
Novel Frameworks for Auctions and Optimization

by

Zeyuan Allen-Zhu

B.S. in Mathematics and Physics, Tsinghua University (2010)
S.M. in Electrical Engineering and Computer Science, MIT (2012)

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Doctor of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

ARCHVES
MASSACHUET INSTITUTE

OF TECHNOLOGY-

NOV 0 2 2015

LIBRARIES

@ Massachusetts Institute of Technology 2015. All rights reserved.

Author . .

Certified by.

Certified by.

Signature redacted.D. ....ngengnCmtScc
Departmendt of Elebrcal Engineering and Computer Science

Signature redacted
August 17, 2015

Jonathan A. Kelner
14Msciate Professor of Applied Mathematics

Sig nature redacted Thesis Supervisor

Silvio Micali
Ford Professor of Engineering

Accepted by ....
Signature redacted

60

Thesis Supervisor

Leslie A. Kolodziejski
Chair, Department Committee on Graduate Theses

I





Novel Frameworks for Auctions and Optimization
by

Zeyuan Allen-Zhu

Submitted to the Department of Electrical Engineering and Computer Science
on August 17, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Science

Abstract
This thesis contains two parts.

Part I introduces novel frameworks for modeling uncertainty in auctions. This
enables us to provide robust analysis to alternative specifications of preferences and
information structures in Vickrey and VCG auctions.

Part II introduces novel frameworks for understanding first-order methods in op-
timization. This enables us to (1) break 20-year barriers on the running time used
for solving positive linear programs, (2) reduce the complexity for solving positive
semidefinite programs, and (3) strengthen the theory of matrix multiplicative weight
updates and improve the theory of linear-sized spectral sparsification.
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Chapter 1

Knightian Analysis of the Vickrey
Mechanism

This chapter is based on the result published in [44] as well as the online
ArXiv: http: //arxiv. org/abs/1403. 6413.

We analyze the Vickrey mechanism for auctions of multiple identical goods when
the players have both Knightian uncertainty over their own valuations and incomplete
preferences. In this model, the Vickrey mechanism is no longer dominant-strategy,
and we prove that all dominant-strategy mechanisms are inadequate. However, we
also prove that, in undominated strategies, the social welfare produced by the Vickrey
mechanism in the worst case is not only very good, but also essentially optimal.

1.1 Introduction
We prove that the classical Vickrey mechanism guarantees good social welfare even
when the players have extremely limited knowledge about themselves.

Recall that the Vickrey mechanism efficiently allocates multiple identical goods by
ensuring that it is a dominant strategy for each player i to report his true valuation,
0*. In real life, however, a player i may be uncertain about 0*, as it may depend on
variables that are not directly observable by him. A simple way to capture a player
i's uncertainty about his own valuation is the 'single-distribution' model, where i
does not know 0*, but only the true distribution from which 0* has been drawn. We
instead investigate a more general form of self uncertainty.

Knightian Valuation Uncertainty. In our model, the only information that a
player i has about 6 (and more generally about the true valuation profile, 0*) consists
of a set of distributions, from one of which O6 has been drawn. We refer to this model
as Knightian valuation uncertainty or the Knightian valuation model, as it is a special
case of the uncertainty model envisaged by Frank H. Knight almost a century ago [91],
and later formalized by Truman F. Bewley [30].
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Knightian valuation uncertainty may arise from conflicting expert opinions. Con-
sider a multi-unit auction of a novel good. Unable to evaluate his valuation, a player
i hires multiple (properly incentivized) independent experts to figure it out, trusting
that at least one of them will be right. If each of them reports a different distribution
for 07, either because time was limited or because some of the experts made errors,
then i is ultimately faced with a set of distributions, from one of which 60 has been
drawn.

Incomplete Preferences. One may of course assume that players with Knightian
valuation uncertainty have complete preferences, and in particular maxmin prefer-
ences, as defined by Gilboa and Schmeidler [70]. Such preferences are certainly de-
fendable, however, quoting Bewley [30], they "do not lead to the sorts of economic
behavior which make Knightian behavior interesting."

In our paper, players have incomplete preferences. A player i, only knowing that
his true valuation has been selected from one of multiple distributions, prefers an
outcome w to another outcome w' if and only if his expected utility for W is higher
than or equal to his expected utility for w' with respect to all such distributions (and
strictly greater for at least some of them). As a consequence, some outcomes or some
strategies may be incomparable to him.

Finally, we do not assume that a player with incomparable strategies chooses a
'reference strategy'. That is, we do not rely on the inertia assumption of Bewley [30].
However, we assume that the players are risk-neutral.

Findings. In the Knightian valuation model, the Vickrey mechanism is no longer
dominant-strategy, but multi-unit dominant-strategy mechanisms still exist: for in-
stance, the 'degenerate' mechanism, which assigns all copies the good to a random
player. Our Theorem 1.6 shows that all dominant-strategy mechanisms, as well as
all ex-post Nash mechanisms, whether deterministic or randomized, must essentially
be degenerate. That is, we provide natural conditions under which the allocations
of such mechanisms are unresponsive to each player's action and thus cannot be ef-
ficient. Importantly, Theorem 1.6 applies also to mechanisms that allow a player to
report a set of valuation distributions rather than a single valuation.

Since dominant-strategy mechanisms cannot achieve even an approximately effi-
cient outcome in our model, it is natural to ask what social-welfare performance can
be guaranteed in undominated strategies. After all, one may be quite confident that
a player will not choose a strategy outside his undominated set.

Our Theorem 1.8 characterizes the set of undominated strategies of a player with
Knightian valuation uncertainty in the Vickrey mechanism. A simple corollary of
this characterization, Corollary 1.10, guarantees that, in undominated strategies, the
social-welfare performance of the Vickrey mechanism is good even in the worst case.

This guarantee, of course, does not exclude that a different mechanism may
perform even better. However, our Theorem 1.14 shows that the worst-case per-
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formance of the Vickrey mechanism is, de facto, asymptotically optimal among all
undominated-strategy mechanisms, probabilistic or not, no matter what their strat-
egy spaces may be. That is, as the number of players grows, no mechanism assigning
finitely many pure strategies to each player can out-perform the Vickrey one in the
worst case.

In Sum. Our theorems together show that, for risk-neutral players, the classical
Vickrey mechanism is very robust to alternative specifications of preferences and
information structures. Indeed, as most things classical, it outlives the confines in
which it was conceived, and continues to be relevant in new and unforeseen settings.
We believe that such robustness is an important property of a mechanism.

Related Work. Knightian uncertainty has received much attention in decision the-
ory. Aumann [14]; Dubra, Maccheroni and Ok [55]; Ok [124]; and Nascimento [112]
investigate decision with incomplete orders of preferences. Various criteria for select-
ing a single distribution out of a set of distributions have been studied by Danan [49];
Schmeidler [139]; Gilboa and Schmeidler [70]; and Maccheroni, Marinacci and Rus-
tichini [102]. Bose, Ozdenoren and Pape [34] and Bodoh-Creed [33] use the model
from Gilboa and Schmeidler [70] to study auctions. General equilibrium models with
incompletely ordered preferences have been considered by Mas-Colell [105]; Gale and
Mas-Colell [67]; Shafer and Sonnenschein [141]; and Fon and Otani [64]. Rigotti and
Shannon [135] have characterized the set of equilibria in a financial market problem
with incomplete preferences.

Mechanisms with Knightian uncertainty were first considered by Lopomo, Rigotti,
and Shannon [99]. They do not focus on auctions, but on the rental extraction
problem. (See Appendix 1.G for a technical comparison.)

Lopomo, Rigotti, and Shannon also studied variants of the notions they proposed
in [99] for a principal-agent model with Knightian uncertainty [100].

Di Tillio, Kos and Messner [53] and Bose and Renou [35] have studied ambiguous
mechanisms, assuming that the players have maxmin preferences [70]. Informally,
ambiguous mechanisms do not map a profile of strategies to a single outcome, but
to an outcome arbitrarily chosen from a set of outcomes. Thus, in a sense, they
'exogenously introduce Knightian uncertainty'.

Full implementation in (traditional) undominated strategies was proposed by
Jackson [79, 80]. An example of such implementation in the exact-valuation model
is given by the mechanism of Babaioff et al. [21] for efficiency in multi-good auctions
where each player may be interested in different bundles of the goods, but has the
same value for each such bundle.
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1.2 Model

1.2.1 Notation for Multi-Unit Auctions

We study auctions of a homogenous good in which players have multi-unit demand.
We denote by n the number of players; by m the number of copies of the good; by
[n] the set {1, 2, ... , n}; and by [m] the set {1, 2, ... , m}. The set of all possible
allocations is A E {A E Zn Z A = m}. In an allocation A C A, A0 is the

number of unallocated copies and Ai the number of copies allocated to player i.

As in [15, 159], we assume non-increasing marginal valuations. For each player i,
the set of possible valuations is e, ' {0: [in] -+ R>o I O(1) > ... > i(m) > 0},
where for each valuation 02 E Oi and each copy j E [m], 02(j) represents player i's
marginal value for a j-th copy of the good. (We may also refer to such a 02 as an
m-dimensional vector, and to 0i(j) as its j-th coordinate.) The set of all possible
valuation profiles is E = 81 x ... x On. The profile of the players' true valuations is
0* de (0*,..,*) E E).

The set of possible outcomes is = A x R>0. If (A, P) E Q, we refer to P as the
price charged to player i. The utility of a player i, with valuation 0i, for an outcome
w = (A, P) is Uo(,w) i E 0(j) -P.

For every set X, we denote by A(X) the set of all countably additive probability
measures on X. If w C A(Q), then Ui(0i,w) is the expected utility of player i.

Relative to a valuation profile 0, the social welfare of an outcome W = (A, P) E Q,
or the social welfare of an allocation A C A, is SW(0, w) = SW(0, A) d Ei E 1 0i(j).

The maximum social welfare relative to 0 is MSW(0) 0 maxyA SW(0, A). The
maximum social welfare is MsW = MSW(0*).

A mechanism M specifies, for each player i, a set of strategies Si. We interchange-
ably refer to each member of Si as a pure strategy/action/report of i, and, similarly,
to a member of A(Si) as a mixed strategy/action/report of i.1 After each player i,
simultaneously with his opponents, reports a strategy si in Si, M maps the reported
strategy profile s to an outcome M(s) E Q. If M is probabilistic, then M(s) E A(Q). 2

When in a mechanism M the players jointly choose a profile of (possibly mixed)
strategies o = (91 , ... , 9n) E A (S1 ) x ... x A(Sn), we respectively denote by MF (o)
and M (a) the expected price of player i and the probability that player i wins j
copies of the good.

'Often, in pre-Bayesian settings, the notion of a strategy and that of an action are distinct.
Indeed, a strategy si of a player i maps the set of all possible types of i to the set of i's possible
actions/reports. But since strategies are universally quantified in all relevant definitions of this paper,
we need not separate (and for simplicity do not separate) the notions of strategies and actions.

2With our risk-neutral players, it would suffice to consider outcomes drawn from A(A) x R%.
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1.2.2 Knightian Valuation Uncertainty

In our model the players are risk-neutral and a player i's sole information about

the entire true valuation profile 0* = (*, ... 0,*) consists of a non-empty set of

distributions, C C A(Cj), from one of which 0* has been drawn. (The players' true

valuations are uncorrelated.)
Because a risk-neutral player cares only about his expected utility, and because in

an auction each ei is convex, in our model a player i may 'collapse' each distribution
Di E /Ci to its expectation EOiDi[ i] E E8. Accordingly, for auctions, our model can
be equivalently restated in the following non-distributional language.

Definition 1.1 (Knightian valuation model). For each player i, i's sole information

about 0* is a non-empty set Ki C E8, the candidate (valuation) set of i, such that

0* E K. We refer to an element of Ki as a candidate valuation. We denote by Ki
the set of all possible candidate sets of i, and let K d K1 x - - - x Kn.

We stress that Ki can be an arbitrary subset of 2 9i and that, in our model, i has no
information about the true valuation O; or the candidate set Kj of an opponent j.

In this paper, we refer to a player or an auction as Knightian to emphasize that
we are considering the player or the auction in the Knightian valuation model.

In this model, a mechanism's performance will of course depend on the inaccuracy
of the players' candidate sets, which we measure as follows.

Definition 1.2. For all players i, candidate set Ki, and copies j 2 [m], we let

Ki(j) = {94(j) |, EKi}, K -(j) Jinf Ki(j), and K(j) = supKi(j).

A candidate set Ki is (at most) 6-approximate if K7 (j) - K (j) < 6 for all j E [m].
An auction is (at most) 6-approximate if, for each player i,

Ki c Ki 6 { Kj E 2E* | Ki is 6-approximate}.

We set K6 e K' x .. . K6.

Note that a candidate set Ki may not be convex. For instance, in a single-good
auction, Ki may consist of the two valuations a and b, and thus not contain a. Let
us stress that the possibility of 'holes' in Ki is the necessary sub-product of the fact
that each Ki is derived from an underlying set of distributions, /Ci, which is allowed
to be totally arbitrary.3

3 Note that candidate sets may be very expressive. In a single-good setting, consider a player
i who believes that his true valuation is either a or b, but more probably a than b. This belief
corresponds to the set of distributions IC = {Dp I p c [0.5, 1]} where each Dp is the distribution
taking value a with probability p, and value b with probability 1 - p. Then, if i collapses each
distribution DP to its expected value, he de facto ends with the following set of candidate valuations:
Kj = {pa + (1 - p)b Ip E [0.5, 1]} C E8. (If, after translating the above belief to a new candidate
set Kj, player i formed further beliefs about the probabilities of the valuations in Kj, then he could
again translate these beliefs to a new candidate set Kg'. And so on.)
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1.3 The First Theorem

In this section, we prove that, under natural conditions, all dominant-strategy (and
ex-post Nash) mechanisms must yield inefficient allocations in the Knightian valuation
model. We stress that this result holds when such mechanisms are allowed to elicit
from each player not just a single valuation, but an arbitrary report: in particular, a
set of valuations.

Since it is easy to see that the revelation principle continues to apply in our setting

(see Appendix l.A only for completeness sake), we state Theorem 1.6 in terms of
Knightian dominant-strategy truthfulness mechanisms, formally defined below.

Recall that Ki is the set of all possible candidate sets of player i.

Definition 1.3. A mechanism is Knightian direct if, for each player i, Si = Ki. Such
a mechanism M is Knightian dominant-strategy-truthful (Knightian DST) if

VKI, K E Ki VK-i E K-i VO, E Ki Ui(Oi, M(Ki, K-i)) > Ui(Oi, M(Ki, K_i)).

To state Theorem 1.6, we also define a simple relation between candidate sets.

Definition 1.4. In an m-unit auction, two candidate sets Ki and Kj in Ki are

" adjacent, if span{ (Oi(1) - 0'(1), ... , i(m) - Of(m)) I 4, O E Ki nK} = R', and

* connected, if there exist K ... , Kit E K. such that Ki = K('), K = K(t) , and
Kk) is adjacent to K k+l) for all k c {1,...,t - 1}.

Example 1.5. When m = 1, that is, in the case of single-good auctions, each can-
didate set is a subset of the non-negative reals, and thus two candidate sets Ki and
Kj in Ki are adjacent if and only if IKi n K1J > 2. Indeed, taking two different reals
x, y E Ki n K', the fact that x - y 0 implies that the 1-dimensional vector (X - y)
spans the 1-dimensional space R. Accordingly, if the intervals [1, 3], [2, 4], and [3, 5]
are possible candidate sets in Ki, then [1, 3] is adjacent to [2, 4], [2, 4] is adjacent to
[3, 5], and [1, 3] is connected (but not adjacent) to [3, 5].

Consider next an m-unit auction. Let Ki be the candidate set consisting of all
the valuations Oi E E8 such that Oi(j) E [1, 3] for all j c [m], and Kj the candidate
set consisting of all the valuations Of E E such that O'(j) E [2, 4] for all j c [m].
Then, Ki and Kj are adjacent if they both belong to Ki. This is so because the set of
m-dimensional vectors { (Oi(1) - O (1), ... , 6i(m) - Of (m)) I Oi, O E Ki n Ki} contains
the m vectors (1, 0,...,0), (0, 1, 0,..., 0), * - *, (0, ... , 0, 1), which span Rm.

When we say that the candidate set is Ki, we assume that all (partial) beliefs that player i may
have about his own valuation 0* have already been taken into account.
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Theorem 1.6. In an m-unit Knightian auction, for all 6 > 0, all K C K, all

(possibly probabilistic) Knightian DST mechanisms M,' all (K 1,... , Kn) E K, all

players i, all K; E Ki connected to Ki, and all copies j E [m],

M (Ki, IK_) = M -(K, K ) and Mj'(Kj, IK_) = Mj (Kj, K_I)

The proof of Theorem 1.6 can be found in Appendix 1.B.

Theorem 1.6 essentially states that the probability that a Knightian DST mech-

anism M assigns a given number of copies of the good to a given player i, and also
the price player i pays, are independent of the candidate sets i reports, provided that

they are connected and that the reports of i's opponents are fixed.

This independence from individual players' reports prevents a Knightian DST
mechanism from guaranteeing high social welfare, when the players' possible can-

didate sets are sufficiently rich. For instance, consider a single-good auction in
which 6 = 2, and each Ki includes the intervals [0, 2], [1,3], [2, 4], ... ,[B, B + 2]
for some large integer B. Then, no matter what the DST mechanism M might
be, when the reported profile of candidate sets is K = ([0, 2], [0, 2], ... , [0, 2]) E
K, one of the players, without loss of generality player 1, must receive the good
with probability at most 1/n: in symbols, M' 1A(K) < 1/n. This implies that

the probability that player 1 gets the good remains at most 1/n even when all
his opponents report the interval [0, 2] and he reports [B, B + 2]. This is so be-
cause the intervals [0, 2] and [B, B + 2] are connected and thus Theorem 1.6 implies
that MjA 1([0,2],[0,2], ... ,[0, 2]) - MA 1([B, B + 2], [0, 2], ... , [0, 2]). Accordingly, if

[B, B + 2] were the true candidate set of player 1, and [0, 2] the true candidate set
for everyone else, then the maximum social welfare would be at least B, while the
expected social welfare delivered by M would be at most B/n + 2.5

1.4 The Second Theorem
Our second theorem proves a very attractive relationship between a player's can-

didate set and his undominated strategies in the Vickrey mechanism for multi-unit

4 Note that Theorem 1.6 holds even if the mechanism M is allowed to know 3 and K in advance.
5We note that such poor social-welfare performance indeed relies on the richness of the players'

possible candidate sets. If the players' possible candidate sets were guaranteed to be sufficiently sep-
arated, then a properly designed dominant-strategy mechanism could always achieve the maximum
social welfare. For instance, consider an n-player auction of a single good where

* the inaccuracy parameter 3 = 1/3,

* the set of possible candidate sets Ki {[kn + i, kn + i + }] k c Z+} for each player i, and

" the mechanism M is such that (1) Si {kn + i I k E Z+} for each player i, and (2) for all
s e Si x ... x Sn, M(s) = 2P(s), where 2P is the second-price mechanism.

Then, it is clear that (a) for player i whose true candidate set is [kn + i, knr+ i+ ], reporting kn + i
is a dominant strategy, and (b) when dominant strategies are played, M produces an outcome with
maximum social welfare.
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Knighitian auctions.

Recall that the Vickrey mechanism, denoted by Vickrey, is a direct mechanism (i.e.,
satisfies Si = E2 ) and maps a profile of valuations 6 E 6 1 x - x 6n, to an outcome
(A, P); where A E arg maxAEA SW(O, A), Pi = MSW(Oi) - Zk$ 1Z41Ok(j), and
possible ties are broken lexicographically.6

For the Knightian valuation model, we define undominated strategies as follows.

Definition 1.7. In a mechanism M, a pure strategy si C Si of a player i is (weakly)
dominated by another possibly mixed strategy o- c z\(Si) of i with respect to his Ki,
in symbols si <(i,Kj) ar, if

(1) V, c Ki Vs-i c S-i U (O6, M(u- , s._i)) ; U (O6, M(si, si)), and

(2) 30i E Ki 3s-i E S-i U (6, M(C-, s i)) > Ui(Oi M(si s i)).,

A strategy si E Si is (weakly Knightian) undominated, if there exists no oa E A(Si)
such that si <(i,Ki) O-. We denote the set of undominated strategies of player i by

UDi(Ki).
If K is a product or a profile of candidate sets, that is, if K = (K1 ,. . . , K) or

K = K1 x ... x K., then UD(K) V UD 1(K1 ) x ... x UD,(K,).

Our notion of an undominated strategy intends to capture the 'weakest condition'
for which si should be discarded in favor of o-i, and is a natural extension of its
classical counterpart.8

Note that Jackson's more involved definition of an undominated strategy is not
necessary in our paper.9

Now let us formally state our second theorem.

6More precisely, on a reported valuation profile 0, the Vickrey mechanism sorts the values
{6(j) I i E [n], j E [m]} in a non-increasing order, and then chooses the m largest entries to as-
sign the m copies of the good. Namely, if 9i(1), 62(2), ... ,92(j) belong to the largest m entries, but
not 9i(j + 1), then Vickrey assigns j copies of the good to player i. If ties occur in this ordering, that
is, if 0(j) = 0j (j'), then Oi(j) precedes 62' (j') if and only if either (1) i < i' or (2) i = i' and j < j'.

7This notion is thus different from strong dominance, where inequality (1) is always strict. For
strong dominance in the the exact-valuation case, see, for instance, [66, 95].

8 0f course, other extensions are also possible. To express condition (2) in Definition 1.7, we must
quantify the true valuation 6, E Ki and the pure strategy subprofile of i's opponents s-i e S_. There
are three alternatives to consider. Namely, (a) V9jVsi, (b) ]0jVs_j, and (c) V94s-i. Alternatives
(a) and (b) do not yield the classical notion of (weak) dominance when Ki is a singleton. Alternative
(c) fails to capture the 'weakest condition' for which si should be discarded in favor of -i,. (Indeed,
since oi is already no worse than si, for player i to discard strategy si in favor of a-, it should suffice
for si to be strictly worse than -i for a single possible valuation 9, E Ki.)

9To meaningfully deal with the possibility of having an infinite sequence of pure strategies one
dominating another, Jackson put forward, in the exact-valuation case, a more involved notion of
an undominated strategy [79]. However, this more involved notion is unnecessary, even in the
Knightian setting, for the class of bounded mechanisms. This class includes the Vickrey and all
finite mechanisms, and thus all mechanisms analyzed in this paper in undominated strategies.
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Theorem 1.8. In an m-unit Knightian auction with the Vickrey mechanism, for
all players i and all candidate sets Ki, the set of undominated strategies UDj(K)
coincides with the set of all strategies vi E Oe satisfying the following condition

Vj E [m] vi(j) E [K (j),KiTj)]

Theorem 1.8 is proved in Appendix 1.C.

Theorem 1.8 is obvious for m = 1, but less obvious when there are multiple copies
of the good. In particular, a player i may consider 'under-reporting' his value for the
j-th copy of the good, but 'over-reporting' his value for the k-th copy. For example,
in a 3-unit auction, where Ki consists of all valuations 02 E ei such that

Oj(1) E [100, 110], 02(2) E [95, 105], and 0j(3) E [90, 100]

by reporting the valuation vi = (113, 98, 80), i over-reports his value for the first
copy but under-reports that for the third copy. Such a strategy vi is, in general,
not dominated by reporting the highest -respectively, the lowest- possible value
for each copy of the good: that is, it is not dominated by reporting (110, 105, 100)

respectively, (100, 95, 90). However, one can still carefully construct a strategy v*
that dominates vi, and therefore conclude that a rational player will not use any
such strategy vi. In our example, such a v* could be (110, 98,80), (113, 98, 90), or
(110, 98, 90). A general (but not the only) way to construct a v* dominating vi is
to set vi(j) = vi(j) for every copy j such that vi(j) belongs to [Kf(j), K(j)], set
vi (j) = K-(j) if vi < K-(j), and set vi (j) = K(j) if vi > Ki (j). (We rely
on the non-increasing marginal valuation assumption in order to show that the so-
constructed vj dominates vi.)

The above construction of v* is the key idea to show that every vi E UDj(Kj)
satisfies vi(j) e [Kt (j), K 7(j)] for every copy j. A similar idea is needed to show
the other direction. The details can be found in Appendix 1.C.

Remark 1.9. For a Knightian player i, the set of undominated strategies UDj(Kj)
may strictly contain the candidate set Ki. For example, in a single-good second-price
auction, if Ki = {4, 7, 21}, then not only reporting 4, 7, or 21 is an undominated
strategy for player i, but so is reporting 9. As for another example, in a 2-unit
Vickrey auction, if Ki = {(78, 60), (80, 50)}, then not only reporting (78, 50) and

(80, 50), but also (79, 51), (79, 52), ... , (79, 59), etc., are undominated strategies.

The multiplicity of undominated strategies in the two examples above emphasizes
that our Knightian player i has incomplete preferences. Assume for a moment that
he had complete preferences: for instance, maxmin preferences. Then, his only un-
dominated strategy (and thus his only dominant strategy) would consist of reporting
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4 in the former example, and (78, 52) in the latter one. 10

Theorem 1.8 has a simple corollary (proved for completeness in Appendix 1.D)
about the social-welfare performance of the Vickrey mechanism.

Corollary 1.10. In an m-unit Knightian auction, for all 6 > 0, all products K of
6-approximate candidate sets, all profiles v c UD(K), and all 0 E K

SW(0, Vickrey(v)) > MSW(0) - 2m6

That is, the social welfare realized by the Vickrey mechanism is at most 2m6
away for the maximum one, no matter which undominated strategies the players may
choose. The following example shows that this performance guarantee of the Vickrey
mechanism is actually tight in the worst case.

Example 1.11. Consider a two-player 10-approximate m-unit auction in which the
candidate sets are

K1 = {(90, 90,... , 90), (100, 100, ..., 100)}

K2 = {(100, 100,... , 100), (110, 110, ..., 110)}

In this case, the Vickrey mechanism may miss the maximum social welfare by 26m as
follows. Player 1 is 'optimistic' and bids the valuation v, = (100,.. . , 100); player 2
is 'pessimistic' and bids v 2 = (100,... , 100); the Vickrey mechanism (with the lexico-
graphic tie-breaking rule) allocates all copies of the good to player 1; the true valuation
0* of player 1 is (90,.. ., 90); and the true valuation 0* of player 2 is (110, .. ., 110).

Accordingly, the realized social welfare is 90m, while the maximum one is 11m -
90m + 2m6. 1:1

The relevance of worst-case analyses can of course be debated, but if the worst-case
performance is good, then the typical performance can only be better. In our setting,
a social-welfare loss of 2m6 is small whenever 6 is small relative to MSW(0)/m. For
instance, this is the case of a 10-unit auction in which a player's valuation for each
copy of the good is a million dollars plus or minus $100. Indeed, in this case, Corollary
1 implies that the Vickrey mechanism guarantees that the realized social welfare will

10 In the spirit of Gilboa and Schmeidler [70], given an outcome W = (A, P), we can define the worst-
case utility of a player i with candidate set Ki to be minj GKi Ui(0i, w) = minoEKi A 9i(j) - Pi.
In the above 2-unit auction example, this worst-case utility is -P, if Ai = 0; is 78 -P, if Ai = 1; and
is 130 - P, if Ai = 2. Therefore, i's worst-case utility coincides with the utility of a (non-Knightian)
player whose true valuation is precisely (78, 52). Indeed, minoCEK, Ui(6, w) = U ((78,52), w) for all
possible outcomes w. Now, a player i with maxmin preferences compares every two outcomes W and
W' using his worst-case utility function, mine EKi Ui(0i, .). It is thus equivalent for such a player i
to compare w and w' using the exact utility function Ui ((78, 52), .). Accordingly, since the Vickrey
mechanism is dominant-strategy in the classical setting, it is a dominant strategy for i to report
(78, 52) in the above 2-unit auction.
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be at least ten millions minus $2, 000, no matter how the players may choose their
undominated strategies. (A performance loss that is at most linear in 6 should not be
underestimated. After all, Theorem 1.6 shows that the social welfare performance of
any DST mechanism can be terrible, no matter how small, but positive, 6 may be.)

1.5 The Third Theorem
Our third theorem shows that the worst-case social welfare performance of the Vickrey
mechanism is essentially optimal, in the Knightian setting, relative to all possible
undominated-strategy mechanisms.

Note that, in principle, there may be an undominated-strategy mechanism M
missing the maximum social welfare by at most 6m." Our upcoming Theorem 1.14,
however, rules out the existence of such mechanisms, so long as they give each player
a finite set of strategies.1 2

We stress that Theorem 1.14 applies not just to finite mechanisms eliciting a single
valuation from each player, but to all finite mechanisms, including those allowing a
player to report a set of valuations. Thus, in our Knightian valuation model, the
social welfare optimality of the Vickrey mechanism (which allows a player to report
only a single valuation) may be surprising.

We could simply state Theorem 1.14 by saying that, for every finite mechanism
M, there exists a profile of 6-approximate candidate sets for which M misses the
maximum social welfare by essentially 2m6: more precisely, by 2m6(1 - 1/n) + E,

where E is an arbitrarily small positive constant. To be more informative, however,
we wish to state Theorem 1.14 so as to highlight the candidate set profiles causing
this maximal loss in social welfare.

Let V and W be two sets of real numbers (with diameter at most 6 and with at
least two elements in common), whose union has diameter at least 26 - E/m. For
instance, V = [x - 6, x] and W = [x - 26 + E/m, x - 6 + E/m]. Then, the following
definition expresses that for each player there are at least two candidate sets, one
for which the value of each copy of the good is in V, and one for which that the
value of each copy of the good is in W. More precisely, recalling that Ki is the
set of all possible candidate sets of player i, that K = (K 1, ... ,K), and that in a

6-approximate multi-unit Knightian auction K C K6 , we have the following

Definition 1.12. In a 6-approximate multi-unit Knightian auction, K is E-basic if
there exist two subsets V and W of non-negative numbers such that

"For instance, a mechanism M could achieve such performance by asking each player i to report
a single valuation, and incentivizing him to report a valuation vi which is the 'mid-point' of his
candidate set Ki: i.e., vi(j) = - -(K (j) + Kf (j)) for all j E [m].

' 2 This finiteness restriction, although crucial for our proof, is quite mild in practice (and is indeed
natural when mechanisms are implemented via computers). The Vickrey mechanism itself becomes
finite if it explicitly asks each player to report, for each copy of the good, an integral number of
cents between 0 and 10100.
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(a) maxV - minV <6 and maxW- minW <6,
(b) |VnW| > 1 and maxV-minW > 26 -e/m, and

(c) for every player i, Ki contains the following two candidate sets

Ki A {oce jVj,Oj(j)EV} and {0G Ei I VJ, Oi(j) E W}

Example 1.13. Consider a 3-unit 10-approximate Knightian auction, in which for

each player i, Ki includes the following two candidate sets:

[88, 98] x [88, 98] x [88, 98] and

[80, 90] x [80, 90] x [80, 90] .

Then, K is 6-basic (corresponding to V = [88, 98] and W = [80, 90]).

There is no magic about the choice of the numbers 80 and 88 in the above exam-

ple. The main point is that the intersection of the two intervals [80, 90] and [88, 98]

coincides with the interval [88, 90], whose length is E/m = 6/3 = 2.

Theorem 1.14. In a multi-unit Knightian auction, for all 6 > 0, all E > 0, all E-
basic K C K6 , all (possibly probabilistic) finite mechanisms M, there exist products

K E K, valuation profiles 0 E K, and undominated strategy profiles s E UD(K),
such that

E[SW(0, M(s))] < MSW(0) - 26m(1 - 1/n) + E

Above, the expectation is over the possible random choices of the mechanism M.

The proof of Theorem 1.14 can be found in Appendix I.E. Although mechanism

finiteness is a natural restriction in practice, we wish to remark that Theorem 1.14

continues to hold under alternative but more complex assumptions. 13

APPENDIX

L.A Knightian Revelation Principle
Let us explicitly show that a version of the revelation principle [69, 50, 110] holds

also in our Knightian setting. Recall that Ki is the set of all possible candidate sets

for player i.

3 As it will become clear from our proof, Theorem 1.14 also holds for all bounded mechanisms
such that, for all players i, the strategy set Si is a compact Hausdorff space and, for all copies
j, the families of allocation functions {MA(si, -)} E and price functions {Mr(si, -)}s S are
equicontinuous. However, the Vickrey mechanism can be trivially modified to be finite, but not
trivially made equicontinuous.

26



Definition 1.15. Let M be a mechanism in which Si is the set of actions of player i.
Then, the profile of functions (si: Ki -+ A(Si)), is an ex-post (possibly mixed) Nash
equilibrium of M if for all K C K, all players i, all ai E Si, and all Oi E Ki,

Ui(Oi, M(si(Ki), s_i(K_i))) 2! Ui(Oi, M(ai, s_i(K_i))) .

Lemma 1.16 (Revelation Principle). Let M be a mechanism that has an ex-post
Nash equilibrium s. Then, there exists a Knightian DST mechanism M' such that

VK E K M'(K1 ,... , K) = M(sI(Ki), .. ., sn(KI))

Proof. Let M' be the Knightian direct mechanism so defined:

VK E K M'(K1,... , K ) M(si(KI), . .. , s(K1))

(The above equality is between distributions if M is probabilistic.)

All that is left to prove is that the mechanism M' is dominant-strategy truthful.

To this end, let Ki be the true candidate set of player i. Then, for all Kj E Ki, all

0, E Ki, and all Ki E Ki,

U(6,, M'(Ki, Ki)) = U(6i, M(si(K,), si(K_i)))

> U(0, M(s (Kj), s-i(K-i))) = U(Oi, A/M'(Ki, K-i))

where the inequality follows from Definition 1.15 of the ex-post Nash equilibrium by

setting ai = si (Kj). This completes the proof. II

Because every dominant-strategy mechanism must have an ex-post Nash equilib-

rium (consisting of each player choosing his dominant strategy), the above theorem

holds also when M is a dominant-strategy mechanism.

1.B Proof of Theorem 1.6
We start by proving, as a separate claim, that Theorem 1.6 holds in the case of

adjacent (instead of connected) candidate sets. Namely,

Claim 1.17. For every player i, every two adjacent candidate sets Ki, Kj E Ki of i,

and every subprofile K-i of candidate sets for i's opponents,

M (KiI K_i) = MG(K ,IK) and Mi (Ki, K_i) = Mi (Kj, K-i

Proof. Because the true candidate set of player i may coincide with Ki, and because,

when this is the case, reporting Ki should dominate reporting K , we have that, for

all 0' C Ki, the following inequality holds:
m 3m3

M (Ki, Ki). 0"'(f)-M (Ki, K_i) > S M 3 (K, Ki).- O'(f)-Mi (Kj, K_i).
j=1 f=1 j=1 f=1

(1.1)
Similarly, because the true candidate set of player i may coincide with K,', and

because, when this is the case, reporting Kj should dominate reporting Ki, we also
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have that, for all 0j' E Kj, the following inequality holds:
m 3 m3

Mf-(K , K_i).Z O'()-MF (Kj, K_i) S MA (Ki, Ki)- 0'(f)-M (Ki, K_i).
j=l f=1 j=1 f=1

(1.2)

Next, for every pair of valuations O6, 0' E K n Kj, we choose 0' = 0 in inequality
(1.1) and 0' = 0' in inequality (1.2). Summing up the resulting inequalities, the Mf
price terms cancel out, yielding the following inequality:

m j m

M (Ki, K_i) - (Oi(f) - 01(f)) > 1 M (K , K_i) - (Oi(f) - O (f)) . (1.3)
j=1 f= 1  j=1

Similarly, setting 0' = 0' in (1.1) and 0/'= 0 in (1.2), and summing up the resulting
inequalities, we deduce that:

m j mj

M (KiI K_i) - (fE - 0(f)) <E M -(K , K_i) - (f() - O (f) (1. 4)
j=1 f=1 j=1 f=1

(1.3) and (1.4) together imply, after some rearrangement of the terms, that

(M .(Ki, K_i) - M (KKi)) ( O() - 01(e)) = 0 . (1.5)
j=1 f=1

Now, let us denote by a the m-dimensional vector such that aj = Zk Mj'(Ki, Ki)-
MI'k(Kj, K_i) for every j e [m]. Then, (1.5) can be re-written as saying that the fol-
lowing inner product between two vectors is zero:

(ai, . .. ,am) - (Oi(1) - O (1), ... , i(m) - 6 (m)) = 0 . (1.6)

Finally, using our assumption that the vectors (93(1) - 6 (1),... , 0i(m) - O (m)) span
the entire R", we easily conclude that (ai, ... , am) = (0, ... , 0), which in turn implies

the desired equality of the allocation probabilities: M. (Ki, K_.) = M (Ki, K_i).
Plugging this equality into (1.1) and (1.2) immediately yields the desired equality of
the prices: Mf (Ki, Ki) = Mf (K', K_i). II

It is now straightforward to see that Theorem 1.6 follows by the definition of
connected candidate sets, and the repeated applications of the above claim. Namely,
recall that Ki, K E Ki are connected if there exist K(1) I . . , IK( E K. such that
Ki = K(1, KI = K(t, and K k) is adjacent to K(k+1) for all k E {1 ... ,t - 1}.
Therefore, we conclude that, for all j C [m],

M6(K) K ) = M J(K 2 ) Ki) =-- = M1(K3 , K_i),

and similarly that

ME (K (1 K ) = M (K (, K_) = - = (K K) .
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1.C Proof of Theorem 1.8
Recall that the Vickrey mechanism is direct, that is, Si = Oi for all players i. Re-
call also that multi-unit auctions have non-increasing marginal valuations, that is,
Oi(1) > Oi(2) > ... > Oi(m) for each 9i E Oj. Therefore, Kt(1), .. . , K (m) and
K7 (1),..., K7 (m) are non-decreasing sequences. That is, K[, Kft E 6j. Accord-
ingly, both Ki and Kj' are valid reports for player i in the Vickrey mechanism.

We start by proving, by contradiction, that

vi E UDj(Kj) == vi(j) > K2'(j) for all j E [m]. (1.7)

Assume that implication (1.7) is false; let j* E [m] be the first coordinate j such that
vi(j) < Kt(j); and define the function vi : [m] -+ R>o as follows:

V* (U) = i {v(j), if j J*;
J Kt(j), if j=j*.

Since vi and Kt are monotonically non-increasing, so is v*. Indeed,

" if j* > 1, then v*(j* - 1) = vi(j* - 1) > Kji-(j* - 1) > Ki (j*) = v*(j*)

" if j* < m, then v*(j*) = K+(j*) > vi(j*) : vi(j* + 1) = v*(j* + 1) .

Thus also v* is a valid valuation in ei. We now reach a contradiction by showing
that v* weakly dominates vi, that is,

V9j E Ki Vv_j Ui(6,Vickrey(v*,v_j)) > Ui(Oj,Vickrey(vi,v_i)) , (1.8)

El e Ki2 v_, Ui(0, Vickrey(*, v'_)) > U (0', Vickrey(vi, v'J). (1.9)

To show (1.8), choose arbitrarily vj E 6_j, and consider the following two cases:

(1) In Vickrey(v*, vj) and Vickrey(vi, vi), i receives the same number of copies.

In this case, inequality (1.8) holds because its two sides are equal for all 9i.

(2) In Vickrey(v*, vj) and Vickrey(vi, vi), i receives different numbers of copies.

In this case, one can carefully verify that player i wins j* copies of the good in
Vickrey(v*, vj) and only j* - 1 copies in Vickrey(vi, vj)." Thus, (1.8) holds
because of the following two reasons:

e i's price for his extra j*-th copy of the good is < Ki(j*).

14 Recall that, when each player reports a valuation vi, the Vickrey mechanism orders the nm
values {v2 (j) i E [n], j E [m] } (breaking ties lexicographically), and allocates the m copies of the
good by looking at the first m values in this order. Since the only difference between v* and vi
is that vi(j*) > vi(j*), the ordering of the reported nm values is minimally affected. That is, if
player i receives different numbers of copies in outcome (vi, v-) and outcome (v*, vi), then it must
be that vi(j*) is outside the largest m numbers under (vi, vi), but v*(j*) is within the largest m
numbers under (v*, v_i). This implies that i wins j* - 1 copies in Vickrey(vi, vj) but j* copies in
Vickrey(vo, vij).
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Indeed, Vickrey guarantees that i pays for his j*-th copy at most the value
he reports for it. That is, for his j*-th copy, i pays at most vi*(j*), which
in turn is equal to K/(j*).

e i's value for this j*-th copy is > Kt (j*).
Indeed, for any candidate valuation 64 in Ki, 9i(j*) > Kt (j*).

Therefore, inequality (1.8) holds. Let us now show that also inequality (1.9) holds.
To do so, we need to construct a 'witness' candidate valuation 0' C Ki and a 'witness'
strategy sub-profile v'_i. In fact, we construct some v'_/ so that (1.9) holds for all 0'.
Let v'_. be the strategy subprofile in which, for every player k # i,

V C [i] V df def vi(j*) + Kt(j*) K
VjE[m k~j = X = < Ki~2 (*

Then, player i wins exactly j* copies in Vickrey(v*, v') and pays x for each one of
them; and wins exactly j* - 1 copies in Vickrey(vi, v'_j) and pays x for each one of
them. Indeed, there are exactly j* - 1 numbers greater than x in vi, exactly j* in
vi, and x is the reported value of every other player, in v'_i, for every single copy of
the good. As a result, i's utility in Vickrey(v*, v'_) is strictly greater than that in
Vickrey(vi, v'_j). This is so because in the outcome Vickrey(v*, v'), i pays an extra
price x for his j*-th copy, while being guaranteed that his true valuation for the j*-th
copy, 9i(j*), is strictly larger than x, because x < Ki+(j*) < 9i(j*). Therefore, we
conclude that (1.9) holds for all candidate ' C Ki and the above defined vi.

Since both (1.8) and (1.9) hold, valuation v* (weakly) dominates vi, contradicting
the hypothesis that vi E UDi(Ki). This contradiction proves (1.7).

An absolutely symmetrical argument shows that15

vi E UDi(Ki) ==t vi(j) < Kf (j) for all j E [m]. (1.10)

Together, statements (1.7) and (1.10) imply that all undominated strategies vi C
UDi(Ki) satisfy vi(j) E [Ki'(j), K (j)] for each copy j.

Let us now prove the other direction: namely, that every strategy vi satisfying
vi (j) C [Kt (j), Ki7(j)] for each copy j is undominated for player i.

We proceed by contradiction. Suppose that there exists a valuation v* that weakly
dominates vi. We are going to derive a contradiction by showing that

30 E Ki 3v' Ui(6i,Vickrey(v*,v')) < Uj(O,Vickrey(vj,v')) . (1.11)

Since, by the definition of weak dominance, v* must be different from vi, there are
two (not mutually exclusive) cases to consider:

(a) vi(j) > vi(j) for some j E [m], and

(b) v*(j) < vi(j) for some j E [m].

In case (a), let

"In this symmetrical case, one needs to define j* E [m] to be the last coordinate such that
vi(j*) > K7 (j).
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* j* be the first coordinate j E [m} such that vi(j) > vi(j),

" y be a real number such that vi*(j*) > y > vi(j*), and

" E be a real number in the open interval (0, y - vi(j*)).

To show (1.11), we let 0' be an arbitrary valuation in Ki satisfying 0'(j*) < vi(j*) +E.

(Such a valuation always exists since KjJ (j*) = inf{Oi(j*) I E Ki} vi(j*).) Next,
we construct the required strategy sub-profile v' i as follows: for each player k # i
and each copy j, V (j) d y. Let us now compare player i's utilities in the outcomes

Vickrey(v*, v'_) and Vickrey(vi, v'j).

In Vickrey(v, v'I), i wins at least J* copies, because v* (1) > .. v>(j) > y;
moreover, he pays y for each such copy, because y is the value that every other player
reports, in v'_, for every single copy of the good. By contrast, in Vickrey(vi, v'L), i
wins exactly j* - 1 copies, because vi(1) > ... > v(j* - 1) > v*(j* - 1) > y and

vi(j*) < y; moreover, he again pays y for each of them. Thus, to prove that

U (Oi, Vickrey(v , v'j)) < Uj(Oj, Vickrey(vj, v'_j)) ,

it suffices to point out that, for each copy j > j* that i wins in Vickrey(v*, v'), i's

true value is 6 (j) < 0'(j*) < vi(j *) + E < y. This ends the proof of (1.11) in case (a).

In case (b), we instead let j* be the last coordinate j E [m] such that vo (j) < vi (j).

An absolutely symmetrical argument shows that (1.11) also holds for this case.

In sum, Theorem 1.8 holds.

1.D Proof of Corollary 1.10
Let v E UD(K) be any profile of undominated strategies, and A = (AO, A 1,..., A,)
represent the allocation in the outcome Vickrey(v), where each player i receives Ai
copies of the goods, and AO is the number of unallocated copies. For any 0 E K, let

B = (Bo, B1, ... , Bn) represent the allocation that maximizes social welfare under 6,
i.e., B = argmaxgea { Z= i O(()}. Then,

n Ai n Ai (2) n Ai

SW(O, Vickrey(v)) = L O (t) > E (K[ () - 6) > E (vi (f) - 6)
i=1 =i= =i= =

() n Ai 4 n Bi () n Bi

f=1

( n Bi(7

(Oi6(f) - )) - > MSW(O) - 2m6.
i=1 =i

Above
" Inequality (1) holds because 0 E K, and thus Oi() > K (f) > KT(f) - 6;

" Inequality (2) holds by Theorem 1.8;
* Inequality (3) holds because we have only m copies of the good: E_ 1 Ai m;
* Inequality (4) holds because the Vickrey mechanism maximizes social welfare
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with respect to v, and thus, relative to v, (A0 ,. ., A,,) is no worse than any
other allocation, and in particular no worse than (BO, ... , )

* Inequality (5) holds again by Theorem 1.8;
* Inequality (6) holds because 0 E K, and thus 0j(e) < K7 (e) < K'(f) + J; and
" Inequality (7) holds because of the definition of MSW(0) and the fact that

n- Bi m .

i.E Proof of Theorem 1.14

1.E.1 A Structural Lemma

The following lemma applies to all finite mechanisms, including those that allow
players to report sets of valuations, or anything else. (Indeed, the revelation principle
no longer holds for mechanisms that are not dominant-strategy or ex-post Nash. Thus,
we must be able to deal with general mechanisms with arbitrary strategy spaces.)

Lemma 1.18. Let M be a finite mechanism and i a player, let x = (x 1,... , x.) and

y = (yi, .. . , yM) be two valuations in 0i such that xj > yj for all copies j E [m], and
let Ki and Ki be two candidate sets for i such that,

VtE {, 1, ... , m} (xi, .. . , xt, yt, . - -, ym) c Ki nK,. 16  (1.12)

Then, for every e > 0, there are mixed strategies o-i c A(U Di (K )) and a, C A(U Di (k))
such that, for all si E Si and all j C [m],

M (0-, S_,) - M (a,, S_,)I < E .17

Proof. First of all, it is simple to see (but anyway proved in Appendix 1.F) that for
every finite mechanism, the set of undominated strategies of a Knightian player is
always non-empty. Therefore, the sets UDi(Ki) and UDi(Ki) are both non-empty. If
there exists a common (pure) strategy si c UDi(Ki) n UDi(ki), then setting or, =
ai = si proves Lemma 1.18. Therefore, let us assume in the rest of the proof that
UDi(K ) and UDi (k ) are totally disjoint.

Let si be a pure strategy in UDi(Ki). Then, UDi(Ki) n UDi(Ki) = 0 implies that
si 0 UDi(Ki). By definition, si 0 UDi(Ki) implies the existence of a (possibly mixed)
strategy ai E A(UDi(K)) that (weakly) dominates si for player i with respect to
candidate set Ki. In symbols, as per Definition 1.7, 3i >- (i,.k) Si.

16 Recall that all valuations in 9i are non-increasing. Our chosen vectors (xi, . .. , xt, yt+1,.. , YM)
are indeed non-increasing, because we have xj > yj and both x and y are non-increasing.

17In fact, Lemma 1.18 can be strengthened to ensure that the prices are close too: namely,
IMP(a-, s__) - M (&i, s-) < e. However, this strengthened version of Lemma 1.18 is not needed

in order to prove Theorem 1.14.

32



Next, we argue that

1 i E A(UDi(K2 )) such that Ti >_ (i,K) i . 18 (1.13)

Let us write the possibly mixed strategy ai as a sum of pure ones, ( = ')(t(.

Here, X is a finite index set, each <t is a pure strategy from UDi(ki), each a(t) > 0,
and E a(t) = 1. Invoking again the disjointedness of UDi(K ) and UDi(Ki), we

deduce that t) UDi(Ki) for each t C X. This implies the existence of a strategy
S 

A(UDi(K)) such that t) {t). Thus, by defining a s(-,t) we
Ti UL~1X) 7Ti >_i, Ki) SI byE T , we

have that Ti dominates ii. Thus, (1.13) holds.

Similarly, we could argue that there exists some T C A(UDi(ki)) such that

Ti >- (,ki) Ti. Continuing in this fashion, going back and forth between A(UDi(Ki))
and A(UDi(Ki)), we obtain an infinite chain of (possibly repeating) strategies,

(1) ~ ((1)2)
01i (i, ki) f (i, Ki) of i ,N ) i , )

This (weak) dominance chain implies the following utility inequalities: for all s- E
S-i and all k E N:

VOi E ki Ui(Wi, M(o k), si)) < Ui(O, M(5 si))

VOi e Ki Ui (i, M(5 1k), si)) < Ui(oi, M(O (k+l) Si))(1.14)

Next, for every t E {o, 1, ... , m}, we define

Zt 5 (Zt,1, Zt,2, ... , ztm) (X 1, X2 , . .. , Xt, Yt+1, . .. , Yin) E Ki K i.
Choosing Oi = W = zt in (1.14), we obtain that for all s-i E S-i and all k E N,

U(, ((k) , s_i)) < Ui (W, M( ,(k) si)) = Ui(Oi, i (5 I ), s i)) < U (Oi, M (k+1)

Putting together the above inequalities for k = 1, 2,..., we get the following infinite
and non-decreasing sequence of real numbers (for each s-i E Si):

Us (Zt, A(o( 1 ), si)) < Ui (Zt, M( 1) , si)) 5 U2 (Zt, M(o{ , s_))

This sequence is upperbounded by x 1 + - + xm. (Indeed, zt,l < x, for each 1. So,
the i's valuation is at most xi + - - - + xm, while i's price is non-negative.) Thus,
because of the Bolzano-Weierstrass theorem (i.e., because any non-decreasing and
upper bounded sequence of real numbers must converge), for every s-i E S-i and
t C {O, 1, ... , m}, letting D e minemin]J - yz}, there must exist some Hs-i,t) E N
such that, for all k > H ""'t).

M ((k) s) (Zj 1Zt,l) - MNJ (ok), s_i)

- E[mMj (a k), s i)(Z [zt,) - Mp (-(k), si)

18Note that, while we have only defined what it means for a pure strategy to be dominated by
a possibly mixed one, the definition trivially extends to the case of dominated strategies that are
mixed, as is the case in "Ti > (iK") &J in (1.13).
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= (U(zk, I(u k) sf)) - Ui(zt, M(5 (k), si)) (1.15)

At this point, we invoke the finiteness of the mechanism in order to define the following

maximum value:

HE = max {H(') : Si E Si,tE { , 1, ... ,m}} E N.

As a result, (1.15) holds for every k > HE, s-i E S-i, and t E {o, 1,. . . , m}. We

now claim that, by picking an arbitrary k > HE, the strategies or ) and u 2 ) must be

the two 'sufficiently close' strategies we are looking for.

To prove this, consider an arbitrary strategy subprofile s-i E S-i and an integer

t c [m], and apply (1.15) twice, once for t and once for t - 1. Combining the resulting

two inequalities and applying the triangle inequality, we have: 1 9

ED> (ZmMi(o(k) s (Ej) zt, 1) - M!p(o(k), s,))
2 > (jE~n 1 1 1 i

- m (k), i)( z) - ((k) s.)

- (ZJCm]A/h%(c, , s1)(1i=z t,) - ( s))

+ M((Jm0M (k) S ) -- MP(or s()

(tM (o si )(x - yt)) - ( M (ks)(x - yt))

= (X - yt) ( M(uk), s_)) - _ M (k) s i)

which further implies, using Xt - Yt> D > 0, that

( ~m ( , _- .,_ . (1.16)

j=~~~ 2, ~

Let us now use (1.16) to argue that the following set of inequalities hold:

Vt E [m] Mn(k s ) - Mn(aks) <.e. (1.17)

Indeed, for t = j, (1.17) can be derived by plugging t = M into (1.16). Else, for each
t E {1, 2, ... , in - 1}, we apply (1.16) twice, once for t and once for t + 1, and again

combine the resulti ing equalities with the triangle inequality to deduce (1.17).

This completes the proof of Lemma 1.18. E

1.E.2 Deducing Theorem 1.14 from Lemma 1.18

Because K is 6-basic, let V and W be the corresponding subsets of reals from

Definition 1.12. Denote by a, b e V W any two disjoint reals in V n W such

that a > b. For each player i, consider the following two 6-approximate candidate

19 That is, la-b| < Eand Jc-d 5Eimply l(a-b)-(c-d)l 2e.
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sets

Kj5{OjEejjVj,Oj(j)EV} and K) = {6 E EJ I V, O(J) E W},

and according to the E-basic assumption on Ki, we have K2, Ki E Ki. Next, consider
the following two valuations that belong to E6 for every i:

x = (a, a, ... , a) and y=(b,b, ... , b)

It is simple to verify that x, y, Ki and Ki satisfy the hypothesis of Lemma 1.18 (or
more precisely, (1.12)). Thus, for any E' > 0, the following holds:

for all i E [n] there exist o-a E A(UDi(Ki)) and or E A(UDj(kj)) such that
Vs-i E S-i Vj E [M] IM%(o-i, s_) - M(oa, s_)I < E .

(1.18)

Consider the allocation of M under the strategy profile -' = (a', os, ... , o' ). Be-
cause there are m copies of the good, there ought to be one player who, in expectation,
receives no more than " copies. Without loss of generality, let him be player 1: thatn

is, IEM jM . MA (a,./a) . Thus, by (1.18) and multiple applications of the

triangle inequality, we have
m

j (,+
j=1

By averaging, there exists a pure strategy profile s = (si, s_1) in the support of

(0 1, o'_1) satisfying
m

x j M< M(sis1 ) +&'m2 (1.19)
j=1

Now let

d f def 1i i
K (K1 , . K), where Ki = [Ki ifi 2.

kj if i= 2, . . . ,

def def (maxV,...,maxV) if i =1
0 = (01 O n , w ere = t (m in W ,..., m in W ) if Z'= 2,... , In .

Because we know that (o-1, a-' 1) E A(UD 1 (K1 )) x - x A(UDn(Kn)) from (1.18),
we deduce that s E UD(K). It is also obvious that 6 E K and MSW(6) = m - max V.

Next, we show that s, K, and 0 satisfy the desired inequality of Theorem 1.14.

Indeed,

I[SW (0, M(s)) _<Y + 'm2) max2V (m--- .m2 - min W< n EMnax + M

= m maxV - (m - -- 'm2) (max V - min W)
n
M 

2)< mmaxV - m - - - m (26- -)n m i

= MSW(O) - 26m(1 - i/n) + 26E' 2 + Em - - E'm2)
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< MSW(O) - 26m(1 - I/n) + E + 26E'm2 _ -
n

Above, inequality (*) holds because, when 0 is the true-valuation profile, the value
for each copy of the good is max V for player 1, and is min W for every player other
than player 1. However, in the outcome M(s), owing to (1.19), in expectation player
1 can receive at most M + E'm2 copies of the good.n

Finally, noticing that E' > 0 can be arbitrarily small, we can choose E' to satisfy
26E'm2 - , < 0. This implies that E [SW(0, M(s))] < MSW(9) - 26m(1 - I/n) + E.
Therefore, Theorem 1.14 holds.

1.F The Set of Undominated Strategies is Non-
Empty

It is trivial to see that, no matter what candidate set Ki a player i may have, UDi(Ki)

is non-empty in the Vickrey mechanism. In fact, Theorem 1.8 implies that UDj(Kj)

includes at least all the valuations in Ki.

Below, we argue that UDi(Ki) is also always non-empty for all finite mechanisms.

Fact 1.19. Let M be a finite mechanism, i a player, and Ki a candidate set of i.

Then, UDi(Kt) # 0.

Proof. Let Si = {si, ... , st} be the finite pure-strategy set of player i. We proceed by

contradiction. Suppose that every strategy in Si is (weakly) dominated, with respect

to Ki, by some strategy in A(Sj). Then, in particular, s, is dominated. Thus, there

exists a mixed strategy Z_ 1 aksk E A(Si) such that

si _<(i, Ki) E 04k (120)
k=1

where a E 'A d {x E [0 , 1 Zt I I _1 Xk = 1}. Notice that, by condition (2) in

Definition 1.7, we cannot have s, _< (,Kj) s1 . Therefore, we must have a, < 1. Now,
we simplify (1.20) by subtracting aisi on both sides and rescaling:

t

si ,K) Sk (1.21)
k=2 1(.

Next, since S2 is dominated, let it be dominated by _ ksk. In symbols,

S2 40(,Ki) IAsk (1.22)
k=1

for some EA. By substituting (1.21) into (1.22), we can rewrite (1.22) as

t

S2 -(iK) k Sk (1.23)
k=2
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for some 0' E A such that #3 =0. Again, by subtracting /3s2 on both sides and
rescaling, we obtain

t

S2 Ok2 K) ~cSk ,(1.24)

k=3

for some /" E A such that /'i' = #3' = 0. We substitute (1.24) into (1.21), and obtain
t

k=3

for some a' E A such that a' = a' =0.
This process, similar to Gaussian elimination in linear systems, can be continued

until we obtain sk _<(i,K4) st for every k = 1, . . . , t-1. Thus, st must be an undominated

strategy for player i, contradicting the hypothesis that UDi(Ki) = 0. L

1.G The Work of Lopomo, Rigotti, and Shannon
Their Model. In order to "strip away issues pertaining to higher order beliefs
and strategic uncertainty", Lopomo, Rigotti, and Shannon [99] focus on single-player
mechanisms. Thus, so do we when recalling their work.

In their model, true state of the world comprises all the information the player is

uncertain about, and the player's utility function, U, maps 0 x T x S to R, where

(a) 0 is the set of all possible outcomes,

(b) T = [0,1] is the set of all possible player types, and

(c) S is the set of all possible true states of the world.

When the player's type is t E T, the only information the player has about the true
state of the world s E S is that s is drawn from a distribution 11(t) in A(S).

In their model, the player knows his own type t E T, and a mechanism knows the
true state of the world s E S. The player is allowed to report just his own type, and
then a mechanism chooses an outcome based not only on this report, but also on the
true state: that is, each mechanism # is a function #: T x S -+ 0.

By contrast, in our auction setting, a mechanism chooses an outcome solely based
on the players' reports. Indeed, since each player is uncertain about his own valuation,
the true state of the world should include the true valuation profile 0*, and if a
mechanism knew 9*, then it would be trivial to choose an outcome of maximum
social welfare.

In their Knightian setting, they provide a general notion of a dominant-strategy
mechanism, optimal incentive compatibility (optimal IC), and a very restrictive no-
tion of a dominant-strategy mechanism, ex-post incentive compatibility (ex-post IC).

Formally, a mechanism # is
e optimal IC if, Vt E T, Vc- E A(T), and Vir C II(t): Eh~[U(0(tS),tS)] >

ES~R [E0~0 [U(0(0, s), t, s)]], and
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9 ex-post IC if, Vt, 0 C T and Vs E S: U(O(t, s), t, s) > U(#(0, s), t, s).

Their First Theorem. They assume that, for every type t E T, there exists a
neighborhood N(t) C T such that, for all continuous functions g: S -+ R,

if f g(s)dr =0 for every 7r E n II(t'), then g = 0.
JS t'EN(t)

Under this assumption, their first theorem shows that every optimal IC mechanism
satisfying an additional technical condition (i.e., ex-post cyclical monotonicity) must
be ex-post IC.

Therefore, their first theorem has the same spirit of our Theorem 1.6. In both the-
orems, some form of overlapping of a player's possible 'belief/knowledge sets' implies
that every dominant-strategy mechanism must be of a very restrictive form. However,
due to the differences in models and assumptions, it is unclear whether our already
simple proof of Theorem 1.6 can be more simply derived from theirs. Even ignoring
all other differences, there cannot be any subjective map from their type space to
ours. In their case, a player's type space (i.e., T = [0, 1]) has the cardinality of the
continuum. In our case, the type space of a given player i (i.e., K) may have the
cardinality of the power set of the continuum.
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Chapter 2

Knightian Self Uncertainty in the

VCG Mechanism for
Unrestricted Combinatorial
Auctions

This chapter is based on the result published in [43].

We study the social welfare performance of the VCG mechanism in the well-known
and challenging model of self uncertainty initially put forward by Frank H. Knight
and later formalized by Truman F. Bewley. Namely, the only information that each
player i has about his own true valuation consists of a set of distributions, from one
of which i's valuation has been drawn.

We assume that each player knows his true valuation up to an additive inaccuracy
6, and study the social welfare performance of the VCG mechanism relative to 6 > 0.
In this paper, we focus on the social welfare performance of the VCG mechanism
in unrestricted combinatorial auctions,1 both in undominated strategies and regret-
minimizing strategies. Denote by MSW the maximum social welfare.

Our first theorem proves that, in an n-player m-good combinatorial auction, the
VCG mechanism may produce outcomes whose social welfare is < MSW - Q( 2m 6 ),
even when n = 2 and each player chooses an undominated strategy. We also geomet-
rically characterize the set of undominated strategies in this setting.

Our second theorem shows that the VCG mechanism performs well in regret-
minimizing strategies: the guaranteed social welfare is > MSW - 2 min{m, n}6 if

1We acknowledge that the VCG mechanism admits computational-complexity issues [37, 57]; in
this paper we choose to focus on how the Knightian players rationally behave in VCG ignoring such
complexity issues. It turns out this is already a very non-trivial question to tackle, not to say that in
practice it is also interesting to study the VCG mechanism on selling 10 goods to 10 players, which
is computationally tractable on a modern PC.
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each player chooses a pure regret-minimizing strategy, and > MSW - O(n 26) if mixed
strategies are allowed.

2.1 Introduction

2.1.1 Theorem 2.1: VCG Auction in Undominated Strate-

gies

In an (unrestricted) combinatorial auction of n players and m goods, the set of possible
allocations A consists of all possible partitions of [m] (the set of m goods) into 1 + n
subsets (AO, A1 , . . . , An), where AO is the (possibly empty) set of unassigned goods
and A2 is the (possibly empty) set of goods assigned to player i. Given an allocation
A (Ao, A, .. . , An), player i has valuation 0*(Ai) E R>o if Ai / 0 and 0 if Ai = 0.2

In a Knightian (unrestricted) combinatorial auction, the only information i has
about the true valuation profile 0* lies in Ki. Letting Ki(S) := {Oi(S)}oEK,, we say
that Ki is 6-approximate if sup Ki(S) - inf Ki(S) < 6 for all non-empty S C [m]. We

prove that,

Theorem 2.1 (Informal). In a 6-approximate combinatorial Knightian auction with
n > 2 players and m goods, the VCG cannot, in undominated strategies, guarantee
social welfare greater than MSW - (2m1 - 5)6.

(The formal statement and proof of Theorem 2.1 can be found in Section 2.4.)

In fact, in this case we have been able to characterize UD2 , the set undominated
strategies of a player i. This time, UDj is much larger than Ki. Player i may choose
an (almost arbitrary) constant fraction of the coordinates S C 2["], and deviate from
Ki(S) by an additive factor as large as 8(2"N) for all S E S. This strategy remains
undominated for player i!

Perhaps more surprisingly, characterizing the undominated strategies of the VCG
in unrestricted combinatorial auctions is much harder. Indeed, even describing the
resulting set UDj is challenging. (Indeed, we resort to geometry in order to describe
it in a succinct way.)

Theorem 2.1 is somewhat disconcerting, if we feel that the VCG should always be
the mechanism of choice for getting good social welfare, even when the players are
Knightian, and even when the players are belief-free. But there are other solution
concepts to consider.

2A1 of our results for combinatorial auctions actually also hold even under a mild restriction
on the players' valuation, namely, when they are set-monotone (or with free disposal): that is,
9i(S) < 0i(T) whenever S C T.
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2.1.2 Theorem 2.2: VCG Auctions in Regret-Minimizing Strate-
gies

So far we have analyzed the VCG under all solution concepts traditionally used in
private-value and belief-free auctions of incomplete information, assuming that the
players are utility maximizers. We now analyze the VCG's performance in Knightian
auctions in regret-minimizing strategies. The notion of a regret-minimizing strategy
naturally extends to the Knightian setting. Informally, the regret of a strategy si of
a player i is the maximum difference, taken over all possible strategy choices of i's
opponents and all possible choices of 0% in Ki, between the utility i gets by playing
si and the utility he gets by best responding to those choices. A regret-minimizing
player i chooses strategies that minimize his regret.

With respect to pure regret-minimizing strategies, we prove the following

Theorem 2.2 (Informal). In a 6-approximate combinatorial Knightian auction with
n players and m goods, the VCG guarantees social welfare > MSW - 2 min{n, m}6
in pure regret-minimizing strategies.

(We prove Theorem 2.2 in Section 2.5.)

That is, in combinatorial Knightian auctions, the performance of the VCG in
(pure) regret minimizing strategies is absolutely stellar. Theorem 2.2 is less intuitive
than it seems, because in a combinatorial, Knightian, VCG auction it is not obvious
which strategies are regret-minimizing. Consider a player i who (1) happens to know
that his true valuation for some subset of the good S lies in some interval [xs, xs + 6],
and (2) chooses to play a pure, regret-minimizing strategy vi. At first glance, it
would appear that vi(S) should coincide with the center of the interval, that is,
vs(S) = xs + 6/2. In reality, however, vi(S) need not even belong to the interval

[xs, s + 6]. Nevertheless, we prove that it cannot lie too far from the interval.

MIXED STRATEGIES. For simplicity, Theorem 2.2 has been stated for pure strategies.
Indeed, as shown in Appendix 2.D.1, significant difficulties arise when dealing with
mixed strategies. For instance, we must deal with the fact that a regret-minimizing
mixed strategy can, in expectation and for each subset S, be arbitrarily far away
from K(S)! However, Theorem 2.2 essentially continues to hold when allowing mixed
strategies, but with a worse bound. Roughly, min{n, m} is replaced by n2 (or even
n log n if the valuations are set-monotone) 3

3That is, vi(S) < v(T) for all S C T C [m], all i, and all vi E e8. The interested reader can
consult Appendix 2.D for the mixed-strategy version of Theorem 2.2.
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2.1.3 The Meaningfulness of Theorem 2.2 and a Rationality
Bridge Lemma

In principle, Theorem 2.2 or any other implementation in regret-minimizing strategies
would be irrelevant, in the exact-valuation or in the Knightian setting, if at least
one player is not a regret minimizer but a utility maximizer. However, we show
that a separate lemma relating these two basic models of rationality in all games
(with or without Knightian players), indicates that Theorem 2.2 may retain some
meaningfulness. Let us explain.

* A utility-maximizing player U eliminates all his dominated strategies to compute
his set of undominated ones, UD. Notice that U cannot further refine UD based
on utility maximization alone. If UD consists of a single strategy s (necessarily
a dominant one), then U of course chooses s. But:

if UD contains multiple strategies, which ones might U prefer?

