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Abstract: This paper presents a methodology to systematically assess and manage the risks associated 

with tunnel construction. The methodology consists of combining a geologic prediction model that allows 

one to predict geology ahead of the tunnel construction, with a construction strategy decision model that 

allows one to choose amongst different construction strategies the one that leads to minimum risk. This 

model used tunnel boring machine performance data to relate to and predict geology. Both models are 

based on Bayesian networks because of their ability to combine domain knowledge with data, encode 

dependencies among variables, and their ability to learn causal relationships. The combined geologic 

prediction – construction strategy decision model was applied to a case, the Porto Metro, in Portugal. The 

results of the geologic prediction model were in good agreement with the observed geology, and the 

results of the construction strategy decision support model were in good agreement with the construction 

methods used. Very significant is the ability of the model to predict changes in geology and consequently 

required changes in construction strategy. This risk assessment methodology provides a powerful tool 

with which planners and engineers can systematically assess and mitigate the inherent risks associated 

with tunnel construction.  
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1. Introduction  

 

There is an intrinsic risk associated with tunnel construction because of the limited a priori knowledge of 

the existing subsurface conditions. Although the majority of tunnel construction projects have been 

completed safely there have been several incidents in various tunneling projects that have resulted in 

delays, cost overruns, and in a few cases more significant consequences such as injury, and loss of life. It 

is therefore important to systematically assess and manage the risks associated with tunnel construction.  

A detailed database of accidents that occurred during tunnel construction was created by Sousa (2010). 

The database contains 204 cases all around the world with different construction methods and different 

types of accidents. The accident cases were obtained from the technical literature, newspapers and 

correspondence with experts in the tunneling domain. 

 

Knowledge representation systems (or knowledge based systems) and decision analysis techniques were 

both developed to facilitate and improve the decision making process. Knowledge representation systems 

use various computational techniques of AI (artificial intelligence) for representation of human 
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knowledge and inference. Decision Analysis uses decision theory principles supplemented by judgment 

psychology (Henrion, 1991). Both emerged from research done in the 1940’s regarding development of 

techniques for problem solving and decision making. John von Neumann and Oscar Morgensten, who 

introduced game theory in “Games and Economic Behavior” (1944), had a tremendous impact on 

research in decision theory. 

 

Although the two fields have common roots, since then they have taken different paths. More recently 

there has been a resurgence of interest by many AI researchers in the application of probability theory, 

decision theory and analysis to several problems in AI, resulting in the development of Bayesian 

Networks and Influence Diagrams, an extension of Bayesian Networks designed to include decision 

variables and utilities. The 1960s saw the emergence of decision analysis with the use of subjective 

expected utility and Bayesian statistics. Howard Raiffa, Robert Schlaifer, and John Pratt at Harvard, and 

Ronald Howard at Stanford emerged as leaders in these areas. For instance Raiffa and Schlaifer’s Applied 

Statistical Decision Theory (1961) provided a detailed mathematical treatment of decision analysis 

focusing primarily on Bayesian statistical models. Pratt and al. (1964) developed basic decision analysis. 

while Eskesen (2004) and Hartford and Baecher (2004) provide good summaries on the different 

techniques (fault trees, decision trees, etc) that can be used to assess and manage risk in tunneling.  

 

Various commercial and research software for risk analysis during tunnel construction have been 

developed over the years, the most important of which is the DAT (Decision Aids for Tunneling), 

developed at MIT in collaboration with EPFL (Ecole Polytechnique Fédérale de Lausanne). The DAT are 

based on an interactive program that uses probabilistic modeling of the construction process to analyze 

the effects of geotechnical uncertainties and construction uncertainties on construction costs and time. 

(Dudt et al., 2000; Einstein, 2002) However, the majority of existing risk analysis systems, including the 

DAT, deal only with the effects of random (“common”) geological and construction uncertainties on time 

and cost of construction. There are other sources of risks, not considered in these systems, which are 

related to specific geotechnical scenarios that can have substantial consequences on the tunnel process, 

even if their probability of occurrence is low. 

