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Abstract

Current database engines designed for conventional multicore systems exploit a fraction
of the parallelism available in transactional workloads. Specifically, database engines
only exploit inter-transaction parallelism: they use speculation to concurrently execute
multiple, potentially-conflicting database transactions while maintaining atomicity and
isolation. However, they do not exploit intra-transaction parallelism: each transaction
is executed sequentially on a single thread. While fine-grain intra-transaction paral-
lelism is often abundant, it is too costly to exploit in conventional multicores. Software
would need to implement fine-grain speculative execution and scheduling, introducing
prohibitive overheads that would negate the benefits of additional intra-transaction
parallelism.

In this thesis, we leverage novel hardware support to design and implement a
database engine that effectively exploits both inter- and intra-transaction parallelism.
Specifically, we use Swarm, a new parallel architecture that exploits fine-grained and
ordered parallelism. Swarm executes tasks speculatively and out of order, but commits
them in order. Integrated hardware task queueing and speculation mechanisms allow
Swarm to speculate thousands of tasks ahead of the earliest active task and reduce task
management overheads. We modify Silo, a state-of-the-art in-memory database engine,
to leverage Swarm's features. The resulting database engine, which we call SwarmDB,
has several key benefits over Silo: it eliminates software concurrency control, reducing
overheads; it efficiently executes tasks within a database transaction in parallel; it
reduces conflicts; and it reduces the amount of work that needs to be discarded and
re-executed on each conflict.

We evaluate SwarmDB on simulated Swarm systems of up to 64 cores. At 64 cores,
SwarmDB outperforms Silo by 6.7x on TPC-C and 6.9x on TPC-E, and achieves
near-linear scalability.

Thesis Supervisor: Daniel Sanchez
Title: Assistant Professor
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Chapter 1

Introduction

Multicore architectures are now pervasive, and increasing the number of cores has

become the primary way to improve system performance. However, thread-level

parallelism is often scarce [9,19], and many applications fail to make use of the growing

number of cores. Thus, it is crucial to explore new architectural mechanisms to

efficiently exploit as many types of parallelism as possible.

In this thesis, we focus on parallel transactional databases. Current database

engines exploit thread-level parallelism by running multiple database transactions in

parallel, using some form of speculative execution (concurrency control) to preserve

transactional semantics. However, each transaction is executed sequentially on a

single thread. In other words, these databases exploit coarse-grain inter-transaction

parallelism but do not exploit fine-grain, intra-transaction parallelism. While fine-

grain intra-transaction parallelism is often abundant, it is too costly to exploit in

conventional multicores. Software would need to implement fine-grain speculative

execution and scheduling, introducing prohibitive overheads that would negate the

benefits of additional parallelism [17, 18J.
Targeting at this kind of fine-grained, speculative parallelism, our research group

is designing a novel parallel architecture, called Swarm, with the following key fea-

tures [21]:

1. Task-based execution: The architecture is optimized to execute short, atomic,
timestamped tasks, as small as a few tens of instructions each. Hardware task

queues implement speculative task creation and dispatch, drastically reducing

task management overheads.

2. Out-of-order execution with a large speculative window: Tasks execute specula-

tively and out of order, but commit in order. To uncover enough parallelism,
Swarm can run a task even if its parent task has yet to commit. Swarm can

practically support thousands of outstanding speculative tasks, providing a large
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task window from which to mine parallelism.

3. Data-centric execution: Data are divided among tiles, and tasks are sent to

other tiles to run close to their data whenever possible, improving locality and

reducing conflicts.

We present SwarmDB, a database system built atop of Swarm that exploits fine-

grain parallelism with low overheads. In SwarmDB, each database transaction is

decomposed into many small ordered tasks to exploit intra-transaction parallelism.

Typically, each task reads or writes a single database tuple. Tasks from different trans-

actions use disjoint timestamp ranges to preserve atomicity. This exposes significant

fine-grain parallelism within and across transactions.

SwarmDB confers four key benefits over conventional on-line transaction processing

(OLTP) database engines:

1. Lower conflict detection and transactional execution overheads:. Most con-

currency control schemes are software-based, and incur significant overheads.

Harizopoulos et al. [16] show that locking and latching in database systems

contribute 30% of total transaction execution time. SwarmDB delegates concur-

rency control to hardware, drastically reducing these overheads, which improves

performance even when parallelism is plentiful.

2. Faster transaction execution: Tasks within a single transaction can execute

in parallel on multiple cores, rather than sequentially, improving transaction

latency.

3. Reduced conflicts and increased parallelism:. Because each transactions uses sev-

eral cores, there are fewer concurrent transactions than traditional in databases.

When transactions are likely to conflict, fewer overlapped transactions reduces

conflicts and aborted work.

4. Reduced amount of wasted work per conflict: In conventional database engines,

conflicts result in aborts of the full database transaction. In contrast, on a

conflict, Swarm selectively aborts only the mispeculated task and its dependents,

so independent work within a transaction is not aborted.

Figure 1-1 shows an example execution schedule of SwarmDB, showcasing these

benefits.

We evaluate SwarmDB, against Silo, a high-throughput in-memory database

system, on three popular OLTP workloads: Bidding, TPC-C, and TPC-E. These

workloads show different characteristics, and showcase the different advantages of

SwarmDB. Bidding consists of short transactions without infrequent data conflicts, so

benefits come from lower overheads. TPC-C has larger transactions with significant

intra-transaction parallelism, and it inter-transaction parallelism depends on the data
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size (number of warehouses). TPC-E includes very long transactions, and is more

challenging to scale. At 64 cores, SwarmDB achieves 38 x-58 x self-relative speedups

on these benchmarks, and outperforms Silo by 5% on Bidding, 6.7x on TPC-C with 4

warehouses, and 6.9x on TPC-E.
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Figure 1-1: Example comparing Silo (timestamp-based optimistic concurrency control)
and SwarmDB on a workload with two conflicting transactions (T1 and T2) on a
two-core system. (a) In Silo, a read-write conflict causes T1 to abort and reexecute,
incurring serialization and wasted work; (b) in contrast, SwarmDB executes both
T1 and T2 across both cores, exploiting intra-transaction parallelism, and reduces
the amount of wasted work on conflicts (only T2.2 is aborted and reexecuted); (c)
SwarmDB decomposion of TI and T2 into four and five dependent, ordered tasks.
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Chapter 2

Background

2.1 Hardware Support for Fine-Grain and Specula-

tive Parallelism

Prior work has investigated two main approaches to exploit speculative parallelism:

thread-level speculation (TLS) and hardware transactional memory (HTM).