" A regret-minimizing player 7Z eliminates all his non regret-minimizing strategies
so as to compute his set of regret-minimizing strategies, RM. He might even
continue this process k times, until he is satisfied or no further elimination is
possible. Let us denote the final set of strategies he obtains this way by RMk. If
RMk consists of a single strategy s, he of course chooses s. But:

if RMk contains multiple strategies, which ones might 7Z prefer?

A possible answer is that, when he is no longer able to apply his 'favorite way of
reasoning', even a die-hard utility maximizer U will resort to regret minimization to
refine UD, and even a die-hard regret minimizer 7Z will resort to utility maximization
to refine RMk. In principle, the two final sets of strategies obtained by such different
refinement procedures could be vastly different. Our mentioned lemma, however,
guarantees that they coincide.

Abusing notation a bit, consider UD and RM also to be 'operators' acting on sets
of strategies. In this case UD(UD) = UD, while RM2 f RM(RM) may be a strict
subset of RM. Then, our structural lemma can be expressed as follows.

Lemma 2.3 (Rationality Bridge Lemma, proved in Chapter 3).
The set of strategies obtained after applying, in arbitrary order, k times the oper-

ator RM and at least once the operator UD coincides with RMk n UD.

For instance, RM(RM(UD(RM(RM(UD))))) = RM 4(UD) = RM 4 n UD.
A formal statement and proof of the above lemma can be found in Appendix 3.2.
Here we wish just to mention the following implication for mechanism design:

For all mechanisms M and social choice correspondences f,
if M implements f in RM strategies or in UD strategies,
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then M is automatically guaranteed to implement f also in RM(UD) strategies.4

Relative to the VCG, this guarantee implies that Theorem 2.2 continues to hold in
RM(UD) strategies. That is, assuming that the players consider solely pure strategies,

Corollary 2.4. In a 6-approximate combinatorial Knightian auction with n players
and m goods, the VCG guarantees social welfare > MSW - 2 min{n, m}6 (not only
when the players are regret minimizers, but also) when the players are utility maxi-
mizers who use regret only to break ties.

(A similar corollary holds for the mentioned mixed-strategy version of Theorem 2.2.)

2.1.4 In Sum

The fact that the VCG is no longer dominant-strategy in Knightian auctions is 'no
big loss'. Indeed, no dominant strategy mechanism can do better than assigning the
goods at random, even in single-good auctions.

The fact that the VCG has excellent, and indeed essentially optimal, social-welfare
performance in undominated strategies in multi-unit (and thus also in single-good)
Knightian auctions demonstrates the wide relevance of the VCG.

The fact that the social-welfare performance of the VCG in combinatorial Knigh-
tian auctions is extremely poor in undominated strategies is just another hard fact of
life. However, per the Rationality Bridging Lemma, once we assume that even die-
hard utility maximizers resort to regret minimization when they are forced to break
ties, then the VCG continues to be the mechanism of choice for good social welfare,
even in the Knightian setting and in unrestricted combinatorial auctions.

In sum, as most things classical, the VCG outlives the confines in which it was
conceived, and continues to be relevant in new and unforeseen settings.

2.1.5 Roadmap

We discuss the related work in Section 2.2, and provide basic definitions in Section 2.3.
The proof of Theorem 2.1 is very technically involved, so we divide it into four

sections. In Section 2.4 we sketch a two-paged proof of a weaker form of Theorem 2.1
to gain intuition. In Appendix 2.A, we state the stronger version of Theorem 2.1 that
also includes the geometric characterization of the player's undominated strategies.
The full proof is contained in Appendix 2.B and 2.C.

We provide the full proof of the pure strategy version of Theorem 2.2 in Section 2.5,
and in Appendix 2.D, we state and prove the mixed-strategy version of Theorem 2.2.

The proof of our structural lemma can be found in Appendix 3.2.

4Indeed, for i = 1 the bridging lemma implies that RM(UD) = RM n UD C RM. Of course, to
enforce the same guarantee one could just demand that M implements f in RM U UD strategies, but
this is a very strong demand. Indeed RM U UD could be a much larger set than RM n UD.
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2.2 Related Work

Models of Type Uncertainty. The Knightian model was originally proposed by
Knight [91] and formalized by Bewley [30].

Knightian players have received much attention in decision theory. In particular,
Aumann [14], Dubra, Maccheroni and Ok [55], Ok [124], and Nascimento [112] inves-
tigate decision with incomplete orders of preferences. Various criteria for selecting
a single distribution out of a set of distributions have been studied by Danan [49],
Schmeidler [139], Gilboa and Schmeidler [70]. (In fact, Bose, Ozdenoren and Pape [34]
and Bodoh-Creed [33] use the model from [70] to study auctions.)

General equilibrium models with incompletely ordered preferences have been con-
sidered by Mas-Colell [105], Gale and Mas-Colell [67], Shafer and Sonnenschein [141],
and Fon and Otani [64]. More recently, Rigotti and Shannon [135] characterize the
set of equilibria in a financial market problem. 5

Single-player mechanisms, in the Knightian model, for the rent-extraction prob-
lem have been studied by Lopomo, Rigotti, and Shannon [99], under two notions of
implementation. Namely, (1) when reporting the truth is at least as good as any
other strategy, and (2) when reporting the truth is not strictly eliminated in favor of
another strategy.6

Although they are quite different from the Knightian model, a few other models of
player uncertainty should be mentioned. For instance, Milgrom [108], in single-good
auctions, studies the revenue difference between second-price and English auctions,
when the players do not exactly know their own valuations, but only that they are
drawn from a common distribution. Sandholm [137] presents an example of an auction

(with a non quasi-linear utility function) where a player's valuation is drawn from the
uniform distribution over [0, 1], and argues that reporting the expected valuation (i.e.,
0.5) is no longer dominant-strategy. Mechanisms for scheduling, when each player
knows a single distribution where his type is drawn, have been studied by Porter,
Ronen, Shoham and Tennenholtz [132], and by Feige and Tennenholtz [60]. Thompson
and Leyton-Brown [157] provide an extensive summary of works on Bayesian self-
uncertainties.

Undominated Strategies. Implementations in undominated strategies trace back
to Jackson [79, 80]. Although being a well-known solution concept, very few pos-
itive results on mechanism design have been achieved so far. Beyond the positive
example in [79], Babaioff et al. [21] provide an efficient mechanism for single-value
multi-minded auctions, and Abreu and Matsushima [3] achieve perfect revenue in the

5A strategy profile is an equilibrium if no player can deviate and strictly benefit no matter which
distribution is picked from his set. Notice that such an equilibrium is not a notion of dominance.

6 Notice that, not envisaging other players, these are not notions of dominance in the Knightian
setting. Indeed, even in the exact-valuation setting, the notion of dominance should take into account
all possible choices of strategies of the other players.
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complete information setting. Our prior work on the Knightian mechanism design is
another example [42].

Regret-Minimizing Strategies. Regret-minimizing strategies are also known as
regret-minimax strategies. The suggestion of adopting regret-minimizing (a.k.a. regret-
minimax) strategies traces back to Savage's reading [138] of the work of Wald [161],
and has been axiomatized by Milnor [109]. The notion of regret has been treated dif-
ferently in different settings. A unified axiomatic characterization of minimax regret
has been recently given by Stoye [155].

Mechanisms have also been studied under minimax regret. Linhart and Rad-
ner [98] study minimax-regret strategies in a sealed-bid mechanism for bilateral bar-
gaining under complete information. Engelbrecht-Wiggans [58] and Selten [140] ana-
lyze first- and second-price sealed-bid auctions by incorporating regret for the bidders.
In more general settings, minimax-regret strategies are mostly studied when a player
has (Bayesian or set-theoretic) beliefs about his opponents. In particular, Hyafil and
Boutilier [76] and Renou and Schlag [134] study two different notions of minimax-
regret equilibrium, both coinciding with ours when players do not form beliefs about
their opponents. Halpern and Pass [71] propose the solution concept of iterated regret
minimization using beliefs.

Regret Minimizers vs. Utility Maximizers. Many empirical studies compare
utility maximizers and regret minimizers, see for instance Chorus, Arentze and Tim-
mermans [45], and Hensher, Greene and Chorus [75]. Recently, Engelbrecht-Wiggans
and Katok [59] and Filiz and Ozbay [62] provide experimental evidence for regret in
first- and second-price auctions. To the best of our knowledge, we are the first to
study players who use regret for refining their sets of undominated strategies.

2.3 Classical and Knightian Basic Notions
e fn

Recall that, in an auction, the set of possible outcomes is Q = A x R-0, where A
denotes the set of all possible allocations of the good(s). If (A, P) E Q, we refer to
A, A = (Ao, A 1 , .. ., An), as the realized allocation, to each P as the price charged to
player i, to each Ai as the allocation of player i, and to A0 as the unallocated good(s).
A valuation 6i of a player i is a function, from i's possible allocations to non-negative
reals, mapping the empty allocation to 0. The set of all possible valuations for a
player i is denoted by E8, and i's true valuation by 0*. We assume quasi-linear utility
functions. That is, the utility function Uj of a player i maps a valuation 0, and an
outcome w = (A, P) to U0(j, ) N Oi(Aj) - P.

As already said, in a Knightian auction the only information that a player i has
about 07 -and the entire profile 0*- consists of a subset Ki C 8, the candidate

(valuation) set, guaranteed to contain 0*. A player i has no information or belief about
0* or Ka of his opponents. The true valuations of the players are uncorrelated.
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By saying that K is a profile -respectively, a product- of candidate sets, we
mean that K = (K1,... , Kn) -respectively, that K = K1 x ... x K,.

Let us now clarify the specific auctions we consider.

6-approximate Knightian Auctions. Recall that, in an (unrestricted) com-
binatorial auction, there are n players and m distinct goods. The set of possi-
ble allocations A consists of all possible partitions A of [m] into 1 + n subsets,
A = (Ao, A 1 ,..., An), where A0 is the (possibly empty) set of unassigned goods
and Ai is the (possibly empty) set of goods assigned to player i. For each player i,
Oi = {i : 21 - R>O I O (0) = 0}.

In an (unrestricted) combinatorial Knightian auction, a player i's candidate set
Ki is a subset of the above 6j. If S C [m], then we let Ki (S) d {i(S) I 02 E Ki}.

We say that Ki is 6-approximate if sup Ki(S) - inf Ki(S) < 3 for all S C [m].
A Knightian auction is 6-approximate if each candidate set Ki is 6-approximate.

(Possibly Incomplete) Preferences. In a Knightian auction, a utility-maximizing
player i with candidate set Ki strictly prefers an outcome w to an outcome w' if and
only if the following two conditions hold:

(1) Ui( , w) ;_ Ui( A, w') for all 0i E Ki and
(2) U (0j, w) > U (0', w') for some 0' e Ki.

Social welfare. The social welfare of an allocation A, SW(A), is defined to be

EZ 0*(Ai); and the maximum social welfare, MSW, is defined to be maxAeA SW(A).
(That is, social welfare and maximum social welfare continue to be defined relative
to the players' true valuations 0*, whether or not the players know them exactly.)

More generally, the social welfare of an allocation A relative to a valuation profile

0, SW(0, A), is Z2 0i(Ai); and the maximum social welfare relative to 0, MSW(0), is
maxAEA SW(0, A). Thus, SW(A) = SW(0*, A) and MSW = MSW(0*).

The VCG mechanism. In our auctions, the VCG mechanism (with any tie-

breaking rule) maps a profile of valuations 0 E e 1 x ... x On, to an outcome (A, P),

where

A C arg maxAEA SW(O, A) and, for each player i, P = MSW(0-i) - ZjoiO(A).

General mechanisms and strategies. Every auction mechanism M considered

in this paper specifies, for each player i, a set Si. We interchangeably refer to each

member of Si as a pure strategy/action/report of i, and similarly, a member of A(Si)

a mixed strategy/action/report of i.7 After each player i, simultaneously with his

opponents, reports a strategy si in Si, M maps the reported strategy profile s to an

7Often, in pre-Bayesian settings, the notion of a strategy and that of an action are distinct.
Indeed, a strategy si of a player i maps the set of all possible types of i to the set of i' possible
actions/reports. But since strategies are universally quantified in all relevant definitions of this paper,
we have no need to separate (and for simplicity refrain from separating) the notions of strategies
and actions.
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outcome M(s) C Q. If M is probabilistic, then M(s) E A(Q), and, for each player i,
Ui (0i, M (S)) de IE~M (s)[U(i(l5 4)

Note that Si = E9 in the VCG case, but in general the set Si is arbitrary.

Knightian undominated strategies. Given a mechanism M, a pure strategy si of
a player i with a candidate set Ki is (weakly) undominated,8 in symbols si E UDi(Ki),
if i does not have another (possibly mixed) strategy oi such that

(1) Vs_, V0. e Ki Ui (Oi, M(ui, s-i)) Ui (Oi, M(si, si)), and

(2) 3s _i E Ki Ui(0, M(ou, s-i)) > Ui(63, M(si, s-i)).

If K is a product/profile of candidate sets, then UD(K) de UD 1(K1 ) x- - x UDn(Kn).9

Knightian regret-minimizing strategies. Given a mechanism M, the (maxi-
mum) regret of a pure strategy si of a player i with candidate set Ki is

Ri(Ki, si) d max max (rmax Ui (Oi, M(s', s-i)) - U (O, M(si, s-i)))
0jEKj s-i \ si

A pure strategy si is regret-minimizing among all pure strategies of a player i with
a candidate set Ki, in symbols si E RM'""*(Ki), if Ri(Ki, si) Ri(Ki, s') for all other

pure strategies s' of i. We let RMP"'(K) N RM "'*(K1 ) x - x RM "'*(Kn).

When allowing mixed strategies, the (expected) regret of a (possibly mixed) strat-

egy us of a player i with candidate set Ki is

Ri(Ki, ui) max max (max Ui (O2, M(s , s-i)) - EsU2 (Oi, M(si, s-i)))
0iEKj s-i \ s/

We similarly define RM;"ix(Ki) as the set of strategies of a player i that minimize

regret among all mixed strategies, and let RMrnx(K) = RMm"x(Ki) x ... x RMm"x(Kn).

2.4 A Weaker Version of Theorem 2.1

It suffices to consider the case where there are n = 2 players, because all players other

than players 1 and 2 can be made to report 0 on every subset of the goods, and thus not

affect the choice of outcome. We now sketch the proof for the following slightly weaker

version of Theorem 2.1. (We shall discuss in Appendix 2.A the stronger statement of

our theorem as well as a characterization of a player's undominated strategies.)

8 This is not to be confused with the strong dominance that requires the inequality to be strict
for all pairs (sj, 6). For this notion in the exact-valuation case, see for instance [66, 95].

9 As pointed out by Jackson [79] in the exact-valuation case, the general notion of an undominated
strategy is more complex. However, for bounded mechanisms, the simpler notion above coincides
with the general notion, even in the Knightian setting. Since this class of mechanisms includes the

VCG and all finite mechanisms, we adopt this simpler notion for this paper.
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Theorem 2.1'. In a combinatorial Knightian auction with 2 players and m goods,
consider the VCG with any tie-breaking rule, then there exist products of 6-approxima
candidate sets K = K1 x K2 and profiles (v1, v 2) E UD(K), such that

(best-case 0) VO E K1 x K2 SW(0,VCG(vi,v 2)) < MSW(0) - (2n - 3)6 (2.1)

(worst-case 0) 30 E K, x K2  SW(OVCG(vi,v 2)) < MSW(0) - (2m - 1)6. (2.2)

Proof Sketch. Let 7 1,... , 7r2 m 1 be any permutation of all non-empty subsets of [m]
such that, whenever j < k, 7rj 2 7rk. 10 We set Ir 2m =r1 , and denote by S the
complement of a subset S: that is, 3 d,- [M] \ S.

We begin by choosing a highly-deviating strategy for player 1, and argue that it
is undominated. Specifically, choose arbitrarily a real number x larger than 6, and
then choose a candidate set K1 and a strategy (i.e., a valuation) vi as follows:

K1 = {01 E 81 V non-empty S C [m], 01(S) E [x - 6/2, x + 6/2]} and

V1(7ri) de X + ( 1)6 VZ E I1 l... ., 2M __1

Note that v, iZ K1. (Indeed, v1(-i) E Ki(i1) only for i = 1.)

We now prove that the strategy vi is undominated. More precisely,

Claim 2.5. vi E UD 1(K1).

Proof. We proceed by contradiction. Assume towards contradiction that v, is weakly
dominated by a strategy v' = v1 . (There are two cases to consider: v' is pure and v'
is mixed. For simplicity we analyze only the first one.) Assume that v' is pure.

(There are two cases to consider: either vi is a constant shift of vi or it is not. For
brevity, we analyze only the second, harder, case.) Assume that v is not a constant
shift of vi. Then

3j E {1, ... , 2M - 1} ]A > 0 v 1(j+1) - vi(7rj) > A > max v'(T) - maxv'(T)
TCrj+1 TC~r,

(2.3)
Else, that is, if for all i E {1, . . ,2 -

vI(7ri+1) - vi(wi) < max v'(T) - max v'(T),
TC7ri+l TC'ri

then summing up all these 2' - 1 inequalities we get 0 < 0; hence, all the inequalities
are in fact tight. So there must exist some constant c such that vi(wi) = v'(7i) + c

for i E {1, ... 2m - 1}, which we have assumed not to be the case.

(There are now two more cases to consider: j g { 2m - 2, 2 m - 1} and J E { 2 m -

2, 2M - 1}. For brevity we analyze only the first, hard, one.) Assume that j 0
{2m - 2, 2r - 1}. In this case neither fj nor 7j+1 is empty.

10 1n particular, we can order the subsets of [m] by increasing cardinality, and lexicographically
within a given cardinality: that is, when m = 3, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.
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We contradict the assumption that v' weakly dominates v, by exhibiting a valu-
ation 01 E K1 and a "witness" strategy v 2 for player 2 such that

U1 (01, VCG (vi,,V2)) > U, (01, VC G(v', V2)) -

We define v2 as follows. Let H be a huge number (e.g., much higher than v1 (w)
and v'(7r) for any subset i of the goods) and let v 2( 3j+1) = H - A, v2(Ty) = H, and

v2(T) = 0 for all other subsets T. (Here we rely on the combinatorial nature of the
auction: we have complete freedom on how to choose the valuation v2.)

We now argue that the allocation in the outcome VCG(vi, v2 ) is (7w+1, j+1) and
player l's price is A. Indeed, because H was chosen to be sufficiently large, the only
outcomes we should consider are (T, irj+ 1 ) and (T', Fj) where T C irj+1 and T' C KJ.
By construction -j+l maximizes v1(T) among all T C irj+i, and wj maximizes v1(T)

among all T C 7j; in particular, the only two possible allocations are (7rj, -) and
(7j+1 , j+). Because v1(wj+1) - v1(7j) > z = v2(j) - v 2 (rj+1), the outcome that is

chosen is (7j+1 , 7j+). As for the price: player 2 is allocated Wj+1 but, if player 1 did
not exist, player 2 would be allocated 7j, and gain A in utility; thus player l's price
is indeed A.

Next, we argue that the allocation in the outcome VCG(v', v 2 ) is (T*, Tj), where
T* maximizes v'(T) among all T C 7rj, and player l's price is 0. As before, because H

was chosen to be sufficiently large, the only outcomes we should consider are (T, Tj-+ 1 )
and (T', fj) where T C 7rj+ and T' C w . This time by relying on the fact that

v2 (7f) - v2 (Tj+1) = A >max v'(T) - max v'(T)
TC7rj+1 TyCr

we deduce that the outcome is in fact (T*, 71y). As for the price: player 2 is allocated
7j and, if player 1 did not exist, player 2 would still be allocated -j; thus player l's
price is indeed 0.

We now define 01 E K1 as follows: 01(7j+i) = x + 6/2, 01(7w) = x - 6/2, and

01(7) is arbitrarily chosen for all other subsets 7. For our choices of 61, vi, v1 and v 2

we have:

U1(0 1, VCG(vi, v 2)) = (x + 6/2) - A

U1(0 1, VCG(v', v 2)) = (x - 6/2) - 0

By (2.3) and the construction of vi, it is immediately seen that 6 = vi(7j+1) -vi(j) >

A. Thus the first utility is greater than the second one, contradicting the fact that

v' weakly dominates vj. E

Having constructed vi E UD 1(K1), we continue the proof of Theorem 2.1' by
letting:

V2 (S) ef f(2m - i -1.5)6 if S = T for some i E {1, ... ,2m - 2}

x + (2m 2.5)6 if S = [i]

K2 = {02 c 6 2 Vi E {1,.. . , 2 - 1}, 02(wi) E [v2 (i), v 2 (i) +61}
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Note that, by construction, v 2 c K2, which easily implies the following

Claim 2.6. V2 C UD 2 (K2). (For brevity we do not prove this implication.)

Having specified K1, v1 , K2, and v 2, all we have left is analyzing the social welfare
performance.

Let us first compute the allocation of the outcome VCG(vi, v2). The only al-
locations to consider are (7 2 m-- 1, 0), (0, 7 2 m-1), and (7i, Ty), for some index i c
{1, ... , 2" - 2}. (In principle, one may also consider allocations where some goods

remain unallocated. However, since vi and v2 are strictly monotone -that is, vj (S) <
vj(T) for all S ; T and all j E {1, 2}- all goods must be allocated in the outcome
of VCG (vi, v2 ).)

Now we compare the social welfare relative to (v1 , v 2) for such allocations:

V1 (7r2m -1) + V2(0) =(x + (2"n - 2)6) + 0 = x + (2"m - 2)6 ,
v1(0) + V2 (7 2 m-- 1 ) 0 + (x + (2"n - 2.5)6) = x + (2' - 2.5)6 , and

V1 (7i) + V2(Ti) =(x + (1 - 1)6) + (2' - i - 1.5)6 = x + (2"m - 2.5)6.
Thus, in the outcome VCG(v1, v 2) the allocation is (7r 2 m- 1 , 0). Hence, the social
welfare is

SW ((01, 02), VCG (vi,,V2)) = 01(72--1).

On the other hand, the maximum social welfare is

MSW(0 1, 02) > 02 (7 2m_ 1)

Now notice that for all 0 E K, we have

MSW(0) - SW (0, VCG (vi,v 2 )) > 0 2 (7r 2 -- 1 ) - 01(72--)

> (x + (2" - 2.5)6) - (x + 6/2) = (2" - 3)6

That is, (2.1) holds. To prove (2.2), we choose 0 as follows:

61(7ri) E z - o/12 V i E {Il. .. , 2"'-1

02(i V2 2(7ri) + 6 V i E {1, . .. , 2"- 1}
Now notice that

MSW(6) - SW(0, VCG (vi,v 2 )) ;> 02(72--l) - 01(7r2m_ 1 )

= (x + (2m - 1.5)6) - (x - 6/2) = (2M 1)6

That is, (2.2) also holds. This concludes our proof sketch of the weaker version of
Theorem 2.1.

2.5 Proof of Theorem 2.2
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Theorem 2.2. In a combinatorial Knightian auction with n players and m goods,
let the VCG mechanism break ties by preferring subsets with smaller cardinali-
ties." Then, for all 6, all products K of 6-approximate candidate sets, all profiles
0 E K, and all profiles of strategies v E RMP (K),

SW(9,VCG(v)) > MSW(O) - 2min{m, n}6

Proof. We begin by noting that, because the VCG is dominant-strategy-truthful in
the exact-valuation model, the (maximum) regret of a pure strategy vi of a player i
with candidate set Ki in the VCG mechanism becomes

Ri(Ki,vi) - maxmax (ax Ui(0j, VCG (v', v_j)) - U (92,VCG(vi, v_)))
OjEKj V-i \ V/ i(O

= max max (Ui (0i, VCG (Oi, v_i)) - U (9i, VCG (vi, v_)))
OjGK. vi\

Moreover, by the very definition of the VCG, we have

Ui (0, VCG(vi, vi)) = SW ((6i, vi), VCG(vi, vi)) - MSW(v_,) .12

Therefore in the VCG case, we can further simplify the definition of regret as follows:

Ri(Ki, vi) max max (SW((63, vi), VCG (9,, vj)) - SW((i, vj), VCG (vi, vi)))
9i cKi v- /

= max max (MSW(OiIvi) - SW((93, v_j), VCG(vi, v_))) . (2.4)
OiEKj V-i \

Let us adopt a notation analogous to that of the proof in Chapter 1. Namely, for
each player i, each candidate set Ki C E2, and each subset T C [m], we let

Ki(T) f {9(T)}}oK, KL (T) = inf Ki(T),
) ~ pd)def

K1 (T) = sup Ki(T), Kjid(T) - (KL (T) + KT(T))/2

To prove Theorem 2.2, we rely on two intermediate claims. The first one identifies,
for every player i, a strategy vi with regret no larger than 6.

Claim 2.7. For every player i, let vi(T) N Ky"i(T) for each T C [M]. Then

Ri(Ki,v) < 6.

Proof of Claim 2.7. According to the first equality of (2.4), it suffices to show that

VO, E Ki Vvj, SW((Oi, v-i), VCG (A, v-i)) - SW((Oi, v_i), VCG(v*, v_i)) < 6

Let w, = VCG(6, v_j) and W 2 = VCG (v*, v_j).
Recall that, in a combinatorial auction, a valuation 02 E E of player i maps

subsets of [m] to RO. For convenience, we extend 92 to map an outcome W = (A, P)

to R_, as follows: o,(w) d 0i(Ai).

"If giving subsets A or B C A to player i provides the same social welfare, then the VCG will
give B to player i.

12This is because, suppose that the VCG mechanism picks an outcome w = VCG (vi, vi), allocating
player i subset Ai and others Aj. Then, i's price is MSW(v-i) - vj(Aj) in w. This induces a
total utility of 92(Aj) + vj(Aj) - MSW(v-i) = SW(( 2 , vij), W) - MSW(v-i).
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Under this notation, we have V* (W 2 ) + v-i(w 2 ) > v*(wi) + v-i(wi), because the
VCG maximizes social welfare relative to the strategy profile (v*, vj). Using this
inequality, we deduce that

SW(( 2, vi), VCG (0j, vj)) - SW((i, vj), VCG (v*, vij))

= (0(wi) + vi(wi)) - (9j(U 2 ) + v-(W 2))

= (Oi(WI) - O (W 2 )) + (v-i(wi) - V-i(W2))

< (Oi(wi) - Oi(w2)) + (Vz(W2) - V* (W1)) .

Suppose player i gets subset T1 C [M] in outcome wi, and subset T2 C [M] in outcome
W 2 . Then

(Oj(w1) - Oi(W2)) + (V*(W2) - V* (W1)) = (e(T) - v* (T)) + (v7(T2) - Oi(T2 ))

< K7 (T1) - Kmid (T) + K-id (T2 ) - K (T2 )

2 2

Let us now prove another claim.

Claim 2.8. Let vi be any strategy of player i such that Ri(Ki, vi) < 6. Then:

(a) for every T C [M]:

K -idKjT(T ) - Ki- (T )K~id(T) - max v (T') < - 1 ( and
T'CT 2

(b) for every T C [M] such that vi(T) > vi(T') for all T' ; T:

|vi(T) - Kid (T)| 6 - K7(T) - K (T)
2

Proof. Since the case of T = 0 is trivial, we assume below that T # 0. We first
prove part (a).

Suppose that (a) is not true. Then, there exists T such that

K midKjT(T ) - Kj' (T )
K7i(T) - max vi(T') > --. (2.5)

T'CT 2
We contradict our assumption on vi by showing that Ri(Ki, vi) > 6.

To show Ri(Ki, vi) > 6, as per (2.4), we must find some vi and some Oi so that

MSW (Oi, v-i) - SW((Oi, v_i), VCG(vi, v_j)) > 6 . (2.6)

Let j be an arbitrary player other than i. We choose Oi c Ki such that Oi(T) =
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KT (T), and v-i as follows: for every S C [in]

H if S=T
V (S) E H + E + maXTCT vi{(T') if S = [M]

0 otherwise

and

Vk(S) 0 for every k j i,j}.
Above, E> 0 is some sufficiently small real number, and H is some huge real number
(that is, H is much bigger than v(S) for any subset S).1 4 It then is easy to verify
that the outcome VCG(vi, vj) allocates 0 to player i, and [M] to player j. Therefore,

SW ((60, v_j), VCG (vi, v_i)) = Oi(0) + vj ([m]) = H + E + max vi(T')
T'CT

On the other hand, MSW(9A, vj) > Oi(T) + v3(T) = K (T) + H, and therefore

MSW (0i, v-i) - SW((j, vj), VCG (vi, ?iu)) > (KT(T)+ H) - (H+E+max vi(T'))

=K,(T)- E- maxvi(T') = + "T(T) - Kt(T) + Kmid(T) - - maxvi(T')
T'CT 2 T'CT

Finally, since Kimid(T) - maxT'CT vi(T') is strictly greater than 6 - KT(T)2 K(T), ac-

cording to (2.5), there exists some sufficiently small E > 0 to make KT (T)-Kf'(T) +

Krmid(T) - E - maxT'CT vi(T') > 6. This proves (2.6) and concludes the proof of

Claim 2.8a.

We now prove part Claim 2.8b.

One side of Claim 2.8b is easy: that is, vi(T) - Kid(T) ; -(6 - K,(T)-K(T)

Indeed, this inequality follows from maxT/CT vi (T) = vi(T) and Claim 2.8a.

To show the other side, that is, vi(T) - Kiid(T) < _ KT(T)-K-'(T), we again

proceed by contradiction. Suppose there is some T such that

id KT (T) - KiL(T)vi(T) - Kjid (T) > 6 - . (2.7)
2

We contradict our assumption on vi by showing that Ri(Ki, vi) > 6. Similarly to case
(a), we need to find some v-i and some Oi so that inequality (2.6) holds.

Let j be an arbitrary player other than i. This time, we choose 9i E Ki such that
O(T) = Kt(T), 13 and choose vi as follows: for every S C [in]

H if S =T
v. (S) = H- E+ vi(T) if S = [M] and Vk(S) Ofor every k V {i,j}.

0 otherwise

1 3Here we have implicitly assumed that K,T (T) = sup Ki (T) = max Ki (T), and thus we can pick

Oi e Ki so that 9i(T) = K, (T). If this is not the case, one can construct an infinite sequence
9) ,(2) .. . so that 6i(T) approaches to K' (T), and the rest of the proof remains unchanged.

14Notice that when T = [M] we have T = 0 and one cannot assign vj (0) to be a nonzero number.
In that case we can choose H = 0, and the rest of the proof still goes through.
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Again, E > 0 is sufficiently small, and H is huge.14 It then is easy to verify that the
outcome VCG(vi, v-j) allocates T to player i and T to player j. Therefore,

SW ((oj, v_j), VCG (vi, v_j)) = Oi(T) + v(T) = K2 (T) + H .

On the other hand, MSW(i, v-j) > 9(0) + v3([M]) = H - E + vi(T). Therefore,

MSW (0, v_i) - SW(( 2 , vi), VCG(vi, vi)) > (H - E + vi(T)) - (KL (T) + H)

KT(T) - K 1(T).
=vi(T ) -K;i(T )+ 2

Finally, since v2(T) - Kj~Id(T) is strictly greater than 6 - Kf(T)-Kf(T) according

to (2.7), there exists some sufficiently small E > 0 to make vi(T) - Knid(T) +
K 2(T) K (T) - E > 6. This proves (2.6) and concludes the proof of Claim 2.8b.

In sum, Claim 2.8 holds. E

Now we return to the proof of Theorem 2.2. Let v = (v1,..., vn) E RMP""(K) be
a regret-minimizing pure strategy profile, and let 9 E K be a valuation profile.

For every player i, the strategy vi (i.e., the one reporting the 'middle points')
has a regret at most 6, owing to Claim 2.7. Since vi minimizes regret among all his
strategies, we immediately have Ri(Ki, vi) < Ri(v*, Kj) < 6. This shows that vi
satisfies the initial hypothesis of Claim 2.8.

Now, letting (Ao, A 1 ,... , An) be the allocation in the outcome VCG(vi, ... ,),
we immediately have vi(Ai) > vi(T') for any T' C Ai by the definition of the VCG.
Furthermore, by our choice of the tie-breaking rule, this inequality must be strict:
that is, vi(Ai) > vi(T') for any T' C Aj. Therefore, letting T = Aj, T satisfies the
hypothesis in Claim 2.8b. Thus, we conclude that

K ( As) - K2' ( A2 )Vi E [n], |vi(Ai) - K"i I( Ai)|) - < 6 - I9(Ai) -K"I (Ai)|
2

==> vi (Ai) - 9i(Ai)I <6 . (2.8)

Notice that, if Ai = 0, then vi(0) = 0j(0) = 0.

Next, letting (Bo, B1, ... , Bn) be the allocation that maximizes the social welfare

under 9, we have
n n

vi(A) > S max vi(T') (2.9)
i=1 i=1

because the VCG maximizes social welfare relative to v = (vI,..., vn). Moreover,
according to Claim 2.8a we have

Kri(Bi~mavi(I) 6-K[T(B ) - K2
1(B.)

Vi E [n], Kj<6(Bi) - max vi (T) < 6 - ( - - 64(Bi) - Kj (Bi)
T'CB 2-

-=4 9(B) - max vi(T') 6 . (2.10)
T'CBi

Also notice that, if Bi = 0, then 9j(Bj) = maxT/cB vi(T') = 0.
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We are now ready to compute the social welfare guarantee.

SW(0, VCG(v)) = J' 1 O 2i(Ai) > Z" vi(Ai) - Zie],A 6
n

> max vi(T')- S
T' I C 1O Bi)

i=1  - iE[n],Aj$0 6 -E[n],B 2 #06

> MSW(9) - 2 min{n, m}6

(using (2.8))

(using (2.9))

(using (2.10))

This concludes the proof of Theorem 2.2.

APPENDIX

2.A Theorem 2.1: How to Obtain a Stronger Re-
sult and a Characterization

Payoff equivalence. Two strategies si and s' are payoff-equivalent for player i if
for any strategy sub-profile s-i of i's opponents and any 9i E Ki, player i's utilities
are the same when reporting si or s'. That is, there is no difference for i to report
si or s'. Given a set of strategies Si for player i, we denote by Si the set that also
includes every strategy of i that is payoff-equivalent to some strategy in Si. We will
use this notation to simplify our statements of the results.

REMARK. Two payoff-equivalent strategies of a player i may ultimately yield different
outcomes, but they are effectively the same from i's point of view. Thus a solution
concept cannot be meaningful unless, when it includes a strategy profile s, it also
includes all strategy profiles s' such that si and s' are payoff equivalent for a player i.

We formally state Theorem 2.1 as follows.

Theorem 2.1. In any unrestricted combinatorial auction with n (6-approximate
Knightian) players and m goods:

(a) For any player i with candidate set Ki, U Di (K ) = V(K).
(The set of strategies V(Ki) is formally defined in Definition 2.10, and geo-
metrically described in Appendix 2.A.1 below.)

(b) Even if there are only two players, there exist products of 6-approximate can-

didate sets K = K1 x K2 and profiles (v1, v 2) E UD(K), such that

(best-case 0) VO C K, x K2 SW(9, VCG(vi, v 2)) < MSW(9) - (2m+1 - 5)6

(worst-case 6) 36 E K1 x K2 SW(6, VCG(vi, v2)) < MSW(6) - (2m+1 - 3)6.

(In Appendix 2.B, we prove one direction of Theorem 2.1a: namely, UDi(Ki) ;

V(Ki). We shall prove UDi(Ki) ; V(K) in the full version of the paper. In
Appendix 2.C we show how to derive Theorem 2.1b from Theorem 2.1a.)
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From sketch to proof. Let us say a few words about how the sketched proof in
Section 2.4 can be extended to a full and slightly stronger proof. The first simplifi-
cation we have made is to suppose that v' is a pure strategy. If instead v' is a mixed
strategy, say it equals > 3 p () for EZ p(i) 1 where vij each is a pure strategy,
then the first step is to distinguish between the following three cases (at least one of
them always holds):

(a) 3j E {1,..., 2" - 1}, vi(SA+i) - vi(Sj) > min max vj (T) -maxvij)(T)
j TCS3+1 TCSj

(b) vi(S1) > min max v, (T)
j TCS 1

(c) v1(Si) < max max vj (T)
j TCS 1

In the proof sketch above, we analyzed case (a) when v' happens to be a pure strategy.
However, in a full proof, one has to analyze all three cases, without assuming that
v' is pure. The analysis of each of these cases, is significantly more involved in this
more general setting.

Furthermore, when analyzing case (a), we distinguished between the case j '
{2" - 2, 2m - 1} or j E {2" - 2, 2" - 1} and only analyzed the former. In the
latter, the choices of "witnesses" 01 C K, and v 2 in order to create the contradiction
U1(01,VCG(v,,v2)) > U(01,VCG(v', v 2 )) are different. Similarly, both (b) and (c)
each have a witness specially crafted for it.

Only when all of (a), (b), and (c) are fully analyzed, we can really conclude that
V1 E UD1 (K).

Finally, even if we expect v 2 C UD 2(K2) to be true, because v 2 E K2 (and thus v2
is not a deviating strategy), actually proving that this is the case essentially amounts
to an analysis that is not much more simple than the one required to show that the
highly-deviating strategy v, is in UD 1(K1 ). In our full proof in Appendix 2.C, we
actually pick v 2 and K2 more carefully (to be also highly-deviating), and doing so
induces a slightly stronger result with the following social welfare upper bound:

SW((0 1, 02), VCG(vi,v 2 )) < MSW(1, 02)- 2(2" - 2)6

2.A.1 Geometric Description of V(Ki)
In this section, we just wish to provide an intuitive description of the set V(Ki),
which will be formally defined in Definition 2.10.

The case of two goods. We first describe V(Ki) in the simpler case where there are
only two goods on sale (i.e., m = 2). In this case, the non-empty subsets of the goods
are {1}, {2}, {1, 2}; in particular, a valuation is a point (x, y, z) in three dimensions,
and we can draw it. For the purpose of drawing, we fix the choice Ki({1}) = [6, 9],
Ki({2}) = [8,1 11] and Ki({1, 2}) = [10, 13].

We begin with two simple observations:
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(a) any strategy that "bids below min Ki(S) at every coordinate S C [m]" is domi-
nated; and

(b) any strategy that "bids above max Ki(S) at every coordinate S C [m]" is domi-
nated.

Property (a) means that a strategy vi such that, for every S, vi(S) is less than
min Ki(S) cannot be in V(Ki). That is, V(Ki) does not share any strategies with
the following cuboid (see Figure 2-1(a)):

x < minKj({1})
CUBOID1  { (, y, z) y < min Ki({2})

z < min Ki({1, 2})

Similarly, property (b) means that a strategy vi such that, for every S, v2(S) is
greater than max Ki(S) cannot be in V(Ki). That is, V(Ki) does not share any
strategies with the following cuboid (see Figure 2-1(b)):

x > max Kj({1})
CUBOID 2  (X, y, z) y > max Ki({2})

z > max Ki({1, 2})

Provided that a strategy vi is neither in CUBOID, nor CUBOID 2 (i.e., there are
S' and S" for which vi(S') > minKi(S') and vi(S") < maxKi(S")), there can be
"many ways" in which vi could be in V(Ki). To express this, we need an additional
definition. For valuation sets (S1 , 52, 3 ), define

x - y > min Si - max S2
CYL(Si, S2, S3) d (XIYJz) y - z > minS2 - max S3

z - x ;> min Sa- max S,

Note that CYL(Sj, S2, 3) is a triangular cylinder defined by three halfspaces and its
axis lies on the x = y = z line. For a candidate set Ki, define (see Figure 2-1(c) and
2-1(d))

CYL 1 CY L(Ki({ 1}), Ki ({2}), Ki ({1, 2})

CYL 2 d" CYL(Ki({2}), Ki({1}), Ki({1, 2}))

after the transformation (x, y, z) - (y, Z,)

Then, disregarding set boundaries, our definition of V(Ki) for m = 2 is as follows

(see Figure 2-1(e)):

V(Kz) = CYLI U CYL 2 - CUBOIDI - CUBOID 2

The general case. In the general case (when m need not equal 2), we can analo-
gously define CUBOID, and CUBOID 2. What becomes more complicated is the "cylin-

der structure" of V(Ki). Let us explain.

When m = 2, there are two cylinders in the definition of V(Ki) because there

are two "proper" ways of ordering all non-empty subsets of the two goods: that is
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Figure 2-1: Here (f) is a PDF animated rotation (if viewed under Acrobat Reader),
and can also be found at http://people. csail.mit.edu/zeyuan/knightian/vcg.
gif.
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({1}, {2},{1,2}) and ({2},{1},{1,2}). Thus, when m = 2, V(K) is the union of the
two cylinders respectively obtained by indexing the three sets Ki({1}), Ki({2}), and
Ki({1, 2}) using the two proper orderings (and minus the two cuboids).

In the general case, there are more such "proper" orderings. Concretely, we say
that a relabeling 7 of all the non-empty subsets of [M] is proper if j < k implies that

w(Sj) 2 7F(Sk). (Note that 7r(S2m_1) = [m] is always the set of all goods.)

Analogously to the m = 2 case, for each vector of sets S = (Si, . .. , S2m _1), we

define the corresponding fundamental cylinder CYL(S). Then we consider the union
of all fundamental cylinders corresponding to all vectors of sets obtained by properly
relabeling Ki = (Ki(S1),..., Ki(S 2m _1 )). In sum, the description of V(Ki) in the
general case is:

V(Ki)= U CYL(w(K,)) - CUBOID 1 - CUBOID 2
proper

For more details see Appendix 2.B.

2.B Proof of One Side of Theorem 2.1a
We introduce some notions before we proceed with the formal statement of the theo-
rem. A labeling of all non-empty subsets of [M] is a vector w = (,11 ... , W2 m_ 1 ), where
the 7i's are the 2' - 1 distinct non-empty subsets of [M].

Definition 2.9. A labeling 7 of all non-empty subsets of [M] is proper if j < k -
7r . k-15

To make the result of our characterization clean, we assume that the candidate set
Ki for the considered player i, is a cartesian product of intervals. That is, Ki(T) =
{0j(T)}oGK, = [aT, bT] for some 0 < aT < bT. We denote by Ki (T) = aT the
minimum point in this interval and K (T) = bT the maximum point in this set.

Definition 2.10. For any player i with candidate set Ki, the set V(Ki) is the set of
all strategies vi satisfying the following two conditions:

1. at least one coordinate of vi is below (resp., above) the corresponding upper
(resp., lower) bound of Kj:

3 S' C [M], vi(S') K(S'), (2.11)

3 S" C [M], vi(S") Kt(S") ; (2.12)

2. there exists a proper labeling i of all non-empty subsets of [M] such that, letting
def

7F2 m = 7

Vj E II, ... , 2M - 1} , vi(w 3 ) - vi(j+1) > K'(wy) - K (7rj+i) . (2.13)

i 5For instance, when m is equal to 3 such a permutation could be
({1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}), or ({1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}), and
there are plenty more such permutations.
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In this section we prove the harder case of Theorem 2.1a: its "if" side. For
this side, it suffices to show that if a strategy vi is in V(Ki) then it is UDi(Ki).
In fact, our proof assumes for simplicity that both vi and Ki satisfy some weak
monotonicity conditions. We now proceed to formally state what we are going to
prove, in Lemma 2.11 below.

Lemma 2.11 (one side of Theorem 2.1a). In the VCG mechanism for combina-
torial auctions, no matter how ties are broken, for each player i having a weakly-
monotone candidate set Ki the following holds.1If vi is a strictly monotone strategy
of i in V(Ki), then vi C U Di(K ).

We fix a player i throughout, so we drop the subscript i everywhere. In fact,
we can assume without loss of generality that i = 1, and that there is only another
player, player 2, because all the other players can be chosen to report 0 and will thus
not affect the analysis.

Assume by contradiction that a strategy v satisfying the hypothesis of the lemma is
weakly dominated by some possibly mixed strategy {pj, VU) }, where the probabilities
p3 sum up to 1 and 0) = v for all j. Our goal is to construct a "witness bid"
w: (2[M] - 0) - R:> for the second player and a "witness true valuation" 0 E K for

the first player such that, if U is the utility function for the first player, then

U(0, VCG(v, w)) > pj U(0, VCG(v(), w)) . (2.14)

This will contradict the fact that the mixed strategy {pj, V(j)} weakly dominates v.
The construction of w and 0 will be through a case analysis.

Notation.

e We call the player reporting v the first player, and the player reporting w the
second player.

* We say that the allocation of VCG(v, w) is (S, T) if the first player receives
S C [M] and the second player receives T C [M].

* We use SW[(S, T)] = v(S) + w(T) to denote the "apparent social welfare" of
the allocation (S, T) (i.e., the social welfare when assuming that both players
have the reported strategies (v, w) as their true valuations).

* Since the VCG mechanism maximizes social welfare relative to the reported
strategies, we have that SW[VCG(v, w)] = max(s,T){v(S) + w(T)} where the

maximization is over all S, T C [M] with S n T = 0.

* For notational simplicity, given a strategy v, we define its monotonizer U by
;u(s) maxTcsv(T).

16A candidate set Ki is weakly monotone if KjL and K7 are weakly monotone: for all S, T C [M]
with o c S c T K' (S) 5 Kf (T) and K'(S) 5 K(T). A strategy is strictly monotone if for all
S, T C [M] with o C S C T it holds that vi(S) < vi(T)).
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Next, among the following inequalities, at least one cannot hold:

v(7ri+1) - v(7ri) < minj u)(7ri+1) - Oj)(7ri) , V 1 {1, . .. , 2M_

v(S') < min {v)(S')} (2.15)

v(S") > maxj {v3)(S")

where 7r is any proper labeling guaranteed by the hypothesis of the lemma. Indeed,
we now show that if all inequalities above hold, there must be a contradiction.

From the first inequality we deduce that, for each i and j, v(7ri+) - v(7r2) <

V(j) (7ri+) - v()(7rj); for i E {1,. ... ,2m - 1}, all these sum up to 0 < 0. In particular,
all such inequalities must be tight, so for each j, v() must be the same as v, up to a
constant shift. In other words,

V S C [M] with S / 0, v) (S) = v(S) + c(i) for some constant CU)

Substituting the above into the second and third inequality in (2.15), we deduce that
0 < mini c(i) and 0 > max c(i), and therefore the c(i) must all be 0, contradicting the
fact that 0) 7 v.

Therefore, one of the three kinds of inequalities in (2.15) cannot hold; we thus have
three cases, depending on which kind of inequality does not hold. We now show that,
for each possible case (respectively discussed in Appendix 2.B.1, Appendix 2.B.2,
and Appendix 2.B.3), (2.14) holds, and therefore the strategy v cannot be weakly
dominated.

2.B.1 Case 1

Suppose that the first inequality of (2.15) does not hold for some i. For notational
simplicity, assume that it does not hold for i = 1, i.e.,

v(7r2) - v(71) > minv(i)(7r2 ) - 0)(7ri)}

We let J = arg minj {v(i)( r 2 ) - V3i)(7r1)1 be the set of minimizers, and let j* C J
be one of them. We can always choose some A such that

v(7r 2 ) - v(7r1) > Z > vci*)( 7r2 ) - v( )(ri) , (2.16)

and for every j V J:

V(j)(72) -V(j)(71) > .(2.17)

Now, we set the witness strategy of the other player to be w(TI) = H + A,
w(-) = H and w(S) = 0 anywhere else. Here H is some very large value. We will
deal with the case when Tj = 0 or 7 = 0 later, since we cannot set the second
player to have non-zero valuation on an empty set. We claim that:

Claim 2.12. If fr-f Y 0 and Tr- # 0:

a. The allocation of VCG(v, w) is W = (72, r-
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b. For all j* E J, the allocation of VCG(v(j*),w) is w = (T,I-) for some T E
arg maxTCyv (j*) (T) (or a probabilistic distribution over them in case of ties).

c. For all j ' J, the allocation of VCG (v(), w) is w = (T, -) for some T E
arg maxTC1 2 vU) (T) (or a probabilistic distribution over them in case of ties).

Proof. For any candidate allocation (S, T) of the VCG mechanism when the second
player reports w, if T V {IT-, T-}, then SW[(S, T)] does not contain the big term H
and is thus smaller than any SW[w] in all three cases. Therefore, we only need to
consider outcomes of the form (S, TI-) and (S, T2-).

a. In this case, SW[w] = v(7r 2 ) + H. If the allocation is of the form (S, T2-), by

the strict monotonicity of v, (7 2, T2) = w must be the allocation with the best

social welfare. If the allocation is of the form (S, TI-), similarly, (wrI, 7F,) must be
the allocation with the best social welfare, however, in this case v(7r,) +w(TIh) =
v(71) + H + A < v(7r2 ) + H = SW[w], using (2.16). In sum, w = (7r 2 , 7F) must
be the allocation of the VCG mechanism.

b. In this case, SW[w] = v )(7r,) + H + A. For the allocation of (S, mj-), S
must be a subset of iri and therefore S E arg maxTCr, v(j*)(T) as desired, since
the VCG mechanism is outputting an allocation with the maximum reported
social welfare. For the allocation of (S, T2-), SW[(S, T2-)] < v *)(7r2 ) + H <

V(J)(7r 1) + H + A = SW[w] (using (2.16)) is worse than the choice of w. So the

allocation must be of the desired form.

c. In this case, SW[w] = V(j) (7r 2 ) + H. For the allocation of (S, T-1), we have that

Sw[(S., )] < v()(7ri) + H + A < v0)(7r2 ) H = SW[w] (using (2.17)) is worse
than the choice of w. For the allocation of (S, T), S must be a subset of r 2

and therefore S E arg maxTC7r2 V) (T) as desired, since the VCG mechanism is

outputting an allocation with the maximum reported social welfare. In sum,
the allocation must be of the desired form.

Claim 2.13. When Tj- = 0 or 7F2 = 0, Claim 2.12 only requires the following small

changes:

a. When i7 = 0 (i.e., 7r 1 = [M]), at any time (T,I-) is a possible allocation
declared in Claim 2.12, (T, R) for R C T is now also possible.17

b. When 7F2 = 0 (i.e., iF2 = [M]), at any time (T,T2) is a possible allocation
declared in Claim 2.12, (T, R) for R C T is now also possible.18

17 As a consequence, Claim 2.12(a) and Claim 2.12(c) still hold, but Claim 2.12(b) will be changed
to include the possible outcomes of w = (T, R) where T is still in arg maxTCr 2 v6() (T) but w c T.

1 8As a consequence, Claim 2.12(b) still holds, but Claim 2.12(a) and Claim 2.12(c) need small
changes.
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Proof.

a. This is because, due to the (strict) monotonicity of v we have v(7r,) > v(7r2 )
and thus (2.16) tells us that A < 0. Instead of choosing some sufficiently large
H, we can choose H = -A. It will make sure that w(0) = w(Ti) = 0 while
w(T2-) = -A > 0. The only place that we used H being sufficiently large, is
where we declare that the only possible candidate allocation for VCG (-, w) is of
the form (S, r-) or (S, -). This is no longer true as we have to also consider
(S, R) for R / T- or 7F-. However, since w(R) = 0, SW[(S, R)] = SW[(S, 0)] =
SW[(S, Ti)]. This means, allocation (S, R) will be possible only if (S, Tj-) is
possible.

b. This is because, due to the weak monotonicity of v(j*) we have v(j*) (7r 2 ) >

v(j)(7rl) and thus (2.16) tells us that A > 0. Instead of choosing some suffi-
ciently large H, we can choose H = 0. It will make sure that w(0) = w(T2) = 0
while w(Ti-) = A > 0. The only place that we used H being sufficiently large,
is where we declare that the only possible candidate allocation for VCG (-, w) is
of the form (S, I) or (S, -). This is no longer true as we have to also consider
(S, R) for R # TjY or T2-. However, since w(R) = 0, SW[(S, R)] = SW[(S, 0)] =

SW[(S, T2-)]. This means, allocation (S, R) will be possible only if (S, T2-) is

possible.

Now, we have some knowledge about what outcomes could be outputted by the
VCG mechanism, on input (v, w), and on (v(j), w). We now come to the final part
that is to show that (2.14) holds. We first compute the utilities in all three cases:

Claim 2.14. If we choose 0 (7 2) = KT (w2) and 6(S) = K'(S) for everything else

(i.e., S # 0 and S #72).

a. U(0, VCG(v, w)) = K T (7r 2 ) + H - maxs w(S),

b. U(O, VCG(v(i*), w)) 5 K-(7ri) + H + A - maxs w(S) for every j* c J, and

c. U(0, VCG(v( ), w)) < KT (7F 2 ) + H - maxs w(S) for every j J.

Proof.

a. We have proved in Claim 2.12(a) that (7 2, w) is the only possible allocation in

this case, and therefore U(O,VCG(v, w)) = U(0, (72 , T2)) = KT( r 2 ) + w(T) -
maxs w(S) = K T (7r 2 ) + H - maxs w(S).

b. We have proved in Claim 2.12(b) that (T, 7i) is the only possible allocation
in this case, and therefore if T # r2, we have U(O,VCG(v(j*), w)) = K-(T) +
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w(-7) - maxs w(S) < K(-xi) + H + A - maxs w(S). (Here we used the weak
monotonicity of K', i.e., K'(T) < K'(ri).)

Otherwise, if T = 2 (i.e., the allocation is (7r 2, f), we must have that 7 2 C 71

By the (strict) monotonicity of v and (2.16), we have that A < V(wr2 ) - V(7 1) <
0. In this case, since w(T-) = H +A = w(T)+ A, we know that SW[(7r 2 , T)] =

SW[(7r2 , i)] - A > SW[(7r2 , m)]. This indicates that (7 2 , T) will never be a

possible outcome , giving a contradiction.

c. We have proved in Claim 2.12(c) that (T,T2-) is the only possible allocation in
this case, and therefore U(9, VCG(v(i*), w)) < KT (T) + w(T) - maxs w(S) <
K T (7r 2 ) + W(T) - maxs w(S) = KT (7r 2 ) + H - maxs w(S). (Here we used the

weak monotonicity of K T , i.e., KT (T) < KT (7r 2 ).)

We remark here that, in the case when Tj- = 0 or T2 = 0, the allocation might also
be (S, R) for some w(R) = 0, but one can check that the same conclusions still hold,
by our choice of H.)

Corollary 2.15. (2.14) is satisfied.

Proof. We recall that (2.13) tells us that v(7r2 ) - v(ri) < KT (w2 ) - K'(7i), but we

have v(7 2 ) - v(7r1) > A in (2.16). This tells us that KT (7 2 ) > K'(71) + A.

Now, for every j* E J,

U(O, VCG (v, w)) = K T (7r 2)+H-max w(S) > K'(7r1)+H+A-max w(S) > U(O, VCG (v(j*), w))
S s

while for every j V J,

U(O, VCG(v, w)) = K T (7r2 ) + H - max w(S) > U(0, VCG(v(U), i7))
S

The combination of them immediately implies (2.14) E

We recall that (2.14) gives a contradiction and says that v is an undominated
strategy, and this ends the proof of Lemma 2.11, for Case 1.

2.B.2 Case 2

Suppose that the second inequality of (2.15) does not hold, that is, v(S') > min{v(i)(S')}.

Similarly as in Case 1, we let J = arg min {(i)(S') } be the set of minimizers, and

let j* E J be one of them. We can always choose some A such that

v(S') > A > v()(S') , (2.18)

and for every j V J:

v)(S') >A . (2.19)

Now, consider the following witness player, with w(S) = H and w([M]) = H+A,
and w(S) = 0 everywhere else. Notice that unlike Case 1, A > 0 is always positive.
We also let H be sufficiently large when S' = 0. We choose H = 0 if Y = 0.
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Claim 2.16 (A variant of Claim 2.12). If S # 0,

a. The allocation of VCG(v,w) is w = (S', f)

b. For all j* E J, the allocation of VCG(v(i*), w) is w = (0, [M]).

c. For all j ' J, the allocation of VCG (v(i), w) is w = (T, 5), where T E arg maxTCS V ()(T)

(or a probabilistic distribution over them in case of ties).

Proof. For any candidate allocation (S, T) of the VCG mechanism when the second
player reports w, if T ' {S', [M]}, then SW[(S, T)] does not contain the big term H
and is thus smaller than any SW[w] in all three cases. Therefore, we only need to
consider outcomes of the form (S, ') and (0, [M]).

a. In this case, SW[w] = v(S') + H. If the allocation is of the form (S, S), by the
strict monotonicity of v, (S', 5) = w must be the allocation with the best social
welfare. If the allocation is (0, [M]) its social welfare SW[(O, [M])] = A + H <
v(S') + H = SW[w], using (2.18). In sum, w = (S', Y) must be the allocation
of the VCG mechanism.

b. In this case, SW[w] = H+A. For the allocation of the form (S, S'), SW[(S, S')] <
v(i)(S) + H < H + A = SW[w] (using (2.18)) is worse than the choice of Lc.

c. In this case, SW[w] = vW)(S') + H. For the allocation of (0, [M]), we have that

SW[(0, [M])] = H + A < v(i)(S') + H = SW[w] (using (2.19)) is worse than
the choice of w. For the allocation of the form (S, '), S must be a subset of
S' and therefore S E arg maxTCs, V(j)(T) as desired, since the VCG mechanism

is outputting an allocation with the maximum reported social welfare. In sum,
the allocation must be of the desired form.

E]
Claim 2.17 (A variant of Claim 2.13). When 5 = 0 (i.e., S' = [M]), Claim 2.16
only requires the following small changes:

at any time (T, S') is a possible allocation declared in Claim 2.16, (T, R) for
R C T is now also possible.19

Proof. Recall that, instead of choosing some sufficiently large H, we choose H = 0
in this case. The only place that we used H being sufficiently large, is where we
declare that the only possible candidate allocation for VCG(-, w) is of the form S, 5')
or (0, [M]). This is no longer true as we have to also consider (S, R) for R # S' or

[M]. However, since w(R) = 0, SW[(S, R)] = SW[(S, 0)] = SW[(S, 5')]. This means,
allocation (S, R) will be possible only if (S, 5) is possible. D

19As a consequence, Claim 2.16(b) still holds, but Claim 2.16(a) and Claim 2.16(c) need small
changes.
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Now, we have some knowledge about what outcomes could be outputted by the
VCG mechanism, on input (V, w) and on (V(), w). We now come to the final part that
is to show that (2.14) holds. We first compute the utilities in all three cases:

Claim 2.18 (A variant of Claim 2.14). If we choose 0(S) = KT (S) for everything
non-empty S:

a. U(0, VCG(v, w)) = KT (S') + H - maxs w(S),

b. U(0, VCG(v(j*), w)) = H + A - maxs w(S) for every j* c J, and

c. U(0, VCG(v( ), w)) < KT (S') + H - maxs w(S) for every j ' J.

Proof.

a. We have proved in Claim 2.16(a) that (S', ') is the only possible allocation in
this case, and therefore U(0,VCG(v, w)) = U(0, (S',S')) = K T (S') + w(S') -
maxs w(S) = KT (S') + H - maxsw(S).

(In the case when 5' = 0, the allocation might also be (S', R) for some w(R) -
0, and since we have chosen H = 0 this utility equation still holds.)

b. We have proved in Claim 2.16(b) that (0, [M]) is the only possible allocation
in this case, and therefore U(0, VCG(v(i*), w)) = 0 + w([M]) - maxs w(S) =
H + A - maxs w(S).

c. We have proved in Claim 2.16(c) that (T, S') is the only possible allocation in
this case, and therefore U(0,VCG(v(W),w)) < KT (T) + w(S) - maxs w(S) <
KT (S') + w(S') - maxs w(S) = KT (S') + H - maxs w(S).

(Here we used the weak monotonicity of K T, i.e., KT (T) < KT (S'). In the case
when ' = 0, the allocation might also be (T, R) for some w(R) = 0, and since
we have chosen H = 0 this utility equation still holds.)

Corollary 2.19. (2.14) is satisfied.

Proof. We recall that (2.11) and (2.18) tell us that A < v(S') < KT (S'). Now, for
every j* E J,

U(0, VCG (v, w)) = K T (S')+H-maxw(S) > H+A-maxw(S) = U(0,VCG(v(U*),w))S S

while for every j V J,

U(0, VCG(v, w)) = K T (S') + H - max w(S) > U(0, VCG(v(), w))S

The combination of them immediately implies (2.14)

We recall that (2.14) gives a contradiction and says that v is an undominated
strategy, and this ends the proof of Lemma 2.11, for Case 2.
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2.B.3 Case 3

Suppose that the second inequality of (2.15) does not hold, that is, v(S") < maxj{v(i)(S")}.

Similarly as in Cases 1 and 2, we let J = arg maxj {v i) (S") } be the set of maximizers,
and let j* E J be one of them. We can always choose some A such that

v(S") < A < v(i)(S") , (2.20)

and for every j 0 J:

V() (s"t) < A .(2.21)

Now, consider the following witness player, with w(S") = H and w([M]) = H+A,
and w(S) = 0 everywhere else. Notice that unlike Case 1, A > 0 is always positive.
We also let H be sufficiently large when S" f 0. We choose H = 0 if S" = 0.

Claim 2.20 (A variant of Claim 2.12). If 5" # 0,

a. The allocation of VCG(v, w) is w = (0, [M]).

b. For all j* G J, the allocation of VCG(v(i*),w) is w = (TI), where T G
arg maxTCs// Vlj)(T) (or a probabilistic distribution over them in case of ties).

c. For all j 0 J, the allocation of VCG(v(i), w) is w = (0, [M]).

Proof. For any candidate allocation (S, T) of the VCG mechanism when the second
player reports w, if T 0 {S", [M]}, then SW[(S, T)] does not contain the big term
H and is thus smaller than any SW[w] in all three cases. Therefore, we only need to
consider outcomes of the form (S, S") and (0, [M]).

a. In this case, SW[w] = H + A. If the allocation is of the form (S, S"), by
the strict monotonicity of v, (S", 5") = w must be the allocation with the
best social welfare. However, its social welfare SW[(S", 5")] = v(S") + H <
H + A = SW[w], using (2.20). In sum, (0, [M]) must be the allocation of the
VCG mechanism.

b. In this case, SW[w] = v )(Si)+ H. For the allocation of (0, [M]), we have that

SW[(0, [M])] = H + A < v i*)(Si) + H = SW[Lw] (using (2.20)) is worse than
the choice of w. For the allocation of the form (S, 5"), S must be a subset of S"
and therefore S E arg maxTcs" v(i*) (T) as desired, since the VCG mechanism is
outputting an allocation with the maximum reported social welfare. In sum,
the allocation must be of the desired form.

c. In this case, SW[w] = H+A. For the allocation of the form (S, S"), SW[(S, S")] <

v ()(S) + H < H + A = SW[w] (using (2.21)) is worse than the choice of w.

D]
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Claim 2.21 (A variant of Claim 2.13). When S" = 0 (i.e., S" = [M]), Claim 2.20
only requires the following small changes:

at any time (T, S") is a possible allocation declared in Claim 2.20, (T, R) for
R C T is now also possible.20

Proof. Recall that, instead of choosing some sufficiently large H, we choose H = 0 in
this case. The only place that we used H being sufficiently large, is where we declare
that the only possible candidate allocation for VCG(., w) is of the form (S, f") or
(0, [M]). This is no longer true as we have to also consider (S, R) for R / S" or [M].
However, since w(R) = 0, SW[(S, R)] = SW[(S, 0)] = SW[(S, S)]. This means,
allocation (S, R) will be possible only if (S, S") is possible. E

Now, we have some knowledge about what outcomes could be outputted by the
VCG mechanism, on input (v, w) and on (v(), w). We now come to the final part that
is to show that (2.14) holds. We first compute the utilities in all three cases:

Claim 2.22 (A variant of Claim 2.14). If we choose 0(S) = K'(S) for all non-empty
S:

a. U(0, VCG (v, w)) = H + A - maxs w(S),

b. U(0, VCG(v(*), w)) < H + K'(S") - maxs w(S) for every j* E J, and

c. U(0, VCG(v(j), w)) = A + H - maxs w(S) for every j ' J.

Proof.

a. We have proved in Claim 2.20(a) that (0, [M]) is the only possible allocation
in this case, and therefore U(0, VCG(v, w)) = U(0, (0, [M])) = 0 + w(S") -
maxs w(S) = H + A - maxs w(S).

b. We have proved in Claim 2.20(b) that (T, S") is the only possible allocation in
this case, and therefore U(0, VCG(v(j*), w)) < K'(T) + w(S") - maxs w(S) <
K'(S") + w(S") - maxsw(S) = K'(S") + H - maxsw(S).

(Here we used the weak monotonicity of K', i.e., K'(T) < K'(S"). In the case
when " 0, the allocation might also be (T, R) for some w(R) = 0, and since
we have chosen H = 0 this utility equation still holds.)

c. We have proved in Claim 2.20(c) that (0, [M]) is the only possible allocation
in this case, and therefore U(0, VCG(v(i), w)) = 0 + w([M]) - maxs w(S) =
H + A - maxs w(S).

20As a consequence, Claim 2.20(a) and Claim 2.20(c) still hold, but Claim 2.20(b) needs small
changes.
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Corollary 2.23. (2.14) is satisfied.

Proof. We recall that (2.12) and (2.20) tell us that A > v(S") > K'(S"). Now, for
every j* E J,

U(9, VCG(v, w)) = H+A-maxw(S) > H+K(S")-maxw(S) = U(9, VCG(v(*), w))S S
while for every j ' J,

U(6, VCG(v, w)) = H + A - max w(S) = U(O, VCG(vE), w))S

The combination of them immediately implies (2.14)

We recall that (2.14) gives a contradiction and says that v is an undominated
strategy, and this ends the proof of Lemma 2.11, for Case 3.

2.C Proof of Theorem 2.1b

Theorem 2.1b (restated). In a combinatorial Knightian auction with 2 players and
m goods, consider the VCG with any tie-breaking rule, then there exist products of
6-approximate candidate sets K = K 1 x K2 and profiles (v1 , v 2) G UD(K), such that

(best-case 9) V9 E K1 x K2 SW(0,VCG(vi, v 2 )) < MSW(O) - (2m+1 - 5)6
(2.22)

(worst-case 9) 30 E K1 x K2 SW(9, VCG(vi, v 2 )) < MSW(9) - (2m+1 - 3)6.
(2.23)

We prove the theorem in two steps.

Step 1 (Appendix 2.C.1). We construct a candidate hard instance for the VCG
mechanism, by specifying two candidate sets K1 and K2 and two corresponding
undominated strategies v, and v2 , for player 1 and player 2 respectively. To show
that indeed vi E UD 1(K1) and v 2 E UD 2(K2), we prove that our choices of v, and

v 2 do satisfy the requirements given in Lemma 2.11.

Step 2 (Appendix 2.C.2). We show that if player 1 has candidate set K1 and
reports vi, and player 2 has candidate set K2 and reports v 2 (while other players
report 0), the fraction of the maximum social welfare that is guaranteed is at most
the value stated in the theorem.

2.C.1 Construction of The Hard Instance

We construct two candidate sets K1 and K2 and two strategies v, and v2 where, for
i = 1, 2, Ki and vi together satisfy the hypothesis of Lemma 2.11; we deduce that for
our choices it holds that vi E UD 1(K1) and v2 E UD 2(K2). These choices form our
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70

SK,

* VI

K2

*02

x+(2'"-2)6

65

0

a1

S- - -

I I I I I I



candidate hard instance for the VCG mechanism. (We carry out the social welfare
analysis in Section 2.C.2.)

Fix any labeling 7r over all 2' - 1 non-empty subsets of [M] such that:

1. if i < j, then 7ri 2 7rj (i.e., ir is proper, cf. Definition 2.9);
2. 7ri = 7 2 m_ 1 _i; and
3. 7 2 m_ 1 = [M].

