
A Programmable Data Plane for

Resource Management in Datacenters

by

Amy Ousterhout

ARCHIVES
MASSACHUSETS INSTITUTEOF TECHNOLOGY

NOV 0 2 2015

LI BRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

@ Massachusetts Institute of Technology 2015. All rights reserved.

Signature redactedA uthor

Department of Electrical Engineering and Computer Science
August 28, 2015

C ertified by..
Hari Balakrishnan

Fujitsu Chair Professor
Thesis Supervisor

Accepted by ...
Signature redacted

/rofessor Leslie A. Kolodziejski
Chairman, Department Committee on Graduate Theses

Flexplane:

2

Flexplane: A Programmable Data Plane for Resource

Management in Datacenters

by

Amy Ousterhout

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2015, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Network resource management schemes can significantly improve the performance of
datacenter applications. However, it is difficult to experiment with and evaluate these
schemes today because they require modifications to hardware routers. To address
this we introduce Flexplane, a programmable network data plane for datacenters.
Flexplane enables users to express their schemes in a high-level language (C++) and
then run real datacenter applications over them at hardware rates. We demonstrate
that Flexplane can accurately reproduce the behavior of schemes already supported in
hardware (e.g. RED, DCTCP) and can be used to experiment with new schemes not
yet supported in hardware, such as HULL. We also show that Flexplane is scalable
and has the potential to support large networks.

Thesis Supervisor: Hari Balakrishnan
Title: Fujitsu Chair Professor

3

4

Acknowledgments

Several people have contributed to this thesis over the last two years through their

help and support. First I would like to thank my advisor, Hari Balakrishnan. Hari

has encouraged me to strive for ambitious goals. He has given me the freedom to

work through research problems independently, but has provided hands-on assistance

when needed. Jonathan Perry was also very supportive as I was getting started at

MIT. I enjoyed working on with him on Fastpass, which became the foundation for

this work, and I learned much from him about engineering large systems.

Our collaborators at Facebook were instrumental in both this work and in Fast-

pass. Petr Lapukhov eagerly devoted several weeks to teaching us how to configure

the Facebook switches and helping us run experiments on their clusters. Hans Fugal

similarly assisted us with our Fastpass experiments. Omar Baldonado and Sanjeev

Kumar provided enthusiastic support of our Facebook collaborations, and Lawrence

Brakmo provided insights about experimental design. From Mellanox, Vadim Bal-

akhovski provided generous assistance with Mellanox drivers and equipment.

I would also like to thank Devavrat Shah for helping with the initial design of

Flexplane, and Ambika Krishnamachar for prototyping network schemes in Flexplane.

None of this work would have been possible without financial support. The Irwin

and Joan Jacobs Presidential Fellowship supported me in my first year and an NSF

Graduate Research Fellowship and a Fannie and John Hertz Foundation Fellowship

have supported me since then.

I am grateful to all of my officemates and labmates for providing support in the

forms of answering questions, reading drafts, or taking breaks from research with me

when needed. Thanks Ravi Netravali, Frank Wang, Pratiksha Thaker, Tiffany Chen,

Katrina LaCurts, Anirudh Sivaraman, Keith Winstein, Peter Iannucci, and many

others.

My friends, both at MIT and elsewhere, have been very supportive throughout

my time at graduate school so far. In particular I would like to thank Todd Gingrich

for believing in my capabilities, for cheering me up when I needed it, and for giving

5

me an excuse to take occasional much-needed breaks from work.

Finally, my family has always provided support and guidance as I pursued the

"family business". Thank you for enabling me to pursue my passions, and for tolerating

my decision to attend graduate school on the opposite side of the country.

6

Contents

1 Introduction 13

2 Design 17

2.1 Abstract Packets . 18

2.2 Em ulation . 19

2.3 A ccuracy . 20

2.4 Flexplane APIs . 22

2.5 Scaling the Emulator with Multicore 24

2.6 Fault Tolerance . 25

2.7 Deployment . 26

3 Implementation 27

4 Evaluation 31

4.1 A ccuracy . 32

4.2 Experimenting with Flexplane . 34

4.3 Emulator Scalability . 36

5 Related Work 41

5.1 Software routers . 41

5.2 Programmable hardware . 43

6 Conclusion and Future Work 45

7

8

List of Figures

2-1 System overview .

2-2 Emulator pattern API

3-1 Source code for a DCTCP queue manager in Flexplane

3-2 Source code for a priority scheduler in Flexplane

Latency versus load with one sender

Tradeoffs between resource management schemes . . .

Datacenter network topology and core assignment . . .

Emulator throughput as a function of cores

9

1

4-1

4-2

4-3

4-4

18

23

28

29

32

35

36

38

10

List of Tables

1.1 Comparison with other programmable data planes 14

2.1 API specification . 22

3.1 Lines of code for each resource management scheme 28

4.1 Jain's fairness index . 33

4.2 Queue occupancies . 34

11I

12

Chapter 1

Introduction

Network resource management schemes promise benefits for datacenter applications.

By controlling which packets are transmitted at any given time, they can improve

throughput, fairness, burst tolerance, tail latency, flow completion time, and more.

To realize these benefits, researchers have developed dozens of different schemes for:

" Queue management, i.e., what packet drop or ECN-marking [161 policy should

be used? Examples include RED [17], DCTCP [6], HULL [5], and D2TCP [48].

" Scheduling, i.e., which queue's packet should be sent next on a link? Exam-

ples include weighted fair queueing (WFQ) [12], stochastic FQ [33], priority

queueing, deficit round-robin (DRR) [431, and pFabric [7].

" Explicit control, i.e., how should explicit control information in packets be used

and modified? Examples include XCP [25], RCP [15, 46], PDQ [21], and D3 [51].

However, theses schemes can be difficult to deploy on real networks because they

require modifications to routers, and building custom ASICs for each new scheme

is infeasible for most. This limits the development and adoption of new resource

management schemes. Researchers cannot experiment with their nascent schemes in

realistic settings. Instead they often rely on simulations (e.g. [20, 32, 49]), which do

not capture the impact of other system components, such as CPU utilization or disk

I/O, on applications. After schemes have been developed, network operators cannot

13

Table 1.1: Comparison with other programmable data planes.

evaluate them to determine if they provide benefits for their specific applications. In

addition, students cannot easily experience implementing protocols and evaluating

them in real networks.

A programmable datacenter network could solve these issues. To be effective, it

must be flexible, support high router capacity, and scale to large networks. Previous

proposals have made progress towards this goal, but ultimately fall short, as shown

in Table 1.1. Software routers [11, 14, 19, 26, 451 provide flexibility and scale to large

networks, but to date have demonstrated significantly reduced router capacity, with

the best results providing an aggregate throughput of only 30-40 Gbits/s. Hardware

routers with some programmable elements 13, 8, 22, 27, 29, 44, 47] run at hardware

rates in large networks, but compromise on flexibility.