TLS: TLS schemes ship tasks from function calls or loop iterations to different cores,
run them speculatively, and commit them in program order. Although TLS schemes

support ordered speculative execution, two key problems prevent them from exploiting

ordered irregular parallelism:

1. False data dependences limit parallelism: To run under TLS, ordered algorithms

must be expressed as sequential programs, but their sequential implementations

have limited parallelism.

The root problem is that loops and method calls, the control-flow constructs

supported by TLS schemes, are insufficient to express the order constraints

among these tasks. By contrast, Swarm implements a more general execution

model with timestamp-ordered tasks to avoid software queues, and implements

hardware priority queues integrated with speculation mechanisms, avoiding

spurious aborts due to queue-related references.

2. Scalability bottlenecks: Although prior TLS schemes have developed scalable

versioning and conflict detection schemes, two challenges limit their performance

with large speculation windows and small tasks:

(a) Forwarding vs selective aborts: Most TLS schemes find it is desirable to

forward data written by an earlier, still speculative task to later reader tasks.

This prevents later tasks from reading stale data, reducing mispeculations on
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tight data dependences. However, it creates complex chains of dependences
among speculative tasks. Thus, upon detecting mispeculation, most TLS
schemes abort the task that caused the violation and all later speculative

tasks [11, 14,32,35, 361.
We find that forwarding speculative data is crucial for Swarm. However,
while aborting all later tasks is reasonable with small speculative windows

(2-16 tasks are typical in prior work), Swarm has a 1024-task window, and

unselective aborts are impractical. To address this, we contribute a novel

conflict detection scheme based on eager version management that allows

both forwarding speculative data and selective aborts of dependent tasks.

(b) Commit serialization: Prior TLS schemes enforce in-order commits by
passing a token among ready-to-commit tasks [14,32,35,361. Each task can

only commit when it has the token, and passes the token to its immediate

successor when it finishes committing.

This approach cannot scale to the commit throughput that Swarm needs.

For example, with 100-cycle tasks, a 64-core system should commit 0.64

tasks/cycle on average. Even if commits were instantaneous, the latency

incurred by passing the token makes this throughput unachievable.

HTM: HTM schemes use speculation to guarantee that certain code regions in

multithreaded programs, called transactions, execute atomically and in isolation.

However, it is difficult to use HTM to fully exploit the parallelism in the application,
especially for long transactions which include large footprints of reads and writes.
Prior work [7,24,26] has investigated several methods to support nested transactions

in HTM. Nested transactions improve the performance of HTM by exploiting more

parallelism. Closed-nested transactions extend isolation of an inner transaction until

the top-level transaction commits. Implementations may flatten nested transactions

into the top-level one, resulting in a complete abort on conflict, or allow partial abort

of inner transactions [28]. Open-nested transactions allow a committing the inner

transaction to immediately release isolation, which increases parallelism at the cost of

both software and hardware complexity [281. Supporting nested transactions requires

changes on program interface since the programmer needs to specify the region of

nested transaction. The performance gain depends on the way transactions are nested,
which relies heavily on how the programmer writes the code. For long and complicated

transactions, this requires large effort.

Even though Swarm is designed to support ordered parallelism, it still has compara-

ble performance to HTM in unordered algorithm semantics, and has simpler program
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interface than HTM which supports nested transactions. Since Swarm commits tasks

in the order specified, all tasks are fully isolated appearing to the programmer, and

there is no need to specify different nesting levels, which makes programming much

simpler comparing to HTM.

2.2 Database Systems on TLS and TM Hardware

Prior work has used hardware techniques to improve the performance of database

workloads. Colohan et al. [5,6J apply TLS to to exploit intra-transaction parallelism in

database workloads. Compared to this work, we instead expose many finer-grain tasks,
avoid ordering sibling tasks that are known independent, and extract inter-transaction

parallelism by speculating many tasks ahead (running tasks from several transactions

concurrently if needed).

Beside TLS, HTM is also a choice for improving performance of database systems.

Wang et al. 142] built a database system on Intel's restricted transactional memory

(RTM), which outperforms Silo by 52%. HTM is efficient in handling conflict checks,
which eliminates the large overhead caused by software latching or locking in traditional

database systems. However, since HTM uses caches to track transaction's read/write

set, the transaction is forced to abort when its data size exceeds the cache size.

Although HTM reduces overheads, it does not reduce the abort rate of traditional

concurrency control schemes and is subject to the same scalability bottlenecks.

2.3 State-of-the-art Software Concurrency Control

Schemes

Prior work has proposed a wide variety of concurrency control schemes for database

systems. Widely studied schemes include two-phase locking (2PL), optimistic concur-

rency control (OCC), and multi-version concurrency control (MVCC). However, these

schemes either limit concurrency or add excessive overheads. They usually have a

tradeoff between the software code complexity and parallelism they exploit. 2PL grabs

a tuple lock upon first accessing of the tuple and releases the lock at commit, which

is much longer than necessary. A transaction has to wait for another transaction to

finish before actually starting if it conflicts at the first tuple in the transaction. OCC
checks the read/write set intersection before commit. The locking range is short since

it only needs to lock the write set, but it redoes the complete transaction on abort

even if only one tuple in the transaction conflicts, which causes much wasted work.
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MVCC doesn't acquire lock; but software-managed versioning has very large overhead,
and the whole transaction gets aborted when timestamp sequence on one tuple is

violated. In addition, all the above concurrency control schemes redo the complete

transaction that is aborted, while only several queries of the transaction has data

conflict.