For instance, when m = 3 we can let 7r = ({1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}).
It is a simple exercise to prove that such a 7r exists for any m > 2.

Also fix any positive constant x (which should be thought of as a large constant).
We begin by choosing K1 and v, (depending on 7r and x), and showing that

vi C UD1(K1 ):

Claim 2.24. Choose:
* K1 to be such that K1Qjri) = [x - 6/2, x +62] for all i {1,...,2" - 1}.

9 v, to be such that v(7ri) = x + (i - 1)6 for all i E {1, ... ,2m _1

(See Figure 2-2(a).) Then v1 E UD1(K1 ).

Proof. It suffices to verify that the assumptions in Lemma 2.11 hold. Indeed, K' and
K' are both weakly monotone because they are constant; vi is strictly monotonic
since vi(7j) < v1(7ry) if i < j. If we choose S' = S" = wri, we definitely have
vi(S') = x < x + 6/2 = K' (S') and vi(S") = x > x - 6/2 = K'(S"). Finally, we are

left to verify (2.13), and we need a "witness labeling" for that. We simply choose 7r

to be this labeling for which we have:

ViE {1, ... ,2m - 2}, v(7ri) - v1(7ri+1) = -6 = K'(7rj) - K'(irj+1)

and for i = 2' - 1,

V1(7 2 m_1) - V1(7ri) > 0 > -6 = K (7r2m_ 1 )- K (ri)

This ends the proof that vi E UD 1 (K1 ).

Next, fixing any positive constant E (which should be thought of as a small con-
stant), we choose K2 and v 2 (depending on r, x, and E), and show that v 2 E UD 2 (K2 ):

Claim 2.25. Choose:

" K2 to be such that

K2 (7ri) = [(2i - 1)6 - E, 2i6 - E]

for all i C {1,... ,2m - 2}, and K 2 (7r2m_ 1) to be

K2(72m_1) = [x + 2(2m - 2)6 - E, x + (2(2mn - 2) + 1)6 - E].

* v 2 to be such that v 2 (7ri) = i6 - e for all i E {1,... , 2m - 2}, and V2 (72 m-1) =

X + (2m - 2)6 - E.

(See Figure 2-2(b).) Then v2 E UD 2(K2) owing to Lemma 2.11.
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Proof. First, for sufficiently small E, K' (7ri) and Kj (7r) are both positive. Once
again it suffices to verify that the assumptions in Lemma 2.11 hold. Indeed, K2, KI,
and v 2 are all strictly monotonic:

" K2 (-xi) < K2(7rj) for i <j,
* KI(ri) < K2(7rj) for i < j, and

* v 2(7ri) < v 2 (7rj) if i < j.
If we choose S' = S" = 7ri, we have v 2 (S') = 6 - E < 26 - E = K2(S') and v 2(S")
6 - E= K2(S"). We are left to verify (2.13), and we need a "witness labeling" for
that. We now choose the labeling that is the "reverse" of 7r, i.e., we let i = 7r2m-i;

for this choice of ir' we have:

" for 2 < i < 2' - 2 and let i = 2"m - I -- i E {1, 2, . .. ,2' -3}:

v2(7r ) - V2(7rl+1)= v2 (7rj+i) - v2 (7r) = 6

= ((2(j + 1) - 1)6 -E) - (2j6 - E)
= K'(7rj+l) - KT(7rj) = K'(7r ) - KT(7

" for i = 1:

v 2 (7r ) - v2(7r +1) = V2(7r2 m_1) - V 2 (7r 2 -- 2 ) = X

= K2(r 2 m_1) - K(72m- 2 ) =K2(7ir) -K2(7'+1)

* for i = - 1:

v2(r) - v2(7rii+) = v2 (7r1) - V2(7r2m_1)

- x - (2" - 3)6 > -x - (2(2" - 2))6

= K(7 1) - K2(w2-- 1 ) = K2(7Fr) - KT(7r'

This ends the proof that v2 E UD 2 (K2) owing to Lemma 2.11. D

2.C.2 Putting Things Together
Let the first two players respectively have candidate sets K1 and K2 and play the un-
dominated strategies v, and v 2 (from Claim 2.24 and Claim 2.25, and see also Figure 2-2);
let the rest of the players have valuation 0 and report 0 (which is an undominated
strategy for each such player).

We make the following observations:

* When the players report v (vi, v2, 0, ... , 0), the VCG mechanism will always

choose the allocation A = ([M], 0, ... ,0).

Indeed, the social welfare of A relative to v is

v 1 ([M]) = VI(7r2 m 1 ) = X + (2" - 2)6

On the other hand, for any allocation giving Trj # 0 to player 1 and 7r2 m_ 1 _- = i

to player 2, the social welfare relative to v is equal to

V(ri) + V2(7r2m_)= (x+(i-1)6)+(2 m-1-i)6-E=x+(2 m -2)6-E
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which is smaller than that achieved by A; furthermore, for any allocation giving
0 to player 1 and [M] to player 2, the social welfare relative to v is equal to

v2 ([M]) = V 2 (7r 2 m_ 1 ) = x + (2' - 2)6 - E

which again is also smaller than that achieved by A.

" Assume that we pick the true valuation 01 E K1 for player 1 to be such that
01(S) x for all non-empty S, and 02 E K 2 for player 2 to be such that

02 (S) = K2 (S). Of course, we can only choose 0i (S) = 0 for all other players
i > 2. (See Figure 2-2)

" The true social welfare on allocation A is 01([M]) = x.

" The maximum social welfare is instead the following:

MSW(0) > 0 2([M]) = K2(r2 m 1)= x + (2(2 m -2)-+-1)6-E

* Hence, the obtained social welfare compared to the maximum social welfare in
this case is

SW(0, VCG (v)) = x < MSW(0) - (2(2" - 2) + 1)6 + E

By choosing E > 0 sufficiently small, the social welfare guarantee of the VCG
mechanism is at most

MSW(0) - (2m+1 - 3)6

This finishes the proof of (2.23), the worst-case choice of 0 for Theorem 2.1b.
For the best-case choice of 0, we observe that for the same choice of v1 , v2 ,K1 , K2,

A:

" The true social welfare on allocation A is 01([M]) < x + 6/2.

" The maximum social welfare is instead the following:

MSW(0) > 02 ([M]) > K2(7 2 m 1) = x + 2(2" - 2)6 -E

" Hence, the obtained social welfare compared to the maximum social welfare in
this case is

SW(0, VCG(v)) < x + 6/2 < MSW(0) - 2(2" - 2)6 + 6/2 + E

By choosing E > 0 sufficiently small, the social welfare guarantee of the VCG
mechanism is at most

MSW(0) - (2m+1 - 5)6 .

This finishes the proof of (2.22), the best-case choice of 0 for Theorem 2.1b.
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2.D Theorem 2.2 with Mixed Strategies
In this section we prove an analogue of Theorem 2.2 for mixed strategies, as follows.

Theorem 2.2'. In a combinatorial Knightian auction with n players and m goods,
let the VCG mechanism break ties by preferring subsets with smaller cardinali-
ties.2 1 Then, for all 6, all products K of 6-approximate candidate sets, all profiles
0 E K, all profiles of mixed strategies o E RMr'(K), and all p > 1, we have with
probability at least 1 - 1/p over the choices of v from a-:

SW(0, VCG(v)) > MSW(0) - O(n2p) . 6

(This result can be tightened to O(n log n log(1/p) -6) either when (1) players are
restricted to consider only monotone valuations (i.e., 0i(S) < 02(T) for any S C T), or
when (2) players are studying RMr'(UD(K)) strategies, rather than just RMr'"(K).)

Before proving this theorem, we first illustrate why the result is very different
from that of Theorem 2.2.

2.D.1 Why Allowing Mixed Strategies Yields a Different Re-
sult

When a regret-minimizing player considers mixed strategies, he may significantly
deviate (in expectation) from his candidate set. (This stands in contrast to the pure-
strategy case, where he may deviate by at most 6; ef. Claim 2.8.) In fact, deviating
may happen even in a single-good auction.

An Example in a Single-Good Auction. Let i be a player with candidate set
Ki = [x, x + 6] in a single-good (Knightian) auction. One can carefully verify that
his minimum regret is at most , obtained by a mixed strategy of bidding uniformly
at random between x and x + 6. However, we state without proof that the following
mixed strategy a- also provides a regret of 6:

(drawn uniformly at random from [x, x + 61 w.p.;
X + t6, w.p. - ) where t E Z+.

(2.24)
Note that the expected bidding value E[o-i] = +oo is unbounded from above, and
one can similarly construct a strategy in which player i arbitrarily (in expectation)
underbids. This destroys the hope of using linearity of expectation to deduce the
mixed-strategy case as a corollary of the pure-strategy one.

However, any such deviation always satisfies the probabilistic guarantee Pr[o-i >
x + t6] < - for overbidding (and similarly, underbidding), resulting in the simple

-4t

conclusion that, with constant probability, none of the n players over/underbids by

2 11f giving subsets A or B C A to player i provides the same social welfare, then the VCG will
give B to player i.
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more than O(n6). The social welfare is therefore affected by at most O(n 26) in a
single-good auction. 22

A Harder Problem in Combinatorial Auctions. In combinatorial auctions
with m goods, each player reports 2m - 1 values on each of the 2m - 1 non-empty

subsets of [m]. Thus, a player may (in principle) choose to independently overbid or
underbid each of his 2' -1 coordinates, according to (2.24). If so, then, with constant
probability, he may choose to (a) overbid by O(2'6) on one of his coordinates, and
(b) underbid by O(2N6) on another.

This possibility complicates the analysis, because such a choice of strategy may
lead to a social welfare loss of 0(2m6 ). Interestingly, we show that (a) cannot happen,
but (b) can. However, when (b) happens, the social welfare is not going to be affected
much.

2.D.2 Proof of Theorem 2.2'

Proof. We begin by explicitly writing down the formulation of the (maximum) regret
in (2.4) for mixed strategies. Given a candidate set Ki of player i, and a possibly mixed
strategy o-i from which his bidding strategy vi is drawn, the (expected maximum)
regret of c-i for player i is

Ri(Ki, o-i) = ma max (MSW (O6, v-i) - E a [SW((j, vj), VCG (vi, vi))])

(2.25)

We also recall the following notations. For each player i, each candidate set
Ki c E8, and each subset T C [m], we let

Ki (T) Oi {(T)}Io, E, Kj' (T) = inf Ki (T),
KjT(T) - sup Ki (T), Kjni (T) = (Ki- (T) + KiT(T))/ 2.

For the same reason as Footnote 13 on page 53 in the main paper, we assume
without loss of generality that for each T, the minimum/maximum point in Ki(T)
exists. That is, K (T) E min Ki(T) and K7(T) = max Ki(T).

We first note that Claim 2.7 continues to hold: 23

Claim 2.7. Let vi be a strategy of player i such that vi(T) = Kr"I(T) for each non-
empty T C [M]. Then Ri(Ki,vi) < 6.

We now prove some properties about an arbitrary (possibly mixed) strategy -i of
player i with regret < 6.

Player Underbidding

22A more careful analysis leads to O(n log n . 6).
23 We note that when mixed strategies are allowed, one can find a strategy with regret 6/2, therefore

bidding the mid-points, having a regret 6, is no longer a regret-minimizing strategy. Since the
remaining proof of Theorem 2.2' only requires to know that 'the regret-minimizing strategy has a
regret O(6)', it suffices to analyze the mid-points, losing a constant factor of 2.
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We first show a variant of Claim 2.8a from the main paper. It is a probabilistic bound
on how a player i may underbid on each of his 2m - 1 coordinates:

Claim 2.26 (player underbidding). Let oi be a (possibly mixed) strategy of player i
such that Ri(Ki, o-) < 6. Then, for any non-empty subset T C [M], and any real
number t > 1,

Pr KT(T)
vi~ L max vi(T) > t <

T'CT t

Proof. Suppose the claim is not true. Then, there exists T such that

Pr i KiT(T ) - maxvi(T') > t - 6 > - .
vi~a VT' T t

We contradict our assumption on vi by showing Ri(Ki, o-) > 6.
To show Ri(Ki, O-i) > 6, as per (2.25), we must find some vj and some

MSW(Oi, vI) - E.,~s [SW((0j, vi), VCG (vi, vi))] > 6

Let j be an arbitrary player other than i. We choose 02 E Ki such that O4(T)
and vj as follows: for every S C [M]

H if S=T{H + (KT(T) - t - 6) if S = [M] and vk (S)=Ofor every)
0 otherwise

(2.26)

4 so that

(2.27)

=KT(T)

k V {i, j}.

Above, H is some huge real number (i.e., much bigger than vi(S) for any subset S).2 1

Recall that (2.26) tells us that, with probability more than ! over the choicet
of vi from Uj, the event K7(T) - maxTicT v2(T') > t - 6 occurs. Let us denote by
EVENT(Vi) this event, and it is not hard to verify that EVENT(Vi) implies that the

outcome VCG(vi, vo ) must allocate 0 to player i, and [M] to player j. Therefore,
with probability more than 1, we have

SW ((oj , vo ), VC G (vi, v-j)) = Oi (0) + v_j([m]) = H + KjT(T) - t -

On the other hand, MSW(0j, v-j) > 0i(T) + vj(T) = K7T(T) + H, and therefore

E 0,s [MSW ( , v-) - SW(( 2 , vo ), VCG(vi, vi))]

> Pr [EVENT(vi)] - Ev,, [MSW(0%, vj) - SW((0j, vi), VCG(vi, vi)) EVENT(vi)
vi-0 I

> - (Ki(T)+ H- (H + (K(T)-t-6)) =6

This proves (2.27) and concludes concludes the proof of Claim 2.26. ED
We remark here that the above proof matches our high level description in Appendix 2.D.1.

That is, since a player may have different valuations on all of his 2m - 1 coordinates,
2 4Notice that when T = [M] we have T = 0, and one cannot assign v3 (0) to be a nonzero number.

In that case, we can choose H = 0 and v3 remains well-defined, since we must have K7 (T) - t - 6 > 0
(as otherwise Kr(T) - maxT'Cr vi(T') > t -6 cannot hold, contradicting our assumption). The rest
of the proof still goes through.
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he may choose to independently underbid each of his 2' -1 coordinates according to
Claim 2.27 (which is tight, due to an example generalizing (2.24) to allow multiple
goods). If so, with constant probability (using union bound), he may underbid by
0(2 m6 ) on one of his 2m - 1 coordinates.

Could this large underbidding destroy the social welfare by O(2m6)? Our answer
is No (as we shall formally explain later) because, if, in the maximum social welfare
allocation, player i receives a subset Bi C [M] of the goods, all we need to learn
from the player's underbidding is: how much will player i underbid on coordinate Bi ?
Therefore, we do not care how much he underbids on other coordinates, and therefore
this 2 m factor does not show up in the social welfare loss.

Player Overbidding

The overbidding case is much harder. In fact, one can (essentially) show a similar
coordinate-wise argument as in Claim 2.26, and conclude that a player will overbid
on each of his coordinates by at most t - 6, with probability at most . Via a uniont.

bound, this implies that, with constant probability, he may overbid by O(2m6) on one
of his 2m - 1 coordinates. If this happens, unlike the underbidding case, the social
welfare performance will be very poor. The following example illustrates this point.

EXAMPLE. Consider a 2-player auction with m goods, where m is even. The first
player is only interested in the subsets of [m] that have cardinality m/2, and his
value for each such subset lies in the interval [x, x + 6]. The second player is only
interested in the set of all goods, [m], which he values precisely x+((4) - 1)6.
Notice that the maximum social welfare in this setting is x + (( 2 ) - 1)6. Also
notice that, in such an auction, at most one player 'wins'. That is, at most one
player can be allocated a subset of [m] which he positively values.

Now suppose that player 2 reports his true valuation, while player 1 overbids
as follows. Let t ). For each of the t subsets he is interested in, player
1 reports, independently and with probability 1/t, the value x + t - 6, and x
otherwise. (For each subset he is not interested in, player 1 reports 0.) Then,
with constant probability, player 1 reports x + t -6 on one of his coordinates, and
thus 'wins' the auction. Note that, when player 1 'wins', the social welfare is at
most x + 6 and misses the maximum social welfare by (t - 2) - 6 = f(2m 6).

Therefore, to prove a good social-welfare performance, it is not advisable to bound a
player's overbidding coordinate-wise. In fact, we prove the following claim, which is
significantly different from what we showed in Claim 2.8b for the pure case. The new
claim essentially bounds how a player i may overbid (on all coordinates) with respect
to a given mixed strategy sub-profile or-_ of his opponents. Since we will eventually
be interested in only one particular u-i -namely, the one when all players other
than i are playing regret-minimizing strategies- we do not need to pay for the extra
O(2m6) loss in the union bound.
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Claim 2.27 (player overbidding). Let og be a (possibly mixed) strategy of player i
such that Ri(Ki, c ) 6, o-_, an arbitrary (possibly mixed) strategy sub-profile of his

opponents, and 61 E Ki his possible true valuation. Then, for any real number t > 1,

Pr [vi (VCG(vi, v_i)) > Qi(VCG(vi, v_j)) + 4t - < . (2.28)

Proof. Suppose the claim is not true and there are choices of Uj, -_j, and 9%, such

that the above probability is strictly larger than . We denote by EVENT1 (Vi, vi)t.

the probabilistic event that vi(VCG(vi, vi)) > 6i(VCG (vi, vi)) + 4t - 6, and we want

to show that if Pr[EVENTI] > 1, then Ri(Ki, ua) > 6, contradicting our assumption

on c-2 . To achieve this, we lower bound (2.25) (using the same choice of 0i provided

in the assumption of this claim) by a probabilistic form:

Ri(Ki, oa) ;> E O* [MSW(0j, v* ) - Ev,~, [SW ((i, v* ), VCG(vi, v*))] . (2.29)

Now it suffices to choose a witness distribution -* j so that the right-hand side is

larger than 6.

We choose -* i as follows. It is reconstructed from the distribution o_- given in

the assumption, with every occurrence of vj ~ U-i replaced by v*i with the same

probability, where v* is defined as:

j ] (S) d, MSW(6i, v_j) + 2t - 6 if S = [M] Vj =,I i VS C [m] og(S .S .tewsvy (5) otherwise

Now assuming, by way of contradiction, that the desired regret term Ri(Ki, o7) <

6, which implies (using (2.25) for vj drawn from o-_j):

E [MSW(oi, v-,) - Ev,~r [SW((Oi, v--), VCG(v., v-i))] < Ri(Ki, o) 6 .

Using Markov bound, with probability at least 1/2t over the choices of vi ~ o- and

v_j ~ or-_, we have

MSW (0i, v-) - SW ((i, vi), VCG(vi, vi)) < 2t -6

We denote by EVENT 2 (Vi, v-i) the probabilistic event such that the above inequality is

true. From (2.28), we know that with probability strictly larger than 1/t -1/2t = 1/2t

we have that both EVENT, and EVENT 2 happen, and therefore

vi(VCG (vi, vi)) > Oi(VCG(vi, v-j)) + 4t -6 (using EVENT1 )

-=i v(VCG (vi, v-j)) + v_j (VCG (vi, v_j)) > Oi (VCG (vi, v-j)) + v_j (VCG (vi, v-j)) + 4V 6

-4 SW ((vi, vi), VCG (vi, vj) > SW ((i, vj), VCG(vi, vi)) + 4t - 6

-= MSW(vj, vj) > SW((62 , vi), VCG (vi, vi)) + 4t - 6

-- > MSW(vj, vj) > MSW(j, vj) + 2t - 6 (using EVENT 2 )

== MSW(vi, vj) > vj([M]) (Vj # i, using the definition of v* .)

The last strict inequality implies that the allocation under VCG(vi, vj) must be the

same as VCG(vi, v* ). This is because v* is only different from vj on the coordinates
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[M] for players j # i, but those coordinates only incur a smaller social welfare than

VCG(vi, vj) according to the last inequality above.

In sum, we have that MSW(0j, v*.j) > vj([M]) = MSW(6, vj) + 2t - 6; however,
under EVENT 1 A EVENT 2 , the obtained social welfare can be upper bounded as follows:

SW((i, v*>), VCG(vi, v* )) = SW((i, v*>), VCG (vi, vi)) = SW((Oi, vi), VCG(vi, vi))

< MSW(OZ, vj) < MSW(63, v* ) - 2t -6 .

Above, the first equality is because VCG(vi, vj) produces the same allocation as

VCG(vi, v* ); the second equality is because VCG(vi, v* ) never gives all the goods to

a player j f i; and the first inequality is because, by definition, the VCG maximizes

social welfare.

Now we go back to (2.29), and show that Ri(Ki, o-i) > 6:

Ri(Ki, au) ;> E vi [MSW(6-,va) - SW((Oi,v*j),VCG(vi,v*j))

> Pr [EVENT 1 A EVENT 2] X
V 2 -

E va MSW(Oi, v*) - SW((i, v*), VCG (vi, v*)) EVENT1 A EVENT 2

1
>- x 2t. 6 = 6

2t
The above conclusion contradicts our assumption that the regret of the mixed strategy

au is at most 6. This concludes the proof of the claim.

Putting It All Together

Now we go back to the proof of Theorem 2.2. Let a = (9i,... , n) E RMr'x(K)

be a profile of regret-minimizing mixed strategies, and let 6 E K be any valuation

profile. Since there exists a strategy with regret < 6 for each player (see Claim 2.7),
we must have Ri(K,, aj) < 6 to satisfy the assumption of Claim 2.26 and 2.27.

Now, letting (Bo, B1, ... , Bn) be the allocation that maximizes the social welfare

under 6, we are ready to compute the social welfare guarantee. For any choice of

v - a, let Xi denote the non-negative probabilistic variable equal to the difference

vi(VCG(v)) - 6i(VCG(v)); according to Claim 2.27, we have Pr[Xi > 4t0] < . Alsot.
let Y denote the non-negative probabilistic variable equal to the difference K7 (Bi) -

maxT/cB vi(T'), and, according to Claim 2.26 (for the choice of T = Bj), we have

Pr[Y > t6] < {
n n n

SW(6, VCG(v)) = ZOz(VCG(v)) = vi(VCG (v)) - Xi
i=1 i=1 i=1

n n

> max vi (T') - Xi (because the VCG maximizes social welfare under v)
T' C B

79



n n

= KI(Bi) - (X +Y)
i=1 i=1

n fl n

> Zo(Bi) - (Xi + Y) = MSW() - (Xi + Y).
i=z1 i=1 i=1

We are now left to bound ZL7_ 1 (Xi + Y). For any p > 1 and each choice of i E [n],
with probability at least 1 - we have that Xi < (8np)6, and, with probability at2np'

least 1 - g, Y < (2np)6. Using union bound, with a total probability of at least
1 - (over the choices of v from o-), we have Xi 5 (8np)6 and Y < (2np)6 for all
i E [n]. In such a case the above difference satisfies

SW(O, VCG (v)) > MSW(9) - O(n2p) . 6

This concludes the proof of Theorem 2.2'.
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Chapter 3

Bridging Utility Maximization and
Regret Minimization

We relate the strategy sets that a player ends up with after refining his own strategies
according to two very different models of rationality: namely, utility maximization
and regret minimization.

3.1 Introduction
Rational players have been modeled in two main ways.

" A utility-maximizing player U eliminates all his dominated strategies to compute
his set of undominated ones, UD. Notice that U cannot further refine UD based on
utility maximization. If UD consists of a single strategy s (necessarily a dominant
one), then U of course chooses s. But, if UD contains multiple strategies, which
one should U choose?

" A regret-minimizing player 2 eliminates all his non regret-minimizing strategies
so as to compute his set of regret-minimizing strategies, RM. He might even
continue this process k times, until he is satisfied or no further elimination is
possible. Let us denote the final set of strategies he obtains this way by RMk. If
RMk consists of a single strategy s, 1Z of course chooses s. But, if RMk contains
multiple strategies, which one should 2 choose?

In both cases, "a random strategy" or "the lexicographic first strategy" are certainly
possible answers. But another answer is that, when he is 'no longer able to apply
his favorite way of reasoning', even a die-hard utility maximizer U will resort to
regret minimization to refine UD, and even a die-hard regret minimizer 7Z will resort
to utility maximization to refine RMk. In principle, the two final sets of strategies
obtained by such different refinement procedures could be vastly different. Our next
structural theorem, however, guarantees that they coincide.

Abusing notation a bit, consider UD and RM also to be "operators" acting on
sets of strategies. In this case UD(UD) = UD, while RM2 % RM(RM) may be a strict
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subset of RM. Then, we prove that the set of strategies obtained after applying, in
arbitrary order, k times the operator RM and at least once the operator UD coincides
with RMk n UD. For instance,

RM(RM(UD(RM(RM(UD))))) = RM 4(UD) = RM4 n UD.

After recalling the relevant notions, we prove our theorem for pure strategies, and
then point out its simple but interesting implications for mechanism design. Finally,
we point out that our result extends to mixed strategies as well.

We recall that regret-minimizing strategies are also known as regret-minimax
strategies. The suggestion of adopting regret-minimizing strategies traces back to
Savage's reading [138] of the work of Wald [161], and has been axiomatized by
Milnor [1091. The notion of regret has been treated differently in different settings.
A unified axiomatic characterization of minimax regret has been recently given by
Stoye [155].

Many empirical studies compare utility maximizers and regret minimizers, see
for instance Chorus, Arentze and Timmermans [45], and Hensher, Greene and Cho-
rus [75]. Recently, Engelbrecht-Wiggans and Katok [59] and Filiz and Ozbay [62]
provide experimental evidence for regret in first- and second-price auctions.

To the best of our knowledge, we are the first to study players who use regret for
refining their sets of undominated strategies.

3.2 Basic Notions
To state and prove our result, we use the language of decision theory: namely, envis-
aging "a single player against Nature".'

Let S be a compact set of (pure) strategies of the player, and T a compact set
of states of Nature.2 We denote by U the (continuous) utility function of the player,
where U(s, t) is the utility under strategy s c S when Nature's state is t E T. Regret-
minimizing strategies and undominated strategies are defined as follows:

e Given a menu S C S of strategies, the player's (maximum) regret for a strategy
s E S in menu S, denoted by Rs(s), is the maximum difference, taken over all
possible Nature's states t E T, between the utility the player gets by playing s, and
that he could have gotten by "best responding" to t; formally,

Rs(s) = max (max U(s*, t) - U(s, t)).
tET S* ES

Therefore, the regret-minimizing strategies with respect to a menu S C S, denoted

'Results for n-player (strategic or pre-Bayesian) games follow as corollaries. This is because the
definitions of dominance and regret are universally quantified over other players' strategies, which
can be treated as Nature's strategies.

2 Both S and T may be infinite, and S may be convex in order to allow arbitrary mixed strategies
to be considered.
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by RM(S), is the set of strategies that minimize the regret:

RM(S) def arg min RS(s).
sGS

e Given two strategies s, s' E S, by definition s' weakly dominates s, denoted by
s' >- s, if

Vt E T, U(s', t) > U(s, t) and 3t E T, U(s', t) > U(s, t)

Given a menu S C S of strategies, the player's undominated strategies consist
of those that are not weakly dominated by any weakly undominated strategy. 3

Formally,

UD(S) S \ {s E S : 3s' E S s.t. (s' >- s) A (ps" E S, s" - s')}

= {s E S : s' E S s.t. (s' - s) A ( s" E S, s" >-s')}.

We now state two simple facts which easily follow from the above definitions:

Fact 3.1. For any menu S C S,
(a) if s -< s' for some s, s' E 5, then Rg(s) > Rg(s'), and
(b) the regret values of a strategy with respect to S and UD(S) are the same,

namely:4

R (s) = max (max U(s*, t)-U(s, t)) = max (max U(s*,t)-U(s,t)) RUD(5)(S)tET \ s*ES / ET \s*EUD(S )

Note that regret minimization is mostly studied when a player has beliefs about his
opponents. In particular, the notions from Hyafil and Boutilier [76] and Renou and
Schlag [134] coincide with ours when the players do not form beliefs about their
opponents -or, in our language, Nature.

3.3 Result
Established our language, we prove our theorem as a corollary of the following lemma.

Lemma 3.2. For any menu S C S, UD(RM(S)) = RM(UD(S)) = RM(S) n UD(S).

Proof. We divide the proof into six steps:

1. RM(UD(S)) C RM(S).

3In general, weakly undominated strategies do not coincide with undominated ones. As argued
by Jackson [79], it may happen that every pure strategy is weakly dominated by another one in an
infinite chain, and in such a case all strategies are undominated but weakly dominated. However,
in many cases of interest (e.g., when the set of pure strategies is finite, or when the mechanism is
bounded), weakly undominated strategies coincide with undominated ones.

4The equality in the middle is since any strategy s* E 5 \ UD(5) must be weakly dominated by
some s** C 5, giving at least as good utilities as s* for any t E T. Therefore, such choices of s**
can be ignored in the inner max.
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For any s E RM(UD(S)), we show that s E RM(S) by proving that s has minimum
regret among all strategies in S. Indeed:

" For any other strategy s' c UD(S), it holds that RUD(s)(s) < RUD(S)(s'). By
Fact 3.1b, we deduce that Rs(s) < Rs(s').

* For any other strategy s' E S \ UD(S), it holds that s' -< s" for some s" E
UD(S) and Rs(s) < Rs(s"). By Fact 3.1a, we deduce that Rs(s) < Rs(s") <
Rs(s').

2. RM(UD(S)) C UD(RM(S)).

Given that RM(UD(S)) C RM(S) (proved above), if there is some s E RM(UD(S))
with s ' UD(RM(S)), then s must be weakly dominated by some other strategy
s' E RM(S), namely s -< s', but s' cannot be weakly dominated by any other
strategy in RM(S), by definition of UD.

Now we show that s' cannot be weakly dominated by any strategy in S as well.
Suppose not, that is s' -< s" where s" E S. Then s" RM(S) as we have just
argued. However, using Fact 3.1a we have Rs(s') > Rs(s"), implying that s" E
RM(S) since s' E RM(S), giving a contradiction to s" V RM(S).

In sum, we showed that s is weakly dominated by s' E S, and in addition s' cannot
be weakly dominated by any strategy in S, contradicting the fact that s E UD(S).

3. UD(RM(S)) C UD(S).

Suppose not, that is, there exists some s C UD(RM(S)) that is not in UD(S). By
the definition of UD(S), the strategy s must be weakly dominated by some s' E S,
and in addition s' cannot be weakly dominated by any other strategy in S. There
are two cases here.

" The first case is when s' C RM(S). This case is impossible because s E
UD(RM(S)) implies that if s is weakly dominated by s' E RM(S), then s'
must also be weakly dominated, contradicting the fact that s' cannot be
weakly dominated by any strategy in S.

" The second case is when s' ' RM(S). Since s -< s', by Fact 3.1a we have
Rs(s) > Rs(s'). However, because s E UD(RM(S)) implies that s E RM(S),
it must hold that s' is a regret minimizer with respect to S, contradicting the
fact that s' V RM(S).

4. UD(RM(S)) C RM(UD(S)).

Given that UD(RM(S)) C UD(S) (proved above), consider any strategy s E
UD(RM(S)), and suppose that s V RM(UD(S)). Then there exists some s' C
UD(S) satisfying RUD(S)(s) > RUD(S)(s'). This implies, through Fact 3.1b, that
Rs(s) > Rs(s'), contradicting the fact that s C RM(S).
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5. RM(UD(S)) C RM(S) n UD(S).

Trivial given the previous steps: R M(U D(S)) C U D(S) and R M(U D(S)) = U D(R M(S))
RM(S).

6. RM(S) n UD(S) C RM(UD(S)).

Take any strategy s E RM(S) n UD(S), and suppose that s V RM(UD(S)). Then

there exists some s' E UD(S) satisfying RUD(S)(s) > RUD(S)(s-). This implies,
through Fact 3.1b, that RS(s) > Rs(s'), contradicting the fact that s E RM(S).

It is not hard to see that Lemma 3.2 implies our theorem. That is,

Theorem 3.3. From any menu S C S, the set of strategies obtained by applying, in

arbitrary order, i times the operator RM and at least once the operator UD, is:

RM(S) n UD(S) .

3.4 Implications for Mechanism Design
Mechanism design enables a social planner to generate a desirable outcome by lever-
aging the rationality (and the beliefs) of the players. Most works in mechanism
designs assume the players to be utility maximizers. In particular, implementation
in undominated strategies traces back to Jackson [79]. However, mechanism de-
sign also considers regret minimizers. In particular, Linhart and Radner [98] study
regret-minimizing strategies in a sealed-bid mechanism for bilateral bargaining under
complete information. Engelbrecht-Wiggans [58] and Selten [140] analyze first- and
second-price sealed-bid auctions by incorporating regret for the bidders. Halpern and
Pass [71] propose the solution concept of iterated regret minimization using beliefs,
and argue that it actually is the only one capable of explaining the actual behavior
of the players in some settings.

If a mechanism ensures that each player has a unique undominated strategy, then
that strategy is also dominant, and thus the only regret-minimizing one. However, it
is not always possible to design such mechanisms. The designer of a new mechanism
M may never be sure that M will be played solely by utility-maximizing players, nor
that it will be played solely by regret-minimizing players. In principle, if he designs
M so that it implements a social choice correspondence f in undominated strategies,
then M might produce a non desired outcome when one of the players is a regret
minimizer, and viceversa.

We wish to quickly point out that Theorem 3.3 has an immediate but reassuring
consequence for mechanism design.
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Assume that a mechanism M implements a social choice correspondence f
whenever each player chooses a strategy is a strategy subset that coincides ei-
ther with RM or with UD. Then M is automatically guaranteed to implement
f whenever each player chooses a strategy in his set RM(UD).

For instance, a mechanism implementing f for regret minimizers continues to imple-
ment f when the players are utility maximizers who resort to regret only for further
refining, if needed, their sets of undominated strategies.

3.5 Pure vs. Mixed Strategies
So far we have been ambiguous, when discussing undominated strategies and regret-
minimizing ones, about whether or not the players consider only pure strategies or also
mixed ones. When only pure strategies are allowed, a utility maximizer compares only
between his pure strategies for the notion of dominance and plays a pure undominated
one, while a regret minimizer picks a pure strategy that minimizes regret among his
pure strategies.

Our theorem and lemma are stated for pure strategies.
When mixed strategies are allowed, the definitions of UD and RM need more

careful attention. It is easy to see that, when considering mixed strategies for regret
minimizers, the only change needed is to allow such a minimizer to choose a mixed
strategy that minimizes his expected regret among all his mixed ones (see e.g., [76,
71]). Note that, it is easy to construct examples in which a mixed strategy yields
strictly smaller regret than any pure strategy.

It is important to realize, however, that if we allow regret minimizers to consider
mixed strategies, we should also allow utility maximizers to consider mixed strategies.
For instance, our structural lemma (Lemma 3.2) would have difficulty to equate a set
of pure strategies and a set of mixed ones. A utility maximizer may consider mixed
strategies when determining that a strategy s is weakly dominated by another strategy
s'. The two interesting cases to consider are (1) s is pure and s' is mixed; and (2)
both s and s' are mixed. Traditionally, most attention has been devoted to the first
case, but the second has been studied too (see for instance [48, 134]). Clearly, UD can
be defined in both cases, and yields a more "refined" set of strategies in the second
case.5 It is actually under this more refined case that our structural lemma holds. In
a sense, we have nothing to lose and something to gain by adopting a more flexible
definition, after all the right notions are those yielding the right theorems.

5Let UDPUre be the set of (pure) undominated strategies in the first case, and UD be the set of
(possibly mixed) undominated strategies in the second case. Then, UD is a more "refined" notion of
undominated strategies than UDP"'* because UDP"" C UD C A(UDpure), i.e., UDpure coincides with
the support of UD. For this reason, there is no difference in choosing between the two notions in
most of the literature (see [48, footnote 2]).
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Part II

Novel Frameworks for
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Chapter 4

Linear Coupling: An Ultimate
Unification of Gradient and Mirror
Descent

This chapter is based on the result published in [5], and its further edits
can be found at:

http: //arxiv. org/abs/1407. 1537.

First-order methods play a central role in large-scale convex optimization. Even
though many variations exist, each suited to a particular problem form, almost all
such methods fundamentally rely on two types of algorithmic steps and two corre-
sponding types of analysis: gradient-descent steps, which yield primal progress, and
mirror-descent steps, which yield dual progress. In this paper, we observe that the
performances of these two types of step are complementary, so that faster algorithms
can be designed by linearly coupling the two steps.

In particular, we obtain a simple accelerated gradient method for the class of
smooth convex optimization problems. The first such method was proposed by Nes-
terov back to 1983 [116, 117, 118], but to the best of our knowledge, the proof of the
fast convergence of accelerated gradient methods has not found a clear interpretation
and is still regarded by many as crucially relying on "algebraic tricks" [87]. We apply
our novel insights to construct a new accelerated gradient method as a natural linear
coupling of gradient descent and mirror descent and to write its proof of convergence
as a simple combination of the convergence analyses of the two underlying descent
steps.

We believe that the complementary view and the linear coupling technique in
this paper will prove very useful in the design of first-order methods as it allows us
to design fast algorithms in a conceptually easier way. For instance, our technique
greatly facilitates the recent breakthroughs in solving packing and covering linear
programs [7, 6].
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4.1 Introduction

The study of fast iterative methods for approximately solving linear programs and,
more generally, convex programming problems is a central focus of research in con-
vex optimization, with important applications in Machine Learning, Combinatorial
Optimizations and many other areas of Computer Science and Mathematics. The
crowning jewel of this field of research has been the development of interior point
methods, iterative methods that produce E-additive approximations to the optimum
with a small number of iterations and a logarithmic log ( ) dependence on the accu-
racy E.

The fast rate of convergence of interior point methods comes at the cost of more
expensive iterations, typically requiring the solution of a system of linear equations
in the input variables. As a consequence, the cost of each iteration typically grows
at least quadratically with the problem dimension, making interior point methods
impractical for very-large-scale convex programs where the problem dimension is on
the magnitude of millions or billions [27]. In such a regime, the methods of choice are
first-order algorithms. These are modeled as accessing the target convex-optimization
problem minxEQ f(x) in a black-box fashion: the algorithm queries a point y E Q at
every iteration and receives the pair (f (y), Vf (y)).1 The convergence of the algorithm
is measured in the number of queries necessary to produce a feasible solution which
achieves an additive E-approximation to the optimum.

Because of the restricted interaction with the input, first-order methods only re-
quire very cheap and often highly parallelizable iterations, which makes them well-
suited to massive optimization problems. At the same time, first-order methods often
require a number of iterations inversely polynomial to the accuracy E, i.e. exponen-
tially larger than required by interior-point algorithms.

Recently, first-order methods have experienced a renaissance in the design of fast
algorithms for fundamental combinatorial problems. In particular, gradient-descent
techniques play a crucial role in recent breakthroughs on the complexity of approx-
imate maximum flow problems [94, 150, 88, 104]. At the same time, multiplicative
weight updates, another first-order method and a cornerstone technique in online
learning, have become a standard tool in the design of fast algorithms and have been
applied with success to a variety of problems, including approximately solving linear
and semidefinite relaxations of fundamental combinatorial problems [131, 65, 9, 10]
as well as spectral algorithms for graph problems [46, 126].

Despite the myriad of applications, first-order methods with provable convergence
guarantees can be mostly classified as instantiations of two fundamental algorithmic

'Here, variable x is constrained to lie in a convex set Q C R', which is known as the constraint
set of the problem.
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ideas: gradient descent and the mirror descent.'

A method with provable guarantees must provide both a solution Lout and an
implicit or explicit certificate that x0 ut in the form of a lower bound on the optimum.
We refer to the task of constructing a solution Lout of small objective as the primal
side of the problem and to that of constructing a lower bound on the optimum as the
dual side.

We will argue that gradient descent takes a fundamentally primal approach, while
mirror descent follows a complementary dual approach. In our main result, we will
show how these two approaches blend in a natural manner to yield a new and simple
accelerated gradient method for smooth convex optimization problems.

4.1.1 Understanding First-Order Methods: Gradient Descent
and Mirror Descent

In this section, we provide high-level descriptions of the gradient-descent and the
mirror-descent algorithms and their analysis. While much of this material is classical
in the field of optimization, our intuitive presentation of these ideas forms the basis for
our main result. For a more detailed survey of gradient descent and mirror descent,
we recommend the textbooks [117, 27].

For the purpose of this section, we only consider the case of unconstrained mini-
mization (i.e. Q = Rn), but, as we will see in Section 4.2, the same intuition and a
similar analysis extend to the constrained case. In the following, we will also be using
generic dual norms || -|| and ||-||,. At a first reading, they can be both replaced with
the Euclidean norm 11 -|12-

Primal Approach: Gradient Descent for Smooth Convex Optimization

A natural approach to iterative optimization is to decrease the objective function as
much as possible at every iteration. To formalize the effectiveness of this idea, one
has to introduce an additional smoothness assumption on the objective function f(x);
specifically, this is achieved by considering the class of objectives that are L-smooth
(i.e., that have L-Lipschitz continuous gradient):

VX, y, ||Vf(x) - Vf(y)||* 5 L||x - yl

The smoothness condition immediately yields a global quadratic upper bound on the
function around a query point x:

Vy, f (y) f(x) (Vf (), y - X) + L-y - X2 (4.1)
2

2We emphasize here that these two terms are sometimes used ambiguosly in the literature; in this
paper, we attempt to stick as close as possible to the conventions of the Optimization community
and in particular in the textbooks [117, 27] with one exception: we extend the definition of gradient
descent to non-Euclidean norms in a natural way, following [88].
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The gradient-descent algorithm exploits this bound by taking a step that maximizes
the guaranteed objective decrease (i.e., the primal progress) f(Xk) - f(Xk+1) at every

iteration k. More precisely,

Xk+1 +- arg min { Y - kf112 + (Vf(x), y - Xk)}

Notice that here 1l 1l is a generic norm. When this is the Euclidean f 2-norm, the step
takes the familiar additive form Xk+1 = Xk - 'Vf(Xk). However, in other cases, e.g.,
for the non-Euclidean f, or f, norms, the update step will not follow the direction
of the gradient Vf(xk) (see for instance [118, 88]).

Under the smoothness assumption above, the magnitude of this primal progress
is at least

1
f(Xk) - f(Xk+1) -Vf(Xk) . (4.2)

2L
In general, this quantity will be larger when the gradient Vf(Xk) has large norm.

Inequality (4.2) ensures that at every iteration the objective value of the current
solution Xk decreases by at least 1 Vf( 1)2. The proof of convergence of gradient
descent is completed by using a basic convexity argument to relate f(Xk) - f(X*)
and ||Vf (Xk)11* (where x* is the minimizer of f(x)). The final bound shows that the

algorithm converges to an E-approximate solution in 0 ( ) iterations [117]. More
details on the gradient-descent algorithm and its analysis are given in Section 4.2.1
and in Nesterov's book [117].

In conclusion, it is useful to think of gradient descent as choosing query points in
a greedy way to ensure the largest possible primal progress at every iteration. The
limitation of this strategy is that it does not make any attempt to construct a good
lower bound to the optimum value, i.e., it essentially ignores the dual problem. In the
next subsection, we will see a method that takes the opposite approach by focusing

completely on the dual side. This method is suitable when there is no guarantee on

the smoothness of the objective.

Dual Approach: Mirror Descent for Nonsmooth Convex Optimization

In non-smooth convex optimization, we are given an upper bound p on the Lipschitz
constant of f (x), rather than Vf (x). When f is differentiable, this means that the gra-
dient could change arbitrarily fast, but its norm remains bounded, i.e., IIVf(x) I < p

for every x c Q. The possibility that the gradient varies quickly seriously undermines

the performance of gradient descent, which relies on making a certain amount of pri-
mal progress at every iteration. In this case, it is not possible to guarantee that an
update step of a predetermined length would result in an improved objective value,
as the gradient may be very large even at points very near the optimum. At the same
time, we cannot afford to take too small steps as this limits our rate of convergence.

Dual-averaging methods (see for instance [114, 119, 56, 163, 27]) bypass this obsta-
cle by tackling the dual problem of constructing a lower bound to the optimum. They
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interpret each queried gradient as a hyperplane lower bounding the objective function
f (x) and attempt to carefully construct a convex combination of these hyperplanes
that yields a stronger lower bound. Intuitively, the flatter the queried gradients are
(i.e. the smaller IIVf(Xk) I p is), the fewer iterations will be needed to combine
them into an approximately optimal solution.

Formally, at each iteration k, using the convexity of f(x), we can consider the
following lower bound implied by the gradient Vf(Xk):

Vu, f (u) > f(xk) + (f (Xk), u - Xk)

To get a stronger lower bound, we can form a linear combination of the lower bounds
given by all the queried gradients, and obtain3

Vu, f(u)> _ T- 1 f (xk) - _ ET- 1 (Vf (Xk), u - Xk) . (4.3)

On the upper bound side, we consider the point = E T_- Xk, i.e., the mean
of the queried points. By straightforward convexity argument, we have f(z) <

T Z =4 f(Xk). As a result, we can upper bound the distance between f(T) and

f(u) for any arbitrary u using (4.3):

Vu, f(t) - f(u) j Z _- (Vf(Xk),xk - u) V RT(u) . (4.4)

Borrowing terminology from online learning, the righthand side RT(u) is known as
the regret of the sequence (Xk)T_- with respect to point u.

Dual Averaging via Regularization: Mirror Descent. We are aware of two
main algorithmic instantiations of dual averaging: Nemirovski's mirror descent [114]
and Nesterov's dual averaging [119].4 Both these algorithm make use of a regularizer

w(.), also known as the distance-generating function (DGF), which is a strongly
convex function over Q with respect to some norm 11 - 11. The two methods are very
similar, differing only in how the constraint set is integrated in the update step [106].
In fact, they are exactly identical in the unconstrained case Q = R"n and, more
generally, when w(.) enjoys some nice properties (see Appendix 4.A.3). Below, we
focus on the unconstrained case.

Both algorithms consider a regularized version Rk of the regret in (4.4):
k-1

i=o

where a > 0 is a trade-off parameter. Notice that an upper bound on Rk(U) can
be simply converted into one for Rk(u) with an additive loss: Rk(u) Ru) -+

(u). Both Nemirovski's mirror descent and Nesterov's dual averaging attempt to

3For simplicity, we choose uniform weights here. For the purpose of proving convergence results,
the weights of individual hyperplanes are typically uniform or only dependent on k.

4 Several other update rules can be viewed as specializations or generalizations of the mentioned
instantiations. For instance, the follow-the-regularized-leader (FTRL) step is a generalization of
Nesterov's dual averaging step where the regularizers are allowed to be adaptively and incrementally
selected (see [107]).
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minimize the maximum regularized regret at the next iteration (i.e., max,, k+1(u)),

by choosing the next query point Xk to be the maximizer of the current regularized
regret (i.e., arg maxu &k()). It turns out that this choice of query point successfully
drives maxu Rk+1(u) down. In fact, the smaller the queried gradient Vf(Xk) is, the
smaller the new maximum regularized regret maxu Rk+1 (u) will be. In general, one
can show that:

max k+(u) < max Rk(u)+O( IVf(Xk)f). (4.5)
U k+1 Uk+1I

This bound can then be turned into a convergence proof requiring T = O(p2 2)
iterations.

We remark that the convergence argument sketched here crucially relies on the use
of the regularized regret (instead of the original regret). In particular, Inequality (4.5)
directly follows from a smoothness property of the maximum regularized regret with
respect to the addition of new gradient hyperplanes, which only holds when the
regularizer w(u) is strongly convex. For more details of this view of dual averaging
and the proof of (4.5), see Appendix 4.A.4.

This paper. In this paper, we adopt mirror descent as our dual algorithm of choice,
as it is more familiar to the Theoretical Computer Science audience. Indeed, the most
common instantiation of mirror descent is perhaps the multiplicative-weight-update
algorithm, which has become a standard tool in the design of algorithms [10] (see
Appendix 4.A.2 for this relationship). We describe the mirror descent step for the
constrained case and its analysis in Section 4.2.2. A great resource for an in-depth
description of mirror descent is the textbook by Ben-Tal and Nemirovski [27].

Remark: A Few Exceptions

One may occasionally find analyses that do not immediately fall into the above two
categories. To name a few, Dekel et al. [52] have applied dual averaging steps to a
smooth objective, and shown that the convergence rate is the same as that of gradient
descent. Shamir and Zhang [148] have studied non-smooth objectives and obtained
an algorithm that converges slightly slower than dual averaging, but has an error
guarantee on the last iterate, rather than the average history.

4.1.2 Our Conceptual Question

Following this high level description of gradient and mirror descent, it is useful to
pause and observe the complementary nature of the two procedures. Gradient descent
relies on primal progress, uses local steps and makes faster progress when the norms of
the queried gradients Vf(xk) are large. In contrast, mirror descent works by ensuring
dual progress, uses global steps and converges faster when the norms of the queried
gradients are small.

This interpretation immediately leads to the question that inspires our work:
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Can Gradient Descent and Mirror Descent be combined to obtain faster first-order
algorithms?

In this paper, we initiate the formal study of this key conceptual question. We
believe that the techniques and insights to answer this question have the potential to
lead to faster and better motivated algorithms for many more computational prob-
lems.

4.1.3 Accelerated Gradient Method From Linear Coupling

In the seminal work [116, 117], Nesterov has designed an accelerated gradient method
for the class of L-smooth functions with respect to f2 norms, and this method performs
quadratically faster than gradient descent -requiring Q(L/) 0 5 rather than Q(L/6)
iterations. This is also shown to be asymptotically tight [117]. Later in 2005, Nesterov
himself generalizes this method to allow non-Euclidean norms in the definition of
smoothness [118]. All these versions of methods are referred to as accelerated gradient
methods, or sometimes as Nesterov's accelerated methods.

Although accelerated gradient methods have been widely applied (to mention a
few, see [146, 147] for regularized optimizations, [121, 93] for composite optimization,
[120] for cubic regularization, [122] for universal method, and [94] for an application
on maxflow), little geometric explanation is known. For instance, Juditsky [87] has
mentioned that Nesterov's method "looks as an analytical trick."

In this paper, we provide a simple, alternative, but complete version of the
accelerated gradient method. Here, by 'complete' we mean our method works for
any norm, and for both the constrained and unconstrained case. This is in contrast
with the (perhaps better-known) version of Nesterov [117] that only works with the

e2 Euclidean norm.5

Instead of using the estimation sequence technique provided in the original proof of
Nesterov, we take a different path. Our key observation is to construct two sequences
of updates: one sequence of gradient steps and one sequence of mirror steps. Recall
that, according to the gradient-descent and mirror-descent analyses described above,
the gradient steps perform well whenever the observed gradients are large; the mirror
steps perform well whenever the observed gradients are small. Thus, intuitively, we
hope to couple these two steps together, and choose the better method 'adaptively'
according to the size of the gradient. We begin with a thought experiment.

Thought Experiment. Consider the case when the smooth property is with respect
to the 2-norm, and the objective f(x) is unconstrained. Suppose that ||Vf(x) 12, the

'Some authors have regarded the result in [117] as the 'momentum analysis' or 'momentum
method' [123, 156]. To the best of our knowledge, all the momentum analysis only applies to
Euclidean spaces. We point out the importance of allowing non-Euclidean norms in Appendix 4.A.1.
(Our proof also extends to the proximal version of first-order methods, but for simplicity, we choose
to include only the constrained version.)
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size of the observed gradient, is either always > K, or always < K, where the cut-off
value K is determined later. If ||Vf(x)1|2 is always > K, we perform T gradient

steps; otherwise we perform T mirror steps. Suppose in addition that we start with
some f(xo) whose distance to f(x*) is at most 2E, and we want to obtain some x so
that f(X) - f(x*) < E.6

If T gradient steps are conducted, in each step the objective decreases by at least
)2 > !L21 according to (4.2), and thus we only need to choose T > Q(jL) steps in2L 2LK

order to achieve an E accuracy. On the other hand, if T mirror steps are conducted,
we need T > Q( ) steps according to the mirror-descent convergence. In sum, in
this thought experiment, we need T > Q(max { , - }) steps to achieve a solution

E-close to the optimum.
Now, setting K to be the 'magic number' so that the two terms in the max function

equal, we obtain T > Qy1/2. This is a quadratic improvement over T > Q( ) from
the gradient descent.

Towards the Actual Proof. To turn this thought experiment into an actual
proof, we are facing the following obstacles. The gradient steps always decrease the
objective, while the mirror step may very often increase the objective, cancelling the
effect of the gradient steps. On the other hand, the mirror steps are only useful when
a large number of iterations are performed in a row, and the performance guarantee
is on the average of these iterations; if any primal step stands in the middle, this
guarantee is destroyed.

Therefore, it is natural to design an algorithm that, in every single iteration k,
performs both a gradient and a mirror step, and somehow ensure that the two steps
are coupled together. However, the following additional difficulty arises: if from some
starting point Xk, the gradient step instructs us to go to Yk, while the mirror step
instructs us to go to Zk, then how do we continue? Do we look at the gradient at

Vf(yk) or Vf(zk)? In particular, if ||Vf(yk)H2 is large, we can continue performing

gradient steps from Yk; or if ||Vf(zk) 12 is small, we can continue performing mirror

steps from Zk. However, what if Vf(yk)12 is small but ||Vf(zk)112 is large?

This problem is implicitly solved by Nesterov using the following simple idea7 : in
the k-th step, we can choose a linear combination Xk+1 - TZk + (1 - T)yk, and use
this same gradient Vf(xk+l) to continue the gradient and mirror steps. Whenever T

is carefully chosen (just like the 'magic number' K being selected), the two descent
sequences provide a coupled bound on the error guarantee, and we recover the method
of [118].

Finally, we point out that our method also recovers the strong convexity version
6
1t is worth noting that for first-order methods, the heaviest computation always happens in this

2e to e procedure.
7We wish to point out that Nesterov has phrased his method differently from ours, and little is

known on why this linear combination is needed from his proof, except for being used as an algebraic
trick to cancel specific terms.
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of [117], and therefore is a full proof to all existing versions of accelerated gradient
methods for smooth convex optimization problems.

4.1.4 Conclusion

We provide a simple variant of the accelerated gradient method with a reinterpretation
of its convergence analysis. Providing such an intuitive, yet formal interpretation has
been a long-open question in Optimization [87]. We believe that our interpretation
is one important step towards this general goal, and may facilitate the study of
accelerated gradient methods in a white-box manner, so as to apply them to problems
outside its original scope.

In addition, we believe that our complementary view of gradient descent and mir-
ror descent is a very fundamental (and to the best of our knowledge, new!) conceptual
message in the design of first-order methods. This has the potential to lead to faster
and better motivated algorithms for many more computational problems. Indeed,
we have already succeeded in this direction in our separate papers [7, 6], where we
have proposed faster nearly-linear-time algorithms for approximately solving positive
linear programs, both in parallel and in sequential.8

4.2 Preliminaries

4.2.1 Review of Primal Descent

Consider a function f(x) that is convex and differentiable on a closed convex set
Q C R,1 9 and assume that f is L-smooth (or has L-Lipschitz continuous gradient)
with respect to | |, that is

|Vf(x) - Vf(y)* < LJ|x - yHl, Vx, y E Q

where -, is the dual norm of I -. .0

Definition 4.1. For any x E Q, the gradient (descent) step (with step length -) is

= Grad(X) d arg miny(Q {||Y - X12 + (Vf(x),y - X)

8In our paper [7] (see Chapter 5), we have designed an iterative algorithm whose update steps can
be viewed both as gradient and as mirror steps, therefore allowing us to apply two complementary
analyses to support each other; this breaks the O(1/e4 ) barrier in the parallel packing/covering LP
solver running time since [101].

In our paper [6] (see Chapter 6), we have designed algorithms whose update steps can be viewed
as linear couplings of (the coordinates version of) gradient and mirror steps; this breaks the O(1/ 2 )
barrier in the sequential packing/covering LP solver running time since [24, 165, 25].

Neither of the two papers is any direct variant of accelerated gradient methods, and their objectives
are not even smooth.

9In most of the applications, Q is simple enough so that the gradient steps (and mirror steps
as well) can be computed explicitly and efficiently. For instance, one may use the positive orthant,
Q = {x E R' : x > 0}, the unit sphere, Q = {x E R" : HXH2= 1}, and many others.

1,Ogll. e max{( , X) : ||xJJ < 1}. For instance, fp norm is dual to eq norm if I + j 1.
p q
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and we let Prog(x) M -mineQ{y y - X22 + (Vf (x), y - X)} 0.

In particular, when = 112 is the f2 -norm and Q = R is unconstrained,

the gradient step can be simplified as Grad(x) = x - LVf(x). Or, slightly more

generally, when 11 - 11 = 11 - 112 is the f2-norm but Q may be constrained, we have

Grad(x) = x - 7!gQ(x) where gQ(x) is the gradient mapping of f at x (see [117,
Chapter 2.2.3]).

The classical theory on smooth convex programming gives rise to the follow-

ing lower bound on the amount of objective decrease (whose proof is provided in

Appendix 4.B for completeness).

Gradient Descent Guarantee

f(Grad(x)) < f(x) - Prog(x) (4.6)

1
or in the special case when Q = R' f(Grad(x)) < f(x) - 2LVf(x)H .2L

From the above descent guarantee, one can deduce the convergence rate of the

gradient descent steps. In particular, if 11 - || = 1| - 112 is the Euclidean norm, and the

gradient step Xk+1 = Grad(xk) is applied T times, we obtain the following convergence

guarantee (see [117, Chapter 2.1.5])

f(XT) - f(x*) O (LIIxoT x112) or equivalently

T Q(LIIxo f() - f( < E

Here, x* is any minimizer of f(x). If 1| - 11 is a general norm, but Q = Rn is un-

constrained, the above convergent rate becomes f(XT) - f(x*) < O (4T) , where

R = maxx-f(x)<f(xo) IX - x*||. We provide the proof of this later case in Appendix 4.B

because it is less known and we cannot find it in the optimization literature.

Note that, we are unaware of any universal convergence proof for both the general

norm and the unconstrained case. As we shall see later in Section 4.4, this convergence

rate can be improved by accelerated gradient methods, even for the general norm fl*
and the constrained case.

4.2.2 Review of Mirror Descent

Consider some function f(x) that is convex on a closed convex set Q C R", and

assume that f is p-Lipschitz continuous with respect to norm 1I 1I| that is

If () - f (y) pz - y11 , Vxy E Q .

Notice that this is equivalent to saying that f admits a subgradient Of(x) at every

point x c Q, and satisfies IIf(x)|1, < p for all x. (Recall that f(x) = Vf(x) if f is
differentiable.)

The mirror descent method requires one to choose a distance generating function.
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Definition 4.2. We say that w(x): R" -+ R is a distance generating function (DGF),
if w is 1-strongly convex with respect to |- |, or in symbols

1
w(y) w(x) + (Vw(x), y - X) + -Hx - y11 2 VX E Q \ aQ, Vy EQ .2

Accordingly, the Bregman divergence (or prox-term) is given as

V(y) w(y) - (Vw(x), y - X) - w(x) VX E Q \Q, Vy E Q

The property of DGF ensures that V(x) = 0 and V (y) > X - y 1|2 > 0.

Common examples of DGFs include (i) w(y) = 111yJ|2, which is strongly convex
with respect to the f2-norm over any convex set Q, and the corresponding V(y) =

- y 1 , and (ii) the entropy function w(y) = iyj log yi, which is strongly

convex with respect to the fi-norm over any Q - A N {x >0: lx - 1}, and the
corresponding V(y) = Ej yj log>(yI/i) > -11x - yl.

Definition 4.3. The mirror (descent) step with step length a can be described as

z = Mirrx(a -1f(x)) where Mirr() - arg min {V(y) + ( , y - x)}
yeQ

The core lemma of mirror descent is the following inequality. (Its proof can be
found in Appendix 4.B for completeness.)

Mirror Descent Guarantee

If Xk+1 = Mirrxk (a - f(Xk)), then

a2VU E Q, a (f(Xk) -f (U)) <_ Ce(W (k), Xk -U) < 1 f 08(Xk)||+o u -z1(U

(4.7)

The term (af(Xk), Xk -u) features prominently in online optimization (see for instance

the survey [143]), where it is known as the regret at iteration k with respect to u.12 It is
not hard to see that, after telescoping (4.7) for k = 0, ... , T-1, letting T ok
be the average of the Xk's, and letting x* be the minimizer of f(x), we have

cT(f(T) - f(x*)) < a Of (k),x -- X*) < af(Xk)| +Vx(X*) -VxT(X*)2*T
k=O k=O

(4.8)
Finally, letting E be any upper bound on Vx/, (x*), and a = be the step length,
inequality (4.7) ensures that

V20 -p 2__-_p
f (t) - f (x*) or equivalently T > 2 - f (t) - f (x*) < E . (4.9)

VT2
Notice that e = xo - X* 1 when is the Euclidean norm.

"One can in fact only require w to have subgradients at all x E Q \ OQ.
12The notion of regret is especially used in the language of multiplicative weight update methods,

which can be viewed as mirror descent, see Appendix 4.A.2.
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4.2.3 Remark

While their analyses share some similarities, mirror and gradient steps are often very
different. This is particularly true when working with non-Euclidean norms. For
example, if we consider an optimization problem over the simplex with underlying
norm f1-norm, the gradient step gives x' - arg min{-l|y - Xfl| -+ a(Vf(x), y - X)}
while the mirror step with entropy regularizer gives x' +- arg miny{Z yi log(yi/xi) +
a(Vf(x), y - x)}. We shall point out in Appendix 4.A.1 that non-Euclidean norms
are very important for certain applications.

In the special case of w(x) = II112 and 11 - 11 = 11 - 112, gradient and mirror steps

are indistinguishable from each other. However, as we have discussed earlier, these
two update rules are often equipped with very different convergence analyses, even if
they 'look the same'.

4.3 Warm-Up Accelerated Gradient Method with
Fixed Step Length

We adopt the same setting as in Section 4.2.1: that is, f (x) is convex and differentiable
on its domain Q, and is L-smooth with respect to some norm Il - |I. (Note that f(x)
may not have a good Lipschitz continuity parameter p, but we do not need such a
property.)

In this section, we focus on the unconstrained case of Q = R', and wish to
combine gradient descent and mirror descent to produce a very simple accelerated
method, which matches the running time of Nesterov's. We choose to explain this
method first because it avoids the mysterious choice of the step lengths in the full
accelerated gradient methods, and carries our conceptual message in a very clean way.

As argued in Section 4.1.3, it is desirable to design an algorithm that, in every
single step k, performs both a gradient and a mirror step, and ensures that the two
steps are linearly coupled. In particular, we consider the following steps: starting from

0 = Yo = zO, in each step k = 0, 1,..., T - 1, we first compute Xk+1 <- rZk+ (1 --r)yk

and then

" perform a gradient step Yk+1 +- Grad(Xk+l), and

" perform a mirror step Zk+1 <- Mirrzk (aVf (Xk+1)). 13

Above, a is the (fixed) step length of the mirror step, while T is the parameter
controlling our coupling. The choices of a and T will become clear at the end of this
section, but from a high level,

e a will be determined from the mirror-descent analysis, similar to that in (4.8),
and

13Here, the mirror step Mirr is defined by specifying any DGF w(-) that is 1-strongly convex over
Q.
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-r will be determined as the best parameter to balance the gradient and mirror
steps, similar to the 'magic number' K in our thought experiment discussed
in Section 4.1.3.

The classical gradient-descent and mirror-descent analyses immediately imply the
following

Lemma 4.4. For every u E Q = R',
X a211+V

a(Vf (Xk+l), Zk - u) < Vf (k+l) + Vzk(u) - Vz,1 (U)

< o2 L (f(Xk+1) - f(Yk+1)) + V2z,(U) - Vzk1(u) . (4.10)

Proof. To deduce (, we note that our mirror step Zk+1 = Mirrz,(aVf(Xk+l)) is es-

sentially identical to that of Xk+1 = Mirrxko(aVf(Xk)) in (4.7), with only changes of
variable names. Therefore, inequality ( is a simple copy-and-paste from (4.7) after

changing the variable names (see the proof of (4.7) for details). The second inequal-

ity @ is from the gradient step guarantee f(Xk+1) - f(Yk+1) ifVf(k+1)HJ in
(4.6). D

One can already see from the above Lemma 4.4 that, although the mirror step
introduces an error of 2 JVf(Xk+l) 11, this error is proportional to the amount of the

gradient step progress f(Xk+1) - f(Yk+1). To be clear, this captures the observation

we have stated in the introduction: if IlVf(Xk+1)1,1 is large, we can make a large
gradient step, or if IIVf(Xk+1)11* is small, the mirror step suffers from a small loss.

At this moment, if we choose T = 1 or equivalently Xk+1 = Zk, the left hand
side of inequality (4.10) gives us (Vf(Xk+1), Xk+1 - U), the regret at iteration Xk+1-
We therefore wish to telescope it for all choices of k in the spirit as mirror descent

(see (4.8)); however, we face the problem that the terms f(Xk+1) - f(Yk+1) do not

telescope. 14 On the other hand, if we choose T = 0 or equivalently Xk+1 = Yk, then

the terms f(Xk+1) - f(Yk+1) = f(Yk) - f(Yk+1) telescope, but the left hand side of

(4.10) is no longer the regret. 15

To overcome this issue, we need the linear coupling. We compute and upper bound
the difference between the left hand side of (4.10) and the real 'regret':

(Vf (Xk+l), Xk+1 - U) - a(Vf(Xk+l), Zk - u)

(1_-_____(1 - )a
- (Vf (Xk+1), Xk+1 - Zk) (Vf (Xk+l), Yk - Xk+1) Ta (f(Yk) - f(Xk+1))-

(4.11)

141n other words, although a gradient step may decrease the objective from f(xk+1) to f(yk+1),
it may also get the objective increased from f(Yk) to f(xk+1)-

"5 Indeed, our "thought experiment" in the introduction is conducted as if we both had Xk+1 = Zk
and Xk+1 = Yk, and therefore we could arrive at the desired (4.12) directly.
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Above, we have used the choice of Xk+1 that satisfies T(Xk+1-- Zk) - -r)(yk -Xk+1),
as well as the convexity of f(-).

It is now clear that by choosing 1= = aL and combining (4.10) and (4.11), we
immediately have

Lemma 4.5 (Coupling). Letting T C (0, 1) satisfy that i = aL, we have that

Vu EQ = Ri, a(Vf(Xk+1),Xk+1 - u) a 2L(f(yk) - f(yk+i) + (Vzk u) - Vzk+ -

It is clear from the above proof that T is introduced to precisely balance the objective
decrease f(Xk+l) - f(Yk+1), and the (possible) objective increase f(Yk) - f(xk+1)-

This is similar to the 'magic number' K discussed in the introduction.

Convergence Rate. Finally, we only need to telescope the inequality in Lemma 4.5
for k = 0,1, ... , T - 1. Letting t d 1 Z xandu= *,wehave

T-1

aT(f 2i--)f (x*)) < E a(Of(xXk), Xk -x*) < a2L(f (yo)- f (YT)) +Vo(x* ) -- V (x*)
k=O

(4.12)
Suppose that our initial point yo is of error at most d (i.e., f(yo) - f(x*) < d), and
V 0 (x*) < e, then (4.12) gives that

f(t) - f(x*) < I (aLd + e/a).

Choosing a = VO/Ld to be the value that balances the above two terms,1 6 we obtain
that f~t) - f(x*) < 27 . In other words,

in T = 4 LE/d steps, we can obtain some satisfying f(t) - f(x*) < d/2,

halving the distance to the optimum. If we restart this entire procedure a few number
of times, halving the distance for every run, then we obtain an E-approximate solution
in

T = O( Le/e + LE/2e + VLE/4E+-) =o (V LE/E)

iterations, matching the same guarantee of Nesterov's accelerated methods [116, 117,
118].