This paper introduces Flexplane, a programmable data plane for datacenters

that specifically targets resource management. Flexplane enables users to express

their resource management schemes in software using a high-level language (C++),

and then deploy them in datacenters with real applications at line rates. It is designed

to be flexible while also supporting high router capacity and large networks. We

demonstrate that Flexplane already provides the first two properties and argue that,

with more work, its design can scale to support large networks as well.

The key idea in Flexplane is to implement the user-specified scheme in a centralized

emulator, which performs whole-network emulation in real time. The emulator, a

single designated server, maintains a model of the network topology in software, and

users implement their schemes in the emulated routers. Immediately before each

packet is sent on the real network, a corresponding emulated packet will traverse the

emulated topology and experience the behavior of the resource management scheme in

14

Approach Flexible Router Large
capacity networks

Software routers / /
Programmable hardware X/

Flexplane / / ?

software. In this way, applications observe a network that supports the programmed

scheme, though the scheme is implemented in software rather than hardware.

In this paper we present the design of Flexplane and demonstrate that for small

topologies (1) it can accurately reproduce the properties of schemes already supported

in hardware (e.g. RED, DCTCP) and (2) it can easily be used to experiment with

unsupported schemes, such as HULL. We also present preliminary results that suggest

that the Flexplane emulator can scale to support large networks; each additional core

enables the network to sustain about 20-25 Gbits/s more throughput, up to 10 cores

total, which provides 350 Gbits/s.

15

16

Chapter 2

Design

Flexplane's goal is to enable a network to support a given resource management

scheme at hardware rates, given only a software implementation of the scheme. More

specifically, packets should arrive at their destinations with the timings and header

modifications (e.g. ECN marks) that they would have in a hardware network that

supported the desired scheme.

To achieve this goal, Flexplane implements the scheme in a single dedicated multi-

core server called the emulator, which endpoints consult before sending each packet.1

The transmission of every packet in Flexplane involves three steps (Figure 2-1):

1. Convey: At the sending endpoint, Flexplane intercepts the packet before it

is sent on the network. It constructs an abstract packet summarizing the key

properties of the packet and sends it to the emulator (2.1).

2. Emulate: The emulator models the entire network and emulates its behavior in

real time. It delays and modifies abstract packets as they would be if run on a

hardware network implementing the scheme (2.2).

3. Reflect: As soon as an abstract packet exits the emulation, the emulator sends

a response to the source endpoint. The endpoint immediately modifies the

corresponding real packet (if necessary) and sends it, reflecting its fate onto the

real network (2.3).

'Fastpass [37] previously introduced the idea of scheduling packets in a centralized entity, but
Fastpass schedules packets to achieve an explicit objective whereas Flexplane schedules packets to
achieve the behavior of a distributed resource management scheme.

17

Core

3: reflect
2: emuldate

ToR Emulator

1: convey

Endpoints

Figure 2-1: In Flexplane, endpoints convey their demands to the emulator in abstract

packets, the emulator emulates the network, and the results are reflected back onto

the physical network. Dashed lines represent abstract packets; solid line is a real

packet.

The result of these steps is that packets experience the network-level behavior in

the emulator rather than in the hardware network. While a real packet waits at an

endpoint, its abstract packet traverses the emulated topology and encounters queueing

and modifications there. When emulation is complete and the real packet traverses

the real network, it will encounter (almost) no queueing and no modifications. The

effect on higher-layer protocols is that the packet is queued and modified by the

emulated resource management scheme.

These steps run in real time, with thousands of packets concurrently traversing

the network. Because all packets individually experience the resource management

scheme, the result is that datacenter applications experience a network that supports

the chosen resource management scheme.

2.1 Abstract Packets

An abstract packet is a concise description of a chunk of data in the same flow to be

sent onto the network; it includes all the metadata that the current resource man-

agement scheme might need to access at the emulator. By default an abstract packet

contains the source and destination addresses of the chunk of data, unique identifier,

and flow identifier. In addition, a scheme can include custom information that routers

running this scheme would access, such as the type-of-service (differentiated services

18

code point) or whether the sender is ECN-capable. Flexplane provides a general

framework that allows schemes to convey arbitrary packet information in abstract

packets so that it can support non-standard packet formats (2.4). For example, in

XCP, packets are initialized with a congestion header that includes the sender's con-

gestion window, RTT estimate, and demands. To emulate XCP in Flexplane, the

abstract packets include these fields as well.

For simplicity, all abstract packets represent the same amount of data; this can

consist of one large packet or multiple smaller packets in the same flow. To reduce

CPU and network bandwidth consumed by abstract packets, endpoints and the em-

ulator send abstract packets in batches.

The amount of data represented by each abstract packet is adjustable depending

on the user's needs. For precise emulation, an abstract packet should represent exactly

one packet in the real network. For better scalability, but at reduced fidelity, an

abstract packet could represent multiple packets that belong to the same flow. In

this paper, an abstract packet represents one maximum transmission unit (MTU)

worth of packets (1500 bytes in our network).

2.2 Emulation

The purpose of emulation is to delay and modify abstract packets just as they would

be in a hardware network running the same resource management scheme. To achieve

this, the emulator maintains an emulated network of routers and endpoints in soft-

ware, configured in the same topology as the real network. When abstract packets

arrive at the emulator, they are enqueued at their emulated sources. They then flow

through the emulated topology, ending at their emulated destinations. As they flow

through the emulated network, they may encounter queueing delays, acquire modi-

fications from the routers they traverse (e.g. setting ECN bits), or be dropped, just

as they would in a real network. Once an abstract packet arrives at its emulated

destination or is dropped, the abstract packet is sent back to the real source end-

point, which modifies and sends the packet, or drops it. The emulator is, effectively,

19

a real-time simulator.

To simplify emulation, the emulator divides time into short timeslots and emulates

each separately. The duration of a timeslot is chosen to be the amount of time it takes

a NIC in the hardware network to transmit the number of bytes represented by an

abstract packet (one 1500-byte MTU by default), so that sending an abstract packet

in the emulation takes exactly one timeslot. In each timeslot, the emulator allows

each port on each emulated router and endpoint to send one abstract packet into the

emulated network and to receive one abstract packet from the emulated network.2

Timeslots simplify the task of ensuring that the emulation runs in real-time; instead

of requiring that each event (e.g. packet transmission) completes at precisely the

right time, the emulation only needs to ensure that each timeslot (which includes

dozens of events) completes at the right time. This contrasts with ns [20, 32] and

other event-based simulators.

2.3 Accuracy

To be a viable platform for experimentation, Flexplane must produce results that

match those obtained by a hardware implementation of the same scheme. Thus

Flexplane strives for accuracy, meaning that packets experience the same end-to-end

latencies in Flexplane as in a hardware network running the same scheme. However,

there are a few factors that cause the end-to-end latencies to deviate slightly from

this goal.

