each individual

processor. Figure 2-9 shows two examples of sequential consistency.

Figure 2-9a is a simple implementation of Dekker's algorithm where two processors attempt to

enter the critical section at the same time, and only one is allowed to enter. Two processors (P1 and

P2) and two flag variables (Flag1 and Flag2) are used, with the variables initialized to zero. When P1
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Figure 2-9: Sequential Consistency Examples

attempts to enter the critical section, it firsts updates Flag 1 value to 1, and checks the value of Flag2.

If Flag2's value is 0, P2 has not tried to enter the critical section already, and P1 is able to enter.

When P2 tries to enter the critical section, it will see that Flag 1 is 1, meaning P1 is in the critical

section. Sequential consistency ensures this behavior by requiring program order be maintained

for both P1 and P2's instructions, thus precluding the possibility of both processors reading the

flag value of 0 and entering the critical section. Sequential consistency allows interleaving between

instructions from different processors, so long a total global order is maintained. Thus, if both Flag 1

and Flag2 are assigned value of 1 and the conditional is checked, neither P1 or P2 would be able

to enter the critical section. Even with this strict consistency, the program needs to be carefully

designed to achieve mutual exclusion. Figure 2-9b shows three processors accessing the same

shared memory locations, A, B and C, initialized to 0. Processor P2 reads the value of A and if it

was set was P1 previously, it executes the write to memory location B. The effect of P1 's write to A

must be seen by all cores at the same time, as sequential consistency ensures atomicity.

In a coherent system, sequential consistency is easily achieved on a shared bus, as in-order

execution of memory access is guaranteed. However, this becomes difficult to support in unordered

interconnects, such as mesh networks. Relaxed consistency models [8] have been proposed such

that reads and writes can complete out of order. Special synchronization operations are required

to enforce ordering and require programmer expertise to achieve correct and high performing

applications. Cache coherence guarantees all processors consistently view memory accesses to a

specific location but not across all memory locations. A coherent system may not be sequentially

consistent.
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2.3.5 Synchronization

Shifting from single-core processors to multicores requires prudence when writing functionally

correct applications. Hardware synchronization primitives assist with mutually exclusive access to

memory locations. Locks are a type of synchronization primitive that ensures only one processor

gains access to a critical section at a time. The range of lock primitives is immense, which include

test and set lock (TAS) and load link store conditional (LL/SC). The TAS lock was the main

synchronization instruction provided in early multicore architectures. Each processor requesting the

lock, will store "true" in the memory word (or byte), and the previous value is returned. A returned

value of "true" indicates another processor obtained the lock, is currently in the critical section

and will set to memory word to "false" when it exits. It is evident that the underlying architecture

impacts the performance of the TAS lock as the number of requesters for the lock increases. Each

write to the memory location incurs a flood of invalidations to other caches which have locally

obtained the cache block to also perform a write. The load linked store conditional mechanism

eliminates the need for excessive invalidations. LL/SC splits the process of obtaining the lock into

two phases: (1) load the value in the memory location, and (2) store a value to memory location on

the condition that the location has not been modified since the value was loaded. If another processor

updated the memory location, the store will fail and the LL/SC is restarted. Each processor is able

to locally store a copy of the cache block. Upon viewing a store from another processor the loaded

cache block is invalidated. Thus, invalidations are only generated by successful stores.
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CHAPTER 3

SCORPIO: GLOBALLY ORDERED MESH

NETWORK ARCHITECTURE

9l ared memory, a dominant communication paradigm in mainstream multicore pro-

cessors today, achieves inter-core communication using simple loads and stores to

a shared address space, but requires mechanisms for ensuring cache coherence. Over the past

few decades, research in cache coherence has led to solutions in the form of either snoopy or

directory-based variants. However, a critical concern is whether hardware-based coherence will

scale with the increasing core counts of chip multiprocessors [47,55]. Existing coherence schemes

can provide correct functionality for up to hundreds of cores, but area, power, and bandwidth

overheads affect their practicality. Two of the three scalability concerns are (1) directory storage

overhead, and (2) uncore (caches+interconnect) scaling.

For scalable directory-based coherence, the directory storage overhead must be kept minimal

while maintaining accurate sharer information. Full bit-vector directories encode the set of sharers of

a specific address. For a few tens of mores, it ik very efficient, but requires storage that linearly grows

with the number of cores; limiting its use for larger systems. Alternatives, such as coarse-grain

sharer bit-vectors and limited pointer schemes contain inaccurate sharing information, essentially

trading performance for scalability. Research in scalable directory coherence attempts to tackle

the storage overhead while maintaining accurate sharer information, but at the cost of increased

directory evictions and corresponding network traffic as a result of the invalidations.
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Figure 3-1: Indirection and Serialization Latency of Directory-Based Coherence

3.1 Motivation

Traditionally, global message ordering on interconnects relies on a centralized ordering point, which

imposes greater indirection, network latency of a message from the source node to ordering point,

and serialization latency, latency of a message waiting at the ordering point before it is ordered

and forwarded to other nodes. Dependence on a centralized ordering point prevents architects from

providing global message ordering guarantees on scalable but unordered networks.

Distributed directory-based coherence alleviates the latency cost by separating the directory

across the chip, thereby splitting the requests among the directories by address space. A reduced

serialization latency ensues, as well as indirection latency if the directory node is close to the re-

quester. However, even with distributed directories, the latency cost is significant. Figure 3-1 shows

the indirection and serialization latency for SPLASH-2 and PARSEC benchmarks on a modeled

36-node system, with distributed full-map directory-based coherence in the GEMS [59] simulator.

Across all applications, the average latency cost of 45 cycles prohibits efficient communication.

Snoopy coherence exhibits higher performance by avoiding the indirection latency cost through

direct cache-to-cache data transfers. However, the performance doesn't scale with the number of

nodes as ordered, unscalable networks are required for correctness. Snoopy compatible interconnects

comprise buses or crossbars (with arbiters to order requests), or bufferless rings (which guarantee

in-order delivery to all cores from an ordering point). Existing on-chip ordered interconnects scale

poorly; The Achilles heel of buses lie in limited bandwidth, while that of rings is delay, and for

crossbars, it is area. Higher-dimension NoCs such as meshes provide scalable bandwidth and is

the subject of a plethora of research on low-power and low-latency routers, including several chip
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Figure 3-2: Requests Delivered to Nodes over Unordered Mesh Network

prototypes [36,44,68,75]. However, meshes are unordered and cannot natively support snoopy

protocols. Figure 3-2 shows an unordered mesh network tasked with delivering Request 1 and

Request 2 to all the tiles. Flits from these requests contend for network resources within each

router. It isn't guaranteed that each flit will be seen in the same order across all the tiles. Some

tiles view Request 1 prior to Request 2 and vice versa. The ideal is an unordered scalable network

with ordering mechanisms that ensures sequential consistency and snoopy coherence is maintained,

while isolating the core from the details and providing high performance.

3.2 Related Work

Various proposals, such as Token Coherence (TokenB), Uncorq, Time-stamp snooping (TS), and

INSO extend snoopy coherence to unordered interconnects. TokenB [58] performs the ordering at

the protocol level, with tokens requested by a core wanting access to a cache line. A read request

can only proceed if at least one token is obtained for the cache line, while for a write request, all

tokens need to be obtained. TokenB assigns T tokens to each block of shared memory during system

initialization (where T is at least equal to the number of processors). Each cache line requires an

additional 2 + log T bits. Although each token is small, the total area overhead scales linearly
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with the number of cache lines. Failure to obtain necessary token(s), results in repeated tries and

potentially continuous collisions with other requests, prompting livelock concerns and degrading

performance.

Uncorq [73] broadcasts a snoop request to all cores followed by a response message on a logical

ring network to collect the responses from all cores. This enforces a serialization of requests to

the same cache line, but does not enforce sequential consistency or global ordering of all requests.

Although read requests do not wait for the response messages to return, the write requests have to

wait, with the waiting delay scaling linearly with core count, like physical rings.

TS [57] assigns logical time-stamps to requests and performs the reordering at the destination.

Each request is tagged with an ordering time (OT), and each node maintains a guaranteed time (GT).

When a node has received all packets with a particular OT, it increments the GT. TS requires a large

number of buffers at the destinations to store all packets with a particular OT, prior to processing

time. The required buffer count linearly scales with the number of cores and maximum outstanding

requests per core. For a 36-core system with 2 outstanding requests per core, there will be 72 buffers

at each node, which is impractical and will grow significantly with core count and more aggressive

cores.

INSO [12] tags all requests with distinct numbers (snoop orders) that are unique to the originating

node which assigns them. All nodes process requests in ascending order of the snoop orders and

expect to process a request from each node. If a node does not inject a request, it is has to periodically

expire the snoop orders unique to itself. While a small expiration window is necessary for good

performance, the increased number of expiry messages consume network power and bandwidth.

Experiments with INSO show the ratio of expiry messages to regular messages is 25 for a time

window of 20 cycles. At the destination, unused snoop orders still need to be processed leading to

worsening of ordering latency.

Swizzle [71] is a self-arbitrating high-radix crossbar which embeds arbitration within the

crossbar to achieve single cycle arbitration. Prior crossbars require high speedup (crossbar frequency

at multiple times core frequency) to boost bandwidth in the face of poor arbiter matching, leading to

high power overhead. Area remains a problem though, with the 64-by-32 Swizzle crossbar taking

up 6.65mm2 in 32nm process [71]. Swizzle acknowledged scalability issues and proposed stopping

at 64-port crossbars, and leveraging these as high-radix routers within NoCs. There are several other
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stand-alone NoC prototypes that also explored practical implementations with timing, power and

area consideration, such as the 1 GHz Broadcast NoC [68] that optimizes for energy, latency and

throughput using virtual bypassing and low-swing signaling for unicast, multicast, and broadcast

traffic. Virtual bypassing is leveraged in the SCORPIO NoC.

To reduce the impact of snoop requests on the required network and tag lookup bandwidth, snoop

filters remove impertinent requests. Two broad classes of snoop filters are source and destination

filters. Destination filters reduce the snoop-induced tag lookups but do not address the broadcasts in

the network. Thus, snoops are still sent to all nodes and filtered at the destinations prior to being

sent to the processor core. The benefits are reduced tag lookup energy and bandwidth. Source filters

reduce both the tag lookups and broadcast overhead. Broadcasts may not be necessary especially

when there are only a few on-chip sharers of a cache block, and can be successfully filtered with

source-based filters. In addition to these two categories of snoop filters, in-network coherence
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filtering addresses this by embedding snoop filtering within the network. As requests traverse the

network, they are effectively filtered such that only the cores caching that block will receive the

snoop request. [11] The in-network filtering principles in [11] can be integrated with different

ordered networks, but the integration may require surpassing additional challenges.

3.3 Overview

To tackle the problem of a centralized ordering point for ordering messages on an unordered on chip

interconnect, the SCORPIO (Snoopy COherent Research Processor with Interconnect Ordering)

architecture decouples the message ordering from message delivery using two physical networks,

main network and notification network. Distributed ordering is enforced such that each node orders

messages locally while maintaining a global order with consistent ordering rules and synchronized

time windows. Each L2 cache miss generates a request packet which is further divided into flits for

network injection, as seen in Figure 3-3. Coherent request messages are single-flit packets where the

head flit alone suffices and holds all the information. Each coherent request is broadcast to all nodes

on the main network. Through the notification network, all nodes are notified of broadcasts requests

that were sent on the main network. Snoopy coherence protocols depend on the logical order

which does not necessarily coincide with physical time ordering. Therefore, the global ordering

mechanisms can be simplified to avoid maintaining expensive timestamps.

3.3.1 Decouple Message Ordering from Message Delivery

Each node in the system consists of a main network router, a notification router, as well as a network

interface controller or logic interfacing the core/cache and the two routers. The network interface

controller (NIC) encapsulates the coherence requests/responses from the core/cache and injects

them into the appropriate virtual networks in the main network.

The main network is an unordered network and is responsible for broadcasting actual coherence

requests to all other nodes and delivering the responses to the requesting nodes. Since the network

is unordered, the broadcast coherence requests from different source nodes may arrive at the NIC of

each node in any order. The NICs of the main network are then responsible for forwarding requests

in global order to the cache controller, assisted by the notification network.
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Figure 3-4: SCORPIO 16-Node Walkthrough - Request and Notification Injection

For every coherence request sent on the main network, a notification message encoding the

source node's ID (SID) is broadcast on the notification network to notify all nodes that a coherence

request from this source node is in-flight and needs to be ordered. The notification network

microarchitecture will be detailed later in Section 3.4.2; Essentially, it is a bit vector where each bit

corresponds to a request from a source node, so broadcasts can be merged by OR-ing the bit vectors

in a contention-less manner. The notification network thus has a fixed maximum network latency

bound. Accordingly, we maintain synchronized time windows, greater than the latency bound, at

each node in the system. We synchronize and send notification messages only at the beginning of

each time window, thus guaranteeing that all nodes received the same set of notification messages at

the end of that time window. By processing the received notification messages in accordance with a

consistent ordering rule, all network interface controllers determine locally the global order for the

actual coherence requests in the main network. As a result, even though the coherence requests can

arrive at each NIC in any order, they are serviced at all nodes in the same order.

On the receive end, the NIC forwards the received coherence requests to the core/cache in
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accordance with the global order, which is determined using the received notification messages at

the end of each time window. The NIC uses an Expected Source ID (ESID) register to keep track

of and informs the main network router which coherence request it is waiting for. For example, if

the ESID stores a value of 3, it means that the NIC is waiting for a coherence request from node 3

and would not forward coherence requests from other nodes to the core/cache. Upon receiving the

request from node 3, the NIC updates the ESID and waits for the next request based on the global

order determined using the received notification messages. The NIC forwards coherence responses

to the core/cache in any order.

3.3.2 Walkthrough Example

A walkthrough example is useful for demonstrating how two messages are ordered globally with

respect to each other. Core 6 has a L2 write miss for Address 1, and Core 12 has a L2 read miss for

Address 2. Figure 3-4 shows at times T1 and T2, the cache controllers inject cache miss messages

MI, M2 to the NIC at cores 6, 12 respectively. The NICs encapsulate these coherence requests

into single flit packets, tag them with the SID of their source (6, 12 respectively), and broadcast

them to all nodes in the main network. The notification is a one-hot bit vector with the bit asserted

representing the SID of the injected request. At time T3, the start of the time window, notification

messages NI and N2 are generated corresponding to Ml and M2, and sent into the notification

network.

Figure 3-5 shows the notification messages broadcast at the start of a time window are guaranteed

to be delivered to all nodes by the end of the time window (T4). At this stage, all nodes process the

notification messages received and perform a local but consistent decision to order these messages.

In SCORPIO, we use a rotating priority arbiter to order messages according to increasing SID - the

priority is updated each time window ensuring fairness. In this example, all nodes decide to process

M2 before MI.

The decided global order is captured in the ESID register in NIC. In this example, ESID is

currently 12 - the NICs are waiting for the message from core 12 (i.e. M2).

At time T5, when a coherence request arrives at a NIC, the NIC performs a check of its source

ID (SID). If the SID matches the ESID then the coherence request is processed (i.e. dequeued,

parsed and handed to the cache controller) else it is held in the NIC buffers. Once the coherence
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Figure 3-5: SCORPIO 16-Node Walkthrough - Message Ordering

request with the SID equal to ESID is processed, the ESID is updated to the next value (based on

the notification messages received). In this example, the NIC has to forward M2 before MI to the

cache controller. If Ml arrives first, it will be buffered in the NIC (or router, depending on the buffer

availability at NIC) and wait for M2 to arrive.

In Figure 3-6, Cores 9 and 0 respond to MI (at T7) and M2 (at T6) respectively. The data

responses are sent on the unordered response virtual network within the main network. Thus data

responses are unicast messages and do not require ordering. All cores thus process all request

messages in the same order, i.e. M2 followed by MI.

3.4 Microarchitecture

To achieve distributed global ordering, at low cost, we utilize two physically separate mesh networks:

main and notification networks. Routers of both networks connect to a single network interface at

each node. To ensure ordering of requests, the notification network is a fixed-latency, contention-
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free, bufferless network, that informs all nodes of broadcast requests sent on the main network. The

main network accepts requests and delivers them to the destinations in any order and at any time.

For deadlock-avoidance and performance reasons, an express path is set up for the highest priority

request.

3.4.1 Main Network

Figure 3-7 shows the microarchitecture of the three-stage main network router. During the first

pipeline stage, the incoming flit is buffered (BW), and in parallel arbitrates with the other virtual

channels (VCs) at that input port for access to the crossbar's input port (SA-I). In the second stage,

the winners of SA-I from each input port arbitrate for the crossbar's output ports (SA-O), and in

parallel obtain a free VC at the next router if possible (VA). In the final stage, the winners of SA-O

traverse the crossbar (ST). Next, the flits traverse the link to the adjacent router in the following

cycle.

53

Timeline



Input
Flits

Buffer Write (BW)
Switch Arbitration Inport (SA-1)

Buffer Read (BR)
Switch Allocation Outport (SA-0)

VC Selection (VS)
Lookahead/Header Generation

Bypass Intermediate Pipelines

Switch Traversal
(ST)

Switch Traversal
(ST)

Figure 3-7: Router Microarchitecture

Single-Cycle Pipeline Optimization

To reduce the network latency and buffer read/write power, we implement lookahead (LA) by-

passing [53,68]; a lookahead containing control information for a flit is sent to the next router

during that flit's ST stage. At the next router, the lookahead performs route-computation and tries to

preallocate the crossbar for the approaching flit. Lookaheads are prioritized over buffered flits' -

they attempt to win SA-I and SA-O, obtain a free VC at the next router, and setup the crossbar for

the approaching flits, which then bypass the first two stages and move to ST stage directly. Conflicts

between lookaheads from different input ports are resolved using a static, rotating priority scheme.

If a lookahead is unable to setup the crossbar, or obtain a free VC at the next router, the incoming

flit is buffered and goes through all three stages. The control information carried by lookaheads is

already included in the header field of conventional NoCs - destination coordinates, VC ID and the

output port ID - and hence does not impose any wiring overhead.

1Only buffered flits in the reserved VCs, used for deadlock avoidance, are an exception, prioritized over lookaheads.
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Single-Cycle Broadcast Optimization

To alleviate the overhead imposed by the coherence broadcast requests, routers are equipped with

single-cycle multicast support [68]. Instead of sending the same requests for each node one by

one into the main network, we allow requests to fork through multiple router output ports in the

same cycle. Broadcast flits are routed through the network along a dimension-ordered XY-tree,

where they are potentially granted multiple output ports during switch allocation at each router. It

dramatically reduces network contention and provides efficient hardware broadcast support.

Deadlock Avoidance

The network enforces sequential consistency for coherent requests but also supports message

classes to handle data responses. The main network contains multiple virtual networks to avoid

protocol-level deadlocks while servicing different message types. The three virtual networks are as

follows.

" Globally Ordered Request (GO-REQ): Delivers coherence requests, and provides global

ordering, lookahead-bypassing and hardware broadcast support. The NIC processes the

received requests from this virtual network based on the order determined by the notification

network.

" Point-to-point Ordered Request (P2P-REQ): Delivers non-coherent requests to the mem-

ory controllers. The memory controller processes the received responses in the order of

arrival, as the network guarantees non-coherent memory accesses from the same processor

are executed in program order, with point-to-point ordering support.

" Unordered Response (UO-RESP): Delivers coherence responses, and supports lookahead-

bypassing for unicasts. The NIC processes the received responses in any order.

The main network uses XY-routing algorithm which ensures deadlock-freedom for the UO-

RESP virtual network. For the GO-REQ virtual network, however, the NIC processes the received

requests in the order determined by the notification network which may lead to deadlock; the request

that the NIC is awaiting might not be able to enter the NIC because the buffers in the NIC and
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Figure 3-8: Deadlock Scenario in GO-REQ Virtual Network

routers en route are all occupied by other requests. Figure 3-8 shows a scenario such that a flit with

SID = 1 is unable to progress due to unavailable VC space in the neighboring router and local

NIC.

To prevent the deadlock scenario, we add one reserved virtual channel (rVC) to each router

and NIC, reserved for the coherence request with SID equal to ESID that the NIC, at that router,

is waiting for. Figure 3-9 shows that the reserved VC creates a deadlock-free, "escape", path for

the highest priority flit to reach the destinations. Thus, we can ensure that the requests can always

proceed toward the destinations.

Consider a mesh NoC architecture in which, (i) M VCs per input port for the GO-REQ virtual

network, (ii) I reserved virtual channel in present in the NICs and in each input port of the router.

Deadlock is avoided when the reserved VC can only be occupied by the highest priority flit - flit

earliest in global order.

Proof Suppose there is a deadlock in the network and the highest priority flit, flit earliest in global

order, is unable to make progress. Let flit F be the highest priority flit, at router R with ESID = E.

If the flit is unable to make progress it implies either (a) F is unable to go up to the NIC at router R,

or (b) F is unable to proceed to a neighboring router S.

Since F is the highest priority flit, it must have SID equal to ESID of the router R because a
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Figure 3-9: Deadlock Avoidance in GO-REQ Virtual Network with Reserved VC

lower priority ESID is only obtained if the higher priority flit has been received at the NIC. Since a

rVC is available for F in the NIC, flit F can be sent to the NIC attached to router R.

