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Abstract— We use a controlled invariance approach to de-
sign a semi-autonomous lane departure assist system that is
guaranteed to keep the vehicle in the lane. The controlled
invariant safe set is the set of system states from which an input
exists that can keep the vehicle in the lane. First we provide
theoretical conditions under which the controlled invariant
safe set has a simple characterization that can be quickly
computed in real-time. We then use this characterization to
derive a feedback strategy that keeps the vehicle in the lane and
overrides the driver only if he/she could otherwise force a future
lane departure. We also provide a detailed description of the
above mentioned conditions, including algorithmic approaches
that allow to verify whether these conditions are satisfied.

I. INTRODUCTION

The development of autonomous vehicles has made rapid
progress over the past 30 years, yet there remain important
challenges, among which the ability to verify that systems
can operate safely and robustly [7]. Nevertheless, already
today it is possible to benefit from this progress via semi-
autonomous safety systems. A good example are lane de-
parture assist systems (LDAS) which already on their own
have a large potential benefit for improving traffic safety.
Indeed, according to the NHTSA FARS database [20], in
2013 12,703 people died in the United States after a lane
departure, i.e. 42% of all traffic fatalities were preceded by
a lane departure.

Most major car manufacturers are currently offering some
type of lane departure assistance. The spectrum ranges from
pure warning systems to lane keeping systems that proac-
tively keep the vehicle in the center of the lane. These are
vision based systems that use the vehicle position in the lane,
its heading and a limited look-ahead horizon (based on the
sensor capacity) to determine whether a warning or steering
input is necessary, see for instance [8], [23]. The drawback
of such a design is that it does not provide formal safety
guarantees.

Approaches which provide guarantees that the vehicle will
stay in a given lane can mainly be found in the autonomous
driving literature. Such safety tools are in general referred
to as lane keeping assistance systems, since they actively
try to keep the vehicle in the center of the lane. One way
to achieve this objective is to consider the lane keeping
task as stabilization problem, where one tries to keep the
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distance to the center equal to zero [12], [24]. Notice that
in these approaches the longitudinal speed is assumed to be
constant. In a related approach [25], a two level architec-
ture is proposed. The higher level uses a model predictive
control scheme to determine a safe (meaning in the lane)
state trajectory. The lower level controller then tracks this
trajectory. Another stability-based approach using Lyapunov
functions and a potential field was presented in [22]. It is
also shown that this approach is robust under bounded time-
varying disturbances.

When designing driver-assist systems such as LDAS, a
crucial question is how the system should interact with the
driver. Studies show that the acceptance of human drivers
of systems that provide assistance in lane keeping is higher
for systems that interfere less with the driver’s steering [11].
The present work focuses on the design of a LDAS that is
guaranteed to keep the vehicle in the lane while overriding
the driver only when necessary to keep the vehicle inside
the lane. The difference with the above cited approaches is
that here we apply control input only when a lane departure
is imminent, while the other approaches continuously apply
steering to keep the vehicle near the center of the lane.

The major challenge in designing such a system is that
it requires a procedure that allows to identify the system
states from which there exists an admissible steering input
that can keep the vehicle in the lane. The set of these
states is called controlled invariant safe set. Determining
whether a state is in this set (a safety verification task) often
requires computationally intensive algorithmic procedures.
Therefore the application of controlled invariance to real-
world engineering problems has been limited to systems
with special structures or small dimensions, see [3], [9],
[10], [14] and references therein. Here we show that under
certain conditions, that we specify, the controlled invariant
safe set has a simple characterization that can be computed
efficiently online. We therefore propose a system architecture
that performs an initial safety check at the time the driver
requests activation of the LDAS. If activation is safe (based
on the above mentioned conditions), the system is enabled
and continuously monitors the driver’s steering inputs. The
driver’s inputs are overridden only if necessary to keep the
vehicle in the lane.

The remainder of the paper starts with a discussion of the
model and the formal statement of the problem in Section II.
Section III contains the description of the proposed driver-
assist system. The implementation of this system is discussed
in Section IV which is followed by some concluding remarks
in Section V.



II. MODEL AND PROBLEM FORMULATION

We start this section with a description of the lane de-
parture assist system (LDAS) that we want to design. In
the second part of the section we introduce the model and
provide a formal problem statement.