None of the above schemes exploit intra-transaction parallelism. In distributed

databases, independent queries within a transaction are executed in parallel. The data

is distributed in different machines, so sending queries to where the data is located is an

obvious choice. However, such parallelism is hardly explored in in-memory databases

due to the large overhead of sending queries to different cores. The performance loss

is significant especially for long transactions.

SwarmDB doesn't use software concurrency control, leveraging Swarm instead

to ensure the consistency and atomicity of transactions. Each transaction has a

timestamp range and each task within a transaction is assigned a unique timestamp.

The in-order commit mechanism of Swarm ensures that all the transactions appear to

be executed sequentially. SwarmDB naturally exploits intra-transaction parallelism.
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Chapter 3

Swarm: An Architecture for Ordered

Parallelism

This chapter introduces Swarm, the architecture on which SwarmDB is built. For

more details, see [211.

Figure 3-1 shows Swarm's high-level organization. Swarm is a tiled CMP. Each

tile has a group of simple cores. Each core has small, private, write-through Li caches.

All cores in a tile share a per-tile L2 cache, and each tile has a slice of a shared NUCA

L3 cache. Each tile features a task unit that queues, dispatches, and commits tasks.

Tiles communicate through a mesh NoC.

Key features: Swarm is optimized to execute short tasks with programmer-specified

order constraints. Programmers define the execution order by assigning timestamps

to tasks. Tasks can create children tasks with equal or higher timestamp than their

own. Tasks appear to execute in global timestamp order, but Swarm uses speculation

to elide order constraints.

Swarm is coherently designed to support a large speculative task window efficiently.

Swarm has no centralized structures: each tile's task unit queues runnable, non-

speculative tasks, and maintains the speculative state of finished tasks that cannot

yet commit. Task units only communicate when they send new tasks to each other to

maintain load balance, and, infrequently, to determine which finished tasks can be

committed.

Swarm speculates far ahead of the earliest active task, and runs tasks even if their

parent is still speculative. Figure 3-2(a) shows this process: a task with timestamp 0
is still running, but tasks with higher timestamps and several speculative ancestors

are running or have finished execution. For example, the task with timestamp 51,
currently running, has three still-speculative ancestors, two of which have finished and
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16-tile, 64-core CMP Tile Organization
Memory controller

Rour

Memory controller

Figure 3-1: Target tiled CMP and tile configuration. Duplicated from [211.

Legend Task timestamp
Task state

IDLE (I) RUNNING (R) FINISHED (F) Child task
Q A

(a) Tasks far ahead of the minimum timestamp (0) (b) Selective aborts: Task 35 aborts
are run, even when parent is still speculative 40 and child 51, but not 42

Figure 3-2: Example of deep speculation and data-centric execution. By executing tasks
even if their parents are speculative, deep speculation uncovers ordered parallelism,
but may cause cascading aborts.

are waiting to commit (8 and 20) and one which is still running (40).
Allowing tasks with speculative ancestors to execute uncovers significant parallelism,

but may induce aborts that span multiple tasks. For example, in Figure 3-2(b) a new

task with timestamp 35 conflicts with task 40, so 40 is aborted and child task 51 is

both aborted and discarded. These aborts are selective, and only affect tasks whose

speculative ancestors are aborted, or tasks that have read data written by an aborted

task.

3.1 ISA Extensions and Programming Model

Swarm manages and dispatches tasks using hardware task queues. A task is represented

by a descriptor with the following architectural state: the task's function pointer, a

64-bit timestamp, and the task's arguments.
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Tasks appear to run in timestamp order. Tasks with the same timestamp may

execute in any order, but run atomically-the system lazily selects an order for them.

A task can create one or more children tasks with equal or higher timestamp

than its own timestamp. A child is ordered after its parent, but children with the

same timestamp may execute in any order. Because hardware must track parent-child

relations, tasks may create a limited number of children (8). Tasks that need more

children enqueue a single task that creates them.

Swarm adds instructions to enqueue and dequeue tasks. The enqueuetask

instruction accepts a task descriptor (held in registers) as its input and queues the

task for execution. A thread uses the dequeue-task instruction to start executing

some previously-enqueued task by making the timestamp and arguments available

to the task (in registers), and initiating speculative execution at the task's function

pointer. Task execution ends with a f inishtask instruction.

dequeuetask stalls the core if an executable task is not immediately available,
avoiding busy-waiting. When no tasks are left in any task unit and all threads are

stalled on dequeue-task, the algorithm has terminated, and dequeue-task jumps to

a configurable pointer to handle termination.

API: We design a low-level C++ API that uses these mechanisms. Tasks are simply

functions with signature:

void taskFn(timestamp, args...

Code can enqueue other tasks by calling:

enqueueTask(taskFn, timestamp, args...

3.2 Task Queuing and Prioritization

The task unit has two main structures:

1. The task queue holds task descriptors (function pointer, timestamp, and argu-

ments).

2. The commit queue holds the speculative state of tasks that have finished execution

but cannot yet commit.

Figure 3-3 shows how these queues are used throughout the task's lifetime. Each new

task allocates a task queue entry, and holds it until commit time. Each task allocates

a commit queue entry when it finishes execution, and also deallocates it at commit

time. For now, assume these queues always have free entries.
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Incoming Task
(timestamp=7, taskFn, args)

Task Queue Cores

9, I
10,1 Commit Queue

R-
8,R

3, F 3

(a) Task with timestamp 7

arrives, is queued

Task States: IDLE (I) RUNNING (R) FINISHED (F)

Task Que

9,1

8, R
3, F

(b) Task
finishes,

ue Cores

Commit Queue

_2

39

with timestamp 2
7 starts running

Figure 3-3: Task queue and commit queue utilization
Duplicated from [21].

Tile 1 0 TASK(descriptor, parentPtr = (1, 4))

O TASKACK (childPtr = (3, 8))

Task Queue Cores

9, R

2, F (Commit Queue

8, R

3, F 3

(c) Task with timestamp 7
finishes, 9 starts running

through a task's lifetime.

Tile 3

0 Task @ task queue position 4 Allocate task queue entry 8
starts running 0 Store task descriptor and
New child task for tile 3 parent pointer (1, 4)

O Record new child pointer (3, 8)

Figure 3-4: Task creation protocol. Cores send new tasks to other tiles for execution.