Consider a network that implements a given resource management scheme in

hardware. For simplicity, assume this network consists of a single rack of servers. In

this network, the latency 1 experienced by a packet will be the sum of the unloaded

delay u (the time to traverse the network when empty), and the queueing delay q:

1 = u + q. Note that the unloaded delay is the sum of the speed-of-light propagation

delay (negligible in datacenter networks), processing delay at each switch, and the

2 We assume, for simplicity, that all links in the network run at the same rate. If this is not the
case, multiple smaller links can be used to represent a single larger link.

20

transmission delay (the ratio of the packet size to the link rate).

Now consider an identical network that implements the same resource management

scheme using Flexplane. The latency 1' of a packet in this network consists of the

round-trip time r the abstract packet takes to the emulator and back, the emulated

transmission delay te (the emulator does not model switching or propagation delays),

the emulated queueing delay q, the time the real packet takes to traverse an unloaded

network, and any queueing delay it encounters in the real network, q':

1' = r + te + qe + u + q' < 4u + q' + qe

For an emulator in the same rack, r < 2u and the emulation ensures that te < U.

Flexplane does not guarantee zero queueing within the hardware network, but in

practice we find that q' is very small, approximately 8-12 us on average (4.1).

Thus for an unloaded network, the latency in Flexplane is about four times the

latency experienced in an equivalent hardware network, or less. Our experiments

indicate that in practice this latency overhead is much smaller; in a 10 Gbits/s net-

work, 1' is about 33.8 ps compared to 14.9 ps in hardware (4.1). Furthermore, as

queueing within the network increases, the latency overhead of communicating with

the emulator becomes less significant, and Flexplane's latencies better match those

of hardware.

For topologies with multiple racks of servers, the delay imposed by Flexplane will

increase from that described above, but is expected to remain a constant additive

factor. With larger topologies, the round-trip time to the emulator and back varies

across endpoints. To ensure that all packets experience the same r, the emulator

can delay abstract packets from nearby endpoints by a constant amount. It is also

possible that q' will increase as the size of the network grows, decreasing the accuracy

of the emulation; this must be investigated in future work.

21

I-- I---

Emulator API - pattern

int route(AbstractPkt *pkt) return a port to enqueue this packet
to

int classify (AbstractPkt *pkt, int port) return a queue at this port to en-
queue this packet to

enqueue(AbstractPkt *pkt, int port, int queue) enqueue this packet to the given
port and queue

AbstractPkt *schedule(int output port) return a packet to transmit from this
- port (or null)

Emulator API - generic

input (AbstractPkt **pkts, int n) receive a batch of n packets from the
network

output (AbstractPkt **pkts, int n) output up to n packets into the net-
work

new(AbstractPkt **pkts, int n) receive a batch of n packets from the
network stack

Endpoint API

prepare request(sk _buff *skb, char *req data) copy abstract packet data into
reqdata

prepareto _send(sk buff *skb, char *allocdata) modify packet headers before send-

Table 2.1: Flexplane API specification. Flexplane exposes C++ APIs at the emulator
for implementing schemes and C APIs at the physical endpoints, for reading custom
information from packets and making custom modifications to packet headers. An
skbuff is a C struct used in the Linux kernel to hold a packet and its metadata.

2.4 Flexplane APIs

Flexplane exposes simple APIs to users so that they can write their own resource

management schemes. It decouples the implemented network schemes from the emu-

lation framework, so that users only need to worry about the specific behavior of their

scheme. The framework handles passing abstract packets between different emulated

components and communicating with the physical endpoints.

To add a scheme to Flexplane, users can choose between two C++ APIs to im-

plement at the emulator, as shown in Table 2.1. In the pattern API (the API we

expect most users to follow), users implement four functions, as illustrated in Fig-

ure 2-2. These functions divide packet processing into routing (choosing an output

port), classification (choosing amongst multiple queues for a given port), enqueuing

22

incoming + + outgoing
packets packets

route classify enqueue schedule

Figure 2-2: The four components of the emulator pattern API.

(adding a packet to the chosen queue or dropping it), and scheduling (choosing a

packet to dequeue from a port). The framework calls the route, classify, and en-

queue functions in order for each packet arriving at a router, and calls the schedule

function on each output port in a router once per timeslot. Each of these functions

is implemented in a separate C++ class, enabling them to be composed arbitrarily.

For example, the same RED queue manager can be run in a router with one queue

per port and FIFO scheduling, or with multiple queues fed by a flow classifier and

scheduled using a deficit round-robin scheduler.

If the user wants more flexibility than the pattern API, we provide a more general

API specified in the generic row of Figure 2.1. The generic API is for schemes that

perform the functions above in a different order. For example, a scheme might enqueue

packets to a shared queue and delay their routing decisions until an output port

becomes available. The general API supports such a scheme; the framework simply

calls input and output on each router once per timeslot. Input delivers a batch of

arriving packets; output requests a batch of packets to transmit to the next hop. The

general API also includes a function new which delivers a batch of packets from the

network stack to a group of emulated endpoints.

Flexplane also provides a C API for users to obtain and modify packet headers at

the physical endpoints. For schemes that require access to packet fields beyond the

default abstract packet fields, the user specifies how to copy the desired custom infor-

mation from the real packet into the abstract packet, by implementing the function

prepare -request. Flexplane then conveys this data to the emulator along with the

23

rest of the abstract packet so that it will be available to the emulated scheme.

Similarly, users may add support at the endpoints for modifying packet headers.

To add modifications such as ECN marks, users implement the function prepare _to_ send.

This function is called for each packet immediately before it is sent on the real network

and includes a pointer to the packet as well as an array of bytes from the abstract

packet, populated by the resource management scheme in the emulator.

2.5 Scaling the Emulator with Multicore

Supporting large networks with Flexplane remains a significant challenge, primarily

because it requires high aggregate emulator throughput. Our emulator design is

motivated by the steady increase in the number of cores available on modern multicore

machines. It is not uncommon today to build machines with multiple processors and

dozens, if not hundreds, of cores. As of mid 2015, individual processors with between

eight and 256 cores are commercially available on machines [1]. The emulator runs

on a multicore machine; as long as each additional core increases total throughput,

the emulator can scale to large networks by using many cores.

Networks of routers and endpoints are naturally distributed, allowing the emu-

lated network to be easily distributed across many cores. Flexplane employs a simple

strategy of assigning each router to a separate core. Typically a group of endpoints

will also be handled by the core that handles their top of rack switch. With this

assignment, cores only need to communicate when their routers have packets to send

to or receive from a different core. The Flexplane framework handles this commu-

nication with FIFO queues of abstract packets between cores that have connected

network components.

Flexplane employs three strategies to reduce the overhead of inter-core commu-

nication. First, Flexplane maintains only loose synchronization between cores. Each

core independently ensures that it begins each timeslot at the correct time, but cores

do not explicitly synchronize with each other. Tight synchronization, which we at-

tempted with barriers, is far too inefficient to support high throughput. Second,

24

Flexplane batches accesses to the FIFO queues; all abstract packets to be sent on or

received from a queue in a single timeslot are enqueued or dequeued together. This

is important for reducing contention on shared queues. Third, Flexplane prefetches

abstract packets the first time they are accessed on a core.3 This is possible be-

cause packets are processed in batches; later packets can be prefetched while the core

performs operations on earlier packets.