Flit F can not proceed to router S if the rVC and other VCs are full. The rVC is full if router S

has an ESID with a higher priority than E. This is not possible because F is the highest priority flit

which implies any flit of higher priority has already been received at all nodes in the system. For El

with lower or same priority as E, the rVC is available and flit F can make progress. Thus, there is a

contradiction and we can ensure that the requests can always proceed toward the destinations. E

Point-to-Point Ordering for GO-REQ

In addition to enforcing a global order, requests from the same source also need to be ordered with

respect to each other. Since requests are identified by source ID alone, the main network must

ensure that a later request does not overtake an earlier request from the same source. To enforce

this in SCORPIO, the following property must hold: Two requests at a particular input port of a

router or at the NIC input queue cannot have the same SID. Coupled with deterministic routing,

this property guarantees point-to-point ordering of all flits between any source-destination pair in

the network.

Consider a particular source-destination pair A - B. All flits sent from A to B follow the same

path, say, 1I = {A r0 , r1, ... , 7rn, B}, where ri's represent the routers on the path. Let flit i be
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inserted by A at time ti (i G Z and ti < tjVi < j).

Suppose i < j. Flit j may enter the local port of the router attached to the NIC of source A,

only after flit i has left the local port. Similarly flit j may be sent to destination B by router re, only

after flit i has been processed at B. At any intermediate router, flit j may be sent from router rk to

router rk+1 only after flit i has been forwarded from rk+1 to rk+2. Therefore it follows that flit i is

processed at destination B before flit j, for any i < j, i.e. ti < t. Hence point-to-point ordering is

maintained.

At each output port, a SID tracker table keeps track of the SID of the request in each VC at the

next router. Suppose a flit with SID = 5 wins the north port during SA-O and is allotted VC 1 at the

next router in the north direction. An entry in the table for the north port is added, mapping (VC

1) -+ (SID = 5). At the next router, when flit with SID = 5 wins all its required output ports and

leaves the router, a credit signal is sent back to this router and then the entry is cleared in the SID

tracker. Prior to the clearance of the SID tracker entry, any request with SID = 5 is prevented from

placing a switch allocation request.

3.4.2 Notification Network

The notification network is an ultra-lightweight bufferless mesh network consisting of 5 N-bit

bitwise-OR gates and 5 N-bit latches at each "router" as well as N-bit links connecting these

"routers", as shown in Figure 3-10, where N is the number of cores. A notification message is

encoded as a N-bit vector where each bit indicates whether a core has sent a coherence request that

needs to be ordered. With this encoding, the notification router can merge two notification messages

via a bitwise-OR of two messages then forward the merged message to the next router.

Time Window Network Injection Policy

At the beginning of a time window, a core that wants to send a notification message asserts its

associated bit in the bit-vector and sends the bit-vector to its notification router. Every cycle, each

notification router merges received notification messages and forwards the updated message to

all its neighbor routers in the same cycle. Since messages are merged upon contention, messages

can always proceed through the network without being stopped, and hence, no buffer is required
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and network latency is bounded. At the end of that time window, it is guaranteed that all nodes

in the network receive the same merged message, and this message is then sent to the NIC for

further processing to determine the global order of the corresponding coherence requests in the main

network. For example, if node 0 and node 6 want to send notification messages, at the beginning of a

time window, they send the messages with bit 0 and bit 6 asserted, respectively, to their notification

routers. At the end of the time window, all nodes receive a final message with both bits 0 and

6 asserted. In a 6 x 6 mesh notification network, the maximum latency is 6 cycles along the X

dimension and another 6 cycles along Y, so the time window is set to 13 cycles.

Multiple Requests per Notification Message

Thus far, the notification message described handles one coherence request per node every time

window, i.e. only one coherence request from each core can be ordered within a time window.

However, this is inefficient for more aggressive cores that have more outstanding misses, especially

for bursty traffic. With a time window of 2k in a k x k mesh network, and M single-flit packets in

the burst, the last flit must wait at least 2Mk cycles until it is sent into the network. For example,

when an aggressive core generates 6 requests at around the same time, the last request can only be

ordered at the end of the 61 time window, incurring latency overhead. To resolve this, instead of

'neast insouth 'nwest innorth nnic Notification Tracker (in NIC)

DFF

End of time window?

OUtnorthh

OUtwest

OUtsouth

OUteast

Notification Router

Figure 3-10: Notification Router Microarchitecture
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using only 1 bit per core, we dedicate multiple bits per core to encode the number of coherence

requests that a core wants to order in this time window, at a cost of larger notification message size.

For example, if we allocate two bits instead of 1 per core in the notification message, the maximum

number of coherence requests that can be ordered in this time window can be increased to 3. The

number of coherence requests is encoded in binary, where a value of 0 means no request to be

ordered, 1 implies 1 request, while 3 indicates 3 requests to be ordered (maximum value that a 2-bit

number can represent). Now, the core sets the associated bits to the number of coherence requests to

be ordered and leaves other bits as zero. This allows us to continue using the bitwise-OR to merge

the notification messages from other nodes.
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Sending Notifications

On receiving a message from core/cache, the NIC encapsulates the message into a packet and

sends it to the appropriate virtual network. If the message is a coherence request, the NIC needs to

send a notification message so that the coherence request can be ordered. Since the purpose of the

notification network is to decouple the coherence request ordering from the request delivery, the

NIC can always send the coherence requests to the main network whenever possible and send the

corresponding notification messages at the beginning of later time windows. We use a counter to

keep track of how many pending notification messages still remain to be sent. The counter can be

sized arbitrarily for expected bursts; when the maximum number of pending notification messages,

represented by this counter, is reached, the NIC blocks new coherence requests from injecting into

the main network.

Receiving notifications.

At the end of every time window, the NIC pushes the received merged notification message into

the notification tracker queue. When the notification tracker queue is not empty and there is no

previously read notification message being processed, the head of the queue is read and passed

through a rotating priority arbiter to determine the order of processing the incoming coherence

requests (i.e. to determine ESIDs). On receiving the expected coherence request, the NIC parses the

packet and passes appropriate information to the core/cache, and informs the notification tracker to

update the ESID value. Once all the requests indicated by this notification message are processed,

the notification tracker reads the next notification message in the queue if available and re-iterate

the same process mentioned above. The rotating priority arbiter is updated at this time.

If the notification tracker queue is full, the NIC informs other NICs and suppresses other NICs

from sending notification messages. To achieve this, we add a "stop" bit to the notification message.

When any NIC's queue is full, that NIC sends a notification message with the "stop" bit asserted,

which is also OR-ed during message merging; consequently all nodes ignore the merged notification

message received; also, the nodes that sent a notification message this time window will resend it

later. When this NIC's queue becomes non-full, the NIC sends the notification message with the

"stop" bit de-asserted. All NICs are enabled again to (re-)send pending notification messages when
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the "stop" bit of the received merged notification message is de-asserted.

3.5 Architecture Analysis

For performance comparison with prior in-network coherence proposals, we use the GEMS Simula-

tor [59] with the GARNET network model. GARNET [10] captures the detailed, cycle-accurate

behavior of the on-chip network, yielding accurate simulation results. A 36-core system is simulated,

where each tile consists of an in-order SPARC processor, 32 kB I&D caches, and 128 kB private L2

cache. The on-chip network is a 6 x 6 mesh, modeled in detail to contain all the mechanisms of the

SCORPIO network. We vary the on-chip network design parameters, i.e channel-width, VC count,

simultaneous notifications and view the impact on the performance.

The on-chip network RTL is fully verified with synthetic traffic patterns: (1) uniform random

(random source and destination selection with equal probability for all nodes), (2) local neighbor

(send packets locally to neighboring nodes), and (3) broadcast traffic (1 to all multicast traffic where

nodes are randomly selected to broadcast). All packets are received at the destinations and the

GO-REQ virtual network properly orders requests globally. The most accurate latency-throughput

characteristics are obtained from the RTL of the network. Uniform random unicast and broadcast

traffic is injected for UO-RESP/P2P, and GO-REQ, virtual networks respectively.

The SCORPIO router and network interface are synthesized with Synopsis Design Compiler for

the IBM 45nm technology node. We obtain the area and power overheads from the post-synthesis

generated logs.

3.5.1 NoC Parameter Sweep

In GEMS, we sweep several key SCORPIO network parameters, channel-width, number of VCs,

and number of simultaneous notifications, to arrive at the final 36-core fabricated configuration.

Channel-width impacts network throughput by directly influencing the number of flits in a multi-flit

packet, affecting serialization and essentially packet latency. The number of VCs also affects the

throughput of the network and application runtimes, while the number of simultaneous notifications

affect ordering delay. Figures 3-12 and 3-13 show the variation in runtime as the channel-width

and number of VCs are varied. All results are normalized against a baseline configuration of 16-byte
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channel-width and 4 VCs in each virtual network.
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Figure 3-12: Impact of Varying the NoC Channel-Width

Channel-Width

While a larger channel-width offers better performance, it also incurs greater overheads - larger

buffers, higher link power and larger router area. A channel-width of 16 bytes translates to 3 flits per

packet for cache line responses on the UO-RESP virtual network. A channel-width of 8 bytes would

require 5 flits per packet for cache line responses, which degrades the runtime for a few applications.

While a 32 byte channel offers a marginal improvement in performance, it expands router and NIC

area by 46%. In addition, it leads to low link utilization for the shorter network requests. The

36-core chip contains 16-byte channels due to area constraints and diminishing returns for larger

channel-widths.

Number of Virtual Channels

Two VCS provide insufficient bandwidth for the GO-REQ virtual network which carries the

heavy request broadcast traffic. Besides, one VC is reserved for deadlock avoidance, so low VC

configurations would degrade runtime severely. There is a negligible difference in runtime between

4 VCs and 6 VCs. Post-synthesis timing analysis of the router shows negligible impact on the

operating frequency as the number of VCs is varied, with the critical path timing hovering around

950ps. The number of VCs indeed affects the SA-I stage, but it is off the critical path. The

VC selection for the downstream routers does not affect the critical path as well because the VS

mechanism simply consists of choosing from a pool of free VCs that are already latched. However,
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Figure 3-13: Virtual Channel Count Sweep for GO-REQ and UO-RESP Virtual Networks

a tradeoff of area, power, and performance still exists. Post-synthesis evaluations show 4 VCs

is 15% more area efficient, and consumes 12% less power than 6 VCs. Hence, our 36-core chip

contains 4 VCs in the GO-REQ virtual network. For the UO-RESP virtual network, the number of

VCs does not seem to impact run time greatly once channel-width is fixed. UO-RESP packets are

unicast messages, and generally much fewer than the GO-REQ broadcast requests. Hence 2 VCs

suffices. The P2P-REQ virtual network is also expected to have low load, carrying unicast messages

to the memory controller, hence we went with 2 VCs.

Number of Simultaneous Notifications

The Freescale e200 cores used in our 36-core chip are constrained to two outstanding messages at

a time because of the AHB interfaces at its data and instruction cache miss ports. Due to the low

injection rates, we choose a 1-bit-per-core (36-bit) notification network which allows 1 notification

per core per time window.

64



U BW=lb U BW=2b B BW=3b

()
0.75

*~0.5

E
5 0.25
.

0
Ift fmm lu nlu radix water-nsq water-spatial Average

Figure 3-14: Impact of Varying the Number of Simultaneous Notifications

We evaluate if a wider notification network that supports more notifications each time window

will offer better performance. Supporting 3 notifications per core per time window, will require

2 bits per core, which results in a 72-bit notification network. Figure 3-14 shows 36-core GEMS

simulations of SCORPIO achieving 10% better performance for more than one outstanding message

per core with a 2-bit-per-core notification network, indicating that bursts of 3 messages per core

occur often enough to result in overall runtime reduction. However, more than 3 notifications per

time window (3-bit-per-core notification network) does not reap further benefit, as larger bursts of

messages are uncommon. A notification network data width scales as O(m x N), where m is the

number of notifications per core per time window. Our 36-bit notification network has < 1% of

tile area and power overheads; Wider data widths only incurs additional wiring which has minimal

area/power compared to the main network and should not be challenging given the excess wiring

space remaining in the chip.

3.5.2 Performance Comparison with Prior Proposals

To compare SCORPIO's performance with TokenB and INSO, we ran a subset of benchmarks

on a 16-core system in GEMS with cycle-accurate network modeling. Figure 3-15 shows the

normalized runtime when keeping all conditions equal besides the ordered network. The difference

in performance between SCORPIO and TokenB is negligible. However, we do not model the

behavior of TokenB in the event of data races where retries and expensive persistent requests

are generated. These persistent requests create network traffic and contention, degrading overall

performance. Thus, the best case performance of the baseline TokenB approach is depicted.
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Figure 3-15: Comparison with TokenB and INSO

SCORPIO's runtime is 19.3% and 70% less than INSO with an expiration window of 40 and 80

cycles, respectively. Higher expiration window lengths influence longer wait times for flits at the

destinations. Once an expiration for the prioritized source ID is received from the network, the

NIC updates the prioritized source ID to the next one in order. This goes on until all the flits are

processed in order. Shorter expiration windows lead to increased network traffic when flits are

not drained efficiently and already new expiry messages are sent. SCORPIO performs as well as

TokenB without persistent requests and INSO with an impractical expiration window size of 20

cycles.

3.5.3 Performance with Synthetic Traffic

The latency and throughput is obtained from the SCORPIO RTL for a 36 node network. Since the

main network consists of three virtual networks with different properties and message types, we

dive into the performance of each.

UO-RESP Virtual Network Latency and Throughput

The UO-RESP network handles unicast traffic without ordering guarantees. Under uniform random

traffic injection with single-flit packets, the latency-throughput curves for the UO-RESP network is

shown, in Figure 3-16a as the number of VCs are varied. For low loads, all curves exhibit a zero
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load latency of approximately 10 cycles. Increasing the number of VCs benefits the throughput,

which is necessary at higher injection rates. With 2 and 3 VCs, the network saturates quickly and

levels off due to finite destination buffering in the NICs. Full system application suites, SPLASH-2

and PARSEC, generates network traffic that usually falls within the low injection rate range. Design

exploration, discussed in Section 3.5.1, with these applications revealed that 2 VCs suffices for the

UO-RESP network.
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Figure 3-16: Network Performance for Point-to-Point Requests
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P2P-REQ Virtual Network Latency and Throughput

Uniform random traffic, in the form of single-flit P2P packets, are generated and sent into the

P2P virtual network. The plot in Figure 3-16b shows the latency as the number of VCs are varied.

The latency is 8 cycles at low loads, which saturates quickly despite the number of VCs. The

point-to-point ordering mechanism in SCORPIO prevents multiple flits from the same source, from

residing in the same router, at the same time. A flit waits in the router until there isn't a chance of

conflict at the downstream router, with another flit from the same source. Due to the low injection

rates of applications, and limited non-coherent communication, the P2P virtual networks does not

need more than 2 VCs.

GO-REQ Virtual Network Latency and Throughput

The GO-REQ virtual network handles broadcast requests and quickly saturates with increasing

injection rate. The ordering at the destinations and finite destination buffers, cause buffer back-

pressure and the network gets congested quickly leading to higher network latencies. The worst

case condition is when every node sends a flit into the network, this time-window. The destinations

can thus only service one flit per source, every N cycles, where N is the number of nodes. As the

time-window is less than N cycles, the injection of flits the following time-window exacerbates

the congestion, and degrades performance. The notification "stop" signal alleviates this, as the

destinations indicate whether new traffic should be allowed into the network. We evaluate the

performance of the network with broadcast, unicast and point-to-point messages, where all are

single-flit packets, and the percentage of broadcasts in the network changes while the injection rate

is kept constant. Figure 3-17 shows the latency curve as the percentage of network traffic that are

broadcasts is varied, while maintaining a overall fixed injection rate for all request types.

The average hop count is Vk_/2 hops on a kxk mesh, which results in an average 3 cycle

network latency, when the single-cycle lookahead bypassing path is taken per hop. An additional

two cycles are incurred for network injection and ejection. Thus, on average the network latency at

low load on the GO-REQ network is 5 cycles, but the ordering delay at the destinations affect the

average latency. On average, a coherent request's latency is the sum of the time for notification to

reach all destinations and be processed, and the average ordering delay. The notifications arrive
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Figure 3-17: Average Latency for Broadcast Messages as its Fraction of Network Traffic is Varied

within one time-window and the order is determined then. However, the flit could have been sent

earlier than the notification, but within the time-window. Thus, the maximum additional latency

is 13 cycles for the 6 x 6 mesh, with an average latency estimated at 6 cycles. For low loads, the

GO-REQ network has a 30 cycle latency which includes the ordering delay. With an average base

latency of 19 cycles, the ordering delay is approximately 11 cycles at low load.

Table 3.1: Request Categories

Category Data Location Sufficient Permission Trigger Condition

Local Requester cache Yes Load hit and store hit (in M-state)

Local Owner Requester cache No Store hit (in O-state)

Remote Other cache No Load miss and store miss

Memory Memory No Load miss and store miss

3.5.4 RTL Simulation Results

An analysis of the barnes SPLASH-2 application on the RTL identifies the latency breakdown

as the requests from an application traverse through the SCORPIO NoC. The effect of different

request types on the average latency is quantified for insight on the application's communication

characteristics and the corresponding network performance. A snoopy coherent L2 cache controller

is attached to the network, such that a memory trace injector feeds the benchmark traces gathered

from GEMS, into the controller. The traces are obtained from the parallel portion of each workload.
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The memory is modeled to be fully-pipelined with a fixed latency. Trace-driven simulations run for

400 K cycles, with a cache warm-up window of 20 K cycles.
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Figure 3-18: L2 Service Time (Barnes)

To dive into how different types of requests contribute to the average latency, we classify requests

into 4 categories, shown in Table 3.1 Local requests hit in the cache and do not generate any network

requests. Local owner requests occur on a store-hit in the Owned state, even though the local cache

has valid data, it needs to send the request to the network and wait until the request is globally

ordered before upgrading to the Modified state and completing the store. Remote requests are sent

to the network as the data required resides in another cache on-chip. Memory requests are similar to

Remote requests, but the data is in main memory and not cached on-chip.

Figure 3-18 shows the latency distribution of each request category for barnes. The Memory

requests involve memory access latency and network latency, and forms the tail of the distribution.

Because the L2 access latency is lower than the memory access latency, the overall latency for

Remote requests is 200 cycles on average. Spatial locality in the memory traces lead to 81% hits

in the requester cache, so even though latency is relatively high for Remote and Memory requests,

average latency is around 51 cycles, still close to expected zero-load latency of 23 cycles.

The latency breakdown of each request category for the barnes benchmark traces is in Figure 3-

19, For Local requests, as data resides in the local cache, only local L2 contributes to the round-trip

latency, with an average latency of 12 cycles , which is the queuing latency and its zero-load latency.

For Local owner requests, the delay in the router and NIC is due to the ordering delay of this

request with respect to all other requests. For Remote requests, where the valid permission and
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data is in another cache, the latency involves (1) the request travel time through the network and

ordering time at the remote cache (Local NIC+Network+Remote NIC), (2) the processing time

to generate the response (Remote L2), and (3) response travel time through the network (Remote

NIC+Network+Local NIC) and processing by the requester cache (Local L2). Memory requests are

similar, except that valid permission and data resides in main memory, hence requests go through

the interface between the memory controller and network (MIC NIC), and memory controller (MIC)

instead.

12
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Figure 3-19: L2 Service Time Breakdown (Barnes)

In addition to the response, the local L2 needs to see its own request to complete the transaction

which contributes to the forks in the breakdown. For both Remote and Memory requests, response

travel times are faster than that of requests, as requests need to be ordered at the endpoint and

cannot directly be consumed, which introduces backpressure and increases network and NIC latency,

whereas the responses are unordered and can fully benefit from the low-latency network.

3.5.5 Area, Power, Timing

The SCORPIO architecture achieves distributed global ordering at low overhead. The notification

network is an ultra-lightweight bufferless network with negligible area and power consumption.
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Figure 3-20: Post-synthesis Critical Path of the Main Network Router

The main network is designed for high performance and the number of VCs are sized accordingly.

Timing

Figure 3-20 shows the critical path in the network, where the SA-O pipeline stage constrains the

maximum clock frequency. In this stage, arbitration for output ports is performed among the

winners of the SA-I stage and the lookaheads from upstream routers. Prior to this arbitration, the VC

selection determines the downstream routers/directions with free space available. This influences

the flits chosen for SA-O arbitration. Post-synthesis timing results show that the number of VCs

does not affect the SA-O stage and is off the critical path.
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Figure 3-21: Router and NIC Area and Power Breakdown
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Area

The detailed area breakdown of the router and NIC is shown in Figure 3-21a, with a total area of

0.16mm 2 . The buffers in the router are the most area-hungry as they consume around 60% of the

total area. While the notification network and overhead of ordering globally and point-to-point, is

minimal, at 7%.

Power

The power breakdown, in Figure 3-21b, shows the power consumption of various components in the

NIC and router. The average total power is around 90 mW, as it depends on the injection rate. As

expected, the buffers consume a significant portion of the total power. The SID tracker consumes

about 12%, and the notification tracker power overhead is negligible.
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CHAPTER 4

SCORPIO: 36-CORE RESEARCH CHIP

7'hesared memory paradigm offers programmers a simpler model than the message

passing counterpart as it allows the programmer to focus on parallelizing the ap-

plication while avoiding the details of interprocessor communication. In addition data and load

distribution is generally hidden from the programmer, leading to shared memory gaining widespread

acceptance in multicore systems.