It is important to note here that a = 16/Ld increases as time goes (i.e., as d

goes down), and therefore T = 1 decreases as time goes. This lesson instructs us
that gradient steps should be given more weights than mirror steps, when it is closer
to the optimum.17

16We remark here that this is essentially the way to choose a in mirror descent, see (4.8).
17 One may find this counter-intuitive because when it is closer to the optimum, the observed

gradients will become smaller, and therefore mirror steps should perform well due to our conceptual
message in the introduction. This understanding is incorrect for two reasons. First, when it is
closer to the optimum, the threshold between 'large' and 'small' gradients also become smaller, so
one cannot rely only on mirror steps. Second, when it is closer to the optimum, mirror steps are
more 'unstable' and may increase the objective more (in comparison to the current distance to the
optimum), and thus should be given less weight.
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Algorithm 1 AGM(f, w, xo, T)

Input: f a differentiable and convex function on Q that is L-smooth with respect to

- ;
w the DGF function that is 1-strongly convex with respect to the same -

over Q;
xO some initial point; and T the number of iterations.

Output: YT such that f(YT) - f(x*) < T-

1: V(y) N w(y) - (Vw(x), y - x) - w(x).
2: yo -- xo, zo +-xo.

3: for k +- O to T - 1 do

4: ak+1 <k2, and Tk 1 2

5: Xk+1 k- kZk + (1 - Tkk-

6: Yk+1 +- Grad(xk+l) > = arg minYEQ {2|HY -Xk+1|1 2 + (Vf (xk+1), Y- xk+l)

7: Zk+1 <- Mirrzk (ak+lVf (xk+1))
= arg minzEQ {Vzk (z) + (ak+lVf (xk+1), z - Zk)}

8: end for
9: return YT.

Conclusion. Equipped with the basic knowledge of gradient descent and mirror

descent, the above proof is quite straightforward and also gives intuition to how the

two 'magic numbers' a and r are selected. We are unaware of any similar accelerated

gradient method that uses fixed step length like ours (when the objective is not known

to be strongly convex).

However, this simple algorithm has several caveats. First, the value a depends

on the knowledge of E; second, a good initial distance bound d has to be specified;

and third, the algorithm has to be restarted. In the next section, we choose a and T

differently between iterations, in order to extend the above analysis to allow Q to be

constrained, as well as overcome the mentioned caveats.

4.4 Final Accelerated Gradient Method with Vari-

able Step Lengths

In this section, we recover the main result of [118] in the unconstrained case, that is

Theorem 4.6. If f(x) is L-smooth with respect to |l - 1j on Q, and w(x) is 1-

strongly convex with respect to the same on Q, the algorithm AGM(f, w, xo, T)

in Algorithm 1 ensures
46L

f (YT) - f (x*) < T

Here, recall from Section 4.2.2 that E is any upper bound on VO(x*).
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We remark here that it is very important to allow the norm 11 - to be general, rather
than focusing on the f 2-norm as in [117]. See our discussion in Appendix 4.A.1.

This time, we start from xo = yo = zo, and in each step k = 0, 1, ... , T - 1, we
first compute k+i - TkZk + (1 - Tk)yk and then (as illustrated in Algorithm 1)

* perform a gradient step Yk+1 <- Grad(xk+l), and

* perform a mirror step Zk+1 - Mirrzk (ak+lVf(Xk+1))-

Here, ak+1 is the step length of the mirror descent and its choice will become clear at
the end of this section (and indeed increasing as time goes, similar to the warm-up
case). The value of rk is chosen as 1 comparing to kL+1 in the warm-up case,ak+1L kl

in order to capture the constrained case Q f R". Our eventual choice of ak+1 will
ensure that rk E (0, 1] for each k.

We state the counterpart of Lemma 4.4, whose proof can be found in Appendix 4.C:

Lemma 4.7. If Tk = , then it satisfies that for every u G Q,

ak+ (7f xk+l), Zk - u) < Ck+1LProg(Xk+1) Vzk(u) - Vzk1 (U)

2
< a'+1L(f(Xk+1) - f (Yk+1)) + Vzk(u) - Vk (U)

We state the counterpart of Lemma 4.5, whose proof is only slightly different from
Lemma 4.5 because we are using rk = 1 rather than T 1 and can be foundak 1L a1+1'

in Appendix 4.C:

Lemma 4.8 (Coupling). For any u E Q,
k+ 2 L)f(yk+l) - (C+1 L - ak+l) f (yk) + (Vkl (U) - VZk k+1f ()

Finally, we only need to set the sequence of ak so that a L ~a L - ak+1 as
well as Tk = 1/ak+1L E (0, 1]. For instance, we can let ak = k+i so that a2L

2+L - Ck+1 + 4L

Proof of Theorem 4.6. After telescoping Lemma 4.8 with k = 0, 1, . . . , T-1 we obtain
that

c2Lf(yT) + E _ 'f(yk) - (VZT (u) - VZO Ma) < ri akf(U)

By choosing u = x*, we notice that Zr_1 Ck = (+3), f(yk) f(x*), VZT(u) 0
and Vzo (x*) < 0. Therefore, we obtain

() 2 Lf(y) (T(T+3) _ 1) f (X*) +

which after simplification implies f(yT) f(X*) + .8L

Let us make two remarks.

e First, our accelerated method AGM is almost the same to that of Nesterov [118],
with the following (minor) differences: (1) we use mirror steps instead of dual
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averaging steps,' 8 (2) we allow arbitrary starting points x0 , and (3) we use

Tk = - rather than =
k+2 taTk+3

9 This method is very different from the (perhaps better-known) version of Nes-
terov [117], which is only applicable to the f 2 Euclidean case, and is known by
some authors as the 'momentum analysis' or 'momentum method' [123, 156].
To the best of our knowledge, the momentum analysis does not apply to non-
Euclidean spaces.

4.5 Strong Convexity Version of Accelerated Gra-
dient Method

When the objective f(-) is both o--strongly convex and L-smooth with respect to the
same norm 11 - |12, another version of accelerated gradient method exists and achieves
a log(1/E) convergence rate [117, Theorem 2.2.2]. We show in this section that,
our method AGM(f, w, xo, T) can be used to recover that strong-convexity accelerated
method in one of the two ways. Therefore, the gradient-mirror coupling interpretation
behind our paper still applies to the strong-convexity accelerated method.

One way to recover the strong-convexity accelerated method is to replace the use
of the mirror-descent analysis on the regret term by its strong-convexity counterpart
(also known as logarithmic-regret analysis, see for instance [73, 144]). This would
incur some different parameter choices on aZk and Tk, and results in an algorithm
similar to that of [117].

Another, but simpler way is to recursively apply Theorem 4.6. In light of the
definition of strong convexity and Theorem 4.6, we have

y -- x*< f(y) -- f(x* ) < 0I-x*||kL
22 IT- 2- T2,T 1k

In particular, in every T = To = V8L/o- iterations, we can halve the distance |YT -
x*112 < ilxo - x*112. If we repeatedly invoke AGM(f, w, .,TO) a sequence of f times,
each time feeding the initial vector x0 with the previous output yT., then in the last
run of the To iterations, we have

f(YTo) - f 4Iopx*I|kL = e - xo* - ~L

By choosing f = log ( EXO II2.), we conclude that

Corollary 4.9. If f (-) is both o-strongly convex and L-smooth with respect to ||2,

in a total of T = O(V . log (z' -II")) iterations, we can obtain some x such

that f(x) - f(x*) < E.

This is slightly better than the result O( log ( 2L -I')) in [117, Theorem 2.2.2].

8 We are unaware of the existence of this mirror-descent version of Nesterov's accelerated method
recorded anywhere.
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We remark here that O'Donoghue and Candes [123] have studied some heuristic
adaptive restarting techniques which suggest that the above (and other) restarting
version of the accelerated method practically outperforms the original method of
Nesterov.
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APPENDIX

4.A Several Remarks on First-Order Methods

4.A.1 Importance of Non-Euclidean Norms
Let us use a simple example to illustrate the importance of allowing arbitrary norms
in studying first-order methods.

Consider the saddle point problem of minGA,, maxyeAm yT Ax, where A is an m x n

matrix, An = {x E R" : x > 0 A lTX = I} is the unit simplex in Rn, and Am = {y E

R" : y > 0 A jTy = 1}. This problem is important to study because it captures
packing and covering linear programs that have wide applications in many areas of
computer science, see the discussion in [7] or Chapter 5 of this thesis.

Letting t = 2 , Nesterov [118] has shown that the following objective
2log m

j=1

when optimized over x E An, can yield an additive E/2 solution to the original saddle
point problem.

This f,(x) is proven to be 1 -smooth with respect to the f 1-norm over An, if all
the entries of A are between [-1, 1]. Instead, f,(x) is 1 -smooth with respect to the

f2-norm over An, only if the sum of squares of every row of A is at most 1. This

F2 condition is certainly stronger and less natural than the f, condition, and the f,
condition one leads to the fastest (approximate) width-dependent positive LP solver

(see the discussion in [7] or Chapter 5 of this thesis).
Different norm conditions also yield different gradient and mirror descent steps.

For instance, in the f 1-norm case, the gradient step is x' - arg minxIA, {R|x' -
xzl + a(Vf,(x), x' - x)}, and the mirror step is x' +- arg minxcA {Z z'X log i, +
a(Vf,(x), x' - x)}. In the f2-norm case, gradient and mirror steps are both of the
form x' - a { lx' - ||+ a(Vf(x), i' -- )}.
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One can find other applications as well in [118] for the use of non-Euclidean
norms, and an interesting example of E o-norm gradient descent for nearly-linear time
maximum flow in [88].

It is now important to note that, the methods in [116, 117] work only for the

f2-norm case, and it is not clear how the proof can be generalized to other norms
until [118]. Some other proofs (such as Fercoq and Richtairik [61]) only work for the

f2-norm because the mirror steps are described as (a scaled version of) gradient steps.

4.A.2 Multiplicative Weight Updates as Mirror Descent

The multiplicative weight update (MWU) method (see the survey of Arora, Hazan
and Kale [10]) is a simple method that has been repeatedly discovered in theory of
computation, machine learning, optimization, and game theory. The setting of this
method is the following.

Let An = {x E R' : x > 0 A LTX 1} be the unit simplex in R', and we call
any vector in A, an action. A player is going to play T actions 0,... , XT_1 E An
in a row; only after playing Xk, the player observes a loss vector 4k E R" that may
depend on Xk, and suffers from a loss value (4, Xk). The MWU method ensures that,
if 11411 5 p for all k E [T], then the player has an (adaptive) strategy to choose the
actions such that the average regret is bounded:

T-1 T-1

(Z (4, Xk) - min E(fk, U)) . (4.13)
T i= hand i=s ) (

The left hand side is called the average regret because it is the (average) difference
between the suffered loss EZ_ 1-(f , Xk), and the loss E_-1 (4, u) of the best action

U E An in hindsight. Another way to interpret (4.13) is to state that we can obtain
an average regret of E using T - O(p2 l"o ) rounds.

The above result can be proven directly using mirror descent. Letting w(x) def

Ex xi log xi be the entropy DGF over the simplex Q = A, and its corresponding
Bregman divergence V(x') _Z ' log X, we consider the following update rule.

Start from x0 = (1/n.... , 1/n), and update Xk+1 = Mirrxk (a4f), or equivalently,
Xk+1,i = Xk,i - exp-afk,i /Zk, where Zk > 0 is the normalization factor that equals to

Xk,i exp-afkti.1 9 Then, the mirror-descent guarantee (4.7) implies that 20

VU E An a (fk, k - U) < BJHekf + VXk~u W VXk+1(U)o2

After telescoping the above inequality for all k = 0, 1, . . . , T - 1, and using the upper

19 This version of the MWU is often known as the Hedge rule [65]. Another commonly used version
is to choose Xk+1, Xk,(-k,) Since e-t ~1 - t whenever Itl is small and our choice of a willis t chose k~li = Zk

make sure that Iafk,il < 1, this is essentially identical to the Hedge rule.
20 To be precise, we have replaced 09f(Xk) with fk. It is easy to see from the proof of (4.7) that

this loss vector f k does not need to come from the subgradient of some objective f(-).
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bounds IIf(Xk)Ilo < p and V 0(u) < log n, we obtain that for all u E A,

1 ap+ log n
T 2 aT

k=O

Setting a = we arrive at the desired average regret bound (4.13).

In sum, we have re-deduced the MWU method from mirror descent, and the above
proof is quite different from most of the classical analysis of MWU (e.g., [131, 65, 9,
10]). It can be generalized to solve the matrix version of MWU [126, 10], as well as to
incorporate the width-reduction technique [131, 10]. We ignore such extensions here
because they are outside the scope of this paper.

4.A.3 Partial Equivalence Between Mirror Descent and Dual
Averaging

In this section, we show the (folklore) equivalence between mirror descent and dual
averaging in two special cases: i) when Q = R' and w is a general regularizer, and
ii) when Q = {x > 0 : TX = 1} is the n-dimensional simplex and w is the entropy
regularizer. In fact, this equivalence holds more generally for all regularizers w(.) that
are convex function of Legendre type with domain Q (see for instance [22, 136]).

Letting j = aiVf(xi) be the observed (scaled) gradient at step i, the dual aver-
aging method can be described as

k-1

Vk E [T], Xk =argminjw(y)- (Ki,y-xi) . (4.14)
YEQ i=O

The mirror descent method (with starting point zo = arg minyeQ{w(y)}) can be
described as

Vk E [T], Xk = arg min V _,(Y) + (-1, y - 1 , (4.15)
yeQ

where as before, V2(y) E w(y) - (Vw(x), y - x) - w(x) is the Bregman divergence of

Unconstrained Case. If Q = R", by taking the derivative from (4.14), we obtain
that Vw(xk) = - Z9-Ol i. On the other hand, by taking the derivative from (4.15),
we obtain that

VVl,_(ik) = -- 1 '== Vw(J4) - Vw(4_1) -- -- 1

Combining this with the fact that Vw(zo) = 0, we conclude that Vw(zk) = -- Z-J i.
This finishes the proof of :4 = Xk in the unconstrained Q = Rn case, because the
solution x to Vw(x) = - 2jL J must be unique for a strongly convex function w(.).

Simplex Case. If Q = {x > 0 : lTX = 1} is the simplex, 11-,l = f-i is the f 1-norm,
w(x) = J xi log xi is the entropy regularizer, we can precisely compute according to
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(4.14) and (4.15) that for every iteration k and coordinate j E [n],

exp-=o an= k_1,j - exp-k~J
Zk=and kkj -k

where Zk and Zk are normalization constants that ensure 11 k ITzi = 1. It is a

simple exercise to verify that k = ik for every k.

4.A.4 Deducing the Mirror-Descent Guarantee via Gradient
Descent

In this section, we re-deduce the convergence rate of mirror descent from gradient de-
scent. In particular, we show that the dual averaging steps are equivalent to gradient
steps on the Fenchel dual of the regularized regret, and deduce the same convergence
bound as (4.9). (Similar proof can also be obtained for mirror steps but is notationally
more involved.)

Given a sequence of points O,... , X_1 E Q, the (scaled) regret with respect to
any point u E Q is R(xo, ... , 1i, u) _- O a (Of (xi), xi - u). Since it satisfies
that aT - (f(:t) - f(u)) < R(xo, .. . , XT_1, u), the average regret (after scaling) upper
bounds on the distance between any point f (u) and the average i = }(Xo+- - +. _1).
Consider now the regularized regret

T-1

R(xo,. . . , T_) l max Z a(f (xi), xi - u) - w (U) }
UEQ i=O

and we can rewrite it using the Fenchel dual w*(A) d maxueQ{(A, u) - w(u)} of w(.):
T-1 T-1

R(xo,.. . , T_1) = - a E f (Xi)) + a(Of(xi), Xi) .
i=O i=O

The classical theory of Fenchel duality tells us that w*(A) is 1-smooth with respect
to the dual norm 1 -, because w(.) is 1-strongly convex with respect to . -. We

also have Vw*(A) = argmaxuEQ{(A, u) - w(u)}. (See for instance [143].)

With enough notations introduced, let us now minimize R by intelligently selecting

, ... , _1. Perhaps a little counter-intuitively, we start from 0 = - - - = XT-1 =

* and accordingly 9f (x*) = 0 (if there are multiple subgradients at *, choose

the zero one). This corresponds to a regret value of zero and a regularized regret
N(x*, ... , *) = w*(0) = - minUEQ{w(u)}.

Next, we choose the values of o, ... , XT- one by one. We choose xo = arg minEQ{w(u)}
as the starting point.2 1 Suppose that the values of O,... , k_1 are already deter-

mined, and we are ready to pick k C Q. Let us compute the changes in the regular-

2 1Dual averaging steps typically demand the first point xo to be at the minimum of the regularizer
w(.), because that leads to the cleanest analysis. This can be relaxed to allow an arbitrary starting
point.
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ized regret as a function of xk:

k

w* ( - af (xi))
i=0

k-1

-W* - a : 19f (Xi) + Ce((9f (xk ), xk )
i=0

< KVw* ( - a Z f (xi)), -af (xk)) + a0f (xk) + a(Of (Xk), Xk) .

(4.16)

Here, the last inequality is because w*(a) - w*(b) < (Vw*(b), a - b) +i- lja-bl, owing
to the smoothness of w*(.). At this moment, it is clear to see that if one chooses

Xk = Vw* (

k-1

- a Z f (Xi))
i=0

- arg min
uCQ

{w(U)
k-1

+ a(Of (xi), U)
i=O

the first and third terms in (4.16) cancel out, and we obtain AN < a1f(xk) 2. 22 In

other words, the regularized regret increases by no more than 1af(xk) a22

in each step, so in the end we have R(xo,..., XT_1) -w(x 0 ) + a2 2T/2.

In sum, by the definition of the regularized regret, we have

T-1

aT - (f(T) - f(x*)) - w(x*) < 5 a(Of(Xi), xi - x*) - w(x*) R(xo, . . . , XT-1)
i=zO

a2 p2 T
< -w(x 0 ) + 2

This implies the following upper bound on the optimality of f(T)
2 1- 0 a 2 V '+p _W(xo) ap2 V 0(x*)

f( ) - f(x*) < + =_ +
2 aT 2 aT

ap2 E)
-2 aT

Finally, choosing a = to be the step length, we arrive at f(.T) -
which is the same convergence rate as (4.9).

f(x*) < v2p

4.B Missing Proof of Section 4.2

For the sake of completeness, we provide self-contained proofs of the mirror descent
and mirror descent guarantees in this section.

4.B.1 Missing Proof for Gradient Descent

22This essentially proves (4.5) in the introduction after scaling: AR = a(k + 1) max,, k+1(u) -
ak maxu Rk(U).
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Gradient Descent Guarantee

f (Grad(x)) <

or in the special case when Q = R"

f(x) - Prog(x)

f(Grad(x)) < f(x) - x)

Proof. 23 Letting i = Grad(x), we prove the first inequality by

Prog(x) = - min Lly - X112 + (Vf (X), y - X)-mm 2 = -112 + (Vf (X), _ X))

= f(x) - | - 2x|2 + (Vf(x), s - x) + f(x)) < f (x) - f

Here, the last inequality is a consequence of the smoothness assumption:
x, y EQ

f (y) - f (x) = 1 0 (Vf(x + 'r(y - x)), y - x)dT

= (Vf (x), y -x) +

S(Vf(x), y -x) +

/ 1 (Vf (x + T(y - x)) - Vf (x), y - x)dr

1 ||V111f (x + -r(y - x)) - Vf (x) 11* - | y - xjjdT

(Vf(x), y - x) + j TLly - xfl - fly - xjldTr
L
2

The second inequality follows because in the special case of Q = RE, we have

Prog(x) =mi f1y X112 + (Vf(X), y - X)
YEQ 12

= |lVf(x)1|
2L

Fact 4.10 (Gradient Descent Convergence). Let f(x) be a convex, differentiable func-
tion that is L-smooth with respect to || - || on Q = R', and x0 any initial point in Q.
Consider the sequence of T gradient steps Xk+1 +- Grad(xk), then the last point XT
satisfies that

LR2

f(xT)- f(x*) < O( T )
where R = maxx:f(x)<f(xo) fix - x*||, and x* is any minimizer of f.

Proof. 24 Recall that we have f(xk+1) f(xk) - -IVf(xk)11 from (4.6). Further-

more, by the convexity of f and Cauchy-Schwarz we have

f (xk) - f(x*) (Vf(xk), Xk - x*) IIVf(xk)* - Ik - x*| < R -|| Vf (xk)H,*

Letting Dk = f(xk) - f (x*) denote the distance to the optimum at iteration k, we now
obtain two relationships Dk - Dk+1 > N|Vf(xk)H| as well as Dk - Vf(xk) .

23 This proof can be found for instance in the textbook [117].
24 0ur proof follows almost directly from Nesterov [117], but he only uses the Euclidean e2 norm.
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Combining these two, we get

Di 2 2LR 2 (Dk - Dk+l) Dk < 2LR2
ak - DDk+1 Dk+1 Da

Noticing that Dk > Dk+1 because our objective only decreases at every round, we
obtain that 1 -L 2 1. Finally, we conclude that atDk 1 D 7k - 2R

T -, finishing the proof that -f(x* 2LR2

DT - 2LR2 ' h tha JXT) - (* <

4.B.2 Missing Proof for Mirror Descent

Mirror Descent Guarantee _
If Xk+1 = Mirrxk(a - Of(xXk)), then

2

round T, we must have

D

(4.7)

Proof. " we compute that

a(&f(xXk), Xk - U) - (aOf (Xk), Xk - Xk+1) + (aOf (Xk), Xk+1 - )

(af (Xk), xk - Xk+1) + (-VV, (xk+1), Xk+1 - U)

2 (acf (xk), Xk - Xk+1) + VXk(U) - VXk+1 (U) - Vx(xk+l)

((aef (xi), Xk - Xk+1) - Xk - Xk+11) 2 (Vxk(U) Xk+I

@ 92
< -||ff(x )\\ + (V,(a) -Vea1%

Here, 01 is due to the minimality of x,-i = arg min g{X (x)+ (aD f(xk), x) which
K -1 0 XEQ/kk J ikk, /ih ic

implies that (VVXk(xk+l) + c0f (Xk), u - Xk+1) > 0 for all u E Q. ® is due to the
triangle equality of Bregman divergence. 21 ( is because V(y) > _IIx - y11 2 by the
strong convexity of the DGF w(-). 4) is by Cauchy-Schwarz. 2

4.C Missing Proofs of Section 4.4
Lemma 4.7. If Tk - 1 , then it satisfies that for every u G Q,

ak+1 (Vf (Xk+1), Zk - a) < Zk+1LProg(xk+1) + Vzk(u) - Vzkl(

25This proof can be found for instance in the textbook [27].
26 That is,

VX, y ;> 0, (-VVX(y), y - U) = (Vw(X) - Vw(y), y - u)

= (w(u) - w(x) - (Vw(x), u - X)) - (w(u) - w(y) - (w(y), u - y)))

- (w(y) - w() - (Vw(X), y - x))

= VX (U) - VY (U) - VX (y) .

112
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Kk+IL(f(Xk+l) - f(Yk+1)) ( - Vzk+)

Proof. The second inequality Z is again from the gradient descent guarantee f (Xk+ 1)-

f(yk+1) Prog(Xk+l). To prove (, we first write down the key inequality of mirror-
descent analysis (whose proof is identical to that of (4.7))

ak+1(Vf(Xk+1), Zk - u) = (ak+1Vf(Xk+1), Zk - Zk+1) + Ok+1Vf(Xk+1), Zk+1 - U)

- (ak+lVf(Xk+1), Zk - Zk 1 + (-VVzk (zk+1), Zk+1 -

(ak+lVf (Xk+1), Zk - Zk+1) Vzk(U) - Vzk+1 Mn - VZk(Zk+1)

ek+lVf (Xk+1),z k - Zk+1) - 2HZk - k+1 + (Vzk(t) - VZk+i(U))

Here, 1 is due to the minimality of Zk+1 = arg minEQ{V V(z) + (ak+1Vf(Xk+l), Z),
which implies that (VVk (Zk+l)+ak+1Vf(k+), u - Zk+1) > 0 for all u E Q. Z is due

to the triangle equality of Bregman divergence (see Footnote 26 in Appendix 4.B). S
is because V (y) > }|HX - yH1 2 by the strong convexity of the w(.).

If one stops here and uses Cauchy-Shwartz (aCk+1Vf(Xk+1), Zk - Zk+1) -- fzk -

Zk+11 2  k jVf(Xk+1) 12, he will get the desired inequality in the special case of

Q =Ri1 , because Prog(Xk+l) = 1 Vf (Xk+ 1 ) from (4.6).

For the general unconstrained case, we need to use the special choice of Tk =

1/ak+,L follows. Letting v TkZk+1 + (1 - Tk)yk E Q so that Xk+1 - V = (TkZk + (1-
Tk)yk) - V = Tk(Zk - Zk+1), we have

1
(ak+1 Vf(Xk+l), k - )k+1 - Tk -X k+1 112

Tk2 k

k _LLV(k+) <k+1 +l-vk+--- vH2)

k+ L ( (Vf (Xk+ 1),+-) 2 +1 -V) 2 - +1LProg(Xk+1)

where the last inequality is from the definition of Prog(Xk+l)-

Lemma 4.8 (Coupling). For any u E Q,

(ak+ 1 L)f(yk+1) - k+ 1L - Ok+1)f(yk) + (Vzk+l(u) - Vzk (u)) ak+1(f u)

Proof. We deduce the following sequence of inequalities

a k+1 (f(Xk+1) - f(U))

< ak+1 (Vf(Xk+1), Xk+1 -U)

Cek+1 f(Xk+1) , Xk+1 - Zk) + ak+1 (Vf(Xk+1), zk - U)

- (Vf(xk+l), Yk - Xk 1) + ak+1Nf(Xk+1), Zk - U)
Tk

S-Tkk+ {((yk ) -~ f(xk+1) ~~ Gk+1 (f(k+1), Zk -- u)
Tk
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~~- (kf)k+1 (f(Yk) - f(Xk+1)) + +L(f (xk+l) - f (Yk+1)) + Vzk(U) - Vzkl(U)

k+ 1 L - ak+1) f (yk) - (k+ 1 Lf(yk+1) + ak+lf(Xk+1) + (Vzk(u) - Vzklu)

Here, ( uses the choice of Xk+1 that satisfies Tk(Xk+1 - Zk) - (1 - -rk)(Yk - xk+1); @
is by the convexity of f(-) and 1 - Tk > 0; ( uses Lemma 4.7; and @ uses the choice
of rk = 1/a'k+1L. L
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Chapter 5

Using Optimization to Solve

Positive LPs Faster in Parallel

This chapter is based on the result published in [7], and its further edits
can be found at:

http: //arxiv. org/abs/1407. 1925.

Positive linear programs (LP), also known as packing and covering linear pro-
grams, are an important class of problems that bridges computer science, operations
research, and optimization. Despite the consistent efforts on this problem, all known
nearly-linear-time algorithms require (e- 4 ) iterations to converge to 1 E approx-
imate solutions. This E-- dependence has not been improved since 1993, and limits
the performance of parallel implementations for such algorithms. Moreover, previous
algorithms and their analyses rely on update steps and convergence arguments that
are combinatorial in nature and do not seem to arise naturally from an optimization
viewpoint.

In this paper, we leverage new insights from optimization theory to construct
a novel algorithm that breaks the longstanding E barrier. Our algorithm has a
simple analysis and a clear motivation. Our work introduces a number of novel
techniques, such as the combined application of gradient descent and mirror descent,
and a truncated, smoothed version of the standard multiplicative weight update,
which may be of independent interest.

5.1 Introduction
Fractional packing and covering linear programs (LP) are described with non-negative
matrices, non-negative constraints, and non-negative variables. They are also known
as positive linear programs as originally studied by Luby and Nisan [101].

A generic packing LP takes the form max{cTx : Ax < b} where c E Rn , b E Rm,
and A E R" n ; similarly, a covering LP can be written as min{b"y : ATy c}, with
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the same requirements on A, b, and c. As in other works, we assume without loss of
generality that the LP is in its standard form: b = 1 and c = 1:1

Packing LP: maxx>o{x : Ax < t} , (5.1)

Covering LP: min>o{ITy : ATy > 1} . (5.2)

Since the two programs are dual to each other, we denote by OPT their shared optimal
value. We say that x is a (1 - E)-approximation for the packing LP if Ax < 1 and
lTx > (1 - E)OPT, and y a (1 + E)-approximation for the covering LP if ATy > 1
and 1 Ty < (1 + E)OPT.

Of course, it is possible to adopt the general Interior Point or Ellipsoid Methods to
obtain approximate solvers with a log(1/c) dependence on the number of iterations.
However, the computational cost of such algorithms is typically very high, as each
iteration requires the solution of a system of linear equations in ATA. As a conse-
quence, this approach is simply not suitable to the solution of large-scale problems.

To address this issue, researchers have developed iterative approximate solvers
that achieve a better dependence on the problem size at the cost of having a poly(l/E)
dependence on the approximation parameter E. These algorithms rely crucially on
the power of multiplicative weight update methods (see the survey by Arora, Hazan
and Kale [10]). Multiplicative weight update methods can be viewed as special cases
of the mirror descent method, a widely-used first-order method in optimization (see
for instance [5] or Chapter 4 for this relationship). Such methods achieve fast running
times by eschewing any structure in the problem and only accessing the instance in
a restricted, quick fashion through the computation of gradients of the objective.

As a result, iterative approximate solvers often require a larger number of itera-
tions, i.e., one that depends on poly(l/E), but each iteration consists only of a small
number of simple steps (such as matrix-vector multiplications or sorting operations)
and requires only nearly-linear work in N and O(log N) depth, even in the weak
EREW model of the Parallel Random Access Machine (PRAM).

Such fast approximate positive-LP solvers have been widely used in approximation
algorithms (e.g., MINSETCOVER [101], MAxSET, MAxDICUT, MAx-k-CSP [158],
bipartite matching), probabilistic checkable proofs [158], zero-sum matrix games [118],
scheduling [131], graph embedding [131], flow controls [24, 25], auction mechanisms [169],
wireless sensor networks [38], and many other areas. In addition, techniques developed
in this line of research have also inspired many other important results, most notably
regarding fast algorithms for multi-commodity flow problems [131, 63, 68, 103, 20].

Previous approximate solvers can be further divided into two classes.

'This can be achieved simply by scaling.
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Width-Dependent Solvers. These algorithms2 require a number of iterations that
is at least linearly dependent on p -OPT, where p is the largest entry, i.e. the width,
of matrix A. Since OPT > 1/p, this value p -OPT is at least 1. However, since OPT
can easily be as large as 1 or even more than n, the resulting running time is not
polynomial, but only pseudo-polynomial. In particular, positive LPs can be solved in

Q(P 2OPT2 1gm) iterations [131], or E2OPT2ogm) iterations using negative-width tech-

niques [10]. These algorithms strongly rely on multiplicative weight updates and only
require "oracle-access" to the matrix A.

When A is given explicitly like in this paper, the number of iterations can be
reduced to 0(pOPTIog, ) by deploying more advanced optimization tools such as Nes-

terov's accelerated gradient method [118], or Nemirovski's mirror prox method [113].
It is also worth noting that Bienstock and Iyengar [32] have converted this dependence
on pOPT into a more benign, yet linear dependence on n. More specifically, their it-
eration count is O(E-1/Kn log m) where K is the maximum number of non-zeros per
row of A. This is Q(E-6nVlog m) in the worst case.

Width-Independent Solvers. In this paper, we are interested in a second, more
efficient class of methods, i.e. width-independent,3 truly polynomial-time approximate
solvers (see Table 5.1).

This line of research was initiated by a seminal paper of Luby and Nisan [101],
who were able to remove the dependence from the width and give an algorithm
running in 0 (oE4N) iterations. Theirs is the first nearly-linear-time approximate
solver for positive LPs and also the first to run in parallel in nearly-linear-work and
polylogarithmic depth. This algorithm was later simplified and made explicit for
parallelization by Bartal, Byers and Raz [24], improved to allow mixed packing and
covering by Young [165], and generalized by Awerbuch and Khandekar [17] to the
computational model where processors are restricted to be 'stateless'. These solvers
are parallelizable because they only require 0(polylog(N)/e 0 (1)) iterations to converge
to 1 E approximate solutions. They are nearly-linear time because each iteration
runs in nearly-linear time.

A separate line of work starting from Bartal, Byers and Raz [24, 25] eschews the
parallelization constraint to design sequential width-independent solvers with a better
E dependence. At high level, these algorithms modify the candidate LP solutions

2Note that most width-dependent solvers are studied under the minmax form of positive LPs:

mm max yT Ax

T=l 1 T=1

whose optimal value equals 1/OPT. Their approximation guarantees are often written in terms
of the additive error. We have translated their performances to the multiplicative error for a fair
comparison.

3 Some of these solvers may still have a polylog(p) dependence. Since each occurrence of log(p)
can typically be replaced with log(nm) after slightly modifying the instance matrix A, we have done
so in Table 5.1 for a fair comparisons.
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Table 5.1:
LPs.

Comparisons among width-independent approximate solvers for positive

aFor most parallelizable solvers, an iteration is dominated by a matrix-vector multiplicative that
can be implemented in O(N) total work. However, an iteration of Luby-Nisan is more complicated,
and to the best of our knowledge, we only know how to implement it in 0(nrm) or O(N log n) total
work, rather than O(N).

bd is the maximum number of constraints each variable is in; md may be larger than N.

coordinate by coordinate and therefore require at least a linear number of iterations

to converge. For instance, the algorithm of Koufogiannakis and Young [92] runs

in nearly-linear total time O(N + logN x (n + m)), but requires Q(lo0N(n + m))

iterations to converge to 1 E approximate solutions. In contrast, as we shall discuss

later in Section 5.1.1, parallelizable solvers modify all coordinates of the candidate

LP solution at once per iteration, thus converging in a much smaller polylogarithmic

number of iterations. For this reason, the design of parallelizable solvers faces different

technical challenges from that of sequential ones, because the update rules are much

more restrictive. We have summarized prior results on sequential solvers in Table 5.1.

To sum up, despite the amount of work in this area, the 0( E N)-iteration-count

has not been improved since the original paper of Luby and Nisan. This lack of

progress constitutes a significant limitation, as the E- 4 -dependence on the approxi-

mation parameter E is particularly pour. The question of how to go beyond E- has

been raised by Young [165] and remained open until now. In this paper, we give

an answer to this question and provide a brief empirical evaluation supporting the

idea that the performance gains achieved by our algorithm in the worst-case actually

translate into practice.
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Number of
Problem Paper Total Work Nter of Notes

Iterations'

log 2 N lo 4p/c LP [101] .4 x (N log n) 4 N

p/c LP [24. 25] log3 N x N g
3 N

E4 E4

p/c LP [165] log N x N 4N mixed p/c

p/c LP [17] log4 N x N log 4 N stateless
E5 6

5

p/c LP [this paper] log2 N x N log 2 N semi-stateless

p/c LP [165] '092N x (md + N) l 2N x (n + m) not parallelizable

p/c LP [166] 2N x N 2N x (n + m) not parallelizable

p/c LP [92] logN x (n + m) + N x (n + m) not parallelizable

p LP [6] log E N logE x n not parallelizable

c LP [6] 1gN5oe 1 x N 1gN5oE 1 x n not parallelizable



5.1.1 Our Results

In this paper, we present an algorithm PosLPSolver(A, E) that runs only in E( 3(nm/e)

iterations, and each iteration consists mostly of a matrix-vector multiplication so can
be implemented in O(log N) parallel depth. This is a total work of 0( (nm/e) -N).
(See a full comparison between our and previous results in Table 5.1.) Besides being
the fastest parallel algorithm for solving positive LPs to date, our method also is
surprisingly simple and enjoys a 'semi-stateless' property, i.e. is stateless except for
requiring a global clock (see Appendix 5.B).

Our algorithms works by optimizing a relaxation of the original packing LP (see
Definition 5.1), where the hard constraint Ax < 1 is replaced by an exponential
penalty function for violating the constraint.4 This initial step ensures that our
candidate iterative solutions remain approximately feasible throughout the evolution
of the algorithm. It also leads us to optimize our modified objective by updating our
current iterate x(k) using gradient information. This is done by computing a feedback
vector v so that v2 E Z= 1 Aj -expi((Ax)i1) -1 E [-1, oc) for each variable i E [n],
and performing a multiplicative update xi <- xi - exp-a*T(i) . Here, our thresholding
function T(v) = v for v E [-1, 1] \ [-E, E], T(v) = 0 for v E [-E, E], and T (v) = 1 for
v > 1; and a - 7 is some fixed constant.

4

Our Techniques. Our result fundamentally differs from all previous width-independent
solvers both in the algorithm specification and in its analysis. Like previous works,
we also update the coordinates of x simultaneously and multiplicatively. However,
previous methods treat all relevant coordinates alike, multiplying each of them either
by 1 + a or 1 - a, for some fixed constant a. Instead, our use of the feedback vector
v (along with the thresholding function) allows us to update the coordinates by a
factor between e"' _ 1 a and e r 1 ea. This discriminative multiplicative
update rule is a key step in overcoming the I/E4 barrier.

More importantly, our work introduces a completely novel way of analyzing the
performance of our algorithm. More specifically, previous methods [101, 24, 165, 68]
fall into the following framework: the method is divided into Q(-) phases, with
each phase having a different parameter setting. Each phase itself consists of Q(y)
iterations. This immediately prevents their analyses from breaking the - barrier'.

In contrast, we interpret the packing LP problem as a purely optimization ques-
tion, i.e., to minimize f(x) for some convex function f. Next, in each iteration of the
algorithm, we interpret the feedback vector v as the gradient Vf(x) E [-1, ,)", and
divide it into two components, the large component 1 E [0, oo)n and the small (and
truncated) component E [-1, 1]n, satisfying Vf(x) _ q + . The key observation
now is to interpret our update xi <- xi - exp-T(2) as performing two different kind

4This standard technique in optimization is used explicitly in [17] and implicitly in [101] and [165].
5Although the algorithm in [17] does not explicitly require phases, its convergence analysis divides

the iterations into Q( 1og N) phases each with Q( 1o' N) iterations.
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of steps at the same time:

* a "gradient descent"6 step (on T/), to ensure that f(x) decreases by a large
amount at each step; and

" a mirror descent step (on ), to ensures that the average regret of the history
of the steps is small.

Both gradient and mirror descent are well-known tools from optimization (see for
instance [117, 27] and, for starters, mirror descent is a generalization of multiplica-
tive weight updates). This 'duality' view allows us to combine the analysis of both
gradient and mirror descent for a faster algorithm, and is the key to bypass the com-
binatorial/phaseful analysis used by all previous results. More generally, the same
authors of this paper observed that gradient and mirror descent have complementary
performances, and coupling these two methods often leads to better running times [5]

(see also Chapter 4).
We develop two more techniques that may be of independent interests, one for

the gradient descent analysis and one for the mirror descent analysis. In our gradient
descent view, since f(x) does not satisfy any Lipschitz gradient property, the classical
convergence analysis of gradient descent (see [117]) no longer applies.7 Instead, we
adopt a multiplicative Lipschitz gradient property: if each coordinate of x changes
multiplicatively by a little, the gradient does not change too much multiplicatively as
well. This property enables us to produce a promise on the decrease of the objective
f(x) in each step.

In our mirror descent analysis, we have developed a gradient truncation technique
that removes large components from the gradient, delegating their contribution to
the gradient desccnt analysis. This effectively reduces the width experienced by our
mirror descent algorithm.

Finally, we emphasize that our optimization view for solving positive LPs should
be seen as yet another example on designing combinatorial algorithms based on in-
sights from optimization. Before our work, the updates on x are maximally aggressive,
since they arise naturally from a combinatorial approach to the solution of the origi-
nal LP program. In our algorithm, we have smoothed out the updates on x so that,
for coordinates whose absolute feedbacks lvi are small, we perform less aggressive
steps. While one may find such intuition very legitimate, without the optimization
interpretation behind it, it is very hard to analyze the resulting algorithm or even
to find the right step length. For instance, the algorithm of [17] is similar to ours

6It is important to note here that we have generalized the notion of "gradient descent" to indicate
any descent step that is guaranteed to decrease the objective. This is in contrast to mirror descent,
that does not necessarily decrease the objective at each iteration.

7The Lipschitz gradient property (also known as Lipschitz smooth property in the literature)
says that ||Vf(Xi) - Vf(x 2 ) < L. |x1 - X21 for some constant L and some special choice of norm.
If one forces f(x) to satisfy this property, the algorithm falls into the category of [118] and becomes
width-dependent.
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in terms of the updates on x. However, the simple difference between the choices of
step length makes our algorithm faster than theirs, log2 N/E3 vs. log 4 N/E5 . More-

over, our step lengths are in fact less aggressive than theirs in terms of decreasing the
objective f(x). We also provide an empirical evaluation in Appendix 5.A to support
this comparison.

The Stateless Feature. Some parallelizable algorithms enjoy a desirable stateless
feature. Informally, this feature requires that the updates of each processor only de-
pend on the current feedback, and not on the history or on any global variable. The
only known stateless solver for positive LPs is due to Awerbuch and Khandekar [17],
but their method is much slower than that of Luby and Nisan (see Table 5.1). State-
less algorithms enjoy a number of features (P1) self-stabilization, (P2) robustness
against incremental adjustments, and (P3) no global clock. We point out that our
algorithm is 'semi-stateless' (introduced in Appendix 5.B): that is, it exhibits prop-
erties (P1) and (P2). Unfortunately, our current proof technique requires the use
of a global clock for the parallelized algorithm. Instead, [17] only requires that the
desired number of iterations are performed synchronously with the global clock, while
between consecutive iterations each processor can run on its own arbitrarily without
synchronization.

5.1.2 Roadmap
We transfer the positive LP problem into an optimization question in Section 5.2,
provide our packing LP solver in Section 5.3, and turn the same algorithm into a
covering LP solver in Section 5.4. We also provide a brief empirical evaluation com-
paring the performance of our algorithm against previous ones in Appendix 5.A. We
defer the argument of the semi-statelessness of our LP solver to Appendix 5.B. Some
missing proofs are included in the appendix.

5.2 Smoothing the Positive LP Objective
In this section we introduce the smoothed objective fl,(x) that we are going to min-
imize in order to approximately solve the packing LP, by turning each row of the
LP constraint Ax < 1 into an exponential penalty function so that we only need to
require x > 0 throughout the algorithm.

Let x* be any optimal solution of the packing LP (5.1). Throughout this paper,
we use indices i E [n] for the columns of A, and j E [m] for the rows of A. We denote
by AQi the i-th column vector of A, and Aj the j-th row vector of A. We assume
without loss of generality that

min{IAosilo} = 1 , (5.3)
iE[n]

since otherwise one can scale A by a constant factor, and the solution OPT as well
as x* are only affected by this same constant factor.
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We now introduce our smoothed objective f,(x).

Definition 5.1. Letting parameter 4 , we define the smoothed objective
f,(x) as

ft,(x) p Em"1 exp -A(xj-1 _ .

We wish to study the minimization problem on f1 (x), subject to the constraint
that each coordinate xi > 0 is non-negative. We denote by x > 0 this positive orthant.

Intuitively this objective f,(x) should capture the original packing LP (5.1) ap-
proximately as follows. On one hand, we want to maximize lTx so the negative term
-1Tx shows up in f,(x). On the other, if (Ax)3 > 1 + E for some j, the exponential

penalty in f,(x) introduces a value that is at least expE/4 - (nm/E)4 and very large.
This means Ax < (1 + e) must be true if the objective f,(x) is small.

We wish to point out that this is very different from the softmax function implicitly
used in [165], and is used as a potential function in [17]. More precisely, the standard
softmax function can be seen to arise as the Legendre dual of the negative entropy
over the simplex, while our potential function is actually the Legendre dual of the
negative generalized entropy over the positive quadrant. Our specific choice of this

objective enables us to deduce what we call the multiplicative Lipschitz gradient

property, described in (5.7).

We begin with several simple but important properties about OPT and f,(x). In

short, they together imply that the minimum of f,(x) is around -OPT, and if one can

approximately find the minimum of fj(x) (up to an error O(eOPT)), this corresponds

to a (1 - O(&))-approximate solution to the packing LP (5.1). Notice that we will

not be able to directly obtain a covering solution from this objective, and thus more

techniques will be introduced in Section 5.4.

Proposition 5.2.

(a) OPT E [1, n].
(b) Letting x = (1 - E/2)x* > 0, we have f,(x) < -(1 - E)OPT.
(c) Letting x(0) > 0 be such that x(0) =- for each i c [n], we have f(x(0 )) <

n
(d) For any x > 0 satisfying f,(x) < 0, we must have Ax < (1 + E)1, and thus

lTx < (1 + E)OPT.
(e) If x > 0 satisfies f,(x) < -(1 - O(E))OPT, then jx is a (1 -

approximate solution to the packing LP.

(f) The gradient of fA(x) can be written as

Vf,(x) = Ay(x)1 where yj(x) = expAJ(^x)-1) . (5.4)

(The proofs are straightforward and can be found in Appendix 5.C.)
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Algorithm 2 PosLPSolver(A, E)

Input: A E R70"<, E E (0, 1/10].
Output: x c R>o and 9 E Rm> 0 .

1: p + - E and a <- > parameters

2: x (0) 1--/2 for all i E [n]. > initial vector x(0)

3: T elog(2n) > number of iterations
4: for k -- 0 to T - 1 do
5: for i <- I to n do
6: Compute the feedback vi < "_ AI(A)-1) -

> in fact, v, = Vf,(X(k)) = (Aa, y(x(k)) -- 1 E [-1,oo).

7: Update: xik+l ) .expaT(vi). > see Definition 5.3 for the definition
of T(v)

8: end for
9: end for

10: return (- and = l y(x(k)). > recall that yj(X) E exp i(x)-1)

5.3 Parallelizable Packing LP Solver
In this section we prove the approximation and convergence guarantee on our packing
LP algorithm. Although the same algorithm also produces a good covering LP solu-
tion, we defer such analysis to Section 5.4 because different techniques are required.

To describe our algorithm we first make the following choice of thresholding func-
tion

Definition 5.3. The thresholding function T: [-1, oc) - [-1,1] is defined as follows

0, V E [-E, E];
T(v) de{ v, V

1, V > 1

Our algorithm is presented in Algorithm 2, and each of its iterations can be de-
scribed with X k+1) _ X(k) . exp-_.T(), where we choose a = Ep/4 to be the step
length. (Throughout this paper, we use superscript x(k) to represent vector x at
iteration k, and subscript xi to represent the i-th coordinate of vector x.)

Our proof of the correctness of PosLPSolver is divided into three steps.

Step I: Gradient Descent. We interpret (see Section 5.3.1 for details) each update
( k+1) + k) . exp-.T(vi) as a gradient descent step, 8 and show that the objective

fl,(x) does not increase, or more strongly, always decreases by at least the following
amount:

8 To be clear, in some literature, the gradient descent is referred only to x <- x - c - Vf(x) for
some constant c. In this paper, we adopt the more general notion, and refer it to any step that
directly decreases f(x).
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Lemma 5.4 (Gradient Descent). For any step k in PosLPSolver, letting B(k) C [n]
be the set of indices i such that Vif,(x(k)) > 1, the objective f,(x) decreases by at
least

ft(x(k)) - f((k+l) . zCBk) (k) , X(k) o
Combining this with Proposition 5.2.c, we have f"(x(k)) 0 for all k.

Note that the above gradient descent lemma does not follow from any classical theory
because our objective f,(x) does not satisfy any good Lipschitz gradient property. In-
stead, we define and use a multiplicative Lipschitz gradient property for our objective,
which may be of independent interest.

Step II: Mirror Descent. We interpret (see Section 5.3.2 for details) each update
x k+) (k) . ep* T( ) as a mirror descent step.

A mirror descent step in optimization is any step from x to x' that is of the form
X' +- argminzJ{x(z) + (aVf(x), z - x)}. Here, a > 0 is some step length, and
V(i) = w(i) - (Vw(x), i - x) - w(x) is the Bregman divergence of some convex
distance generating function w(x).9 In this paper, we pick w( E) X e xe logxz -Xi
to be the generalized entropy function, and accordingly, for every x, z > 0, let

V,( W = ZJE }](zi log +x+ -- ; i)

After verifying that our update is a mirror descent step, the next lemma easily follows
from the general theory of mirror descent.

Lemma 5.5 (Mirror Descent). Letting Z4k) N (Vf (k))) E [-1, 1] be the trun-
cated gradient, we have that for any u > 0,

(Ce(k), X(k) -- U) a 2OPT + V(k) (u) - VX(k+l) (U)

We emphasize here that it is important to use the truncated gradient (k) E [-1, 1]' in
the mirror descent instead of the full gradient Vf, (x(k)), because the latter may have
very large coordinates (whose magnitudes depend on the width of the matrix). This is
why all previous positive-LP solvers using mirror descent are width-dependent. Our
gradient truncation technique may be of independent interest.

Step III: Coupling. Finally, as argued in Section 5.3.3, we put together the two
lemmas above and derive the following coupled bound:

Lemma 5.6 (Coupling).- For any u > 0, we have

< 4 (ftt(x(k)) _ ft ((k+1))D + (VXe(k(U) - VXtk+1> (U)) + a - 2EOPT + a _ EITU.

Let us point out right away that Lemma 5.6 captures benefit of combining the two

'This w(x) is classically chosen to be any strongly convex function, such as w(x) = |lxI12 (and
in that case Vx(y) = |X - yHJ2).
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analyses. If fJ(X(k)) - f,(X(kl+)) is large, we are making a large gradient descent
step because the objective greatly decreases. Or, if f1,(x(k)) - f(X(k+1)) is small

(for a number of consecutive iterations), we can telescoping the above inequality and
obtain a good upperbound on the average of f"(X(k)).

We are now ready to state and prove our theorem for packing LP.

Theorem 5.7 (Packing LP). For T > 6log(2n) _ Q(Iogn.og(nm/t)), we have that

f,(X(T)) < -(1 - 5E)OPT, and as a consequence, PosLPSolver(A, E) produces an
output x = L that is a (1 - O(E))-approximate solution for the packing LP (5.1).

Proof. We begin by telescoping the inequality in Lemma 5.6 for k = 0, 1, ... , T - 1,
and choosing u = u = (1 - E/2)x*, which satisfies lTu K OPT by the definition of x*:

T-1

a Z(f(x(k)) - f,(,)) < 4 (f( (0)) - ft (X 3(T))) + (VX(o) (fl) - V(T) (ft)) + aT -3EOPT
k=O

(5.5)
Notice that, the second term on the right hand side is upper bounded by

V (0)(f) - V>(T)(f) < V(o>(ii) < U +log + X(0)

~~ l/oAg ll 0)-e/

< ti log 1/IAoo +
- (1 - E/2)/n|Aoilloo n IAoilloo

<1 T - log(2n) + 1 < 20PT - log(2n) . (5.6)

Here, we have used the fact that ii since Af t I.

From here, we want to prove that fJ(X(T)) < -(1 - 5E)OPT by way of contradic-

tion. Suppose not, that is, ft(X(T)) > -(1 - 5E)OPT, we have f,(x(o)) _ f'(X(T)) <

0 + (1 - 5E)OPT < OPT, giving an upper bound on the first term on the right hand
side in (5.5). Substituting this and (5.6) to (5.5), and dividing aT on both sides, we
get

1 4 1 ( kP
- T(f(X(k)) _ (0)) _ f(X( T ))) + (T >( - h (u)) +

T Ey(a) 4(t _oT aT V()i)-VXT(i) 3FP

40PT 20PT - log(2n) + 3EOPT
< ++3 PT

aT aT

Finally, since we have chosen T > 6 log(2n) the above right hand side is no greater
than 4EOPT. This, by an averaging argument, tells us the existence of some k E
{0,1,..., T - 1} with f,(X (k)) < fl,(ii) + 4EOPT < -(1 - 5E)OPT (where we have
used f,(u) < -(1 - E)OPT from Proposition 5.2.b). However, it contradicts to the
hypothesis that f, (X (T)) > -(1 - 5E)OPT because fg(x(k)) > fi,( 3 (T)) according
to Lemma 5.4. This finishes the proof that fJ(X(T)) < -(1 - 5e)OPT. The fact
that 5T) provides a (1 - O(E)) approximate solution for the packing LP is due to

Proposition 5.2.e. 1:1

125



5.3.1 The Gradient Descent Lemma

In this section, we are going to view our step x(k) _ x(k+1) as a gradient descent step,
and prove Lemma 5.4.

Sketched Proof. Here, we adopt a generalized notion of gradient descent step,
and say that any step from x to x' that decreases the objective is a gradient descent
step. Classically in optimization, if a convex function f(x) satisfies the so-called
Lipschitz gradient property, that is, 11Vf(Xi) - Vf(X 2 )l1* < L -JX 1 - X2 11 for some

constant L (with respect to some norm 11- and its dual norm 1| -j,,), then a gradient
descent step can provably decrease the objective by a considerable amount. (We refer
interested readers to our survey in [5] or Chapter 4 of this thesis.) Unfortunately,
this property is not obeyed by our objective f,,(x), so we make use of what we call
the multiplicative Lipschitz gradient property, that may be of independent interest
for convex optimization problems that have enough 'non-negativity'.

In particular, we observe that:

In each iteration, PosLPSolver changes each coordinate of x multiplicatively by at
most a factor of 1 4ac/3. Owing to our choice of the smoothed objective f,(x), we
can prove that in this iteration, for each i satisfying Vift(x)| > E, the coordinate
gradient

Vif,(x) is not changed by more than a multiplicative factor of 1 0.5. (5.7)

Denoting by X = x(k) the vector before the update, and x' = x(k+l) the one after,
let us now estimate the difference between f,(x) - fl,(x') using (5.7), and sketch the
proof of Lemma 5.4.

Since Vf,(x) is close enough to Vf,(x') owing to (5.7), intuitively, we can show
that f,(x) - fj(x') is (up to a constant factor) close to (Vf,(x), x - x') due to the
first-order approximation of f,(x) around x. Now, since xi - x' is positive only when
Vif,(x) is positive, and viceversa, we conclude that the difference fj(x) - f,(x') ~

(Vft,(x), x - x') is non-negative.

Furthermore, when focusing only on the coordinates i such that Vif,(x) 1 (i.e.,
i E B(k)), we have that xi - x' = xi(1 - e-") Q(a) -xi. This enables us to conclude
that the amount of difference f,(x) - f,(x') is at least Q(a) - X -Zi x ,
arriving at the conclusion of Lemma 5.4.

Proof Details. The following proposition establishes the formal statement for (5.7).

Proposition 5.8. If fg(X(k)) < 0, for any x= TX(k) + (1 - T)x(k+l) where T E [0, 1]:

(a) Xi E X k) - 4a/3, 1 + 4a/3]

(b) yj (x) E yj(X(k)) - [1 - E/2, 1 + E/2]

(c) WhenI Vf, 1(X(k))I > e, we have that Vif,(x) is between V7fA(X(k)) and
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Proof.

(a) We can always write xi = x k) e' for some t c [-a, a] ; [-1/4,1/4]. According

to the fact that et < 1 + 4t/3 for t C [0, 1/4] and et > 1 - t > 1 - 4t/3 for

t E [-1/4, 0], we must have xi C xk) [1 - 4a/3, 1 + 4a/3].

(b) Recall from (5.4) that yj(x) = expli(Ax)i-1). According to Proposition 5.2.d,
we have (Ax(k)) < 1 + E. Now, by the non-negativity of A and the previous

item, we have

(Ax) - (Ax(k))| I 4a/3. (Ax(k)), < 4a/3- (1 + E) < 5o/3.

This implies that yj(x) > yj(X(k)) - exp(-5a/3p) = yj(X(k)) . exp(-5e/12) >

yj(X(k)) - (1 - E/2) for sufficiently small E, as well as that yj(x) < yj(X(k))
exp(5a/3p) < yj(x(k)) - ( + E/2).

(c) Recall from (5.4) that Vif,(x) = (ATy(X))i - 1. By symmetry, we only prove

the case when Vif,(X(k)) > E, which is equivalent to (ATy(X(k))). > 1 + E. By
the previous item, we immediately have

(ATy(X(k)))i(1 + E/2) > (ATy(X))i > (ATy(X(k)))i(1 - E/2)

Denoting by t = (ATy(x(k))). - 1 > E, it is not hard to verify that (t + 1)(1 -
e/2) > t/2 + 1 and (t + 1)(1 + E/2) < 3t/2 + 1 for all t > e, which then implies

3Vifl (x(k)) ___IV (k))
= 3t/2 > (Ay - 1 t/2 -

We can now use the above multiplicative Lipschitz gradient property to prove the

desired gradient descent progress promised in Lemma 5.4.

Proof of Lemma 5.4. We prove by induction. Suppose that Lemma 5.4 is true for all

indices less than k. This implies, in particular, that fi(X(k)) < f(X(k-1)) < ... <

f,1 (x( 0)) < 0.
We compute the objective difference by the standard integral over gradients as

follows.

fJ(X(k)) _- f(X(k+l)) = j KvfX(k+1) + T (X(k) - X(k+1))) , x(k) - x(k+1) &

S (x(k+l) + r(X(k) x(k+l) ))dT X (k) - (k+1)) > 0

(5.8)

Here the last inequality is because, whenever x k) - x2 k+) is strictly positive (resp.

strictly negative) for some coordinate i E [n], it must be because Vif1(X(k)) > e (resp.

< -E) according to our algorithm. However, owing to Proposition 5.8.c, we have that

fi(X(k+l) + r(X(k) - x(k+1))) is also positive (resp. negative) for all -r E [0, 1], since

Vifg(X(k)) is. (Here we used f,(X(k)) 0.) This concludes that for each i, the i-th
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component in (5.8), denoted by Wi d f1 Vif/I(x(k+l) _ T(X(k) - X(k+l)))dT X (x k) -

X k )is non-negative.
We next turn to lower bounding fi(x(k)) - f/1 (X(k+l)) by computing a lower bound

on W for each i E B(k). Indeed, recall that by the definition of our thresholding
function 7(.), for each i E B(k), the update on the i-th coordinate in x(k) is precisely

(k+1) (k) -
xi k Xi exp. In such a case,

W = (1 - ea)X(k)k+ _ () - x(k+1)))d

(1 - e-4k) x ) (using Proposition 5.8.c)

O~(k)> 4 .Vjf 1 (X(k))

In sum, we conclude that

ZW S (k) .V, f" (X(k)) I
iEB(k)

5.3.2 The Mirror Descent Lemma

In this section, we are going to view our step x(k) -+ x(k+1) as a mirror descent step,
and prove Lemma 5.5.

Recall that f4') N (Vif())) E [-1, 1] is the truncated gradient at step k, and
satisfies that ( k) = Vjf (X(k)) for all coordinates i such that Vf,(x(k)) E [-1 1] \
[-E, E]. We can verify that our careful choice of x(k) _ X(k+l) is in fact a mirror
descent step on the truncated gradient:

Claim 5.9.
X(k+1) = arg min {VX(k) (z) + (e(k), Z _ X(k))} (5.9)

z>O

Proof. This can be verified coordinate by coordinate, because the arg min function is
over all possible z > 0, where this constraint does not impose any inter-coordinate
constraint.

In other words, by substituting the definition of V(k) (z), we only need to verify

that

Xk1) =arg min zi log k) - + Xic - ( - xi) argmin{g(zi)}
z j>0 ( zi20

At this point, the univariate function g(zi) is convex and has a unique minimizer.
Since the gradient -g(zi) = log zi + a(k), this unique minimizer is indeed zi -

(k) (k), h fCam59
X -exp- I finishing the proof of Claim 5.9.

After confirming that our iterative step in PosLPSolver is indeed a mirror descent
step, it is not hard to deduce Lemma 5.5 based on the proof of the classical mirror
descent analysis (see for instance [27]). However, we emphasize here that our choice of
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the distance generating function w(x) is not strongly convex over the entire positive
orthant {x C R' : x > 0}, and thus the our proof is not identical to the classical
theory. We have relied on, in fact, a 'local' strong convexity which we introduce and
is sufficient for our purpose (see (5.10)).

Proof of Lemma 5.5. We deduce the following sequence of inequalities:

(Ce (k) X (k) -u) = (Ce (k), X(k) - X (k~l)) + (Ce (k) ,X(k~l) _ U)

(k) (k) - (k+l) (k+l) (k+l) _

- (a(k), x(k) - x(k+1)) + V(k) (u) - VX(k+1) (u) - V>(k) (X(k+1))

(k+1) k)2

< S ( (X(k) - X(k+1) +) k) ) + (VX() - VXk+1)(U)

i 2 maxjxi , I

@ (2 (k) 2 . maj k+1) Xk)

2 m k+ (V) (u) - VI(k+) (5.10)

@ 2

2 lTX(k) + (V(k)(u) - V k+l) (U))
3

< a 20PT + (V(k)(U) - V1ke+1)(u))

Here, ( is due to the minimality of X(k+1) in (5.9), which implies that VV(k) (X(k+l)) +

a (k) = 0. @ is due to the triangle equality of Bregman divergence:

Vx, y > 0, (-VV(y), y - u) = (Vw(x) - Vw(y), y - u)

= (w(u) - w(x) - (Vw(x), U - X)) - (w(u) - w(y) - (w(y), u - y)))

- (w(y) - w(x) - (Vw(x), y - X))

= V (U) - V (U) -- V(y) .

( is because V(y) = E yj log 1 + x - yz 2>fl { JY 4 - y,1 2 . ) is by Cauchy-

Schwarz. ( is because we have x (k+1) < X(k) owing to Proposition 5.8.a. is

because we have lTX(k) < 2OPT owing to Proposition 5.2.d (and f, (X(k)) < 0 from

Lemma 5.5). 1:1

Remark 5.10. The main difference between this proof and its classical counterpart in
optimization theory is inequality 1 in (5.10). Recall that w(x) = '= Xi log xi - Xi.

Since w(x) is known to be 1-strongly convex with respect to the ei-norm over the

simplex A = {> 0 : lTX = 1}, we automatically have V(y) > 1HX - yll2 for

all x, y E A, and this was the key step used in the classical analysis. In our case,
we no longer have this strong convexity because x, y V A. However, the fact that

V -(y) 2 m1 1Xiy x - yi, 2 is in fact saying that w(x) is 'locally' 1-strongly convex

with respect to the |1 - 1|x,2 norm, defined to be w 2 = Z w?i. This local

norm technique is very crucial in our analysis, and is the optimization-based intuition

behind the above lemma.
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5.3.3 The Coupling Lemma

The main idea in our proof to Lemma 5.6 is to divide the gradient vector Vf(x) E
[-1, oo)' into three components, the component containing large coordinates (i.e.,
bigger than 1), the component containing small coordinates (i.e., in [-1, 1] \ [-&, c],
and the component containing negligible coordinates (i.e., in [-E, E]). The large gra-
dients are to be taken care by the gradient descent lemma, the small gradients are to
be taken care by the mirror descent lemma. Formally,

Proof of Lemma 5.6. By convexity, the distance f4(x(k))-f, (u) for an arbitrary u > 0

is upper bounded as follows:

a (f1 1 (X (k)) 4"f(U)) 5 (af'fI'(X (k) )I, (k) - u)

(arj(k) (k) _ u) + (eZ 4 (k) X(k) _ u) + (a((k) X(k) - u) , (5.11)

where

i k (k))) E [-1, 1] is the truncated gradient, capturing the small

coordinates.

(k) def V f,(X(k)) - (k) if Vf1 (X(k)) > 1; E1
~7 0, otherwise. E [0,), capturing the large

coordinates.

* Q.k) 0 Vf((k)) - (k) - (k) E [-E, E], capturing the negligible coordinates.

We analyze the three components of (5.11) one by one.

The C component is small: if f,(u) < 0, we have

(k w(k) T -u(k) + <Tu) a - "(1+ E)OPT+ac.-i1U (5.12)

where the last inequality is because f,(x(k)) < 0 from Lemma 5.4.

The 77 component can be upper bounded with the help from our gradient descent
Lemma 5.4. Note that (k) only if i E B(k) (where recall from Lemma 5.4 that B(k)

is the set of indices whose V7fj(x(k)) is no less than 1). In particular, if i C B(k) we

have 17 k) Vf((k) (k)), and thus Lemma 5.4 gives

4(fo(x(k)) - f(X(k+l))) > E (k) (X(k)) > (7(k) x(k))

iGB(k)

(k) (k) (k) (k) ( X(k)) (k+1)

Finally, the ( component is upper bounded by Lemma 5.5. Together, we obtain

a (f, (X(k) ) -f'U(u)) _ (ai, (k), IX(k) - U) + (C<(k), X (k) _ U) + (Ce((k), IX(k) _ u)

< 4(f,(x(k)) f(X(k+l))) + a 2OPT + V>(k) (u) - VX(k+l) (u) + aE - (1 + E)OPT + aEdTu

< 4(f,(x(k)) -- f (k+1))) + (Vk) (U) - Vk+1) (U)) + a - 2EOPT + a - ElTu . LI
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5.4 Parallelizable Covering LP Solver

Since a primal solution x satisfying f,(x) ~ -OPT does not translate into a dual

solution y of the covering LP (5.2), the results in Section 5.3 do not imply any good

approximate to the covering LP program. In fact, most of the previous results (except

Luby and Nisan) have encountered this similar problem, and thus needed a separate

algorithm to solve the covering LP. We show in this section that, in our same algorithm

PosLPSolver, once the average y = z -i0  y(X(k)) is collected over all the iterations,
this 9 is essentially an approximate solution to the covering LP.

The high level intuition behind this result is very clear. On one hand, the packing

LP (5.1) is dual to the covering LP (5.2). On the other hand, PosLPSolver falls into

a primal-dual framework: (a) the (primal) gradient descent ensures that the final

objective fl, (X(T)) is sufficiently small, while (b) the (dual) mirror descent ensures

that the average of the encountered gradients (which is a function on g) is sufficiently

close to 0. If (a) gives rise to an approximate solution to the packing LP, then (b)

should, at least intuitively, give rise to a dual solution j of the covering LP.

More formally, after telescoping Lemma 5.6 for k = 0, 1, . . . , T - 1, we have for

any u > 0,

1 T-1

T Z: (Vf((k)), (k) _ U)
k=O

< -(f 1 (X(O)) - fJi(X(T))) + (VsO> (U) - V(T) (u)) + 2eOPT + EITU
aT ozT

S-(fg(x(0)) - f(x(T))) + Vo>(u) + 2eOPT + 3l7u . (5.13)

This upper bound (on the average regret) gives a lot of information about the average

gradient I Z, Vft(X(k)), thanks to the arbitrary choice of u > 0. For instance, if

most of the terms in (5.13) were zero and we had I Ei-T(Vf'(X(k)), -u) < 0, we

would have j Vf((k)) 0, which is equivalent to ATy > 1, the feasibility of

the covering LP. However, since there are five missing terms in this wishful example,
more careful studies are needed.

It is worth noting that the average 9 only provides a (1 + O(e)) approximation

to the covering LP when T > Q(1"g(np) log(nm/e)) where p is the width of A. This is

slightly worse than the T required in Algorithm 2, because log(np) may in principle

be slightly larger than log(n). We prove, however, if one is willing to perform a linear

time coordinate fixing on the output 9, then the same number of iterations from

Algorithm 2 is sufficient. This result requires a more careful choice of u > 0 in the

above reasoning.

We defer all the technical details on the covering LP including the formal statement

of our theorem (see Theorem 5.13 on page 142) to Appendix 5.D.