To handle large routers and computationally heavy schemes, we propose to split

a single router across multiple cores. One way to do this is to divide the router up by

its output ports and to process different output ports on different cores; this approach

makes sense because different output ports typically have little or no shared state.

2.6 Fault Tolerance

Flexplane provides reliable delivery of abstract packets both to and from the emulator.

Because each abstract packet corresponds to a specific packet or group of packets

(uniquely identified by their flow and sequential index within the flow), they are not

interchangeable; for correct behavior, the emulator must receive an abstract packet

for each real packet. If the physical network supports simple priority classes, then

the traffic between endpoints and the emulator should run at the highest priority,

making these packets unlikely to be dropped. Flexplane uses ACKs and timeouts to

retransmit any abstract packets in the unlikely event that they are still dropped.

The emulator maintains only soft state so that another emulator can easily take

over on emulator failure. We handle emulator fail-over in the same way as in Fast-

pass [37]: a secondary emulator takes over when it stops receiving periodic watchdog

packets from the primary, and endpoints update the new emulator with their pending

abstract packets.

3Previous work has shown that prefetching can significantly increase the instructions per cycle
in packet-processing workloads [24].

25

2.7 Deployment

A typical datacenter consists of racks of machines connected to top-of-rack (ToR)

switches, which are then connected redundantly to aggregate and core switches in

higher tiers. Figure 2-1 shows a simple canonical example.

Flexplane provides a programmable data plane either for the entire network or for

a contiguous sub-topology of the network. For ease of exposition (and because it is

the expected deployment mode), the design presented here is for the case when the

entire network is being handled.

We assume that servers in the network support and run any part of a scheme

that requires an endpoint implementation (e.g., to run the endpoint's DCTCP or

XCP software). The emulator emulates from the endpoint NICs onwards, and the

emulated endpoints act simply as sources and sinks to the rest of the emulation.

26

Chapter 3

Implementation

We implemented Flexplane by extending Fastpass [37]. The Flexplane emulator is

written in a mixture of C and C++ and uses the Intel Data Plane Development

Kit (DPDK) 123] for low-latency access to NIC queues from userspace. Support for

Flexplane at the endpoints is implemented in C in a Linux kernel module, which

functions as a Linux qdisc, intercepting and enqueueing packets just before they are

passed to the driver queue.

To program the network, users (typically network administrators) write modest

amounts of code. They implement the router behavior in the emulator by implement-

ing the pattern or generic C++ API shown in Table 2.1. With the pattern API, a

router is instantiated with a routing table, a classifier, a queue manager, and a sched-

uler. Users can derive their own classes for these components from existing ones and

adapt them for their needs. To add custom fields to abstract packets or modifications

to packets, users also implement the endpoint C API.

We have implemented and experimented with several schemes in Flexplane: Drop-

Tail, RED (with and without ECN), DRR, priority queueing, DCTCP, and HULL.

Most schemes require only a few dozen lines of code and the most complex (RED)

requires 125 lines, as shown in Table 3.1. To show the simplicity of implementation,

we show the key portions of the source code for DCTCP and priority scheduling in

Figures 3-1 and 3-2, respectively.

27

Table 3.1: Lines of code in the emulator for each resource management scheme.

struct dctcpargs {
uint16_t qcapacity;
uint32 t K threshold;

class DCTCPQueueManager public QueueManager {
public :

void DCTCPQueueManager:: enqueue (AbstractPkt *pkt,
uint32_t port , uint32_t queue , uint64_t cur_time,
Dropper *dropper) {
uint32 _t qlen = m_bank->occupancy(port, queue);
if (qlen >-= m_dctcpparams.q_ capacity) {

7* no space to enqueue, drop this packet *7
dropper->drop (pkt , port);
return;

}

/* mark if queue occupancy is greater than K *7
if (qlen > m_dctcp_params. Kthreshold) {

/* Set ECN mark on packet */
dropper->mark_ecn(pkt , port);

}

m_bank->enqueue (port , queue, pkt);
}

private
PacketQueueBank *m_bank;
struct detcp_args m-dctcpparams;

I

Figure 3-1: Source code for a DCTCP queue manager in Flexplane

28

scheme LOC
DropTail Queue Manager 39

RED Queue Manager 125
DCTCP Queue Manager 43

Priority Queueing Scheduler 29
Round Robin Scheduler 38

HULL Scheduler 60

class Priority Scheduler : public Scheduler {
public:

AbstractPkt* PriorityScheduler :: schedule (uint32_t port
uint64 _ t curtime , Dropper *dropper) {
7* get the mask of non-empty queues for this port *7
uint64_t mask = m bank->nonemptyqmask(port);

uint64_t qindex;
/* bsfq : find the first set bit of mask in 1 x86 instruction *7
asm("bsfq %1,%":"z=r"(qindex): " r "(mask));

return mbank->dequeue(port, qindex);

}
private

PacketQueueBank *mbank;

I

Figure 3-2: Source code for a priority scheduler in Flexplane over < 64 queues.

29

30

Chapter 4

Evaluation

We conduct experiments on a single rack of 39 servers, each connected to a top-of-rack

(ToR) switch. Each server has two CPUs, each with 20 logical cores, 32GB RAM, one

10 Gbits/s NIC, and runs the Linux 3.18 kernel. One server is set aside for running

the emulator; we use 6WIND's PMD driver to run our DPDK-based emulator with a

l0Gbits/s NIC. The switch is a Broadcom Trident+ based device with 64x10 Gbits/s

ports and 9 MBytes of shared buffer. The switch supports a few schemes such as

WRED with ECN marking, which we disable in all experiments except on an explicit

comparison for emulation accuracy. We use an MTU size of 1500 bytes and disable

TCP segmentation offload (TSO), a feature not yet supported in Flexplane.

Our experiments aim to answer the following questions:

1. Accuracy: How faithfully does Flexplane recreate the behavior of schemes al-

ready supported in hardware? How do packet latency and throughput compare

to hardware?

2. Protocol experimentation: How can Flexplane be used to experiment with

schemes not yet supported in hardware?

3. Emulator scalability: How does the throughput of the emulator scale with the

addition of more cores?

31

-+- Hardware
150- A Flexplane

100-

-J 500

0 100,000 200,000 300,000 400,000 500,000
Sending rate (packets per second)

Figure 4-1: Packet latency under varying loads for one sender in Flexplane and the

baseline hardware network. Points show medians; error bars show minimum and 99th

percentile observed over 30 seconds.