Shared memory multicores are prevalent in all market segments (client, server and embedded)

today. Most of these existing chips use snoopy coherence (e.g. ARM ACE, Intel QPI, AMD

HT), which requires ordering support such that all cores see requests in the same order. However,

snoopy coherence alone cannot provide the programmers with a precise notion of shared memory

semantics. The memory consistency model represents the memory system behavior and assumptions.

In single-core processors, the memory consistency model is the sequential program order, free of

ambiguity as to the validity of the read value, or result of the last write to the same memory location.

Sequential consistency, the result of extending a single-core processor memory consistency

model to multicore processors, enforces (1) program order among operations on a single proces-

sors, and (2) a global sequential order among all operations. The SCORPIO network, discussed

in Chapter 3 is capable of delivering globally ordered messages on a scalable packet-switched

interconnect, and effectively supports snoopy coherence and sequential consistency, at low overhead.

The SCORPIO 36-core chip prototype demonstrates the ease of integration of many in-order snoopy

coherent cores with a scalable network that ensures global ordering. It showcases that such a
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Figure 4-1: Design Objectives of the SCORPIO Chip Prototype

high-performance cache-coherent many-core chip can be realized at low area and power overheads.

4.1 Objectives

The SCORPIO chip must be simple, scalable, and intuitive. These driving objectives (Figure 4-1)

form the basis for full system design decisions. A homogeneous/tile architecture eases layout and

validation such that a large chip design and fabrication is feasible within a relatively short time. The

network must be versatile such that it can readily link with many types of cores, such as the AMBA

interface protocol standard which is widely accepted in commercial processors.

Snoopy coherence allows for well-designed single-core processors to be effectively connected

into moderately sized multicore systems. With the low latency and high throughput on-chip ordered

interconnect, snoopy coherence is readily supported on scalable mesh networks. Combined with

minimal storage overhead and enhanced performance due to direct cache-to-cache transfers, we

achieve simplicity, versatility, and scalability. Sequential consistency provides an intuitive view of

memory to the programmer, easing programming and application development.

The novel globally ordered interconnect is showcased in an intuitive multicore processor. The

effort of integrating the network with the core and creating a full memory system down to layout

provides insight on the practical aspects and full system performance.

75



1 GHz (833 MHz
post-layout)

1.1 V

28.8 W

45nm SOI

36

Power

16 KB private

16 KB private

128 KB private

N/A

Sequential
Consistency

Snoopy

6 x 6 Mesh

2-3.3 GHz

1.0 V

45-130 W

45nm

4-8

x86

32 KB private

16 KB private

256 KB private

8 MB shared

Processor

Snoopy

Point-to-Point (QPI)

2.1-3.6 GHz

1.0 V

115-140 W

32nm SOI

4-16

x86

16 KB private

16 KB private

2 MB shared
among 2 cores

16 MB shared

Processor

Broadcast-based
directory ("T
Point-to-Point

(HyperTransport)

750 MHz

1.0 V

15-22 W

90nm
64

MIPS-derived
VLIW

8 KB private

16 KB private

64 KB private

N/A

Relaxed

Directory

5 - 8 x 8 Meshes

3.6 GHz

28nm

16

SPARC

16 KB private

16 KB private

128 KB private

8 MB

Relaxed

Directory

8 x 9 Crossbar

2.1-2.7 GHz

1.0 V

130 W

32nm
6-10

x86

32 KB private

16 KB private

256 KB private

18-30 MB shared

Processor

Snoopy

Ring

Table 4.1: Comparison of Multicore Processors

4.2 Related Work

Table 4.1 includes a comparison of AMD, Intel, Tilera, SUN multiprocessors with the SCORPIO

chip. These relevant efforts were a result of the continuing challenge of scaling performance while

simultaneously managing frequency, area, and power. When scaling from multi to many cores,

the interconnect is a significant factor. Current industry chips with relatively few cores typically

use bus-based, crossbar or ring fabrics to interconnect the last-level cache, but suffers from poor

scalability. Bus bandwidth saturates with more than 8 to 16 cores on-chip [24], not to mention the

power overhead of signaling across a large die. Crossbars have been adopted as a higher bandwidth

alternative in several multicores [3,20], but it comes at the cost of a large area footprint that scales

quadratically with core counts, worsened by layout constraints imposed by long global wires to

each core. From the Oracle T5 die photo, the 8-by-9 crossbar has an estimated area of 1.5 x core

area, hence about 23mm 2 at 28 nm. Rings are an alternative that supports ordering, adopted in Intel

Xeon E7, with bufferless switches (called stops) at each hop delivering single-cycle latency per hop

at high frequencies and low area and power. However, scaling to many cores lead to unnecessary
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delay when circling many hops around the die.

The Tilera TILE64 [81] is a 64-core chip with 5 packet-switched mesh networks. A successor of

the MIT RAW chip which originally did not support shared memory [75], TILE64 added directory-

based cache coherence, hinting at market support for shared memory. Compatibility with existing

IP is not a concern for startup Tilera, with cache, directory, memory controllers developed from

scratch. Details of its directory protocol are not released but news releases suggest directory cache

overhead and indirection latency are tackled via trading off sharer tracking fidelity. Intel Single-chip

Cloud Computer (SCC) processor [44] is a 48-core research chip with a mesh network that does not

support shared memory. Each router has a four stage pipeline running at 2 GHz. In comparison,

SCORPIO supports in-network ordering with a single-cycle pipeline leveraging virtual lookahead

bypassing, at 1 GHz.

Figure 4-2: 36-Core Chip Layout and SCORPIO Tile Floorplan

4.3 Chip Overview

The 36-core fabricated multicore processor is arranged in a grid of 6 x6 tiles, as seen in Figure 4-2.

Within each tile is an in-order core, split Ll I/D caches, private L2 cache with MOSI snoopy
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Table 4.2: SCORPIO Chip Features

Process IBM 45 nm SOI
Dimension 11 x 13 mm 2

Transistor count 600 M
Frequency 833 MHz

Power 28.8 W
Core Dual-issue, in-order, 10-stage pipeline

ISA 32-bit Power ArchitectureTM

Li cache Private split 4-way set associative write-through 16 KB I/D

L2 cache Private inclusive 4-way set associative 128 KB

Line Size 32B
Coherence protocol MOSI (0: forward state)

Directory cache 128 KB (1 owner bit, 1 dirty bit)
Snoop filter Region tracker (4 KB regions, 128 entries)

NoC Topology 6 x6 mesh
Channel width 137 bits (Ctrl packets - 1 flit, data packets - 3 flits)

Virtual networks 1. Globally ordered - 4 VCs, 1 buffers each
2. Point-to-point ordered - 2 VCs, 1 buffers each
3. Unordered - 2 VCs, 3 buffers each

Router XY routing, cut-through, multicast, lookahead bypassing
Pipeline 3-stage router (1-stage with bypassing), 1-stage link

Notification network 36-bits wide, bufferless, 13 cycles time window,
max 4 pending messages

Memory controller 2 x Dual port Cadence DDR2 memory controller + PHY

FPGA controller 1 x Packet-switched flexible data-rate controller

coherence protocol, L2 region tracker for destination filtering [66], and SCORPIO NoC (see

Table 4.2 for a full summary of the chip features). The commercial Power Architecture core simply

assumes a bus is connected to the AMBA AHB data and instruction ports, cleanly isolating the

core from the details of the network and snoopy coherence support. Between the network and the

processor core IP is the L2 cache with AMBA AHB processor-side and AMBA ACE network-side

interfaces. Two Cadence DDR2 memory controllers attach to four unique routers along the chip

edge, with the Cadence IP complying with the AMBA AXI interface, interfacing with Cadence

PHY to off-chip DIMM modules. All other 10 connections go through an external FPGA board

with the connectors for RS-232, Ethernet, and flash memory.
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4.4 Processor Core and Cache Hierarchy

While the ordered SCORPIO NoC can plug-and-play with existing ACE coherence protocol con-

trollers, we were unable to obtain such IP and hence designed our own. The SCORPIO cache

subsystem within each tile, Figure 4-3, comprises private LI and L2 caches, while the interaction

between the self-designed L2 cache and processor core's Li caches is subject to the core's and

AHB's constraints.

- Tile Tile Tile Tile

S 13 4 5

le Til Tile
7 11

Tile Til Tile

12 13 17
-g- AHB

Tile I Tile

18 1 23

24 25 ewr:fiera 29

Router
Tile Tile Tile

30 31 32 3 4 35

Figure 4-3: High Level Architecture of the SCORPIO Tile

The core has a split instruction and data 16 KB LI cache with independent AHB ports. The

ports connect to the multiple master split-transaction AHB bus with two AHB masters (LI caches)

and one AHB slave (L2 cache). The protocol supports a single read or write transaction at a time,

hence there is a simple request or address phase, followed by a response or data phase. Transactions,

between pending requests from the same AHB port, are not permitted thereby restricting the number

of outstanding misses to two, one data cache miss and one instruction cache miss, per core. For

multilevel caches, snooping hardware has to be present at both Ll and L2 caches. However, the

core was not originally designed for hardware coherency. Thus, we added an invalidation port to
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the core allowing Li cache lines to be invalidated by external input signals. This method places the

inclusion requirement on the caches. With the Ll cache operating in write-through mode, the L2

cache will only need to inform the LI during invalidations and evictions of a line.

The memory interface controller is responsible for the appropriate interfacing to the Cadence

memory controller IP. It snoops requests within the network and maintains one bit per cache line,

in a directory cache, to determine if the main memory is the owner of the cache line. If so, the

request is sent off-chip to main memory and the data returned is sent in response to the request.

This reduces the number of transaction phases if the owner is not on chip.

4.4.1 Coherence Protocol

Figure 4-4 depicts the MOSI protocol state diagram for the SCORPIO architecture. It contains the

stable states (i.e, Modified, Owner, OwnerDirty, Shared, Invalid) along with many transient states.

The transient state naming convention includes the former state, desired final state, and whether it is

waiting to see its own request, "A", and/or data response, "D". For instance, "ISAD" is a transient

state going from the I state to the S state, awaiting its own request and a data response. The cache

line owner is either a core on-chip or the memory controller and is identified by a coherent state of

either M, 0, or OD.

The standard MOSI protocol is adapted to reduce the writeback frequency and to disallow

the blocking of incoming snoop requests. Writebacks cause subsequent cache line accesses to go

off-chip to retrieve the data, degrading performance, hence we retain the data on-chip for as long as

possible. To achieve this, an additional OD state instead of a dirty bit per line is added to permit

on-chip sharing of dirty data. For example, if another core wants to write to the same cache line, the

request is broadcast to all cores resulting in invalidations, while the owner of the dirty data (in M or

O_D state) will respond with the dirty data and change itself to the Invalid state. If another cores

wants to read the same cache line, the request is broadcast to all cores. The owner of the dirty data

(now in M state) responds with the data and transitions to the OD state, and the requester goes to

the Shared state. This ensures the data is only written to memory when an eviction occurs, without

any overhead because the OD state does not require any additional state bits.

Table 4.3 list the different processor requests, network requests, and network responses. Pro-

cessor requests that miss in the cache generate network requests to obtain the necessary data or
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Figure 4-4: Coherence Protocol Diagram with Stable and Transient States

Table 4.3: Coherence Transaction Messages

exclusive write access to the cache line. Upon the first load request to a memory location, the cache

is not populated and all entries are marked Invalid. The request is serviced by main memory, which

responds with either a D or DO response. Load requests from many nodes and all to the same
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Network Response DO Data Response with Ownership
DN Null Data Response



S

L Core Core Core sse DN D

Mi 0 1 09 35 GETe DssO
own -GE TY

'othS IMA A-

Ordered Network
issue
DN ownS

Memory Controller Memory Controller

PUTX

GE TY
issue
DO

Figure 4-5: Writeback Case with GetX Retry

memory location will result in each going to main memory to obtain the data, even though the data

is already cached on-chip. The DO network response indicates that the main memory is passing

ownership to the requester. Future accesses to that cache line will be serviced by the on-chip cache

with ownership. The purple shaded transient states in Figure 4-4 identify the cache state transitions

from Invalid to Owner.

Writeback Race Handling

Writebacks need to be ordered, but to avoid broadcasting multi-flit writeback data, we implemented

writeback as a request broadcast on GOREQ along with a data unicast on UORESP to the memory

controller. The memory controller handles the writeback as two packets and keeps track of the

request and data in any order it is received. When the memory controller receives the data packet, it

logs in the directory cache that the data was received. The last to arrive of the two writeback packets

will be pushed to off-chip memory. While the writeback is pending, other requests and responses

can be continually serviced provided there are no data dependencies.

This creates a potential race, when a writeback is injected into the network, possibly due to a

cache line replacement, and another core performs a store miss and issues a request for ownership

(GETX) into the network. This example is depicted in Figure 4-5. Core 0 has a dirty cache line
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that is evicted and generates a PUTX request. In global order though, the GETX from core 35

arrives before the ownP request. Responding to the GETX would be incorrect because the data

and PUTX request cannot be cancelled at the memory controller. This results in two owners of the

cache line. Thus, we introduce the GETX retry mechanism where the core doing the store miss,

Core 35, will receive null data. Upon reception of the null data, it will re-inject the GETX request

into the network. The coherent state transitions can be seen in Figure 4-5, and the additional states

for handling the GETX retry are shown. Since the null data response is necessary for the protocol

function, the network's data response virtual network has to handle varying data packet sizes.

Data Forwarding

When a cache line is in a transient state due to a pending write request, snoop requests to the same

cache line are stalled until the data is received and the write request is completed. This causes the

blocking of other snoop requests even if they can be serviced right away. We service all snoop

requests without blocking by maintaining a forwarding IDs (FID) list that tracks subsequent snoop

requests that match a pending write request. The FID consists of the SID and the request entry ID

or the ID that matches a response to an outstanding request at the source. With this information, a

completed write request can send updated data to all SIDs on the list. The core IP has a maximum

of 2 outstanding messages at a time, hence only two sets of forwarding IDs are maintained per core.

The SIDs are tracked using a N bit-vector, and the request entry IDs are maintained using 2N bits.

For larger core counts and more outstanding messages, this overhead can be reduced by tracking

a smaller subset of the total core count. Since the number of sharers of a line is usually low, this

will perform as well as being able to track all cores. Once the FID list fills up, subsequent snoop

requests will then be stalled.

ACE Interface

The different messages types are matched with appropriate ACE channels and types. The network

interface retains its general mapping from ACE messages to packet type encoding and virtual

network identification resulting in a seamless integration. The L2 cache was thus designed to

comply with the AMBA ACE specification. It has five outgoing channels and three incoming

channels (see Figure 4-6), separating the address and data among different channels. ACE is able
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Figure 4-6: L2 Cache and NIC Microarchitecture

to support snoop requests through its Address Coherent (AC) channel, allowing us to send other

requests to the L2 cache.

4.4.2 L2 Microarchitecture

The L2 microarchitecture, depicted in Figure 4-6, contains the AHB slave for core-side interface,

ACE master for network-side interface, L2 cache, request status holding register (RSHR), interrupt,

and sync controllers. SCORPIO's L2 cache is not pipelined for simplicity, since the number of

maximum outstanding LI requests is small and we expect the number of snoops to be low with high

hit rates and snoop filtering.

When a L1 data read miss occurs, the request is buffered in the processor request FIFO until it

wins arbitration to the tag arrays. The 17-bit tag lookup is performed across four ways associated

with the 10-bit index. The tag and data arrays utilize the IBM 45nm SOI SRAMs that operate

slower than the 1 GHz global clock requiring multiple read and write cycles. Depending on the

tag comparison and state, there are alternative paths through the multi-stage L2 controller, such as
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cache hit, cache miss, not present and eviction. The cache miss path in Figure 4-6 bypasses the

data array access and heads to the RSHR where an entry is allocated followed by the injection of a

network load request into the outgoing network request (NW Req) queue. The response returns

with the matching RSHR entry ID so an entire 32-bit address does not need to be sent with the data,

which reduces the data packet size. The data and coherent state are then updated, the RSHR entry

deallocated, and the data response sent to the processor core. Essentially, the L2 controller itself

handles the stable states while the RSHR controller deals with the transient states.

The RSHR contains four entries used to store the pending requests awaiting a network response.

The scenario when all entries are occupied occurs when (1) instruction fetch miss in LI and L2 -

allocate line and (2) evict an existing cache line in Owned or Modified state, (3) data cache miss in

Li and L2 occurs due to independent AHB master from the instruction cache, (4) allocate a line

and evict an existing cache line in Owned and Modified state.

Synchronization with msync

The Power Architecture core enforces program-order, essentially meaning all memory accesses

appear to be executed in program order. The internal core architecture has a single pipeline to the

cache and MMU, ensuring this ordering. But, in a multiprocessor system, the in-order core actually

follows a weak consistency model. The core contains store buffers that hold write-through requests

queued for AHB access without stalling the pipeline. For synchronization and barriers, the core

uses the msync instruction. Its purpose is to flush any pending stores of the executing processor and

service pending snoops across all processors.

A RSHR entry is reserved specifically for msync requests. The evicted lines are retained in the

RSHR until the ownP request is seen in global order from the network. SCORPIO supports global

ordering within the network, allowing all cores to view the same program operations in the same

order despite any inter-processor interleaving that occurs. Hence, to support the msync instruction,

we inject it into SCORPIO's ordered network GO-REQ. Upon receiving the sync request, each

core empties the snoop queue and issues an acknowledgement. This ACK is sent on SCORPIO's

UO-RESP network to the msync requester, where it is counted with the other cores' ACKs. When

N-I ACKs are received, where N is the number of cores, the requester asserts a 1-bit active-high

input signal to the processor's sync interface indicating the completion of the msync instruction. If
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an interrupt occurs during a pending ms yn c operation, the synchronization is aborted and restarted

at a later time.

Mutual Exclusion

For a shared memory system, atomic operations are essential for mutual exclusion of cache lines.

In the PowerPC instruction set, there are LWARX and STWCX instructions that opportunistically

attempt to lock and unlock a cache line. The load lock or LWARX can be completed locally by

many cores but only one store unlock or STWCX will succeed. The coherence protocol is not

significantly affected by the atomic operations. The lock bit is set when the own load request is

seen in global order. Similarly, the lock bit is cleared if another core's store request is seen prior to

core's own STWCX instruction. Locks introduce more complexity and communication between the

independent controllers within the L2 cache. Within the RSHR, the lock instruction is indicated by

a 1-bit identifying it as a lock operation or not. If it is a LWARX, the lock bit is set upon allocation

of a RSHR entry. Upon reception of the ownL request, the RSHR controller informs the L2 cache

controller to update the lock bit in the tag array. As all write operations through the processor core

are of double-word widths, while the network supports cache line size transfers, we merge multiple

write operations to save on bandwidth. This mechanism is straightforward, but for STWCX, care

must be taken to preserve ordering semantics. Thus, STWCX's 64-bit write data cannot be merged

with the cache line data response till the STWCX's ownS request arrives with its lock bit still

asserted. At which point, the data will be merged and stored in the L2 data array.

Non-Cacheable Reads/Writes

These are double-word in size and bypass the coherent state logic. For non-cacheable reads, the

RSHR is still used to await the data response from the memory controller. For writes, record

keeping is not necessary because the write's injection into the outgoing queues signals completion

of that operation. If the L2 cache is disabled, all non-atomic coherent transactions are converted to

non-cacheable requests. The non-cacheable request will be sent straight to the memory controller

and are not broadcasted to the other cores.
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MMU Interrupts

The software-managed MMU in the processor core interacts with the TLB through MMU assist

registers. In a multiprocessor system, synchronization of TLB operations is required between

the linux kernel on all processors. The core does not support TLB synchronization instructions

and inter-processor interrupts are used to broadcast the TLB invalidations. When the issuing core

accesses the memory-mapped interrupt address then the network broadcasts to all the cores. Other

snooping L2 caches, receive this interrupt and propagates it to the core through external interrupt

signals. When the MIC receives the interrupt, it begins the interrupt controller state machine by

initializing N flag bits, where N is the number of cores. A 1-bit ack signal is generated when

each core completes the interrupt routine, sending a clear flag request with the SID to the memory

controller. When all flag bits are cleared, then all the cores may proceed.

Algorithm 1 Sync regression test for 2 cores

1: if coreid = 0 then
2: A +- 1
3: asm volatile ("sync" "me
4: B +- 1
5: asm volatile ("sync" "me
6: else
7: while B = 0 do
8: end while
9: if A , 0 then

10: exit Zailed(

11: end if
12: end if
13: exitsucceeded()

mory")

mory")

> A's value seen by all other cores

t> B's value seen by all other cores

4.5 Functional Verification

We ensure correct functionality of the SCORPIO RTL using a suite of regression tests, listed in

Table 4.4, that verify the entire chip. Since the core is verified commercial IP, our regression tests

focus on verifying integration of various components, which involves (1) load/store operations

on both cacheable and non-cacheable regions, (2) lock and barrier instructions, (3) coherency

between Ll s, L2s and main memory, and (4) software-triggered interrupts. For brevity, Algorithm 1
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shows the code segment of the shortest sync test. The tests are written in assembly and C, and a

custom-built software chain compiles tests into machine code.