A. Lane Departure Assist

We consider a vehicle equipped with sensors, for instance
a camera, that are able to determine the vehicle’s distance
from the left and right lane boundary, denoted by dl and dr
respectively. In addition we assume that measurements on the
vehicle’s dynamics are available. In particular we assume the
vehicle’s sensors provide measurements of the longitudinal
and lateral velocity U and V , yaw rate r and heading angle
ψ, see Figure 1. Notice that estimates of yaw rate and
lateral velocity could be obtained from measurements of
lateral acceleration, see for instance [13]. The LDAS then

Fig. 1. The vehicle’s longitudinal and lateral velocity U and V , as well as
the oriented distances to the lane center, right and left lane boundary d`c,
dr , dl (arrows indicate direction of positive sign) are given with respect to
a body-fixed coordinate frame with unit vectors ~i and ~j. Heading angle ψ
and yaw rate r are measured with respect to an inertial coordinate frame
with axes (x0, y0).

uses this information to override the driver when a lane
departure is imminent. It is therefore a semi-autonomous
vehicle function that should act only when otherwise safety
cannot be guaranteed. We call such a vehicle function a safety
supervisor. Here we consider the case of a straight lane, see
Assumption 1 below. Moreover, LDAS is restricted to use
either right steering to avoid crossing the left lane boundary
or left steering to avoid the right lane boundary and it cannot
change the vehicle’s speed, i.e. the longitudinal velocity U
must remain constant during interventions of LDAS. In this
setting the requirements for the safety supervisor are:
• Guarantee that the car remains in the lane at all times;
• Least conservative; meaning that the driver’s steering

input should be overridden only when necessary to
prevent a lane departure.

Traditional lane departure warning systems use the dis-
tance to the lane boundaries to determine whether a warning
has to be given to the driver, see for instance [16]. However,
in general such an approach cannot guarantee safety as there
are vehicle states from which the left steering needed to avoid

crossing the right lane boundary might force the vehicle
to eventually cross the left boundary. This is illustrated in
Figure 2. For a provably safe design it is therefore important
to guarantee that a steering override applied to prevent
crossing one lane boundary will never cause an unavoidable
lane departure on the opposite boundary.

(a) (b)

Fig. 2. The pictures show subsequent positions of the vehicle. The
dotted and dashed trajectories represent the position of the vehicle while
full left and full right steering is applied respectively. The solid lines
represent boundaries that the center of gravity of the car should not cross.
The simulations were carried out with the dynamical model presented in
Section II-B, assuming that the vehicle has a large initial yaw rate, making
the vehicle turn left independent of the steering angle. In Figure (a) left
steering is required to keep the car in the lane. Steering first left however
makes the avoidance of the left lane boundary impossible as shown in (b).

B. Notations and vehicle-lane dynamics

The vehicle dynamics take place in the continuous state
space X ⊂ R6. In the following we will use a body-fixed
reference frame that is fixed to the ego-vehicle’s center of
gravity, see Figure 1. All dynamical interactions will be
described within this reference frame. The major simplifying
assumption that we make is that the road lane is straight.

Assumption 1:

(i) The road lane is straight at all times;
(ii) The lane width W` > 0 is known and constant.

The system states are (see Figure 1)
• (U, V ) – longitudinal and lateral speed along, respec-

tively perpendicular to the vehicle’s path;
• (r, ψ) – yaw rate and heading angle with respect to a

fixed reference frame;
• dl, dr – Distance between the vehicle and the left,

respectively right lane boundary measured perpendic-
ularly to the vehicle heading. They are both signed
distances which are negative if the vehicle is on the
wrong side of the corresponding lane boundary, see
Figure 1.

and the (bounded) inputs are
• τw ∈ [−τ̄w, τ̄w] – wheel torque which represents brake

torque if it is negative and τ̄w > 0 is some constant;
• δf ∈ [−δ̄f , δ̄f ] – front wheel steering angle and δ̄f > 0

is some constant.
The full system state will be denoted by

x := (U, V, r, ψ, dl, dr) ∈ X.

For the vehicle dynamics we use a standard model, see
for instance [21]. For the convenience of the reader we
provide the derivation of the differential equation for dl in the



Appendix. A description of the constants of the dynamical
model is given in Table I.
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Notice that we use the standard abbreviations cf = µcf0 and
cr = µcr0.

TABLE I
PARAMETERS OF THE VEHICLE DYNAMICS MODEL

Notation Unit Description

Jw kg·m2 Wheel inertia
Jz kg·m2 Moment of inertia with respect to vertical axis
m kg Vehicle mass
R m Tire radius
lf m Distance center of gravity to front axle
lr m Distance center of gravity to rear axle

CD – Drag coefficient
Af m2 Projected front area of the vehicle
cf0 N/rad Cornering stiffness front wheel at dry road
cr0 N/rad Cornering stiffness rear wheel at dry road
g m/s2 Acceleration due to gravity

ρair kg/m3 Air density
Crr – Rolling resistance coefficient

θroad rad Road gradient
µ – Road adhesion coefficient, takes values in ]0, 1].