4.1 Accuracy

Latency. First we compare the latency of a packet in Flexplane to that of a packet

running on bare hardware, in an uncongested network. For this experiment, one

client sends MTU-sized UDP packets to a server in the same rack, using the sockperf

utility [2]; the receiver responds periodically to the sender at a rate of 10,000 responses

per second. We measure the RTT of the response packets at several different rates

of packets sent per second, and estimate the one-way latency as the RTT divided by

two. We run DropTail both in Flexplane and on the hardware switch.

The results in Figure 4-1 demonstrate that the per-packet latency overhead of

Flexplane is modest. Under the lightest offered load we measure (10,000 packets/s),

the median latency in Flexplane is 33.8 jis, compared to 14.9 ps on hardware. As the

load increases, the latency in Flexplane increases slightly due to the additional load

on the kernel module in the sending endpoint. Flexplane is unable to meet the highest

offered load (6 Gbits/s), because of the CPU overhead of the kernel module.

Throughput and fairness. Next we evaluate Flexplane's accuracy for bulk-transfer

TCP, using application-level metrics: throughput and fairness across flows. In each

experiment, five machines send TCP traffic at maximum throughput to one receiver

for five minutes.

32

Jain's Fairness Index
Hardware Flexplane

median a median a
DropTail 0.969 0.027 0.968 0.028

RED 0.987 0.011 0.980 0.011
DCTCP 0.996 0.004 0.990 0.006

Table 4.1: Flexplane achieves similar Jain's fairness index and standard deviation in
fairness index (a) as hardware. Medians and deviations are computed over 1-second
intervals.

We compare Flexplane to hardware for three schemes that our router supports:

TCP-cubic/DropTail, TCP-cubic/RED, and DCTCP. We configure the hardware

router and the emulator using the same parameters for each scheme. For DropTail

we use a static per-port buffer size of 1024 MTUs. For RED, we use minth=150,

maxth=300, max_p=0.1, and weight=5.' For DCTCP, we use an ECN-marking

threshold of 65 MTUs, as recommended by its designers 16].

Flexplane achieves similar aggregate throughput as the hardware. All three schemes

consistently saturate the bottleneck link, achieving an aggregate throughput of 9.4

Gbits/s in hardware, compared to 9.2-9.3 Gbits/s in Flexplane. This 1-2% difference

in throughput is due to bandwidth allocated for abstract packets in Flexplane.

Flexplane also displays similar trends in fairness between flows as the hardware

implementations. For each second of each experiment, we compute Jain's fairness

index; Table 4.1 shows the median fairness index and the standard deviation of mea-

sured fairness indices. All schemes provide very high fairness, with DropTail providing

slightly less and DCTCP slightly more fairness than RED; Flexplane demonstrates

this behavior as well. Similarly, DropTail demonstrates the most variation in fairness

over the course of the experiment and DCTCP the least.

Queueing. Next we evaluate the network-level behavior of Flexplane. During the

experiment described above, we sample the total buffer occupancy in the hardware

router every millisecond, and the emulator logs the occupancy of each emulated port

'This means the average queue is computed using an exponentially weighted moving average with
weight 2-1 - .

33

_ 11MINW1, 01 P 1 1-1-1 1 I

Queue Occupancies (MTUs)
Hardware Flexplane

median - median o
DropTail 931 73.7 837 98.6

RED 138 12.9 104 32.5
DCTCP 61 4.9 51 13.0

Table 4.2: Flexplane achieves similar queue occupancies and standard deviations in
occupancies (a) as hardware.

at the same frequency.

Table 4.2 shows that Flexplane maintains similar queue occupancies as the hard-

ware schemes. For DropTail it maintains high occupancies (close to the max of 1024)

with large variations in occupancy, while for the other two schemes the occupancies

are lower and more consistent. Flexplane does differ from hardware in that its occu-

pancies tend to be slightly lower and to display more variation. We believe this is due

to the effectively longer RTT in Flexplane. When the congestion window is reduced,

the pause before sending again is longer in Flexplane, allowing the queues to drain

more. Thus, Flexplane effectively emulates a network with a longer RTT.

During the Flexplane experiments, the hardware queue sizes remain small: the

mean is 7-10 MTUs and the 9 5 th percentile is 14-22 MTUs. These numbers are small

compared to the queue sizes in the emulator or in the hardware queues during the

hardware experiments, and indicate that queueing in the hardware network does not

significantly impact the accuracy of Flexplane (2.3).

4.2 Experimenting with Flexplane

In this section, we provide an example of how one can use Flexplane to experiment

with different resource management schemes. We do not argue that any scheme

is better than any other, but instead demonstrate that there are tradeoffs between

different schemes (as previously described in 144]), and that Flexplane can help users

explore these tradeoffs.

We demonstrate the tradeoff that schemes make between performance for short

34

300-

I350

1 400 - better

0-~450 - DCTCP Priority

4 DropTail * RED
500 - HULL 41Round Robin

80 60 40
Low priority FCT (ms)

Figure 4-2: Flexplane enables users to explore tradeoffs between different schemes.
Large points show averages over the entire experiment, faded points show averages
over 1s, and ellipses show one standard deviation.

flows and performance for long flows. We use a simple RPC-based workload in which

4 clients repeatedly request data from 32 servers. 80% of the requests are short 1.5 KB

"high priority" requests, while the remaining 20% are 10 MB "low priority" requests.

Request times are chosen by a Poisson process such that the client NICs are receiving

at about 60% of their maximum throughput. We run each scheme for five minutes.

We consider the schemes discussed above, as well as TCP-cubic/per-source-DRR,

TCP-cubic/priority-queueing, and HULL. 2 For HULL, we use the recommended phan-

tom queue drain rate of 95% of the link speed (9.5 Gbits/s). The HULL authors use a

1 KB marking threshold in a 1 Gbits/s network [5], and suggest a marking threshold of

3-5 KB for 10 Gbits/s links. However, we find that throughput degrades significantly

with a 3 KB marking threshold, achieving only 5 Gbits/s total with 4 concurrent

flows. We increase the marking threshold until our achieved throughput is 92% of the

drain rate (this is what 15] achieves with their parameters); the resulting threshold is

15 KB.

Figure 4-2 shows the tradeoff each scheme makes on the RPC workload. With

DropTail, large queues build up in the network, leading to high flow completion times

2We omit the pacer at the endpoints, using only the phantom queues.

35

Aggregation

ToR

Endpoints

Figure 4-3: One of the datacenter network topologies used to generate the scalability

results shown in Figure 4-4. Each rack has 32 endpoints; only a subset are depicted

for simplicity. The purple ovals indicate network components handled by the same

CPU core.

(FCTs) for the high priority requests. However, DropTail senders rarely cut back their

sending rates and therefore achieve the best FCTs for the long requests. At the other

end of the spectrum, round robin's small static buffers (32 MTUs per queue) cause

the long flows to drastically cut back their sending rates, allowing the short flows

to achieve low FCTs. The other schemes make trade-offs between the two. HULL's

phantom queues cause senders to cut back their sending rates more aggressively than

DCTCP, leading to slightly better FCTs for short flows but worse FCTs for long flows,

compared to DCTCP.