131



Acknowledgements
We thank Jonathan Kelner, Yin Tat Lee, Richard Peng, and Neal Young for helpful

conversations. This material is based upon work partly supported by the National

Science Foundation under Grant CCF-1319460 and by a Simons Graduate Student

Award under grant no. 284059.

APPENDIX

5.A Empirical Evaluation
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Figure 5-1: Empirical Evaluations

5.A.1 AutoStep: Automatic Step-Length Computation

We begin this section by describing an implementation trick that can be applied to

both our algorithm and Awerbuch and Khandekar [17]. Recall from (5.7) that, we

have chosen our a in PosLPSolver to be the (theoretically) most aggressive value

such that Vifi(x) is not going to be affected multiplicatively by more than 1 0.5.

In practice, however, this maximal step length a can be computed numerically during

each iteration, and can be made different among iterations. 0 This automatic step-

length computation can also be applied to Awerbuch and Khandekar [17], and has

' 0 It is even true that our theorems can be adapted to allow different a's to be used, however, we

have chosen not to do so for the simplicity of our theoretical results.
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already been implicitly applied to all other previous algorithms.1'

5.A.2 Illustration
We perform some simple experiments to illustrate the performance of our new algo-

rithm with real data. We focus on the packing LP program with a randomly generated

matrix A E ROx4O of 800 non-zero entries each in the range of [0, 10], whose optimal

value OPT = 1.31544. We have implemented the following five algorithms.

" Luby and Nisan [101].
" Awerbuch and Khandekar [17], with and without the AutoStep trick.

" Our PosLPSolver, with and without the AutoStep trick.

Importance of Discriminative Updates. We compare the solver of Awerbuch

and Khandekar with ours, to illustrate the importance of using discriminative mul-

tiplicative updates. (Recall that the algorithm of Awerbuch and Khandekar [17] is

very similar to ours, except that they update all the relevant coordinates by the same

factor, while we treat them differently and update a coordinate xi more slowly if its

feedback vi is small.) Figure 5-1(a) clearly confirms that this discrimination is very

important.

Role of the Smoothed Objective. Notice that, for our algorithm PosLPSolver,

when the input parameter E varies, the performance curves go across each other (see

Figure 5-1(b)). To be clear, with larger E the curve goes up faster but converges to

a worse solution (see the bottommost green curve); while on the other hand, with

smaller E the curve goes up slower but has the potential to converge to a better

solution (see the rightmost orange curve). This is because, for different values of E,
our smoothed objective f,(x) has its parameter y dependent on E, and therefore the

minimum points of f,(x) will have different distances to the actual LP optimum.

(This behavior is in fact shared with all other methods as well." Therefore, to

conduct a fair experiment when comparing different algorithms in the next paragraph,

we tune the input parameters -via binary search- on each algorithm separately, so

as to make sure that they converge to the same value. Then, we plot the curves

corresponding to these input parameters.)

Performance Comparison. We illustrate the performance difference between

Luby-Nisan, our PosLPSolver (with and without AutoStep), and Awerbuch-Khandekar

"Other algorithms -namely, [101, 25, 165]- have implemented this automatic step-length
computation for a different purpose: they need it in their convergence analysis but we do not. This
is one of the reasons our algorithm PosLPSolver is much simpler than theirs. (In their algorithms,
the convergence analysis is quite combinatorial and works essentially as follows. In each iteration,
because the update rule is maximally aggressive, at least one of the inner products (Ai, x) is going
to be increased by a fixed additive amount. However, this increment cannot happen too many times
because otherwise at least one of the constraints will be violated.)

"All known methods are implicitly 'smoothing' the LP objective by some parameter, and then

performing the related updates. Therefore, none of our algorithms converge to the LP optimum.
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with AutoStep. We have ignored Awerbuch-Khandekar in this comparison due to its
poor performance. We have chosen two quite small values of E in order to clearly
see the performance difference between algorithms that have different dependencies
on E. It is clear from Figure 5-1(c) and Figure 5-1(d) that our algorithm outper-
forms all others, and the practical performance of AutoStep is also considerable. It is
worth noting that the solution produced by PosLPSolver is much more stable than
Luby-Nisan (because we focus on the decreasing of some objective f,(x) while their
algorithm is quite combinatorial), and each iteration of ours is at least 5 times faster
than theirs due to the simplicity of our algorithm.

5.B Semi-Stateless Feature of our Positive-LP Solver
One typical distributed setting for implementing a parallelizable positive-LP solver
is as follows." Suppose that there is an agent i controlling variable xi, and agent
i is assumed to know (1) (upper bounds on) m and n, (2) the i-th column of A,
and (3) the current "congestion" (Ax) 3 for those constraints j that agent i has non-
zero influence (i.e., for those j such that Ai, > 0). These are the only information
disclosed to agent i.

It is not hard to verify that our PosLPSolver(A, E), like most of the previous
results in Table 5.1, can be implemented in this distributed setting in o3 N synchro-
nized iterations.

Stateless Algorithms. Recently, distributed algorithms that are stateless have
received a lot of attention [17, 16, 18, 19]. In the language of positive LPs (see [17]),
the stateless requirement says that

"the decisions made by agents are not dependent on the past;
they are only dependent on the current local state observable to the agents."

Although their definition is vague, statelessness implies the following three important
properties, and therefore to check if an algorithm is stateless, it suffices to verify them
one by one.

(P1) Self-stabilization. The algorithm is robust against adversarial but finite sequence
of "hard reset" events. This allows some agents to fall asleep for a finite period
of time, and then to wake up; or equivalently, it means that the algorithm does
not need to be initialized.

(P2) Robustness against incremental adjustments. Agents are allowed to join or leave
dynamically. This corresponds to zeroing out or introducing new columns in A,
without restarting other agents. Adding or deleting rows, or even modifications
to entries of A are similarly allowed.

13We refer interested readers to [17] for the strong motivations and practical examples for such
settings.
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(P3) No global clock. Algorithms can proceed asynchronously without a global clock.

Before Awerbuch and Khandekar [17], all known parallelizable positive-LP solvers
are stateful, and do not satisfy any of the three properties above. In particular, the
width-independent ones are phaseful and have to inform each agent 'which phase it
is in' (and many of them only increase x throughout the process), while the width-
dependent ones (such as [131]) must keep track of the maximum violation in a con-
straint.

Our Semi-Stateless Positive-LP Solver. We wish to point out that our PosLPSolver
can be easily tuned to at least satisfy (P1) and (P2). However, our current analysis
still requires the agents to act synchronously and therefore needs a global clock. We
call any algorithm that satisfy (P1) and (P2) semi-stateless.1 4

Indeed, the only line we need to change in the algorithm PosLPSolver(A, E) is to
let

x k+1) - max {Xk) - exp-oT(vi)

where 6 is some small enough number such as 6 = (E/nm)5. This small modification
was also used in [17] to obtain stateless algorithms, and makes our algorithm robust
again arbitrarily chosen input. (For instance, adversarially chosen agents may ini-
tialize some coordinate xi to zero; without the introduction of 6, the value of xi will
freeze at zero since each step is only multiplicative.)

We ignore the formal proof of statelessness in this version of the paper because it
is routinary.

5.C Missing Proof of Proposition 5.2
Proposition 5.2.

(a) OPT E [1, n].
(b) Letting x = (1 - E/2)x* > 0, we have f,(x) < -(1 - E)OPT.
(c) Letting x(0) > 0 be such that x40) - -/2 for each i E [n], we have f,(x(0 )) <SnIIAo~Ikl

n

(d) For any x > 0 satisfying fl(x) < 0, we must have Ax < (1 + E)1, and thus

Tx < (1 + e)OPT.

(e) if x > 0 satisfies f,(x) < -(1 - O(E))OPT, then 1x is a (I - O(E))-
approximate solution for the packing LP.

(f) The gradient of f4(x) can be written as

Vf,(x) = ATy(x) - 1 where yj(x) = expil((Ax)3 -1)

Proof.

14Technically speaking, the agents in our algorithm PosLPSolver do not have states as well, but
do need to use a virtual global state that is the clock.
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(a) Suppose that i* is the column that achieves the smallest infinite norm ||Aoi||0
over all columns. Letting x be such that xi =1 at i = i* and xi = 0 elsewhere,
we have obtained a feasible solution for the packing LP (5.1), owing to our choice
of minie[nj{ Aoill} = 1 in (5.3). This feasible x gives an objective TX = 1,
showing that OPT > 1.

On the other hand, for any solution x E R>0 satisfying Ax < 1, we must
have xi < for each i. Therefore, 17x < K n showing that

OPT < n.

(b) We have ILx = (1-E/2)OPT by the definition of OPT. Also, from the feasibility
constraint Ax* < 1 in the packing LP, we have Ax - 1 < -E/2 - 1, and can

compute fi,(x) as follows:

f,(x) = P exp ((Ax)-1) _ T [ty exp A -(1 - E/2)OPT

< 2P - (I - E/2)OPT < -(1 - E)OPT.
(nm)2

(c) Using the fact that Ax( 0 ) - 1 < -E/2. 1, we compute fl,(x(0 )) as follows:

f_ (X (0) / p ((Ax())i-1) _TX(o)

-e/2 1-E/2 Pm 1-E/2 1-E
P exp T - ( ) 2  n -

Above, we have used that 1TX(0) > x "I = 1-e/2 where i is the column such
__ n

that |Aol = 1.

(d) To show Ax < (1 + 6)1, we can assume that v = maxj ((Ax)j - 1) > 0 because
otherwise we are done. Under this definition, we have Ax < (1 + v)11 and
therefore 1Tx < (1 + v)OPT by the definition of OPT. We compute f,(x) as
follows.

f,() > p expT -(1 + v)OPT - (nm)4)V/E - (1 + v)n

6 nm
= (( )4)/ (1V)n

4log(nm/6) E

It is easy to see that the above quantity is positive whenever v > E, and
therefore, to satisfy f,(x) < 0 we must have v < E, which is equivalent to
Ax (1 + E)1.

Finally, we notice that Ax < (1+E)1 implies ITX < (1+E)OPT by the definition
of OPT.

(e) For any x satisfying f,(x) < -(1 - O(E))OPT < 0, owing to Proposition 5.2.d,
we first have that x is approximately feasible, i.e., Ax < (1 + E)1. Next,
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because -1TX < f,(x) -(1 - O(E))OPT, we know that x yields an objective
1TX > (1 - O(E))OPT. Letting x' = 1 x, we both have that x' is feasible (i.e.,
Ax' < 1), and x' has an objective 1Tx' at least as large as (1 - O(E))OPT.

(f) Straightforward by some simple computation. E

5.D Parallelizable Covering LP Solver
We divide our results on the covering LP into two parts. In the first part (see
Section 5.D.1), we show that the objective 1T9 is close to OPT; in the second part

(see Section 5.D.2), we show that AT9 > (1 - 2E)1 is approximately feasible. Both
of our two steps rely on (5.13).

5.D.1 Objective Optimality
We now show that the covering LP objective jTy < (1 + O(E))OPT as long as T >

Q(log(rnm/)) Note that this is smaller than that of T > Q 3O g"ll(fm/e)) required in
Theorem 5.7; however, as we shall see, it does not imply a faster convergence rate
for covering LP than packing LP, because obtaining the approximate feasibility (i.e.,
AT9 > (1 - 2E)OPT) requires more iterations.

The following lemma can be deduced essentially by (1) substituting u = 0 into
(5.13), and (2) noticing that (Vf1(x(k)) x(k)) lTy1 (k)) _ lTx(k) is approximately

the duality gap at step k.

Lemma 5.11. For any T > y = Q(1og( /)), we have that 9 (1 + 5E)OPT.

Proof. Substituting u = 0 into inequality (5.13), and using the fact that V(o)(0) =

lTX(O) < 1, we obtain

I4 1SE(Vf(X(k) I X(k)) K _ g x( 0 )) _ fP(X(T))) + + 2EOPT (5.14)
T aT ceT

k=O

We now respectively lower and upper bound the two sides of (5.14) as follows. One
one hand, using the definition of gradient, the left hand side of (5.14) is lower bounded
as

(Vfg(X(k)), X(k)) - (A Ty(X(k))X (k)) - lTX(k) - (X (k)), Ax (k)) -- TX(k)

= expt((Ax(k) ),-1) .(Ax(k) _ -ITX(k)

> (1 - E) e~txp(% _) 1) _ITX(k) - M.- E )4
nm

=(1 -- E)I y (X(k)) -_ ITX(k) - M E ) 4. (5.15)
nm

Here, the (only) inequality is because if (Ax (k%) < 1 - E for some constraint J E [m)],
the corresponding exp4( (Ax (k%)_-1) < ep-/-/E =- ( ,)4 is very small.

jn
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On the other hand, since Ax(T) < (1 + E)1 by Proposition 5.2.d, we must have

f7'x(T) < (l+-ie)OPT, and thus f,(x(T)) > 0- (1-+e)OPT. This gives an upper bound

on the right hand side of (5.14) that is 4 (+)OPT + l + 2OPT K 3OPT, due to
;aT +T --_ EP EPdet

our choice of T> 67.

Together, we deduce from (5.14) that

(1 - E) ( TY(x(k)) - ITx(k)) - m- ( )4 < 3EOPT
T 1:nmk

- 1 T ( Tx(k)) T(I + 4EOPT < (1 + E)OPT + 4EOPT
k k

where the last inequality is from lTx(k) < (1 + E)OPT for each k. E

5.D.2 Approximate Feasibility
The approximate feasibility is tricker to prove. Indeed, the first proof to come to
one's mind only implies that for AT9 > (1 - 2E)1 for T > Q(log(np) log(nm/)). Here, p
is the largest entry of A (i.e., the width). This bound on T is slightly weaker than
that in Theorem 5.7 because log(np) may be larger than log(n). Fortunately, this
loss can be avoided thanks to one of the two fixes below:

* WIDTH REDUCTION PRE-PROCESSING. One can modify the positive LPs

to ensure p = n( 15 However, this modification requires some initializa-

tion which, if implemented, would make our algorithm not semi-stateless (see

Appendix 5.B).

* COORDINATE Fix POST-PROCESSING. We prove below that, for the same

requirement on T > QO(f) 1U nm/c)) as Theorem 5.7, although ATy may be

smaller than 1 - E for some coordinate, one can safely raise some coordinates

of 9 to obtain AT9' > (1 - E)1, without increasing 1 T9 too much.

More specifically,

Lemma 5.12. Let p = maxij IAi, l, and 9 = # y(x(k)).

* If T > max{ log(4n2 p) -= (og(np)log(nm/e)) we have AT 2i (- 2)1

" If T 6lg(2n) _ Eog n.)o(nm/E)) (which is the same choice of T in PosLPSolver(A, E)),
there exists some simple fix 9' from FixCoord(A, E, 9) (see Algorithm 3) satis-

fying
A T9' > (1 - 2E)1 and 1 2 < 19 + EOPT

15This can be done informally as follows. Within a single column of A, if the largest and smallest
entries are off from either other by a factor more than nQ{(l), the smallest entry can be replaced with
zero without sacrificing too much accuracy. With this in mind, we can zero out "small" entries of
each column. Next, we can similarly zero out "large" columns across all columns, and re-scale A to
get p = n
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Algorithm 3 FixCoord(A, E, y)

Input: A c R"'1e, E E (0, 1/10], and y E RM0 .
Output: y E RT that satisfies ATy > 1.

1: y' +- p.

2: for all i such that A = (ATg); - 1 + E < -E do
3: Let j E [m] be the largest entry in the i-th column, i.e., Aij = 0AOC.
4: < +

5: end for
6: return - .

The proof of this lemma is involved, but has a clear high level intuition behind it.

We extract from (5.13) out only those terms that have u in it, and rewrite (5.13)
as follows: (here we have used the definition of Vf,(x(k)) - ATy(X(k)) - )

0 < *+ Vo)(u) + (A -I1+E1,u) . (5.16)
aT

Now, suppose that ATV > (1 - 2c) is violated, there must exist some coordinate i
such that (A TV - 1 + 1) < -E is very negative. In such as case, we let Uk = 0 for

every k 4 i, and use the choice T > Q(lQ'()). Inequality (5.16) is then simplified as

0 < * + O( )- (ui log ui - 'a) - E - ui. However, we can choose ui = (np) ') to be

very large, making the right hand side very negative. This contradicts to inequality
(5.16), and thus finishes the proof of ATV > (1 - 2E)1 for the first half of the lemma.

To obtain the second half, it is first easy to see that FixCoord(A, E, y) is computing
some 9' satisfying ATV' > (1 - 2E)1, because i' is so constructed to fix every violation
of ATj (1 - 2E)1. What is much harder to prove is that 1T9' e 1T9. In fact, this

can be obtained, after some careful computation, from (5.16) again. This time, we
carefully choose a different u: we identify all coordinates i such that (A T-I+E1), <
-E, and let ui be large on all of them.

Proof of Lemma 5.12. This time, we rewrite (5.13) as

I1 4 1fjXO)_flIXT)
- (Vf( ( ) - u) -f (0) ) ) ) + Vo> (u) + 2EOPT + ElTU

T eT ozT
k=O

1
< -V(o) (u) + 3EOPT + E1Tu

aT
where the last inequality comes from the fact that 4(f,(X(0 )) - f, 1 (X(T))) < EOPT,

which we have already used once in the proof of Lemma 5.11. Let us define

1 1 T-1

5(u) X V)(Uo) + Z (Vf,((k)), U - X(k)) + EjTu aTT
kne

and according to the inequality above we have 0(u) > -3E0PT for any u > 0.
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Proof of the First Half of the Lemma. Recall from (5.15) that

(VfM(X(k)l (k)) > (IE _ggyg(k))_ITX(k)_Tn( E )4 > _-ITX(k)-Tn( E)4 > -(1+2E)OPT
nm nm

and therefore
1

aT,(O (z)+(ATg-L -= -HVf((k)

If there is some coordinate i* such that v 5 (Ag) - - 1 + g K -E, we substitute

u = (0, 0, ... , - . ,) where ue-v= x0 ... 0) -- vT into the above inequality,
and we get

ceT(Ui*
log - Up + EZ + V -U.i* -(1+ 5E)n

X 2~)

Since the left hand side equals to ( - u2 * + Ks x4i ) by our choice of ui*, we
immediately obtain -ui* > -(1 + 6E)n- aT > -2n from it. Substituting in the
definition of uj* = x eo) - VeT > 1/2 eT, e(4n 2 A .(0) - nIIAoiII. C , we conclude that T<lga
However, this contradicts to our choice of T > Iog(4n 2 p)I OE

In other words, for T >
max{6, 1og(42 p) }, we must have (AT) 2 -1 + E > -E for all i, finishing the proof of
ATV > (1 - 2E)1.

Proof of the Second Half of the Lemma.
and the convexity of f,(x), we obtain

This time, using the definition of #(u)

-3EOPT < q(u) < 1 V1o)(u) + I (f(U) - ft(X(k)))
k=O

From now on let us denote by i2 d (1 - E/2)x*. Recall that our earlier analysis yields
the following:

" f, (ft) < -(1 - E)OPT owing to Proposition 5.2.b;

* f, (X(k)) > -(1 + E)OPT, owing to Proposition 5.2.d and lTX(k) < (1 + E)OPT;
and

* Vx(o) (fi) < 20PT - log(2n), owing to (5.6).

Together, we obtain that
1

- 3EOPT < min #(u) < #(it) < V o) (f) + 2EOPT
u>0 ceT

< 3EOPT .

where the last inequality is from our choice of T > 6 log (2n)

Next we decompose q(u) as follows. We let #(u) = Eq #i(ui)

(ut) U + log 7- +X~j U) +((AT~~1
aT (0)

(5.17)

+ 0 , where
T-1

and #
k=O

Let us denote by A d AT - 1 + A. Then, for each i such that Ai < -E, we make
the choice u def x(0) . e-AjT; otherwise we choose u* = ii.
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Focusing on each i such that Ai < -E, we have i(u4) = !(x4O) - 'i) and

oi(jji) > Ai4f. This gives a lower bound on their difference

#i(j*) - (.i() x ) + As .
aT -

Before continuing to prettify the right hand side, we make a technical observation.
dLt 6 log( 2n) TLetting T0 -~ ___ so that T To, we have

U*!- X") - e-" > I i1- - e((CTb)T/To ) IE
2n||Aojj||x

(5.18)I - (100n)T/To /|lAoi|don
Therefore, the lower bound on # (fti) - #i(u*) can be simplified as

#i(jj) - # (ui*) >
1-- U* + Aiti-

aT || IAoilo

> -- (100n)
c1T 1Aoil|oc

> -- (100n)TI0- zT ||Aoi||x

+ )Ay:i -

2Aj
+

* 1 1 2Aj
> --- Aoio (100n) +

® 1 1 -_ 2+M (lO n - Ai 2Aj> -- oAi ~ (100n) + J~jj~aT0 ||A i| & |A s|

-1bA 2Aj -8Aj
Aoi||o + IAosi|| - ||Ao||

Here ( is using the fact that Lx(0) E g 1. Z is using (5.18). ( is using the

fact that fti < I (due to the feasibility Au < 1) and Ai < -e. @)
by realizing that the left hand side of ) is minimized, over all possible
T = To. M is obtained by realizing that (100n) t > (100n)t for any t > 1.
definition of To 6 ().

Finally, we combine this with (5.17) and get

-8Aj

i:

and therefore

< E

is obtained
T > To, at
$ is by the

q#i(j,)qi(u*) = qi(iq)-#i(u*) #(ii)-minq(u) < 6EOPT
2eUn]

(5.19)5N A < EOPT.
2: _jc)

Now we come to the last step of the lemma. For each coordinate i such that Ai =
(A T), - 1+ e < -E, we find the corresponding j where Ai, = ||Aij , and push qj
up by an additive amount of A. Letting 9' be this new vector, we automatically

have that ATY' > (1 - 2E)II, and moreover, 172' - 9 < EOPT due to (5.19).

It is now easy to see that Lemma 5.11 and Lemma 5.12 together imply that

D:
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Theorem 5.13 (Covering LP). For any T > max{, ogn 2 p)) I (log(np) log(nm/e)

we have that 1 is a (1 + O(E))-approximate solution for the covering LP (5.2).

Alternatively, for any T ; 6log(2n) _ Q-logn.log(nm/E)) letting

(x, Q) = PosLPSolver(A, E) and y = FixCoord(A, E,

we have that y is a (1 + O(E))-approximate solution for the covering LP (5.2).



Chapter 6

Nearly-Linear Time Positive LP
Solver with Faster Convergence
Rate

This chapter is based on the result published in [6], and its further edits
can be found at:

http://arxiv. org/ abs/1411. 1124.

Positive linear programs (LP), also known as packing and covering linear pro-
grams, are an important class of problems that bridges computer science, operation
research, and optimization. Efficient algorithms for solving such LPs have received
significant attention in the past 20 years [101, 131, 24, 165, 113, 32, 25, 118, 47, 17,
115, 10, 92, 166, 7]. Unfortunately, all known nearly-linear time algorithms for pro-
ducing (1+ E)-approximate solutions to positive LPs have a running time dependence
that is at least proportional to E-2. This is also known as an 0(1/v/T) convergence
rate and is particularly poor in many applications.

In this paper, we leverage insights from optimization theory to break this long-
standing barrier. Our algorithms solve the packing LP in time O(NE 1 ) and the cov-
ering LP in time O(NE- 1 5 ). At high level, they can be described as linear couplings
of several first-order descent steps. This is the first application of our linear cou-
pling technique (see [5] or Chapter 4) to problems that are not amenable to blackbox
applications known iterative algorithms in convex optimization. Our work also intro-
duces a sequence of new techniques, including the stochastic and the non-symmetric
execution of gradient truncation operations, which may be of independent interest.

6.1 Introduction
A generic packing linear program (LP) takes the form max{cT x : Ax < b} where
c E R'o, b E Rgo, and A E RImo ; similarly, a generic covering LP can be written as

143



min{b y : ATy > c}, with the same requirements on A, b, and c. We denote by N
the number of non-zero elements in matrix A. They are also known as positive LPs

as originally studied by Luby and Nisan [101].
Similar to Chapter 5, we assume without loss of generality that the LP is in its

standard form: b = I and c = 1.

Packing LP: max>o{i T X : Ax < 1}

Covering LP: minY>o{ Ty : ATy > 11.

Since the two programs are dual to each other, we denote by OPT their shared optimal
value. We say that x is a (1 - E)-approximation for the packing LP if Ax < 1 and
lTX > (1 - E)OPT, and y a (1 + E)-approximation for the covering LP if ATy > 1
and ITy < (1+ E)OPT.

Of course, it is possible to adopt the general Interior Point or Ellipsoid Methods to
obtain approximate solvers with a log(1/E) dependence on the number of iterations.
However, the computational cost of such algorithms is typically very high, as each
iteration requires the solution of a system of linear equations in ATA. As a conse-
quence, this approach is simply not suitable to the solution of large-scale problems.
To address this issue, researchers have developed iterative approximate solvers that
achieve a better dependence on the problem size (e.g., nearly-linear time N) at the
cost of having a poly(l/c) dependence on the approximation parameter e.

Fast approximate packing and covering LP solvers have been widely used in ap-
proximation algorithms (e.g., MINSETCOVER [101], MAxSET, MAxDICUT, MAx-k-

CSP [158], bipartite matching), probabilistic checkable proofs [158], zero-sum matrix
games [118], scheduling [131], graph embedding [131], flow controls [24, 25], auction
mechanisms [169], wireless sensor networks [38], and many other areas. In addi-
tion, techniques developed in this line of research have also inspired many other
important results, most notably regarding fast algorithms for multi-commodity flow
problems [131, 63, 68, 103, 20].

Previous approximate solvers can be further divided into two classes (see Table 6.1).

Width-Dependent Solvers. These algorithms' require a running time that is at
least N multiplied with p -OPT, where p is the largest entry, i.e. the width, of matrix
A. Since OPT > 1/p, this value p - OPT is at least 1. However, since OPT can
easily be as large as 1 or even more than n, this resulting running time is not poly-
nomial, but only pseudo-polynomial. More precisely, packing and covering LPs can
be solved in Q(Np 2oPT2gogm) time [131], or O(NpOPTogm) time using negative-width
techniques [10]. These algorithms strongly rely on multiplicative weight updates and
only require "oracle-access" to the matrix A.

When A is given explicitly like in this paper, the number of iterations can be

'Note that most width-dependent solvers are studied under the minmax form of positive LPs,
whose optimal value equals 1/OPT. Their approximation guarantees are often written in terms of
additive error. We have translated their performances to multiplicative error for a fair comparison.
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Table 6.1: Comparisons among
LPs.

iterative approximate solvers for packing and covering

ad is the maximum number of constraints each variable is in; md may be larger than N.

reduced to 0 (pOPT log ) by deploying more advanced optimization tools such as Nes-

terov's accelerated gradient method [118], or Nemirovski's mirror prox method [113].
Bienstock and Iyengar [32] have converted this dependence on pOPT into a more be-

nign, yet linear dependence on n. More specifically, their running time is O(E-7NVKn log m)

where K is the maximum number of non-zeros per row of A. This is O(E-6Nn log m)

in the worst case. The results of [115, 47] have improved this convergence rate (for

packing LP only) to O(e-1 N#1i), but at a cost of enduring an O(Nn)-time prepro-

cessing stage.

Width-Independent Solvers. In this paper, we are interested in a second, more

efficient class of methods, i.e. width-independent,2 truly polynomial-time approximate

solvers (see Table 6.1).

2 Some of these solvers may still have a polylog(p) dependence. Since each occurrence of log(p)
can typically be replaced with log(nm) after slightly modifying the instance matrix A, we have done
so in Table 6.1 for a fair comparisons.
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Paper Running Time Width
Independent?

[131] O(N x P2OPT2 log no

[10] O(N x pOPT og m) no

[118, 113] O(N x pOPTiog m) no

[32] O(N x Knlog m) no

[115, 47]: packing LP O(N x (n + no

[101. 24, 165, 25, 17, O(N x log2 N) at
7] best yes

O((md + N) x N
[165] a 2 yes

[24, 25] O(nm x log N) yes

[166] O(N x lo N) yes

O(N + (n + m) x[92] log N) yes
E2

[this paper]: O(N x log N log e
packing LP y

[this paper]: O(N x log Nlog 1  y
covering LP 61ye



This line of research was initiated by a seminal paper of Luby and Nisan [101],
who gave an algorithm running in 0( N N) time with no dependance on p. This is
the first nearly-linear-time approximate solver for solving packing and covering LPs,
and also the first to run in parallel in nearly-linear-work and polylogarithmic depth.

The parallel algorithm of Luby and Nisan was extended by a sequence of works
[24, 165, 17, 7]. Most notably, the algorithm of the same authors of this paper [7] (see
Chapter 5) runs in 0( 10g2N) iterations, each costing a matrix-vector multiplication
operation that can be implemented in O(N) total work and logarithmic depth.

The ideas of Luby and Nisan also led to sequential width-independent solvers
for packing and covering LPs [165, 25, 166, 92]. Most notably, the algorithm of
Koufogiannakis and Young [92] runs in time 0 (N + 1oN x (n + m)). Despite the

amount of work in this area, the 0(1/E2) convergence rate has not been improved
since 1997. On a separate note, Klein and Young [90] have shown that essentially
any Dantzig-Wolfe type algorithm has to pay for a 0(1/E2) convergence rate. This
lack of progress constitutes a significant limitation, as the E-2-dependence on the
approximation parameter E is particularly pour. This E2 dependence is also known
as the 0(1/1/7) convergence rate in the optimization language, because the error
decreases only at the rate E oc 1/v'7 .

6.1.1 Our Results

Packing LP Solver. We present an algorithm PacLPSolver that can be imple-
mented to run in 0(log(nm/e) og(1/e)N) total time. This gives the first nearly-linear
time solver for packing LP whose running time has an E-'-dependence; this running
time is also known as the O(1/T) convergence rate in the optimization literature. No
nearly-linear time algorithm has achieved any convergence rate that is faster than
0(1/V7) before our work (see Table 6.1).

Interestingly, the maximum (weighted) bipartite matching is just one instance of a
packing LP. Therefore, our algorithm yields an O(mE- 1) approximate algorithm and
an O(mv'ii) exact algorithm3 that arise purely from optimization for bipartite match-
ing, without the use of any dynamic trees. This matches the best known combinatorial
algorithms for maximum weighted bipartite matching. Any further improvement over
the dependence on E would result in a maximum matching algorithm that runs in
time m -5(V/_), which may require very significantly different ideas.

Our algorithms optimizes a relaxation of the original packing LP, where the hard
constraint Ax ; 1 is replaced by an exponential penalty function for violating the con-
straint. In other words, we reduce the problem of approximately solving packing LP
into approximately minimizing some function fi,(x) over the positive orthant x > 0
see (6.3). This interpretation of the solution of packing and covering linear programs

31t is not hard to turn an O(me-') approximate algorithm into an O(mfui) algorithm, see for
instance [54].
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was recently suggested by the same authors of this paper [7] (see Chapter 5). How-
ever, the techniques in our previous work [7] only lead to very slow sequential solvers

(see Table 6.1). Furthermore, to the best of our knowledge, our objective f,(x) can-
not be turned into any class of smooth functions, and therefore traditional accelerated
gradient methods such as [116, 118] no longer apply. We thus need fundamentally
new ideas.

Our proposed algorithm is an iterative first-order method, and has a flavor of
"stochastic coordinate descent" (cf. [145, 61]). Suppose that we are given point x > 0
at some iteration, and observe the gradient Vf(x) E [-1, oc)". Then, we randomly
pick a coordinate i E [m], and focus only on the coordinate gradient Vif(x) E
[-1, oc). (In fact, we do not even need to compute Vef(x) for f # i, thus ensuring
that each iteration can be implemented very efficiently.)

We divide Vif(x) = 71+-, where 1 C [0, oc) is the large component, and c [-1, 1]
is the small (and truncated) component. This gradient-truncation technique was
developed in our prior work [7], but has never been applied to coordinate gradient.

We perform essentially three coordinate descent steps.

" A gradient (descent) step with respect to i], guaranteeing a large decrement on the
objective.

" A mirror (descent) step and a gradient (descent) step, both with respect to (.

Both gradient and mirror descent are well-known tools from optimization (see for
instance [117, 27])." Motivated by the linear coupling technique developed in [5] (see
Chapter 4), we combine the analysis of the above three descent steps for a faster
algorithm.

To push through the idea sketched above, we also develop two independent tech-
niques. The redundant-constraint technique imposes an additional box constraint; it
requires each xi to be upper bounded by a carefully chosen constant ci. While this
constraint xi < ci is provably redundant from the viewpoint of minimizing f,(x), it
is surprisingly crucial for our linear coupling to work. Our gradient-mirror scaling
technique restricts our attention to a special type of gradient step, which is always a
constant factor of the mirror step. Our two techniques together play an important
role in enabling the three descent steps mentioned above to be effectively coupled.

Covering LP Solver. Unlike our most relevant prior work [7], it is not clear how
one can extract an (approximate) covering LP solution from the packing LP solver
mentioned above. There are at least two main issues behind this difficulty. Firstly,
the dual guarantee naturally arising from PacLPSolver is on the history of the full
gradients Vf(Xk), rather than the randomly selected coordinate gradients Vif(Xk),

4Jt is important to note here that we have generalized the notion of "gradient descent" to indicate
any descent step that is guaranteed to decrease the objective. This is in contrast to mirror descent,
which is a "dual approach" that does not necessarily decrease the objective at any iteration, but
minimizes the so-called regularized regret.
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over all iterations k. As we mentioned earlier, it is computationally heavy to compute
full gradients. Secondly, even if the dual guarantee is on the coordinate gradients

Vif(Xk), it is not clear how one can compute them efficiently in only nearly-linear
time.

We therefore are forced to design a new algorithm CovLPSolver that works directly
for covering LP. On one hand, this new algorithm relies on similar idea that are present
in PacLPSolver: the linear coupling of gradient and mirror steps and the gradient
truncation. On the other hand, we need a different version of the redundant-constraint
technique (over a simplex constraint), as well as a negative-width technique.

Our CovLPSolver can be implemented to run in O( 1g(m/6)1og(1/6)N) total time.

This gives the first nearly-linear time solver for covering LP whose running time has
a faster dependence than E-2 (or equivalently, the first one whose convergence rate is
faster than O(1/v'T)).

6.1.2 Roadmap

We transfer the packing LP problem into a convex optimization question in Section 6.2,
and provide our packing LP solver in Section 6.3. We sketch the main ideas needed for
our covering LP solver in Section 6.4, and defer the technical details to Section 6.5 and
Section 6.6. Note that our PacLPSolver and CovLPSolver are stated in an implicit
optimization language, and their (efficient) implementation details will be addressed
in Appendix 6.E and Appendix 6.F.

6.2 Relaxation of the Packing Linear Program
Recall that, for input matrix A E R"', the packing LP in its standard form is
maxx>o{TX : Ax < 1}. Let us denote by OPT the optimal value of this linear
program, and x* any optimal solution. We say that x is a (1 - E)-approximation for
the packing LP if Ax < 1 and ITX > (1 - E)OPT.

Throughout this paper, we use the indices i E [n] to denote the columns of A,
and the indices j E [m] to denote the rows of A. We let Aoi be the i-th column
vector of A, and Ac. the j-th row vector of A. Given any vector x, we denote by

X 
z||A = ZEi[n] X i -I| Aoi|1,, the A-norm of x.

By scaling the matrix A and the optimum value, we can assume without loss of
generality that

min{flAos|flo} =1 . (6.1)
iE[n]

We can now restrict the range of values x and OPT can take using the following
simple fact.

Fact 6.1. Define the bounding box xi { E R" x2 E [0, A }. Under assump-
tion (6.1), we have OPT E [1, n] and {x: x > 0 A Ax < 1} C A.
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Proof. Suppose that i* is the column that achieves the smallest infinite norm IIAo I o
over all columns. Letting x be such that xi = 1 at i = i* and xi = 0 elsewhere, we
have obtained a feasible solution for the packing LP (5.1), owing to our choice of
minic[{ 1Aoill = I in (6.1). This feasible x gives an objective LTX = 1, showing
that OPT > 1.

On the other hand, for any solution x C R>o satisfying Ax < 1, we must have
xi < 1 for each i. Therefore, 1TX < E 1 < n, showing that OPT < n.

- IIAo~il. __oil

The inclusion {x : x > 0 A Ax < 1} C A is obvious, since if xi > for some

i, that must violate the constraint Ax < 1.

This bounding-box constraint allows us to optimize over a bounded set for x.

Smoothed Objective. We now introduce the smoothed objective f,(x) that we
minimize over A in order to approximately solve the packing LP. This objective f,(x)
turns each row of the non-smooth LP constraint Ax < 1 into an exponential penalty
function so that we only need to require x E A throughout the algorithm. More
formally, the packing LP can be written as the following minimizaton problem by
introducing the Lagrangian variable y E R m:

min - Tx + max{yTAx - 1 T} . (6.2)

The problem can be now smoothened by introducing a strongly concave regularizer
over y > 0.

This is regularizer is usually taken to be the entropy function over all possible
y > 0 satisfying 1Ty = 1, which yields the width-independent solvers in for instance

[118] and [113], and is closely related to that of the multiplicative weight update in
[10].

In this paper, we take this regularizer to be the generalized entropy H(y)

- E'=1 yj log y.+y, over the first orthant y > 0, and minimize the following smoothened

objective f,,(x) over x E A:

f,'(X) d -1TX + max{yTAx - y - H(y) } . (6.3)

Above, p > 0 is some smoothing parameter to be chosen later. By explicitly comput-
ing the maximization over y 0, f,(x) can be rewritten as

Lemma 6.2. f,(x) = pE'> exp/((Ax)-1) _rTX

We wish to study the minimization problem on f,(x) over x E A. Intuitively f,(x)

captures the original packing LP (5.1) as follows. Firstly, since we want to maximize
1TX, the negative term -ITX shows up in f,(x). Secondly, if a packing constraint
j E [m] is violated by E, that is, (Ax)j 1 -+ E, the exponential penalty in f,(x)

introduces a penalty at least exp'/M; this will be a large penalty if p < 0 (e/ log n).
Notice that this smoothed objective also appeared in previous works [7], albeit without
this smoothening interpretation and without the constraint x E A.

149



The regularization of Lemma 6.2 will give us both some smoothness properties
for f,(x), discussed in Lemma 6.6, and a regularization error, as we are now solving
an objective different from our original packing LP. This error is quantified in the
following lemma for our choice of p. This follows a similar treatment in a previous
paper of the authors [7] and is proved in Appendix 6.A.

Proposition 6.3. Let p = 4 and x* be an optimal solution for the packing

LP (5.1). Then:

(a) fp(u*) < -(1 - e)OPT for u* (1 - e/2)x* c A.
(b) fp(x) > -(1 + e)OPT for every x E A.

(c) If X E A satisfies f,(x) < -(1 - 0(e))OPT, then -x is a (1 - O(e))-
approximate solution to the packing LP.

In short, they together imply that the minimum of fti(x) is around -OPT, and
if one can approximately find the minimum of fl,(x), up to a multiplicative error
1 O(e), this corresponds to a (1 - 0(E))-approximate solution to the packing LP
(5.1).

Remark 6.4. We emphasize that our constraint xi < is essentially redundant
from the viewpoint of minimizing fi,(x): whenever x > 0 and fl,(x) < 0, one should
automatically have xi < '+' However, this redundant constraint shall become
very crucial at the point we analyze the mirror-descent component our algorithm;
after all, mirror descent steps do not necessarily decrease the objective, and thus may
not guarantee ft(x) < 0.

Smoothness properties. Thanks to the smoothing of Lemma 6.2 and the choice
of regularizer, our objective ft(x) enjoys a number of good smoothness properties.
First, it is differentiable and the gradient is easy to compute:

Fact 6.5. Vfi,(x) = ATp(x) - 1 where pj (X) de expi((Ax)i--1)

Second, f,(x) enjoys two kinds of coordinate-wise smoothness properties in differ-
ent regimes. These will be extremely useful in applying gradient descent arguments
in Section 6.3.2, and are the main motivation for us to adopt the 11 - |IA norm for our
proposed algorithms. Its proof is a simple manipulation of the Hessian.

Lemma 6.6. Define the smoothness parameter L M ". Then, for every x E A, and

every i E [n]:
(a) If IVif/i(x)I < 1, then for allA LIAII O' we have Vi f, (x + Aei) - Vif, (x) <

L|| Aoi||oo -J|AI .
(b) If 1Vif,1(x)J > 1, then for all A < , we have Vift(x + Aei) > (I -

AIoi ill
IAbio AtIt Vfp(t)

Above, the first property is the same as the traditional (coordinate) Lipschitz-
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smoothness property, i.e. the Lipschitz continuity of the (coordinate) gradient Vif(x),
but holds only conditionally and not for all x > 0. The second property is a salient
characteristic of this work and requires the positivity of A. It can be seen as a
formalization of the "multiplicative Lipschitz" property used in our previous work [7].

Proof of Lemma 6.6. Using the fact that Vif,(x) > -1 for all x, we have:

Vift(x + Ae) + 1 _ A V' f,(x+ve )
Vifo(x)+1 o Vifi( + vei) +1

1 (ATdiag{p(x +vej)}Aj dv
A Jo (ATp(X + ve2))i

< | A J | A| - || Aoi loL
p 4

The last equality holds as L = . This immediately implies the following multiplica-
tive bound:

1- Vift(x + Ae) + 1 1 IA,,iIL ALVif,(x) + 1 -

By our assumption on A, we know that IIAoiIjoO L JA < -, so that we can use the4- 4
approximation x < e' - 1 < 1.2x over x E [- , ]. This yields the simpler bound:

JAojJoL Vif,(x + Aej) - Vif,(x) < 1.2|AoiocLJAI
4 - Vif,(x) + 1 ~ 4

Now we are ready to prove the two points of the lemma.
(a) Assuming that Vif,(x) E (-1, 1], we have:

Vjf,(x + Aej) - Vjf,(x) < 2.4 - ||AojlKoL AI < J|AojJlL oLlA.
4

(b) Assuming Vjf,(x) > 1, we have

Vjf,(x+Aej) > Vif(x) -A4 L JA (Vifi(X)+1) (1- 2 LAl) Vif, (X)

Initialization. Iterative methods require the choice of a good starting point. We
have

Fact 6.7. Defining nstart - for for each i E [In], we have Atar c z and

f,(xstart) _ 1

Proof. Using the fact that AXstar - I -E/2 - 1, we compute f,(Xstart) as follows:

f (star) = yZexp -(Axstart)j1 -1TXstart < bt exp <2 1 -E

pm _ 1- E/2 I - E

(nm)2 n
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Algorithm 4 PacLPSolver(A, zstart, )

Input: A E Ri"', start E A, E E (0, 1/10].
Output: x E A.

1: A 41og(nm/), L <- T r <- L and ao <- .> parameters

2: T <- ^3rLlog(1/e) = O(n .1og(nm/E.iog(1/t). > number of iterations
3: x0 yo -- xstart, ZO 0.
4: for k - 1 to T do

5: ak <-- ak_1
6: Xk - TZk-1 + (1 - T)yk-1-
7: Randomly select i E [n] uniformly at random.

8: Define the vector () to be all-zero except at coordinate i, where it equals

rTP(Vif,(xk).

9: Zk Z = argminzEA 11|1z - Zk-11A + (nak( ,z)}. > See Proposition 6.13
1i df((i) Zk)10: Yk -y Xk + naL k(

11: end for
12: return YT.

Above, we have used that flxstart > Xstart = 1-e/2 where i is the column such thatn

||Aoiloo= 1. El

6.3 Our Packing LP Solver
To describe our algorithm, we first make the following choice of thresholding function

Definition 6.8. The thresholding function T P: [-1, oc) - [-1,11 is defined as follows

rf V)def V, V E [-1, 1];

Our algorithm PacLPSolver starts with some initial vector x0 = yo = Xstart (intro-

duced in Fact 6.7) and zo = 0, and is divided into T iterations. In each iteration, we

start by computing a weighted midpoint Xk <-- rZk_1 + (1 - T)yk_1 for some parameter

T E (0, 1), and then proceed to compute Yk and Zk as follows.

* Select i E [n] uniformly at random, and let ( - (0,= . . . , 0, TP(V), 0,. .. , 0)

be the vector that is only non-zero at coordinate i, where v = Vif,(xk) =

z=1 Aji expA-1 [, o).

* Perform a mirror (descent) step Zk <- z_ arg minZGA {{|z - Zk-1 +
(nak(i), z) I for some parameter ak < 1/n to be chosen later.

* Perform a gradient (descent) step Yk +- Y Xk + z - zk1).

Above, the reason that the the two steps on Yk and Zk are named after "gradient step"

and "mirror step" will become clear in the follow-up sections. We use the superscript

() on (', y(') and z) to emphasize that the value depends on the choice of i. We have
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used generic parameters T, ak, T in the above description and their precise values are
presented in Algorithm 4. 5

For readers familiar with accelerated first-order methods, the above triple sequence

{Xk, Yk, Zk}k is reminiscent of Nesterov's accelerated gradient method [118]. However,
our algorithm is not an instance of any variant of the known accelerated gradient
method. (This is so because, for instance, our objective fg(x) is not globally Lipschitz
smooth.)

In fact, our algorithm PacLPSolver is strongly motivated by our linear-coupling
technique introduced in [5] (see Chapter 4), a technique that allows one to linearly
combine gradient and mirror steps for a better performance. This linear coupling
requires one to use a triple sequence {x, yk, Zk}k.

We emphasize here that our iterates xk, Yk, Zk never leave the bounding box A:

Lemma 6.9. We have Xk, Yk, Zk e A for all k = 0, 1,... , T.

The proof of Lemma 6.9 is deferred to Appendix 6.B, and crucially relies on the
fact that our gradient and mirror steps are multiples of each other: yfj - x =

aL k Z - Zk-1). The key idea of this lemma was also known by Fercoq and Richtirik

[61].

We shall also prove in Section 6.E that

Lemma 6.10. Each iteration of PacLPSolver can be implemented to run in expected
O(N/n) time.

The key idea used in the implementation is to compute xk and Yk only implicitly.
For instance, explicitly maintaining Xk and computing p(Xk) require O(N) time per
iteration, but representing Xk implicitly as a linear combination of two less-frequently-
modified vectors reduces it to O(N/n).

In this section, we shall prove the following theorem in three steps.

Theorem 6.11. PacLPSolver(A, Xsart, E) outputs some YT satisfying

E-[f,(yT)] < -(1 - 3E)OPT .

6.3.1 Step 1: Mirror Descent Guarantee

Since our update z4 = arg min,,A {-1z - Zk11' + (ncaki, z)} -see Line 9 of

PacLPSolver- is written in the form of a mirror descent step from optimization, the
following inequality is a classical upper bound on the "regret" of mirror descent. Its
proof can be found in Appendix 6.B.

'We encourage the readers to ignore their specific values for now. Our specific choices of the
parameters shall become clearer and natural at the end of this section, and be discussed whenever
they are used.
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Lemma 6.12. (nakak , zi 1 -- u) < n2 L. X - +i),
U1112u A

Although defined in a variational way, it is perhaps beneficial to explicitly describe
how to implement this mirror step. Its proof is straightforward but can be found in
Appendix 6.B.

Proposition 6.13. If Zk-1 E A, the minimizer z = arg minz(E {.llz - zk_112 +
(6ei, z) } for any scalar 6 E R and basis vector ei can be computed as follows:

1. Z +-Z1-

2. Zi + Zi - 6111 Ao| IIc.
3. If zi < 0, then zi <- 0; if zi > 1|Ao ||, zi *- 1/|Ai||x o.

4. Return z.

As a simple corollary, we have the following fact

Fact 6.14. We have JzkJ - Zk_1,iI and y Xk -,i = L - Zk_1,i

1k~iI _<
LI|Aoi||I - L||Aoi||I'

6.3.2 Step 2: Gradient Descent Guarantee

We call our update rule y) <- xe + f (z - zk_) a gradient descent step, because

the following lemma guarantees f M(y,) f,(x,), that is, the objective only decreases;

moreover, the objective decreases at least by ' (Vfl (Xk), Xk - Y .

Lemma 6.15. We have fy(x) - f(yW) > 1(Vfp(xk),xk - yf)). In particular, this

implies f,(xk) fy(yW) because Vifi(xk) and Xk,i - y( have the same sign, while

Xk,i =yg for Ei.

Proof. Note that y = Xk + Aei for some step length A such that JAI L

according to Fact 6.14. We first prove this lemma in the case of V7if(xk) E (--1,]
so that ( = Vifp(xk).

f,(xk) - f (y = fy(xk) - fi,(xk + Aei) = -- fg(xk + Xei) dX

S -Vif,(xk) - L|A x|) dX

0(--Vif (xk) - AI - LJAA I -
A2

_-V if,1 (xk) -. - 2|A . _ __ __

- (Vfl(xk),y W - Xk)
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Above, ( uses Lemma 6.6.a, and Z uses Fact 6.14.
Next, we turn to the case of Vifi(xk) > 1.

f,1 (xk) - f(y) = f,(xk) - fg(xk + Ae) = - Vif,(xk + Xei)dX

1 | 1LXI) Vjfj,(x)dX

22o ,. 1  1
Vif,1(x)dx = ~(Vf,(xk), xk - yk).

Above, I uses Lemma 6.6.b and Z uses |xI < JA| < .]

6.3.3 Step 3: Putting All Together

In the following, we denote by il) E Rg> the vector that is only non-zero at coordinate

i, and satisfies (i) = Vifp(xk) -di E [0, oc). In other words, the full gradient

Vf,(xk) = Ei[nVif, (xk) = E[n(i + (i)]

can be (in expectation) decomposed into the a large but non-negative component
Ec [0, oo) and a small component c [-1, 11k. Recall that rj) is the part of the

gradient that was truncated, and did not contribute to the mirror step (see Line 9 of
PacLPSolver). Next, for any u E A, we can use a basic convexity argument and the
mirror descent lemma to compute that

ak (f,(Xk) - f (u)) < (akV f,(xk), Xk - U)

= (akVfp(xk), xk - Zkl1) + KakVfp(xk), zk_1 - u)

akVf,(Xk), Xk - Zk-1) + Ei (na7 , Zk_1 - u) + (nak (, Zk_1 - u

T 
(1 -T)ck Vf, (Xk), Yk-1 -Xk ) + Ei [knakr7k, Zkl -U) + ,Zk_ -u)

(6.4)

T (fM(Yk-1) - fi(xk))

+ E [ (nakT, z_1 - u) + n2a2L . Xk - Y) + WHzk- - - ||z - u

(6.5)

Above, o1) is because Xk = TZk_1 + (1 - T)Yk-1, which implies that 'r(Xk - Zkl1) =

(1 - T)(yk_1 - Xk). Z uses convexity and Lemma 6.12. This above computation is
motivated by [5] (see Chapter 4), and as we shall see below, it allows one to linearly
couple gradient and mirror steps.

Intuitively, the first (non-negative) term in the box of (6.5) is the loss introduced
by the large gradient 7(. This part was truncated so did not contribute to the
mirror step. The second (non-negative) term in the box is the loss introduced by
mirror descent on the small gradient (.
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Now comes an important observation. As shown by Lemma 6.16 below, the per-
formance of the gradient step -that is, the objective decrease of f,(xk) - f,(yk
is at least proportional to the loss incurred in the box.

Lemma 6.16. (nakr M, Zki-u)n- - 2 L.Kc i) , xi--y)) 3na L -(fp(xk) -f(y) .

Since the proof of the above lemma is a careful case analysis and several simple

applications of Lemma 6.15, we defer it to Appendix 6.B. We make two important

remarks.
" First, Lemma 6.16 is why we stated in the introduction that our PacLPSolver

incorporates two gradient steps: one with respect to (i) and one with respect

to ). We have intentionally forced the two steps to be identical, in order to

present our algorithm more cleanly.6

" Second, to properly upper bound (nakr/, Zk_1 - U), one needs to have some

good upper bound the coordinates of Zk_1. This is exactly the place we need our

redundant-constraint technique, which guarantees that each Zkli <- .

Plugging the above lemma into (6.5), we have

ak(f,(Xk) - f,(u)) (akVf,(Xk), Xk - U

o (1- )ak
< (yk-1) - fp(xk))

TM
+ Ei [3naL - (fp(xk) - fp(yk )) + 2zk1 - Ufl-A - 2 - UfA

<_ akf,(Xk) + (3nakL - 0zk)f (Yk-1)

+ Ei - 3nakL - f(y)) + _1 - U - _z -U1 . (6.6)k 2 A 2 II4A_

Above, I is because we have chosen ak so that nak nGr = cy - 1; and t is

because we have chosen r to satisfy U= 3L.

Next, recall that we have picked ak so that (3nL-1)ak = 3nL-ak1 in Algorithm 4.

Telescoping (6.6) for k = 1,..., T and choosing u* = (1 - E/2)x*, we have

-1=lakf,(u*) < 3 f,4(yo) - 3narTL - E[f,,(YT) + flz0 - u*1 2 < -3nriTL -E[f,(yT)] + OPT

Here, the second inequality is due to f,(yo) = fI,(s") < 0 from Fact 6.7, and the

fact that

|izo - U* = E = 1(u )2 . Aoi l < E" (X) 2 . |jAoillo < En X, = OPT

Finally, using the fact that ZEk' ak =r - (1 - f)k 3UaTL1 -- (1 --
1 )T), we rearrange and obtain that

E~f(yr Zk (*) + OPT (1 - - )T)f(u) 1 OPT
3naL 3naTL 3nL 3narTL

Choosing T = [3nLlog(1/E)~ so that = (1 -- )T < E. Combining this with

6One can in fact separate the two gradient steps as xk - Yk and Xk -+ y', but that will make the
algorithm description only more involved.
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the fact that f,(u*) < -(1 - E)OPT < 0 (see Proposition 6.3.a), we obtain

E[fp(YT)] < (1 - E)fp(u*) + E/3- OPT < -(1 - 3E)OPT

Therefore, we have finished proving Theorem 6.11.

It is now straightforward (but anyways proved in Appendix 6.B) to use Markov
inequality to turn the expected guarantee in Theorem 6.11 into a probabilistic one:

Corollary 6.17. With probability at least 9/10, PacLPSolver(A, Xstat, E) outputs a
(1 - O(E)) approximate solution to the packing LP program. The expected running
time is O( log(nm/e)lo(l/e)N).

6.4 Sketching the Main Ideas for Our Covering LP

Solver
For the reasons stated in the introduction, we are forced to build a covering LP solver
from scratch, rather than implicitly from PacLPSolver. We begin with a similar
relaxation of the covering LP (5.2). That is, we show in Appendix 6.5 that it suffices
to minimize

fg(x) p " exp (1-(Ax)j) +lTx

over all x > 0. For technical reasons, this objective is much harder to work with
than that of (6.3), because its gradient Vf,(x) E (-oc, 1]' may be very negative.
(This is why our prior work [7] or Chapter 5 intentionally avoided to solve covering
LP directly.)

This time, we again pick a random coordinate i E [n] at each iteration, and then
decompose Vif(xk) = +T. Quite different from PacLPSolver, we define q E (-o, 01
to be the (negative) large gradient component, and E [--IE, 1] to be the small

gradient component. Our main idea is to perform

" a gradient (descent) step with respect to 1, and
" a mirror (descent) step with respect to .

Note that we have intentionally truncated the gradient Vif(xk) at (negative) f,
rather than at 1 as in PacLPSolver. This is so because, as it is much harder to deal
with negative gradients in the covering LP case, we cannot perform both a mirror
and a gradient step anymore on the small component , as it was in PacLPSolver;
instead, we can only perform a single mirror step on . If were between -1 and 1,
and even if q were always zero, classical theory of mirror descent (or multiplicative
weight update) could only imply that the mirror step converges at a rate of c E-2.
Instead, we discover that if we truncate the gradient to ( E [--IE, 1], a negative-width
technique allows us to improve this convergence from E-2 to E-". This is the first
time that this gradient truncation technique is performed non-symmetrically.

Due to this weaker truncation at -xfi instead of -1, our gradient step enjoys
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a convergence rate that is only oc E-, matching that of the mirror step. This is
precisely why we truncate the gradient at VIE, as it provides the best truncation
tradeoff between gradient and mirror descent.

It is perhaps worth mentioning that our gradient step is equipped with an novel
analysis quite different from its classical counterpart in optimization theory. Tradi-
tionally, given convex function g(x), the convergence analysis only uses the simple
upper bound g(x) - g(x*) < (Vg(x), x - x*) on the objective distance to optimum.
If g(x) = e-x is a univariate function, x = -1, and x* = -100, this upper bound
becomes e- 1 ~ -I - e 100 < e 1 - 99, which is too weak to be used. This is the

place we need to use a distance-adjustment technique, which will effectively improve
the distance estimation to the optimum.

The detailed description and the analysis of our CovLPSolver can be found in
Appendix 6.6.

6.5 Relaxation of the Covering Linear Program
Recall that, for input matrix A E Rfi(", the covering LP in its standard form is

Covering LP: min{lTx : Ax > 1}
X>0

Let us denote by OPT the optimal value to this linear program, and by x* any optimal
solution of the covering LP (5.2). We say that x is a (1 + E)-approximation for the
covering LP if Ax > 1 and lTX < (1 + E)OPT. In our covering LP solver, we assume
that some 2-approximate solution x is given to the algorithm, and 1-TX= OPT' for
some OPT' E [OPT, 20PT].7

Again, we use the indices i E [n] for the columns of A, and the indices j e [in] for
the rows of A. We denote by Aoi the i-th column vector of A, and Ajc, the j-th row
vector of A. We can assume without loss of generality that8

min{|Aj*JJ.} = 1 . (6.7)

We now introduce the smoothed objective f,(x) that we are going to minimize
in order to approximately solve the covering LP. We skip the details regarding how
it arises from a relaxation using the generalized entropy regularizer, because it is
essentially a repetition of Section 6.2.

This smoothed objective turns each row of the LP constraint Ax > 1 into an
exponential penalty function so that we only need to require x > 0 throughout the
algorithm.

7This can be obtained via for instance the covering LP solver from Young [166], whose running
time is O(N log N). It can be relaxed to any constant approximation rather than 2-approximation.

8We can do so because first of all, we can assume minjE[]f]{ Ajoljc} > 0 since otherwise the
covering LP is infeasible. Next, we can scale A down by a factor of minjE[,J{H|Aj, 0JJ}; this also
scales down the optimal value OPT and solution x* by this same factor.
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Definition 6.18. Letting parameter p y 4,ogJ(m/)' we define the smoothed objective
f, (x) as

f(x) yf exp - Ax)) +llTX
j=1

over the simplex X E A d {x E Rn : x > 0 A Tx < 20PT'}.

We wish to study the minimization problem on f,(x), subject to the constraint
that each coordinate xi is non-negative and the coordinates sum up to at most
20PT'. The intuition that this smoothed objective f,(x) captures the original cov-
ering LP (5.2) is similar to that of the packing LP one. Note that our constraint
lTX < 20PT' is of course redundant; it will play some other important role in our
algorithm.

We begin with several simple but important properties about OPT and fl(x). In
short, they together imply that the minimum of f,(x) is around OPT, and if one can
approximately find the minimum of f,(x) (up to an error O(EOPT)), this corresponds
to a (1 + O(E))-approximate solution to the covering LP (5.2). Since the proofs of
these properties are completely analogous to their counterparts in packing LP, we
defer them to Appendix 6.C.

Proposition 6.19.

(a) OPT E [1, m].
(b) f,(u*) < (1 + E)OPT for u* = (1 + E/2)x* E A.

(c) f,(x) > (1 - e)OPT for every x > 0.
(d) Letting Xstart = (1 + E/2) - x4 + (-,... , 1), we have 1TstaI < 20PT' and

fi(xs
t art ) < 40PT.

(e) For any x > 0 satisfying f,(x) < 20PT, we must have Ax > (1 - E)l.
(f) If x > 0 satisfies fj(x) (1+O(E))OPT, then 9Tx is a (1+0(E))-approximate

solution to the covering LP.

(g) The gradient of fl(x) can be written as

Vf,(x) = 1 - ATp(x) where pj(x) = expi1(A )) (6.8)

6.6 Our Covering LP Solver

To describe our covering LP solver we make the following choice of the thresholding
function. Recall in the packing LP case, we have truncated each coordinate gradient
from [-1, oc) to [-1, 1]. For this covering LP case, we truncate each such gradient
from (-oc, 1] to [-3, 1], for some parameter = N /. The reason for this choice of
0 = V shall become clear in later sections; at high level, fi is the best tradeoff
between gradient and mirror descent.

Definition 6.20. The thresholding function TC: (-oc,1 -4 [-0,1] is defined as fol-
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lows

Tc (V) def{ 
v C [-0,11;
v < -0.

Our algorithm CovLPSolver starts with the initial vector xo = yo = zo = xsta

introduced in Proposition 6.19.d, and is divided into T iterations. In each iteration,
we start by computing a weighted midpoint Xk <- TZk-1 + (1 - T)yk_1 for some
parameter T C (0, 1), and then proceed to compute Yk and Zk as follows.

* Select i C [n] uniformly at random, and let (i) = (0, ... , 0, T P(v), 0.. . , 0)

be the vector that is only non-zero at coordinate i, where v = Vif,(xk) -
1 - Em7AL1  i exp (1-(Axk)j) E (-oc, 1].

" Perform a mirror (descent) step Zk - Z = arg minzes {Vzk- 1 (z) + ((1 +
7)nak(i), z)} for some parameters -y < 1 and ak < 1/n, where V(y) -

j_ 1 y log V + xi - y, is the so-called Bregman divergence of the generalized

entropy function (see Proposition 6.28 below).

(i) def
" Perform a gradient (descent) step Yk -- yk = Xk + 6ei for some value 6 that is

zero if Vif,(Xk) < -3, and strictly positive otherwise. The precise definition

of 6 can be found in the pseudocode described in Algorithm 5.

Above, the reason that the the two steps on Yk and Zk are named after "gradient step"

and "mirror step" will become clear in the follow-up sections. We use the superscript

() on (), y( and zk to emphasize that the value depends on the choice of i. We have

used generic parameters T, ak, T in the above description and their precise values are

presented in Algorithm 5.9

Since the xstar satisfies ITostar < 20PT' by Proposition 6.19.d, we have z0,

xstar c A. Also, the mirror descent step ensures
coordinates i, as well as Zk E A for all rounds k.
may not necessarily lie inside A, but will always
these properties as follows:

Vk c {0, 1, ... , T}, xk, yk > 0

that Zk,i > 0 for all rounds k and
However, we note that Xk and Yk

stay non-negative. We summarize

Zk > 0, Zk E A .

We shall also prove in Section 6.F that

Lemma 6.21. Each iteration of CovLPSolver can
O(N/n) time.

The key idea, is similar to that of the efficient
that is to implementation the updates implicitly.

be implemented to run in expected

implementation of PacLPSolver,

In this section, we prove the following theorem in five steps.

9We encourage the readers to ignore their specific values for now. Our specific choices of the
parameters shall become clearer and natural at the end of this section, and be discussed whenever
they are used.
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Theorem 6.22. CovLPSolver(A, start, E) outputs some YT satisfying

E[fp(yT)1 (1 + 9E)OPT

6.6.1 Step 1: Distance Adjustment
Classically, using the convexity argument one can obtain f4(xk)-f, (U) (Vfy(xk), Xk-

u) for every u E A. In particular, if u is the optimal point, the right hand side is a
simple upper bound on the objective distance from the current point f,(xk) to the
optimum. This simple upper bound is essentially used by all the convergence analyses
for first-order methods.

In this section, we strengthen this upper bound in the special case of u = u*
(1 + E/2)x*.

Define A be the adjusted matrix of A described as follows.

Definition 6.23 (Adjusted matrix A). For each row j c [m], if (Au*)j < 2 then we
keep this row and define Ai = A3j. Otherwise, -that is, if (Au*)j > 2- we define
Aj, ~ (Au*)2 - Aj. to be the same j-th row Aj, but scaled down by a factor of (A*)

It is clear from this definition that

Aji ;> Ai for all i G [n] and j c [m], while (1 + E)1 Au* < 21.

We now strengthen the classical bound f,(xk) - f,(u) (V f, (xk), Xk - u) as

follows.

Lemma 6.24 (Distance Adjustment).

fp(xk) - fi(u*) (1 - AT p(xk), Xk - u*) + (ATp(xk) - AT p(xk), u*) + EOPT

= (Vfp (xk), Xk - u*) + (ATp(xk) - ATp(xk), U*) + EOPT

At high level, ignoring the negligible term EOPT on the right hand side, the above
upper bound strengthens the classical bound due to the extra term of (AT p(xk) -
ATp(xk), u*). This extra term is always non-positive since A < A coordinate-wisely,
but may be very negative in certain cases.

The intuition behind the proof is to realize that the convexity inequality eb - ea <

(eb, b - a) on the exponential function becomes far from tight when a < 0. For
instance, when b = 2 and a = -10, we have e2 _ e- 10 < 12e2 ; when b =2 and
a = -100, we only get e2 _ e 1 0 < 102e 2 . Although e- 0 0 ~ e- 10 , the two upper
bounds are off from each other by a factor of 10. Therefore, when necessary, we can
'elevate' a to some higher value in order to obtain a tighter upper bound. We defer
the detailed proof to Appendix 6.D.

6.6.2 Step 2: Gradient Truncation

Let us separate the indices i E [n] into large and small ones.
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Definition 6.25. We make the following definitions.

" Let k E [-0, 1]' be the truncated gradient so that k,i = TC(Vif,(Xk)) for

each i E [n].

* Let Bk & {i c [n] -k,i = Vif,(xk)} be the set of large indices.

" Let rqk 0 (-oc,0] be the large gradient so that Vf,(xk) = k +krik. It is clear

that

r7k,i = 0 for every i ' B, and rl,i = (1 I) - (A p(xk))i for every i E B.

* Let rik C (-o, Oo)n be the adjusted large gradient so that

17k,i = 0 for every i ' B, and ijk,i = (1 + /) - (A p(xk))i for every i E B.

For the rest of this section, we denote by rjk) = (0,...,0,rk,1,o,...,0), the vector that

is zero at all coordinates other than i, and equals to Tiki at location i. We similarly

define (z) as well as i .

We next state the following key lemma that is very analogous to (6.4) from packing

LP. Note that if one uses TIM instead of Tik , the proof becomes identical to that of

(6.4). The reason that we can use iQ rather than rq thus giving a stricter upper

bound- is precisely due to the distance adjustment introduced in Lemma 6.24.

Lemma 6.26.

ft(xk) - fl(u*) < (1 4 (f,(yk-1) - fu(xk)) + Ei [(n{, Zk_ - u1)]

+ Ei I(f)f, -u*)] + EOPT.?L' k , '

The proof of the above lemma is a simple repetition of that of (6.4), but replacing

the classical distance upper bound with our adjusted one. See Appendix 6.D for

details.

6.6.3 Step 3: Mirror Descent Guarantee

Our update z arg minLf {V2k_,(z)-+-((1 + -y)naki), z) } is, by its definition, a

mirror descent step. We begin by explaining an attempt that is too weak for obtaining

the E-"' convergence rate.