To track parent-child relations, parent and child keep a pointer to each other.

Together, the task queue and commit queue are similar to a reorder buffer, but at

task-level rather than instruction-level. They are separate structures because commit

queue entries are larger than task queue entries, and typically fewer tasks wait to

commit than to execute. However, unlike in a reorder buffer, tasks do not arrive in

priority order. Both structures manage their free space with a freelist and allocate

entries independently of task priority order, as shown in Figure 3-3.

Task enqueues: When a core creates a new task (through enqueue-task), it sends

the task to a randomly-chosen target tile following the protocol in Figure 3-4. Parent

and child track each other using task pointers. A task pointer is simply the tuple

(tile, task queue position). This tuple uniquely identifies a task because it stays in

the same task queue position throughout its lifetime.

22
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00100 000100 ... 10 Line Address
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Figure 3-5: Speculative state for each task. Each core and commit queue entry

maintains this state. Read and write sets are implemented with space-efficient Bloom

filters. Duplicated from [21].

Task prioritization: Tasks are prioritized for execution in timestamp order. When

a core calls dequeuetask, the highest priority idle task in the task queue is selected

for execution. Since task queues do not hold tasks in priority order, an auxiliary order

queue is used to find this task.

The order queue can be cheaply implemented with two small ternary content-

addressable memories (TCAMs) with as many entries as the task queue (e.g., 256),

each of which stores a 64-bit timestamp. With Panigrahy and Sharma's PIDROPT

method [29], finding the next task to dispatch requires a single lookup in both TCAMs,

and each insertion (task creation) and deletion (task commit or squash) requires two

lookups in both TCAMs. SRAM-based implementations are also possible, but we find

the small TCAMs to have a moderate cost.

3.3 Speculative Execution and Versioning

The key requirements for speculative execution in Swarm are allowing fast commits

and a large speculative window. To this end, we adopt eager versioning, storing

speculative data in place and logging old values. Eager versioning makes commits fast,

but aborts are slow. However, Swarm's execution model makes conflicts rare, so eager

versioning is the right tradeoff.

Eager versioning is common in hardware transactional memories [27], which do

not perform ordered execution or speculative data forwarding. By contrast, most TLS

systems use lazy versioning (buffering speculative data in caches) or more expensive

multiversioning [3,14, 15,30,31,32,35,36, 37] to limit the cost of aborts. Few, early

TLS schemes are eager [1, 111, and they still suffer from the limitations.

Swarm's speculative execution borrows from LogTM and LogTM-SE [27, 43].

Our key contributions over these and other speculation schemes are (i) conflict-
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detection (section 3.4) and selective abort techniques (section 3.5) that leverage

Swarm's hierarchical memory system and Bloom filter signatures to scale to large

speculative windows, and (ii) a technique that exploits Swarm's large commit queues

to achieve high-throughput commits (section 3.6).

Figure 3-5 shows the per-task state needed to support speculation: read- and

write-set signatures, an undo log pointer, and child pointers. Each core and commit

queue entry hold this state.

A successful dequeuetask instruction jumps to the task's code pointer and initi-

ates speculation. Since speculation happens at the task level, there are no register

checkpoints, unlike in HTM and TLS. Like in LogTM-SE, as the task executes, hard-

ware automatically performs conflict detection on every read and write (section 3.4).

Then, it inserts the read and written addresses into the Bloom filters, and, for every

write, it saves the old memory value in a memory-resident undo log. Stack addresses

are not conflict-checked or logged.

When a task finishes execution, it allocates a commit queue entry; stores the read

and write set signatures, undo log pointer, and children pointers there; and frees the

core for another task.
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Figure 3-8: Commit queues store read- and write-set Bloom filters by columns, so

a single word read retrieves one bit from all entries. All entries are then checked in

parallel.

3.4 Virtual Time-Based Conflict Detection

Conflict detection is based on a priority order that respects both programmer-assigned

timestamps and parent-child relationships. Conflicts are detected at cache line granu-

larity.

Unique virtual time: Tasks may have the same programmer-assigned timestamp.

However, conflict detection has much simpler rules if tasks have a total order. Therefore,

tasks are given a unique virtual time when they are dequeued for execution. Unique

virtual time is the 128-bit tuple (programmer timestamp, dequeue cycle, tile id).

Conflicts are resolved using this unique virtual time, which tasks preserve until they

commit.

Unique virtual times incorporate the ordering needs of programmer-assigned

timestamps and parent-child relations: children always start execution after their

parents, so a parent always has a smaller dequeue cycle than its child, and thus a

smaller unique virtual time, even when parent and child have the same timestamp.

Conflicts and forwarding: Conflicts arise when a task accesses a line that was

previously accessed by a higher-virtual time task. Suppose two tasks, t1 and t2 , are

running or finished, and t 2 has a higher virtual time. A read of t1 to a line written

by t 2 or a write to a line read or written by t 2 causes t 2 to abort. However, t2 can

access data written by t1 even if t1 is still speculative. Thanks to eager versioning, t 2

automatically uses the latest copy of the data-there is no need for speculative data

forwarding logic [11].
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Hierarchical conflict detection: Swarm exploits the cache hierarchy to reduce
conflict checks. Figure 3-6 shows the different types of checks performed in an access:

1. The LI is managed to ensure Li hits are conflict-free.

2. LI misses are checked against other tasks in the tile (both in other cores and in
the commit queue).

3. L2 misses, or L2 hits where a virtual time check (described below) fails, are

checked against tasks in other tiles. As in LogTM [27], the L3 directory uses
memory-backed sticky bits to only check tiles whose tasks may have accessed

the line. Sticky bits are managed exactly as in LogTM.

Any of these conflicts trigger task aborts.

Using caches to filter checks: The key invariant that allows caches to filter
checks is that, when a task with virtual time T installs a line in the (LI or L2) cache,
that line has no conflicts with tasks of virtual time > T. As long as the line stays

cached with the right coherence permissions, it stays conflict-free. Because conflicts
happen when tasks access lines out of virtual time order, if another task with virtual

time U > T accesses the line, it is also guaranteed to have no conflicts.