4.3 Emulator Scalability

In this section, we seek to demonstrate that the Flexplane emulator has the potential

to support large networks. We cannot yet demonstrate that the emulator can support

networks with hundreds or thousands of endpoints; in fact, we have not yet tested

it on such large networks. However, our experiments demonstrate that, for small

numbers of cores, supplying additional cores to the emulator enables it to sustain

higher aggregate throughput. This suggests that the design could scale; we defer full

scalability to future work.

Scaling with number of cores. We consider several variants on a simple data-

center network topology, each of a different size. Each topology includes racks of 32

36

endpoints connected via a ToR switch. Multiple ToRs are then connected using a

single aggregation switch. We assign the aggregation (Agg) switch to its own CPU

core, and then assign each ToR and its adjacent endpoints to another core, so that

the number of emulation cores used for a topology is one plus the number of racks.

An example topology with three racks is shown in Figure 4-3; the ovals indicate which

network components are run on the same CPU core.

We generate a synthetic workload using two additional cores on the same machine.

As we vary the number of racks in the topology, we also vary the fraction of traffic

whose source and destination are in different racks so that all routers (ToR and Agg)

always process the same amount of network throughput. Sources and destinations

are chosen uniformly at random with this constraint. Timings obey Poisson arrivals

and we vary the mean inter-arrival time to produce different network loads.

We run an automated stress test to determine the maximum sustainable through-

put for a given configuration. It begins with low load and increases the load every

5 seconds as long as all cores are able to sustain it. Whenever one core falls be-

hind, processing timeslots later than their scheduled time, the stress test decreases

the network load. This process of repeatedly adjusting the applied load continues for

2 minutes. It then reports the total throughput observed over the last 30 seconds.

For each configuration, we run the stress test five times and average the results. We

run this experiment on a large multicore machine with 8 CPUs, each with 10 cores

and 32GB of RAM. Each CPU is a 2.4 GHz Intel Xeon CPU E7-8870.

Figure 4-4 shows the maximum throughput achieved as we vary the number of

racks in the topology from two to seven, and correspondingly the number of emulation

cores from three to eight. We measure throughput in two ways; endpoint throughput

is the amount of traffic sent/received by the endpoints and router throughput is the

total amount of traffic processed by all routers in the network.

Router throughput increases approximately linearly with the number of emulation

cores. In the configuration with 2 racks and 3 cores, the emulator achieves about

244 Gbits/s of throughput. Each additional core provides 22 Gbits/s of additional

throughput on average until the final configuration with seven racks achieves 352

37

400

-0300 -

CL A

200
0

E

E 100 . Endpoint throughput

A Router throughput

3 4 5 6 7 8
Number of emulation cores

Figure 4-4: Maximum throughput achieved by the Flexplane emulator for different

numbers of emulation cores. Endpoint throughput is the throughput sent/received by
the endpoints; router throughput is the total throughput sent/received by all routers

in the network.

Gbits/s. This makes sense; router throughput should scale linearly with the number

of cores because the workload is chosen such that all routers (and therefore all cores)

receive the same amount of network traffic. Endpoint throughput remains lower than

router throughput, but approaches router throughput as the size of the topology

increases.

These results suggest that the 80 core machine used for these experiments could

support about 1.7 Terabits/s of router throughput. Each stress test core can supply

about 200-225 Gbits/s of endpoint throughput during a stress test; when running

with live traffic we expect each communication core to support similar throughput

or slightly less. Thus about 9 of the cores could be used for communicating with

endpoints in the network. The first 3 of the remaining cores would supply 244 Gbits/s

of throughput and the remaining 68 would supply about 22 Gbits/s each, for 1.7

Terabits/s of router throughput total. Our results presented here only use cores on

the same socket. Scaling across sockets presents additional challenges because the

latency of communication between cores increases; we leave this for future work.

Comparison with previous work. Here we consider how Flexplane compares

to existing software routers. Flexplane outperforms existing approaches in terms of

individual router capacity. When emulating only a single router with 32 endpoints,

38

Flexplane achieves a total throughput of about 90 Gbits/s, compared to a maximum

of 35 Gbits/s in RouteBricks [141 and 40 Gbits/s in PacketShader [19], with minimal

forwarding.

The difference between Flexplane and previous approaches is even more pro-

nounced when we compare throughput per clock cycle, to normalize for different

numbers of cores used and different clock frequencies. In its largest configuration,

RouteBricks achieved 35 Gbits/s of throughput with 32 2.8 GHz cores. In compari-

son, our 7 rack configuration achieved a total router throughput of 352 Gbits/s with

10 2.4 GHz cores total (8 emulation cores plus 2 stress test or communication cores).

This amounts to 38 times as much throughput per clock cycle in Flexplane. The

difference arises because Flexplane performs no processing on its forwarding path in-

volving data or header manipulation, leaving the hardware routers to handle that,

and focusing only on resource management functions.

39

40

Chapter 5

Related Work

Existing approaches to designing a programmable data plane fall into two broad

categories: software routers and programmable hardware.

5.1 Software routers

Software routers process packets using general-purpose processors rather than hard-

ware routers. These approaches are very flexible and can scale to support large

networks, but to date have demonstrated very limited router capacity. The best re-

sults today typically demonstrate 30-40 Gbits/s of router capacity; this is only 10%

of the capacity needed to support a small router with 32 links at today's datacenter

speeds (10 Gbits/s).

Click [26] is a popular modular software router built as a pipeline of extensible

elements. It has been extended to take advantage of multiprocessor machines [101.

In addition, RouteBricks shows how to deploy Click across multiple servers; with a

4-server configuration, each with 8 2.8 GHz cores, RouteBricks achieves an aggregate

throughput of 35 Gbits/s [14]. A key idea in RouteBricks is the use of Valiant load

balancing to switch traffic. In contrast, Flexplane incurs no such switching overhead

because the packet payloads do not pass through the emulator. Flexplane requires

much less CPU and network bandwidth than RouteBricks to achieve the same router

throughput, because it processes short abstract packets instead of entire packet pay-

41

loads.

Other approaches such as Packet Shader [19] and GSwitch [50] use GPUs to ac-

celerate packet-processing in software; Packet Shader achieves 39 Gbits/s on a single

commodity PC. However, invoking a GPU increases processing time significantly, by

around 30 ps in modern hardware [24].

ServerSwitch [30] enables users to program customized packet forwarding in a

commodity Ethernet switching chip, but all other processing is still done on a general-

purpose CPU. The authors demonstrate an implementation of the QCN [52] (Quan-

tized Congestion Notification) scheme to show the viability of this approach. The

design of ServerSwitch, however, does not accommodate the variety of network re-

source management schemes supported by Flexplane at high rates, because in order to

achieve the desired flexibility, most packets must traverse the software router running

on the general-purpose CPU.