For a set A ⊂ Rn, S(A) denotes the set of piecewise con-
tinuous signals with images in A. The flow of the dynamical
system x : R+ × S([−τ̄w, τ̄w]) × S([−δ̄f , δ̄f ]) × X → X
is the map such that for all x ∈ X , tw ∈ S([−τ̄w, τ̄w]),
df ∈ S([−δ̄f , δ̄f ]), t 7→ x(t; tf ,df , x) solves the differential
equation (1) with τw and δf replaced by tw(t) and df (t)
respectively. The component functions of the flow x are
denoted by xi, i ∈ {1, . . . , 6} and represent the trajectories
of the corresponding state. For instance, x4(t; tw,df , x) is
the vehicle’s heading angle at time t, when the vehicle was
controlled by tw and df and in state x ∈ X at time 0.

The model of vehicle dynamics is valid only under normal
driving conditions. In particular it uses a linear model for
the lateral tire forces which is realistic for small tire sideslip
angles, see for instance [1]. Precisely the model is valid if
• Front and rear slip angles, denoted by βf and βr, are

such that tan(βf ) ≈ βf , respectively tan(βr) ≈ βr;
• Lateral tire forces can accurately be approximated by a

linear model;
• The matrix in the lateral dynamics (1) is stable;
• Rolling and pitching motion of the car can be neglected.

To formulate these requirements in an explicit assumption,
first recall that in our model the front and rear sideslip angles

are given by

βf := (V + rlf ) /U and βr := (V − rlr) /U,

see for instance [21, p. 30]. Front and rear tire slip angles,
which shall be denoted by αf and αr, are functions of the
steering angle and the front and rear sideslip angles,

αf := δf − βf and αr := −βr.
Under good road conditions lateral tire forces can be accu-
rately approximated by a linear model as long as the tire
sideslip angles satisfy −π/18 ≤ αf , αr ≤ π/18, see for
instance [21, p. 202]. We summarize this in the following:

Assumption 2:
(i) cr0lr − cf0lf > 0 and lr/2 < lf < 2lr;

(ii) −π/4 ≤ βf ≤ π/4 and −π/18 ≤ βr, δf − βf ≤ π/18.
Assumption 2 (i) assures the stability requirement and is

satisfied by cars and trucks, see [17, Sec. 6]. The second
assumption guarantees small sideslip and tire slip angles
respectively. For a more detailed discussion on the validity
of this model see for instance [1], [21].

C. Problem statement
As described in Section II-A, the objective is to guarantee

that the vehicle remains in the lane for all time. Hence the
safe set, that is, the set of all states x ∈ X that are in the
lane, is given by

S := {(U, V, r, ψ, dl, dr) ∈ X | min {dl, dr} ≥ 0} . (2)

In the following safety will always mean that the system
state x belongs to the safe set S. Since the LDAS that we
investigate is a semi-autonomous vehicle function, we seek
a feedback control strategy that keeps the state x in S for all
time and overrides the driver steering only when necessary
to do so. Such a feedback strategy will be called a safety
supervisor. The principle is illustrated in Figure 3.

Driver

Vehicle and Lane
Dynamics

Supervisor:
Is driver input

safe?

(τdw, δ
d
f )

πs(x) = (τsw, δ
s
f )No

Yes

πs(x) = (τdw, δ
d
f )

x

x

Fig. 3. Diagram shows the interaction between safety supervisor, driver
and vehicle-lane dynamics. The system state is x, driver’s input and the
supervisor’s input are denoted by (τdw, δ

d
f ) and (τsw, δ

s
f ) respectively. The

supervisor’s feedback control strategy πs equals the driver’s input whenever
this input is safe.

Problem 1: Let x ∈ X be the current system state. Find a
feedback strategy πs : X  [−τ̄w, τ̄w]× [−δ̄f , δ̄f ] such that
the corresponding flow satisfies

x(t;πs, x) ∈ S ∀ t ∈ R+.
We use in the following the convention that πs(x) =
[−τ̄w, τ̄w]× [−δ̄f , δ̄f ] when the supervisor is inactive.



III. LANE DEPARTURE ASSIST SYSTEM

In this section we provide a solution to Problem 1.
Assumption 1 shall hold throughout this section, hence the
road lane is straight.

A. System architecture

As discussed in Section II-A, the safety supervisor is
restricted to keep the longitudinal speed constant and to use
the following steering strategies:
1. Steer left to avoid right lane boundary;
2. Steer right to avoid left lane boundary.
Since the focus in this paper is on steering control, to satisfy
the requirement on longitudinal speed we make the following
assumption.