Using the classical theory of mirror descent, it is not hard to repeat the proof of

Lemma 6.12 -although changing the distance function from 11 . 112 to V (y)- and

obtain that, for every u E A,

Ei [ak (nf , zk_1 -- u)] Vzl (') - Ei V (u) + O(a2n)OPT

The above inequality can be made true whenever i is between -1 and 1 for each

coordinate i, but only yields the known E- 2 convergence rate. Here, +1 is also know

as the width from multiplicative-weight-update languages [10].
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Fortunately, since we have required i to be only between -0 and 1, the O(a2n)
factor can essentially be improved to O(a 23n). This is an improvement whenever
3 < 1, and we call it the negative-width technique.'0 Formally, we prove that

de
Lemma 6.27. Denoting by 2y n, we have

E* Ei V W ( * +120PT - W .k I1+ I 1+7

The proof can be found in Appendix 6.D.
Although defined in a variational way, it is perhaps beneficial to explicitly describe

how to implement this mirror step. The following proposition is straightforward but
anyways proved in Appendix 6.D:

Proposition 6.28. If Zk_1 E A and Zk- > 0, the minimizer z = arg minzen V zk-l(z)

(6ei, z) } for any scalar 6 G R and basis vector ei can be computed as follows:
1. Z Zk-1.

2. zi <-zi - e-.
2. If 1 TZ > 20PT'

3.PT TZ Z.

4. Return z.

6.6.4 Step 4: Gradient Descent Guarantee

We claim that our gradient step xk -a yM never increases the objective for all choices

of i. In addition, it decreases the objective by an amount proportional to the adjusted

large gradient i(.

Lemma 6.29. For every i G [n], we have

(a) fy(xk) - fy(y M) > 0, and

(b) f,(xk) - fp(y - (-) u)

The proof of Lemma 6.29 is quite technical and can be found in Appendix 6.D.
At high level, one would generally hope to prove that the gradient step decreases

the objective by an amount proportional to the large gradient q), rather than the
adjusted large gradient ). If that were true, the entire proof structure of our covering
LP convergence would become much closer to that of packing LP, and there would be
absolutely no need for the introduction of the distance adjustment in Section 6.6.1,
as well as the definitions of A and i.

Unfortunately, if one replaces i with 77 in the above lemma, the inequality is far
from being correct. The reason behind it is very similar to that we have summarized

10 This negative width technique is strongly related to [10, Definition 3.2], where the authors
analyze the classical multiplicative weight update method in a special case when the oracle returns
loss values only between -f and p, for f < p. This technique is in fact related to a more general
theory of mirror descent, known as the local-norm convergence, that we have summarized in a
separate paper [4] which corresponds to Chapter 8 of this thesis.
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in Section 6.6.1, and related to the unpleasant behavior of the exponential penalty
function.

6.6.5 Step 5: Putting All Together

Combining Lemma 6.26, Lemma 6.27, and Lemma 6.29, we obtain that

f k(fp(Xk) - fp(U*-- akEOPT

S(1- (f(y -- fp(xk)) +]Ei ak (n), z_- - u*)l + Ei kCk(n ,*-U

(1 - T)ca t*

T (fp(Yk-1) - f,(xk)) + Vzk_ ) - E ( )

+ 120PT -MkO + Ei 12akn f

Remark 6.30. Above, the quantity "120PT - y00" is the loss term introduced by
the mirror descent. Unlike the packing LP case -see (6.5)- this loss term is not
dominated by the gradient step. (If one could do so, this would turn our CovLPSolver
into an E-1 convergence rate.)

The quantity "ak(n(', Zk_1 - u*)" is the loss introduced by the (adjusted) large

gradient i, and is dominated by our gradient step progress owing to Lemma 6.29.

This is similar to the packing LP case -see Lemma 6.16.

From here, let us use the special choice of T = 3. We obtain that12n~

- aY(f (*) EOPT

< 12a0PT + ( r)ak Vk ) - E z fLT () + V (j) )

Use the choice ak =1-i and telescoping the above inequality for k = 1,...,T, we

have

( a) (f,,(u*) + EOPT) _ ak) -127OPT + fi(yo) + Vz (-) -+E[fp(YT)]

We compute that T- ak = aT T I41 - T)k = aT < l) y, and recall that

- = 2arn. Therefore, we rearrange and get

aT E[fp (YT)] :5 CaT (fJ(U*) + EOPT) + OZT - 12700 PT + ao fit(YO)+ VZO ( )
T T T T

- [f,(YT)] 5 f,(u*) + EOPT + 24aQTnOPT + (1- T)Tf (yo) + Vz0 (j)

(6.9)

From this point, we need to use our special choice of the initial point xO = yo =

zo = Xstart (see Proposition 6.19.d), which implies that f,(yo) < 40PT and ITXstart <
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40PT. We also have

VO (-) Ves.t (-) = log + sta" - LI
+ 1+I _ 1 +7 (1 + Y)xit a' 1+7

< U* log(u* - n) + 40PT < (2log(nm) + 4) - OPT

Above, inequality X follows because x'ta" > 1/n for all i c [n] according to the
definition in Proposition 6.19.d; inequality Z follows because uj < (1 + E/2)x* <
(1 + E/2)OPT < (1 + e/2)m and 1TU = (1 + E/2)OPT, as well as the fact that E is
sufficiently small.

Finally, we choose 3 f0 , c 7 = 12,' and T= [ log(1/E)]. Substituting into
(6.9) all of these parameters, along with the aforementioned inequalities f,(yo) <
40PT and Vz 0 ( '$) < (2log(nm) + 4) - OPT, as well as f,(u*) < (1 + E)OPT from
Proposition 6.19.b, we obtain that

E[f,(yT)] < (1+E)OPT +EOPT +2EOPT + Ef,(yo) + E/12n (2 log(nm) + 4)OPT
e/12n#3

=(I+ 9E)OPT.

This finishes the proof of Theorem 6.22.
It is now straightforward to use Markov inequality to turn the expected guarantee

in Theorem 6.22 into a probabilistic one:

Corollary 6.31. With probability at least 9/10, CovLPSolver(A, Xstar, E) outputs a

(1 + O(E)) approximate solution to the covering LP program. The expected running

time is O( l(/) og(1/E) N).

Proof. Since for every x E A it satisfies f,(x) > (1-E)OPT according to Proposition 6.19.c,
we obtain that fl,(YT) - (1 - E)OPT is a random variable that is non-negative, whose

expectation E[fp(yT) - (1 - E)OPT] < 10E. By Markov bound, with at least proba-
bility 9/10, we obtain some YT satisfying f,,(YT) < (1 + O(E))OPT, which yields some
(1 + O(E)) approximate solution according to Proposition 6.19.f.

The running time follows from our efficient implementation in Section 6.F. D

APPENDIX

6.A Missing Proofs for Section 6.2
Proposition 6.3. Let p = 4 /and x* be an optimal solution for the packing

LP (5.1). Then:

(a) fg(u*) < -(1 - E)OPT for u* = (1 - E/2)x* E A.
(b) f (x) > -(1 + E)OPT for every x E A.
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(c) If x E A satisfies f,(x) < -(1 - O(e))OPT, then 1',x is a (1 -O(E))-

approximate solution to the packing LP.

Proof.

(a) We have l'u* = (1 - E/2)OPT by the definition of OPT. Also, from the

feasibility constraint Ax* < 1 in the packing LP, we have Au* - 1 < -E/2 - 1,
and can compute f4(u*) as follows:

fA(u*) = y expIU)i1) _1Tu* A , exp -(1E- /2)OPT

( nm - (1 - E/2)OPT < -(1 - E)OPT
(nm)2

(b) Suppose towards contradiction that f, (x) < -(1+E)OPT. Since f,(x) > -1TX,
it must satisfy that llx > (1 + E)OPT. Suppose that l'x = (1 + v)OPT for

some v > E. By the definition of OPT, we must have that Ax < (1 + v)1 is

broken, and therefore there exists some j C [m] satisfying that (Ax)3 > 1 + v.

In such a case, the objective

f,(x) > pt expv/ -(1 + v)OPT = . ((nm) )/ - (1+ v)OPT
4 log (nm) E

> (Q(n m ) 2 )/E -(1+ v))OPT > 0

giving a contradiction to the assumption that fp(x) < 0.

(c) Suppose x satisfies f,(x) < -(1 - O(E))OPT < 0 and we first want to show

AX < (1 + E)1. Let us assume that v = max3 ((Ax)j - 1) > 0 because otherwise

we will have Ax < 1. Under this definition, we have Ax < (1 +v)1 and therefore

ITx < (1 + v)OPT by the definition of OPT. We compute f,(x) as follows.

fm(x) ;> 1 expi -(1 + v)OPT > p (( n) I-E(1 + v)n

(m) ) I - (I+v)n.
4log(nm) E

It is easy to see that the above quantity is positive whenever v > E, and

therefore, to satisfy f,(x) < 0 we must have v < E, which is equivalent to

Ax < (I + E)I.

Next, because -1Tx < ft,(x) < -(1 - O(E))OPT, we know that x yields an

objective lTx > (1 - O(e))OPT. Letting x' = x, we both have that x'

is feasible (i.e., Ax' < 1), and x' has an objective ITx' at least as large as

(1 - O(E))OPT.
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6.B Missing Proofs for Section 6.3
Lemma 6.9. We have Xk, Yk, Zk E A for all k = 0,1,. . . , T.

Proof. This is true at the beginning as x0 = yo = .start (see Fact 6.7) and
zo = 0 E A.

In fact, it suffices for us to show that for every k > 0, Yk = EZ O 'yzZ for some

scalers -yi satisfying El -y = 1 and -y > 0 for each 1 = 0,..., k. If this is true, we

can prove the lemma by induction: at each iteration k,
1. Xk = TZk1 + (1 - T)Yk-1 must be in A because Yk-1 and Zk_1 are and T E [0, 1],
2. Zk is in A by the definition that Zk - arg minzEA }, and

3. yk is also in A because Yk = E1=0 'ykjz1 is a convex combination of the z1's and

A is convex.
For the rest of the proof, we only need to show that Yk = Z% 'Ykzl for 1

(I - 7-)-y_1 1 = 01 ... 1k - 2;
'){= (nQ.~U 1 - Yk) + T(1 - kL) 1 - k-i1;I-Y = (nak1_1L a~k L nak1-IL

na1kL

This is true at the base case because ao = It is also true at k = 1 because

Yi = x 1 + L(zi - zo) = z 1z + (1 - L Zl.o For the general k, we have

1
Yk Xk + (Zk - Zk-1)

nak L
1

= TZk-1 + (1 - T)yk-1 + (Zk - Zk-1)flOekL
k-2 1

= EZk- + -- T 7) 1(Z + Zk-1 +- (Zk - Zk-1)

1=0 nak-L nakL
k-2

(Z1 T(1+ zk
n _L n L nak1L naYkL

Therefore, we obtain Yk = E1= z as desired.

It is now easy to check that under our definition of ak (which satisfies ak ak1
and ak > aO = -, we must have -y 0 for all k and 1. Also,

k-2

5 = (1 -T)'y_1 + (rd1L -fl(Y) + T (1 -rial +) rlk
1 10(na~k _1L nek L nak _1L nak L

"We wish to point out that this proof coincides with a lemma from the accelerated coordinate
descent theory of Fercoq and Richtdrik [61]. Their paper is about optimizing an objective function
that is Lipschitz smooth, and thus irrelevant to our work.
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= T-) 1-+ +T 1 +=1
nak-- L ((c _L ~ -,L nakL)_1( naiL) C1kL

Lemma 6.12. When zf) = arg minzen {|Z - zi1 + (nak(1,z)}, we have

K , zk_1 - u) < n 2a2 . z),Xk - Y M + 1 Z_1 -- A -_ U2 - u112

Proof. Denoting by Va(b) = I|bb- a 12 as a function of b C A parameterized at a C A,
we have that ViVa(b) = ||Aoill* - (a - bi). In the optimization language, Va(b) is also

known as the Bregman divergence of the 1| . 11 regularizer.

We deduce the following sequence of inequalities:

Knakk(, Zk-1 - U n\rakd , Zk-1 - Z + Ok(k, Z -

knaa{ , Zk_ - z) + -- VVk_1(z z -- u)

(nak , Zk-1 - Zk - Zk-1 -- Z Zk1 -U A - z --

-! n2 a L ( ,k x - y) - xk -- yk| + z 1 -- 2 + - zM - u11

n2 a L -((dif,x -- Yk) + Zk_1 - U - z - d .

M(i)kd)z 1 hcHere, o is due to the minimality of zk = argminze {Vzk- 1 (z)+(nayk , z)}, which

implies that VVzk-l_(zk ) + nca) , u - z()) > 0 for all u E A. Step Z is due to the

"three-point equality" of Bregman divergence (cf. [40]), which can be checked for

every coordinate f E [n] as follows:

-M Mkl(z) - u) = jjAojioo(zk1, - ze) - u)

=A|AoiIloo - (4z1,f -kz) + 2U - Zke) - z-

( is by our choice of Yk which satisfies that Zk1 -- z = nczkL(xk - yW.

Proposition 6.13. If Zk-1 E A, the minimizer z = argminzen {lZ - Z + -+

(6ei, z) } for any scalar S E R and basis vector ej can be computed as follows:

1. Z &-z1.

2. zi +- zi - 6/IAosI|.
3. If zi < 0, then zi +- 0; if zi > 1/1|Aoi||x, zi <- 1/H|Aoil||o.
4. Return z.

Proof of Proposition 6.13. Let us denote by z the returned value of the described

procedure, and g(u) 1 Ju - Zk1 + (6ei, u). Since A is a convex body and g(-)
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is convex, to show z = arg minzGA{g(z)}, it suffices for us to prove that for every
u E A, (Vg(z), u - z) > 0. Since the gradient Vg(z) can be written explicitly, this is

equivalent to

n

6(ui - zi) + S A.er|o - (zi - Zk_1,i) - (Uf - zf) > 0

However, since zf = Zk_1,f for every f $ i, this is equivalent to

(6 + j|Aojjj - (zi - e1,i) - (Ui - zi) > 0.

There are three possibilities here. If zi = Zkl,i - 6/IAoillo then the left-hand side is

zero and we are done. Otherwise, if zi > Zkl,i - 6 /1Aoillo, then it must satisfy that

zi = 0; in such a case the left-hand side is the multiplication of two non-negatives,
and therefore non-positive. If zi < Zkl,i - 6/IIAos||,, then it must satisfy that

zi = 1/ |Ail|..; in such a case the left-hand side is the multiplication of two non-

positives, and therefore non-positive.

Lemma 6.16. KnakrQ, Zk_-l-u)+n2 2 L.( ), xk-y(i)) < 3nakL -(f(xk) -fg(y)))

Proof. Now there are three possibilities:

( If f= 0, then we must have (z) -Vif,(xk) E [-1, 1], and Lemma 6.15

immediately implies

Knak?7k I Zk-1 - u) + n'a2 L -(i), Xk - Yi))

n2aL- (Vf(Xk), Xk - Y M 2n2 ZL (fl(Xk) -

* If 77 > 0 and zki > 0, then we precisely have zki = Zk_1, - A~j. (see

Proposition 6.13), and accordingly yki =x - < xk, . In this case

1 22

n 7k-Vf 1(x) -u + a2 L .) Xk-Y)

1 2
<rtCak Wft (Xk). + n akL .Kif, X ()k)

<M) - ,( + n 2a2 L - (f, (xk ix - YM

SnaY kL - (Vf, (Xk), Xk - + n2aL - ff(x), xk - yU

< (2nakL - 2 2 kL) - (f,(xk) - f,(yk).

Above, ( follows from the fact that Zk_1 E A and therefore Zkl, < by

the definition of A, and u > 0; ( follows from the fact that Xk and yf) are only
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different at coordinate i, and ( = I < Vjf,(x) (since aM > 0); @ follows

from the fact that y) = Xk - ; and @ uses Lemma 6.15.

* If Tj > 0 and zfi = 0, then we have

Z(na f,x Zk) - u) + n2aL - (x), x -

< (nakVf,(4X,) -Zk.1,i) k n ~L (Vfji Xk),iXk - Yk~

! (nakVfp(xk), Zk_1 - z( + n2 L - (Vff(xk), Xk -yi

2 n2 L(0)fx , -y + n 2 a2L -(Vf,(xk ), xk -YM

: 4n2 aL - (f,(xk) - fl,(yk).

Above, ( is because u > 0, Vif,(xk) - + 1 > ?71 and Vifp(Xk) > (9);

uses the assumption that z(0 = 0 and the fact that Zk_1,t = z(' for every 2f i;k kfi

( is from our choice of Yk which satisfies that Zk_1 - Zk = makLxk - y)); and
T uses Lemma 6.15.

Combining the three cases above, and using the fact that fm(Xk) - f,(y)) > 0, we
conclude that

Knak7l, Zk_1 - u) - n2 a L. , Xk - yh) (2nakL - 4n2aL) - (f,(xk) -f,(yi)

< 3nakL - (f(xk) - fp(y )

Above, the last inequality uses our choice of ak (see Algorithm 4). DL

Corollary 6.17. With probability at least 9/10, PacLPSolver(A, xstar, E) outputs a
(1 - O(E)) approximate solution to the packing LP program. The expected running
time is O(og(nm/f) log(1/e) N).

Proof. Since for every x E A it satisfies f,(x) > -(1+E)OPT according to Proposition 6.3.b,
we obtain that fl,(YT)+ (1 + E)OPT is a random variable that is non-negative, whose
expectation E[fj(yT) + (1 + E)OPT] < 4E. By Markov bound, with at least probabil-
ity 9/10, we obtain some YT satisfying f,(YT) < -(1 - O(E))OPT, which yields some
(1 - O(E)) approximate solution according to Proposition 6.3.c.

The running time follows from our efficient implementation in Section 6.F. D

6.C Missing Proofs for Section 6.5
Proposition 6.19.

(a) OPT E [1, m].
(b) f,1 (u*) < (1+ E)OPT for u* , (1+ E/2)x* c A.
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(c) fi,(x) > (1 - E)OPT for every x > 0.
(d) Letting Xs tar = (1 + E/2) - x + ( ,... ), we have lTzstal < 2OPT' and

f(Xst art ) < 40PT.
(e) For any x > 0 satisfying f,(x) < 20PT, we must have Ax > (1 - E)1.

(f) If x > 0 satisfies f, (x) < (1 +O(E))OPT, then 11x is a (1+0(E))-approximate
solution to the covering LP.

(g) The gradient of f,(x) can be written as

Vf,(x) = 1 - ATp(x) where pj (x) exp (-Ax)A

Proof.

(a) Suppose that j* is the row that achieves the smallest infinite norm ||A3 0 l. over

all rows. Then, for any solution x E R> satisfying (Ag, x) > 1, we must have

ITX> 1/> I |A|oj= 1.

On the other hand, we can construct a feasible solution x as follows. Initialize

X = 0, and then for each row j, let us find the coordinate i that maximizes the

value of Aij among all columns i. Then, we increase xi by 1/Ajj = 1/||Ajc,.

After we have exhausted all the m rows, we arrive at some x > 0 satisfying

Ax> 1 as well as lTX = E 1/jAjojj c m.

(b) We have lTu* = (1 + E/2)OPT by the definition of OPT. Also, from the

feasibility constraint Ax* > I in the covering LP, we have Au* - 1 > e/2 - 1,
and can compute f,4(u*) as follows:

fi(u*) = t exp -A Tu* Aty exp +(1 + E/2)OPT

- (nm + (1 + E/2)OPT < (1 + E)OPT
(nm)2

(c) Suppose towards contradiction that f,1(x) < (1 - e)OPT. Since f,(x) < OPT <

m, we must have that for every j E [in], it satisfies that expI(1--Ax)j) <

f,(x)/p < m/p. This further implies (Ax), > 1 - E by the definition of p.

In other words, Ax > (1 - E)1. By the definition of OPT, we must then have

1TX > (1 - E)OPT, finishing the proof that f,(x) ;> TX > (1 - E)OPT, giving
a contradiction.

(d) Using the fact that Axsta"-1 > (1+EI/2)AxO -1 E/2-1, we compute f"(Xstal)
as follows:

ft(Xstar) = y expi( - ) lTXstart < t exp - +20PT + 1
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< m + 30PT < 40PT.
- (nm)2

Also, we have 1TX,,,, < (1 + E/2)OPT' + 1 < 20PT'.

(e) To show Ax (1 - E)1, we can assume that v = max3 (1 - (Ax)j) > E because
otherwise we are done. Under this definition, we have

((nm V/6
> -( >> 20PT

4log(nm) E

contradicting to our assumption that f,(x) < 20PT. Therefore, we must have
v < E, that is, Ax > (1 - E)1.

(f) For any x satisfying f, (x) < (1+O(E))OPT < 2OPT, owing to Proposition 6.19.e,
we first have that x is approximately feasible, i.e., Ax > (1 - E)1. Next, be-
cause 1TX < fi(x) < (1 + O(e))OPT, we know that x yields an objective
ITx < (1+ O(E))OPT. Letting x'= 1 ox, we both have that x' is feasible (i.e.,
Ax' > 1), and x' has an objective 1Tx' at most (1 + O(E))OPT.

(g) Straightforward by some simple computation. D:

6.D Missing Proofs for Section 6.6
Lemma 6.24.

fP(x) - f,(u*) < (I - ATp(xk), Xk - U) + (Tp(xk) - ATp(xk), u*) + EOPT

= (Vfg(xk), xk - U*) + (A Tp(x ) - A

Proof.

/ 1 (1-(Axk)j) i1(1-(Au*)j)

f4(xk) - fp(u*) = Z exp - -exp -
j=1

jD =( 1-(Axk)j) _ (1i-(Au*)j)

)

a e pi -(Au) (1 (Axk) 3) +
< exp (1(Axk- A~kj))

jrzl

=

j=1
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TP(xk), u*) + EOPT

+ (1, xk - U*

+ K1, Xk - U*) + p -m - eXp

(1, Xk - u*) + EOPT

pj (xk) ((Ai*) - (Axk)j) + (1, xk - u*) + EOPT

Pj (Xk) ((Au*)j - (Axk)j) + (1, xk - u*)

f, (x) > p expi /



m

+ Pj (Xk). ((Au*)j - (Au*)j) + EOPT
j=1

= (-Ap(xk), Xk - U*) + (1, Xk - u) + (AT p(xk) - A Tp(xk), u*) + EOPT

Above, J is because if (Au*)j # (Au*)j for some j, then it must satisfy that (AU*)j =

2, and therefore - exp -lAu) < - exp u'"i) + exp-1/A. Z uses the convexity
inequality of eb - ea < (eb b - a), and the fact that pm exp- 1/" < EOPT. L

Lemma 6.26.

fp(xk) - fg(u*) < ( w) (fg(Yk-1) - f,(xk)) + Ei [(n(), Zk_1 - U

+Ei )+EOPT

Proof.

(fp(xk) - fy(u*)) - EOPT

(Vf(Xk), xi - u*) + (ATp(xk) - A p(xk), *)

= (Vfp(xk), Xk - Zk-1) + (Vfp(xk), Zk-1 - u*) + (ATp(xk) - AT p(xk), u*)

S T) (Vfp(xk), Yk-1 - Xk) + -Vfg(xk), Zkl - u*) + (A Tp(xk) - AT p(xk), *)

® (1 -n)
T (f,(Yk-1) - f,1(xk)) + (Vfp(xk), zk1 - u*) + (AT p(xk) - AT (xk), U*

T T) (fp(Yk-1) - ftL(Xk)) + K k +%l, Zkl - u*) + KA Tp(xk) - AT p(Xk),U)

T
= (fp (yk_1 --I fp (xk) + ( k, -- I/,z_ - u*) + p(xk) - A T p (xk) , U*)

o (1 --T)
T (fi(Yk-1) - fp(Xk)) - (a, Zkl- - U*) + (-ik, U*)

T)(fl-(Yk--1) - fp(Xk)) + Ei [(n(', Zk_1 - U*) -+ (--ng, lu .k L

Above, ( is due to Lemma 6.24. @ is because xk = TZk1 + (1 - T)Yk-1, which implies
that T(Xk - Zk_1) = (1 - T)(Yk1 - Xk). @ is by the convexity of f,(.). ) is because

(rik, z1) < 0, since 77k < 0 while Zk1 ;> 0.
S needs some careful justification: for every i ' Bk, we have (AT p(xk)-AT p(xk))-

7/k,i - 0 - 0 = -7k,i; for every i c Bk, we have

(ATP(xk) - ATp(xk))i - lk,i = (ATp(xk) - ATp(xk))i - ((1+ ) - (ATp(xk))i)

- -((1 +) - (AT p(Xk))i) = -9k,i

where the two equalities follow from the definitions of rqk,i and k,i (see Definition 6.25).

173



D

Lemma 6.27. Denoting by y 'f 2 aTn, we have

- Ej V( ) +12OPTI e 1k +-Y

Proof. Define w(x) d Ei xi log(xi) - xi and accordingly, V(y) = w(y) - (w'(x), y -
x) - w(x) => j y, log Y + xi - yi. We first compute using the classical analysis of
mirror descent step as follows:

Yak n (, Zk-1 )+ k U Zk- U

(1 + ) z( - * ) + (1 + 7)ek (na ( , Zk_1 - zi/ ki +i __kk

w )(z ), k - 1 + (I+ Y)ak (n (, Zk_1 zMSW'(zk_) -

- (w(1+ )

W(Zk-1) - Zk-1

U *
- w(z42) - / (z )

+ (W(Zk1) - w(z j) - Kw'(zk_1), Zk_1 - z

= Vzk1 U) ~)(U*Z k 1

+ (1 )k(n ( , Zk -

+ (1+ &)ck(n ( ), Zk-1 - Z - zk1 (z . (6.10)

Above, ) is because zj = arg minz- {Vzk 1 (z) + ((1 -Y)akn() , z)}, which is equiv-
alent to saying

Vu E A, (ze_1(z )) + (1 + -)akn() , u - z>) 0

+=> VU E A, (w'(z i) - W'(Zk1) + (1 + )ckn( ), u - Z ) : 0

In particular, we have I'T - IT (1+e/)x* < 20PT < 2OPT' and therefore substi-

tuting u =u* E A into the above inequality we get ).

Next, we upper bound the term in the box:

(1 i Y)ak(n() , Zk-1 - Zk)) -- Ia (zki)

(1 -)aknk,i - (Zk-1,i - Zk) - (Z og

(1 + ')akn~k,i -
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(i)

zki+ Zk-1,i - zki
Zkl-,i

k--1

z M

Zi - Zk-1 12
(Zk-li - z) 2 max{z , zk_,i}

Ej 0k n(')k_ - < Vk, U )
k I k-1- U+



z - i - Zk-l,i 2
+ 

(1+ )akn (k-l, (_,- 4Zk,i

< (1+ Z)2 Z_1,i (aCknGk) 2 < 2Zk_1,2 * (c ,i) < Z _1,i - afnlG,iI

< Zk-,i 'Yaknk,i + 2 Zk-1,i -'akr/ =Yak(n(kZk1) + 2 Zk-1,i 't akn= - (6.11)
(i)

Above, ( uses the fact that for every i' -/ i, z0, log + zk_,i, - zkz > 0. ( uses

the inequality that for every a, b > 0, we have a log 2+ b - a > ("-b).12 @ uses theb - 2 maxf a,b}

fact that z1 < 2Zk_1,i. 13  ) uses Cauchy-Shwarz: ab- b2/4 < a2 . ( uses (1+-Y) 2 < 2.

( uses I G,iK 1 and -y = 2 aTn> 2 k2an. ( uses 4,i > --3.
Next, we combine (6.10) and (6.11) to conclude that

aCkndk, Zk_1 - U*) K Vzkl ) - VKu( ) + 2Zk-_1,i -yanknk ~ 1+7 k 1+ -

Taking expectation on both sides with respect to i, and using the property that
ITzk_1 < 30PT' < 60PT, we obtain that

U**

Ei[akn(), Zk1 - U*)] Vzk-_ ( ) - E [Vo (i1 + ) + 120PT -yoa/ .E

Proposition 6.28. If Zk-1 E A and Zk_1 > 0, the minimizer z = arg minzEA { Vz_1 (W+
(Je2 , z) } for any scalar 6 E R and basis vector ej can be computed as follows:

1. Z+-Zk-1

2. zi +-zzi - e-,
If lTZ>2PT3. f Tz> 20PT' z +- -11'z.

4. Return z.

Proof. Let us denote by z the returned value of the described procedure, and g(u) d,1

VZkl(u) + (6ei, u). Since A is a convex body and g(-) is convex, to show z

arg minzGA{g(u)}, it suffices for us to prove that for every u E A, (Vg(z), u - z) > 0.

Since the gradient Vg(z) can be written explicitly, this is equivalent to

6(ui - zi) + log Z - (Uf - Zf) > 0
f=1 Z -,

If the re-scaling in step 3 is not executed, then we have zj = Zkl,f for every f -

1 2This inequality in fact corresponds to a local strong convexity property of w(-). We have used
this technique in our paper [7] (see Chapter 5).

13 This is because, our parameter choices ensure that (1 + y)akn < 1/23, which further means

-(1 + -)akn) < 1/2. As a result, we must have zM < Zk-li - e 0.5 < 2 Zk_1,i (see the explicit
definition of the mirror step at Proposition 6.28).
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and z2 = Zkli - e-6; thus, the left-hand side is zero so the above inequality is true for
every u E A.

Otherwise, we have ITz = 2OPT' and there exists some constant factor Z > 1
such that, ze = zkl1,f/Z for every f # i, and zi = Zkl,i - e-6/Z. In such a case, the
left-hand side equals to

(Ui -- zj) -( - 6) +E --log Z -(Ut - z).

It is clear at this moment that since log Z > 0 and 1lTu < 2OPT' = lTzI
quantity is always non-negative, finishing the proof.

the above

l

Lemma 6.29. For every i E [n], we have

(a) f,(xk) - f, 0, ard

(b) f4(xk) - ft(y - (-i ,*)

Proof of Lemma 6.29 part (a). Since if i ' Bk is not a large index we have yk = Xk

and the claim is trivial, we focus on i C Bk in the remaining proof. Recall that

Yk = Xk + 6ei for some 6 > 0 defined in Algorithm 5, so we have

fl(xk) - fp(y) = (-VfpJxk + Tei), ej)dT =
r=0 =0

((Aoi, p(xk + Tel)) - 1)dr .

it is clear that (.4i, P(xk - Tei)) decreases as T increases, and therefore it suffices to
prove that (Aoi, p(xk + 6ei)) > 1.

Suppose that the rows of Aoi are sorted (for the simplicity of notation) by the
increasing order of Aj,j.

j* c [m] satisfying that
Now, by the definition of the algorithm, there exists some

Aii - pj(xk) < 1 + #3 and EAj,i pj(xk) > 1 -
.2 i

Next, by our choice of 6 which satisfies 6 = 3< 413 for every j < j*, we have
2j*, A~

Pj(Xk - 6ei) = Pj(Xk) - exp -> Pj (Xk) - exp-/2 Pi (Xk) - (I - //2) ,

and as a result,

(AQj, p(xk-- 6 ei) > 5Aj,i-pj(xk+6ei)
.2 3*

S(1-3/2)5 A,.pj(xk) > (1-#/2)(1+/) > 1
jij*

j J*1
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Proof of Lemma 6.29 part (b). Owing to part (a), for every coordinate i such that

qk,i > 0, we automatically have f,(xk) -- f,(y)) > 0 so the lemma is obvious. There-

fore, let us focus only on coordinates i such that ik,i < 0; these are necessarily large
indices i E B. Recall from Definition 6.25 that i/k,i = (1 + ) - (AT P(Xk))i, so we have

ZA,i pj(xk) - (1 + > 0 .
j=1

For the simplicity of description, suppose again that the rows of the i-th column
is sorted in the non-decreasing order of Aj,,. That is, A1 ,i < ... Am,i. The definition
of j* can be simplified as

ZAj,i -pj(xk) < 1+3 and A,i -pj (x) 1+ .
j<j* 3 *

Let j" E [m] be the row such that

Zj,i -pj(xk) < 1 + and ZA,i pj (x) >1 + .

Note that such a jb must exist because E"M A, -p3 > 1 + . It is clear that j>' j*,
owing to the definition that A2 i < Aji for all i E [n], j c [m]. Defining = < 6,

the objective decrease is lower bounded as

f,(Xk) - fi(yk = (-Vf,,(xk+ -ref), ei)dT = ((Aoi, P(x + T-e)) - 1)dT
1=0 '=0

> ((Ai, p(xk + ei)) - 1) dT
J =0

J - P, (Xk + Tel) - 1)dT + Aj,i - pj (Xk + Te%)dT
7_=0 - j~b J9r=

where the inequality is because 6 < 6 and (A0 i, p(xk + Tei)) > 1 for all T < 6 (see
the proof of part (a)).

Part I. To lower bound I, we use the monotonicity of pj(-) and obtain that

I= 6 Aj,i - pj (xk + Tei) - ) d > - (Z A,i * pj (xk + 6bei) - i)1=0
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However, our choice of 6b = 3 < -0 for all j <j' ensures thatHoee,2A ib i - 2Aj_

-Ap+ >)S ji-P(k i j~ j(k x > E(A,i - P(xk) - (1 -- /2)

Therefore, we obtain that

- 0/2) Aj, - p (Xk) - 1) > A,i - Pj (Xk) - I) ,

where the inequality is because (- ) Z_<3 A3 ,2 -p3 (xk) > -(1+3) > j whenever

< -} (or equivalently, whenever E < 1/9).
Now, suppose that Ej<jb A,ip - p(x) -( +) = b-Ap, - Pb (xk) for some b E [0, 1].

Note that we can do so by the very definition of j. Then, we must have

SA,i - Pj (Xk) - 1 Z,i 5 P (Xk) + Ap,, - pp(x) - 1
Sj<jb

= (1 + /) - (1 - b)A 2 ' pjk(xk) + Ajb,i - p - 1

Therefore, we conclude that

S> 6
3 Ai, i - P (Xk) - I) > 3- b - A P b pp (Xk)

6A -4
Zj,i -Pj (Xk) - (I + /3 > Y11/3

Above, the last inequality is because ?4 -Ab,i < (Ab, u*) < 2 by our definition of
the adjusted A.

Part I'. To lower bound I', consider every 3 > jb and the integral

6b

f=0
AP,i - Pi (Xk + Te)dT .

Note that whenever r < , < 2' = 6" we have that p (xk+ e) -Pj (xk) -e--8/2>

Pj (xk). Therefore, the above integral is at least - Ay,i -p (xk). This implies a
lower bound on I':

I' > 4A -Aji -p(xk)
j>jb j,i

U -Aj,i pj (xk)
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I > (1

= 0
6Ajb ,i

.Pp (Xk)

U* - Z,i - pj (xk) -- O+

> A0 .



where again in the last inequality we have used u* - 2 (AK, u*) < 2 by our
definition of A.

Together. Combining the lower bounds on I and I', we obtain

f,(xk) - f,(y) + 1'2 -u ( ,i - (Xk) -12 ( L

6.E Efficient Implementation of PacLPSolver

In this section, we illustrate how to implement each iteration of PacLPSolver to run
in an expected O(N/n) time. We maintain the following quantities

Zk E Rno, azk E R', y/ E R" ayk E R", Bk,1, Bk,2 C R+

throughout the algorithm, so as to ensure the following invariants are always satisfied

Azk = azk -, (6.12)

Yk = Bk,1 ' Z + Bk,2 Y'k , Ayk = Bk,1 -Azk + Bk,2 - ay . (6.13)

It is clear that when k = 0, letting azk = Azo, y' = yo, ayk = Ayo, Bk,1 = 0, and

Bk,2 = 1, we can ensure that all the invariants are satisfied initially. We denote Aji Ho
the number of nonzeros elements in vector Aoi. In each iteration k = 1, 2, ... , T:

* The step Xk = TZk1 + (1 - T)yk-1 does not need to be implemented.

* The value Vif(xk) requires the knowledge of pj(Xk) = exp-A((^x)-1) for each j
such that Aij # 0. Accordingly, we need to know the value

(Axk)j = rF(AZk_1)j+(1--r)(Ayk-1)j = (T+(1--r)Bk_1,1) (Azk-1)j+(1-T)Bk-1,2ayk1

for each such j. This can be computed in 0(1) time for each j, and O(jjAoijo)
time in total.

* Recall that the step Zk 4- arg minzEA k11A + (naki), Z)} can be

written as Zk = Zk-1 + 6ei for some 6 E R that can be computed in 0(1)
time (see Proposition 6.13). Observe also that Zk = Zkl1 + 6ei yields Yk =

TZk-1 + (1 - )yk+-1 + n due to Line 6 and Line 10 of Algorithm 4. Therefore,
we can perform two explicit updates on Zk and azk as

Zk - Zk-1 + 6ei , aZk +- AZk-1 + 6Aoi
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and two implicit updates on Yk as

Bk,1 = T + (1 - T)Bk-l,1 , Bk,2= (1 - T)Bk-1, 2

y'- y'1 1 + 6eA ( + Bk 1 k -i1
Yk k ,+6 i-( -Bk, 2  flOkL Bk2 ) aYk + a k 6A . Bk, 2  flkL Bk, 2 )

It is not hard to verify that after these updates, we have

Yk = Bk,1 -Z + Bk,2 - yk

= Bk,1 - (Zk_ + 6ei) + Bk,2* / y1 + 6e. - - '
(Yk Bk,2

= Bk,1 Zk 1+ Bk,2 - (yk_ 1 + 6ei -(nikLB, 2

6e-
= Bk,1 Zk 1+ Bk,2 - Yk_1 +

nak L

1 1\\
+H

niak L Bk,2"

= (-r + (1 - T)Bk1,) - Z1 + ((1 - T)Bk-1, 2 ) - y'- 1 + 6
na L

6ei
= TZk-1 + (1 - )Yk-1 + -ek

nakL

One can similarly verify that Ayk = Bk,1- Azk+Bk,2 -ayk equals Ayk = TAzk-1 +
(1 -T)Ayk_ 1 In sum, these updates are dominated by the updates on Azk
and ayk, each costing an O( Aj IHIo) running time, and ensure that the invariants
in (6.12) and (6.13) are satisfied at iteration k.

In sum, we only need O(||Aj0jo) time to perform the updates in PacLPSolver for

an iteration k if the coordinate i is selected. Therefore, each iteration of PacLPSolver

can be implemented to run in an expected O(Ej[jIAojIjo1) = O(N/n) time.

6.F Efficient Implementation of CovLPSolver
In this section we illustrate how to implement each iteration of CovLPSolver to run

in an expected O(N/n) time. We maintain the following quantities

z' E R +, SZk E R+, sumzk E R+, azk E R', y/ E R, ayk C R"', Bk,1, Bk, 2  R+

throughout the algorithm, so as to maintain the following invariants are always sat-

isfies

Zk = zk/SZk,

Yk = Bk,1 Z' + Bk,2 - Y,

sumzk= IZk,

Ayk = B,1 - azk+ Bk,2 - ayk

Azk= azk/szk, (6.14)

(6.15)

It is clear that when k = 0, letting z'k = ZO, SZk = 1, sumzk = lTzO, azk = Azo, y' = yo,
ayk = Ayo, Bk,1 = 0, and Bk,2 = 1, we can ensure that all the invariants are satisfied
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initially.

We denote by |A illo the number of nonzero elements in vector Ao.. In each

iteration k = 1, 2, ... , T:

* The step Xk = TZk_1 + (1 - T)ykl does not need to be implemented.

" The value p3 (Xk) = expi(1-(Axk)) for each j only requires the knowledge of

(Axk)j = T(AZk1)j+(1-T)(Ayk_1)j = (T+(1-T)Bk_1,1) az_1, +(1-T)Bk-1,2ayk1j
SZk-1

This can be computed in 0(1) time.

* The value Vif(xk) requires the knowledge of Pj (Xk) for each j C [m] such that

Aij # 0. Since we have Aj o such j's, we can compute Vif(xk) in 0( Ai o)

time.

* Letting 6 = (1+-y)nai~k, recall that the mirror step Zk +- arg min,{A z)+

(6ei, z) } has a very simple form (see Proposition 6.28): first multiply the i-th

coordinate of Zkl by e-6 and then, if the sum of all coordinates have exceeded

2OPT', scale everything down so as to sum up to 20PT'. This can be imple-

mented as follows: setting 6, = z'_1 ,j(e- 6 - 1),

z' <- Z'_1 + 6ej , azk azk-1 + 61A ,

sumzk <- sumzk -I- 61 , szk <- s- max { 1, Szm72 }
These updates can be implemented to run in O( Aji Io) time, and they together

ensure that the invariants in (6.14) are satisfied at iteration k.

* Recall that the gradient step is of the form Yk +-- Xk + 62 - ej for some value

62 > 0. This value 62 can be computed in O(11A I Io) time, since each pj (xk) can

be computed in 0(1) time, and we can sort the rows of each column of A by

preprocessing.

Since Yk = Xk + 62 -ej = TZk1- + (1 -- +)yk_ +6 2 ei, we can implement this update

by letting

Bk,1 = + (1 - T)Bkl,1 , Bk,2 = (1 - )Bk-1,2
y +y1+61 + 62 ,y ay_ + Aoi Bkl

6 
+ 62JkYk'_,+ i- ay Bk,2 B

k k,2 Bk,2J ak-y---1*B,

It is not hard to verify that after these updates, we have

Yk =B,1 -+Bk, 2 -y = Bk,1 +(z1 -6 1 e) + B1,2 y e (- B1 1  2

= Bk,1 Z 1 + Bk,2 * (y'-1 + 62ei/Bk,2)
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=-Bk, -z' + Bk,2 -1 + 62 ei

= T + (1 - T)Bk_1,1) - Z'_1 + ((1 - T)Bk-1,2) -1 + 62 ei
SZk-1

- TZk-1 (1 - T)yk-1 + 62 ei

One can similarly verify that Ayk = Bk,1 - azk+ Bk, 2 ayk equals Ayk = TAzkl +
(1 - T)Ayk-1 + 62Aoi. These updates can be implemented to run in O(jAjIjo)
time, and they together ensure that the invariants in (6.15) are satisfied at
iteration k.

In sum, we only need O(HjAilo) time to perform the updates in CovLPSolver for
an iteration k if the coordinate i is selected. Therefore, each iteration of CovLPSolver
can be implemented to run in an expected O(Ei[|Ajijjo]) = O(N/n) time.
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Algorithm 5 CovLPSolver(A, zstartI E)

Input: A E R"x, Xstar E A, E E (0,1 /10].
Output: X E X.

1: p - ,4 og(nm/) - T -n

2: T &- [ log(1/E)] - Q(Og(fm/ EOg(1/ ) n).

3: a (-)T and <-

4: X0  yo = Z0 *- Xstart

5: for k +- 1 to T do

> parameters

> number of iterations

> so that OT = 1 and -y = 2arn

ak +- rT7 k-1-

Xk - TZk-1 + (1 - T)Yk-1.

8: Randomly select i uniformly at random from [n].

9: Define (t) to be a vector that is only non-zero at coordinate i, and equals to

T'(Vif,(xk))
> recall from (6.8) that Vif,,(xk) = 1 - ,L1 Aj,i expi (1-(Axk)i)

> recall from Definition 6.20 that T'(V) d V, v E [-3,1];

10: Zk +- Z = arg minzEA { zk- 1 )Zt+k ,z)}-
Proposition 6.28

11:

12:

13:

> See

if Vif,(xk) < -0 then
Denote by 7r the permutation that sorts the entries of Ai into Ar(i),j <

< A7r(m),i .

Pick j* E [m] such that Ar()

p-7(j) (Xk) >_ I + 0.

,i* P(j)(Xk) < 1 + / but Ejg. A,(j),i -

Such a E [m] must exist because Em 1 Aji -Pi (Xk) > 1 + /.
(i) def

yk Y- y xk -|- ei where 6 = 2 3
2A, *)i

else
(i) def

Yk Yk = Xk-

end if
end for
return YT.
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Chapter 7

Using Optimization to Obtain a
Width-Independent, Parallel,
Simpler, and Faster Positive SDP
Solver

This chapter is based on an unpublished result of the author, and its further
edits can be found at:

http: //arxiv. org/abs/1507. 02259.

We study the design of polylogarithmic depth algorithms for approximately solving
packing and covering semidefinite programs (or positive SDPs for short). This is a
natural SDP generalization of the well-studied positive LP problem.

Although positive LPs can be solved in polylogarithmic depth while using only
log 2 n/E3 parallelizable iterations [7], the best known positive SDP solvers due to Jain
and Yao [84] require log 14 n/E1 3 parallelizable iterations. Several alternative solvers

have been proposed to reduce the exponents in the number of iterations [85, 129].
However, the correctness of the convergence analyses in these works has been called
into question [129], as they both rely on algebraic monotonicity properties that do
not generalize to matrix algebra.

In this paper, we propose a very simple algorithm based on the optimization
framework proposed in [7] (see Chapter 5) for LP solvers. Our algorithm only needs
log 2 n/&3 iterations, matching that of the best LP solver. To surmount the obstacles
encountered by previous approaches, our analysis requires a new matrix inequality
that extends Lieb-Thirring's inequality, and a sign-consistent, randomized variant of
the gradient truncation technique proposed in [7, 6].
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7.1 Introduction
Solvers for linear programs (LPs) and semidefinite programs (SDPs) are important al-
gorithmic tools for many computational tasks, spanning the fields of computer science,
operations research, statistics, and applied mathematics. Although polynomial-time
generic solvers for LPs and SDPs have been known for a long time, their performance
is often unsatisfactory in the big-data scenario.

In the past two decades, a significant amount of attention has been paid towards
a special class of LPs and SDPs, known as positive LPs [101] and positive SDPs [89]
respectively. At a high level, positive LPs are characterized by non-negative variables
and a non-negative constraint matrix; similarly, positive SDPs are described by posi-
tive semidefinite (PSD) matrix variables and a family of PSD matrices as constraints.
In this paper, we are interested in solving positive SDPs, formally defined as follows.

Positive SDP. Given m x m PSD matrices A 1 , A 2, ... , An, positive SDP (after
putting in its standard form) refers to the following pair of SDPs: 1

Packing SDP: maxx>o {Tx : En , xiAi I} , (7.1)

Covering SDP: miny.o {Tr(Y) : Ai * Y > 1 Vi E [n]} . (7.2)

Since the two programs are dual to each other, let us denote by OPT the optimal
value to both of them. Also, let x* be any optimal solution for the packing SDP (7.1).
We say that x > 0 is a (1 - E)-approximation to the packing SDP if En 1 xiAi - I

and lTX > (1 - E)OPT, and Y >- 0 a (1 + E)-approximation to the covering SDP if
Ai e Y > 1 for all i E [n] and Tr(Y) < (I+ E)OPT.

In this paper, we assume without loss of generality that

minie[n]{I|Ai|s,,e} = 1 where ||Aill,,e is the spectral norm of Ai

since otherwise one can scale all Ai by a constant factor, and the solution OPT as well
as x* are only affected by this same constant factor. We denote by A = (A1 , . . . , A,).

History. Positive SDP instances have been used to model a large numer of computa-
tional problems, such as MAX-CUT [89, 78], sparse PCA [78], coloring [78], the ARV
relaxation of SPARSESTCUT [77] and BALANCEDSEPARATOR [11, 126], and many

others. Positive SDPs also found application in computational complexity, where

they were crucial in establish the QIP = PSPACE equivalence [81], as well as in quan-

tum interactive proofs [82] and quantum zero-sum games [83]. In addition, techniques

developed in this line of research have also inspired many other important results,

most notably regarding spectral graph theory [125, 126, 4].

'The most general form of covering SDP can be written as follows. Given m x m PSD matrices
CA,., An, and non-negative scalars bl, ... , b, a general covering SDP is to

minimize C e Y subject to the constraint that Ai * Y > bi for each i c [m] and Y >- 0.

It is a simple exercise, but anyways proved in [129, Appendix A], to see that the above general form
can be easily translated into our standard form. This is also true for packing SDP.
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While there has been a lot of research on the fast approximate solution of positive
LPs [101, 131, 24, 165, 113, 32, 25, 118, 47, 17, 115, 10, 92, 166, 7, 6], the more
general positive SDP case has lagged somewhat behind. Most known positive SDP
solvers [9, 11, 83, 82, 81, 77, 78] demand a parallel running time that is polylog(nm/E) -
poly(p) in order to produce a (1 &) approximation of the optimal value. In this
expression, p is a "width" parameter that depends on the numeric value of the SDP
and that can sometimes be as large as poly(n, m).

In a seminal work in 1993, Luby and Nisan [101] introduced the first width-
independent and polylogarithmic-parallel-time positive LP solver. Based on this
breakthrough, in 2011, Jain and Yao [84] proposed the first approximate positive-SDP
solver that is width-independent and whose parallel running time is only poly(log n, ).
In fact, their algorithm is a faithful generalization of the positive LP solver of Luby
and Nisan [101] to positive SDPs. Although the convergence rate (i.e., number of par-
allelizable iterations) required by Luby and Nisan's algorithm is only O(log2 (nm)/E'),
the convergence rate of Jain and Yao's is as large as O(log" (nm)/E1 3) (see Table 7.1).
This significant loss in the running time stems from the harder task of computing with
matrices and in particular by the loss of commutativity in matrix algebra with respect
to the vector setting.

The poor theoretical performance of [84] has attracted some researchers to study
alternative positive-SDP solvers. Motivated by Young's algorithm [165] for positive
LPs, two alternative solvers have been proposed [85, 129]. However, the theoretical
convergence of these two new solvers remains unclear, as the correctness of both
convergence analyses has been called into question. The issue with the algorithm
of [129] is explicitly stated in the latest ArXiv version of that paper [130]. A similar
issue has been identified [127, 164] with the proof of [85]. In a nutshell, the proof
difficulties in both works arise because Young's algorithm, in its current form, relies
on a monotonicity argument. While such monotonicity holds naturally in the vector
(i.e., LP) case, it does not generalize to the matrix (i.e. SDP) world. See Section 7.2
for a detailed discussion of this.

As a result, the best parallel running time of width-independent positive SDP
solvers remains to be Q(logl4 (nm)/13) due to Jain and Yao [84].

This Paper. In this paper, we present an algorithm PosSDPSolver(A, e) that runs
only in Q(1og"1"(nm/e)) iterations. This matches the best convergence rate of the
width-independent parallel positive LP solver [7], and is a significant improvement
over the best known width-independent positive SDP solver by Jain and Yao [84]. It
is also an improvement over the solvers of [129] and [85], even if their analyses can
be fixed. (See Table 7.1.)

Our algorithm is also much simpler than all the previous width-independent pos-
itive SDP solvers, as it avoids the use of "phases" and restarts that are required by
previous solvers [84, 85, 129]. Our algorithm is simply divided into O( 1on1og(nmt))

187



Problem Paper Parallel Depth Per Number of IterationsIteration

p/c LP [101] log(nm) log2 (nm)/E4

p/c LP [7] log(nm) log 2 (nrm)/E3

p/c SDP [84] polylog(nm) -poly(l/e) log14(nm)/E13

p/c SDP [129, 85] log 2 (nm)/e log2 (nm)/E4 , in doubt a

p/c SDP [this paper] log2 (rnm)/e log2 (nm)/E 3

Table 7.1: Comparisons of asymptotic running times among width-independent ap-

proximate solvers for positive LPs and SDPs. Notice that each iteration of a SDP
solver requires a 1/E-dependance to approximate the matrix exponential using the

Johnson-Lindestrauss Lemma [129].

aSee Section 7.2 for details.

iterations. Starting from some initial vector x > 0, in each iteration, we compute n

matrix exponential computations A 1 o 0, . .. A e e' in parallel for some symmetric

matrix T satisfying H4'spe < O(log(nm)/E), and then change xi according to the

value of Ai o e*'. This same algorithm simultaneously produces 1 O(E) approximate

solutions to the packing SDP (7.1) and the covering SDP (7.2),.

We remark here that, as originally put forward by Arora and Kale [11], and then

formally established by Peng and Tangwongsan [129], each of our iterations can be

implemented to run in O(log2 (nm)/E) parallel time after some simple preprocessing.

In fact, such computations are required by all the previous width-independent positive

SDP solvers.

Our Techniques. Our algorithm is directly based on the optimization framework

of the positive LP solver recently put forward by Allen-Zhu and Orecchia [7] (see

Chapter 5). The non-commutativity introduced by matrices creates significant ob-

stascles and technical challenges that have forced us to make both our algorithm and

analysis different from [7].

To begin with, just like the result in [7], we interpret the positive SDP problem as a

purely optimization question, i.e., to minimize f(x) for some convex function f - fsdP

that is an SDP extension over its LP choice fIP proposed in [7]. In each iteration of
VfX)def 1 i I

our algorithm, we compute the coordinate gradient Vff(x) = Ai o e i I x2 AA-I) _ 1

for each i E [n].

AN OLD STORY. In [7], the authors update each xi as follows. They first define the

truncated gradient by letting i be essentially min{1, Vif(x)}. 2 Next, update each

xi +- xi - e- i for some global parameter a = E(E 2/ log(nm)) > 0.

2There is an optimization insight behind why such a truncation is needed and we refer the
interested readers to the introduction of [7].
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The key idea behind the convergence result of [7] is that, if one changes x accord-
ing to the rule above, then for each "important" i E [n] (i.e., coordinates i satisfying
Vif(x) (Z [-E, E]), we have that Vif(x) is guaranteed to change multiplicatively

within a factor of 1 1 as x changes, and therefore the sign of Vif(x) for each impor-
tant i remains the same before and after each update. This leads to the conclusion
that the objective value f(x) effectively decreases during each iteration.

Unfortunately, this "multiplicative-change" guarantee, which is a crucial compo-
nent of most width-independent solvers, is false in the SDP setting.

OUR NEW IDEAS. In this paper, we make two important observations. First, suppose
for a moment that x is updated in a sign-consistent manner: either it non-decreases or
it non-increases for all the coordinates. Even under this sign-consistent assumption,
Vif(x) does not necessarily remain of the same sign for each important coordinate i,
so the previous analysis of [7] still fails in the SDP setting. However, under this sign-
consistencty assumption, we can show that a carefully chosen weighted summation

of Vif(x) does maitain the same sign. This consideration is sufficient to prove that
the objective signficantly decreases at every iteration. To show that the weighted
summation remains of the same sign, we require a generalization of the Lieb-Thirring
inequality. To the best of our knowledge, this is a new matrix inequality, which may
be of independent interest. We shall discuss the relation between our generalizaiton
of Lieb-Thirring and positive SDPs in Section 7.2.

Finally, to ensure that x is updated in a sign-consistent manner, we introduce

randomness as follows. We flip an unbiased coin at each of our iterations, and choose

to either update xi's in a non-decreasing manner (therefore ignoring all coordinates i

with Vif(x) > 0), or in a non-increasing manner (therefore ignoring all coordinates i

with Vif(x) < 0). Such a random choice can be shown to decrease the objective f(x)

well in expectation, but adds a lot difficulty to the analysis of the covering SDP. In

short, after such randomness is introduced, the old analysis of [7] only gives a solution

Y whose expectation E[Y] is feasible to the covering SDP (7.2): that is, A . E[Y] < 1

for each i c [n]. Such a result is totally useless because we need Ai * Y < 1 for each

i c [n], and therefore we need to propose a totally different analysis that bypasses

this difficulty (see Section 7.6).

Conclusion. In this paper we show that the positive LP solver by Allen-Zhu and

Orecchia [7] (see Chapter 5) can be extended to the SDP setting without any asymp-

totic loss in the convergence rate.

At a high level, to convert any positive LP solver to SDP, one needs to tradeoff

between (a) "what is allowed to be changed in the algorithm without hurting its

performance" and (b) "what must be changed in order to work with matrix algebra".

In this paper, we make use of the optimization framework of [7], which gives us the

greatest degree of freedom in (a), and prove a new matrix inequality that gives us

a better understanding of (b). Together, these techincal advances lead to a width-
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independent, parallel, simpler, and faster solver for positive SDPs.

7.1.1 Roadmap

We introduce our new matrix inequality and discuss about its connection to positive
SDP in Section 7.2. Next in Section 7.3 we describe our algorithm PosSDPSolver.
In Section 7.4, we define an objective f,(x) and relates it to positive SDP. In Section 7.5
and Section 7.6 respectively, we describe the convergece analyses for the packing and
the covering SDPs.

7.2 Some False and Some True Inequalities in Ma-

trix Algebra
We denote by A o B = Tr(AB) = Tr(BA) the matrix inner product, and by |IA||,pe
the spectral norm of a matrix A. If X is symmetric, we use ex to denote its matrix
exponential. We write A > 0 if A is positive semidefinite (PSD), and A > B if
A - B > 0.

Some False Matrix Inequalities. The following is the SDP version of a funda-
mental inequality that the positive LP solver of [7] relies on: for every symmetric
matrix IF and every i E [n],

Ai e eT+B = (1 g O(E)) - Ai o e"' if -EI -- B --- El (7.3)

Unfortunately, this inequality is false in the general SDP case. It is straightforward
to check that it holds when all matrices involved are diagonal.

Similarly, here is another SDP inequality, whose LP version is crucial to to many
positive LP solvers [165, 24, 25, 17, 166]. It is the following monotonocity statement:
for every symmetric matrix IF and every i C [n],

A e e +B > A2 o e'P if B > 0

However, this inequality is again false.
Unfortunately, these false matrix facts have found their ways in the positive SDP

solvers proposed in [129, 85]. It is not clear at this point if these analyses can be
fixed [127, 164].' Both the inequalities above become true if T and B commute. This
is precisely why the aforementioned positive LP solvers are correct.

Our New Approach. In this section, we shall prove that

B e e+B = (1 O(E)) - B o 0 as long as El & B - or -EI - B -< 0. (7.4)

This non-trivial matrix inequality holds even if B and T are not commutable, and
shall become important for our later proofs in Section 7.5.1. We shall prove this by

3 The ArXiv version [130] of the paper of Peng and Tangwongsan [129] acknowledges the error.
The error in the analysis of [85] lies in the proof of Lemma 8, where they use the fact that "local3 (x)
only increases". This is an instantiation of the second false inequality above.
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first establishing an interesting extended form of the Lieb-Thirring inequality.
In 1976, Lieb and Thirring [97] proved that for every A, B >- 0 and every r > 1,

it holds that Tr(Bl/ 2A'/ 2 B1/ 2)r Tr(Br/2Ar/ 2Br/2 ). This inequality is known as the
Lieb-Thirring inequality and is famous for its applications in quantum mechanics and
differential equations. Very recently, Allen-Zhu, Liao, and Orecchia have connected
it to the online matrix optimization problems [4] (see also Chapter 8).

In the special case of r = 2, the Lieb-Thirring inequality says that Tr(B1 /2A 1/2B1 / 2) 2 <

Tr(BAB). In this paper, we establish the following generalization of the Lieb-Thirring
inequality, which turns out to be crucial for the convergence analysis of our positive
SDP solver. To the best of our knowledge, this inequality has not appeared in the
literature.

Lemma 7.1 (Extended Lieb-Thirring Inequality). Given A > 0, B >- 0 and a E
[0, 1], we have

B 1/2 AB1/2 e B1/ 2 A 1-"B 1/ 2 < Tr(BAB)

Unlike the original proof of Lieb-Thirring inequality which relies on Epstein's
concavity theorem, our proof of Lemma 7.1 relies on Lieb's concavity theorem:

Proposition 7.2 (Lieb's concavity theorem). For all m x n matrices K, and all
q,r such that 0 < q < 1 and 0 < r < 1, with q + r < 1, the function F(A, B) d&f

Tr(KT AqKBr) is jointly concave over (A, B), where A (resp. B) is over the set of
all m x m (resp. n x n) positive definite matrices.

Proof of Lemma 7.1. The inequality is obvious when a = 0 or a = 1, and therefore
we shall assume without loss of generality that a E (0, 1). In addition, we can assume
without loss of generality that B is diagonal: otherwise, one can apply an orthogonal
transformation to make B diagonal.

Let us write A = AD + A 0 , where AD is the diagonal part of A, and A0 is the

off-diagonal part of A. Define AA N AD + MA = AA + (1- A)AD. It is clear from

this definition that AA >- 0 for all A E [0, 1]. In fact, we notice that A > 0 implies AD
is positive in all of its diagonal entries. As a consequence, there exists some constant
e > 0 such that AA >- 0 even for all A E [-E, 1].

Now, consider two matrix-to-real functions g(A) = B/ 2AB/ 2  B A B/
and h(A) = Tr(BAB). Since g(A) = Tr(BABAl-), Lieb's concavity theorem
(cf. Proposition 7.2) implies that g(A) is concave in A (over the positive definite
cone). In contrast, h(A) is simply a function that is linear in A. Therefore, R(A) d

g(AA) - h(AA) is defined and concave over A E [-E, 1], and Lemma 7.1 is equivalent

to saying that R(1) < 0.
We begin analyzing R(A) by noticing that R(0) = g(Ao) - h(Ao) = 0: this is

a simple consequence of the fact that B, being a diagonal matrix, commutes with
Ao = AD. Therefore, combined with the concavity of R(A), to prove R(1) < 0 it
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suffices to prove that R(A) is differentiable at A = 0 and R'(0) = 0.

First of all, M1(A) = (Ax)c is differentiable at A = 0 and its derivative at A = 0

has zero diagonal entries. Indeed, using the representation M1 (A) = lrcsc() fx 1 .

A (AA + xI)-dx, one can verify that,

dM1 (A)
dA x=o

1 *dAA ldA
1 0 csc )xc - (Ax + xI)-1 - AA(AA + xI)1 dA (AA + xI)-1 dx

7r Csc(a7r) J0 dA dA ) Lo

1 0cx-) A D + xAD - D (AD -x I)-A(AD + XI-1)dx
7r Csc(a7r) 10

Noticing in the above equality A 0 is a matrix with zero diagonal entries, while (AD +
xI)- and AD(AD ( + x1- are both diagonal matrices. Therefore, M'(0) is a matrix
with zero diagonal entries.

Similarly, defining M2(A) = (AA)'-' we have that M2 (A) is differentiable at A = 0
and M2(0) is a matrix with zero diagonal entries.

Finally, we can compute that

R,(0) d(B 1 / 2 (Ax)"B 1 / 2 . B1/ 2 (A)l"B1/2) d(B2 o AA)
dA x=o dA I=O

- B 1/ 2M1(0)B 1/ 2 e B1 /2 (AD) 1-aB1/ 2 + B1/ 2 (AD)aB1/ 2 * B 1 / 2 MJ21(0)B1/ 2 - B2 o A 0

Clearly, this means R'(0) = 0 because Mj(0), M2(0) and A0 are all matrices with zero

diagonal entries, and B and AD are diagonal matrices. D

Our extended Lieb-Thirring inequality immediately yields the following mono-
tonicity property on matrix exponential, which is a formal statcmcnt of (7.4). Its

proof is deferred to Appendix 7.A.

Lemma 7.3. Given PSD matrix A satisfying EI - A - 0 and symmetric matrix T,
define function f(t) V A * eI+t^ over real values t. Then, 0 f'(t) A * eIItA =

Ef (t) for all t. As a result:

(a) f(t) f(0) -e t for all t > 0, and
(b) f(t) f(0) e t for all t < 0.

7.3 Our Algorithm

Our algorithm PosSDPSolver(A, E) runs only in T = 0( (n/E)) parallelizable
iterations. We iteratively update x so as to maximize lTx, while keeping the approx-
imate feasibility EZ xjAj -< (1 + E)I. At each iteration k, we compute a feedback

vector v so that vi = el(En xfAI) A Ai - 1 E [-1, oc), and perform a multiplicative

update xi <- x - e-W(vi). Here, 7(-) is randomly chosen (for each iteration k) as

either T_ or T+, defined as follows:
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Algorithm 6 PosSDPSolver(A, e)
Input: A = (A 1 ,..., A,) where each Ai E Rxr is PSD, and E E (0, 1/10].
Output: nonnegative vector x E R'o and PSD matrix Y E Rmxm

1: p <-1nE and a +- . > parameters

2: ( 1-/2 for all i E [n]. > initial vector x(O)

3: T- 8 number of iterations
4: for k <- 0 to T - 1 do
5: Randomly choose T(k) to be either T_ or T+, each with probability half.
6: for i -1 to n do
7: Compute the feedback vi +- eA(Eimn x2^*-) e Ai - 1
8: Perform an update: x (k+1) (k) . ea-.(>update ndf
9: end for

10: end for
11: return L and -_i, where Y Z _-JY(x())

> recall that Y(X) d e (EiEn] xiAi-I)

Definition 7.4. The thresholding functions 7, T+: [-1, cx) -+ [-1,1] are defined
as follows

def 0, V [--E, 00); def 0, V E [-1, E];

v, V E [-1, -E). 1(vE=E
1, V > 1.

Note that if 7 = T_ then the variables of x monotonically non-decreases, and vice
versa.

Remark 7.5 (Matrix Exponentials). Matrix exponential computations are required
by all width-independent positive SDP solvers, and dominate the complexity of each
algorithmic iteration. Like in previous solvers, it is a simple exercise to verify that
our entire analysis in this paper continues to hold, though with a worsen constant,
if we are only computing the values vi = etiexn x2Ai-I) e Ai up to a 1 E/2 mul-

tiplicative factor. Therefore, for simplicity's sake, in this paper we assume that the
matrix exponentials can be computed exactly. Note that the 1 t E/2 approximate
computations of eA(EiE[n] XiAi-I) .Aj for all i E [n] can be performed in polylog parallel
iterations. 4

We summarize our theorem as follows.

4More precisely, when each Ai = Q2Q[ is presented in its Cholesky decomposition, we have

Theorem 7.6 ([129]). Given an m x m PSD matrix D with p non-zero entries and |I||spe < r.,
and given m x m matrices { A 1 ,... , A} in the form of A = QjQ7 where the total non-zero entries
across all Qj is q. Then, there exists an algorithm that computes e* e Ai for all i G [n] up to a (1 e)
factor in

o(max{K,log} logm+loglogm) depth and O(1 (max{x, log!} -1-p+q) logm) work
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Theorem 7.7 (Positive SDP). Letting (X, Y) = PosSDPSolver(A, E), we have that
with at least a constant probability

* x is a (1 - O(e))-approximate solution for the packing SDP (7.1),
* Y is a (1 + O(E))-approximate solution for the covering SDP (7.2), and
" the number of iterations for PosSDPSolver is T = O(log n - log(nm/E) . E-3).

If each Ai = QiQ[ is preprocessed into its Cholesky decomposition, each iteration
can be implemented in O(log2(nm)/E) parallel depth.

7.4 The Convex Objective

We define the following convex objective for the positive SDP problem. It is com-
pletely analogous to its LP variant introduced in [7], and therefore we state its prop-
erties without proof.

Definition 7.8. Letting parameter y 41ogJnm/e , we define the smoothed objective
f,(x) as

f,(x) de 1a Tr(e(i iAi-I)) _ TX

We want to study the minimization problem on fL(x) over all x > 0. This objective
f,(x) captures the packing SDP because, on one hand we want to minimize --1TX so
as to maximize lTX, and on the other hand the exponential penalty function says if

Zie[n] xiAi (1--+ E)I is violated, a large positive penalty is introduced.

Proposition 7.9.

(a) OPT E [1, n].
(b) Letting x = (1 - E/2)x* > 0, we have fj(x) < -(1 - E)OPT.
(c) Letting x(0) > 0 be such that () =-e/ for each i E [n], we have fl(( 0 )) <nIIA~Il spe /

n

(d) For any x > 0 satisfying f,(x) < 0, we have i[n] iAi - (1 + E)I and thus
11Tx < (1 + E)OPT.

(e) If x > 0 satisfies fg(x) < -(1 - O(E))OPT, then ,x is a (1 - O(e))-
approximate solution for the packing SDP.

(f) The gradient of f,(x) can be written as

Vft(x) = (AieY(x),.. . ,An.Y(X))-1 where Y(x) AL e(EmnAi) (7.5)

Since one can verify that I'<bHspe < = 1/p = O(log(nm/E)/E) in our case, each iteration of
PosSDPSolver can be implemented to run in O(log2 (nm)/e) parallel time. (Here, we can safely
assume that E > 1/(nm) 0 (1); if E is smaller than 1/(nm) 0 (1 ), one should use for instance Interior
Point Method to solve the given SDP instead.)
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7.5 Convergence Analysis for Packing SDP

Throughout this paper, we use superscript x(k) to represent vector x at iteration k,
and subscript xi to represent the i-th coordinate of vector x. Our convergence analysis
is divided into three steps, and the first step is the main technical difference between
this paper and its LP variant [7].