Table 4.4: Regression Tests

4.6 Architecture Analysis

Modeled system. For full-system architectural simulations of SCORPIO, we use Wind River

Simics [5] extended with the GEMS toolset [59] and the GARNET [10] network model. The

SCORPIO and baseline architectural parameters as shown in Table 4.2 are faithfully mimicked

within the limits of the GEMS and GARNET environment:

" GEMS only models in-order SPARC cores, instead of SCORPIO's Power cores.

" Ll and L2 cache latency in GEMS are fixed at 1 cycle and 10 cycles. The prototype L2

cache latency varies with request type and cannot be expressed in GEMS, while the LI cache

latency of the core IP is 2 cycles.

* The directory cache access latency is set to 10 cycles and DRAM to 80 cycles in GEMS. The

off-chip access latency of our chip prototype is unknown as it depends on the PCB board and

packaging, which is still being designed. The directory cache access was approximated from

the directory cache parameters, but will also vary depending on request type for the chip.
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Test name Description

hello Performs basic load/store and arithmetic operations on non-
overlapped cacheable regions.

mem patterns Performs load/store operations for different data types on
non-overlapped cacheable regions.

config space Performs load/store operations on non-cacheable regions.
flash copy Transfer data from the flash memory to the main memory.

sync Uses flags and performs msync operation.
atom smashers Uses spin locks, ticket locks and ticket barriers and performs

operations on shared data structures.
ctt Performs a mixture of arithmetic, lock, load/store operations

on overlapped cacheable regions.
intc Performs store operations on the designate interrupt address

which triggers other cores' interrupt handler.



" The L2 cache, NIC, and directory cache accesses are fully-pipelined in GEMS.

" Maximum of 16 outstanding messages per core in GEMS, unlike our chip prototype which

has a maximum of two outstanding messages per core.

Directory baselines. For directory coherence, all requests are sent as unicasts to a directory,

which forwards them to the sharers or reads from main memory if no sharer exists. SCORPIO is

compared with two baseline directory protocols. The Limited-pointer directory (LPD) [9] baseline

tracks when a block is being shared between a small number of processors, using specific pointers.

Each directory entry contains 2 state bits, log N bits to record the owner ID, and a set of pointers

to track the sharers. We evaluated LPD against full-bit directory in GEMS 36 core full-system

simulations and discovered almost identical performance when approximately 3 to 4 sharers were

tracked per line as well as the owner ID. Thus, the pointer vector width is chosen to be 24 and 54

bits for 36 and 64 cores, respectively. By tracking fewer sharers, more cache lines are stored within

the same directory cache space, resulting in a reduction of directory cache misses. If the number of

sharers exceeds the number of pointers in the directory entry, the request is broadcast to all cores.

The other baseline is derived from HyperTransport (HT) [23]. In HT, the directory does not record

sharer information but rather serves as an ordering point and broadcasts the received requests. As a

result, HT does not suffer from high directory storage overhead but still incurs on-chip indirection

via the directory. Hence for the analysis only 2 bits (ownership and valid) are necessary. The

ownership bit indicates if the main memory has the ownership; that is, none of the L2 caches own

the requested line and the data should be read from main memory. The valid bit is used to indicate

whether main memory has received the writeback data. This is a property of the network, where the

writeback request and data may arrive separately and in any order because they are sent on different

virtual networks.

Workloads. We evaluate all configurations with SPLASH-2 [4] and PARSEC [14] benchmarks.

Simulating higher than 64 cores in GEMS requires the use of trace-based simulations, which fail

to capture dependencies or stalls between instructions, and spinning or busy waiting behavior

accurately. Thus, to evaluate SCORPIO's performance scaling to 100 cores, we obtain SPLASH-2

and PARSEC traces from the Graphite [63] simulator and inject them into the SCORPIO RTL.
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Evaluation Methodology. For performance comparisons with baseline directory protocols and

prior in-network coherence proposals, we use GEMS to see the relative runtime improvement.

The centralized directory in HT and LPD adds serialization delay at the single directory. Multiple

distributed directories alleviates this but adds on-die network latency between the directories and

DDR controllers at the edge of the chip for off-chip memory access, for both baselines. We evaluate

the distributed versions of LPD (LPD-D), HT (HT-D), and SCORPIO (SCORPIO-D) to equalize

this latency and specifically isolate the effects of indirection and storage overhead. The directory

cache is split across all cores, while keeping the total directory size fixed to 256 KB. Our chip

prototype uses 128KB, as seen in Table 4.2, but we changed this value for baseline performance

comparisons only so that we do not heavily penalize LPD by choosing a smaller directory cache.

The SCORPIO network design exploration provides insight into the performance impact as

certain parameters are varied. The finalized settings from GEMS simulations are used in the

fabricated 36-core chip NoC. In addition, we use behavioral RTL simulations on the 36-core

SCORPIO RTL, as well as 64 and 100-core variants, to explore the scaling of the uncore to high

core counts. For reasonable simulation time, we replace the Cadence memory controller IP with

a functional memory model with fully-pipelined 90-cycle latency. Each core is replaced with a

memory trace injector that feeds SPLASH-2 and PARSEC benchmark traces into the L2 cache

controller's AHB interface. We run the trace-driven simulations for 400 K cycles, omitting the first

20 K cycles for cache warm-up.

We evaluate the area and power overheads to identify the practicality of the SCORPIO NoC.

The area breakdown is obtained from layout. For the power consumption, we perform gate-level

simulation on the post-synthesis netlist and use the generated value change dump (VCD) files

and Synopsys PrimeTime PX. To reduce the simulation time, we use trace-driven simulations to

obtain the L2 and network power consumption. We attach a mimicked AHB slave, that responds to

memory requests in a few cycles, to the core and run the Dhrystone benchmark to obtain the core

power consumption.

4.6.1 Performance

To ensure the effects of indirection and directory storage are captured in the analysis, we keep all

other conditions equal. Specifically, all architectures share the same coherence protocol and run on
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Figure 4-7: Application Runtime for 36 and 64 Cores

the same NoC (minus the ordered virtual network GO-REQ and notification network).

Figure 4-7 shows the normalized full-system application runtime for SPLASH-2 and PARSEC

benchmarks simulated on GEMS. On average, SCORPIO-D shows 24.1% better performance

over LPD-D and 12.9% over HT-D across all benchmarks. Diving in, we realize that SCORPIO-

D experiences average L2 service latency of 78 cycles, which is lower than that of LPD-D (94

cycles) and HT-D (91 cycles). The average L2 service latency is computed over all L2 hit, L2

miss (including off-chip memory access) latencies and it also captures the internal queuing latency

between the core and the L2. Since the L2 hit latency and the response latency from other caches
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or memory controllers are the same across all three configurations, we further breakdown request

delivery latency for three SPLASH-2 and three PARSEC benchmarks (see Figure 4-8). When a

request is served by other caches, SCORPIO-D's average latency is 67 cycles, which is 19.4% and

18.3% lower than LPD-D and HT-D, respectively. Since we equalize the directory cache size for

all configurations, the LPD-D caches fewer lines compared to SCORPIO-D and HT-D, leading to

a higher directory access latency which includes off-chip latency. SCORPIO provides the most

latency benefit for data transfers from other caches on-chip by avoiding the indirection latency.

As for requests served by the directory, HT-D performs better than LPD-D due to the lower

directory cache miss rate. Also, because the directory protocols need not forward the requests to

other caches and can directly serve received requests, the ordering latency overhead makes the
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Figure 4-8: Application Latency Breakdown for 36 Cores
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SCORPIO delivery latency slightly higher than the HT-D protocol. Since the directory only serves

10% of the requests, SCORPIO still shows 17% and 14% improvement in average request delivery

latency over LPD-D and HT-D, respectively, leading to the overall runtime improvement.

4.6.2 Design Space Exploration

We perform GEMS simulations to view the performance impact of SPLASH-2 and PARSEC

applications as the L2 cache and directory sizes are changed. Combined with the NoC design

exploration in Chapter 3, we identify the finalized hardware to be fabricated.

L2 Sizing

L2 cache sizing has a tremendous impact on the full system performance and we sized SCORPIO's

L2 to yield moderate performance while ensuring high core counts within a limited die area. Our

design choices are arrived through design space explorations using GEMS full system performance

simulations, while considering design overheads. The simulation consists of 32 of the 36 cores

activated and operating on the benchmark programs. The programs run on a power-of-two number

of cores and is deemed to be sufficient for design space exploration. It can be assumed that the other

4 cores are idle.

The graph in Figure 4-9 is the normalized runtime for a sweep of the L2 cache size parameter.

The primary goal for increasing the number of cores on the limited chip area comes at the cost

of L2 cache size. The results show that for 128KB L2 caches, application runtime improves by

approximately 40% over that with 64KB L2 caches. A smaller cache size of 64KB will not be
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Figure 4-9: Application Performance with Varying L2 Cache Sizes
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suitable for overall performance since SCORPIO's L2 has to be inclusive of the 32KB Li. A 256KB

cache size can further improve runtime by 20%, but leads to 30% tile area bloat which reduces

the core count to 27, within the same 1 x 13mm die area, based on post-layout area numbers. In

addition, when we analyze the number of L2 misses per thousand instructions , we saw that on-chip

traffic can be too low for these benchmarks to be able to see the impact of SCORPIO's NoC.
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Figure 4-10: Application Performance with Varying Directory Cache Sizes

Directory Sizing

A small directory at the memory controller frees up the controller for requests that indeed need

to be serviced by main memory. Thus, as the memory controller snoops requests, it determines

if the owner of the cache line is on-chip and whether to respond to the request. For applications

that access many cache lines simultaneously, the directory cache may fall short of the size required

to hold the status of each cache line. If an entry is not found, the request is sent to the memory

controller, even if an on-chip owner exists. Thus, both will respond with the data. We sweep the

directory size to determine its impact on the application performance, and finalize the size for the

chip fabrication. Figure 4-10 shows only a slight increase in runtime as the size is varied. We size

the directory cache to 128 kB, on the order of a L2 cache size, at the memory controllers, to hold

the owner information.

4.6.3 Scaling Uncore Throughput for High Core Counts

As core counts scale, if each core's injection rate (cache miss rate) remains constant, the overall

throughput demand on the uncore scales up. We explore the effects of two techniques to optimize
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SCORPIO's throughput for higher core counts.

Pipelining the Uncore

Pipelining the L2 caches improves its throughput and reduces the backpressure on the network which

may stop the NIC from de-queueing packets. Similarly, pipelining the NIC will relieve network

congestion. The performance impact of pipelining the L2 and NIC can be seen in Figure 4-11 in

comparison to a non-pipelined version. For 36 and 64 cores, pipelining reduces the average latency

by 15% and 19%, respectively. Its impact is more pronounced as we increase to 100 cores, with an

improvement of 30.4%.

Boosting Main Network Throughput with Virtual Channels.

For good scalability on any multiprocessor system, the cache hierarchy and network should be

co-designed. As core count increases, assuming similar cache miss rates and thus traffic injection

rates, the load on the network now increases. The theoretical throughput of a k x k mesh is 1/k2 for

broadcasts, reducing from 0.027 flits/node/cycle for 36-cores to 0.01 flits/node/cycle for 100-cores.

Even if overall traffic across the entire chip remains constant, say due to less sharing or larger

caches, a 100-node mesh will lead to longer latencies than a 36-node mesh. Common ways to boost

a mesh throughput include multiple meshes, more VCs/buffers per mesh, or wider channel.

Within the limits of the RTL design, we analyze the scalability of the SCORPIO architecture by

varying core count and number of VCs within the network and NIC, while keeping the injection

rate constant. The design exploration results show that increasing the UO-RESP virtual channels
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Figure 4-11: Pipelining Effect on Performance and Scalability
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does not yield much performance benefit. But, the OREQ virtual channels matter since they support

the broadcast coherent requests. Thus, we increase only the OREQ VCs from 4 VCs to 16 VCs (64

cores) and 50 VCs (100 cores), with 1 buffer per VC. Further increasing the VCs will stretch the

critical path and affect the operating frequency of the chip. It will also affect area, though with the

current NIC+router taking up just 10% of tile area, this may not be critical. A much lower overhead

solution for boosting throughput is to go with multiple main networks, which will double/triple

the throughput with no impact on frequency. It is also more efficient area wise as excess wiring is

available on-die.

For at least 64 cores in GEMS full-system simulations, SCORPIO performs better than LPD and

HT despite the broadcast overhead. The 100-core RTL trace-driven simulation results in Figure 4-11

show that the average network latency increases significantly. Diving in, we realize that the network

is very congested due to injection rates close to saturation throughput. Increasing the number of VCs

helps push throughput closer to the theoretical, but is ultimately still constrained by the theoretical

bandwidth limit of the topology. A possible solution is to use multiple main networks, which would

not affect the correctness because we decouple message delivery from ordering. Our trace-driven

methodology could have a factor on the results too, as we were only able to run 20K cycles for

warmup to ensure tractable RTL simulation time; we noticed that L2 caches are under-utilized

during the entire RTL simulation runtime, implying caches are not warmed up, resulting in higher

than average miss rates.

An alternative to boosting throughput is to reduce the bandwidth demand. INCF [11] was

proposed to filter redundant snoop requests by embedding small coherence filters within routers in

the network. This is left for future work.

4.6.4 Overheads

In Chapter 3, the SCORPIO NoC area and power breakdown is discussed. Here we evaluate the

portion of the entire tile area and power consumed by the SCORPIO NoC.
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Area

The dimension of the fabricated SCORPIO is 11 x 13 mm 2. Each memory controller and each

memory interface controller occupies around 5.7 mm 2 and 0.5 mm 2 respectively. Detailed area

breakdown of a tile is shown in Figure 4-12b. Within a tile, LI and L2 caches are the major area

contributors, taking 46% of the tile area and the network interface controller together with router

occupying 10% of the tile area.

Power

Overall, the aggregated power consumption of SCORPIO is around 28.8 W and the detailed power

breakdown of a tile is shown in Figure 4-12a. The power consumption of a core with Li caches is

around 62% of the tile power, whereas the L2 cache consumes 18% and the NIC and router 19% of

tile power. A notification router costs only a few OR gates; as a result, it consumes less than 1% of

the tile power. Since most of the power is consumed by clocking the pipeline and state-keeping

flip-flops for all components, the breakdown is not sensitive to workload.
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CHAPTER 5

SCEPTER: HIGH-PERFORMANCE

BUFFERLESS NOC ARCHITECTURE

Fer the last few decades, the power wall has led to a shift from uniprocessors to multicore

processors, and to the point where the interconnect plays a large role in achieving

the desired performance of multicore chips. Traditional networks such as buses and crossbars are

displaced by network-on-chip (NoC) architectures to achieve high-bandwidth and scalability. The

packet-switched NoC architectures must be capable of delivering high bandwidth at low latencies

and still remain within a tight power budget. However, the network consumes a significant portion

of total chip power: The MIT RAW [76] chip network, which connects 16 tiles, consumes about

40% of the tile power; The Intel TeraFLOPS [43] chip network, that connects 80 tiles, and consumes

30% of the total power ; The MIT SCORPIO [28] NoC, connects 36 tiles, and consumes 18% of the

tile power.

5.1 Motivation

The SCORPIO chip's buffers consume a significant portion of the tile power. With L2 cache power

consuming 19% of the tile power, the network power consumption on par with the L2 cache is

disconcerting. An area overhead of 10% is not alarming, however for improved performance the

number of VCs must be increased substantially leading to significant network area consumption.
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Bufferless NoCs [30,48,65] have been proposed as an alternative to virtual channel buffered

NoCs, tackling the high network power head-on by eliminating buffers. At each router, the flits

that enter must exit the router as there are no buffers. If multiple flits contend for an output

port, one succeeds and the rest are deflected to other output directions. Although the elimination

of buffers results in 40% [65] power savings, the operating point is limited to low and medium

network loads as performance degrades quickly for higher loads. The two key contributors to the

performance wall encountered in bufferless NoCs, are (1) the network latency increases as a result

of contention/deflections in the network and is proportional to the number of hops and deflection

rate, and (2) congestion exacerbates the contention and results in quick throughput degradation and

starvation.

To achieve high performance the network latency must be reduced to effectively drain the

network of flits efficiently and the congestion needs to be controlled for high network loads to

achieve reduced starvation.

5.2 Related Work

5.2.1 Bufferless NoCs and Congestion Control

A baseline bufferless NoC was described in Section 2.2. Different NoC architectures have been

recently proposed to address the challenges and power/performance optimization. Although there is

a large literature space for congestion control and bufferless network performance, a few relevant

works are CHIPPER [30], MinBD [31], Clumsy Flow Control (CFC) [48], self-tuned congestion

control [77] and Heterogeneous Adaptive Throttling (HAT) [18]. The CHIPPER bufferless NoC

reduces the complexity of the router by replacing the expensive port allocation and crossbar with a

permutation network. It also proposes the use of cache miss buffers for re-assembly of multi-flit

packets and a retransmit protocol when endpoint buffers are full. CHIPPER reduces the critical

path of the router, but saturates more quickly than BLESS and buffered networks. BLESS is a

good baseline for bufferless NoCs as its performs either equal to or better than CHIPPER for all

workloads evaluated in [30].

HAT and CFC utilize source throttling to control the congestion in the network, using application
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and network information, and global destination buffer status, respectively. HAT adjusts the global

throttle rate based on the link utilization at routers if the application intensity, quantified by the L 1

MPKI, exceeds a threshold. HAT uses empirically determined parameters for the throttle adjustment

epoch length and threshold, which deters the use of those values in our simulation environment

as we evaluate different application workloads. We observe that adjusting a global throttling rate

does not reduce the starvation at all nodes in a mesh network. Namely the center nodes continue to

be starved as flits from other nodes generally route through the center of the mesh under uniform

random traffic. The distributed self-learning throttling is more effective as each node's throttle

rate varies based on experience and network starvation feedback, and adapts to the workload. The

self-tuned congestion control in [77], uses global congestion information to throttle the source,

where the threshold is self-tuned to increase throughput without dramatic changes in the latency.

However, the global information gathering is costly as congestion and throughput information is

sent on reserved side-band channels. Although, we use global information to throttle the source,

the feedback network and storage overhead is minimal. RAFT [64] targets power/performance

optimization by dynamically tuning the router frequency in response to network load, but this only

considers dynamic power consumption and not leakage, which is becoming more prominent.

While some works target specific challenges of bufferless NoCs, e.g. critical path, re-assembly

buffers, we specifically target the performance limitations of bufferless NoCs and show that with

the appropriate flow control, routing, throttling, bypassing mechanisms, and single-cycle multi-hop

links, bufferless NoC performance can indeed reach that of buffered NoCs. The prior proposals are

orthogonal to SCEPTER and can possibly be used in conjunction. High throughput performance

has not been extracted previously, especially without the use of small side buffers [31]

Buffer Area/Power Optimization. In addition to the work targeted for bufferless networks,

area and power reduction of buffers is addressed by countless works. ViCHaR [67] dynamically

allocates a central buffer and can realize the same performance with fewer buffers, but requires

complex arbiters and control logic, and still requires buffers, whereas SCEPTER is completely

bufferless. Elastic Buffer Flow Control [62] uses the buffer space in pipelined channels to reduce the

cost of buffers. Kilo-NoC [38] ensures QoS with a low-cost elastic buffering and physical express

links achieving similar latency benefits as the SMART baseline.

Hot Potato Routing. Hot potato routing [74] emerged in traditional networks and was found to
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be useful for optical networks, where buffers are more expensive than deflections [22]. The Chaos

router [49], uses deflections as a means for adaptive routing. It eliminates priority routing and uses

deflections instead, and also guarantees livelock and deadlock freedom. In [37], an analysis of the

network behavior when performing deflection routing in hypercube network reveals that it performs

well even under high loads.

Drop-Based. Since we focused on deflection routing, we thus far only considered the prior work

related to it. Some bufferless routers advocate the dropping of packets in the event of contention [35].

The SCARAB [40] architecture utilizes a fixed-delay circuit-switched negative acknowledgement

network to indicate a packet has been dropped and needs to be retransmitted. SCARAB achieves a

higher clock frequency and lower latency than a deflection-based NoC for low loads, but poorer

latency and throughput than buffered NoCs.
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Figure 5-1: SMART NoC Router and Bypassing

5.2.2 SMART Interconnect

Deflection routing, although simple and effective for bufferless NoCs, suffers from performance loss

due to excess deflections and the associated latency penalty. Single-cycle Multi-hop Asynchronous

Repeated Traversal (SMART) [50] can potentially reduce the latency penalty of deflections to zero
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even for non-minimal paths.

SMART eliminates the latency dependence on hop count by using clock-less/asynchronous

repeaters in routers' crossbars and associated flow control to bypass multiple routers in the same

cycle. Figure 5-1 shows how multiple routers can be traversed using preset bypassing signals. A

setup request is sent a cycle in advance to arbitrate for the crossbar switch access. In Figure 5-1,

the setup request succeeded and successfully asserted ByPEN and allocated the crossbar switch to

connect West input to East output.