However, accesses from a task with virtual time U < T must trigger conflict checks,
as another task with intermediate virtual time X, U < X < T, may have accessed the
line. U's access does not conflict with T's, but may conflict with X's. For example,
suppose task with virtual time X = 2 writes line A. Then, task T = 3 in another core
reads A. This is not a conflict with X's write, so A is installed in T's L1. The core

then finishes T and dequeues a task U = 1 that reads A. Although A is in the L1, U
has a conflict with X's write.

We handle this issue with two changes. First, when a core dequeues a task with

a smaller virtual time than the one it just finished, it flushes the LI. Because Lis
are small and write-through, this is fast, simply requiring to flash-clear the valid bits.
Second, each L2 line has an associated canary virtual time, which stores the lowest

task virtual time that need not perform a global check. For efficiency, lines in the

same L2 set share the same canary virtual time. For simplicity, this is the maximum

virtual time of the tasks that installed each of the lines in the set, and is updated
every time a line is installed.

Efficient commit queue checks: To allow large commit queues (e.g., 64
tasks/queue), conflict checks must be efficient. To this end, we leverage that checking
a K-way Bloom filter only requires reading one bit from each way. As shown in
Figure 3-8, Bloom filter ways are stored in columns, so a single 64-bit access per way
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Figure 3-9: Selective abort protocol. Suppose (A, 1) must abort after it writes x10.
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aborts (C, 3), which read A's speculative write to sxep. (B, 2) is independent and
thus not aborted.

reads all the necessary bits. Reading and ANDing all ways yields a word that indicates

potential conflicts. The virtual times of entries whose position in this word is are

checked.

3.5 Selective Aborts

Upon a conflict, Swarm aborts the later-timestamp task and all its dependents:

its children and other tasks that have accessed data written by the aborting task.

Hardware aborts each task t in two steps:
1. Notify t's children to abort and be removed from ue the cask queues.

2. Walk t's undo log in LIFO order, writing old values. If one of these writes

conflicts with a higher-virtual time task, wait for it to abort and continue t's

rollback.

3. Clear t's signatures and free its commit queue entry.

Applied recursively, this procedure selectively aborts all dependent tasks, as shown in

Figure 3-9. This scheme has two key benefits. First, it reuses the conflict-detection

logic used in normal operation. Undo-log writes (e.g., A's second wr 0x10 in Figure 3-

9) are normal conflict-checked writes, issued with the tasks's timestamp to detect

all later readers and writers. Second, this scheme does not explicitly track data

dependences among tasks. Instead, uses the conflict-detection protocol to recover

them as needed. This is important, because any task may have served speculative

data to many other tasks, with would make tracking state expensive. For example,
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tracking all possible dependences on a 1024-task window using bit-vectors would
require 1024 x 1023 ~_1 Mbit of state.

3.6 Scalable Ordered Commits

To achieve high-throughput commits, Swarm adapts the virtual time algorithm [20],
common in parallel discrete event simulation [101. Figure 3-7 shows this protocol.

Tiles periodically send the smallest unique virtual time of any unfinished (running

or idle) task to an arbiter. Idle tasks do not yet have a unique virtual time and use

(timestamp, current cycle, tile id) for the purposes of this algorithm. The arbiter

computes the minimum virtual time of all unfinished tasks, called the global virtual

time (GVT), and broadcasts it to tiles. To preserve ordering, only tasks with virtual

time < GVT can commit.

The key insight is that, by combining the virtual time algorithm with Swarm's

large commit queues, commit costs are amortized over many tasks. A single GVT

update often causes many finished tasks to commit. For example, if in Figure 3-7
the GVT jumps from (80,100,2) to (98,550,1), all tasks with virtual time (80,100,2)<
t <(98,550,1) can commit. GVT updates happen sparingly (e.g., every 200 cycles) to

limit bandwidth. Less frequent updates reduce bandwidth but increase commit queue

occupancy.

In addition, eager versioning makes commits fast: a task commits by freeing its

task and commit queue entries, a single-cycle operation. Thus, if a long-running task

holds the GVT for some time, once it finishes, commit queues quickly drain and catch

up to execution.

Compared with prior TLS schemes that use successor lists and token passing to

reconcile order, this scheme does not even require finding the successor and predecessor

of each task, and does not serialize commits.

For the system sizes we evaluate, a single GVT arbiter suffices. Larger systems

may need a hierarchy of arbiters.

3.7 Handling Limited Queue Sizes

The per-tile task and commit queues may fill up, requiring a few simple actions to
ensure correct operation.

Task queue virtualization: Applications may create an unbounded number of
tasks and schedule them for a future time. Swarm uses an overflow/underflow

28



mechanism to give the illusion of unbounded hardware task queues [13, 23, 33]. When

the per-tile task queue is nearly full, the task unit dispatches a special, non-speculative

coalescer task to one of the cores. This coalescer task removes several non-speculative,
idle task descriptors with high programmer-assigned timestamps from the task queue,
stores them in memory, and enqueues a splitter task that will re-enqueue the overflowed

tasks.

Virtual time-based allocation: The task and commit queues may also fill up

with speculative tasks. The general rule to avoid deadlock due to resource exhaustion

is to always prioritize lower-virtual time tasks, aborting other tasks with higher virtual

times if needed. For example, if a tile speculates far ahead, fills up its commit queue,
and then receives a task that precedes all other speculative tasks, the tile must let the

preceding task execute to avoid deadlock. This results in three specific policies for the

commit queue, cores, and task queue.

Commit queue: If task t finishes execution, the commit queue is full, and t

precedes any of the tasks in the commit queue, it aborts the highest-virtual time

finished task and takes its commit queue entry. Otherwise, t stalls its core, waiting

for an entry.

Cores: If task t arrives at the task queue, the commit queue is full, and t precedes

all tasks in cores, t aborts the highest-virtual time task and takes its core.