Assumption 3: For every given longitudinal speed U ,
there exists a (feedback) torque input τsw that allows to keep
the longitudinal speed constant at U .

Notice that in practice such a torque input could be
obtained from cruise control.

Recall that for a provably safe design that respects the
above mentioned restrictions it is important to assure that
the steering required to prevent the crossing of one lane
boundary will not cause an unavoidable crossing of the
other, see Figure 2. Finally, as discussed in Section II-B, the
dynamical model is only valid when Assumption 2 holds
true. To enforce these constraints in a semi-autonomous
manner, we propose an architecture that has three main
components, see Figure 4.

The first component is an initialization check, performed
when the driver first tries to switch on the LDAS. The
role of this check is to guarantee that the safety supervisor
is not enabled while the driver is performing an extreme
maneuver because in this case the safety supervisor might
not be able to keep the vehicle in the lane. Mathematically
this corresponds to the conditions outlined in Figure 4, where
Umin, Umax, Ṽ , r̃ and ψ̃ are design parameters of the system.
The appropriate selection of these parameters is discussed
in Section III-C. If the initialization check is successful the
status variable enabled is set to true. Otherwise the system
remains disabled.

The second component is a status update, which contin-
uously monitors whether the driver is keeping the speed
and front wheel steering angle within the allowed range of
operation, [Umin, Umax] and [−δ̄f , δ̄f ] respectively. Here δ̄f
is a design parameter. The necessity of this check comes
from the fact that the system does not actively constrain the
driver’s wheel torque requests or front wheel steering angle.
Instead, if the check fails the LDAS is disabled by setting
the status variable enabled to false.

The last component is the actual safety supervisor. When
the status variable enabled is true, it checks whether the
driver’s input will lead to an unavoidable lane departure
and overrides the driver when this is the case. The next
Section III-B is devoted to a detailed discussion of this
supervisor and contains the statement of the formal safety
guarantees, Theorem 3.1.

Driver

x = (U, V, r, ψ, d`c)

Vehicle and Lane
Dynamics

Driver switches
LDAS on

x = (U, V, r, ψ, d`c)

Initialization check

IF (U, V, r, ψ) ∈ [Umin, Umax]× [−Ṽ , Ṽ ]× [−r̃, r̃]× ]− ψ̃, ψ̃[
AND No lane departures predicted, i.e. x ∈ W+ ∩W−

then enabled = true;
ELSE

then enabled = false;

Validated design parameters: See Section III-C
• δ̄f ;
• [Umin, Umax];
• Ṽ , r̃, ψ̃.

Status update
IF U /∈ [Umin, Umax] OR δdf /∈ [−δ̄f , δ̄f ]

then enabled = false;

(τdw, δ
d
f ) x

Safety supervisor see Theorem 3.1

Is right lane boundary violation predicted?
i.e. x ∈ Wc

+

No

Is left lane boundary violation predicted?
i.e. x ∈ Wc

−

Yes

πs(x) = (τsw, δ̄f )

Yes
πs(x) = (τsw,−δ̄f )

No
πs(x) = (τdw, δ

d
f )

x = (U, V, r, ψ, d`c)

Is enabled?

(τdw, δ
d
f )

No
(τdw, δ

d
f )

Yes
(τdw, δ

d
f )

Fig. 4. Block diagram of the LDAS. The setsW+ andW− are defined in
(3). The system has a number of design parameters that have to be validated
offline before the safety supervisor is guaranteed to keep the vehicle in the
lane at all time.

B. Safety supervisor

In this section we design the feedback strategy πs that
provides a solution to Problem 1. The design requires three
conditions that are introduced and discussed in the following
three paragraphs. These conditions can be checked offline
as described in Section III-C. In the fourth paragraph we
formally define πs and elaborate on the safety guarantees
that it provides.

1) Range of operation of the system: Throughout this
section τ̄w and δ̄f are positive constants as in Section II-
B. Similarly, in accordance with the previous Section III-A,
Umin, Umax, Ṽ , r̃ and ψ̃ are positive constants. The choice
of these constants is the subject of the next section. The
reachable set of a control system from a given set A of initial
conditions, is the set of states x ∈ X for which there exists
an input signal that allows to steer the corresponding state
trajectory from the set A to x. In the following the reachable
set of the lateral dynamics plays an important role:

R(Ṽ , r̃) :=
{

(x2,x3)(t; tw,df , x)
∣∣∣ df ∈ S([−δ̄f , δ̄f ]),

tw ∈ S([−τ̄w, τ̄w]), (x2, x3) ∈ [−Ṽ , Ṽ ]× [−r̃, r̃],

t ∈ R+, x1(s; tw,df , x) ∈ [Umin, Umax], ∀s ≤ t
}
.