Setup Request. Each flit sends a smart-hop setup request (SSR) to the routers along the path

to its destination. SSRs are dedicated repeated wires that are log2(1 + HPC.aa) bits wide, where

hops-per-cycle (HPCmax) is the maximum distance the flit can traverse in a single cycle. Each SSR

carries the number of routers to bypass on the dedicated repeated wire of length HPCmax. HPCmax is

determined by the interconnect and repeater characteristics of the underlying process. In [ 19], a

sensitivity study of the HPCmax with respect to clock frequency is performed for SMART's clockless

repeated links, carried through post-layout with Cadence Encounter, on IBM 45nm SOI technology.

It is shown that at 1GHz, 13-hops can be traversed in a cycle.

We refer to the SMART_2D version throughout this work, which has dedicated SSR links along

each possible XY and YX path from each router to all neighboring routers within HPCmax hops.

A SSR is sent one cycle in advance and arbitrates with the local flits at each router for access to

an output port. Similar to a baseline virtual channel buffered router, the flits arbitrate locally to

determine the allocation of a flit to an output port. However, in the SMART approach there are

additional switch allocation requests that originate from farther nodes. Thus, remote SSRs arbitrate

with the local buffered flits for allocation of an output port. Control signals are then setup for the

next cycle based on the SSR arbitration outcome. If the SSR wins allocation, the bypass path is

enabled such that the flit will route straight through the crossbar switch and move to the next router.

If the SSR loses, the buffering path is enabled and the flit will be buffered the next cycle. The

flit does not have to wait for a grant signal to be returned indicating bypass success. When a flit

arrives at the next router the appropriate control signals are set to reflect whether the setup request

succeeded or not.

Switch Allocation and Prioritization. The prioritization mechanism is used to decide which

flits are buffered and which win switch allocation. Every router prioritizes SSR requests using
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Figure 5-2: SMART NoC Area and Power Breakdown

a fixed priority scheme that is based on the flit's distance from the source. Thus, a Prio=Local

scheme gives highest priority to the local flit over neighboring flits and those farther away. The

single-cycle paths are not guaranteed as the flit may not arrive even if the switch has been allocated.

If Prio=Bypass is enforced, flits farther away from the source have a higher priority. The same

priority is enforced between SSRs to ensure that flits do not traverse farther than HPCmax hops in a

cycle.

Area and Power Impact of Buffers. The power breakdown of the SMART NoC work in [50]

reveals that the buffers consume on average 40% of the total network dynamic power on the IBM

45nm SOI process. The rest of the power is consumed in the crossbar, switch allocation and link

traversal, with SSRs taking up negligible power overhead. Figure 5-2 shows the post-layout router

area and power breakdown of a 64-node SMART NoC chip with 8 virtual channels (VCs) and

1 flit buffer per VC recently fabricated on a 32nm SOI process. The input port buffers consume

more than 50% of the router area and power. The input buffers' absolute power is around 1 W, of

which 70% is leakage power alone. Although eight buffers per input port is relatively few compared

to commercial NoC prototypes, e.g. Intel TeraFLOPS [43] containing 32 buffers per input port,

the power and area overhead is still quite substantial. Bufferless NoCs completely remove such

overheads.

5.3 Overview

SCEPTER (Single-Cycle Express Paths and self-Throttling for Efficient Routing) is a bufferless

NoC architecture that pushes towards high-performance bufferless NoCs. We lower the average
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network latency of bufferless NoCs by leveraging single-cycle multi-hop traversals across the

network. Multi-hop traversals, routing through multiple routers in the same cycle, are established

with the use of SMART clockless repeated paths [50]. With these repeated paths, we are able to

set up a route path, and in the next cycle traverse through the preset path, covering multiple hops

within one cycle. Even along a deflected direction, a single-cycle path can be potentially traversed

that brings the flit closer to its destination.

In a bufferless NoC, flits are constantly in motion and occupying precious links till they are

ejected at their destinations. SCEPTER's leveraging of virtual express paths means that flits

bypassing from faraway nodes are now thrown into the mix, contending with flits arriving from

neighboring nodes, as well as flits waiting in the network interface to be injected. SCEPTER

intelligently prioritizes and routes flits from these three sources, opportunistically bypassing on

virtual express paths. Going on express paths lower latency, while deflecting flits to idle links get

them to their destinations quicker, extending throughput. However, in a bufferless NoC, deflecting

flits from one area of a NoC to another shifts congestion to that area, and can deter flits from entering

the network (starvation), hurting performance. SCEPTER uses starvation as a key indicator for

enforcing livelock freedom and for source throttling. We devise a distributed reinforcement-learning

throttling mechanism to control the injection of new flits into the network. Each node independently

learns and adapts its throttle rate based on global starvation indicators.

Figure 5-3 shows a SCEPTER deflection-based router with a two-stage switch allocation

followed by the switch and link traversal stage. As soon as flits arrive at a router, they are latched

into pipeline registers. The next cycle, route computation and switch allocation (SA-I) are performed.

Latched flits arbitrate for output ports in the first switch allocation stage, where the flits are sorted

in order of priority. The highest priority flit has first pick of the output port. A higher priority flit

may take a lower priority flit's preferred output port, prompting the lower priority flit to be assigned

to another output port. The local flit from the NIC is assigned the lowest priority. At the end of the

SA-I stage, each latched flit is assigned an output port. If the assigned output port is in a progressive

direction, SSRs are sent along the path to destination, up to HPCmax hops away, and within a one

cycle propagation delay. All routers, in the following SA-I stage, arbitrate simultaneously between

flits from neighboring routers, SSRs from faraway nodes, and possibly a local injecting flit from the

NIC.
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In order to leverage single-cycle multi-hop traversals, the SCEPTER router pipeline is similar to

SMART router pipeline. Unlike the baseline bufferless router, SCEPTER's switch allocation is split

over two stages to arbitrate between local flits and SSRs. SSRs are generated in SCEPTER's first

pipeline stage, and take up to a cycle to reach the routers on its path. Since the baseline BLESS

router has a 2-stage pipeline and SCEPTER's is three-stages, the multi-hop traversal setup is crucial

for obtaining improved performance over the baseline network.

However, for a bufferless NoC, simply adopting SMART flow control will not work. For

instance, SMART's Prio=Local scheme prioritizes new injecting flits over incoming flits on the N,

S, E, W ports and from faraway on the SSRs. With no buffers, and one fewer output port than input

ports since the injecting flit will go out of one of the NSEW ports, and flits cannot be deflected

through the ejection port, this scheme breaks in bufferless NoCs. As for SMART's Prio=Bypass,

again, the number of output ports only match the incoming NSEW ports, so injecting flits will not

be able to inject except when a flit is being ejected at this router.

5.4 Destination-Proximity Flit Prioritization.

As different flits and bypass requests arrive at the router, the prioritization among them is significant

for performance reasons, as is a design challenge as we are pushing towards high-performing

bufferless NoCs. A qualitative discussion of few constraints and reasons for the chosen prioritization
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mechanism is discussed, and fully evaluated with a design sweep in Section 5.9.1.

Input Port Conflict. At each router there is a possibility of receiving up to four flits from the

neighboring routers and bypass requests from distant nodes through SSRs. The crossbar switch

places an input port constraint on flits arriving from the same input direction as they both cannot

traverse the crossbar simultaneously. For example, a flit arrives at a router from the East port and

is latched in the router's pipeline register. After stage one of switch allocation, it is known that

this flit will, say, route through to the North output port. However, multiple SSRs simultaneously

arrive from the East direction too. The winner among these SSRs will request the South output port.

Although there isn't a conflict with respect to the desired output port, there is a crossbar input port

conflict. The bufferless NoC deflection routing mechanism requires that a flit leaves the router, even

if it is along a deflected path. We prioritize flits latched at the router over bypassing flits, hence all

SSRs from the East direction will fail to setup the crossbar switch at this router.

Prioritization Between Latched Flits. In a bufferless NoCs, the key lies in quickly draining

flits at their destinations. Hence, we use a destination proximity (Dest-Prox) flit prioritization.

Flits are thus prioritized based on the hop count distance from the destination, which is already

calculated for route computation and can be obtained with no additional logic overhead. Hence,

flits that are closer to the destination are prioritized over flits that are farther. The Dest-Prox priority

ensures that flits are not excessively deflected once they are in vicinity of the destination node. To

arbitrate between flits that are the same priority, i.e. same number of hops from their destinations, a

comparison of deflection count is performed and the flit with the higher count is prioritized higher.

In the event there is still a tie, the higher priority flit is chosen arbitrarily. Each flit only uses three

additional bits for maintaining the deflection count. Every time a flit is deflected, it will increment

this count variable. It performs this computation in parallel with route compute at the next router. If

the number of deflections exceed 7, for a 3-bit count, the count variable is no longer incremented

and remains as is. Only under high congestion and network traffic does the deflection count surpass

this range and arbitrary tie resolution ensues. Unlike BLESS' age-based arbitration, Dest-Prox

avoids the overheads of propagating and sorting timestamps.

Prioritization Between Flit Sources. SCEPTER routers receive flits from different sources:

neighboring routers, distant nodes, and local NIC, all generating requests for an output port. If we

use an age-based mechanism to arbitrate between the output port requests, the timestamp overhead
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is not only incurred in the latched and local flits, but the SSRs must propagate this information as

well. Each SSR would require an additional log2(maxjtimestamp) bits, where the bound on the

timestamp could span into thousands of cycles. This would incur excess wiring overhead for each

SSR repeated path.

Flits at the router are given first choice for the output ports due to the input port conflict discussed

and network deadlock avoidance. Ensuring that flits are constantly in motion and do not reside in the

router pipeline unallocated alleviates deadlock concerns. Any available output ports thereafter are

made available to requesting SSRs. If another output port is available but the SSR is not requesting

it, the SSR would fail. Latched flits are always assigned an output port, and SSR allocation is

not critical for correctness but necessary for high performance. Hence, SCEPTER utilizes the

prioritization where Latched Flits > SSRs > NIC at each router.

With flits and SSRs arriving at a router, the local node may not inject a flit into the network if

there isn't an available output port for the flit to route to. With the current prioritization scheme, the

SSRs do not always succeed because the latched flits have higher priority. Thus, if the SSRs do

not schedule the remaining available output ports, the local node has a chance to enter the network.

Since SSRs are prioritized over locally injected flits, the network latency is reduced and additional

flits do not enter and abruptly congest the network. However, there are starvation concerns when

another node's traffic can stall this local node's injection for a long time period. The problem is

not just limited to the neighboring routers sending flits to this router, but all the routers within

HPCmax of this router can prompt starvation. While buffer occupancy is an indicator of congestion

in buffered NoCs, starvation is the key indicator of contention in bufferless NoCs, and SCEPTER

heavily leverages that for output port selection (Section 5.5) and starvation avoidance (Section 5.8),

extending throughput.

5.5 Starvation-based Output Port Selection

We identify the key aspects of flit prioritization that exist in the SCEPTER router and describe the

Dest-Prox arbitration policy between flits, where the flit closest to the destination has the highest

priority. SSRs are prioritized over injecting flits from the local node, but are lower priority than the

flits at the pipeline registers of this router. Now that the requests are put into a priority order, how
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do we determine the desired output port for a flit?

In buffered NoCs, congestion is estimated using buffering information. However, for bufferless

NoCs we need another metric. In SCEPTER, we use starvation of the injection port as an indicator

of congestion. Specifically, flits are queued at the output of the NIC and dequeued when a local

flit is able to inject. If the injection queue depth in the NIC has exceeded a threshold, IQT number

of entries, it informs the neighboring routers by asserting a one-bit starvation flag. Stopping all

neighboring flits from routing to this router will lead to a spreading of congestion to other nodes.

We instead propagate the starvation indicator bit to only one of the four input directions and rotate

among the ports every cycle. Moreover, the starvation indicator bit changes the prioritization at

this router to allow local injecting flits priority over SSR requests when the injection queue depth

exceeds IQT, easing starvation. For high injection rates/queue depths, the SCEPTER network

effectively filters away the starvation effects of remote SSRs, reducing starvation effects to that of

neighboring routers, similar to BLESS.

We perform minimal adaptive routing at each router using starvation indicators from neighbor

nodes to select a progressive direction. An output port with the starvation bit asserted will not be

routed to if another output port is available. Thus, if the progressive directions are congested, the flit

may deliberately request a non-minimal output port. In such a case, we observe a ping pong effect,

where the request that is deflected in a non-minimal direction will choose to route to the current

router again and the flit will move back and forth between the two routers. We toggle the routing

policy from XY to YX or vice versa, based on the deflected direction. For example, if a flit with YX

routing policy wants to route 2 hops in the positive X direction (East) and 4 hops in the positive Y

direction (North) from the current router, and is deflected along the South output port. Since the

Y direction is congested, the routing policy is toggled to XY. This means that the X direction is

prioritized over the Y direction when performing output port selection.

If a flit chooses a non-minimal output port, more than once, we upgrade the flit to a high priority

status and route it to the nearest edge. Along the path to the edge, if a minimal output direction

is available, the flit will change to XY or YX routing, and retain its high priority status such that

it reaches the destination with a low chance of deflection. This can be viewed as a form of lazy

misrouting, in which flits are routed non-minimally only if it fails consistently [78].
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Figure 5-4: Opportunistic Bypassing Example

5.6 Opportunistic Bypassing

The key to network latency reduction is the bypassing mechanism. Many times the SSR succeeds

in setting up the crossbar switch at certain routers along the path but fails at other routers as well.

Thus, a flit cannot always traverse through the path it dynamically set and the switch setup can be

considered wasted. We take advantage of this situation by opportunistically taking scheduled bypass

paths that end up being wasted. When a SSR succeeds in allocating the crossbar, a two-bit quadrant

ID, QIDbyp, is recorded pertaining to the destination quadrant of the SSR. The network is divided

into four equal-sized quadrants, where QID = 00 indicates the top right quadrant, QID = 01 is

the top left quadrant, QID = 10 is the bottom left quadrant, and QID = 11 is the bottom right

quadrant. In the following cycle, a flit arrives and is able to bypass the SA-I and SA-II stages and

directly traverse the crossbar. However, another flit may arrive, one that did not explicitly preset the

crossbar switch with a SSR. Hence, a check is performed on whether the destination quadrant ID,

QIDflit, of the incoming flit matches the QIDbyp value, as shown in Figure 5-3. Figure 5-4 shows an

example that demonstrates the key idea behind opportunistic bypassing.
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1. At time TO, Flit A sends a SSR from source node 9 along the path to the destination node 4.

Flit B arrives at node 10 and is latched.

2. At T1, the SSR arbitrates at routers 10 and 11 to allocate the crossbar from West to East for

the next cycle. At router 12 it requests the crossbar from West to South, and router 8, from

North to South. The SSR succeeds at all intermediate routers except for router 10, indicated

by the cross and ticks in the Figure. A single-cycle path has been preset from router 10 to 4,

with QIDy, = 11.

3. At T2, Flit A is latched at node 10. Flit A's bypass fails as the SSR did not succeed.

4. At T2, Flit B arrives at router 11 and compares its destination quadrant ID, QIDf it = 11,

with the SSR's quadrant ID (QIDyp = 11). After simply performing a bitwise XNOR, the

flit decides to take the bypass because the QID matches. Flit B is able to take the single-cycle

express path to router 4.

5. At T3, a SSR request from another flit arrives from the East direction at router 10 and is

requesting the path from router 10 to router 2. This SSR request arbitrates with Flit A in the

SA-II stage. Since Flit A and the SSR request both arrive from the same input port direction,

the SSR fails due to the input port conflict, and Flit A successfully allocates the East output

port.

Flits are able to hop onto these idle bypass paths opportunistically and effectively reach closer

to the destination node. The QIDyp is useful for ensuring the multi-hop paths taken do not

unnecessarily deflect the flit in non-progressive directions. Once the flit arrives in vicinity of its

destination, it will be prioritized higher than some other flits due to the Dest-Prox prioritization.

5.7 Rotating Highest Priority Source ID

Latched flits are always prioritized over SSRs and locally injected flits from the NIC. This policy

ensures a flit in the router always exits after moving through the router pipeline. Deadlock is

avoided as a result, as routing cycles do not form within the SCEPTER bufferless network. However,

110



livelock may occur as certain flits roam constantly, continuously deflect, and are not serviced and

sent to their destinations.

SCEPTER request prioritization mechanisms do not guarantee livelock freedom unlike the

age-based mechanism of BLESS. In order to enforce livelock guarantees, all routers have to follow

consistent ordering rules. This way the flit is prioritized globally above the other flits and SSRs,

allowing it to reach the destination within a fixed-latency bound. We maintained synchronized

time windows at each node in the network, and enforce a consistent highest priority source ID

each time window. All flits in the network that originate from this source are prioritized over other

flits. The highest priority source ID rotates each time window. Since each node may have multiple

outstanding requests in the network, it is possible for two or more highest priority (HP) flits to

contend for the same output port. In such cases, the HP flit with the highest deflection count will

succeed, while the others will be deflected, with ties arbitrarily resolved. Since each source will

become HP in time, livelock freedom is ensured.

Time Window. The length of the time window should be sufficient to drain the network of a

request from this source. Since these HP flits are allowed to schedule multi-hop traversals with

highest priority, a HP flit is able to reach the destination in one cycle, provided it is within HPCmax

hops away. Thus, the minimum time window is 2 cycles, one cycle to reach the destination node

and one cycle to obtain the grant for the ejection link to the network interface. In larger networks,

it may take more than 2 cycles to reach the destination as multiple multi-hop traversals need to

be setup. The time window lower bound is the maximum Manhattan distance divided by HPCmax.

However, in high congestion cases the SSR may not be able to set up a single cycle path to the

destination node unless flits are temporarily stored in the pipeline register while the HP flit bypasses

and potential deadlock cases are appropriately addressed. At each hop, the HP flit is prioritized

higher than other flits and is always granted the desired output port and is not deflected. The upper

bound on the time window is the maximum Manhattan distance times the per-hop latency: 16 cycles

for a 64 node network, 32 cycles for a 256 node network.

SSRs. When a SSR is received, the highest priority source ID is checked for this time window.

If the source ID matches, the router prioritizes this flit over the latched flits, but only if there is a free

output port that the latched flits can deflect to. If not, the SSR fails as we always ensure latched flits

are allocated an output port. If a flit arrives with a source that matches the highest priority source
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ID, its priority supercedes the Dest-Prio order.

5.8 Self-Learning Throttling

In a general bufferless or buffered mesh network, only the neighbors are responsible for creating

congestion at a particular router. However, in the SCEPTER NoC, all nodes within HPCma., hops

away are potentially responsible for congestion and thereby prevent local flit injection. As flits are

constantly moving in the network, congestion in a bufferless NoC shows itself through starvation -

when nodes cannot inject. We extend the starvation indicators used in each SCEPTER router for

output port selection and highest priority source selection, sending these indicators globally to all

nodes. We then devise a self-learning throttling mechanism that adapts based on this global network

starvation status, in order to improve bandwidth allocation fairness, reduce network starvation rate,

and extend network throughput.

Global Starvation Status. We propagate global starvation information using a separate buffer-

less starvation network, adapted from the notification network in [28]. All network interfaces

monitor the injection queue depths, and if the depth exceeds IQT entries, a starvation flag is set.

The starvation indicator is sent on the starvation network as a one-hot N-bit vector, where N is the

number of nodes in the network. The bit in the vector corresponding to this node's ID is asserted

if the starvation flag is set. In an 8 x 8 network, the starvation network will take the maximum
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Manhattan distance of 16 hops to ensure the global information is propagated to all nodes. Using

synchronized time windows of length L, each node will propagate the starvation information at the

beginning of a time window. For an 8 x 8 network, the time window length, L can be set at 16 cycles

as one hop in this congestion feedback network incurs a latency of one cycle.

Throttling. Source throttling is a common technique used for congestion control in networks [18,

77]. Every L cycles, the feedback network provides a view of the global starvation state of the

network. Using this information, we determine when and how to throttle the sources. The most

straightforward approach is to stop non-starved nodes from injecting and allow the starved nodes to

continue attempting to inject into the network. We call this approach, ON/OFF Throttling, however

it leads to increased starvation in the stopped nodes. To be able to find the optimal action based on

network feedback, we use reinforcement-learning to adapt and learn from the starvation state and

prior experience on throttling rate adjustments.

Q-learning. Q-learning is a reinforcement learning technique where the agent/nodes try to

learn the optimal action selection policy. Essentially this means that based on the environment

interactions, the Q-learning algorithm will, over time, determine the best action to take, given an

environment state. Each node maintains a table of Q[S,A], where S is the set of states and A is the

set of actions.

We maintain a Q-table of 8 states and 5 actions at each network interface. The states correspond

to the change in starvation across the network and also account for any change in the local node's

starvation status. The five actions correspond to increasing, decreasing, or retaining the throttle rate.

If the throttle rate is to be increased, there are two possible actions, either increase slowly with a

smaller increment value (in our case it is 1), or increase quickly with a larger increment (in our case

it is 2). Thus, an action that increases the throttle rate by one, would stop one flit from injecting into

the NoC in a ten-cycle time interval.