Sidecar [42] is a position paper proposal that distributes processing code between

endpoints and general-purpose processors connected to each switch via standard redi-

rection mechanisms. Packets are diverted toward these processors from switches when

they need custom software to run over them. Sidecar has not been built, but it is not

clear how the design can run at near-hardware rates; the assumption is that only a

small fraction of packets will require software processing.

NetBump [4] is a platform for AQM experimentation; it acts as a "bump on

the wire," supporting line rate AQM and forwarding. Netbump is implemented in

software as a zerocopy, kernel-bypass network API and demonstrates excellent line-

rate performance (14.17 million packets per second supporting a 10 Gbits/s link).

Unlike Netbump, Flexplane seeks to support a wider range of schemes, and is deployed

off-path rather than by augmenting each switch. As such, it may be easier to program,

and may be cheaper as the network size grows.

Other works focus on techniques to increase packet processing performance. Many

software routers face a "memory wall" in processing packets [36]; this paper argued

that data caches and multi-threading form the minimal set of hardware mechanisms

that achieve both programmability and performance. In subsequent work, they used

42

this observation to develop a "malleable" processor architecture to reconfigure cache

capacity and the number of threads [35].

Flexplane relies on fast, kernel-bypassed, zerocopy network access for the emulator.

Multiple frameworks such as Intel's DPDK [231, netmap [38], and PFRING [13]

enable such low-latency packet processing; Flexplane uses DPDK.

The approach used in Flexplane builds on the idea of centralized per-packet arbi-

tration developed in Fastpass [371. Unlike Fastpass, this paper shows how to emulate

a variety of network resource management schemes, not just a particular zero-queue

objective.

5.2 Programmable hardware

An alternative to programming most or all packet processing in software is to augment

hardware components with some programmable APIs. These approaches typically run

at hardware rates and can scale to large networks, but have limited flexibility.

Many of these approaches are based on FPGAs. An early project, P4 [18] uses

FPGAs to build an active network switch. Other FPGA-based designs were later

proposed by multiple groups working on dynamic hardware plugins [47, 27, 22]. The

DHP [47] platform, for example, processes flows in both hardware and software.

NetFPGA [29] is a popular open source hardware forwarding platform that uses

an FPGA-based approach and provides some flexibility. RiceNIC [41] has a similar

design, but adds the ability to program via two general-purpose processors. Switch-

blade [8] is a NetFPGA-based pipelined system for router programmability with soft-

ware exceptions invoked using packet or flow rules; it is designed primarily for header

and protocol manipulation, not resource management functions. Chimpp [39] is a

modular router design also built atop NetFPGA; it aims to remove restrictions on

module interfaces and programming style. It supports Click-like configurations, like

earlier work on Cliff [28] and CUSP [40]. CAFE [31] uses NetFPGA to provide

configurability in datacenter networks; its API allows a user to configure packet for-

warding, and modify, insert, and delete any header fields without changing hardware.

43

In our view, CAFE is designed for header field manipulations, but less so for network

resource management.

A recent position paper [44] proposes a way of extending software-defined net-

working to the data plane using programmable hardware elements. It uses FPGAs

and focuses on network resource management. The motivation for that work is the

same as for Flexplane, but our approach is to program schemes in high-level software

on commodity hardware.

Despite the abundance of work on FPGA-based platforms, FPGAs are not an ideal

platform for datacenter development. FPGAs are not a comfortable or convenient

programming platform when compared to programming in C++ as in Flexplane,

and cannot offer the same flexibility. It is also worth noting that FPGAs are rarely

used today (if at all) in production network equipment; our goal with Flexplane is to

provide a way to program production network infrastructure.

The P4 language [9] is at the forefront of recent work on flexible header manipula-

tion. It aims to provide a standard header manipulation language to be used by SDN

control protocols like OpenFlow [34], with commercial switches developing hardware

to process programs expressed in P4. As a domain-specific language, P4 improves us-

ability but not flexibility, and still falls short of the usability of C++. In addition, P4

does not yet provide the primitives necessary to support most resource management

schemes.

44

Chapter 6

Conclusion and Future Work

Flexplane is a new approach to programmable resource management in datacenter

networks. Our prototype implementation demonstrates accuracy, ease of experimen-

tation, and throughput that increases linearly for small numbers of cores. However,

there are several remaining aspects of Flexplane that we have yet to address in full:

" Large networks: How can we scale the emulator to support the aggregate

throughput of a large network? How can we provide high capacity for large

emulated routers? How can Flexplane cope with different latencies between

endpoints and the emulator?

" Fault tolerance: How can Flexplane handle failures of network components (e.g.

links, routers, etc.)?

* Endpoint overheads: How can we reduce the CPU overhead at the endpoints

or support TCP segmentation offload so that a Flexplane endpoint can achieve

full throughput with a single core?

If these questions can be addressed satisfactorily, Flexplane has the potential to

increase programmability in datacenters, benefiting researchers, network operators,

and students in networking courses.

45

46

Bibliography

[1] http://en.wikipedia.org/wiki/Multi-core-processor.

[2] https ://github. com/mellanox/sockperf.

[31 Matthew Adiletta, Mark Rosenbluth, Debra Bernstein, Gilbert Wolrich, and
Hugh Wilkinson. The next generation of Intel IXP network processors. Intel
technology journal, 6(3):6-18, 2002.

[4J Mohammad Al-Fares, Rishi Kapoor, George Porter, Sambit Das, Hakim Weath-
erspoon, Balaji Prabhakar, and Amin Vahdat. Netbump: user-extensible active
queue management with bumps on the wire. In ANCS, 2012.

[51 M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda.
Less is more: Trading a little bandwidth for ultra-low latency in the data center.
In NSDI, 2012.

[6] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data
Center TCP (DCTCP). In SIGCOMM, 2010.

17] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKe-
own, Balaji Prabhakar, and Scott Shenker. pFabric: Minimal near-optimal dat-
acenter transport. In Proceedings of the ACM SIGCOMM 2013 conference on
SIGCOMM, pages 435-446. ACM, 2013.

[8] Muhammad Bilal Anwer, Murtaza Motiwala, Mukarram bin Tariq, and Nick
Feamster. Switchblade: A platform for rapid deployment of network protocols
on programmable hardware. In SIGCOMM, 2011.

[9] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review, 44(3):87-95, 2014.

[10] Benjie Chen and Robert Morris. Flexible Control of Parallelism in a Multipro-
cessor PC Router. In USENIX Annual* Technical Conference, 2001.

47

[11] Dan Decasper, Zubin Dittia, Guru Parulkar, and Bernhard Plattner. Router
plugins: A software architecture for next generation routers. In SIGCOMM,
1998.

[12] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulations of a Fair-
Queueing Algorithm. Intern etworking: Research and Experience, V(17):3-26,
1990.

[131 Luca Deri et al. Improving passive packet capture: Beyond device polling. In
Proceedings of SANE, volume 2004, pages 85-93, 2004.

[14] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin
Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.
RouteBricks: exploiting parallelism to scale software routers. In SOSP, 2009.