An over approximation of the reachable set is any set Ω ⊂
R2 such that R(Ṽ , r̃) ⊂ Ω. The concept is illustrated in



Figure 5.

Fig. 5. Lateral velocity and yaw rate trajectories starting in the set
[−Ṽ , Ṽ ] × [−r̃, r̃] remain in the corresponding reachable set R(Ṽ , r̃).
The box [−V̄ , V̄ ]× [−r̄, r̄] is an over approximation of this reachable set.

Condition 1:
(i) There exists an over approximation R of R(Ṽ , r̃) such

that
• max {|(V − rlf )/Umin| | (V, r) ∈ R} ≤ π/18;
• max

{∣∣∣δ̄f − V+rlf
Umin

∣∣∣ ∣∣∣ (V, r) ∈ R
}
≤ π/18;

(ii)
√

(lf+lr)2(cr0lr−cf0lf )
4Jz

< Umin ≤ Umax.
Notice that if the longitudinal speed remains within
[Umin, Umax] and the steering input in [−δ̄f , δ̄f ], then (i)
guarantees that Assumption 2 (ii) is satisfied. Condition (ii)
is a stability requirement, assuring that the lateral velocity
and yaw rate reach their steady state in finite time.

2) Separation of steering tasks: In general it is not
possible to consider the objectives: 1) stay left of the right
lane boundary; 2) stay right of the left lane boundary; as
independent control tasks, see Fig. 2. In the following we
provide a condition under which a decoupling of these
tasks is possible. Hence this condition allows to design a
safety supervisor that respects the restrictions on the steering
actions that were imposed in Section II-A.

First, for all x = (U, V, r, ψ, dl, dr) ∈ X , tw ∈
S([−τ̄w, τ̄w]) and df ∈ S([−δ̄f , δ̄f ]) we introduce the
slightly altered state trajectory x̂(·; tw,df , x) which for i ∈
{1, 2, 3} is defined by x̂i(t; tw,df , x) = xi(t; tw,df , x)
for all t ∈ R+. Moreover, using the abbreviation [t] :=
(t; tw,df , x),

x̂4[t] =


ψ̃ if x4[t] ≥ ψ̃,
x4[t] if x4[t] ∈ ]− ψ̃, ψ̃[,

−ψ̃ if x4[t] ≤ −ψ̃,

and (x̂5[t], x̂6[t]) are such that (x̂5[0], x̂6[0]) = (dl, dr) and
for all t ∈ R+, ( ˙̂x5[t], ˙̂x6[t]) = f`(x̂[t]) where f` is defined
in (1).

Notice that x̂[t] = x[t] for all t such that x4[s] ∈ ]− ψ̃, ψ̃[
for all s ≤ t. This is important as we show in Theorem 3.1
that our safety supervisor guarantees that the heading angle
remains in ]− ψ̃, ψ̃[. Hence under the feedback control of
our safety supervisor these state trajectories are identical.
The reason for this change of dynamics is that it allows to
exclude some pathological behavior that would come from
heading angles outside of ]− π/2, π/2[.

With this notation we define the following sets:

T+(x) :=
{
t ∈ R+

∣∣∣ x̂4(t; t̄w, d̄f , x) < ψ̃
}
,

W+ :=
{
x ∈ X

∣∣ x̂6(t; t̄w, d̄f , x) ≥ 0, ∀t ∈ T+(x)
}
,

W0+ :=
{
x ∈ W+

∣∣∣ dr ≥ 0,∃t ∈ T+(x)

s.t. x̂6(t; t̄w, d̄f , x) = 0 and ˙̂x6(t; t̄w, d̄f , x) = 0
}
,

(3)
where for a given set A, A denotes its closure and the control
inputs t̄w ∈ S([−t̄w, t̄w]), d̄f ∈ S([−δ̄f , δ̄f ]) are such that
for all t ∈ R+,

t̄w(t) = τsw and d̄f (t) = δ̄f .

Here τsw is the torque input from Assumption 3 that allows
the safety supervisor to keep the longitudinal speed constant.
Since the torque required to do this is bounded, we will
assume in the following that |τsw| ≤ τ̄w.

Intuitively, the set W+ is the controlled invariant safe set
for the right lane boundary, that is, the set of states such
that there exists an admissible steering input that keeps the
vehicle on the correct side of the lane boundary. The set
W0+ is a subset of the boundary of W+, see Figure 6. The
sets T−(x), W− and W0− are defined analogously, with x̂6,
and d̄f replaced by x̂5 and −d̄f respectively and correspond
to the controlled invariant safe set of the left lane boundary.