The Q-table, as seen in Figure 5-5, is initialized to all zeroes. The state s of the network is

observed and a action a is selected to be carried out. After the action is performed, the current state

s' is observed. The Q-table value is updated according to Equation 5.1, where a is the learning rate,

-y is the discount rate, r is the observed reward, and max(Q'[s', a']) is the maximum value in the

Q-table for the current state, s'. In Figure 5-5, the shaded entry corresponds to the Q value with

the current state, s 2 and action a2 , and pertains to the maximum Q value for the network state. The
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Table 5.1: SCEPTER Network Parameters

NoC Topology 6x6,8x8, 16x 16 mesh
Routing Minimal Adaptive, Non-minimal priority

Flit Prioritization Destination Proximity
Request Prioritization Flit > SSR > NIC

HPCmax 8
Time Window (L) 12 (6x6), 16 (8 x8), 32 (16 x 16)

Injection Queue Threshold (IQT) 20 (8 x 8), 40 (16 x 16)
Learning Rate (a) 0.1
Discount Rate (y) 0.1

global congestion vector from the feedback network triggers an update of the Q-table entry, where

the learning rate indicates how quickly new congestion information is factored into the update. The

future reward potential is computed by obtaining the maximum Q value for the current state and

factoring it into the prior state's Q value update, where the discount rate indicates the importance of

the future reward.

Q[s, a](1- a) *Q[s, a] + a * (r + *max(Q'[s', a'])) (5.1)

The reward value is assigned based on how the starvation count changes from the previous state.

If starvation increases, a negative reward is given, and if the starvation drops, a positive reward

is given. After some interaction with the environment, the Q-table will be populated with values.

Using the Q-table values, an action can be selected that will either increase, decrease, or retain the

throttle rate at the node. For an observed starvation state, the Q table is checked to find the action

that has the largest Q value, meaning it has potential to give the maximum reward. This action is

taken and the value-iteration of Q is continually performed. To allow for continual learning, the

controller switches to a random action selection every one in ten iterations, such that other actions

and network states are explored.

5.9 Architecture Analysis

We evaluate SCEPTER and baseline architectures with the gem5 [15] cycle-accurate simulator and

the GARNET [10] network model. The evaluated system parameter settings are shown in Table 5.1.

114



The baselines for performance comparison are the BLESS NoC and SMART virtual-channel

buffered NoC, described in depth in Section 5.2. The BLESS NoC serves as a lower bound on the

performance of SCEPTER as it is the best-performing bufferless NoC. The SMART state-of-the-art

buffered NoC obtains high-throughput and low-latency, and forms the upper performance target.

BLESS uses an age-based prioritization mechanism to ensure oldest flits are continually drained

from the network. As for the SMART NoC, packets follow deterministic XY routing and use

SSRs to setup multi-hop traversals. HPCmaX is set to be the same (8) for SMART and SCEPTER

for proper comparison. SCEPTER's performance is evaluated for both synthetic and full system

applications. First, a design sweep of the different architecture choices is discussed. Next, a

network-level and full system applications performance comparison is discussed with respect to the

baselines.

5.9.1 Design Space Exploration

The architecture settings for the SCEPTER NoC are chosen by performing a design sweep of the

request prioritization, flit prioritization, opportunistic bypassing and adaptive routing using synthetic

traffic patterns. For SCEPTER's request prioritization exploration, we are unable to evaluate the

exact Prio=Local or Prio=Bypass mechanism from the SMART NoC as it requires buffers to store

unsuccessfully allocated flits. However, we evaluate feasible alternative mechanisms for the request

and flit prioritization. Network-level synthetic traffic simulations allow us to observe the saturation

throughput of SCEPTER in comparison to the BLESS NoC and the high-performing SMART NoC

with varying buffer counts.

Impact of Flit Source Prioritization

At each router, there are two levels of prioritization. The first level is between the flits arriving

from the neighbors, and second is between all the switch request sources: SSRs, latched flits, and

injecting flit at the NIC. We discussed that prioritizing the SSRs over all other requests would lead

to a potential starvation as latched flits will have to reside in the pipeline registers and may be

continuously overtaken. Hence, the latched flits always have the highest priority, but we are able to

characterize the effects of prioritizing either the SSRs or NIC's local flit, first. We obtain the average
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latency as the injection rate is varied for both prioritization approaches, while keeping all other

settings the same. Figure 5-6 shows the results when we compare the average latency of SCEPTER-

SSRs (SSRs prioritized over the local flit) to SCEPTER-LOCAL(local flit prioritized over SSRs).

The SCEPTER-LOCAL option saturates more quickly as the network is being populated with more

flits, and the SSRs begin to fail due to congestion.
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Figure 5-7: Latched Flits Prioritization (64 Nodes) for the Tornado Synthetic Traffic Pattern
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Impact of Latched Flits Prioritization

With the request prioritization approach now fixed at prioritizing SSRs over local flits, we determine

the best prioritization among flits that arrive from neighboring routers. BLESS uses age-based

arbitration, but we observe that age-based arbitration requires an expensive timestamp to be sent per

flit. Moreover, if all the requests arbitrate according to age, it requires SSRs containing timestamps

to be sent across the entire network, which is highly impractical.

Figure 5-7 shows the average latency as the injection rate is increased for uniform random traffic.

The Defl prioritization considers a count within the flit that contains the number of deflections the

flits has encountered. The higher the deflection count, the higher the priority. The Age prioritization

uses the flits' enqueue time to determine the age. The older flit has a lower enqueue time, and hence

a higher priority. The other two are distance-based approaches. Src-Dist uses the flit's distance

from the source, in terms of hops, such that flits farther from the source are allowed first pick on the

output port. Dest-Prox performs the opposite prioritization, where the flits closer to the destination

are prioritized above others. For two or more flits with the same priority, one is chosen arbitrarily

for the Defl and Age mechanism; although for distance-based approaches the deflection count is the

tie breaker.

The results clearly show that the destination proximity mechanism outperforms the rest. It

addresses a frequent case that leads to higher average network latencies: if a flit is moving through

the network and is close to its destination, it may be deflected in any of the other prioritization

approaches, only to try again and again until the livelock mechanism prioritizes this flit's source ID,

occupying precious link bandwidth.

Adaptive Routing and Opportunistic Bypassing

The benefits of two features, adaptive routing and opportunistic bypassing, to the throughput gains of

the SCEPTER NoC can be seen in Figure 5-8. Each feature contributes only a minute improvement

in saturation throughput. Opportunistic bypassing isn't effective alone because the flits will keep

attempting to route through minimal paths, which tend to be highly congested at the center of

the mesh. SSRs would tend to fail along these routes, primarily because of congestion. Since

other paths are not explored, the number of single cycle express paths that are successfully set up
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Figure 5-8: Bypassing & Adaptive Routing (64 Nodes) for the Tornado Synthetic Traffic Pattern

drops sharply with injection rate. Similarly for adaptive routing, a flit can route along minimal and

non-minimal paths, but can only hop across multiple routers if it explicitly requested the path and

successfully allocated it. Thus, a combination of both features is the most effective at improving

performance.

5.9.2 Performance with Synthetic Traffic

In Figure 5-9 the BLESS NoC saturates very quickly for all the synthetic traffic patterns. For

uniform random traffic, SCEPTER achieves a 60% reduction in latency, and 1.2 x higher throughput

as compared to the BLESS NoC. Thus, SCEPTER is able to reach the SMART buffered network,

6 buffers, per input port, i.e. 30 buffers per router, without additional complexity and a complete

elimination of buffers in the network. Taking the average across the traffic patterns, SCEPTER

reduces the average latency by 62% and achieves a 1.3 x higher saturation throughput. This

throughput gain is obtained by taking the ratio of the saturation load of SCEPTER and BLESS.

For the 64 node network, under uniform random traffic and at saturation, the percentage of

allocated crossbar switches granted to SSRs is only 10%. Of which, 53% are traversed by a flit, and

47% are wasted switch allocations. At this operating point, the express path achieves on average 1.5

hops; a drop from the average 5 hop bypass path for low network load. This behavior is attributed

to the prioritization scheme that is necessary for a bufferless NoC. At each router the latched flits

are prioritized higher than SSRs and local flits. The drop in SSR switch allocation indicates that the
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Figure 5-9: Network-Level Performance for 64 and 256 Nodes

switches are continually being allocated by latched flits instead, thus preventing SSRs and local

nodes from accessing the crossbar.

Congestion is the culprit as it causes a drop in network performance and an increase in starvation.

The livelock mechanism is meant to relieve the network of some congestion but has a lower release

rate than the injection rate, i.e. at least 1 flit is prioritized and ejected every 16 cycles for the 64 node

network. However, if the sources keep injecting at a faster rate, the congestion cannot be controlled

by the livelock mechanism alone, especially when scaling the network size. Figure 5-9 shows the

119

I /
Uk
to

60

50

40

30

20

10

0

0.05 0.1 0.15 0.2

Injection Rate (flits/node/cycle)

(b) Uniform Random (256 nodes)

0.25

0.15

0.033 0.066 0.099 0.132

Injection Rate (flits/node/cycle)

(f) Tomado(256 nodes)

0.165



performance for a 16 x 16 network. The gap between the buffered and bufferless network is now

more apparent, however SCEPTER outperforms the baseline bufferless NoC and achieves a 1.3 x

higher saturation throughput and 62% reduction in latency.

n

(E Zxi) 2

F = i=O (5.2)
n * Z xi

i=O

5.9.3 Starvation and Fairness

We evaluate the starvation and fairness characteristics and the impact of the distributed reinforcement-

learning throttling mechanism. The hotspot traffic profile, where 75% is uniform random traffic and

25% is traffic towards a center node, allows us to observe the effects of unfair network access due to

network congestion. We determine the learning rate, IQT and discount rate empirically, and these

values, in Table 5.1, are kept constant throughout the simulations.
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Figure 5-10: Bandwidth Fairness for 64 Nodes as the Injection Rate is Varied

Bandwidth Allocation Fairness

We vary the injection rate of the hotspot traffic profile for 64-nodes and observe the bandwidth

allocation fairness. While a lower starvation rate in Figure 5-1 la implies fair network access, we
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obtain the network bandwidth allocation fairness using the per-node throughput to determine the

overall fairness of the network. We use Jain's fairness index [39,45], in Equation 5.2 where xi is the

throughput of the ith node in the network. An index value of 1 indicates that 100% of the network

is receiving equal bandwidth allocation.

As seen in Figure 5-10, SCEPTER with ON/OFF Throttling enabled does not provide significant

fairness improvement. This method causes starvation to shift to other nodes in the network as they

may be stopped from injecting for an entire time window. If the node is stopped from injecting

*""No-throttle -On-off -Self-learning

0.3

0.2

0. 1

0

0
OP

CA

32 64 128

Number of Nodes
(a) Starvation Rate

M No-throttle 1 On-off U Self-

256

learning

4'

a,

z

E

(U

0z

1.2

1

>0.8
U

0.6

-' 0.4

0.2

0

Figure 5-11: Impact of

16 64
Number of Nodes

(b) Average Network Latency

Core Count on Network Latency

256

and Starvation Rate

121

16



flits this time window, the injection of flits can be enabled at the earliest during the following time

window. Thus, for at least 16 cycles the flits from the node will accumulate in the node's injection

queue and potentially become a starved node. SCEPTER with Self-Learning Throttling enabled

maintains a fairness index of 87% at high injection rates as well. This results in a 77% higher

fairness across the network at high injection rates.

Starvation Rate

The starvation rate of the network is the average fraction of time when network access is not granted.

We specifically evaluate the starvation at each node by taking the maximum number of consecutive

cycles, within a time period, when a node is unable to inject a flit into the network. We average it

across all nodes in the network, and vary the number of nodes up to 256. Figure 5-11 a shows that

the self-learning throttling mechanism results in a 31.4% and 38.6% lower starvation rate for 64

and 256-nodes, respectively. The throttling does not affect 16-nodes as a result of a smaller network

diameter, HPCmax of 8 hops in one cycle, and less congestion as a result.

Average Network Latency

Figure 5-1 lb shows the reduction in network latency as a result of the self-throttling mechanism,
.C-. 1 fA -3 I_ Ir A' -ur 1U6, 64+ anu 2OU nodes. As we vary the number of nodes, we see the effects of the throttling

mechanism are more pronounced, with a 34.7% and 24.3% reduction in average latency for 64 and

256 nodes, respectively. For a 16 node network, the network congestion is quickly alleviated with

the opportunistic bypassing mechanism and HPCmax of 8, which results in close to single-cycle

network latencies. Thus, in a 16 node network, source throttling only reduces the network latency

by 5.7%.

5.9.4 Full-System Application Performance

For full-system architectural simulations of SCEPTER, we model 36 x86-64 cores in gem5, with

split L1 32 KB I/D caches, and private 1 MB L2 caches. SCEPTER and all baselines use the

MOESI directory protocol. Figure 5-12a shows the normalized average latency of SCEPTER in

comparison to SMART (6 buffers per input port), BLESS, and an ideal one-cycle network. On
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Figure 5-12: Normalized Performance of Full System PARSEC and SPLASH-2 Applications

average, SCEPTER shows 27% lower network latency than BLESS and comparable performance

to the SMART buffered network. The average latency incorporates both the network and source

queueing latency. For these applications, the L2 miss rate is moderate, however some applications

exhibit behavior where larger network latencies are observed, e.g. canneal, where the constraint

on the ejection links results in more contention, more deflections, and higher average latencies.

SCEPTER is beneficial at reducing the network latency and routing around congested areas, but
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contention for ejection ports cannot be avoided and results in smaller network latency reduction.

Figure 5-12b shows SCEPTER achieves on average a 19% lower application runtime than BLESS,

and comparable performance to SMART, with 6 buffers per input port, and an ideal single-cycle

contention-free network.

5.9.5 Overheads

SCEPTER achieves high performance by using simple prioritization mechanisms, a livelock free-

dom mechanism that incurs no overhead, and small SSRs that only require an additional 2-bits for

opportunistic bypassing. On IBM 32 nm SOI technology, we synthesize the RTL with Synopsis

Design Compiler to obtain the critical path; identified as the multi-hop traversal path. The oppor-

tunistic bypassing logic contributes an additional 25 ps per hop to the critical path. Thus, for a

HPCmax of 8, the clock period is 1.8 ns, 12% higher than the baseline buffered SMART network.

Prior work targets this allocation delay [30], but it is not necessary to incorporate such optimizations

unless a lower HPCmax is targeted and a higher low-load latency is acceptable. The post-synthesis

area of the SCEPTER router RTL is 36% lower than the SMART router and 29% lower than a

two-cycle buffered router, where both baselines have 8 buffers per input port. Figure 5-13 shows the

post-synthesis power and area breakdown of the SCEPTER router. The SCEPTER router consumes

33% less power than the SMART router, although the switch allocation logic is slightly more

complex. The processor tile power is about 17% lower with the SCEPTER router instead of the

buffered SMART router, assuming each tile contains a simple in-order core, 16 KB split I/D LI

cache, and 128 KB L2 cache.

We utilize a Q-table for the self-learning throttling mechanism at each node to hold the Q
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values. Since the hot-spot traffic profile results in high congestion, the throttling actions are more

fine-grained and allow multiple increment and decrement granularities. The Q-table with 40 entries

is shown to be very effective at reducing the network starvation effects for the hotspot traffic profile.

Each Q value can be a single-precision floating point value that requires 32-bits to represent. The

total overhead of each table is estimated to be 160-bytes, if floating point is used. The global

starvation feedback network is adapted from the SCORPIO notification network, where it was

shown to be a low overhead network. For other workloads and traffic patterns, the number of

Q-table entries can potentially be reduced and should be application and target system dependent.

We leave the application-adaptive and network starvation-aware self-learning throttling for future

work, where the table size and overheads are determined and optimized with regard to all types of

workloads and a range of system configurations.
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CHAPTER 6

SC2EPTON: SNOOPY-COHERENT,

SINGLE-CYCLE EXPRESS PATH, AND

SELF-THROTTLING ORDERED

NETWORK

roadcast and multicast communication plays a role in both message passing and

shared memory paradigms. With packet-switched NoCs replacing shared bus inter-

connects, the broadcast/multicast support is not inherently supported which prompted researchers to

add message forking within the network. The multicast forking can take place at the NIC, or within

the routers as the multicast propagates through the network. The forking at the NIC creates many

unicast flits to replace the single multicast flit, in turn leading to high network congestion even at low

injection loads. Solutions to mitigate congestion are addressed in prior research [7,46,51,52,69,80],

mostly through the ability to fork flits within the routers. In essence, a single multicast enters the

network and at each router, multiple flits are generated and sent out output ports towards the desti-

nation nodes. While these proposals target buffered networks to enable the message forking within

the routers, none specifically address broadcast/multicast communication in bufferless on-chip

networks.
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Snoopy coherence places high bandwidth requirements on the interconnect for high-performance

gains. To scale the network and keep satisfying bandwidth demands, the VCs or buffers need to

scale with core count. The SCORPIO architecture removes the VC allocation from the critical

path, eliminating the impact on the router critical path timing. However, area and power still

pose a concern, as significant VCs and buffers are needed to handle SCORPIO's large broadcast

bandwidth at high core counts. SCEPTER bufferless architecture brings a ray of hope as high

performance is extracted through a series of prioritization, routing, bypassing and throttling mech-

anisms, maximizing opportunities to zoom along virtual express paths while pushing bandwidth.

However, SCEPTER is geared for unicast communication and supports broadcast communication by

sending multiple unicast messages, each with a single destination. For the full-map directory-based

coherence, SCEPTER alone suffices for performance improvement. Snoopy protocols, though,

require optimized broadcast communication. With just SCEPTER, each broadcast request spawns N

unicast requests, thus even at low to moderate injection loads, the explosion of deflections degrades

performance as links are fully occupied. In addition to the performance inefficiencies, the multiple

unicasts result in higher network power, thus prompting power efficient and broadcast optimized

architectures. Assuming livelock freedom is maintained, via a rotating source ID mechanism or

age-based per-hop arbitration, broadcasts eventually reach all nodes. However, the time to deliver

the broadcast to all the destination nodes, may be quite large in the SCEPTER network during

high congestion, the draining of flits relies on the livelock mechanism. Thus, the flit may continue

deflecting until the source ID is prioritized above all others.

6.1 Motivation

Broadcast communication is a a heavy burden for buffered networks and places an even heavier

burden on bufferless networks, especially if high performance goals must be attained within a low

power envelope. To further illustrate the need for a specific architecture for broadcast communication

on bufferless networks, we plot, in Figure 6-1 the average percentage of flits that failed more than

once to leave the network (eject to the NIC and core). This is due to multiple flits contending for

access to the same output link to the local NIC. We observe that the percentage of flits that encounter

ejection contention saturates quicker for broadcasts than unicasts. It saturates at approximately
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Figure 6-1: Percentage of Flits with Multiple Failed Attempts to Exit the Network

14% as the injection of new flits into the network is throttled by the network injection policy, only

allowing new flits to be injected if a free output port is available.

The theoretical limit of unicast and broadcast traffic in a k x k mesh NoC is shown in Table 6.1.

Using the Bernoulli process of the rate R, to determine the uniformly distributed, random, destina-

tions for unicasts, and sources for broadcasts. The bounds are determined based on the completed

message transaction, from the initiation at the source NIC until the flit is received at the destina-

tion(s). Unicast derivations for latency and throughput follow the technique mentioned in [26]. For

broadcast traffic, the broadcast latency, or time until all destinations receive the flit, is equal to the

time for the flit to reach the farthest destination. The channel load is analyzed across the bisection

and ejection links [68], where the maximum of the two determines the maximum throughput. For

kxk mesh NoC, with k=4, the bisection and ejection load is equivalent. However, for k>4, the

ejection links constrain the throughput for broadcast traffic.

The bufferless broadcasting mechanism must (1) ensure timely delivery of broadcast messages

to all nodes, (2) minimize the endpoint buffering requirement, and (3) support global ordering for

broadcast-based coherence protocols, while keeping ordering latencies minimal.
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Table 6.1: Latency and Bandwidth Limits of a kxk Mesh NoC for Unicast and Broadcast Traf-

fic. [68]

Metric Unicasts Broadcasts
(one-to-one multicasts) (one-to-all multicasts)

Average Hop Count 2(k + 1)/3 (3k - 1)/2, for k even

(Haverage) (k - 1)(3k + 1)/2k, for k odd
Bisection Link Channel Load k x R/4 k2 x R/4
(Lbisection)

Ejection Link Channel Load R k 2 xR

(Lejection)

Theoretical Latency Limit 2(k + 1)/3 (3k - 1)/2, for k even
given by Haverage (k - 1)(3k + 1)/2k, for k odd

Theoretical Throughput Limit R, for k <= 4 k 2 x R

given by max{ Lisection, Lejection} kxR/4, fork > 4

6.2 Related Work

We briefly review the research on multicast and broadcast communication in buffered on-chip

networks. While, bufferless broadcasting and multicasting is not extensively addressed in literature,

we discuss a few relevant works, including one that target optical interconnects. In addition to the

work in bufferless routing in mesh NoCs, mentioned in Chapter 5, we discuss here, prior proposals

which utilize rings for coherent communication.

6.2.1 Multicast and Broadcast Communication in NoCs

Multicast routing is especially challenging as the flit must be delivered to multiple destination nodes.

Three general approaches are unicast-based [61], tree-based [7, 46,80], and path-based routing [27].