Step I: Gradient Descent. We interpret (see Section 7.5.1 for details) each update
X k+1) k) .e.T(k)( as a gradient descent step,5 and show that the objective ft(x)

monotonically decreases between consecutive iterations:

Lemma 7.10 (Gradient Descent). For every iteration k = 0, ... , T-1 in PosSDPSolrer,
the objective fi(x) does not increases: f,(X(k)) - f,(X(k+1)) > 0. Combining this

with Proposition 7.9.c, we have fJ(X(k)) < 0 for all k.

In addition, letting B(k) C [n] be the set of indices i such that Vift(X(k)) > 1,
then

fg(X(k)) - E[fji(X(k+1))] > _ i) .k) -Vf (X(k)) > 0

Above, the expectation is over the random choice of T(k) at iteration k.

We remark here that Lemma 7.10 does not follow from any classical theory of gradient
descent because our objective f4(x) is simply not smooth in the positive orthant.
Neither does Lemma 7.10 follow from the so-called "multiplicative Lipschitz gradient
property" introduced in [7], because the fundamental property that the work [7]
replies on, "Vif,(x) increases as x decreases, and vice versa", no longer holds in the
SDP case. This is also one of the major reasons that the results of [129, 85] fail to
produce any theoretical guarantee.

Our proof of Lemma 7.10 crucially relies on two key properties. First, the sign-
consistent and random choice of T(k) ensures that x either only increases or only
decreases at a single iteration k. Second, our new matrix inequality introduced in
Section 7.2 ensures that "Vift(x) increases in an average sense as x decreases". We
defer the technical proof of Lemma 7.10 to Section 7.5.1.

Step II: Mirror Descent. It is not hard to show, and in fact proven in [7] for
a slightly different variant, that each update x (k+) Xk) e-,T(k(,) can also be

viewed as a mirror-descent step.
A mirror descent step in optimization is any step from x to x' that is of the form

X' - argmin,{V(z) + (aVf(x),z - x)}. Here, a > 0 is some step length, and

Vx(z) = w(iz) - (Vw(x),.iz - x) - w(x) is the Bregman divergence of some convex

distance generating function w(x). In this paper, we pick w(x) = e x, log x2 -

5To be clear, in some literature, the gradient descent is referred only to x +- x - c - Vf(x) for
some constant c. In this paper, we adopt the more general notion, and refer it to any step that
directly decreases f(x).
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to be the generalized entropy function, and accordingly,

for every x, :z > 0, V() (Jri log -' + Xi -z).

The next lemma easily follows from the general theory of mirror descent. Since
its proof has essentially appeared in [7, Lemma 3.3], we prove it in Section 7.B.3 only
for the sake of completeness.

Lemma 7.11 (Mirror Descent). Letting - E [--1, 1]" be defined as -y = T(Vifo(X(k))),
we have that for any u > 0,

(Oz-, X (k) - U) < Z2 0PT +V (2k> (U) - V (k+ 1>(U).

Step III: Coupling. Finally, as formally argued in Section 7.B.2, the two lemmas
above can be naturally combined, yielding the following bound:

Lemma 7.12 (Coupling). For any u > 0 and k = 0,... , T - 1, we have

a (fl,(X (k) ) - f,1(u) < (eVffZ(x (k) )IX (k) - U)

< 4(ft(x (k) - E[ft(X(k+1))]) + 2(V(k)(u) - E[V(k+l) (U)]) + a - 2EOPT + a . EITU

Above, the expectation is over the random choice of (k) at iteration k.

The proof of Lemma 7.12 relies on a decomposition of the gradient Vif,(X(k)) into
four components Vif,(X(k)) - + + - + rTj + (i, where + E [0, 1], - E [-1, 0],
r/i E [0, oc), and (i E [-E, E]. This is a main difference that distinguishes our proof
from [7]: we need to decompose the , part into a positive and a negative terms, and
then apply Lemma 7.11 twice.

Putting All Together. By telescoping the inequality in Lemma 7.12, one can
obtain the following final theorem for packing SDP. Its proof is only slightly different
from that of [7, Theorem 3.5] due to the special treatment of the randomness, and
deferred to Section 7.B.4.

Theorem 7.13 (Packing SDP). For T > 81,g(2,) _ QIogn-log(nm/c)), we have that

E [ft(X(T))] < -(I - 5E)OPT. As a consequence, PosSDPSolver(A, E) produces an

output x = =- that i's a (1 - 0 (E)) -approximate solution for the packing SDP (7. 1)
with at least a constant probabffity.

7.5.1 The Gradient Descent Lemma

In this subsection we view our update X(k) -+ X(k+1) as a gradient-descent step and
prove Lemma 7.10. We begin by observing that each xi is changed by a factor of at
most 1 4a/3 per iteration:

(k+1) (k)Fact 7.14. We always have x+ E X - [1 - 4a/3, 1 + 4a/3].

Proof. We can always write xik+1) _ k) . et for some t E [-a, a] C [-1/4,1/4].
According to the fact that et < 1 + 4t/3 for t E [0, 1/4] and et > 1 - t > 1 - 4t/3 for
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t E [-1/4, 0], we must have x (k+1) E Xdk) -[1 - 4a/3,1 + 4a/3].

Proof of Lemma 7.10. We prove by induction. Suppose that Lemma 7.10 is true for
all indices less than k. This implies, in particular, that f_,(X(k)) < f(X(k-1)) < ..

f M(x (0) < 0.

There are two cases to consider at iteration k: (1) if we choose T-(-) and (2) if
we choose T+(.). Each of them happens with probability 1/2.

In the first case, that is, if we choose T_ (.), we have the property that our vector
does not decrease: that is, (k+1) > Xk) for every i E [n]. We compute the objective
difference by the standard integral over gradients:

fi(X(k)) -- fl(X(k+l)) I j K '(X(k) + (X(k+l) - x(k)), x(k) - (k+1) dr

ITX(k+l) _ ITx(k) + j En (e ( X(k)Ai-I+r E[] (x~k+) - (k) )Ai) >(k) _ Xk+l)')A) dT
0i

-ITX(k+l) _ ITX(k) - j B 0 e+TBdT (7.6)

where in the last equality we have defined 'I ( (k) Ai - I) and B def

(x k+) (k))A

Notice that f,(<(k)) 0 together with Proposition 7.9.d tells us that A[n] XA

(1+E)I. Combining it with Fact 7.14 we haveK Z[]( k) x3k)) (1+ )I <

I and therefore B --< = -I. Applying Lemma 7.3.a with B _-< to (7.6), we
have

fi (x(k)) _ fJ(X(k+1)) > 1TX(k+l) _ lTx(k) -- j B / e- ee5T/12dT

> ITX(k+l) _ lTX(k) _ (1 + E/4)pB . exp

Recall that, for each i E [n] satisfying x4 k+1) k), we must have e' *e Ai -1 < -&

by the definition of T(.). Therefore, multiplying both sides by X k+1) k) > 0 and
summing up over i E [n], we obtain

paB * eq/ = e e( ( k+l) - k))A) K (1 - E)(1tx(k+1) - ITX(k))

ie[n]

This further implies that (after some careful term rearranging)

lTX(k+l) _ ITX(k) - (1 + E/4)pB * e > 1(lITX(k+l) _ ITx(k) - gB * e*)

3 (Vfp(X(k)) ,X(k) _ X(k+l)

Above, the last inequality is again by our definition of T_: for each i E [n] satisfying

(k) = Xk+1), it must satisfy that Vif,(x(k)) < -E and xk) < (k+1). In conclusion,

we arrive at the inequality

f1i(X(k)) _ ftt(X(k+1) > 3jVf1(X(k) ),X(k) - x(k+ 1 ) > 0
-4
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In the case when T+ is chosen, a symmetric argument (although replacing the
use of Lemma 7.3.a with Lemma 7.3.b and using slightly different constants, see
Appendix 7.B.1) yields that

f,(X(k)) _ ftt(X(k+1)) > _ (Vf X(k)) x(k) - x(k+1))

3
3 ZE B(k) Vif,(x(k)) _( - Xkk1)

Above, the second inequality is because for each i E [n] satisfying x k1)
it must satisfy that Vif,(X(k)) > E and x k) > (k+1). Next, observe that for each
coordinate i E B(k) we have x k+l) (k) . e-a < (1 - 0. 9a)x(k) for our choice of a.
Plugging this into the inequality above, we arrive at the inequality

f4(X(k)) - f (Xk+1 )) >2 0.9a E V f,(X(k)). (k) > " 1: Vif (X(k)) - ) > 0 .
iEB(k) ieB(k)

Finally, combining the two cases above, we conclude that

fi(X(k)) - E[ft(X(k+l))] > EBk VfI(X(k)) .(k) E

7.6 Convergence Analysis for Covering SDP
We have seen in Section 7.5 that a vector x > 0 satisfying f,(x) ~ -OPT yields an
approximate solution to the packing SDP (7.1). However, this vector x itself gives no
information about the solution to the covering SDP (7.2).

- def E - (~) X ~ iiI

In this section, we show that, defining Y __ Y (k)) where Y(x) ' en(ZiE -

then is a (1 + O(E))-approximate solution to the covering SDP (7.2) with at least
a constant probability. Therefore, PosSDPSolver(A, c) is an algorithm that simulta-
neously solves both the primal and the dual side of the positive SDP problem.

Our proof can be divided into two parts. First, using similar proof techniques
as in [7], one can show that Y satisfies the approximate optimality, at least in an
expected sense. We prove this lemma below in Appendix 7.C only for the sake of
completeness.

Lemma 7.15. For any T > = Q(og(m/E)), we have that E[Tr(Y)] < (1+7E)OPT.

In the second part, we wish to show that Y satisfies the approximate feasibility as
well, that is, A2 e < K 1 +0 (E) for all i E [n]. However, we encounter two difficulties:

* First, a similar analysis as in [7] would only imply that the expected matrix E[Y]
satisfies such approximate feasibility, rather than Y. By Markov's inequality,
this only suggests that for each (rather than for all) i E [n], A * < 1 + O(E)
holds with constant probability.6

6 Previously, the first and third authors of this paper have tried to bypass this difficulty using a
dual smoothed objective in the LP case [6] (see Chapter 6). However, their analysis is more involved
and loses a factor of EO.5 in the running time.
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* Second, the analysis in [7] does not directly imply that Y is approximately
feasible. Instead, one has to modify Y in a non-trivial manner which is very
unpleasant in practice.

Due to the above difficulties, we propose in this paper a fundamentally different, yet
much simpler analysis for proving the approximate feasibility. This is deferred to
Appendix 7.C.

Lemma 7.16. For any T > I, with probability at least 1- we have Aj*Y > 1-2E

for all i E [n].

It is now easy to see that Lemma 7.15 and Lemma 7.16 together imply that

Corollary 7.17 (Covering SDP). With at least a constant probability, we have

Vi E [n], A o Y> 1 - 2E and Tr() < 1 + O()OPT

Therefore, Y gives a (1 + O(E))-approximate solution to the covering SDP (7.2).
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APPENDIX

7.A Missing Proofs for Section 7.2
We need the following chain rule for the derivative of matrix exponential:

Proposition 7.18 ([162]). If X(t) is a differentiable function from reals to symmetric

matrices,

d x(t) 1
dt Ja =

eX(t) dX(t) e( _a)x(t3da
dt

Proof of Lemma 7.3. According to Proposition 7.18, we have

f'(t) = A e 10 ea(x+tA)Ae(1-a)((T+tA)da

Suppose further that A = PPT. Then, we can write

f'(t) 1 Tr (PTea(%F+tA) ppTe(1-a)(T+tA) da/l () a=0

However, since PTeQ(wJtA)p - 0 and P-e(1-Q)('+tA)P - 0, we conclude that pTea(+tA)P.
pTe(1-a)(1+tA)P > 0 and therefore f'(t) > 0 for all reals t.
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Next, applying Lemma 7.1 we have that

/1 1

A2 , ee+tA < EA e el+tA

7.B Missing Proofs for Section 7.5

7.B.1 The Gradient Descent Lemma
In this section, we provide the detailed analysis of the symmetric case (i.e., when T+
is chosen) in the proof for Lemma 7.10.

Notice that f,(X(k)) < 0 together with Proposition 7.9.d tells us that .i[n] X*k)Ai<

(1 + E)I. Combining it with Fact 7.14 we have [ (x k+1) _ k))Ai - - L(1 +
)I -0I and therefore 0 >- B > -gI = -RI. Applying Lemma 7.3.b with3_ 3/ 12

0 >- B > -5 I to (7.6), we have

fi(X(k)) - fjj(X(k+1)) > TX(k+1 ) _ lTX(k) - B * r eE/12dT

> 1 TX(k+l) _ lTX(k) - (1 - E/4)pB e e*

Recall that, for each i E [n] satisfying xik+1) k), we must have c' e Ai - 1 > E
by the definition of T+(-). Therefore, multiplying both sides by (k+1) _ X(k) < 0 and
summing up over i E [n], we obtain

,uB e* e * e ( ( k+1) - X(k))A ) (1 + E)(lTX(k+l) _ lTX(k))

iE[n]

This further implies that (after some careful term rearranging) 7

lTX(k+l) _ lTX(k) - (1 - E/4)pB e eT > 2 (lTX(k+1) _ 1T X(k) - pB e*
3
2 (V f (X(k)) X(k) _ X(k+1)) > 0
3

Above, the last inequality is again by our definition of T_: for each i E [n] satisfying
X2 ) = Xk+1), it must satisfy that Vf"(X(k)) < -E and Xk < X(k+1). In conclusion,
we arrive at the inequality

fl(X(k)) _ f1i(X(k+1)) (Vfp(X(k) ),X(k) - X(k+1)) > 0

71ndeed, pBe* < (1 +E)(ITX(k+1) ITX(k)) implies that (1 -3e/4) -pBee* < JlTX(k+1) _4 TX(k)

because both sides are nonpositive and 1 - 3E/4 > 1 for our choice of e. Multiplying both sides
by 1/3, we have that (1/3 - E/4) - pB ex < (1/3) . (ITX(k+1) _ lTX(k)). This is now equivalent to
ITX(k+1) -_ lTX(k) - (1 - e/4)pB * e' > |( 1 TX(k+1) _ Tx(k) - pB * *).
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7.B.2 The Coupling Lemma

The main idea in our proof to Lemma 7.12 is to divide the gradient vector Vf(x) E
[-1, o)n into four components, the component containing large coordinates (i.e., big-
ger than 1), the component containing positive small coordinates (i.e., in (E, 1]), the
component containing negative small coordinates (i.e., in [-1, -E)), and the compo-
nent containing negligible coordinates (i.e., in [-E, E]). The large gradients are to be
taken care by the gradient descent lemma, the small (positive and negative) gradients
are to be taken care by the mirror descent lemma. Formally,

Proof of Lemma 7.12. By convexity, the distance fj,(x(k)) - f,(u) for an arbitrary

u > 0 is upper bounded as follows:

a (fg(X(k)) - fu)) < (a Vf, (X(k) X(k) _ U)

- (I7 (k) IX (k) _ U) + (C 4 (k), Xk) _ U) + (Ce (k+)' X(k) _ U) + (Ce((k)' X(k) _ u)

(7.7)

where

S (- f (k))) E [-1, -E) is the truncated gradient, capturing small nega-

tive coordinates.

S(k+) -e- +(Vf(X(k))) E (E, 1] is the truncated gradient, capturing small positive
coordinates.

(k) def Vf, 1 (X(k)) _ if Vjj(X(k)) > 1;
Sotherwise. [0, oo), capturing the large coordi-

nates.

if VfX(k)) , E], capturing the negligible co-
*(k) ol otherwise.
ordinates.

We analyze the four components of (7.7) one by one.
The ( component is small: if fm(u) < 0, we have

(a((k)I x(k) _ U) < a . (lT (k) + 1TU) < a& - (1 + E)OPT + ozE. 1u (7.8)

where the last inequality is because f, (X(k)) < 0 from Lemma 7.10.
The 1 component can be upper bounded with the help from Lemma 7.10 as follows.

Note that 7  -, 0 only if i E B(k) (where recall from Lemma 7.10 that B(k) is the

set of indices whose Vif,(X(k)) is no less than 1). In particular, if i E B(k) we have
(k) = (k)) - I < (k)), and thus Lemma 7.10 gives

4(fi(X(k)) - I ~f(X(k+l)))] > E 5 k) . Vf 1 (X(k)) > (n(k) (k))

iEB(k)

(aq (k) x(k) _ U) (aq (k) Ik)) < 4(ft(X(k)) - E[ft(X(k+1)]

201



Finally, the components are upper bounded by Lemma 7.11 as follows. Letting
= (k-) if T(k) = T-, and - - (k+) if T(k) = T+, we have that

(aZ(k-) (k) _ U) + (C(k+) (k) _ U) 2IE[(a-,X(k) _ u)

< 2a 2OPT + 2V (k)(u) - 2E[V>(k+l) (u)]

where the expectation is over the random choice of T at iteration k.
Together, we obtain

a(fk(X(k)) - fl(u)) k) I (k) _ U) + (C(k-) + <(k+) X(k) _ U) + (aZ(k) (k) _

< 4(fi(x(k)) - E[fj(X(k+1) + 2a2 OPT + 2Vk)(u) - 2E[Vk+l)(u)]

+ ac - (1 + E)OPT + aEl'u

< 4(fj(x(k)) - E[fg(X(k+1))]) + 2(VX(k) (u) - 2E[V(k+l) (u)]) + a - 2EOPT + a _ ElTu

7.B.3 The Mirror Descent Lemma

In this subsection, we are going to view our step x(k) - x(k+l) as a mirror descent
step, and prove Lemma 7.11. We emphasize that this subsection is included in this
paper only for the sake of completeness: it is almost a simple replication of the proof
of [7, Lemma 3.3].

Recall that ( k) = T(k)(f((k))) E [-1,1] is the truncated gradient at step
k. and satisfies that (k) - f (x(k)) for all coordinates i such that Vifg(x(k))

[-1, 11 \ [-, E]. We can verify that our careful choice of X(k) - X(k+l) is in fact a
mirror descent step on the truncated gradient:

Claim 7.19.

x(k+l) - argmin {V>(k)(z) + (aZ(k), z - x(k))} . (7.9)
Z>0

Proof. This can be verified coordinate by coordinate, because the arg min function is
over all possible z > 0, where this constraint does not impose any inter-coordinate
constraint.

In other words, by substituting the definition of V>(k) (z), we only need to verify
that

(k 1) I __ (k) +a(k) . Z (k)jl def
x = arg min zi log +x - +a - i argmin{g(zi).

zi;>0 Igzi O

At this point, the univariate function g(zi) is convex and has a unique minimizer.
Since the gradient (-g(zi) = log , + af k), this unique minimizer is indeed zi =
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(k) ,(k)*t e- ifinishing the proof of Claim 7.19. L-I

After confirming that our iterative step in PosSDPSolver is indeed a mirror descent
step, it is not hard to deduce Lemma 7.11 based on the proof of the classical mirror
descent analysis.

Proof of Lemma 7.11. We deduce the following sequence of inequalities:

(0Z(k) x(k) U) - (C(k) ,r(k) _ X(k+l)) + Ka (k) x(k+l) _ U)

(0<(k) (k) _ (k+l) (k+1)) (k+1) _

( (k ) , (k ) _ ( +(k+k + 1 ( u - z k (k + 1 )S(~()x~k xkl) + VX(k) (U) - VX(k~l) (U) - VX(k) (Xkl)

(k+1) (k) 2

(X (k) - x (k+ 1 )) - -I ( k) ) + (VX(k) (u) - V,(k+l) (u))
2 max{xi ,xi }

0Z2 (k) 2 - maxj (k+1) x(k)

< ~ ~ 2 . m{ , I+ (V(k) (u) - VX(k+l)(u)) (7.10)

@ 2]lXk<2 T(k) + (VX(k)(U) - V(k+1)(u))
3

< a2 PT + (V(k)(U) - Vx(k+l) (u))

Here, ( is due to the minimality of x(k+l) in (7.9), which implies that VV(k)(X(k+1))+

a((k) = 0. Z is due to the triangle equality of Bregman divergence:

Vx, y > 0, (-VVx(y), y - u) = (Vw(x) - Vw(y), y - u)

= (w(u) - w(X) - (Vw(x), u - X)) - (w(u) - w(y) - (Vw(y), U - y)))

- (w(y) - w() - (VW(x), y - X))

= V (U) - V (U) - V (y) .

@ is because V(y) = Ej yi log 1 + xi - y ;> II X, - y,|2. ( is by Cauchy-

Schwarz. @ is because we have x (k+1) < 4x(k) owing to Fact 7.14. 8 is because we have
1TX(k) < !OPT owing to Proposition 7.9.d (and f, (X(k)) < 0 from Lemma 7.11). l-2

7.B.4 Proof of Theorem 7.13

Proof of Theorem 7.13. We begin by telescoping the inequality in Lemma 7.12 for
k = 0,1, ... , T - 1, and choosing u = i! = (1 - E/2)x*, which satisfies lTu K OPT by

the definition of x*:

E [a E(fit(X (k))-Q _ ft f) (t(0))-E[fjj(X(T) )]) +2 (Vo> (ft)-E[V((f)])+aT-3EOPT.
k(O

(7.11)
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Above, the expectation is over the randomness of the entire algorithm. Notice that,
the second term on the right hand side of (7.11) is upper bounded by

Vxgo>(ft) - E[VX<( (f) VX() l

< ii4  log (0 + < ( ) log ( f spe + 1 -A /
iX(O) i ft log I -,/2)/njjAjj spe flHAi 1spe

< IT j . log(2n) + 1 < 20PT - log(2n) . (7.12)

Here, we have used the fact that j < 1 since fjAi -< I.

From here, we want to prove that E[f,1 (X(T))] < -(1 - 5E)OPT by way of con-
tradiction. Suppose not, that is, E[f,(X(T))] > -(1 - 5E)OPT, we have f,,(x(0 )) -
E[fv(X(T))] < 0 + (1 - 5E)OPT < OPT, giving an upper bound on the first term on
the right hand side in (7.11). Substituting this and (7.12) to (7.11), and dividing aT
on both sides, we get

IT-1

k=O

< - (ft(x()) - E[f (X(T))]) + -(V (0)(ft) - E[V(T)>(f)])+ 3EOPT
aT aT
40PT 40PT - log(2n) + &OPT

< ++3PT
- aT aT

Finally, since we have chosen T > 8 log(2n), the above right hand side is no greater
than 4EOPT. This, by an averaging argument, tells us the existence of some k C
{0, 1,. . . , T - 1} with E[f,(X(k))] < f,1(i) + 4EOPT < -(1 - 5E)OPT (where we have
used f() -(1 - e)OPT from Proposition 7.9.b). However, it contradicts to the
hypothesis that E[f,(X(T))] > -(1 - 5E)OPT because f, (X(k)) > f (XT)) according
to Lemma 7.10. This finishes the proof that E[ft(X(T))] < -(1 - 5E)OPT.

The fact that , provides a (1 - O(e)) approximate solution for the packing
SDP is due to Proposition 7.9.e and Markov's inequality which states that fj(X(T)) <

-(1 - O(E))OPT with at least constant probability. El

7.C Missing Proofs for Section 7.6
The proof of Lemma 7.15 is completely analogous to its LP variant in [7]. We include
it only for the sake of completeness.

Lemma 7.15. For any T > 8 = Q(log(nm/E)), we have that E[Tr(Y)] < (1+7E)OPT.

Proof. Telescoping Lemma 7.12 for k = 0, 1,... , T - 1 and u = 0, we have that

T-1

TE[k=Vf(X(k), X(k))]
k=0
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< -(f(x(01) - E[ft( f fT)]) + 2 (Vx(o) (0) - E[VX()(0)]) + 2EOPT
aT aT
4 2

< -- (f(jx( ) - E[fg(X(T))]) + V(o)(0) + 2EOPT
aT aT

4 2
< -(f,(X(0)) - E[ft(X(T))]) + + 2EOPT

aT aT

Above, the last inequality uses the fact that V(o) (0) = lTX(O) < 1.

(7.13)

We now respectively lower and upper bound the two sides of (7.13) as follows.
One one hand, using the definition of gradient, the left hand side of (7.13) is lower
bounded as

(V f,(X(k)), x(k)) - ( ( _Len] e)--') -lAx(k)

ie[n]

2 (1 - )X e i -I -- 1 X(k) - m - )4
nm

(1 - c)Tr(Y((k))) _ lTX(k) - m ( )4
nm

Above, the (only) inequality is because if B d- (k)Ai has eigenvalues A1,..., A_ >

0, then E z k)A. * en(Zin -)) - - e(Aj-1)/p. However, if there are

some Aj satisfying A3 < 1 - E, the corresponding term eA(A-1 < e-/l - (t )4 is
very small, and there are at most rn such small terms. As a result, one must have

j[m] Ay-e( -1)/A > (1-E) Eje[m] -e(A- 1)/"-n ) = (l-e)Ieep(iEni )A -

M . ( F)4.

On the other hand, since XT)Aj < (1 + E)I by Proposition 7.9.d, we must have

jjTX(T) < (1 + e)OPT by the definition of OPT, and thus f,(X(T)) > 0 - (1 + E)OPT.

This gives an upper bound on the right hand side of (7.13) that is 4(l+E OPT+ -L +
2EOPT < 3EOPT, due to our choice of T y.

Together, we deduce from (7.13) that

T T-

E[Tr()] = TrE[
k

- m - ( )4 < 3EOPT
nm

Y(X(k)) < I EE[ IT(l)] + 4EOPT < (1 + E)OPT + 4EOPT
k

where the last inequality is from lTX(k) < (1+E)OPT for each k (see Proposition 7.9.d).

As mentioned earlier, our proof for Lemma 7.16 below is fundamentally different
from its much weaker version in [7].

Lemma 7.16. For any T> -1, with probability at least 1- we have Aj. > Y 1-2E

for all i E [n].
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Proof. For each iteration k = 0, . . . , T - 1 and coordinate i E [n], we denote by

(k ) (Vi J (k))) E [-1, 1] the actual truncated gradient, and
( def ( ( (k)) + '+(Vjft1 (x(k)))) E [-1/2,1/2] the expected truncated

gradient.

It is easy to verify that E[7(k)] - (k), where the expectation is over the random choice
of T (k). In addition, since Vf, (X(k)) - (k) whenever Vf,1 (X(k)) E [-1,1 \ [-]6
owing to the definition of the thresholding functions, we automatically have

Vjfj(x(k)) > (k) -

In the first step, recalling that xT - - e-ZTo k) by the definition of our
update rule (Line 8 of PosSDPSolver), and recalling that xT)Aj - (1 + )I -< 1.51
due to Proposition 7.9.d which implies x(T) < ,.p5 we automatically have that for
every i E [n], independent of the randomness of the algorithm, it always satisfies that

I ( 7 > log(1.5/(lAil lspe - X )) - log(2n)

T - aT - aT 8

Above, the second inequality is due to our choice of x(o), and the third inequality is
due to our choice of T. Next, define Zk, = N Z--Cmk C -)), we have that {Zki} 1 is
a martingale, satisfying that E[Zk,i ZI,,. . . , Zk = Zk_1,, and jZk,j - Zk _,i| < 1/2.
By the Azuma-Hoeffding inequality, we have

T-1 ZT 6 6

P IP[ k=<T >4] en

By a union bound, with probability at least 1 - E/100, for every i E [n],

T-1 IT-1 T-1 IT-1

(X (k)) (k) - 4 (&k) (k)) + 2 E (k)

k=0 k=0 k=0 k=O

>2-(-. - -- E> -2E
4 4

In other words, with probability at least 1 - E/100, for every i e [n],

T-1 0yXk T-1

Ai -( Y -(1) =4E Vfi(X(k)) > -2 .
k=0 k=O
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Chapter 8

Spectral Sparsification and Regret
Minimization Beyond Matrix
Multiplicative Updates

This chapter is based on the result published in /4], and its further edits
can be found at:

http: //arxiv. org/abs/1506. 04838.

In this paper, we provide a novel construction of the linear-sized spectral sparsifiers
of Batson, Spielman and Srivastava [26]. While previous constructions required Q(n')
running time [26, 168], our sparsification routine can be implemented in almost-
quadratic running time O(n2 +e).

The fundamental conceptual novelty of our work is the leveraging of a strong
connection between sparsification and a regret minimization problem over density
matrices. This connection was known to provide an interpretation of the randomized
sparsifiers of Spielman and Srivastava [151] via the application of matrix multiplica-
tive weight updates (MWU) [39, 160]. In this paper, we explain how matrix MWU
naturally arises as an instance of the Follow-the-Regularized-Leader framework and
generalize this approach to yield a larger class of updates. This new class allows us to
accelerate the construction of linear-sized spectral sparsifiers, and give novel insights
on the motivation behind Batson, Spielman and Srivastava [26].

8.1 Introduction
A powerful tool to handle large-scaled graphs is to compress them by reducing their
sizes, while preserving properties of interest such as the size of cuts [28, 29] or the
routability of certain flows [41]. This sparsification procedures also play an important
role as fundamental primitives behind many fast graph algorithms [88, 128]. In this
paper, we consider the strong notion of spectral sparsifier put forward by Spielman
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and Teng [152, 153]: G' is (1 + E)-spectral approximate to G if G' is a subgraph of G
with possibly reweighted edges, and for every x E R',

X TLGX < XT LG'X < ( + E)XT LGX or equivalently LG - LG' LI (1 - E)IG

where LG and LG, are respectively the graph Laplacian matrices of G and G'.
The algorithm of Spielman and Srivastava [151] constructs (1 + E)-spectral spar-

sifiers with O(n log n/E2) edges in nearly linear time by randomly sampling edges
proportionally to their effective resistance. In a seminal paper, Batson, Spielman and
Srivastava [26] give (1 +E)-spectral sparsifiers with Q(n/E2) edges, but their construc-
tion and subsequent algorithm by [168] require O(mTn 3 /2) and O(mrn 2 /E2 + n4 /E 4 )
time respectively. We shall refer to their analysis and algorithm the BSS for short.
The main contribution of this paper is to give an improved construction of linear-sized
spectral sparsifiers that runs in almost-quadratic time.

Theorem 8.1. For any even integer q > 2 and any E C (0, 4,), there is an algo-
rithm that, for any weighted undirected graph G with n vertices and m edges, with
probability at least 1 - n-Q(l), constructs a (1 + E)-spectral sparsifier G' that has at
most O(,ftjn/E2) edges in time Q(mn +1/q/E5).

Since q can be chosen as a large constant and the graph can be preprocessed to
reduce the number of edges to m = 0(n log n), the above running time is almost
quadratic in terms of n.

Graph sparsification is a special case of sparsifying sums of rank-1 PSD matrices

(see [26] and Appendix 8.B). Our algorithm for Theorem 8.1 also applies to this more
general problem with an almost cubic running time, which is stil an improvement over
the previous quartic running time.

Theorem 8.2. For any even integer q > 2 and any E E (0, p there is an algorithm

that, for any decomposition I = J vivi E R"'f of rank-1 matrices, with probability

at least 1 - n-0, constructs scalars si > 0 with |{i : si > 0}| <; O( ftin/62) that

satisfies I - L 1 siviv[ - (1 + E)I in time 0(n3 +1/q /E + mn/e4 ).

The fundamental conceptual novelty of our work is the establishment of a deep
connection between graph or matrix sparsifications and a regret minimization problem
over PSD matrices (see Section 8.1.1). This relation was known [39, 160] for the
randomized sparsifiers of Spielman and Srivastava [151], for which the underlying
matrix concentration bound can be easily recovered as an application of the matrix
version of Multiplicative Weight Updates (MWU) [11, 125], a standard online learning
algorithm. However, it was not clear how this interpretation could be extended to
BSS, despite a clear analogy was also noted by de Carli Silva, Harvey and Sato (see
[39, Section 8]). Both the MWU and the BSS rely on potential function arguments,
where the potential is essentially a robust version to capture of the maximum and
minimum graph eigenvalues. In this paper, we provide the missing piece of this
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interpretation: we consider a generalization of MWU to a larger class of updates, and
show that the BSS can be recovered as an instance of this class. Beyond our faster
implementation of sparsification, we believe that this interpretation is of independent
interest and may be useful in other areas in which the argument of BSS has found
application [111].

We focus on updates coming from the follow-the-regularized-leader (FTRL) frame-
work. The choice of regularizer in this framework fully determines the update strat-
egy and the corresponding potential function. See for example the recent survey by
Hazan [72]. The standard MWU argument can be recovered as an instance of FTRL,
where the regularizer is chosen to be the entropy function. In contrast, we choose a
different class of regularizers consisting of all f1-1/q semi-norms for q > 2, and provide
corresponding regret bounds in Section 8.3. In Section 8.4 and Section 8.5, we show
that the choice q = 2 recovers an algorithm which is somewhat similar to BSS, and
produces linear-sized spectral sparsifiers. This algorithm can be implemented to run
in a O(mn 3/2) time. Finally, in Section 8.6, we consider regularizers corresponding
to large, constant q > 2, which yield very different algorithms from BSS with almost
quadratic running time.

8.1.1 Regret Minimization

In this subsection, we discuss our contribution on the problem of regret minimization
in online linear optimization [72]. Our technical results apply to the more general
case of online PSD linear optimization over the set of density matrices, but our key
contributions are described more concisely in the scalar case.

Let An = {x C R' : x > 0 A LT X = 1} be the unit simplex in R", and we call
a vector in A, an action. A player is going to play T actions XO,... , T_1 E An in a
row; only after playing Xk, the player observes a feedback vector fk E R", which may
depend on Xk, and suffers the linear loss (fk, Xk). The regret minimization problem
asks us to device a strategy for the player that minimizes the regret, i.e., difference
between the total loss suffered by the player and the loss suffered by the a posteriori
best fixed action u E An:

minimize max R(u), where R(u) k= _OZI fk, 34 - u)

A well-known strategy for this problem is to update Xk in a multiplicative fashion:
for each coordinate i C [n], define Xk+1,i to be proportional to Xk,i - exp--afki for some

parameter a > 0. This strategy is known as the multiplicative weight update. Its
classical analysis [10] implies

T-1 T-1

VUG n R(u)=Z (fkXk - U) ~~k~ logi0 n (8.1)
k=0 k=O

The first term on the righthand side contributes a regret of |fk0 that is paid at
every iteration, and we call it the width term. The second term is a fixed start-up
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cost corresponding to 'how long it takes the update to explore the whole An', and
we call it the diameter term. If for all iterations k, ||fk|Ka is upper bounded by p,
known as the width of the problem, the trade-off between the width and diameter
terms can be be optimized by the choice of a > 0 to show that the total regret is at
most O(pN/T logrn).

Optimization Interpretation. We take an optimization perspective to describe
MWU and its generalizations by characterizing our strategies as instances of the
follow-the-regularized-leader and mirror descent frameworks. Let w(-) be a strongly
convex function over the simplex, known as the regularizer. The follow-the-regularized-
leader strategy with parameter a > 0 can be described as a trade-off between mini-
mizing the loss incurred so far and the value of the regularizer.

FTRL: Xk+1 = arg min(w(z) -aZ (fyz)} . (8.2)
ZEA,

Similarly, the mirror-descent strategy optimizes a trade-off

MirrorDescent: start with xo = ( 1,..., -); + <- arg min{VX,(z) - a(fk, z)}

(8.3)

where V,(y) N w(y)-w(x)-(Vw(x), y-x) is the induced Bregman divergence. Under
mild assumptions (which are satisfied in this paper, see Appendix 8.A), it is easy to
check that MirrorDescent is equivalent to FTRL. We will therefore interchangeably
use MirrorDescent and FTRL in the rest of the paper, because FTRL gives the cleaner
description for the updates, while MirrorDescent provides a simpler analysis. The
MWU strategy is an instance of the two equivalent strategies above, with the choice
of regularizer w(x) N _ xe log xi - j, i.e. the (negative) entropy function.

Previous Work. The MWU is a simple but extremely powerful algorithmic tool
that has been repeatedly discovered in theory of computation, machine learning, op-
timization, and game theory (see for instance the survey [10] and the book [40]).
Since MWU has found numerous important applications in semidefinite program-
ming [11, 9], constraint satisfaction problem [154], maximum flow [46], sparsest
cut [149], balanced separator [126], small set expansion [23], traveling salesman prob-
lem [12], zero-sum games [51], and fractional packing problems [68]. The analysis of
follow-the-regularized-leader can be found in the surveys [72, 142], while that of the
mirror descent appears in the the book [27].

Beyond MWU. Historically, MWU has been extended at least from three orthogo-
nal directions. In this paper, we pursue all these three directions simultaneously (see
our summary in Table 8.1.)

1. From vector to matrix. Instead of studying actions x in the forms of n-
dimensional probability distributions, one can study density matrices X in
AnXn, the set of PSD matrices whose trace equals to one. This is a generaliza-
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tion from a set of "experts" corresponding to {ei, ... , en} to all combinations

of the form n1 tiej where t is on the n-dimensional unit sphere Sn-1. Accord-

ingly, each loss vector fk can be generalized to a symmetric matrix Fk E R ,

so the loss of any density matrix X becomes Fk * X = Tr(FkX). (If X = vvT

is of rank one, then Fk & X = vTFkv.) Among many applications, the matrix

version of MWU has been used in designing algorithms for solving semidefi-

nite programs [11] and finding balanced separators [126], and in the proof of

QIP = PSPACE [81].

2. Local norm convergence. The width term |fk2H in the regret upper bound

(8.1) can be replaced with (IfA1, Xk) - IIAIoc. (Here, we have used Ifkj to denote

coordinate-wise absolute value of fk.) This technique is known as the local-

norm technique because (IfAL, Xk) is a local way to measure the length of fk

with respect to Xk. Since (If , Xk) - I fIAII. is never larger than ||fk|12, as well as

Xk E An, this new upper bound can only be smaller than the original. Indeed,

this tighter bound has proved useful in the multi-arm bandit problem [2], and in

the solution of positive linear programs [7]. It also underpins the negative-width

technique of [10].

3. Change of regularizer. If one replaces the entropy regularizer with the f1_1/q-

regularizer w(x) = - j I1 x 1 1q for any q > 2, the corresponding update

rule changes

from Xk+1,i = exp =0 if+c to Xk+li = ( =o af,,i + c) ,

where in both cases c is the unique constant that ensures Xk+1 E An. The

FTRL framework is very powerful as the choice of regularizer w(x) completely

determines both the form and the analysis of the update strategy. Ultimately,

different regularizers achieve different trade-offs between the width and diameter

terms in Equation (8.1). For instance, the f 1/ 2-regularizer yields the following

regret bound

T- 1

VU E An, R(u) < 0 (a) - Z(Ifk L, Xk) - max fk,i xkiI + .
k=O a

The diameter term is now 2#, much worse than log n in the entropy case in

(8.1). However, since (the local norm version of) the width term goes from

(Ifk, Ixk) - IfAIIo to (IfA1, Xk) - maxiE[n] fk,i xk-i1, the width term may become

smaller.. This is exactly the case in the sparsification case, where the feedback

vectors, corresponding to the edges added to the sparsifier, may be weighted up

by a factor as large as n, so that we may have IIfk > n. In this scenario, the

use of a more stongly-convex regularizer, such as e1/ 2, allows us to measure the

width in a more convenient local norm and yields the BSS linear-sized sparsi-

fier(see Figure 8-1 on page 222 for a visual comparison of different regularizers).
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Allow Allow Local Allow Non-Entropy
Paper Matrix? Norm? Regularizer?

[131, 65] [9, 10] no no no

[2, 7] no yes no

[13, 36] no yes yes

[11, 126] yes no no

[74] yes yes no

[this paper] yes yes yes

Table 8.1: Comparisons among prior results on the regret minimization problem.

We point out that the fi_ 1 /q-regularizers have also been used, albeit solely in

the scalar case, by the machine learning community to obtain asymptotically

optimal strategies for the multi-arm bandit problem [13, 36].

8.1.2 Extensions

High Rank Sparsification. Our same algorithm of Theorem 8.1 and 8.2 also ap-

plies to sparsifying sums of PSD matrices, rather than just rank-I PSD matrices. This

recovers the same result of de Carli Silva, Harvey, and Sato [39]. Such an extension

has been shown important for problems such as finding hypergraph sparsifiers, finding

sparse SDP solutions, and finding sparsifiers on subgraphs. However, as in the rank-1

case, the detailed running time of our algorithm has to be examined separately for

each specific sparsification problem.

As an example, given a weighted undirected graph G that is decomposed into

edge-disjoint subgraphs, the goal of linear-sized subgraph sparsification is to construct

a (1 + O(E))-spectral sparsifier G' to G, so that G' consists only of the reweighted

versions of at most n/E2 given subgraphs. Our same algorithm for Theorem 8.1 runs

in time Q(mn1+1/q/E) for this problem.

Weak Unweighted Graph Sparsification. Given K c [1, m/n], consider the

problem of finding a t'-spectral sparsifier of G containing O(m/ri) distinct edges from

E, without reweighting. This problem is very recently studied by Anderson, Gu and

Melgaard [8], our regret minimization framework allows us to design a simple and

almost-quadratic-time algorithm for this problem, improving from the quartic time

complexity of [8].

8.2 Preliminaries
Throughout this paper, for a cleaner representation that depends on the context, we

interchangeably use X 9 Y = (X, Y) = Tr(XY) to denote the inner product between

two symmetric matrices. If X is symmetric, we use ex to denote its matrix exponential
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and log X to denote its matrix logarithm, when X is PSD. If X is symmetric with
eigendecomposition X = Z 1 Aiviv we denote by JX 5 Z" Ailviv[. For any
symmetric X, we use IIX Ipe to denote the spectral norm of X, and Amax(X), Amin(X)
to denote its largest and smallest eigenvalues. We define x = {X E R
X >- 0, TrX = 1} to be the set of positive semidefinite (PSD) matrices with trace

1. This should be seen as the matrix generalization of the n-dimensional simplex
df {X E : IX > 0, lTX = 1}.

Regularizers and Bregman Divergence. We are interested in two types of regu-
larizers over Anx, namely, w(X) d X e (log X - I), known as the entropy regularizer,
and w(X) TrX for some q > 1, which we call the ti_/q-regularizer. The

corresponding Bregman divergences Vx(Y) + w(Y) - w(X) - (Vw(X), Y - X) are

the following.

entropy case: Vx(Y) = Y e (log Y - log X) - I * (Y - X)

f1-1/q case: Vx(Y) = X-1/q,* Y + rjyXl- /q - ri-yll/q
q - 1 q - 1

Note that both regularizers above and their Bregman divergences are convex over

the cone of PSD matrices.1 We now state some classical properties of Bregman

divergence. Their proofs are included in Appendix 8.D for completeness.

Lemma 8.3. The Bregman divergence of a convex differentiable function w(.) has

the properties:

" Non-negativity: Vx(Y) > 0 for all X, Y > 0.

" The "three-point equality": (Vw (X) - Vw(Y), X - U) = Vx(U) - Vy(U) +

VY(X ).

* Given X - 0 and X = arg minzsninV(Z) as the Bregman projection,

we have the "generalized Pythagorean theorem" for all U E Ax n: Vk(U) >

Vx(U) + Vk(X) Vx(U).

8.3 Regret Minimization in Full Information
In this section, we consider the following setting of the regret minimization problem,

known as the full information setting. At each iteration k = 0, . .. , T - 1, the player

chooses an action Xk E Anx, receives a symmetric loss matrix Fk E R"'X and

suffers a loss (Fk, Xk). At this point, the player is allowed to observe the full matrix

Fk without any restriction.

Again, the goal of the player is to minimize the regret with respect to any fixed

matrix U E Anxn:

R(U) k k7 (FkXk - U).

'While this is easy to check by taking the second derivative for the entropy regularizer, it is less
obvious for the f1/- 1 regularizer. The latter follows easily from Lieb's concavity theorem [96, 31].
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The best choice of U in hindsight can be taken as the rank-1 projection over a min-

imum eigenvector of ET-_1 Fk. As a result, the total loss for the best choice of U is

Amin ( zr-iO Fk).

Entropy Regularizer. If w(.) is the entropy regularizer, then (8.2) can be explicitly

written as

MirrorDescentexp: Xk = expcI-a _j0 (8.4)

where c C R is the unique constant that ensures TrXk = 1. This is also known as

the matrix multiplicative weight update method, and the following theorem gives its

regret bound.2

Theorem 8.4. In MirrorDescentexp, if the parameter a > 0 satisfies aFk -I
for all iterations k = 0,1,..., T - 1, then, for every U E Anxn,

T-1 T-1

R(U) (FkXk - U) a (Xk |Fk) -| Fklspe+ 0 (U)
k=O k=O

We note that Vx0 (U) < log n.

Our proof of Theorem 8.4 uses a technique known as the tweaked version of mirror de-

scent (see [167, 133]). We define an intermediate point Xk+1 = arg minz_ 0 f Vxk (Z) +
a(F, Z)} as the minimizer over Z >- 0, rather than Z E Anxn as in (8.3). Ac-

cordingly, the actual point Xk+1 equals to arg minzGAfXflVk+1(Z)}, the Bregman

projection of Xk+1 back to the hyperplane TrZ = 1. This two-step interpretation of

mirror descent gives a very clean proof to our regret bound, and we defer this full
proof to Appendix 8.E.

e1_1/q regularizer. If w(.) is the f1-1/q regularizer, then (8.2) can be explicitly

written as

MirrorDescent 1 _,/: Xk = (cI + aE _Fjy , (8.5)

where c E R is the unique constant that ensures cI + a E _- F >- 0 and TrXk -1.

If we focus on the special case of q = 2 and each Fk having rank 1, the following

theorem gives the regret bound for MirrorDescent fl/.

2 The scalar version of this theorem was proved for instance in [1, 143, 7]. A slightly different
matrix version of this theorem was proved in [74] (in particular, the authors of [74] have required
I - aFk - -I while in fact it suffices to only require aFk - -I.
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Theorem 8.5. In MirrorDescentt, if the parameter a > 0, and the loss matrix

Fk is rank one and satisfies X 2 . aFe > -1 for all k, then, for every U E Znxl,

T-1 T-1 XkeFk)(X)1/2*Fk)

R(U =Z(Fk,Xk -U) E 1/2 k+
k=O k=O lI+ Xk aFe a

If we instead have X11 2 * aFk > -1, the above bound can be simplified as
T-1 T-1

R(U) Z(FXk - U) < 2a -Z(Xk e FkX 2 eFk)+ VX 0 (U)
k=O k=O

We note that VxO(U) < 2N/n.

We recommend the interested readers to see the proof of Theorem 8.5 in Appendix 8.E,
as it provides a straightforward generalization of Theorem 8.4 using regularizers other
than entropy.

Theorem 8.5 is only a special case of the following more general regret bound,
which holds for arbitrary q > 2, and for Fk having arbitrary rank. At a first reading,
one can skip Theorem 8.6 because its sole purpose in this paper is to improve the
running time of graph sparsification from O(mn 3/2) to O(mnl+/q), as well as allowing
one to sparsify sums of high rank PSDs.

Theorem 8.6. In MirrorDescentj,_, with q > 2 and a > 0, if the loss matrix Fk

is either positive or negative semidefinite and satisfies aX 2 FXl/ 2q >- -- I for

all k, then for every U G Anxn,

T-1 T-1

R(U) ! Z(F,, Xk - U) < O(qa) Z(Xk |0 |F|j) X12qF Vx0 (U)

k=O k=O

We note that VxO(U) < q q 1n/.

(The proof of Theorem 8.6 is deferred to Appendix 8.E.)
The key idea to prove Theorem 8.6 is to replace the use of the Sherman-Morrison

formula in the proof of Theorem 8.5 with the Woodbury formula so as to allow Fk to
be of high rank. It also uses the Lieb-Thirring trace inequality to handle arbitrary
q > 2.)

8.4 Warm-Up: Upper-Sided Linear-Sized Sparsi-

fication
In this section and the next, we present our construction of linear-sized sparisifier
in the general matrix setting. Its specialization to graph sparsification appears in
Appendix 8.B, while its efficient implementation is discussed in Section 8.6. To show-
case how the regret bounds of Section 8.3 can be useful in the construction of spar-
sifiers, we start by describing a warm-up example in which we are only interested in
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obtaining a single side of the sparsification guarantee.
Suppose we are given a decomposition of the identity matrix I =E"_ We=e,

where each Le satisfies

0 - Le - I and is of rank 1 and trace 1, i.e. Le = vv' for some v E R' with |IvI| 2 = 1.

The weights we > 0 may be unknown, though the trace guarantee ensures that

e we = n. In this section, we are interested in finding some s c Am satisfying
e"l(nse) - Le - (1 + E)I, while the sparsity of s -that is, I{e E [m] : se > 0}|-

is at most Q(n/E2 ). We call this the upper-sided linear-sized spectral sparsification
because it only gives an upper bound on the eigenvalues of E",_1(nse) - Le and no
lower bound.

Consider the following algorithm that invokes the regret minimization framework
in Section 8.3 to solve this upper-sided sparsification. We choose

the 1/2 regularizer and a = E/4/ for MirrorDescentej,.

At iteration k, set the feedback matrix as Fk= -nLek, where ek minimizes Le O Xk
over e E [m]. 3

Before applying Theorem 8.5, let us first verify that the prerequisite X 1/2 0 aFe >
-1 holds. Because EeLm] e * Xk = Ie Xk =, by an averaging argument, we

must have Le * Xk < . This further implies -anLe, 0 XP ;> -aj > -j due to
the claim below.

Claim 8.7. For every XE Anx,< we have Le * X 1 / 2 < (Le * X) 1/ 2 for every e E [n].

Proof. Without loss of generality, one can assume X to be diagonal. Next, since

Fa = " vev is of rank one, the desired inequality follows from Jensen's inequality

vTXl/ 2v K VTXve and the fact that flveI|2= TrLe 1.

Now, applying Theorem 8.5, we obtain that for every U E Anxn,

T-1 T-1

\(-nLekXk - U) < 2a -Z (Xk e n Lek)(X k e ne ) + .Z
k=O k=O

After rearranging, and using Lek Xk < I and nLe,O < Xf n_ we deduced earlier,

T-1 T-1Kn ELek,U < --- Z(Xk e ne )(X1 enLe)+ (nLekXk) +2
k=O k=O k

2a 2f & 8n
< --. T -I- Vn+ 1+ =-n + 1+ .n

T aT 2 ET
Finally, choosing T = 16n/E2 and U to be the rank-1 projection over a maximum

eigenvector, we conclude that Amax( e) 1 + .

3 This choice naturally follows from a saddle-point interpretation of the problem, because it is the
subgradient of the function f(X) = min 8Ge E=1Li(fnSeLe) e X at X= Xk. We have skipped the
explanation of this choice due to the space limitation.
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This completes the description of our upper-sided linear-sized sparsification algo-
rithm. The full sparsification algorithm, in the next section, will essentially consists
of playing out this analysis on the lower and upper side at the same time.

We emphasize here that if one chooses the entropy regularizer by using MirrorDescentxp,
and chooses ek = e with probability proportional to we, a similar analysis from the

one above recovers the sparsification result of Spielman and Srivastava [151].

8.5 Linear-Sized Sparsification
As before, suppose we are given a decomposition of the identity matrix I = E e Le,
where each Le satisfies 0 - Le -< I and is of rank 1 and trace 1. The weights We > 0
may be unknown and satsify Ze we n. In this section, we are interested in finding
scalars se > 0 satisfying

I e se . Le E (1+8E+O(E 2))I , (8.6)

while the sparsity of s -that is, I{e E [M] : Se > 0}- is at most O(n/t2).
Instead of maintaining one sequence Xk like in Section 8.4, we maintain two se-

quences Xk,Y E Ax,. At each iteration k E 0,1, ... , T - 1, find an arbitrary

ek E [in] such that

Lek@ Xk < Lek * Yk.

This is always possible by an averaging argument with weights we. Next, we choose
the e1/2 regularizer and some parameter a < 1/2 (in fact, we will choose a = E later),
and updates

Xk+1 = arg min VXk (Z) + Kk 1/2, Z) and
ZEAnx,< (Xk Lek 1/ 2

Yk+1 = arg min {Vyk (Z) + K aLek Z . (8.7)
ZEs .x (Yk e Lek)1/2 I)

In other words, we have picked feedback matrices Fk = Xek for the Xk sequence
(Xk*Lek )1/2

and Fk = ,12k for the Yk sequence in our MirrorDescent . 4
(YkeLek )1/2 f/

Notice that X112 , Lk - > -1 due to Claim 8.7, so we always have X 1/2 0

aFk > -1 which satisfies the prerequisite of Theorem 8.5. Applying Theorem 8.5 on

the Xk sequence, we obtain that for every Ux E Ax,
T-1

-Le-ek ,1/ X k - Ux

k= (Xk * Lek)1/2

T-1

<2a (Xk X 1 2  Le Vx(Ux)

< 2 0 (Xk 4 Lek) 1/ 2  (X k 9 Lek)1/2 a

4In fact, the denominator (Xk 0 b, )1/2 is defined so as to make sure that Fk is the 'maximally
aggressive' loss matrix we can have for MirrorDescent 1 2 .
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T-1 1/ 2  
VX 0 (UX)

/2 X E k(U V

k=O

T-1

< 2a - (Xk - T- 0 1/2 V x0(Ux)
E(Xk *Lek f[V

k=O

Above, the last inequality uses Claim 8.7. If we denote by Mx 0 
X T-1 L, 2 knd (a bkeXk ) 1

/
2

and rearrange the inequality above, we get

MX Ux < VX0 (Ux) +
a

T-1

+ 2a) Z(Lek 0 Xk)1/2
k=O

Similarly, applying Theorem 8.5 on the Yk sequence, and define My -
we obtain that for every Uy G Anxn,

My 0 UY > -VO (UY)
a

T-1

+(1 - 2a) Z(Lek k Y1/2
k=O

In the rest of the proof, we will use (8.8) and (8.9) to deduce

Amax(My) - Amin(My) 8E(1 + O(E))Amin(My)

(8.8)

(Le

(LekeYk)1/
2 1

(8.9)

(8.10)

Finally, since My = -T (Lek is a matrix that is a summation of at most
/(2k 

O k)'
2

T = n/ 2 rank-1 matrices, dividing it by Amin(My) gives the desired sparsification for
(8.6).

We prove (8.10) in two steps.

Lowerbounding Amin(My). Recall that we have Tr(Mx) = _- ( 1 2 be-

cause we have assumed each Le to be of trace 1. Denoting by ak = (Le * Xk)/, we

have that Tr(Mx) = $_- 1 We apply (8.8) here with Ux = i= X0, and obtain

T-1 T-1

I ETr(Mx) < (1 + 2a) (Len ak n

Applying Cauchy-Schwarz, we have
T-1 1

(Zak) 2 > 1 -
k=O k=

T-1) 2

ak ) -E ) > T
k=0 ak -n(I + 2a)

If we choose T =-2, we immediately have5

Zk=c(Leo Yk)1/2  1 ak> " (1 - 0(a))

Substituting the above lower bound into (8.9), and choosing Uy E /-x, to be the
rank-1 projection matrix over the smallest eigenvector of My, and choosing a = E,

5 In fact, it suffices to stop our algorithm at the earliest iteration T so that inequality (8.11) is
satisfied. Our analysis here only represents the most pessimistic scenario; in practice, this early
termination implies we can choose less than n/E2 matrices for certain inputs. This is in contrast to
[26], as their algorithm uses n/E 2 rank-1 matrices for all inputs.
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T-1

*Xk)1/2 (1I + 2a) ak
k=O

(8.11)

=VK= U



we have
2 V/n- aT-1 e n

Amin(MY ; - (I - 2a) (Le e Yk) 1 / 2 > (1- O(0)2 (8.12)
k=O

Upperbounding Amax(MY)- Amin (MY). This time, we use our choice ofLek @Xk <_

Lek e Yk to combine (8.8) and (8.9) and derive that

1 1 1 2\,5 1 1-I My 0 Ux < Mx 0 UX < 1 my 0 Uv + + .I + 2 a - I+ 2 aM1 - 2 a MI-a 1 +2a I + -2a
Choosing Ux to be the rank-1 matrix projection matrix over the largest eigenvector
of My, Uy to be that over the smallest eigenvector of My, and recalling that a = E,
we have

Amax(My) < Amin (My) + (1+ O(E))1 - 2E E
After rearranging and substituting in the lower bound (8.12), we finish the proof of
(8.10)

Amax(My) - Amin(My) < 4E Amin (My)+ (1+O(E)) < 8E(1+ O(E))Amin(My) .
I - 2E

8.6 Efficient Implementation for

Graph Sparsification
The update rules described in (8.7) imply that Xk and Yk are of the form (see
Section 8.3)

-2 -

Xk = (Cx I - Zksx e and Yk = (zEz3ye - . (8.13)

Here, cX is the unique (positive) constant that satisfies cXI - Ei _- sLei > 0
and TrXk = 1, while cy is the unique (possibly negative) constant that satisfies

Z=sk L - cI >- 0 and TrY= 1. The coefficients sf and sy are always positive.
(It is worth noting that cX is initially V/_i at X0 and keeps increasing, while cy is
initially -Vk and keeps increasing as well.)

Recall that MirrorDescentf1 /2 requires one to compute cX and c0 for each iteartion,
and this can be done via binary search. One way to perform binary search is to first
compute Amax = Amax(E- SLe,). Then, one can binary search cX in the range

[Amax +1, Amax + \/f] to find the correct one satisfying Tr (cx -I -- sf iee)- = 1.

Similarly, one can binary search c' in the range of [Amin - x/i, Amin - 1] where
Amin = Amin(Zj= iLe).

If one performs the binary search to an accuracy that is small enough, this gives

6 Amax and Amin can be computed via power methods, and it suffices to compute them up to an
additive error of, say, 0.1. In Appendix 8.G, we propose an alternative approach to compute cX and
c , avoiding the use of power methods.
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an algorithm whose running time is 0(na3m/E2 ), dominated by the computation of
Xk e Le (cx -1 - Z- se.< 2 e Le for each k E [T] and e E [in].

Running Time Improvement. For the graph sparsification problem described
in Theorem 8.1, we sketch the key ideas needed to improve the running time to
O(mn +1/q/E) for any even integer q > 2. The details can be found in Appendix 8.F
and 8.G. In particular, we first describe how to achieve a running time of O (mn1+1/ 2 15).

Recall that in Section 8.5, we have constructed Mx and My and proved that
Amin(Mx) and Amin(My) are both at least Q(V#/ 2 ). In fact, it is not hard to ensure

that Amax(Mx) and Amax(My) are at most O(V/6 2 ) as well.7 Since EZ_-1 sLe, s

aMx, we conclude that the eigenvalues of S_- sf ie, are all upper bounded by
a - O(V/E2) = O(Vn/&). Therefore, throughout the algorithm, the encountered
choices of cX are always upper bounded by O(ji/&).

For this reason, we only need to compute matrix inversions of the form (cI - A)-1,
with the guarantee that c = O(.j//). Since we always have cI-A >- I -as otherwise
Tr(cI - A)- 2 is strictly larger than 1- we can approximate this matrix inverse by

Ay e -1 , A A2 A')(.4
(cI - A)- 1 = C- (I - - c I + 2 + A , (8.14)

and it suffices to choose the maximum degree d = O(x/ii/E). This is formally proved
in Lemma 8.21. In other words, when computing Xk, it suffices to replace the matrix
inversion with some matrix polynomial of degree d = O(#/E). Similar idea also
holds for the Yk sequence.

So far, we managed avoiding the computationally expensive matrix inversion.
Next, we want to further accelerate the procedure of computing (cI - A)- 2 * Le for

all edges e r [im] simultaneously. Recall that T, = vLv is of rank 1, and one can

rewrite

(cI - A)- 2 * le = v(cI - A)<Ve =|(cI - A)- 1 Ve ||2

For this reason, as in [151], one can apply the Johnson-Lindenstrauss dimension
reduction [86]: there exists random matrix Q with O(1/E2) rows, satisfying that
||(cI - A)-Ve| 1 - Q(cI - A)-Ve|11 for for all ve.

Using this dimension reduction, one can precompute T = Q(cI - A)-' in time

O(m/E2 ) x O(#/&) = O(mn-/ 3 ), with the help from the approximate matrix

inversion (8.14), and the nearly-linear time Laplacian system solvers [152]. After the
precomputation, each (cI - A)- 2  le ITve 1 can be computed in 6(1/ 2) time,
totaling O(m/ 2 ) per iteration, which is negligible.

In sum, taking into account that we have T = n/E2 iterations, the total running
time is 0(mnr+l1/ 2/E5 ). To turn this 0(mn1+1/ 2 / 5 ) into 6(mnl+ /q/q 5 ) for any con-
stant q, we need to replace the use of the f1/2 regularizer with the f1_1/q regularizer.
This requires one to use Theorem 8.6 in replacement of Theorem 8.5.

7This may require one to stop the algorithm earlier than T = n/ 2 iterations, which is even
better!
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We wish to emphasize here that our analysis in Section 8.5 needs to be strengthened
in order to tolerate all the errors incurred from the approximate computations (most
notably from Laplacian linear solvers, from Johnson-Lindenstrauss, and from (8.14)).
This is only rountinary thanks to the optimization motivation behind our argument,
and we have done this carefully in Appendix 8.F.
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APPENDIX

Appendix roadmap.

* In Figure 8-1, we plot the entropy and thefl/2 regularizers of the 3-dimensional
scalar case for a visual comparison.

" In Appendix 8.A, we verify the equivalence between FTRL and MirrorDescent
for our choices of the regularizers.

* In Appendix 8.B, we provide notations for graphs, and state the reduction from
the sparsifying graphs to sparsifying sums of rank-1 matrices.

" In Appendix 8.C, we provide our unweighted sparsification result.

" In Appendix 8.D and 8.E we provide missing proofs for Section 8.2 and 8.3
respectively.

" In Appendix 8.F, we generalize our sparsification algorithm of Section 8.5 to
allow arbitrary q > 2, high rank matrices, and approximate computations.

" In Appendix 8.G, we provide the details of how to implement linear-sized graph
sparsifications in almost-quadratic time, thus finishing the running time claim
of Theorem 8.1.

" In Appendix 8.H, we sketch how to generalize our running time improvement
to other problems, including sparsifying sums of rank-1 PSD matrices (i.e.,
Theorem 8.14), as well as subgraph sparsifications.
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(a) The entropy regularizer (b) The f1/2 regularizer

Figure 8-1: Two regularizers in n = 3. The first two axes represent x 1, x 2 so X3 =

1 - X1 - x2 . The third axes represent w(x).

8.A Partial Equivalence Between FTRL and Mir-
ror Descent

In this section, we show the equivalence between mirror descent and follow-the-
regularized-leader for our choices of the regularizers. In fact, this equivalence holds
more generally for all regularizers w(.) that are convex function of Legendre type with
domain Q (see for instance [22, 136]).

Letting Ai E R be any symmetric matrix for each iteration i, the follow-the-
regularized-leader method can be described as

k-1

Vk = 0,1,..., T - 1, Xk= arg min {w(Z) +Z(Aj,Z)} . (8.15)
ZEAnxn i=O

The mirror descent method (with starting point -0 I) can be described as

Vk = 0,1, ... ,T-1, = arg min {kk (Z) + (Ak_,Z)} , (8.16)

where as before, Vx(Y) N w(Y) - (Vw(X), Y-X) -w(X) is the Bregman divergence
of w(-).

Recall that when w(X) = X e (log X -I) is the entropy regularizer, then Vw(X) =

logX and therefore (Vw)-'(A) = eA. When w(X) = q ITX,-J/q is the i-1/q

regularizer, then Vw(X) = X-1q/ and therefore (Vw)-'(A) = A-q. The rest of the

proof holds for both these two types of regularizers.
To compute the minimizer Xk for (8.15), one can take the derivative and demand

that Vw(Xk) + E>_~ A2 - Ck - I = 0. Here, the extra term -Ck - I comes from the
Lagrange multipliers of the linear constraint Tr(Z) = I * Z = 1. (We do not have

Lagrange multipliers for the other constraint Z >- 0 because our gradient Vw(Z) is a
barrier function and tends to infinite as any eigenvalue of Z tends to zero.) It is now

easy to see that ck is the unique constant that ensures E Ai - CkI d 0 (because
Vw(Xk) >- 0) and that TrXk = Tr((Vw- 1 (ckI - Zk2 Aj)) = 1.

To compute the minimizer Xk for (8.16), one can take the derivative and demand
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that Vw(Zk) -- Vw( 1) + Ai - dk -I = VV-_ 1 (v) +-Ai - dk - I= 0. Here, the
extra term -dk -I again comes from the Lagrange multipliers of the linear constraint
Tr(Z) = I e Z = 1. It is now easy to see that dk is the unique constant that
ensures -Vw(Xk-l) + Ai - dk - I -< 0 (because Vw(Xk) > 0) and that Trk =

Tr ((Vw) 1 (Vw(Xk_1) + dkl - Ak_1)) = 1.

To show the equivalence between (8.15) and (8.16), we perform a simple induction.
Suppose that Xk-l = Xk_1, and we wish to prove Xk = Xk.

In this case, we have

Xk = (Vw) 1 (Vw(k1) + dkI - Ak_1) =(w) 1 (Vw(Xk_) + dJI - Akl)

=(w<(k1 kIZ ) ,'V(X ) and-1k-1

= (Vw)-1 (Ck_1I + dkI -E( Ai) , and
i=0

k-1

Xk = (Vw)- (ckIZ -E Ai)
i=O

Finally, since dk is the unique constant that ensures ckI-+ dkI - ji- A= S 0 and

r((Vw)-1 (cklI+d- E_-j1 Ai)) = 1, while ck is the unique constant that ensures
CkI - i 0 and Tr((Vw (Ck) -) = 1, it is obvious to see that

Ck = ck- + dk and therefore X- = Xk.

8.B Graph Notations
Let G = (V, E, w) be a undirected weighted graph with n vertices and m edges,
and each we > 0 is the weight of edge e. Without loss of generality, we study only
connected graphs throughout this paper. For every edge e = (a, b) E E, we orient
it arbitrarily and denote by Xe = ea - eb E R' the characteristic (column) vector of
edge e.

Let Le W WeXeXT E R"X" be the graph Laplacian of edge e, or the edge Laplacian.
Let B E R"'Xn be the incidence matrix where its row corresponding to edge e is the
characteristic (row) vector xT . Define W = diag{we}e1E to be the diagonal matrix
of edge weights. The Laplacian with respect to graph G is LG f BTWB E Rnxn.
It is clear from the definition that LG - 0 is PSD and LG = eEE Le. Notice that
ker(LG) = ker(W'/2 B) = span(11), and therefore xTLGX = 0 if and only if x is a
constant vector.

Since LG is symmetric, one can diagonalize it and write LG = i=1 i7

where Ai's are the positive eigenvalues of LG and vi's are the corresponding set
of orthogonal eigenvectors. The Moore-Penrose pseudoinverse of LG is denoted by
L t dn- 1 Ay v i v[. For notational convenience, we will stick to L- 1 to denote this

pseudoinverse, and often use LF to denote (Lt)2, and L-" 2 to denote (Lt)1/2, and

so on. We remark here that LGL- 1- L-LG Zi ViVT = lim(LG). Here, Iim(LG) iS
the identity matrix on the image space of LG, which is just the space spanned by
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all the vectors orthogonal to 1. For notational convenience, we will often abbreviate

Iim(LG) as I.
Throughout this paper, whenever related to graph sparsifications, we denote by

Ldef -1/ 2L 1 / 2  and Ldef LG1/2LeLG1 2 _ Le
G eLG = L- 1 9Le LG oLe

Above, Le is the normalized edge Laplacian, and Le is the normalized edge Laplacian
scaled by the effective resistance. (LG1 * Le is the "effective resistance" of the edge
e, see for instance [151]). Both of them have rank 1, and it satisfies Tr(Le) ; 1 and
L, -< I, while Tr(Le) = 1 and Le d I.