[15] Nandita Dukkipati and Nick McKeown. Why flow-completion time is the right
metric for congestion control. ACM SIGCOMM Computer Communication Re-
view, 36(1):59-62, 2006.

[16] S. Floyd. TCP and Explicit Congestion Notification. CCR, 24(5), October 1994.

[17] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion
Avoidance. IEEE/ACM Trans. on Networking, 1(4), August 1993.

[18] Ilija Hadzid and Jonathan M Smith. P4: A platform for FPGA implementation
of protocol boosters. In Field-Programmable Logic and Applications, 1997.

[19] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. Packetshader: A
gpu-accelerated software router. In SIGCOMM, 2011.

[20] Thomas R Henderson, Mathieu Lacage, George F Riley, C Dowell, and
JB Kopena. Network simulations with the ns-3 simulator. SIGCOMM demon-
stration, 2008.

[21] C. Y. Hong, M. Caesar, and P. Godfrey. Finishing Flows Quickly with Preemptive
Scheduling. In SIG COMM, 2012.

[22] Edson L Horta, John W Lockwood, David E Taylor, and David Parlour. Dy-
namic hardware plugins in an FPGA with partial run-time reconfiguration. In
Proceedings of the 39th annual Design Automation Conference, 2002.

[23] Packet processing is enhanced with software from intel DPDK. http: //www.
intel.com/go/dpdk.

[24] Anuj Kalia, Dong Zhou, Michael Kaminsky, and David G Andersen. Raising the
bar for using gpus in software packet processing. In Proc. NSDI, 2015.

[25] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks. In SIGCOMM, 2002.

48

[261 Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans
Kaashoek. The Click modular router. ACM Transactions on Computer Sys-
tems (TOCS), 18(3):263-297, 2000.

[27] Fred Kuhns, John Dehart, Anshul Kantawala, Ralph Keller, John Lockwood,
Prashanth Pappu, David Richard, David Taylor, Jyoti Parwatikar, Ed Spitz-
nagel, et al. Design and evaluation of a high-performance dynamically extensible
router. In DARPA Active NEtworks Conference and Exposition (DANCE), 2002.

[28] Chidamber Kulkarni, Gordon Brebner, and Graham Schelle. Mapping a domain
specific language to a platform FPGA. In A CM Design Automation Conference,
2004.

[29] John W Lockwood, Nick McKeown, Greg Watson, Glen Gibb, Paul Hartke, Jad
Naous, Ramanan Raghuraman, and Jianying Luo. NetFPGA-An Open Platform
for Gigabit-Rate Network Switching and Routing. In IEEE International Conf.
on Microelectronic Systems Education, 2007.

[30] Guohan Lu, Chuanxiong Guo, Yulong Li, Zhiqiang Zhou, Tong Yuan, Haitao
Wu, Yongqiang Xiong, Rui Gao, and Yongguang Zhang. Serverswitch: A pro-
grammable and high performance platform for data center networks. In NSDI,
2011.

[31] Guohan Lu, Yunfeng Shi, Chuanxiong Guo, and Yongguang Zhang. CAFE: a
configurable packet forwarding engine for data center networks. In ACM SIG-
COMM workshop on programmable routers for extensible services of tomorrow,
2009.

[321 Steven McCanne, Sally Floyd, and Kevin Fall. The lbnl network simulator.
Software on-line: http://www.isi.edu/nsnam, 1997.

[331 Paul E McKenney. Stochastic fairness queueing. In INFOCOM, 1990.

[341 Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: enabling
innovation in campus networks. ACM SIGCOMM Computer Communication
Review, 38(2):69-74, 2008.

[35] Jayaram Mudigonda, Harrick M Vin, and Stephen W Keckler. Reconciling per-
formance and programmability in networking systems. In SIGCOMM, 2007.

[36] Jayaram Mudigonda, Harrick M Vin, and Raj Yavatkar. Overcoming the memory
wall in packet processing: hammers or ladders? In ANCS, 2005.

[37] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Deverat Shah, and Hans
Fugal. Fastpass: A Centralized "Zero-Queue" Datacenter Network. In SIG-
COMM, 2014.

49

[38] Luigi Rizzo. netmap: a novel framework for fast packet i/o. In USENIX ATC,
2012.

[39] Erik Rubow, Rick McGeer, Jeff Mogul, and Amin Vahdat. Chimpp: A Click-
based programming and simulation environment for reconfigurable networking
hardware. In ANCS, 2010.

[40] Graham Schelle and Dirk Grunwald. CUSP: a modular framework for high
speed network applications on FPGAs. In ACM/SIGDA Symposium on Field-
programmable Gate Arrays, 2005.

[41] Jeffrey Shafer and Scott Rixner. Ricenic: A reconfigurable network interface for
experimental research and education. In Proceedings of the 2007 workshop on
experimental computer science, 2007.

[42] Alan Shieh, Srikanth Kandula, and Emin Gun Sirer. Sidecar: building pro-
grammable datacenter networks without programmable switches. In HotNets,
2010.

[43] Madhavapeddi Shreedhar and George Varghese. Efficient Fair Queuing Using
Deficit Round-Robin. IEEE/ACM Transactions on Networking, 4(3):375-385,
1996.

[44] Anirudh Sivaraman, Keith Winstein, Suvinay Subramanian, and Hari Balakr-
ishnan. No Silver Bullet: Extending SDN to the Data Plane. In HotNets, 2013.

[45] Tammo Spalink, Scott Karlin, Larry Peterson, and Yitzchak Gottlieb. Building
a robust software-based router using network processors. In SOSP, 2001.

[46] C.H. Tai, J. Zhu, and N. Dukkipati. Making Large Scale Deployment of RCP
Practical for Real Networks. In INFOCOM, 2008.

[47] David E Taylor, Jonathan S Turner, John W Lockwood, and Edson L
Horta. Dynamic hardware plugins: exploiting reconfigurable hardware for high-
performance programmable routers. Computer Networks, 38(3):295-310, 2002.

[48] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. Deadline-aware dat-
acenter tcp (d2tcp). ACM SIGCOMM Computer Communication Review,
42(4):115-126, 2012.

[49] Andrds Varga et al. The omnet++ discrete event simulation system. In Proceed-
ings of the European Simulation Multiconference (ESM'2001), volume 9, page
185. sn, 2001.

[50] Matteo Varvello, Rafael Laufer, Feixiong Zhang, and TV Lakshman. Multi-
layer packet classification with graphics processing units. In Proceedings of the
10th ACM International on Conference on emerging Networking Experiments
and Technologies, pages 109-120. ACM, 2014.

50

151] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. Better
never than late: Meeting deadlines in datacenter networks. In A CM SIGCOMM
Computer Communication Review, volume 41, pages 50-61. ACM, 2011.

[521 Yan Zhang and Nirwan Ansari. On mitigating tcp incast in data center networks.
In INFOCOM, 2011.

51