The unicast-based scheme separates the multicast message into M different unicast messages, where

M is the number of destinations in the multicast. This approach creates congestion at the source

and destination links, and floods the network resulting in high contention and increased packet

latency. Tree-based routing creates a tree, with the source node as the root, and destinations on

the branches. Virtual Circuit Tree Multicasting (VCTM) [46] sends a packet to build the tree prior

to sending the multicast flit. However, VCTM requires additional storage per node to maintain

the tree information, and the tree setup time increases the overall multicast latency. Recursive

Partitioning Multicast (RPM) [80], does not build a tree structure as in VCTM, but rather encodes
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the destination nodes' positions in the packet header. RPM uses a recursive hop by hop partitioning

method, such that it replicates at a certain node. The replicated packets update the destination list in

the header and generate a new network partitioning based on the current node. It outperforms the

VCTM approach as setup requests are not required, but requires complex route computation logic.

Path-based multicast routing ensures a route is determined whereby the flit traverses along a path to

each destination sequentially. Implementation of such an adaptive routing algorithm, requires all

turns to be allowed and virtual channels for deadlock avoidance.

The tree-based broadcasting mechanism in [51], mentioned as SMART-B throughout this

chapter, broadcasts packets by creating shared or private virtual trees on a physical mesh network.

By dynamically generating multi-hop bypass paths, this work aims to achieve a broadcast in a single

cycle per dimension. Shared virtual trees result in contention among multiple broadcasts for the

shared links. Private virtual trees eliminates the contention between broadcasts, by arbitrating for

exclusive access to these broadcast links. A broadcast flit redirects to a corner node and awaits for

access to the separate dedicated broadcast links. The buffering at the corner nodes allows for this

mechanism to be feasible, however for bufferless networks the redirection latency would be gravely

affected. SMART-B is the state-of-the-art buffered broadcast mechanism.

6.2.2 Bufferless Networks and Coherent Ring Architectures

Multicasting over networks, void of buffers, presents unique challenges with regard to flow control

and guaranteed delivery to all destinations. Bufferless multicasting is rarely mentioned for on-

chip mesh networks. In [32], multicasting is addressed by migrating the concepts of path-based

and recursive partitioning to bufferless networks. The path-based bufferless multicast routes the

multicast packet to each destination along a non-deterministic path, where the closest destination is

selected to route to from the current router. However, the destination may vary as the flit is deflected,

and does not guarantee flit delivery to all destinations. Recursive partitioning is similar to RPM,

where the flit is replicated within the network if output ports are available.

Several chip prototypes and commercial multicore processors utilize ring interconnects: IBM

Cell [21], Intel Larrabee [70], Intel Sandy Bridge [82], due to its simplicity in comparison to

packet-switched networks and exploitable ordering for coherence. Numerous work on physical and

embedded ring topologies [13, 72] are explored for medium range systems, but the ring is not totally
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ordered and may lead to retries.

A dedicated ordering point on the ring creates a global order with bounded latency, but hits

performance due to the additional latency to reach the ordering point. Ring-Order [60] guarantees

ordering and avoids retries by intercepting requests and data messages on the ring, and enforces

transactions are completed in ring position order. Although inspired by token coherence, Ring-Order

does not require persistent requests for forward progress. However, it requires the data to follow

the ring path as well, increasing the network latency. Uncorq [73] broadcasts a snoop request to

all cores followed by a response message on a logical ring network to collect the responses from

all cores. This enforces a serialization of requests to the same cache line, but does not enforce

sequential consistency or global ordering of all requests. Although read requests do not wait for the

response messages to return, the write requests have to wait, with the waiting delay scaling linearly

with core count, like physical rings.

6.3 Overview

SC2EPTON (Snoopy Coherent, Single-Cycle Express Paths and self-Throttling Ordered Network)

is a bufferless NoC architecture with efficient broadcast and unicast communication to support

broadcast-based snoopy protocols. We leverage clockless repeaters [19] to ensure efficient, low-

latency communication for all message types, with multi-hop traversals. Unicast messages are

handled as in the SCEPTER architecture, with local starvation-awareness output port selection, and

opportunistic bypassing along idle express paths. Forking broadcast messages at the NIC would

only exacerbate the number of deflections and overall network congestion. Without the relief gained

from buffering in the routers, flits continually deflect, consume additional link and crossbar power,

and misroute if failed to access the ejection links.

Similar to the SCORPIO system, each node in the system consists of a main network router,

notification router, and network interface controller. The SCORPIO main network is capable of

handling broadcast requests on the GO-REQ virtual network and unicast requests on the UORESP

and P2P virtual networks. The SCEPTER bufferless router architecture is capable of supporting

high throughput unicast requests. For broadcasting, we tackle the problem of reduced network

bandwidth and ejection link constraints, by maintaining synchronized time intervals, mentioned
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throughout as time-windows to achieve distributed time-division for un-contended access.

6.3.1 Multiplexed Non-Contending Broadcasts

The ring topology is quite simple - all routers are connected together in a loop, and traffic injected

into the ring traverses all nodes until it reaches the destination(s). Since the topology allows for all

nodes to be reached by hopping through the ring, complex routing is not required for broadcasting.

With proper ring arbitration and access logic, in-ring buffering is not necessary. The ring latency

is equal to N cycles, where N is the number of nodes, or N/2 if bidirectional links are used. In

SC2EPTON, each broadcast coherent request generated waits in the local NIC until the time window

in which it is allowed to inject. The source IDs (SID), allowed to access the ring changes each

time-window, such that all the sources are given a chance to inject a flit into the network. The

clockless repeated links are utilized to enable multi-hop traversal in a single cycle. Thus, for a

N node network, the ring latency for a broadcast is N/HPCma cycles, where HPCmar is the

maximum number of hops traversed in a cycle.

Generally, TDM-based arbitration in networks is performed at the sources or individual nodes as

the requests arbitrate for access to the virtual channels, links, or switches. However, in a bufferless

network, the latency effects of failed access to desired output links degrades performance as such

flits are deflected in potentially non-progressive directions. The TDM-based mechanism must

guarantee an end-to-end, contention-free path for efficient broadcast communication. However,

even with clockless repeated links, the flit traversal reaches a maximum of 13 hops in a cycle at a

clock frequency of 1GHz. [19] The key idea of the snake bufferless broadcast (SB 2) mechanism

stems from the observations on link contention and ring arbitration:

1. TDM-based Distributed Arbitration. Synchronized time-windows can be used to perform

distributed ring arbitration without the need of a centralized arbiter. Notifications enhance

this TDM mechanism to ensure the network does not remain idle as would be the case with a

static, vanilla TDM injection assignment. Instead, notifications enable dynamic allocation of

the network, adapting to actual network load.

2. Contention-Free Communication. To eliminate contention on ejection links, more than

one broadcast flit is disallowed from arriving at a node, at the same time. Throughput
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suffers, however without single cycle full ring traversals, many ejection links are idle as the

flit traverses through the ring over multiple cycles. Properly scheduling simultaneous flits

from source IDs that do not contend for ejection links each time-window can ensure higher

throughput and fully utilized links.

The SB 2 network is a ring that snakes through the SCEPTER mesh network, encountering every

node on its path. At the beginning of a time-window, all source nodes with a flit waiting for network

injection, determine locally the allowed injection SIDs for this interval. If allowed, the source

proceeds with the flit injection into the ring. The flit enters the router, forks the flit to be sent to the

local NIC, and proceeds to the next router along the multi-hop bypass path. The flit continues until

it reaches HPCmax hops and is latched at that router. The enable bypassing signals are set without

a reservation request as each node is aware of the allowed SIDs this time-window and whether it

should allow a bypass or latch the incoming flit.

6.3.2 Walkthrough Example

More than one broadcast flit is able to simultaneously utilize the ring, provided they do not contend

for links. For instance, in a 16 node mesh NoC, the virtual ring interconnects nodes 0->1->2->3-

>7->6->5->9->10-> 1 1->15->14->13->12->8->4->O. If source node 0 is able to inject, it it able

to traverse up to HPCmax hops away before being latched. With a HPCmnax of 4, the flit from

SID = 0 can reach up to node 7, where it has to be latched. The rest of the ring is idle and can

accommodate additional flits. To maximize simultaneous flit injections, the ring is demarcated into

regions of HPCma, hops each. Thus, flits from nodes 7, 10, and 13 are allowed to inject at the

same time as node 0.

Figure 6-2 depicts a diagram of the bufferless broadcast NoC, utilizing the notification network

(Chapter 3) with enhanced clockless links for shorter time windows. At varied times before TO,

cores 0, 2, 7, 8, 13, and 15 observe cache misses and send broadcast coherent requests to the NIC

for network injection. The NICs encapsulate these requests into single flit packets and generates a

separate notification bit-vector, to be broadcast to all nodes.

At TO, notification messages arrive at all nodes via the notification network. The merged

notification is as shown, an asserted bit in the field corresponding to the source id of the node,
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Figure 6-2: Walkthrough Example of TDM-based Single-Cycle Bufferless Broadcast - Notification

requesting broadcast network access. Each node processes the notifications and performs a local,

but consistent determination of the SIDs that win ring access this time-window (TW). With the

notification received, each node locally decides to allow nodes {0, 7, 10, 13} to simultaneously

inject this time-window. Nodes 0, 7, and 13 inject requests Ml, M2, and M3, respectively. During

the time-window, the injected flits traverse the ring, taking HPCmaX hops per cycle. In the 16 node

example, HPCmaX is equal to 4, resulting in time-window of 4 cycles, which is sufficient for up

to four injected flits to reach all destinations. Each cycle, the flits are latched at the next router,

HPCmax hops away. Figure 6-3 shows that after one cycle, MI is latched at node 7, M2 is latched

at node 10, and M3 is latched at node 0. This unidirectional snake ring ensures exclusive access to

ejection links, simultaneously allowing multiple flits to traverse demarcated sections of the ring.

Non-contending sets of nodes are [{0, 7, 10, 13}, {1, 6, 11, 12}, {2, 5,8, 15}, {3, 4,9, 14}].

When switching to the next time window at T4, the notifications indicate cores 2, 8, and 15 still

need to inject coherent requests into the network. Switching through the non-contending sets, the

next applicable set with sources containing valid notifications is {2, 5, 8, 15}. The three injected
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flits reach all destinations within the next 4 cycles. Data responses are sent on the SCEPTER mesh

NoC to the requesters as only unicast message communication is necessary.

6.4 Single-cycle Bufferless Broadcast (SB 2) Network

The SB 2 network is part of the large SC 2EPTON architecture containing a bufferless unicast network

(SCEPTER) and a distributed ordering policy using notifications (SCORPIO). Combined with this

bufferless broadcast network, the fully bufferless NoC is capable of high performance coherent

communication, while eliminating the area/power overheads of directory storage and router buffers.

Considering a static TDM ring access assignment, every cycle, up to N/HPCaX flits traverse

the network without contention. The static TDM assignment cycles through all non-contending node

sets, covering all the potential request sources in the network. For instance, a 16-node NoC has the

following non-contending sets of nodes: [{0, 7,10, 13}, {1, 6, 11, 12}, {2, 5, 8, 15}, {3,4,9, 14}],
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which account for all nodes in the network. During the first time-window, the first set, {0,7,10,13}

are granted access to the ring. The second time-window, the ring allows { 1,6,11,121 to inject. This

process continues when switching to the next time-window and repeats over and over. However,

assume the network is idle, and a request from node 9 needs access to the SB 2 ring. In this case,

the worst case latency is when the node waits for three time-windows, during which the network

is idle, and is only granted access in the fourth time-window. Although the SB2 network latency

is significantly reduced with clockless repeated links, the worst case latency prompts concerns

especially when the network is remaining idle.

6.4.1 Dynamic and Distributed Ring Arbitration

To solve this problem, we use notifications to achieve a dynamic ring arbitration scheme, by

broadcasting the network access requesters to all nodes. Utilizing synchronized time-windows,

each node locally determines which nodes are granted ring access. Thus, in 16-node network in

the walkthrough example, each node cycles through the non-contending sets and determines if the

notification message sources match any nodes in the set. If not, none of the requesters are in this

non-contending set of nodes, and the next non-contending set is checked. As each node performs

this check, all will arrive at the same conclusion on the nodes allowed to inject into the ring this

time-window. This is guaranteed as the notifications are received by all nodes within a fixed latency.

The notifications propagate to all nodes on a separate, bufferless network that guarantees a fixed

latency bound by merging notifications upon contention. The notification network, described in

Chapter 3, latches notification messages at each router in the network, incurring a fixed latency

bound of 2k in a k x k mesh NoC. Leveraging the clockless repeated links [19], once again, we are

able to obtain the low latency benefits, thereby reducing the notification broadcast latency.

To achieve multi-hop bypassing of routers, the bypass path is preset using a reservation requests,

as described in Chapter 5. Since the notification network is a static broadcast network, a dynamic

reservation mechanism is not required. Rather, the bypass path is enabled for straight through

traffic, and notifications are latched at turns. A notification arriving from the East is able to bypass

through to the West direction as the bypass is statically enabled. At each node , the notification is

bitwise-ORed with other notifications with the same output direction. At a "turn", the notification

is latched and sent out the following cycle. Considering an HPCaX less than the maximum
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Manhattan distance between source and destination, a 2-cycle notification network broadcast latency

is generally achieved. For larger networks or lower HPCmax values, the notifications must be

latched more often.

6.4.2 SB 2 Router Microarchitecture

The ring topology is a simple network that is very useful for broadcast communication as each node

is traversed along the ring. With only two links per node, this degree 2 network router is very simple

and consumes minimal area, especially when realized without virtual channels and completely

bufferless. Figure 6-4 shows the microarchitecture of the SB 2 router. In addition to the single input

and output link of the ring, the NIC input link for injection into the network, and NIC output link

for ejection from the network is shown. When a flit arrives at the router, it either bypasses through

to the asynchronous repeaters shown, or buffers in the latch for one cycle. Three control signals

manage the NIC injection and bypassing setup: InJEN, BYPEN, RSEL. When InjEN is asserted,

the NIC is able to send the flit into the network and to the multiplexers where the flit is forked to

the output links. Similarly, the incoming flit from the West port is able to bypass when BYPEN is

asserted and the multiplexer logic forks the flit to the local NIC and the East output direction. RSEL

must be set to allow either the flit from the NIC or the West input to be sent through to continue the
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Figure 6-4: SB 2 Snake Ring

Latch Flit Link Traversal
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broadcast. Hence, the signals are assigned to eliminate output link contention.

Let's revisit the 16 node walkthrough example, once again, to illustrate the contention-free

behavior. In a distributed manner all the nodes are aware of the injecting sources. At this time, the

control signals for the SB 2 router are set. When nodes {0,7,10,13} are allowed to inject, every node

is aware whether its own node or another node is injecting. Thus, nodes {0,7,10,131 set InjEN to 1

and the RSEL to 1 such that the NIC's flit enters the network. The BYPEN is set to 0, to eliminate

output link contention and ensure the flit is latched to be sent the following cycle. All other nodes

are aware that they are not allowed to inject this time window and enable the bypass path for flits on

the ring. Thus, setting BYPEN to 1, InjEN to 0, and RSEL to 0.

6.4.3 Global Request Ordering

The refreshingly simple broadcast network is effective at delivering broadcasts to all nodes, in a

contention-free manner, and with low latency. However, to support snoopy coherence and sequential

consistency, every node must consistently order requests such that a global order is achieved.

In the SCORPIO NoC, each time window, notifications inform of requests from certain source

nodes that are expected to arrive via the main network. Following consistent ordering rules, every

node prioritizes the source IDs and processes requests in the priority order. The worst case is when

flit arrives prior to higher priority flits and is prioritized last. Thus, the flit must reside in the network

interface buffers until all other flits are received and processed. With the use of notifications, the

SCORPIO NoC eliminates the worst case for low loads. Notifications indicate which source IDs

have valid requests arriving; Allowing a seemingly low priority flit to be processed sooner as the

NIC is aware that flits from higher priority sources will not be arriving. However, at high network

loads, the worst case is still present and the ordering latencies can be detrimental to the full system

application performance.

By constraining the potential number of broadcast requests each cycle, the endpoint ordering is

very efficient. Each time-window, up to a maximum of four broadcast requests can arrive in a 16

node system, with HPCax of 4. In this scenario, the worst case ordering latency at the endpoint is

6 cycles for the SB 2 network: 3 cycles awaiting the highest priority request, and 3 cycles to send the

three ahead requests, one at a time, up through the NIC and to the cache controller.
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Point-to-Point Ordering

Sequential consistency requires that program order is maintained for individual processors. In

addition to enforcing a global order, requests from the same source need to be ordered as well,

referred to as point-to-point ordering. The dynamic ring access allows one flit per node to be sent

in N cycles, where N is the number of nodes. The NIC processes requests and places them into a

FIFO, to await network access. Thus the request issue order is maintained as the flits are scheduled

in-order for network access, and multiple flits from the same source are not allowed simultaneously.

Finite Endpoint Buffering

NIC buffers hold flits until they are ordered, depacketized, and sent to the cache controller. A 16

node network has a 4 cycle time-window, and is able to handle up to four flits within that time. At

the endpoint, worst case occurs when 3 flits arrive prior to the highest priority request. By the end of

the time-window, the fourth flit arrives and is sent to the cache controller the following cycle. Worst

case, the destinations must have three buffers to accommodate the waiting flits. These destination

buffers must be appropriately sized for performance and correctness reasons. A maximum of

N/HPCmax flits are handled per time-window. At each bufferless router, the flit must exit either

the same or following cycle, based on the bypass and latch control signals. If some NICs along

the ring are unable to accept the flit, where the number of buffers is less than N/HPCma , the

broadcast will fail.

SCORPIO has a worst case sizing of 2 buffers in each NIC, irrespective of the number of nodes,

for correctness, but performance goals required at least 4 buffers for the ordered vnet. The router

buffers account for buffer backpressure due to the NIC buffers, reducing any performance impact.

Due to the lack of router buffers in SB2 , buffer backpressure at routers cannot be leveraged to

alleviate fully occupied endpoint buffers and worst case buffer sizing in the NICs must be enforced.

6.5 Architecture Analysis

Modeled System. For synthetic and full system architectural simulations, we use the gem5 [15]

cycle-accurate simulator with the GARNET [10] network model. The SC2EPTON and baseline
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Table 6.2: System Parameters for Evaluations

Core x86 in-order
Li cache 32KB I/D
L2 cache 1 MB

NoC Topology 6 x 6 (full system), 8 x 8 mesh (synthetic)

HPCmax 8
Notification Window 2

Virtual Channels 12

architectural parameters are depicted in Table 6.2 for the full system simulations.

Baselines. Broadcast and multicast support in on-chip buffered networks are usually achieved by

converting a single multicast into multiple unicasts, establishing a multicast tree in the network

with forking within the routers, or routing through a path that encounters the multicast destinations

sequentially. SCORPIO [28], an ordered mesh NoC, utilizes a tree-based broadcast support within

the routers. Instead of sending the same request as multiple unicasts, it allows request to fork through

multiple router output ports in the same cycle, along a deterministic XY tree. SMART-B [51],

leverages the single-cycle multi-hop traversals in [50] for private virtual broadcast trees in a mesh

NoC.

Evaluation Methodology. We evaluate the performance of the SB 2 bufferless broadcast network

with synthetic traffic, and compare with the SCORPIO and SMART-B baselines. For fair compari-

son, the notification network enhanced with asynchronous repeated links are incorporated in the

SCORPIO architecture as well, resulting in a shorter time window. Thus, the wait time until another

flit is able to inject from the same source is reduced tremendously, from a maximum of 16 cycles to

2 cycles for a 64-node network. Insight and conclusions obtained from the synthetic results, are

used to specify the architectural parameters of the SB2 network within the SC2 EPTON architecture.

We evaluate the full system performance for the SC 2EPTON network compared to the baseline

buffered networks, supporting snoopy (SCORPIO) or directory-based (SMART-B) coherence. Since

SC 2EPTON and SCORPIO support global coherent request ordering, both use the MOSI broadcast

protocol, explained in-depth in Chapter 4, SMART-B network uses the AMD Hypertransport

protocol to maintain coherence as the directory is the ordering point. AMD Hypertransport uses the

directory as an ordering point, and thus can function with just a small directory cache, but sacrifices

140



by relying on broadcasts. The SMART-B network handles these broadcasts, while SMART [50]

handles the unicast communication. The combined network is referred to as SMART-Full throughout

this section. It is a state-of-the-art buffered network that efficiently handles unicasts and broadcasts.

6.5.1 SB 2 Network-Level Performance Analysis

We evaluate the latency and throughput of the SB2 network for 64 nodes and compare its performance

to the SCORPIO [28] and SMART-B [51] networks, each with 12 VCs per input port. Both SMART-

B and SB2 are evaluated with an HPCma, of 8, unless mentioned otherwise. Dynamic TDM

ring arbitration, with a bufferless, contention-free, fast notification network, yields improved

performance, as we discussed qualitatively earlier. Here, we evaluate its performance effects

through detailed cycle-accurate simulations for further insight.
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Figure 6-5: Comparison of Broadcast Latency with Buffered Broadcast Optimized Networks

Broadcast Latency and Throughput for Uniform Random Traffic.