 

This paper attempts to address the issue of specific geotechnical risk by first developing a methodology 

that allows one to identify major sources of geotechnical risks, even those with low probability, in the 

context of a particular project and then performing a quantitative risk analysis to identify the “optimal” 

construction strategies, where “optimal” refers to minimum risk. For that purpose a decision support 

system framework for determining the “optimal” (minimum risk) construction method for a given tunnel 

alignment was developed. The decision support system consists of two models: a geologic prediction 

model, and a construction strategy decision model. Both models are based on the Bayesian Network 

technique, and when combined allow one to determine the ‘optimal’ tunnel construction strategies. The 

decision model contains an updating component, by including information from the excavated tunnel 

sections. This system was implemented in a real tunnel project, the Porto Metro in Portugal.  

 

 

2. Background on Bayesian Networks  

 

Bayesian Networks are graphical representations of knowledge for reasoning under uncertainty. They can 

be used at any stage of a risk analysis, and may substitute both fault trees and event trees in logical tree 

analysis. While common cause or more general dependency phenomena pose significant complications in 

classical fault tree analysis, this is not the case with Bayesian networks. They are in fact designed to 

facilitate the modeling of such dependencies. Because of what has been stated, Bayesian networks 

provide a good tool for decision analysis, including prior analysis, posterior analysis and pre-posterior 

analysis. Furthermore, they can be extended to influence diagrams, including decision and utility nodes in 

order to explicitly model a decision problem.  
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A Bayesian Network is a concise graphical representation of the joint probability of the domain that is 

being represented by the random variables, consisting of (Russel and Norvig, 2003): 

 

 A set of random variables that make up the nodes of the network. 

 A set of directed links between nodes. (These links reflect cause-effect relations within the 

domain.) 

 Each variable has a finite set of mutually exclusive states. 

 The variables together with the directed links form a directed acyclic graph (DAG). 

 Attached to each random variable A with parents B1, . . . , Bn there is a conditional probability 

table ),....,|( 11 nn bBbBaAP  , except for the variables in the root nodes. The root nodes 

have prior probabilities. 

 

Figure 1 is an illustration of a simple Bayesian network.  The arrows (directed links) going from one 

variable to another reflect the relations between variables. In this example the arrow from C to B2 means 

that C has a direct influence on B2.  

 
Figure 1 Bayesian Network example 

 

Specifically, a Bayesian Network is a compact and graphical representation of a joint distribution, based 

on some simplifying assumptions that some variables are conditionally independent of others. As a result 

the joint probability of a Bayesian network over the variables U = {X1,…, Xn}, represented by the chain 

rule can be simplified from: 

 
n

i

ii xxXPUP ),.......,()( 11
  

to  

 
n

i

iii XparentsxXPUP ))(()( , where “parents (Xi)” is the parent set of Xi.   

It is this property that makes Bayesian Networks a very powerful tool for representing domains under 

uncertainty, allowing one to store and compute the joint and marginal distributions more efficiently.   

 

In order to obtain results from Bayesian Networks one does inference.  This consists of computing 

answers to queries made to the Bayesian network. The two most common types of queries are:   

 

- A Priori probability distribution of a variable 

 

Equation 1 

 
 

1X

1 ),,,(  )(
kX

kXXPP AA 
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Where A is the query-variable and X1 to Xk are the remaining variables of the network. This type of query 

can be used during the design phase of a tunnel for example to assess the probability of failure under 

design conditions (geology, hydrology, etc). 

 

- Posterior distribution of variables given evidence (observations) 

 

 

Equation 2 

 

 

Where e is the vector of all the evidence, and A is the query variable and X1 to Xk are the remaining 

variables of the network. This type of query is used to update the knowledge of the state of a variable (or 

variables) when other variables (the evidence variables) are observed. It could be used, for example, to 

update the probability of failure of a tunnel, after construction has started and new information regarding 

the geology crossed becomes known.  

 

The most straightforward way to do inference in a Bayesian Network, if efficiency were not an issue, 

would be to use the equations above to compute the probability of every combination of values and then 

marginalize out the ones one needed to get a result. This is the simplest but the least efficient way to do 

inference. There are several algorithms for efficient inference in Bayesian Networks, and they can be 

grouped as follows: Exact inference methods and approximate inference methods. The most common 

exact inference method is the Variable Elimination algorithm (Jensen, 2001) that consists of eliminating 

(by integration or summation) the non-query, non-observed variables one by one by summing over their 

product. This approach, which was used in this paper, takes into account and exploits the independence 

relationships between variables of the network.  