It is easy to check from the above definition that Ee Le = Iim(LG) In addition,
letting we = L * e Le be the effective resistence of edge e, then Ze weLe = Iim(LG) as
well. Notice that Ee We = Trlim(LG) = n - 1, the dimension of Iim(LG) (see [151]).

From Graph Sparsification to Rank-1 Decomposition Sparsification. As
originally shown in [26], one can easily translate the problem of graph spectral spar-
sification (see Theorem 8.1) into that of sparsifying sums of rank-1 matrices (see
Theorem 8.2). Indeed, because im(LG) = ZeE[m] Le is a summation of rank-1 ma-
trices, if one can find scalars se > 0 (as per Theorem 8.2) that satisfies lim(LG)

ZeE[m] Se-Le -< (1+ E)Iim(LG), this immediately implies, by the definition of Le, that

LG _Z eE[m] seLe -(1 + E)LG.

8.C Weak Unweighted Sparsifier
In this section, we consider the weak unweighted spectral sparsification problem very
recently studied by Anderson, Gu and Melgaard [8]: for any value K c ri m /n],

find a K-spectral sparsifier of G containing O(m/') distinct edges from E, without
reweighting. We show that our regret minimization framework allows us to design
a simple and almost-quadratic-time algorithm for this problem, improving from the
quartic time complexity of [8].

Formally, given any weighted undirected graph G = (V, E, w) with n vertices and
m edges, and any value r E [1, m/n], the task it to find a subset E0 C E containing
O(m/i) distinct edges such that

!L : ELe<L
-G < Ie aG-

eEEo

This is an unweighted sparsification problem because one is not allowed to reweight
the edges in E0 , in contrast to Theorem 8.1; and we call it a weak sparsifier because
K is usually large.

Similar to Appendix 8.B, one can easily reduce this graph sparsification problem to
sparsifying sums of rank-1 matrices. Given m rank-1 PSD matrices Lj,... , Lm E R "f

that satisfies I = Eee[m] Le, and given some r, E [1, m/n], find a subset Eo C [in]
with O(m/r,) distinct elements satisfying ZeE Le >1 -I.
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(In this section, one should feel free to coincide this Le with the 'normalized edge
Laplacian' introduced in Section 8.B; but Le needs not coincide with any graph Lapla-
cian in general.)

We solve this weak unweighted sparsification problem via the following reduction
to regret minimization.

If K < 9, we output E0 = E and are done. Otherwise, we choose the f1/2 regularizer
and parameter a = 4ji for MirrorDescentj,/,. At each iteration k = 0, 1,.. , T-1,

we define ek = e to be the index e E [m] that maximizes the quantity Xk/ *ae among
1+xk OaL,

all edges not chosen before -i.e., all edges in E \ {eo, e1,..., ek_1}. Next, we feed
Fk - Lek as the feedback matrix to MirrorDescent 1 /2 , and compute Xk+1 of the
next iteration.

Let us now state a simple property for the selected matrix L ek using an averaging
argument:

Ek-1 orl XkOL ek
Claim 8.8. For each k = 0,1, ... , -1, we either have 1/O 2 or *a*ek >

j=0 1+xk *aL '
1

6m'

Proof. Let us recall that by the definition of MirrorDescente f1 , we have

k-1 -2
Xk = (aZ Le - ckI)

j=O

where ck > 0 is the unique constant that makes aZ>= Lei >- ckl and TrXk = 1.

Note that if ck/a > then we already have Eo Le >-I >1I. Therefore, we can
assume ck/a < for the rest of the proof.

One one hand, we have

E
e({eo,...,ek-1}

k-1 -kXk1/2

Xk * Le = Xk (I - Z Le) =Xke I- Ik X-
j=0

Ck TrX1/2 1 5
(--)- k >I - > - (8.17)

a a K a 6

where the first inequality is due to TrX1/ 2 < V/- and the second inequality is due to
our choice of a = 4V5i 's and the fact that K > 9.

On the other hand, we have
I (I + X1/2 A0<1 + a X 1/2 a

6m k 6 6m k Le
e {eo,...,ek -1} el{eo,.,ek-1}

1 a 1/2 1 a A/ii = 1 4nK 5
S- + Xk . '<5 - + =-+ 5-,

6 6m 6 6m 6 6m 6
where the second inequality is because Ee{eo.ek-1} Le - Zeame =L

inequality is because TrX 1/2 < Vn, and the fourth inequality is because
Combining (8.17) and (8.18), we conclude that there exists at least

(8.18)

I, the third

r < m/n.

some index
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e E [M] \ {eo, ... , eIk-1 satisfying that Xk * Le -L (1 X * aLe), finishing the
proof of the claim. L

Now we are ready to apply Theorem 8.5, the regret bound, with our choice of Ek =

Lek :

T-1 T-1 TXkL 1/2Le 2/n
VU E Anxn, (Lek, U) > T(Lek( XX) -aekX k ) ,_

k=I +ZLkX)c +X 1/ 2 *aL a
k=O k=O X ek

T-1 X1/2 A2
= k ( Ie Xk) k1- 1/2 kVn

k= X 1 +Xk e*aLek a

T-1
Lek X _ 2 (.9

= + 12 0 -L . (8.19)
k=O 1 + X e ake

We will now choose T = 9m/r,. (Notice that T < m because , > 9.) There are

two possibilities according to Claim 8.8.

In the first case, we have Zk- 1 Lej >- -I for some k = 0, 1, ... , T - 1 and we are

done: that is, defining EO {eo, e, ... , ek_1}, we have that Eol < T = O(m/r,) and

I EeEo Le I

In the second case, we have Xk2Lek_ > - for all k = 0,1, ... , T - 1. Substi-
1+Xk *aLe - 6m

tuting this into (8.19), and choosing U to be the rank 1 matrix corresponding to the

smallest eigenvalue of Z4 Lek, we conclude that

T-1 
T-1

Amin Lek > m-

Therefore, defining E { eo, e...., eT-}, we also have IEol T = O(m/r,) and

I & Ee , i> 1I. In sum

Theorem 8.9. Given a decomposition I = Ee Le of rank-1 PSD matrices, and

given some r, E [1, m/n], the above algorithm finds a subset Eo C [m] with O(M)

distinct elements satisfying I>- ZeeOL2 I.

We remark here that for graph sparsification, the above algorithm can be imple-

mented to run in time O(m 3 /2n), and can be improved to O(ml+l/qn) for any even

integer constant q > 2 if the 1_11q regularizer is used instead of f1/2. We ignore the
implementation details in this version of the paper because it is very similar to the
details discussed in Section 8.6.

8.D Proof of Lemma 8.3
We state some classical properties for Bregman divergence, which are classical and
can be found in for instance [40].

226



Lemma 8.3. The following properties hold for Bregman divergence.

* Non-negativity: Vx(Y) > 0 for all X, Y > 0.

* The "three-point equality": (Vw(X) - Vw(Y), X - U) = Vx (U) - Vy (U) +

Vy(X ).

" Given X - 0 and X = arg minZCAn.nVk(Z) as the Bregman projection, we
have the "generalized Pythagorean theorem" for all U E A: Vk(U) > Vx(U) +

Vk (X) Vx(U).

Proof. The non-negativity follows by definition from the convexity of w(X). For every
U - 0, the "three-point equality" follows from the following inequality.

(Vw(Y) - Vw(Y), Y - U)

= (w(U) - w(Y) - (Vw(Y), U - Y)) - (w(U) - w(Y) - (w(Y), U - Y)))

- (w(Y) - w(Y) - (Vw(Y),Y -Y))

= Vy(U) - Vy(U) - Vy(Y) .
For the generalized Pythagorean theorem, we only need to prove V (U) Vx(U) +
VfC (X) because the second inequality follows from the non-negativity of V, (X).
To provide the simplest proof, we only focus on the special case when w(X) =

-q1TrXi-1/q. (The proof for the entropy regularizer is similar, while the proof
for the most general Legendre function case is more involved.)

By definition,

Vx(U) + V(X)= X-1/ U + r X-/ - __ TrUl-l/q
q-1 q-1

+ - X 1 q q
Vk (U) = -l/4 . U + r1 Ml-l/q - __ r _ 1/

q-1 q-1

Therefore,

Vk(U) - (Vx(U) +Vk(X)) = $--/4 U - X U - -l/. X +

= (X-l/ - X-1/) * (U - X)

Since Vk(U) is a convex function and X = arg min,,, Vf(z), for any U E Anxn
we must have

(VV(X), U - X) > 0 <- (-X-/ +(-1/, U -- X) > 0

This concludes the proof of the lemma.
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8.E Missing Proofs in Section 8.3
Theorem 8.4. In MirrorDescentexp, if the parameter a > 0 satisfies aFk >- -I for

all iterations k = 0,1, ... , T - 1, then, for every U E xnxY

T-1 T-1

R(U) & (FkXk - U) < a E (Xk |F| - ||Fkspe + V(U)
k=O k=O

We note that VxO(U) < log n.

Proof. We prove the theorem by using a two-step description of the mirror descent.
def

For every k > 0, define 1k+1 = argminze 0{Vxk(Z) + a(Fk, Z)}, where the min-

imization is over all Z >- 0, rather than Z E Anxn. This minimizer Xk+1 cer-
tainly exists (and equals to explogXk-aFk), and it is not hard to verify that Xk+1 =
arg minZEA,{V , (Z)}. In other words, one can describe the update Xk --+ Xk+1
by adding an intermediate stage Xk -+ Xk+1 -+ Xk+1. We also assume that initially
we have X 0 = X 0 .

Noticing that the definition of Xk+1 implies that VVX, (Xk+l) + aFk= 0, which
by the definition of Vx(Y) is equivalent to Vw(Xk) - Vw(Xk+l)= aFk. Therefore,

(aFk, Xk - U) = (Vw(Xk) - Vw(Xkk+),X - U) =Vx(U) - Vkl(U) + V(Xk)

< V (U) - Vkkl (U) + Vkk+l (Xk)

(8.20)

Above, the second equality is due to the three-point equality and the only inequality is
due to the generalized Pythagorean theorem of Bregman divergence (see Lemma 8.3).
Now,

V kk+1(Xk) = Xk * (log Xk - log 1 +1) - Tr'k+l - TrXk

=Xk aFk + Tr(elogXk-Fk) - TrXk Xk * aFk + Xk * e-Fk - TrXk

Xke aFk +Xk (I - aF a2 F ) - TrXk = a2 XeF
4 2.<a (Xk |Fkj)||Fkjjspe

Above, ( is due to the Golden-Thompson inequality. @ follows because e- _

I - aA + a2A 2, which can be proved after transforming into its eigenbasis, and then
using the fact that e- < 1-a+a 2 for all a > -1. ) follows because Fk < I|Fkjjspe-jFkj.

Finally, substituting the above upper bound into (8.20) and telescoping it for
k = 0,..., T - 1, we obtain

T-1 V( V_ (U) T-1

S (Fk, Xk - U)) +XaOE(Xk)|Fkj)|jFkjspe
k=O k=O

The desired result of this theorem now follows from the above inequality and the
simple upper bound Vko (U) = VxO (U) < log n and the nonnegativity VT >(U)
0. D
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Theorem 8.5. In MirrorDescentj,,,, if the parameter a > 0, and the loss matrix Fk

is rank one and satisfies X 1/2 e aFk > -1 for all k, then, for every U e Anyn,
T-1 T-1 1/2

del 1 (Xke Fk) (X eFk) Vxo(U)
R(U) = (F,Xk -U) < a - + .

k=O k= l+Xk aFk a

If we instead have X1/ 2 . aF > -, the above bound can be simplified ask- 2'

T-1

R(U) = Z(FkXk -
k=0O

T-1

U) < 2a -Z (Xk k Fk ) + VX0(U)

k=O

We note that Vx 0 (U) < 2/n/.

Proof. We prove the theorem by using a two-step description of the mirror descent.
def

For every k > 0, define Xk+1 = arg minz>0 fVx,(Z) + a(Fk, Z)}, where the mini-
mization is over all Z >- 0, rather than Z E x We claim that this minimizer

Xk+1 exists and is strictly positive definite, because one can choose Z = Xk+1

(X- 1 /2 + aFk)- 2 >- 0 to make the gradient zero:

VVX, (kk+l) + aF = Vw(Xk+l) - Vw(Xk) + aFk - + 1/2 1/2 + aFk 0
(8.21)

This uses our assumption X1/ 2 . aF > -1 which is equivalent to aFk > -X-1 2

so as to ensure that 1k+1 is well defined.
Next, it is easy to verify that Xk+1= arg minz xfVf, (Z)}. In other words,

one can describe the update Xk -+ Xk+1 by adding an intermediate stage Xk -+
def

Xk+1 - Xk+1. We assume for notational simplicity that X 0 = X0 .
Using (8.21), we easily obtain that

(aFk, Xk - U) = (Vw (Xk) - Vw (k+1), Xk - U) Vxk(U) - Vkl (U) + Vkk+l (Xk)

Vgk(U) -Vkkl (U) + Vgkl(Xk)

(8.22)

Above, the second equality is due to the three-point equality and the only inequality is
due to the generalized Pythagorean theorem of Bregman divergence (see Lemma 8.3).

We now exactly compute Vk+l (Xk) in two cases.

e If aFk = - uuT is negative semidefinite, using the Sherman-Morrison formula,
1/2 - TX1/ 2

Tg2-Tr(X-1/2 _ UT)I _1 ry 1/2 + 2k

k+1 k Uk 1 - uTX/ 2U

Therefore,

V (Xk) = -1/2 ' 

X + rr112 - 2TrX 1/ 2 V k+1Xk k 1 * k k 1 - k

8 This is because, if Fk = -uuT, then X1/2 .(4-auuT) > -1 is equivalent to alTX1/2< 1, which

is further equivalent to aTrX UUTX114 < 1. However, since X /4 uUTX11 4 is a rank-1 matrix,

this is finally equivalent to auT < Xk-1/2
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(Xk 112- uUT) 0 Xk + Tr /K2 - 2TrX1/ 2

=uuT * Xk + (TrXi1 2
1 - TrX1/ 2) _ _TXu UT XkU

1 - uTX/2u

uT Xu- uT X1/ 2  
2  '(X F X12 F)

1-uTXi/ 2U a IX1/2 e aF

* If aFk = uT is positive semidefinite, using the Sherman-Morrison formula,

-1/ 2  1/_ TT-1) = Tr /2 X 12 UUTX 1 / 2

RX Tr (( + X k

Therefore,

Vk (Xk) -k- 11 2 * Xk + f12 - 21Y 1/2
kTrXk 1 1  2Tr

(X-11 2 + nuT) Xk + Trk2 - 2T 1/2

unik Xkk+I -
12 _ TX +1+ uTXI/ 2U

T U1+X1 X 1/
UTXU- uT Xk/ 2k 2 (Xke Fk)( X 1 2 eFk)

1 uT X / 2  1 + X1/2 e aFk

Finally, substituting the above computation of Vkkl (Xk) into (8.22) and telescoping
it for k = 0, ... ,T - 1, we obtain

- Vg(U) -VT kU) -X X F X1/2 O Fk)
(F, Xk -U) + a (Xk )X 1/ 2 e k)

k=O k=O 1 +X * aFk

The desired result of this theorem now follows from the above inequality and the
simple upper bound Vt0 (U) = Vx0 (U) < 2Vin and the nonnegativity VkT(U) >

0. D

The next theorem generalizes Theorem 8.5 to high rank loss matrices and f11/q-
regularizers with q > 2. The key idea is to replace the use of the Sherman-Morrison
formula in the proof of Theorem 8.5 with the Woodbury formula so as to allow Fk to
be of high rank. It also uses the Lieb-Thirring trace inequality to handle arbitrary
q > 2.

Theorem 8.6. In MirrorDescent,-1 / with q > 2 and a > 0, if the loss matrix Fk

is either positive or negative senidefinite and satisfies aX 1/2 FX _-/2 -I for all
k, then,

dlT-1 T-1 X12FV(U
VU E Anxn, R(U) - 1(Fk, Xk-U) < 0 (qa)j (Xk 0|Fkj)-|| /akX112q Vxsp U

k=O k=O

We note that Vxo(U) < qqIn1/.
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Proof. We prove the theorem by using a two-step description of the mirror descent.
def

For every k > 0, define Xk+1 = arg minzeofVxk(Z) + a(Fk, Z)}, where the mini-
mization is over all Z >- 0, rather than Z C znx1 . We claim that this minimizer
Xk+1 exists and is strictly positive definite, because one can choose Z = Xk+1 =

(X- 1/q + aFk)-q - 0 to make the gradient zero:

VVXk ( -1k+-) aFk = VW k+1) - Vw(Xk) + aF = k+1 + k + aFk = 0.

(8.23)

This uses our assumption aX/2 Xll2q >_ -14 which certainly implies aF,i >-

- k , so as to ensure that Xk+1 is well defined.
Next, it is easy to verify that Xk+1 = arg minzA f V,+, (Z)}. In other words, one

can describe the update Xk -+ Xk+i by adding an intermediate stage Xk -+ Xk+1 -+
-def

Xk+1. We assume for notational simplicity that Xo = Xo.
Using (8.23), we easily obtain that

(aFk, Xk - U) = (Vw(Xk) - Vw (k+l), Xk - U) = Vxk (U) - Vkk+l (U) + Vkk, (Xk)

Vk(U) - Vxkl (U) + Vkk,(Xk)

(8.24)

Above, the second equality is due to the three-point equality and the only inequality is
due to the generalized Pythagorean theorem of Bregman divergence (see Lemma 8.3).

We now upper bound Vfkk (Xk) in two cases: the case when oFk = -ppT -< 0
= p _ .0def aX12q 1/2q and the case when aFk ppT & 0. In both cases, we denote by k a X/2 FkXk' 1spe

V ll2q~ppX112q 1e. Notice that this implies 9

X-2qppTX112q /01 and pT/p 3I . (8.25)

9 If aFk = -ppT, we have X_-l/ > ppT and < by our assumption, so
using the Sherman-Morrison-Woodbury formula,

Tr 1- - Tr ((X- / - ppT)-1)q-

= rTr (Xi/ + XlP(I - pTXl/qp <pTXq )q-

< X ppTX q -1

1-/3

where the last inequality follows because (I - pTX ,/p)- - I owing to

(8.25), as well as A -< B => TrA" < TrB . We continue and write

- +<T 1qX i/ppTXi/l q-1

- Tr(X1/2,( + k 1/2q
1 - /3

9The second inequality is because PTX 1q -- (pTXl/ 2
q)(pTX1/

2q)T and has the same largest
eigenvalue as (pTX-112qT Xk1 = 2 l/

2qppTl/ 2q
k k
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_ X q1)/2q(i + q q-1)/2q

= Tr (X,/ (T + q-

where the inequality uses the Lieb-Thirring trace inequality (which relies on the

fact that q - 1 > 1). Finally, denoting by D k 1< k j3i (which

uses (8.25) again), we have

(I + D)q- -- I + (q - 1)D + O(q 20) - D.

This matrix inequality can be proved by first turning into its eigenbasis, and
then verifying that (1+x)q- < 1+(q- 1)x+O(q2/)x for all x E [0, 1-3] (which
uses the fact that f < 1/2q). Using this inequality, we conclude that

X112qppTX1/2q

X112qpp X 1/2q)((q - 1)+ O(q20)) k 1 0p k
1 -- J#

Therefore,

V-0k+(Xk)

= TrX 1/1 + (q - 1)(1 + O(q/))Xk * ppT

1 lX 1 Tr1+--_ qTr1XqXk+1 0Xk +m+ yrk

= (X-lq - ppT) I X + 1 _1+1 -
k q-1 k+1 q-1 k

= -PpT * Xk+ 1 (t k- I" - txk-
q -1I

O(q) ppT * X- O(qa2 (Xk 0|Fk -| * X2 X2q

* If aFk - ppT, using the Sherman-Morrison-Woodbury formula,
rfp' 1i/q =Trr((X, 1/q + ppT)-,)q-

-+1 krX - P) )

= r (XI/ - Xllp(I + pTXllp)-lpTlq X -

<TrX 11q
- k

X ppT X -1
k 1 + k -

where the last inequality follows because (I + pTXl/qp)-l >_ I owing to
(8.25), as well as A -< B => TrA" < TrB . We continue and write

- 111 < r 1qX lqppTXl q-1
Tr$k1 -r(X -

_-Pr(X1/2q (I X/2qpprX1/2q
1/2 -1
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X X 2-1pT X 1/_2X _X q-1)12q

= Tr( X 1)/2(I - k 21q

1+/3
= X-l (I X l/ 2 qppTx 1/2q q1

where the inequality again uses the Lieb-Thirring trace inequality. Denoting by
D_ k -- !I (which uses (8.25) again), we see that1+/3 1+03

(I - D)ql - I - (q - 1)D + O(q 2/3) - D

This matrix inequality can be proved by first turning into its eigenbasis, and
then verifying that (1 - x)-1 1 - (q - 1)x + O(q2/)x for all x E [0, 1
(which uses the fact that 4 < 1/2q). This concludes that

TrX,1j/ 1T5 X 1q( - ,1/2qpq1)p

< Tr (X ( I - (q - 1)1-O(q#)) Xk /2+ OX k/2

= T - 1 - (q - 1)(1 - O(q3))Xk 0 ppT

Therefore,

V ,11q (Xq = 1- 11qe | +

Vk=+ (k X - + Prk _ x+_ 1-1/
k1q-1 k+1 q-

-(X -l/q + p pT ) I 
k 1 r~yf ll- /q q ll/ -1q

= ppT Xk + + - kr1

ppT 0 Xk = O(qa2)(X F 2FX2O (q4 3 ) - O q ( k 0 J k ) -1 X 1

Finally, substituting the above upper bound on Vkk+l (Xk) into (8.24) and telescoping

it for k = 0, ... , T - 1, we obtain

T-1 _V0T-1 12
T-1 V (U) -- V (U) ZIX1qS(Fk, Xk - U) V ) + O(q ) Z(Xk |Fk[) |Xk1/2p

k=O k=O

The desired result of this theorem now follows from the above inequality and the

simple upper bound Vk0 (U) = Vx0 (U) < qq 1nl/q and the nonnegativity VCT (U) >

0. F

8.F Robust Linear-Sized Sparsification
In this section, we deduce the more generalized version of the same result presented

in Section 8.5, with the following major differences.

o Regularizer. In this section, we allow the general fi-1/q regularizer to be used,

for any even integer q > 2, rather than just the 6i/2 regularizer. (The assumption
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on q being even integer rather than all reals no less than 2 is only for the sake of
proof convenience.)

" High rank. In this section, we allow Le to be possibly of high rank, rather than
just rank 1.

" Approximate computations. In this section, we allow many computations to
be approximate rather than exact. This will enable the algorithm to be more
efficiently implemented in the next section (Appendix 8.G). In particular, we allow
the following quantities to be approximately computed.

- We only need Tre to be in [1 - Fl, 1] rather than exactly one.

- We only need TrXk and TrY to be in [1, 1 + g 1 ] rather than exactly one.

- We only need Le Xk and L, o Y to be computed only up to a (1 + Fi)
multiplicative error.

We will assume throughout this paper that F, < 1/2.

8.F.1 The Problem

Suppose we are given a decomposition of the identity matrix I =E"l WeLe, where
each Le satisfies ( 0 - Le < I, TrLe E [1 - Fl, 1], and ( Lie may be of high rank.
The weights we > 0 may be unknown.

In this section, we are interested in using the f1_1/q regularizer for MirrorDescent 1 1 q
in order to find scalars se > 0 satisfying

E se . Le + 8q25 -+ O(F + gE2 +EEV/q) I,(8.26)
e=1 q yq

while the sparsity of s -that is, I{e E [m] : se > 0}- is at most n/E2. We will not
worry about the running time in this section, and defer all the implementation details
to Appendix 8.G.

Throughout this section, we pick w(X) to be the f1-1/q regularizer and Vx(Y) to
be its induced Bregman divergence.

8.F.2 Our Algorithm

Maintain two sequences Xk, Yk >- 0 satisfying TrXk, TrYk E [1, 1 + El]. At the very
beginning we choose X0 = 1I and Yo = I as before.

At each iteration k = 0, 1, ... , T - 1, find an arbitrary ek such that

Dot(Lek, Xk) (1+ l)2Dot(Lek , Yk)

where Dot(Le, X) is some algorithm10 that approximately computes le e X and sat-

10The implementation of this algorithm will be described in Appendix 8.G.
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isfies

Le OX < Dot(Le,X) < (1+1) - Le eX

We can always do so because after averaging,

S WeDot(Le, Xk) (1 + 1)[ (Wee) 0 Xk = (1 + El)TrXk
e e

< (1 k)2 TrY = (1 + E1) 2  (WeLe) e Y < (1 + El) 2  weDot(Le, Yk)
e e

At each iteration k = 0, 1, ... , T - 1, we perform updates by finding"1 arbitrary
6x, 6 y > 0 satisfying

y-l/q + aLek - I 0
Dot(Lek, Yk)1/ -

where

Xk+1 + (X +

and

Yk+1 (y-/q +

and TrXk+l,Trk+l E [1, 1 + 1] ,

a0Lek

Dot(Lek, Xk) /
+x

aLek -q

Dot(L ek, Yk) 11q" Y

Above, a > 0 is some parameter that will be specified at the end of this section. Note
that this corresponds to performing updates

"Xk+1 - arg min Vxk( Z)

" Yk+1 +- argmin{ VYk(Z)-
zeA.x.

+ K a e Z
SDot(Lek Xk)}1/

Dot(Lek , Yk) 1/q

however, we have not required TrXk+l - TrYk+ to be precisely equal to 1.

For analysis purpose only, we also define Xk+1 and Yk+1 to be similar updates but
without 6 x or 6 y:

D- -aLe ) -q

Dot (-Lek , Xk )/
and k+1 = (y-1/q +

aLek ) q

Dot(Lekl Yk)1/q

We assume also X0 = Xo.

Note that Yp+ 1 is always well defined. Claim 8.10 below shows that as long as

a < 1, it always satisfies X- + - > 0, SO Xk+1 is also well defined.

Claim 8.10. For every e E [n], we have X-/' >.

addition, denoting by oL , ppT, we have 0 i pT Xl/p - aI.

In

Similarly, for every e E [m], we have Yk .- In addition,k -(LeYk)'/1 Dot(L,,Y)l7q

"The existence of such 6x and 6y shall become soon (due to Claim 8.10). The implementation
of these updates will be described in Appendix 8.G.
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denoting by ilY)/= ppT , we have 0 pTY l/p e< I.

Proof. We only prove the Xk part because the Yk part is similar. We first compute

|iXl/2q 1eX jj 4|,4, < r( 4e 2~)Tr(X1i/2(L')qX /2),

where the last inequality follows from the Lieb-Thirring trace inequality.
Next, using the fact that Le - I, we obtain that (Le)q - L,. Therefore,

|X11/2qL, 2 jq Tr(XI 1eXi2) = le * Xk

In other words, we have X (Le I which means

. We automatically have - 1>Dot( )1/q because Dot(Le, Xk) >

Le Xk.
To prove the second half, beginning from X-'1q >_ 1 ppT, we left multi-

ply it with PTX l and right multiply it with X lP, and obtain pTXlqp >

kPTXlppTX' 'P. Denoting by D = pTX lP, we have D >- D2 , which
immediately implies 0 -< D -< aI as desired.

We have now finished the description of the algorithm. We remark here that
Therefore, since TrXk+l increases as 6x in-

creases, while TrYk+l decreases as 6y increase, we conclude the existence of 6x, 6 y > 0

so that TrXk+l, TrYk+l E [1, 1 + E1 ].

8.F.3 Our Analysis

We begin by reproving essentially the first half of Theorem 8.5: that is, to prove
(8.22). We need to pay extra attention here since our TrXk and TrYk do not precisely
equal to 1.

Lemma 8.11. For every Ux >- 0 satisfying TrUx 1, and every Uy - 0 satisfying
TrUy > I+ li,

Dot(L~,Xk)I ,Xk - UX) < Vk 1(Xk) + Vkk(Ux) - V+ 1 (Ux)

aLk

Dot (Z ek Y)l/q ,Yk Uy) < V 'k 1,k ) + V _k(Uy ) - V ~ (Uy ).

and

Proof. We first prove the Xk part. By our choice of the regularizer, we have

0 =Vw(Xk+l) - Vw(Xk) + D( - -Xk+X) + X-
Dot (L~ek, Xk) 1/q

+ -ek
Dot(Lek,, Xk)/4

Next, we obtain that

Dot(Lek , Xk) 1/
(Vw(Xk) - Vw(Xk+1), Xk - Ux)

Vxk(Ux) - V'4 (Ux) + Vkl(Xk)
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SVkk(Ux) -Vk (Ux) + Vkkl (X) .

Above, ( is due to the three-point equality of Bregman divergence, and a comes
from

Vx(Ux) - Vk(UxI) (X-I - k1) Ux + X - 1 1q- rkl-l/q)

S1 1 1
= 6xTr4x + = - ( -6X11rX+q - 1 A q1 (A- 6X)q

< 0
< 6xTrUx - 6x A q .

Here, ( is owing to the definition of Bregman divergence. ( comes from the fact that

+1-lq = X 4 - 6xI, and the definition of choosing Ai to be the i-th eigenvalue of

X/. S follows from the convexity of f(x) = Xl-q which implies f(Aj) - f(A -6x) <
Vf(Aj) - 6x. ( is by our assumption of TrUx < 1 as well as TrXk+l = Z > 1.

Similarly, for the Yk part, we can compute

( e , 
,Yk - UY) = (Vw(Y) - Vw(Yk+1), Yk - UY)

Dot(Lek ,Y)11q

T Vyk(Uy) -V (UY)+ V 1(Yk)

<Vk(Uy) - (UY) +V 1 (Y .

Above, X is due to the three-point equality, and inequality Z comes from

Vyk(Uy) -Vvk(Uy) ? (Y-l/q - -11q) ' UY + 1q
k (UY) (yk kq - K

S-yTry + 1 1 - I1
q - I Aq - (Ai+ 6y)q-1

< -6yTrUy + 6 0.

Here, ( is owing to the definition of Bregman divergence. @ comes from the fact that

k+j Yk~y + 6 yI, and the definition of choosing Ai to be the i-th eigenvalue of
1 q. ) follows from the convexity of f (x) = Xl-q which implies f (Aj) - f(Ai+6y) <

Vf(A) -(-6y). is by our assumption of TrUy > 1 +E1 as well as TrYk+l = Zi <

1+ Ei. i

In a next step, we reprove essentially the second half of Theorem 8.5: that is, to
provide upper bounds on Vfkk(Xk) and V, 1 (Yk) in Lemma 8.12 and Lemma 8.13.

Lemma 8.12. As long as q > 2 and a < 1/2q, we have

Vk+l (Xk) -(a2 + O(qa3)) ( e, eX -
2

Proof Supose QLek -PPT. Then, using the Sherman- Morrison-Woo dburyProof.,Xk Supos
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formula,

TrXkj1 llq =-rt( X-l _" - ppT<-)q = Tr(Xj~ + p(I -- PTX P)-1PTX )

< Tr(Xk + X k -1

where the last inequality follows because (I-PTX/p)-, 1 -1 I owing to Claim 8.10,
as well as A -< B == TrA < TrB . We continue and write

Tr'k+1/q < 1 X
X ppT Xll q-1

I - q-

r(X q-1)/2q(I + X q-1)/2q

S_1q 1/2qppTX112q -1

=TrXI1 (I+ Xk ,k~ 1 - a
where the inequality uses the Lieb-Thirring trace inequality (which relies on the fact

def X l/2qpprX 1/2q
that q - 1 > 1). Finally, denoting by D= k k_ 1 1 I, we see that( -a -1

(I + D)-" -- I + (q - 1)D + ( (q-1( 2) c' + O(q3C,2) D.

This above matrix inequality can be proved by first turning into its eigenbasis, and
then verifying that (1+X)q-1 < 1+(q-1)x+ (q1)(q-2) ax+O(q3a 2 )X for all x E 0, C .
(This uses the fact that a < 1/2q). Next, using the above matrix inequality, we
conclude that

X 1k2qppT X1/2q

k k I - akk+1 -

+ ((q - (q 1)(q -2)
2

1 ~1- + q 2 a +Oqa2
= TrX 1 + (q - 1) 2 X2 a e2 ) * ppT

Therefore,

k+1 0 Xk + q I +Iq-1 k q -

-1/q _ ppT) X 1-1q
q-1 k+1

q 1 IX1-1/q
q -1 k

= ppT I 
X + (TrXJ - TXj-lq)

Xk+q - k1 _1

I1+ 1T 12a + O(q 2 a2 )
< PP T 0 Xk -+ - 2

1-a J

-(a + O(qa2)) .PP Xk
2

< (a2 + O(qaZ3 )) . ( Lek X 1 1
2I
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Lemma 8.13. As long as q > 2 and a < 1/2q, we have

Vg+ 1 (Yk) < (a2 +Oa)) (Le, Yk) 1-1/q

Proof. Suppose - PPT. Then, using the Sherman-Morrison-Woodbury

formula,

Try, +1 - r k((l/ + ppT)- )l
k 1 -

- -- 11q yl/qp(I + pTylp)-*1pTy1/q

11qppTy1/q _

< Tr(Yk1 I+ a

where the last inequality follows because (I+pTYlp)- I to Claim 8.10,
as well as A -< B ==> TrA' < TrB'. We continue and write

Tr-k1-1q Tr(11
y l/qppTY1 q -1

1+a )
YF',''I'PY'''zq q-1Tr 1/2q (I k 1/2q

1+a
<Tr(y~~)/2 ( -y1l/

2qppTy1l/
2 q

rryq-1)/2q k kq T 1/q -ly(q-1)/2q

=Tr (Yl- (I - q1

where the inequality again uses the Lieb-Thirring trace inequality (which relies on
y1/2qppTy1

2
q

the fact that q - 1 > 1). Denoting by D k _ 0 we see that

(I - D) I - (q - 1)D + (q - 1)(q - 2)a D
-2 2(1 + ;)-

This above matrix inequality can be proved by first turning into its eigenbasis, and
then verifying that (1 x)q-1 < 1 -(q-)x+ (q- q-2 a x for all x c [0,1 a]. (This

uses the fact that a < 1/2q). Next, using the above matrix inequality, we conclude

that

r l-lq <-r?+( -q1)Tk+1 Y + 1a

= TrY -1/q - (q -

Therefore,

(y 
11-q

V (Yg) -- k+1 *

=(Y -11

(q -2)a)11)1)- yke0PPT
2(1+a) 1+a

1 1  11q q I 11q
Yk + q- K+1 - k

+ qPT - 1 Ya +l+1 - q I- ~I) k + q- ky+1 - kTY

PP eY + +(Tr ~111q -Tr 1 1 /

q - K+
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q- 2) /2qppT 1/2q

2(1 + a)) k1 + ay
-- T ( 1-11 (I -(q -1) (1



< ppT 0 y

= S(a + O
2

(1 - __~-__
-2(1+o,))

1+ a )
) .0pr yk

q (a2 + O(a3 )) - (Lek Y) 1-11 D:

Theorem 8.14. Suppose E < and E1 < 1, and we choose oz andT=

Then, the matrix My E ( satisfies that

Amax(My) - Amin(My) < Amin(My) E( q2 + 0( + q2)
q - I

This theorem provides the sparsification guarantee to our Theorem 8.1 and 8.2. We
shall provide its running time guarantee in the next section.

Proof. Define matrices Mx Tl Lk _-) and My - Dot( )l/q'

Also, denote by = 2 ((a + O(qa 2))
We are now ready to rededuce (8.8) and (8.9) in Section 8.5.
Combining Lemma 8.11 and Lemma 8.12, and telescoping for k = 0, 1, ... , T - 1,

we have

VUx - 0 satisfying TrUx = 1, Mx 0 Ux < + (1+
ae

T-1

1) (Lek 0 Xk) 1-1
k=O

(. 97)

+ (~ + () (e, eXT-1 -1/q
(q - 1)a (Lek *

k=O

(8.28)
Above, the second inequality uses the fact that V~ 0 (Ux) K.

Combining Lemma 8.11 and Lemma 8.13, and telescoping for k = 0, 1,.. , T - 1,
we have

My*e Uy ;> - VO (Uy) + (IVUy - 0, TrUy = 1 + Ei,

>- q(1 + 61)nI4

(q - 1)a

- T) (e e)-/

k=O

T-1

+ (1-0 (e Y ) .-1
k(O

(8.29)

Above, the second inequality uses the fact that V/0 (Up) 1 n /q.

Similar to the proof in Section 8.5, we provide deduce our eigenvalue inequality
in two steps.
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Lowerbounding Amin(My). Since we have assumed each TrLe to be at least 1 -E,

we have
T-1 T-1

TrLe 1- e1
Tr (DMx() = E ,k 11q > (1 +g1 )/Zq

k=0 Dot(Lek , Xk)1/ (1+ 1)/

1

(ek * )/

Denoting by ak = Lek * Xk, we can write Tr(Mx) > 1-61 _ 1 Applying

(8.27) with the choice of Ux = I = X, we have

1 -

n(1 + El)l/q

T-1

I1/q < IriMx = MxeUx < (1+ )
ak

Using the above inequality we obtain
T-1

1-1/q

k=0

1 T-1

+ ) + E (1 )_1 ) /( 5ak

T

T-1
1/q 1/q ( I

k=O

1-1/q

ak

- nl-1/(1 + )1-1/(1 + 6 1 )1/q1/2 2  
- 1q_1 I

where the last inequality follows from H6lder's inequality. If we choose T = , this

immediately gives
T-1 T-1

.,(Le, X )l- / - a -
k=O

1q ( - %qa + 1)) (8.30)
k=O

Finally, substituting (8.30) into (8.29), and choosing Uy so that My o Uy

(1 + E1)Amin (My), we have

(1 + E1)Amin (My) >
q(1 + E1)n 11 I1 -1-( + )lq+ (1 - () 1 T-1 X)11/

(q - 1)a (1 + E1 )3-3/q (Lek S
k=O

2qnl/ n 11/q

>q- +(1-) (I-O(qa
- (q -1)a (1 + E )3-3/q E2(1-Oq

> 2qnl/q

(q - 1)a
+ &2 (1 - O(qa + E1))

E2

> 2 (I - O(qa + El + E2/a)) .

Above, the first inequality is due to our choice of ek which satisfies

(1 +,E1) 3Lek * Y > (I + E1) 2 Dot(Lek, Y) > Dot(Lek, X) > Lek 0 Xk

Upper bounding Amax(My) -Amin(My).
as well as using (8.32), we compute that

1 (My * Ux - 11q < (MX
I + (q -1)a 1 -

This time, combining (8.28) and (8.29),

* Ux - qn 11q
(q - 1)a

(1 + Ei)3-3/q
< I- (My 0 UY + q(1 + E1)n 11q

(q - 1)a

T-1

kO

T-1

k=O

(8.31)

(8.32)
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Choosing Ux so that My * Ux = Amax(My), and Uy so that My e Uy = (1 +
E)Amin(My), we can rewrite the above inequality as

1 (Amax(MY)- ) + (+I)(Amin(MY) + ). (8.33)
1 + (q - 1)a - 1 - (q - 1)a

To turn this joint multiplicative-additive error into a purely multiplicative one, we

further rewrite it as

Amax(My) - Amin(My) AminO(MY) +q11 + qnl11
I -- - (q - 1)a (q - 1)a

2 + O(E) A(M) + 2q + O(Ei) n 1//

I- q-1 a
2 + O(Ei) 2q E 2+ 2f)

< Amin (MY) + - Amin (MY) -(I + 0 (qce + 31E,/)

= Amin(My) - (qa + 2q E2 O(ei + qE 2 + EE 2/a + E'la2 + q2a2)
q - 1 a

Above, the second inequality uses (8.31). Now, it is clear that by choosing a =

/ 2 , we have

Amax(My) - Amin (My) < Amin(My) ( 2  E + O(Ei + qE2 + 1E V)
q - I

q )

8.F.4 An Additional Property

Recall that in the previous subsection, we have constructed Mx and My and proved

that Amin (My) (and in fact Amin(My) as well) is at least Q(nl/l/g2). In this subsection,
we shall show that Amax(Mx) and Amax(My) can be made at most O(nr1// 2 ) as well.

While this additional property is not needed for proving Theorem 8.14, it shall become

useful for proving the desired running time in the next section (see Appendix 8.G).

The following lemma ensures that if we stop the algorithm "whenever we are

done", and thus choose possibly less than n/E2 matrices, then, Amax(Mx) and Amax(My)

can be properly upper bounded.

Lemma 8.15. If one stops the algorithm either when T = iterations are performed,
or when the first time that T- Dot(Lek, X )l-/ ;> 1 's satisfied, then the same

result of Theorem 8.14 can be obtained, while we have an extra guarantee

Amax(Mx), Amax(My) 0( .q

Proof. Recall that in the proof of Theorem 8.14, we have only used the choice of

T = to deduce (8.30). For this reason, if instead of choosing exactly T = a
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matrices, we
T-1 l n/q

stop the algorithm at the first time T such that 1 Dot( Lek, Xk)- E is satisfied,
k=O

then we automatically have
T-1 l/q

E(L ek 0 Xk)I-I/> n 1 -_ 1 .(j)
k=O

Replacing (8.30) with the above lower bound, all results claimed in Theorem 8.14
remain true.

In the rest of the proof, we will show that this early termination rule ensures a
good upper bound on Amax(MX) and Amax(My). Indeed, at the time the algorithm is

terminated, we must have
T-1 T-1 1/qZ (Lek 0 Xk)-/ E DZ DOt(Lek, Xk)l-l/4 + 0(1) . (8.34)
k=0 k=O

This is because, since Lek OXk < IOXk = 1 and thus Dot(Le, Xk)1-1/q 0(1), the

value $_01 Dot(Lek, Xk)1-1/ is incremented by at most O(1) at each iteration. As a

consequence, at the first iteration it exceeds n /q/E2 , the summation must be at least

n 1/q/E2 + O(1).

Next, substituting (8.34) into (8.28), and choosing Ux so that MxoUx = Amax(Mx),

we have
Ilq 11/q

Amax(M) < + (1 + ) n 2 + 0(1) = O( 2 )
- (q -1)oz E

Finally, recalling that we have chosen Dot(Lek, Xk) < (1 + EI) 2 Dot(Lek, Yk), this

ensures that (1+ei)2 Mx >- My. In sum, we obtain that Amax(My) < O(Amax(MX))
Q(ni/q)_L

8.G Efficient Implementation for Graph Sparsifi-
cations

Recall from Appendix 8.F that in order to implement the algorithm described in
Theorem 8.14, we need to

(CI) Ensure that each TrLe is in [1 - E1, 1].

(C2) Compute at each iteration two reals cX, E R satisfying that TrXk E [1, 1+ j]

and TrYk E [1, 1 + Ei], where

XkdezC .-I aLe -q and ydef k- -
j0 Dot(Lej , Xj)l/ a = Dot(Le,, Y )1/q
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(C3) Compute at each iteration Dot(Le, Xk) and Dot(Le, Yk) which satisfy

LeSXk Dot(Le, Xk) < (1+l)LeXk and LeOYk Dot(Le, Yk) < (1+el)LeeYk

In this section, we suppose that we are dealing with a spectral graph sparsification

instance (see Appendix 8.B). In other words, we use I to denote Imi(LG), and have

Le = we - , where We = L- e Le is the effective resistance of edge e E [in].
Knowing this scaling factor We is somewhat important, because we need to ensure

that TrLe is between 1 - El and 1 according to (Cl). Fortunately, Spielman and

Srivastava [151] have given an algorithm that runs in nearly-linear time, and produces

the effective resistances L- 1 * Le up to a multiplicative error of 1 + El for all edges

e E [m], with probability at least 1 - n-2M.

In other words, we can denote by Le = L G L,-G, where each we only needs to

be between (1 - *) - L-f 9 Le and L-' * Le.

We next wish to show how to implement (C2) and (C3) efficiently. Before that,
let us claim that

Lemma 8.16. Regardingless of how (C2) and (C3) are implemented, for all itera-

tions, cX cY < O( flh/q) = op_).

Proof. It is first easy to see that cy < a -max (My) < 0(al) owing to Lemma 8.15.

Next, since TrXk ;> 1, we must have

cX < Amax DqLe ) + n/ a - Amax(MX) + n'/ (a )2 .
j=O Dot(Le,

Now, we are ready to prove the main theorem of this section.

Theorem 8.17. In an amortizeda running time of O(Vy'nl/qm/E2E) per iteration,
we can implement (C2) and (C3) with probability at least 1 - n-

Combining this with the fact that there are at mots - iterations, the total run-
ning time of our graph sparsification algorithm is

O( / 1+1/qm )

EJE3

aThis amortization can be removed, but will result in a slightly more involved implementation
to analyze.

Our proof below will make frequent uses of Lemma 8.18 and Lemma 8.19, two inde-

pendent lemmas regarding how to efficiently compute matrix inversions of the form

(cI - A)-- as well as (A - cI)--. The statements and proofs of these two lemmas are

deferred to Appendix 8.G.1.

Proof. Both (C2) and (C3) are trivially implementable when k = 0, because Xo =

Yo = 'I.n
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Suppose that both of them are implementable at iteration k - 1. We proceed in
4 steps to prove that they are implementable at iteration k as well.

" Step I: prove (C3) for computing Dot(Le, Xk).

Suppose Xk is given in the form of Xk N (x - I - E,- 1 Dt(-q forj-O Dot(Lej,X4j) 1 /%/

some cX > 0, and it satisfies TrXk E [1, 1 + E1]. (This is done by the inductive
assumption.)

Since TrXk < 1 + El < 3/2, we must have
k-1 d

X- 11 = cl - I -z, 2 1
_k Dot(Lej , Xj)1/q 3

This inequality ensures that we can compute Xk O Le approximately (up to
1 +E, error) using Lemma 8.18. Since cX is no more than O(nl/4/\/) owing
to Lemma 8.16, the running time for computing Xk * Le for all edges e E E is
O(cXqm/ ) = 6(,Fnl/m/E2E).

" Step II: prove (C3) for computing Dot(Le, Yk).

ofydef ( j-'k-1 aLe. -
Suppose Y is given in the form of = I . = - - c - I) for

some real cy , and it satisfies TrYk E [1, 1 + E1]. (This is done by the inductive
assumption.) Since TrY 1 + Ei < 3/2, we must have

k-i ae 2

k 1: Dot(- Y) 1/q 3
j=O ej I

This inequality ensures that we can compute Yk e Le approximately (up to
1 + Ei error) using Lemma 8.19. Since c is no more than O(nl//gE) owing
to Lemma 8.16, the running time for computing Yk * Le for all edges e E E is

6(c Yqm/E 2) = 6O(,F 1 nl/E/2 E).

* Step III: prove (C2) for Xk.

Suppose that Xk_ = (bX - I - Ej -2q. Since TrX _ 1+

3/2, we must have

k-2I
X-_ bX - I -, Xjle q

jO Dot(Lej, X )/ 3

Recall that we have proved that X-/_ (see Claim 8.10), com-k-i - (see~jxi Cli181),cm
bining it with the inequality above and the fact that a < 1/4, we have

bx .I - k e-I . (8.35)
O Dot(Le,,j Xj)l/q 2
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Now, we are ready to perform a binary search to find cX. If one selects cX = bx,
he will get TrXk > TrXk-l > 1, and therefore cX = bX is a good lower bound
for the choice of cX. On the other hand, if one selects cX = bX + nl/q, he will
get TrXk < Tr(n/qJ)-q = 1, so bx + nl/q is a good upper bound for the choice
of cX.

In sum, we can binary search cx in the interval of [bx, bX + nl/q]. For each
such value of cX in the process of the binary search, since cX is no more than
0(n l/q/qE) as per Lemma 8.16, one can apply Lemma 8.18 and approximately
compute Tr(Xk) = Je Xk * le up to a multiplicative error of 1 + E1, in time
O(cXqm/E) = O(/flh/m/2

Since the overhead for the binary search is 0(1), the total running time to

compute cX at an iteration is O(.n /lM/E2

9 Step IV: prove (C2) for Yk.

Suppose thatYk_ % (k_,- 2 i -bte)) Since TrYk-1 < 1+E 3/2,

we must have
k-2

YLe b -I -I . (8.36)
k=O Dot(Lej), Yj)/4 3

It is clear from now that it suffices for us to search for cy > by , because if one

selects cy = by, he will get TrYk < TrYkl < 1 + El, and therefore cy = b

is a good lower bound. However, unlike Step III, one cannot perform a simple
1-L1 1 1 Y1binary search on c because there is no good upper bound for c .12

Instead, consider the following increment-and-binary-search algorithm. Begin-

ning from by, we first choose cy = by + . This choice of cy ensures that,
according to (8.36),

k-1

=0 Dot(Le, Y)l/ 2

Therefore, we can compute Tr(Y) = Ee Yk*Le approximately using Lemma 8.19.

If the approximation computation from Lemma 8.19 tells us that Tr(Yk) > 1,
we stop the increment of cy. Otherwise, we conclude that Tr(Y) is still less

than or equal to 1 + El, and continue to try c = bT + for i = 2, 3, 4 ..... We6

stop this increment until we find some integer i so that Tr(Y) > 1.

12In fact, if one is allowed to compute the smallest eigenvalue of _-O( ,k-1q he can

perform a binary search as described in Section 8.6. However, we have chosen not to implement
that algorithm because the running time analysis for the max/min eigenvalue computation is only
longer than the current one.
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At this moment, we have that
k-1

( c y (by + )-)I)q <1+ 1  and
=o Dot(Lei , Y)l/q 6

k-1^ aLe, -
Tr -L~ (by + -) -I > I

_o Dot (iey , Yj)l/q 6-

Therefore, we can perform a binary search for cy between by + -- and by6 6

for, and in 0(1) time we can find some value in this interval which satisfies

Tr(Yk) C [1, 1 + Ei.

Again, since we always have cy < Q(nl/q//FE) owing to Lemma 8.16, the bi-
nary search step costs a running time that is at most O(cyqm/IE) = O(/n1//E2)
owing to Lemma 8.19.

The incrementation procedure takes a running time O(fn/4m/el) for each

increment of . However, throughout the algorithm, we increment c by 1/6 at

most O(nl//,FqE) times in total as per Lemma 8.16. This running time, after

amortization, is going to be dominated by that of the binary search.

Overall, we have shown that (C2) and (C3) can be implemented to run in O(V/7nll/m/2E)
time (in amortization) per iteration. Since there are a total of at most L iterations,
the desired running time is obtained. 2

8.G.1 Missing Lemmas

In this subsection, we state and prove Lemma 8.18 and Lemma 8.19 for the efficient

computations of the matrix inverses needed for the previous subsection.

Lemma 8.18. Suppose that we are given positive reals c and so,.. sk_1 satisfying

cI - E_-1 sjLe, >_ !I, where each Le is the normalized edge Laplacian and k =

0(m). Let q be any positive even integer. Then, we can compute a matrix T c
R"xm in time 6(cqm/E2), where T has m' = E(log n/E2) rows and satisfies that,
with probability at least 1 - n-Q(I)

k-1

Ve c E, XGLe ||TXe||2 (1+E1)XeLe , where X - (cI - IsjLe-) .
j=0
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Lemma 8.19. Suppose we are given positive so, ... ,sk_ and a possibly negative
satisfying that Ls - ci >- !I where each Le is the normalized edgereal c 2aisyn ta j=O3 e- - 2'

Laplacian and k = 0(m). Let q be any positive even integer. Then, we can compute
a matrix T E R""" in time 0(cqm/E2), where T has m' = E(log n/E2) rows and
satisfies that, with probability at least 1 - n~Q(I,

k-1

Ve E E, Y*Le |HTXef2|- (1+E1)Y*Le , where Y (E sLe - cI
j=O

Our proofs to the above lemmas rely on the following auxiliary tools.

Auxiliary Tools

The first one is the famous Laplacian linear system solver, written in the matrix

language.

Theorem 8.20. For parameter a E [0,1]. Given any Laplacian matrix L that cor-

responds to a graph with m edges, there exist an approximation L-1 which satisfies

that, with probability at least 1 - n-QM, (1 - 6)L- 1 -< L- 1 -< (1 + 6)L- 1, and for
every vector v C R', L 1 v can be computed in time 0(m log(1/6)).

Proof. The algorithms presented in [152] can be expressed as matrices L- 1 which

satisfy that, with high probability, for every x E R", the vectors L-x and L-1 are

close under the so-called L-norm, or in symbols, IIL- 1x - L--1xI 62 ||L-lx1. After

expanding this out using the definition of the L-norm, we have

X - L -)L(L' - L-)x 6 - x 1 'L1 LL-1 x

( 1 - L 1 )L(L 1 - L- 1 ) - 62 L-1

>( 1/2 L-1L1/2 _ 1) 2 3 621

-61 -d L 1/ 2 U-1 L1/ 2 - I - 61

-=> (1-6)L-1 d - 1+ 6)L-1.

The running time O(mlog(1/6)) follows from that of [152]. E]

The next two lemmas are the classical results on approximating (I - A)-" and

(A - I)-q using Taylor expansions.

Lemma 8.21. The polynomial P(A) = I + A + - + A- 1 satisfies that for all 0 -
A f (1 - 6)1,

0 a(I - A)- - P(A) (I - 6)d. (I -A)-'.
As a consequence, for every integer q ;> I,

(I - q(1 - 6)d) . (I - A)~ pq P(A) (I - A)-.
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Proof. We first note that for every x E [0, 1 - 6], we have

I dd (1 - 6)d
0 -(l+x+---+ x-1)-d +xd+1 + . (8.37)

-1-x 1-x
As a consequence, we have that

0 --- (I - A)-' - (1 + A + -- + Ad-1) -6)d.- (I - A)-'

which can be proved by first assuming (without loss of generality) that A is diagonal,
and then analyzing each diagonal entry using (8.37).

To prove the result for (I - A)-q, we first notice that (I - A)- 1 and P(A) are
commutable. Therefore, P(A) - (I - A)-' directly implies Pq(A) - (I - A)-, which

gives one side of the inequality. To see the other side, we rewrite

(1 - (1 - 6)d).- (I - A) -1 -- P (A),

and then take the q-th power on both sides. This yields

(I - q(1 - 6) d) - (I - A) -q 1-( 6)d)q . (I - A) -q p P(A),

which finishes the proof of the lemma.

Lemma 8.22. The polynomial P(A) = A+A 2 +_ --+Ad satisfies that for all (1+6)1 3

A,

0 - (A - I)-1 - P(A- 1) - (1 + 6)-d (A - I)-.

As a consequence, for every integer q > 1,

(1 - q(1 + 6 )-d) . (A - I)-q - Pq(A-1) 3 (A -I

Proof. We first note that for every x > 1 + 6, we have
1 1 1 1 1

0 < - ~ (X-71+X- 2 +- . x-d) = cd I -d2 +. <__ _____

x- 1 xd -1 - (1+6)d X1
(8.38)

As a consequence, we have that

0 --- (A - I)-' - ( A-' + A-2 + - + A-d ) (10 + 6-d.- ( A - I )-'

which can be proved by first assuming (without loss of generality) that A is diagonal,
and then analyzing each diagonal entry using (8.38).

To prove the result for (A - I)-q, we first notice that (A - I)-' and P(A- 1 ) are
commutable. Therefore, P(A 1 ) -< (A - I)-' directly implies Pq(A-1) - (A - I)-q,
which gives one side of the inequality. To see the other side, we rewrite

(1 - (1 + 6 )-d) . (A - I)-1 - P(A- 1 )

and then take the q-th power on both sides. This yields

(1 - q(1 + 6 )-d) - (A - I)-q 3 (1- (1 + 6 )-d)q . (A - I)-q - Pq(A-1)

which finishes the proof of the lemma.
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Missing Proofs of Lemma 8.18 and 8.19

Lemma 8.18. Suppose that we are given positive reals c and 8,., sk-1 satisfying
cI- _ s Lei >- II, where each Le is the normalized edge Laplacian and k = O(m).J= - 2'

Let q be any positive even integer. Then, we can compute a matrix T E R"'x" in time
(cqm/E2), where T has m' = 9(log n/E2) rows and satisfies that, with probability at

least 1 - n-QU,
k-1

Ve E E, XLe |Txe| (1+<1)XIe where X cI ( I:Z e .
j=0

Proof. Denoting by A = _~k sj Le,, we have 0 < A -< (1- -)I by the assumption.

Now we apply Lemma 8.21, and let P(A) be the matrix polynomial of degree d =

e(clog(q/i)) from Lemma 8.21. By the approximation guarantee, we have for every
edge e E E,

X cI - Ese e L, = (I - .- P(A) e . (8.39)
j=0

Therefore, it suffices for us to compute Pq(A) L e for each possible edge e.

Next, let LG- 1 be the approximation of L- 1 from Theorem 8.20 that satisfies

(1- E )L-1 7G -( E)L-1
10dq G 10dqG

Denoting by L, _-f IL we have A = L 1/2 L L-1/2. Accordingly, for every
edge e E E,

Pq(A) re Pq(L-1/2LsL-1/2) L-1/2LeLG 1/2

Tr (Pq(LG1Ls) LG1Le)

= r (P/2 (LG'L) L-1 pq/2 (LsL- 1 ) Le

= Tr P/2(L-1L,) LG1 BTWBT LG1 Pq/2 (LsLG1)Le)

= (1 E1/10) -We xp/2(-GLs) LG-1 BTWBT G Lpq/2( EG x

(1 E1/10) We W12B TfG-lpq/2 G xe 2 (8.40)

Above, ) follows because each EG 1 is a (1 171q) approximation to LG1 , while
we have at most (d - 1)q + 2 < dq copies of L- 1 in any sequence of the matrix
multiplication on the left hand side of .

For this reason, we can preprocess by computing T' N QW1/2BT G-P/2(LCG E
R"' x , where Q C R"'X" is some Johnson-Lindenstrauss random matrix with m' =
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e(log n/Ei) rows. This matrix T' satisfies that, with probability at least 1 -0(n-(')),
2

Ve E E, QW1/2BT G (p/2(LG xe E = (1 i/10) e T'xe, 2 (8.41)
2

Combining (8.39), (8.40), and (8.41) together, we have

Ve E E, X le=(I t E1/3) - 4-We - ||T'ye|| .

Defining T (1- We) T', we get the desired inequality in Lemma 8.18.

Finally, we emphasize that the above computation of T requires O(dq - m' m)

O(cqm/E2) time. This is because, each row of T can be computed by left multiplying

each row of Q with the matrix W/2BT GP /2(LSLG-l 13 The running time now

follows from (i) we need to compute vector-matrix multiplication O(dq) times, which

is the power of the polynomial pq/2(-), and (ii) Theorem 8.20 implies that for inversion

V 'G can be computed in time O(mlog(dq/e1 )) for any vector v.

Lemma 8.19. Suppose we are given positive SO, - - -, Sk-1 and a possibly negative real

c satisfying that E _ s -Le, -cI - 1I, where each i e is the normalized edge Laplacian

and k = 0(m). Let q be any positive even integer. Then, we can compute a matrix

T (E Rm'xm in time O(cqm/E ), where T has m' = E(log n/E2) rows and satisfies that,

with probability at least 1 - n-
k-1

Ve E E, YeLe < ||Txe | < (1+iE)Y*Le , where Y d ( SjLe -cI .

j=O

Proof. There are two cases: c > 0 or c < 0. We begin with the case when c > 0.

Denoting by A = I -1 sjL'e, we have A - (1 + -!)I by the assumption.

Now we apply Lemma 8.22, and let P(A) be the matrix polynomial of degree d =

E(clog(q/ei)) from Lemma 8.22. By the approximation guarantee, we have for every

edge e E E,
k-i

Yo Le = ( j Le, - cI- .Le = (1 - C- . P (A-') * le . (8.42)
j=0

Therefore, it suffices for us to compute Pq(A-1) * Le for each possible edge e.

13This can be implemented as follows. For any row vector of Q, denote it by uT E R'. We first
sequentially compute

SV T < uTW1/2,
* V T < vTBT , and
* VT _ TLG'1-

Now, suppose Pq/2(L, 8LG) = I~dq0
2 ci(LsLGj') where each ci is the coefficient of the i-th power

term. We continue and compute
* wT - 6.
* For i +- 0 to dq/2,

- wT <- w +v.

- vT < vTL s .

- VT _ T LG 1
.

In the end, the value of the row vector wT is precisely the desired uTW/2BTL lP/2(L 8sG
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de- k-1 s2 w hv A/2 L'L1/ 2  -Denoting by L, = G-Lej, we have A-G = L L 2. Next, let L, and

LG respectively be the approximation of LT 1 and L-1 from Theorem 8.20 that
satisfy

(1- 4 )L-1 L (1+ )L- and
10dq - -- 10dq s

( ' -- (1 )L- E LGL-
10dq 10dq

Accordingly, for every edge e E E,

Pq(A-') * lie = Tr(Pq(L 2L;1L 2) L-1/2LeL-1/2

Tr (Pq (L;1LG) LG1Le)

= r (pq/2 (L- 1 LG) LG1 pq/2 (LGL- 1) Le)

Tr(pq/2(L;1LG) L-1 BTWBT L-' pq/2(LLG 1) L)

(1 E1/10)- Tr (P/2(L71LG) G- BTWBT LG Pq/2(LGisL e

(1 E1/10) We - XP/2(S --LG) iGj1 BTWB LG Pq/2(LGE2L) e

= (1 E1/10) We W1/2BT EGp /2(LGLs)XeE (8.43)

Above, ) follows because each Ls (resp. IG) is a (1 q) approximation to
L- 1 (resp. L- 1 ), while we have at most (d - 1)q + 2 < dq copies of L-1 and L- 1 in
any sequence of the matrix multiplication on the left hand side of X.

For this reason, we can preprocess by computing T' = QW1/2BTLG-pql/2 (LLGs) E
RMxn , where Q E Rm'xm is some Johnson-Lindenstrauss random matrix with m' =
e(log n/E2) rows. This matrix T' satisfies that, with probability at least 1- 0(n-"(),

Ve c E, BW/BI (1 G-/ G)-GT'-2 sXe 2(8.44)
2

Combining (8.42), (8.43), and (8.44), we have

VeE , Y 0 L2 = (I E1/3) . C~- - We. - T'Xe| .1

Defining T = 1_c - c.- - We) 1  - T', we get the desired inequality in Lemma 8.19.

Finally, we emphasize that the computation of T requires O(dq - m' - m) =
O(dqm/E2) time. This is because, each row of T can be computed by left multi-
plying each row of Q with the matrix W1/2BTLG-lpq/2 (LGs- 4 The running
time now follows from (i) we need to compute vector-matrix multiplication O(dq)
times, which is the power of the polynomial pq/2(-), and (ii) Theorem 8.20 implies
the inversions vTOG 1 and vTL,- can both be computed in time O(mlog(dq/Ej)),
for any vector v.

14This can be implemented in a similar manner as discussed in Footnote 13.
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In the second case, if c < 0, we can write
k-1

Y ( sLe, - cI>- = (L-1/2(Ls - cLG)L 1/2)

j=O

Therefore, denoting by L' =L, - cLG, which is another graph Laplacian matrix (with
positive edge weights), we can write

Y T Le = T Ll/ 2L'L- 1/ 2 -q L-1/2LeL-1/2

Tr ( L'- 1LG) -q/2 L-1 (LGL'-71)-q/2 Le

= We - x(L'LG)/ 2 L1BTWBL-L (LGL'- 1)

= We -W 112BL- 1 (LGL'-1)/ 2 Xe 2

It is now clear that similar to the previous case, we can approximately compute
L'- 1 and L- 1 using Theorem 8.20, and apply the Johnson-Lindenstrauss dimension
reduction. We skip the detailed proofs here because it is only a repetition.

8.H Efficient Implementation for Other Problems
As we have seen in Appendix 8.G, Lemma 8.18 and Lemma 8.19 are at the core of our
efficient implementation for the graph sparsification problem. For each other possible
sparsification problem, as long as these two lemmas can be properly revised, we can
also obtain fast running times. Let us illustrate how to obtain such running times for
two applications below.

Sparsifying sums of rank-1 matrices. To solve the problem in Theorem 8.2, it
is not hard to verify that Lemma 8.18 can be revised as follows:

Suppose that we are given positive reals c and so, ... , sk-1 satisfying cI-,_ 0 sjLe,
2', where each Le= T is an explicit n x n rank-1 matrix and k = 0(m). Let211 heeeahL VejVe.

q be any positive even integer. Then, we can compute a matrix T G R''xn in time
O(cqn 2/E2), where T has m' = E(log n/E2) rows and satisfies that, with probability at
least 1 - n-Q ,

k-1

Ve E E, XLe < ||Tve 11 (1+E1)X*Le , where X - (cI - E syLe
j=0

The key idea for proving the above variant of Lemma 8.18 is to note that the
matrix inequality cI - Ek_1 s-Le, -!I implies that the condition number for PSD

matrix M cI - -s Le is at most 0(c). Therefore, one can use for instance

steepest descent (or even conjugate gradient or Chebyshev method) to compute M-'v
in time 0(cn2) for every vector v E R'. Next, one can apply the similar Johnson-
Lindenstrauss dimension reduction as presented in the proof of Lemma 8.18.

A similar variant of Lemma 8.19 can be proved similarly.
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In sum, each iteration of our Appendix 8.F is dominated by the computational
time need to (1) compute the matrix T E R"Xn, which takes time O(cqn 2  )
Q(,/-l 2+1/q/E 2 ), and (2) compute Tve for all e E [m], which takes time O(mn/E2).
Taking into account that we have T = n/E2 such iterations, this is a total running
time of

(fqn 3 +1/q mn2

22 .

Subgraph sparsification. Given a weighted undirected graph G that can be de-
composed into edge-disjoint subgraphs, the goal of linear-sized subgraph sparsification
is to construct a (1 + O(E))-spectral sparsifier G' to G, so that G' consists only of the
reweighted versions of at most n/E 2 given subgraphs.

In symbols, suppose that the edges of some weighted undirected graph G of n
vertices and m' edges are decomposed into a disjoint union E = +iJ= 1 Ei. We are
interested in finding scalars s, > 0 with I{e : se > 0} < O(n/E2) such that, letting
L E"g Se - LG[Ee], where LEe is the graph Laplacian matrix on the subgraph of G

induced by Ee, we have LG - L - (1 + E)LG.
L- 1/2L L -EIG1/2 tFor this sparsification problem, for each e E [m], we define Le = G[Ge] G

be the normalized subgraph Laplacian scaled by we. Here, We is the scaling parameter
which ensures that TrLe is between 1 - E, and 1. (It suffices to compute LG1 * LG[Ee]

up to a multiplicative 1 + El error, and then assign we ~~ Lf1 * LG[Ee])

For this particular problem, we do not even need to revise Lemma 8.18 or Lemma 8.19.
Recall that we only need to compute 'matrix inversions' of the form

k-1

S-Le -qLe

iO Dot (Lj , Xi)/

while each Le, is now instead of a single (scaled) edge Laplacian matrix- the
summation of a few (scaled) edge Laplacian matrices. This remains to be the same
problem Lemma 8.18 is trying to implement. The total running time for this subgraph
sparsification is therefore

6Oq +/M
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