Task queue: Suppose task t arrives at a task unit but the task queue is full. If

some tasks are non-speculative, a coalescer is running, and the task waits for a free

entry. If all tasks in the task queue are speculative, the enqueued request is NACK'd

and the parent task stalls, and retries the enqueue using linear backoff. To avoid

deadlock, we leverage that when a task's unique virtual time matches the GVT, it is

the smallest-virtual time task in the system, and cannot be aborted. This task need

not keep track of its children (no child pointers), and when those children are sent to

another tile, they can be overflowed to memory if the task queue is full. This ensures

that the GVT task makes progress, avoiding deadlock.
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Chapter 4

Building an In-Memory Database

System on Swarm

4.1 Mapping Database Transactions to Swarm Tasks

We will design and implement an in-memory OLTP database that exploits the intra-

transaction parallelism available with a decomposition of partially-ordered tasks. In

this section, we present the intuition behind porting a multi-table transaction of

single-table queries into several partially-ordered tasks.

We use the TPC-C payment transaction as an example. All operations in the

transaction are written sequentially, and apart from transaction-level parallelism, these

operations would be executed sequentially. However in this example, operations on

distinct tables can be executed in parallel if they lack a data dependency. We naturally

group operations on a single table into a task. To ensure that the queries/updates in

a transaction looks like being executed sequentially, each task is assigned a unique

timestamp according to their execution order in the transaction. Code below shows

the code for payment transaction using Swarm API:

void modify-warehouse(args...)f

execute-query ("SELECT.. .FROM warehouse WHERE ...

executequery("UPDATE warehouse SET...");

}
void modify-district(args...

execute-query ("SELECT.. .FROM district WHERE &Xe");

execute-query("UPDATE district SET...");

}
void modify-customer(args...

execute-query("UPDATE customer SET...");

}
void insert-history(args...

execute-query("INSERT history ... ");

}
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Figure 4-1: Data dependency among tasks in payment txn.
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Figure 4-2: Execution sequence of 2 payment txns in a 2-core system.

void transaction(uint64_t ts){

enqueueTask (modif ywarehouse , ts , args ...

enqueueTask(modify-district ts+1, args...);

enqueueTask(modify-customer, ts+2, args...);

enqueueTask(insert-history, ts+3, args...

}

Atomicity and consistency are guaranteed by assigning each database transaction

a non-overlapping timestamp range. By doing that, transactions is forced upon

a preliminary execution order. Queries within a transaction each claim a distinct

timestamp, which reflects the order of queries in the transaction. Since tasks in Swarm

is committed in order, the atomicity and consistency property of transaction will not

be violated.

Figure 4-1 shows the data dependency among these tasks. If a task that depends

on previous tasks and is executed earlier, it will be aborted. If a task has data conflict

with another task, the one with earlier timestamp wins and the the other aborted.

One possible execution sequence in 2-core environment under Swarm is shown in

Figure 4-2.

Database on Swarm have further advantage comparing to database using conven-

tional concurrency control when the number of available cores exceeds the number

of available transactions. Some cores would be idle with conventional concurrency

control, while all threads will be busy in Swarm. One possible execution sequence in

a 4-core environment under Swarm is shown in Figure 4-3.

Since we are naturally mapping queries to tasks, the translation from traditional

database system to SwarmDB is easy. A query parser/optimizer can handle the

work of analyzing the data dependency among queries and determines the arguments

for the tasks. Wrapping the query execution with our task API is straightforward.
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Figure 4-3: Execution sequence of 2 payment txns in a 4-core system.

Besides, by analyzing the longest possible query in an application, we can determine

the timestamp range for each transaction in that application.

4.2 Application-specific Optimizations

4.2.1 Handling known data dependencies

Some applications has transactions in which queries show explicit data dependencies.

For example, in the payment transaction mentioned above (Figure 4-1), the "INSERT

history" query have data dependency on "SELECT warehouse", "SELECT customer"

queries since the payment history item to be inserted contains the information of

warehouse the payment is paid to, as well as the customer information who is doing

the payment. If we issue the task executing "INSERT history" and task executing

"SELECT warehouse" at the same time, the "INSERT history" task is very likely to

get aborted, thus making the system doing useless work. However, we can avoid this

by making the task of "SELECT warehouse" issuing the task "INSERT history" when

it finishes the query, and pass the warehouse information as parameters to the task

"INSERT history".

However, the "INSERT history" is still very likely to abort since it is hard to

say whether the task "SELECT customer" will be executed earlier than "INSERT

history". But we can set an indicator in the task of "INSERT history" to indicate

how many of its parents finished execution, and it only starts when all of its parent

tasks are done. The analysis of the explicit parent-child relationship can be easily

done by query parser/query optimizer.

4.2.2 Data partition

Some application has long scan operations, like TPCE. Scans on large tables often

take long time, and cause large amount of useless work if a single record is modified
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by another concurrent transaction, causing the scan to abort.

To make the long scans execute nore efficiently, we partition the table to allow

scanning on partial tables go on in parallel and then merge the results. There is a

tradeoff here: if we partition the table into smaller parts, the scan operations has more

parallelism; however the task creation and merging overhead increases. Adjusting the

number of partitions according to the cores available is a possible solution. We leave

choosing an optimized partition algorithm to our future work.

4.3 Durability

A transaction is durable if all its modifications are recorded on durable storage and all

transactions serialized before it are durable. Thus, durability requires the system to

recover the effects of a set of transactions that form a prefix of the serial order [41].
In SwarmDB, we implemented value logging [44]. Logging is done by separate tasks.

Although the execution of transaction is out-of-order, the logging needs to be ordered

for the purpose of recovery after a crash.

To solve this problem, we created a space to store the log, and each query log

hashes into a slot in this space using task timestamp as hash key. Logs are copied from

the temporary memory to disk periodically. Timestamp for each query is attached to

the log; when the logs are copied to disk, they're sorted according to their timestamp,
so that logs appear to be sequential on disk. Since we also log transaction commit

along with the timestamp, and all the transactions have distinct timestamp range, we

can easily differentiate on-going transactions and finished transactions by reading the

log, and only recover values written by finished transactions upon recovery.