(a) (b)

Fig. 6. The dashed arrow represents the vehicle’s trajectory while left
steering is applied. As long as this trajectory does not cross the right lane
boundary the current state is in W+. If in addition there is a time at which
the trajectory touches the lane boundary, see (b), then the state is in W0+.

It is intuitive that applying control only when a lane
departure is imminent corresponds to overriding the driver
when the supervisor’s trajectory touches the lane boundary,
i.e. when the current state is either inW0+ orW0−. We show
that this is indeed a safe control strategy, see Theorem 3.1,
if the following condition is satisfied.

Condition 2: W0+ ∩W0− = ∅.
Notice that in practice this condition assures the non occur-
rence of the situation depicted in Figure 2.

3) Finite look-ahead horizon: The sets W+ and W− are
based on a prediction on the time horizon T+ and T−. As
this time horizon is finite but we want to keep the vehicle in
the lane on the infinite horizon R+, we need to ensure that
at the end of the look-ahead horizons T+ and T− there still
exists a steering input that can keep the vehicle in the lane.
As we show in Theorem 3.1 below, this is the case if the
following conditions hold true:

Condition 3:
(i) For all x = (U, V, r, ψ, dl, dr) ∈ X we have that

• if ψ = ψ̃ and dl ≤W`/ cos(ψ̃) then x ∈ Wc
−;



• if ψ = −ψ̃ and dr ≤W`/ cos(ψ̃) then x ∈ Wc
+;

(ii) sup
{
V/ tan(ψ̃)

∣∣∣ ∃r such that (V, r) ∈ R
}
< Umin,

where for a set A, Ac denotes its complement and R is the
over approximation of R(Ṽ , r̃) from Assumption 1.

Intuitively, this condition states that if the heading of the
vehicle forms a large angle with the tangent to the lane, then
the car cannot be kept on the road. The condition therefore
simply reflects limitations due to the turning radius of the
car, see Figure 7.

Fig. 7. If the vehicle’s turning radius is larger than the lane width then
for a large heading angle ψ̃ the car cannot remain in the lane.

4) Safety supervisor: We assume that all previously men-
tioned conditions are satisfied.

Theorem 3.1: Let x0 = (U0, V 0, r0, ψ0, d0l , d
0
r) ∈ W+ ∩

W− be such that
(i) (U0, V 0, r0) ∈ [Umin, Umax]× [−Ṽ , Ṽ ]× [−r̃, r̃];

(ii) ψ0 ∈ ]− ψ̃, ψ̃[.
Define πs : X  [−τ̄w, τ̄w]× [−δ̄f , δ̄f ] by

πs(x) :=


(τsw, δ̄f ) if x ∈ Wc

+,

(τsw,−δ̄f ) if x ∈ Wc
− \Wc

+,

[−τ̄w, τ̄w]× [−δ̄f , δ̄f ] otherwise.

Then the corresponding flow satisfies for every t ∈ R+ such
that x1(s;πs, x0) ∈ [Umin, Umax] for all s ∈ [0, t],

x(t;πs, x0) ∈ S and x4(t;πs, x0) ∈ ]− ψ̃, ψ̃[. (4)
A few remarks are in order. First notice that the conditions

on x0 correspond to the initialization check of the LDAS,
see Figure 4. Thus if the initialization check is successful,
then by (4) the vehicle is in the lane, as long as the
longitudinal speed x1(t;πs, x0) ∈ [Umin, Umax]. That the
safety guarantee only holds when the longitudinal velocity
remains in [Umin, Umax] corresponds to the status update of
the LDAS, Figure 4. Moreover, by the definition of τsw the
longitudinal velocity remains constant when the safety su-
pervisor overrides the driver. Finally, as we discuss in detail
in Section IV, implementing this supervisor only requires
to check whether a state is in W+ or W− respectively. It
follows directly from the definition of these sets that this test
can be done by simple integration. Pseudo-code is provided
in Section IV and a sketch of the proof is in the Appendix.

C. Bounds safety verification

Conditions 1-3 all impose some requirements on the de-
sign parameters Umin, Umax, Ṽ , r̃, ψ̃ and δ̄f . Consequently,

before the supervisor introduced in the previous section
can be used to guarantee safety online, one has to verify
offline that for the given choice of design parameters these
conditions are satisfied. This verification process is depicted
in Figure 8 and has two parts.

Offline Online

Design parameters:
• δ̄f ;
• [Umin, Umax];
• Ṽ , r̃, ψ̃.

Parameter verification

Compute over approximation of
reachable set R(Ṽ , r̃)

Approximation of reachable set R

Check if Conditions 1-3 are
satisfied

see Prop. 3.2 and 3.3

Are
Parameters

safe?