Figure 6-5 is a plot of the broadcast latency, i.e. time for broadcast to reach all destinations, as

a function of the injection rate for an 8 x 8 network and when all nodes have equal probability of

injecting a flit. It includes both the network and source queueing delay. The ordering latency at

the destination for SCORPIO and SB2, and directory serialization latency for SMART-B, is not

considered here, so that the network performance alone is extracted for comparison.
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Figure 6-6: Throughput for Broadcast Communication in 8 x 8 Network

SCORPIO does not have dedicated broadcast links or separate physical network to handle

broadcast requests. Rather each broadcast contends with flits from other message classes for access

to the same physical links and switches. SMART-B, and SB2, have separate dedicated links for

achieving broadcast performance improvement, hence contention with unicast flits is avoided at

both the inter-router links and ejection links. SMART-B buffers flits at corner routers, until a

private virtual tree is established, and the broadcast completes in at most two cycles. To eliminate

unfair broadcast performance comparison, here we evaluate the broadcast latency only and send

unicast traffic on a separate, ideal 1-cycle network for all NoCs. Even with broadcast support within

the SCORPIO routers to fork flits at each hop, the throughput performance lags SMART-B. The

broadcast latency shown accounts for the source queueing latency, which includes the time until

a message is able to inject into the network. Thus, over-provisioning the SCORPIO routers with

buffers does not help throughput when the injection policy restricts one flit to be sent per source per

time-window. SB2 begins with an 11 cycle latency, at the zero load point, and gradually increases

as the network injection rate is increased. Using the derivation of the ideal broadcast latency and

throughput for a 8 x 8 mesh NoC in Table 6.1, the ideal throughput is R/(k2 * R) = 1/k2 = 0.015

flits/node/cycle, and ideal latency is 8 cycles. The SMART-B network saturates at 66% of the ideal

throughput limit, where nearly all the buffers in the network are saturated and queueing delay is

constant. However, the SB 2's saturation throughput cannot be as easily identified. We plot the

accepted throughput as a function of the offered load in Figure 6-6, for a 8 x 8 network. SB 2 is
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provides a throughput equal to the offered network load.

The NICs are equipped with at least the minimum number of buffers to avoid the case where the

maximum number of injection sources cannot all proceed. Hence, SB2's network interfaces do not

add backpressure into the network, and saturation doesn't occur.

Dynamic TDM Ring Arbitration with Uniform Random Traffic.

The static TDM ring arbitration mechanism, TDM-Static, uses the same ring network as SB 2 but

resorts to a static assignment of ring access each time-window. It repeatedly cycles through the sets

of non-contending sources, thereby covering all nodes in the network. Each node must wait for its

time slot to inject, resulting in a worst case wait time of N/HPCmaX cycles, where N is the number

of nodes. For low loads, time slots are cycled through, however hardly few of the nodes allowed to

inject, actually do so. Figure 6-7 depicts the broadcast latency for the static TDM approach and

dynamic notification-based arbitration mechanism, on uniform random traffic for 64 nodes. The

notifications reduce the latency by 25 cycles at approximately the zero load point. After about 0.006

flits/node/cycle, each time slot contains at least one valid request to inject for the uniform random

traffic profile. Thus, due to the uniform random source selection, no time slots are idle for higher

injection rates and the same results are observed for the static and notification-based approaches. For

application workloads, the dynamic ring arbitration is even more beneficial, especially in the event

of bursty traffic originating from a single or few sources. Global ordering can be maintained with
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Figure 6-7: Broadcast Latency with Static and Dynamic TDM Arbitration for 64 Nodes
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both approaches, as each node locally orders requests according to consistent rules. Notifications

reduce the ordering latency at the endpoints in the event the time windows are not fully utilized by

injecting sources.
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Figure 6-8: Comparison of Ordering Latency of SB2 and SCORPIO

Ordering Latency.

Optimizing the endpoint ordering latency is crucial for improved performance of snoopy coherence

in comparison to directory-based coherence. The ordering latency should be much less than the

indirection latency for the approach to be feasible. SCORPIO outperforms directory baselines

because the ordering latency is less than 50% of the indirection plus serialization latency. Figure 6-8

depicts the ordering latency of SCORPIO in comparison to SB2, with respect to the injection rate.

Due to fewer requests being ordered each time window, and fixed network latencies after network

injection, SB 2's ordering latency is substantially lower than SCORPIO's. As HPCmax is reduced,

the ordering latency increases. This is due to the property where multiple simultaneous sources are

allowed to inject. With shorter multi-hop traversals, there are more non-overlapping segments of

the ring available. Thus, for 64 nodes and a HPCmaX of 4, each time-window allows up to 16 flits

to enter and route through the ring.

With the reserved virtual channel in SCORPIO's main network, and each hop incurring 1

cycle with lookahead bypassing, the highest priority flit arrives within 16 cycles for the 64-node
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network. However, the SMART-B network with directory-based coherence has a lower indirection

latency due to the optimization of unicast messages with dynamically preset multi-hop traversals.

The ordering latency of SCORPIO prohibits performance improvement over such state-of-the-art

buffered networks with minimal indirection latency.

Latency and Throughput Sensitivity to Hops-Per-Cycle.

As HPCmax is reduced, the number of simultaneous injection sources increases, as well as the

network latency. For 64 nodes, a HPCmax of 2 allows 32 nodes to inject simultaneously, thus a

maximum of 32 flits reach all nodes within 32 cycles. Higher hops per cycle results in lower network

latency, smaller time windows, and reduced waiting time for a time slot. Without global ordering

support, it is evident that the throughput is the similar as HPCmax is varied, with a maximum of 64

flits arriving at all destinations within 64 cycles. However, ordering of requests is required at the

destinations for snoopy coherence and sequential consistency support, which imposes a waiting

delay at the endpoints as well, reducing network throughput. Figure 6-9 shows the waiting latency

at the source, and throughput as HPCmaX is varied. The ordering latency variation is depicted in

Figure 6-8. For low injection rates, the higher the HPC, the lower the wait time, since more idle

time windows occur.
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Figure 6-9: Sensitivity to HPCmax
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6.5.2 SC 2 EPTON Analysis and Discussion

SC2 EPTON consists of a bufferless mesh architecture and embedded snake ring to communicate

coherent responses and requests, respectively. The network-level analysis of the bufferless response

network, SCEPTER, and embedded ring request network, SB2, displayed high-performance in

comparison to baseline buffered networks.

Application Performance

Full system application performance on a 36 node system is performed to compare the SC2 EPTON

bufferless network with the snoopy coherent SCORPIO network, and directory-based SMART-Full

network. SC 2EPTON divides messages to perform bufferless broadcast over SB 2 and bufferless

unicast over SCEPTER. Similarly, we model the SMART-Full network to have separate unicast and

broadcast networks.

Figure 6-10, shows the normalized application runtime for SPLASH-2 and PARSEC benchmarks

simulated on gem5. SC2EPTON achieves on average a 9% lower application runtime than SCORPIO,

and 13.6% higher runtime than the SMART-Full network. Swaptions generates lower than average

L2 cache miss rates and reduced network traffic. As a result, the benefits of SMART-Full and

SC2EPTON over SCORPIO only reduce the runtime by 10% and 6%, respectively. Subject to the

communication pattern, opportunistic bypassing may or may not be beneficial. In the water-spatial

application, 26% of opportunistic bypass paths are not taken. Thus, for unicast data responses, the

deflections cause additional latency penalty. Coupled with the performance impact of the bufferless

broadcasting, the results show a wider performance gap between SMART-Full and SC 2EPTON.

SC2EPTON's performance gains over SCORPIO, despite the lack of buffers, is due to efficient

broadcast and unicast communication. For unicast data responses, SC2EPTON benefits from path

diversity and express paths to alleviate the impact of the deflections. Since it is observed that these

applications do not tax the network and exhibit low network injection rates, this operating point is

beneficial to the bufferless NoC. Thus, deflections are few, the per-hop latency is low as the router

pipeline is shorter, and express paths are set up and traversed by the reserving flit.

More so, the benefits to the broadcasts are evidents from the evaluation of the broadcast latency

and ordering latency of SB 2 (embedded in SC 2EPTON) and SCORPIO. Even at low injection
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Figure 6-10: Normalized Performance of Full System PARSEC and SPLASH-2 Applications

rates, the ordering latency is reduced in comparison to SCORPIO. For SCORPIO, we bound the

notification network latency but the main network's performance isn't bounded and depends on

the network traffic, contention, and priority. For deadlock avoidance, the reserved VC ensures the

highest priority flit is granted a single cycle per hop lookahead bypass path.

Area and Power

The energy breakdown of the components in the SCORPIO and SCEPTER NoCs were discussed

in detail in prior chapters. The SB2 ring network has minimal overhead as each router's data and

control path is very simple. Effectively, the buffers at the network interface increase slightly to

accommodate for the maximum number of requests per time window, while the router buffers

are completely eliminated. Using the IBM 45 nm SOI technology, the SC2 EPTON RTL synthesis

with Synopsis Design Compiler, we determine the post synthesis area and power. The SC2EPTON

NoC reduces the combined router and NIC area by 39%, and power by 36%, in comparison to the

SCORPIO NoC.

Discussion

SC2EPTON demonstrates that such bufferless networks can enable high performing snoopy co-

herence at low cost. Especially without the complexity that ordering usually entails, in the form

of timestamps, tokens, etc. Bufferless networks are often targeted for low to medium loads, since

the performance degrades for higher loads. SC 2EPTON achieves high performance bufferless

communication for coherent requests and responses, while maintaining global ordering support for
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snoopy coherence and sequential consistency. The switch allocators for bufferless networks must

schedule an incoming flit to an output port. Since the critical path of the bufferless mesh router is the

multi-hop traversal path, the allocator delay does not constrain the maximum frequency. The area

and power benefits of a bufferless approach are tremendous. By eliminating buffers, we remove the

associated dynamic and leakage power consumption, yielding higher power savings than dynamic

voltage and frequency scaling, where the dynamic power consumption is alone targeted.
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CHAPTER 7

CONCLUSION

mce the end of the golden age of Dennard scaling, achieving uniprocessor perfor-

mance improvements per technology generation is not as straightforward, espe-

cially within tight area and power budgets. The limitations commonly referred to as a brick wall

(ILP+Memory+Power), turned the attention to multicore processors as a saving grace, with the view

that processors are the future transistors. However, to reach the stage where many processors are

easily integrated, the processors must (1) communicate efficiently, (2) ensure coherence, and (3)

remain within the area/power constraints. Processor architectures are quite diverse, with varying

power and area budgets, allowing for a good selection when integrating many processors on-chip.

The challenges lie in the interconnect, where the three points mentioned translate to low-latency

and high-throughput communication, with cache coherence support, and low power/area cost. As

hardware cache coherence provides greater performance potential than the software counterparts, it

is often optimized and focused on in research communities, in an attempt to scale hardware cache

coherence as far as possible.

The design of the on-chip network plays a crucial role as maintaining cache coherence trades

on the performance and area/power efficiency of the network. This dissertation outlines the three

networks that target the challenges of supporting high performance cache coherence, at ultra-low

overhead. The three-fold NoCs are combined into SC2EPTON (Snoopy Coherent, Single-Cycle

Express Path, self-Throttling, Ordered Network), which takes parallel architectures and on-chip

networks beyond the conventional (buffered, directory-based) to SCORPIO's 36-core chip prototype
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(buffered, snoop-based), and towards low-power, intelligent interconnects (bufferless, snoop-based)

to address the limits to scaling coherence.

7.1 Summary and Contributions

The dissertation steps through the development of the SCORPIO, SCEPTER, and SB2 NoCs, and

culminates in the SC2 EPTON bufferless NoC architecture for scalable many-core chips.

7.1.1 SCORPIO: Distributed Global Ordering

Directory-based cache coherence is the conventional choice for multicore processors, but incurs high

storage overheads, limiting its scalability. Reducing storage results in inaccurate sharer tracking,

thereby deteriorating application performance. While snoop-based cache coherence eliminates the

storage overhead requirement, it intrinsically relies on ordered interconnects which do not scale.

SCORPIO, a network-on-chip (NoC) architecture containing a separate fixed-latency contention-

free network, supports snoopy coherence with a novel distributed global ordering mechanism for

unordered mesh networks at low cost.

Key Idea: Message delivery is decoupled from the ordering, allowing messages to arrive in any

order and at any time, and still be correctly ordered. Upon a cache miss request from the core, the

network interface packetizes and generates two network request types. One is a broadcast message

containing the address and sent to all cores, such that one may respond with the data. The other

message is a notification, informing all cores to expect a request from this core. Since knowledge is

imparted globally, each node orders messages locally while maintaining global order with consistent

ordering rules and synchronized time windows. Each time window, the prioritization order changes

for fairness reasons.

The architecture is designed to plug-and-play with existing multicore IP and with practicality,

timing, area, and power as top concerns. The SCORPIO architecture is incorporated in an 11

mm-by-13mm chip prototype, fabricated in IBM 45nm SOI technology, comprising 36 Freescale

e200 Power Architecture cores with private LI and L2 caches interfacing with the NoC via ARM

AMBA, along with two Cadence on-chip DDR2 controllers.

Insight: With notifications, ordering at the endpoints is performed based on the actual injected
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messages, rather than expecting the worst case conditions - all nodes have sent requests. This

minimizes the ordering delay such that it is much less than the indirection latency plus serialization

latency incurred in directory-based coherence. Full-system 36 and 64-core simulations on SPLASH-

2 and PARSEC benchmarks show an average application runtime reduction of 24.1% and 12.9%, in

comparison to distributed directory and AMD HyperTransport coherence protocols, respectively.

The chip prototype achieves a post synthesis operating frequency of 1 GHz (833 MHz post-layout)

with an estimated power of 28.8 W (768 mW per tile), while the network consumes only 10% of

tile area and 19 % of tile power. While the 36-core SCORPIO chip is an academic chip design that

can be better optimized, we learnt significantly through this exercise about the intricate interactions

between processor, cache, interconnect and memory design, as well as the practical implementation

overheads.

7.1.2 SCEPTER: High-Performance Bufferless Network

Although the downsides of directory-based coherence are averted, in SCORPIO, the network itself

consumes a significant fraction of the total chip power, of which the router buffer power dominates.

As higher performance is desired from the network, each router is packed with buffers, prompting

area and power concerns. Eliminating router buffers while retaining high performance is ideal for

future manycore systems. SCEPTER, a bufferless NoC architecture, achieves high performance

unicast communication by setting up single-cycle virtual express paths dynamically, allowing

deflected flits to traverse non-minimal paths with no latency penalty. By leveraging asynchronous

repeated links, express paths are set up dynamically. However, in a bufferless router, a flit cannot be

buffered to allow for bypassing flit from far away, to pass through this router the following cycle.

Key Idea: Leverage single-cycle express paths to reduce the latency penalty of deflections in

bufferless networks SCEPTER intelligently prioritizes between flits currently in the router pipeline,

flits bypassing from faraway, as well as flits waiting in the network interface to be injected. It

adaptively routes flits in a livelock-free manner while maximizing opportunities to zoom along

virtual express paths by opportunistically bypassing. For high network loads, it self-learns the

throttle rate at each node, reducing starvation in the network. The bufferless network takes advantage

of path diversity with deflection routing, and deliberate selection of non-minimal output directions

when the flits are constantly ping ponging between nodes in heavily congested regions.
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Insight: The chaotic environment of a bufferless network, where flits deflect and continually

roam the network until it reaches the destination, is unpredictable as scheduled preset multi-hop

traversals are wasted in the event the flit doesn't arrive. SCEPTER takes advantage of these idle

multi-hop paths by allowing other flits to bypass the router if the crossbar switch has been preset,

and the route would not deflect the flit farther from the destination. Utilizing these opportunistic

bypass paths and output port selection, performance is greatly enhanced for bufferless networks.

For a 64 and 256 node networks, we demonstrate 62% lower latency and 1.3 x higher throughput

over a baseline bufferless NoC for synthetic traffic patterns on average; on par performance to a

buffered mesh network with 6 flit buffers per input port in each router. Self-throttling with a hotspot

traffic pattern, results in a 31.4% and 38.6% lower starvation rate for 64 and 256 nodes. Finally,

full-system 36-core simulations of SCEPTER on SPLASH-2 and PARSEC benchmarks show an

application runtime reduction of 19%, in comparison to a baseline bufferless NoC; and comparable

performance to a single-cycle multi-hop buffered mesh network. This is achieved with a completely

bufferless NoC, with SCEPTER leading to 36% area and 33% power savings vs. a state-of-the-art

buffered NoC.

7.1.3 SB2 Dynamic and Distributed Snake Ring Arbitration

For unicast communication, SCEPTER performs on-par with state-of-the-art buffered networks.

However, snoopy coherence requires broadcast communication to be achieved with low latency,

for overall performance gains. Broadcasts significantly congest the network links in a bufferless

architecture: many deflections at each router, reduce multi-hop bypassing opportunities, high

network latencies, and ejection links. SB 2, a bufferless broadcast NoC architecture, targets the

broadcast contention effects, further exacerbated in bufferless interconnects, utilizing a ring that

routes through all nodes. Arbitration for ring access is performed using synchronized time windows

where each node is aware of the sources allowed to send requests into the network, for that time

slot. This time-division-multiplexed method removes the need for a centralized arbiter, however for

snoopy coherent communication, all requests need to be globally ordered.

Key Idea: Dynamically determine the time-division-multiplexed access for the ring, allow

simultaneous ring access for non-contending sources, and set router control signals, all locally at

each node. As the broadcast bandwidth is often limited by the ejection links, un-contended access

152



ensures timely delivery of the broadcast request to all nodes. A distributed, dynamic time-division

multiplexed mechanism is created to allow flits to simultaneously utilize the network and obtain

un-contended access to ejection and output links each cycle, without a centralized arbiter. Each

node locally determines the nodes granted network access, while maintaining a globally consistent

arbitration decision.

Insight: The ring presents an ideal topology for bufferless broadcasting as the network topology

ensures traversal of all nodes. However, the ring topology does not scale well as the latency increases

with N, where N is the number of nodes. Using asynchronous repeated links, this latency is reduced

which improves the performance of broadcasts. Together with the time-division-multiplexed

arbitration, the SB2 network does not saturate and continues to deliver flits at destinations at a rate

that closely matches the offered load.

7.1.4 SC2EPTON

The SC 2 EPTON architecture is fully bufferless as unicast messages are sent on the SCEPTER mesh

NoC, and broadcast messages are sent on the SB 2 snake ring. It supports efficient communication of

coherent messages on a bufferless network, while maintaining global ordering for snoopy coherence

and sequential consistency. Full-system 36-core simulations of SC 2EPTON on SPLASH-2 and

PARSEC benchmarks show an application runtime reduction of 9%, in comparison to a baseline

SCORPIO NoC, while realizing an area savings of 39% and power savings of 36%; and SMART

achieves only 20% runtime reduction with significant area and power cost.

7.2 Future Work

This dissertation addresses the three challenges of scaling coherence by eliminating unscalable

storage concerns, extending high performing snoopy coherence to scalable buffered mesh and

bufferless ring networks, while reducing area and power substantially. As problems are tackled

however, new ones emerge that can be researched further. Two potential avenues for future work,

among many, are scalable buffered and bufferless coherent networks, and intelligent networks for

workload adaptive behavior.
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7.2.1 Scalable Buffered and Bufferless Coherent Networks

Scaling the SCORPIO network up to 100 cores reveals the need for increased buffering within the

network routers to provide the necessary bandwidth for broadcasting. To ensure scalable snoopy

coherent communication on these buffered networks, either broadcasts must be filtered to reduce

unnecessary snoops or the network must be capable of supporting the required bandwidth. In-

network coherence filtering (INCF) [11] proposed to filter redundant snoop requests by embedding

small coherence filters at various routers in the network, and thereby saving network bandwidth

and power. However, adapting it to the SCORPIO network is a challenge, as preliminary analysis

does not reveal promising results. Transitioning from high bandwidth buffered networks to low

bandwidth bufferless networks, shifts the challenge of communicating coherent broadcast requests

to scheduling the network access to reduce/eliminate contention. When scaling the SB2 snake ring

to higher core counts, the fundamental scaling problem of rings is encountered. For up to 64 cores,

SC 2EPTON showed performance improvement over the baseline SCORPIO, but scaling broadcasts

for larger networks can be potentially achieved through the use of filtering mechanisms, optical

interconnects, hierarchical networks, or new device technologies.

7.2.2 Intelligent On-Chip Networks

The SCORPIO 36-core chip prototype parameters are a result of the design space exploration

and optimization using architectural simulation results. However, this is not sufficient as systems

become more complex, heterogeneous, and environment or workload dependent. According to

IBM's Senior Vice President, Paul Horn, the problem that can prevent the progression to the next

era of computing is complexity. [6] He claims that keeping pace with Moore's law is not the

chief problem, but rather managing the computing machines that have been developed thus far.

Extracting the full performance potential for a varied set of applications requires runtime adaptive

support as performance variation due to substrate, process, power and workload cannot be predicted

and accounted for at design time. For instance, in SCEPTER, the congestion could be controlled

with simple heuristics tuned prior to runtime, but required the self-throttling mechanism to obtain

network state feedback and adjust the rate accordingly. Clearly the network state varies based on

workload and dynamic interactions at each router, made even more unpredictable due to deflection
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based routing. The ideal way to optimize general-purpose chip performance would be at runtime,

requiring the autonomic capability to achieve the performance self-tuning with consideration of

energy monitoring feedback. State of the art multicore processors with a network interconnect and

autonomic capability will be instrumental in ensuring it runs at its full potential.
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