By applying a hashing as 2-level universal hashing, only Q(n) hashing space is

needed, while n is the max number of query tasks on the fly. However currently

we assume logging is cheap in space, so we give a sufficient number of slots for

logging. Since the simulator for Swarm doesn't simulate disk latency, we don't plan to

implement copying logging from memory to durable storage. However, a background

process can handle the work of moving the log from the hash space to the disk, without

affecting the performance of task threads.
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Chapter 5

Evaluation

We first report SwarmDB's speedups and performance against Silo. We then ana-

lyze SwarmDB's behavior in depth and study its sensitivity to various architectural

parameters.

5.1 SwarmDB Benchmarks

We use Silo as our baseline, and evaluate SwarmDB on a variety of commonly used

OLTP benchmarks.

Bidding benchmark: This is a small benchmark simulating the situation where

many bidders participating in a bidding of many items. It consists of three tables

and one type of transaction. Each transaction includes at most five queries, so

transactions are short. If there're many users placing bids on many different items,
there're barely conflicts among concurrent transactions. Since SwarmDB is gaining

benefit from exploiting intra-transaction parallelism and doing clever partial abort,
the bidding benchmark with small transaction and light conflict presents the worst

case for SwarmDB.

TPC-C benchmark: The TPC-C benchmark is the current industry standard

for evaluating the performance of OLTP systems [38]. It consists of nine tables and five
types of transactions that simulate a warehouse-centric order processing application.
All of the transactions in TPC-C provide a warehouse id as an input parameter that

is the ancestral foreign key for all but one of TPC-C's tables [8]. This means that the

data can be perfectly partitioned by warehouses. Based on this characteristics, we

evaluate SwarmDB against Silo on two sets of experiments: strong scalability test and

weak scalability test (explained in section 5.2).
TPC-C represents OLTP benchmark with long transaction and complicated data

dependencies within transaction, as well as adjustable data conflict rate (which is
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different in two experiment sets). Improving TPC-C performance under high data

contention usually requires dynamically tracking data dependencies and breaking

transactions, which is very challenging in traditional database systems.

TPC-E benchmark: The TPC-E benchmark models a financial brokerage house.

There are three components: customers, brokerage house, and stock exchange. TPC-

E's focus is the database system supporting the brokerage house, while customers

and stock exchange are simulated to drive transactions at the brokerage house [4].
Comparing to TPC-C, the TPC-E benchmarks shows poor spatial and temporal locality.

In our experiments, we only use a combination of five most frequent transactions in

TPC-E (section 5.2).

The TPC-E benchmark is consist of long transactions containing long queries.

Scans and joins on large tables are very frequent in this benchmark, which makes the

overhead of concurrency control excessive [39]: for locking based algorithm, scans and

joins means a large number of locks to be hold by one transaction, which complicates

the locking management; for read-write set checking algorithm (like OCC), the cross

checking of big read/write set slows down the transaction; for timestamp based

algorithm, long transaction means the large span over timestamp, making it likely to

have many aborts due to timestamp violation.

5.2 Methodology

5.2.1 System configuration

We use an in-house microarchitectural, event-driven, sequential simulator based on

Pin [25] to model a 64-core CMP with a 3-level cache hierarchy. We use IPC-1 cores

with detailed timing models for caches, on-chip network, main memory, and Swarm

features (e.g., conflict checks, aborts, etc.). 5.1 details the modeled configuration.

Idealized memory allocation: Dynamic memory allocation is not simulated in

detail, and a scalable solution is left to future work. In principle, we could build a task-

aware allocator with per-core memory pools to avoid serialization. However, building

high performance allocators is complex [12, 341. Instead, the simulator allocates and

frees memory in a task-aware way. Freed memory is not reused until the freeing task

commits to avoid spurious dependences. Each allocator operation incurs a 30-cycle

cost. For fairness, serial and software-parallel implementations also use this allocator.
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Cores64 cores in 16 tiles (4 cores/tile), 2 GHz, x86-64 ISA, IPC-1
except misses and Swarm instructions

Li caches 16 KB, per-core, split D/I, 8-way, 2-cycle latency

L2 caches 256KB, per-tile, 8-way, inclusive, 7-cycle latency
16 MB, shared, static NUCA [22] (1 MB bank/tile), 16-way,L3 cache inclusive, 9-cycle bank latency

Coherence MESI, 64 B lines, in-cache directories, no silent drops

NoC 4x4 mesh, 256-bit links, X-Y routing, 3 cycles/hop
Main

4 controllers at chip edges, 120-cycle latency
mem

64 task queue entries/core (4096 total),
Queues 16 commit queue entries/core (1024 total)

Swarm 5 cycles per enqueue/dequeue/f inish-task
instrs

2048-bit 8-way Bloom filters, H3 hash functions [2]
Conflicts Tile checks take 5 cycles (Bloom filters) + 1 cycle for every

timestamp compared in the commit queue
Commits Tiles and GVT arbiter send updates every 200 cycles

Table 5.1: Configuration of the simulated 64-core CMP (Figure 3-1).

5.2.2 Transaction configuration

Due to time constraint, we did not implement all types of transactions in the TPC-

C and TPC-E benchmarks. For TPC-C, we implement new order and payment

transactions, which are usually separately studied in OLTP studies. The transaction

mix for TPC-C is 50% new order and 50% payment. For TPC-E, we implemented

customer position, market watch, trade status, trade order and trade update altogether

five types of transactions, which contribute to more than 70% of the transactions

TPC-E includes. The transaction mix for TPC-E is: customer position (25%), market

watch (35%), trade status (15%), trade order (15%) and trade update (10%). The

ratio of each transaction is chosen according to the specification [401.

In TPC-C, we evaluate SwarmDB on two sets of experiments: strong scalability

test (where data size remains while core number increases) and weak scalability test

(where data size increases along with the core number). For the strong scalability test,
we fix the number of warehouses to 4, and scale cores and memory. For the weak

scalability test, the number of warehouses matches the number of cores, in which case

Silo partitions transactions by warehouse, so each core handles a warehouse.

In TPC-E, we evaluate the performance on the transaction mix mentioned above.
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Figure 5-1: Bidding benchmark.

Among these transactions, trade-order and trade-result transactions are write-heavy,

with high possibility of having conflict, especially for trade-order transaction, which

gets the largest tradeid, and inserts a record with key tradeid + 1 into the trade

table. For other transactions, they are read-only.