No

re
vi

se
pa

ra
m

et
er

ch
oi

ce

Yes

Umin, Umax,
Ṽ , r̃, ψ̃, δ̄f

Status update

Initialization
check

Fig. 8. We can test offline whether a set of parameters is valid. If the
verification is successful these parameters can be used online to keep the
system state up to date. Otherwise the parameter choice has to be revised.

First one has to compute an over approximation R of
the reachable set R(Ṽ , r̃). This is a well studied topic,
see for instance [4], [6], [19], therefore we do not go
into details here. Important considerations concerning the
implementation of such an over approximation are provided
in Section IV-B.

Then one uses the over approximation R to check whether
Conditions 1-3 hold true. For Condition 1 this is straightfor-
ward. To check Condition 2-3 we introduce two auxiliary
optimization problems, the value of which will then allow to
formulate sufficient conditions for these assumptions.

Consider the nonlinear optimization problem

Minimize
s∈R+,t∈R+,x∈X

x̂5(t; t̄w,−d̄f , x)2 + x̂6(s; t̄w, d̄f , x)2, (5)

subject to{
˙̂x5(t; t̄w,−d̄f , x) = 0, ˙̂x6(s; t̄w, d̄f , x) = 0, (6a)
U ∈ [Umin, Umax], (V, r) ∈ R, dl, dr ≥ 0. (6b)

It will be convenient to define the value of problem (5),

V1 := min
{
x̂5(t; t̄w,−d̄f , x)2 + x̂6(s; t̄w, d̄f , x)2

∣∣
subject to (6a)-(6b)

}
.

Notice that V1 is well defined since 0 is obviously a lower
bound and the set of feasible points is closed.

Proposition 3.2: If V1 > 0 then Condition 2 holds true.
To check Condition 3 consider the problem

Minimize
t∈R+,x∈X

−x̂6(t; t̄w,−d̄f , x), (7)



subject to{
x̂4(t; t̄w, d̄f , x) = 0, U ∈ [Umin, Umax] (8a)

(V, r) ∈ R, ψ = −ψ̃, dr = W`/ cos(ψ̃). (8b)

As above we define the value of problem (7) by

V2 := min
{
−x̂6(t; t̄w, d̄f , x)

∣∣ t, x satisfy (8a)-(8b)
}
.

As standard arguments allow to show that T+(x) is bounded
for all feasible x ∈ X , it is easy to see that the set of feasible
points is compact and non empty. The value V2 is therefore
well-defined.

Proposition 3.3: If V2 > 0 then Condition 3 holds true.
The proofs of these propositions are straightforward and

therefore omitted.
As depicted in Figure 8, if the parameter verification fails

one has to revise the parameter choice. By Propositions 3.2
and 3.3, the verification fails if either V1 or V2 is too
small. Tightening the active constraints of the corresponding
optimization problems (5) and (7) will usually increase the
value and thus eventually lead to valid parameters.

IV. IMPLEMENTATION

The LDAS described in Section III has two main parts.
Before the system is put into operation, we have to find a
set of parameters that is safe according to the test outlined
in Figure 8. Using a verified set of parameters, the safety
supervisor depicted in Figure 4 runs online to keep the
vehicle in the lane. In the following we provide details on
the implementation of these two parts.

A. Safety supervisor

The logic diagram of the full algorithm is depicted in
Figure 4. Here we focus on the implementation of the
safety supervisor block, that is, on the implementation of
the feedback strategy given in Theorem 3.1. For the purpose
of discretization we use a fixed step size ∆t > 0 and perform
a forward Euler approximation in order to compute the
state that would result by applying the driver input (τdw, δ

d
f ).

Checking whether this state is inW+∩W− is simply done by
integration. Pseudo code is provided in Algorithm 1. Notice
that in Algorithm 1 we abbreviate (1) by ẋ = f(x, τw, δf ).

B. Design parameter verification

As discussed in detail in Section III-C, the parameter
verification requires to find an over approximation of the
reachable set R(Ṽ , r̃) and the solution of the optimization
problems (5) and (7). There exist already many tools for
these tasks. We would however like to stress that in order
to have safety guarantees, one needs to use tools with
guaranteed accuracy. To be precise, for the reachable set we
need a guaranteed over approximation. For a freely available
software tool that allows to compute this, see for instance
[2]. Similarly, for the optimization problems we need to find
a guaranteed lower bound of the values V1 and V2. Such
bounds can be provided by global optimization algorithms,
see for instance [5] and [18] for the corresponding software.

Algorithm 1: Safety supervisor
Input: Current state x and driver input (τdw, δ

d
f )

Output: Wheel torque and front wheel steering angle (τw, δf )
(τw, δf )← (τdw, δ

d
f );

xpred ← x+ ∆tf(x, τdw, δ
d
f );

x← xpred;
while x4 ≤ ψ̃ do

if x6 < 0 then
(τw, δf )← (τsw, δ̄f ); BREAK;

else
x← x+ ∆tf(x, τsw, δ̄f );

end if
end while
x← xpred;
while x4 ≥ −ψ̃ do

if x5 < 0 then
(τw, δf )← (τsw,−δ̄f ); BREAK;

else
x← x+ ∆tf(x, τsw,−δ̄f );

end if
end while
return (τw, δf );

C. Simulations

We implemented Algorithm 1 in Matlab and used it to
prevent lane departures of a simulated driver with a tendency
to drift to the right. The result of the simulation is shown in
Figure 9. In the simulation we represent the center of gravity
of the car by a red circle and its heading by a black arrow.
The safety supervisor keeps the center of gravity between the
solid blue lines. At 3.15s the driver is overridden to avoid a
lane departure. When the danger is averted control is given
back to the driver.

Fig. 9. Result of the simulation described in Section IV-C. The dashed-
dotted line represents the actual vehicle trajectory. The dashed trajectory
and the dotted trajectory correspond to right and left steering respectively.

V. CONCLUSIONS

We used a formal approach to design a semi-autonomous
lane departure warning system. The core of this system
is a safety supervisor that uses the controlled invariant
safe set to determine when to act. This guarantees both
safety and that the driver is overridden only when necessary.
Moreover, the supervisor is computationally efficient and
easy to implement. The design of the supervisor is based
on a number of parameters that have to be verified before
safety can be guaranteed. It was shown that this verification
can be done algorithmically. When the system is operational,



an initialization check is performed when the driver switches
the system on. This test ensures that the LDAS is enabled
only under conditions for which safety can be guaranteed. If
the initialization check is successful, the safety supervisor is
enabled and guarantees that the vehicle stays in the lane at
all time.

The most restrictive assumption that we made is that the
lane is straight. In future work this assumption should be
relaxed. In addition, it was assumed that the system dynamics
could be modeled accurately. As in practice these dynamics
are subject to uncertainties and disturbances, the design
should be extended to accommodate bounded uncertainties.
Finally, it would be desirable to have an algorithm that
allows to revise the parameter choice automatically when
the parameter verification fails.

APPENDIX

a) Derivation of differential equation for dl: In order
to derive a differential equation for dl, we first notice that the
following two equations have to be satisfied, see Figure 1.

d

dt

[
dl~j
]

= ḋl~j + dl~̇j = ḋl~j − dlr~i,

d

dt

[
dl~j
]

= τ

(
cos(ψ)
− sin(ψ)

)
−
(
U
V

)
,

where τ is a parameter representing the velocity of the
projection onto the left lane boundary. Solving this system
of equations for τ and ḋl we find that

τ =
U − dlr
cos(ψ)

and ḋl = (dlr − U) tan(ψ)− V.

b) Proof of Theorem 3.1: We provide here a sketch of
the proof. Full details can be found in [15].

We start by fixing x0 ∈ X as in the statement of the
theorem. It suffices to show that x̂(t;πs, x0) ∈ W+ ∩ W−
and x̂4(t;πs, x0) ∈ ]− ψ̃, ψ̃[ for all t ∈ R+ such that

x1(s;πs, x0) ∈ [Umin, Umax] ∀s ∈ [0, t]. (9)

It will be convenient to denote the set of all times t ∈ R+

for which (9) is satisfied by T .
Step 1: Show that x̂(t;πs, x0) ∈ W+ for all t ∈ T . This

can be done by contradiction, assuming that there exists t ∈
T such that x̂(t;πs, x0) /∈ W+. The contradiction follows
readily from the definition of πs and W+.

Step 2: Set t∗ := inf{t ∈ T | x̂4(t;πs, x0) ∈ {−ψ̃, ψ̃}},
where t∗ = ∞ if this set is empty. Then show that
x̂(t;πs, x0) ∈ W− for all t ∈ T ∩ [0, t∗[. This is again
done by a contradiction argument and uses the conclusion
of Step 1 and Condition 2.

Step 3: Show that t∗ = ∞. This follows once more
by contradiction. Indeed, from Step 1 and 2 we know that
x̂(t;πs, x0) ∈ W+ ∩ W− for all t ∈ [0, t∗[. Since one can
show that the set W+ ∩ W− is closed, it follows that if
t∗ <∞ then also x̂(t∗;πs, x0) ∈ W+ ∩W−. This however
is by Condition 3 impossible.
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