5.2.3 Performance comparison

We evaluate the system performance by looking at its throughput: thousands of

transactions per second (ktransactions/s). To compare the performance of SwarmDB

and Silo in the scaling systems, we use the throughput of Silo in 1-core system as

baseline, and comparing the speedups of SwarmDB and Silo under the same system

configurations.

5.3 Performance

Figure 5-1 shows the performance comparison on bidding benchmark. SwarmDB

outperforms Silo in all cases, even if the benchmark doesn't present the situation

where SwarmDB could benefit from. The speedup comes from SwarmDB's hardware

conflict management comparing to relevant software scheme. Silo has played many

performance tricks, for example, using scratch memory reserved on each core for

all transactions running on that core. Since SwarmDB breaks the transaction and

sends queries within one transaction to different cores, this kind of tricks can no

longer be applied which will result in the lost of performance. For short transactions,

the concurrency control management of Silo outweighs the benefit it gains from its

38

Z

70

-- SwarmDB
Silo

0



1600 SwarmDB 6.69x

Silo
1400

1200

1000
4.40x

800

600
2.64x

400

1.66x

0 1.24x 1.14x 1. 03x

1 2 4 a 16 32 64
number of cores

70

60

0 50

9C 40

30

L20

1C

(a) Performance comparison

0 10 20 30 40 50 60 70
number of cores

(b) Speedup comparison
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Figure 5-3: TPC-C benchmark with scaling warehouses.

performance tricks. However, as the number of cores grows, SwarmDB scales not as

good as Silo. Since transactions are short and don't usually conflict with each other,

the overhead of task management may cause the performance loss. But in all cases,

SwarmDB is still faster. On this benchmark, SwarmDB has average speedup of 1.95x

against Silo.

Figure 5-3 and Figure 5-2 shows the performance comparison on TPC-C benchmark.

When data size scales with the database size, Silo scales linearly while SwarmDB also

scales linearly. Since transactions in TPC-C have many queries, dynamically creating

memory space for each query is expensive, which compensates the performance gain

of eliminating software concurrency control.
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Figure 5-4: TPC-E benchmark.

When data size is fixed and on-chip resources grows, SwarmDB significantly

outperforms Silo. Silo suffers from high abort rate and large amount of work redoing

aborted transaction when the number of cores increases, and scales poorly. SwarmDB,

however, scales linearly in this case. On a 64-core system SwarmDB achieves 6.4x

speedup over Silo on the same system. section 5.3 will give detailed analysis of

SwarmDB performance.

For TPC-E benchmark, SwarmDB shows better performance under all system

configurations. Since most transactions are read-only, there is little data conflict which

can cause the transactions to abort. In this case, SwarmDB's higher throughput

comes from more efficient conflict management scheme. Since the transactions are long

and scan-heavy, keeping track of all the read/write set in software has significantly

higher overhead comparing to doing it in hardware. On a 64-core system, SwarmDB

outperforms Silo by 6.94x.

5.4 Analysis

Cycle breakdowns: Each set of bars shows results for a single application as the

system scales from 1 to 64 cores. Each bar's height reports the cycles spent by each

core, normalized by the cycles of the 1-core system (lower is better). With linear

scaling, all bars would have a height of 1.0; higher and lower bars indicate sub- and

super- linear scaling, respectively. Each bar shows the cycles cores spend executing

tasks that are ultimately committed, tasks that are later aborted, stalled and idle

(other).
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For bidding benchmark (Figure 5-5), on a 64-core system, 34.8% of the time is

spent on aborted work. Similar time portion is spent on aborted work for Silo. The

abort is mostly due to natural data conflict by the benchmark, eg. multiple users

placing bid on the same bidding item. Since the transaction in this benchmark is

small, so the benefit of exploiting intra-transaction parallelism only improves the

performance slightly.

For TPC-C with 4 warehouses (Figure 5-6), most of time is spent on worker thread.

Less than 10% of the time is spent on aborted work. For Silo on 4 warehouses, the

aborted work contributes to 50% of the total execution time. With fixed warehouses,

the workload itself shows heavy contention. However, not all the queries in a single

transaction have conflicts. Actually, only the warehouse table and district table is

causing conflict, while queries on other tables are mostly safe. SwarmDB only aborts

the query that is exactly having conflict, instead of aborting the complete transaction.

For TPC-C with scaling warehouses (Figure 5-7), 10% of the time is spent on

stalling, which means the system is waiting for tasks. This reveals that SwarmDB

requires many transactions to be issued at certain times to ensure the system is full

loaded, which is a reasonable assumption.

For TPC-E benchmark, the performance gain of SwarmDB basically comes from

reducing the overhead of concurrency control. With the same number of transactions

executed, SwarmDB spends only 15% of Silo execution time. However, SwarmDB's

performance is hurt by stalling (up to 52%). Because of data partition, the scan and

select operation will issue many children tasks to scan/read partitions in parallel,

which causes the system to stall on resources like commit queue.
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5.5 SwarmDB with Logging

We only tested SwarmDB with logging on TPC-C benchmark. Figure 5-9 shows the

performance comparison of SwarmDB with and without logging. On a 64-core system,

the throughput of the database system is only 86% of that without logging, which

shows that the logging only introduces very low overhead.
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Chapter 6

Conclusion

In this thesis I presented SwarmDB, a database system built on the Swarm architec-

ture that efficienly exploits fine-grain parallelism in transactional workloads. Swarm

speculates that most ordering constraints are superfluous, and executes tasks spec-

ulatively and out of order but commits them in order. It does efficient hardware

conflict detection, tracks the dynamic data dependency among tasks, and implements

a distributed, ordered commit scheme. SwarmDB leverages these features to achieve

high performance. The database needs to be changed in certain way to make full use

of the features Swarm presents. Breaking down transactions into tasks lets Swarm

exploit intra-transaction as well as inter-transaction parallelism. It also allows partial

aborts by relying on the Swarm to track data dependencies among tasks. As a result,

SwarmDB achieves significant speedup over a state-of-the-art database systems, and

shows good scalability on large systems.
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