 

3. Decision Support System 

 

The emphasis of this work is on the construction phase where the construction strategy decision model is 

used in combination with the (Bayesian) geological prediction model. The geological prediction model 

allows one to predict ahead of the tunnel face, and based on this, it is then possible to decide on the 

optimal construction strategy for the “updated” geologies.  

 

The basic structure of the Geologic Prediction Model is presented in Figure 2. The X variables represent 

construction related variables that will give some information regarding the ground that the tunnel is 

crossing. GC is the ground condition at the face of the tunnel. One observes, for example, at section 1 and 

predicts the geology ahead of the face, for sections 2 to N.  

 

 

 

 


1
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
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Figure 2 Basic structure of the Geologic Prediction Model 

(X: construction related variables; GC (Si): ground class at section i) 

 

The construction strategy decision model is based on decision graphs, which are Bayesian networks 

extended to model different actions or alternatives and associated utilities. The model determines the 

optimal or “best” alternatives based on maximization of utility (minimization of risk). Since decision 

analysis is a well established field, a simple decision analysis model was used for methodology 

illustration purposes; other decision models could be used instead.  

 

The basic structure for the construction strategy decision model (Figure 3) consists of: 

 

 Two chance nodes, namely Geological Condition, which represents the possible ground 

conditions at the face of the tunnel, and Failure Mode, which represents the probability of 

different failure modes.  

 One decision node, Construction Strategy, which represents the possible construction strategies.    

 One utility node, the total cost, which represents the sum of costs associated with the different 

construction strategies and the utilities associated with failure. 

 

 

Figure 3 Basic structure of the Decision Model 

 

The Combined Geology Prediction Model and Construction Decision Model works as follows: One 

observes construction in section 1 and predicts the geology ahead of the face based on those observations 

using the Geology Prediction Model. Then the results of the geology prediction model are used in the 

construction strategy decision model to determine the optimal or best alternatives based on maximization 

of utility (minimization of risk). As the tunnel construction progresses these same steps are repeated. This 

can be seen in Figure 4. 
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Figure 4  Combined Geology Prediction Model and Construction Decision model 
*The output of geological prediction model (GC) is an input of the construction strategy model 

 

 

The decision support system described above was applied in a detailed real case study, the Porto Metro, 

presented next. 

 

 
 
4. Porto Metro Case Study 

 

4.1 The project 

 

The first phase of Porto Light Metro Project consisted of 4 lines (Figure 5), with an overall length of 

about 70 km. The Project has two lines (Line C and Line S) that included tunnels that run beneath the 

center of the city. The Line C tunnel is 2.3km long and the Line S tunnel is 3.7 km long. The average 

overburden thickness ranges from 15-30m, with a minimum value of 3-4m occurring in Line C tunnel. 

The tunnels were excavated by earth pressure balance shields (EPB-shields), which were capable of both 

closed and open mode excavation in mixed face conditions. Tunneling started with the Line C, from 

Campanhã to Trindade, in June 2000. The driving stopped in December 2000 as a consequence of a major 

incident after about 470m. Work resumed in September 2001 and the Line C tunnel was completed in 

October 2002. In June 2002 a second EPB machine began the 2.7 km long Line S tunnel, from Salgueiros 

to São Bento, which was completed in October 2003. After Line C tunnel completion, the first TBM was 

Ouput* 

Input* 

Input* 

Ouput* 
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disassembled and reassembled to restart in February 2003 on the remaining 1.0 km of Line S, which was 

completed in November 2003 (Babendererde et al., 2005).  

 

 
 
 
 
 

Figure 5 Porto Metro network - First phase (Babendererde et al., 2005) 

The main geologic formation crossed by the Porto metro tunnels is the Granitic Formation (Porto 

Granite). It is a deeply weathered formation, especially in faults and joints, resulting in a very irregular 

profile. Alteration grades range from residual soil (W6) to fresh granite (W1); As a result of the highly 

variable weathering grade, there are large variations in density, permeability and other geotechnical 

parameters. A particular feature associated with the local conditions of the Porto area is the frequent 

occurrence of wells connected by drainage galleries that, in the past, ensured the population's water 

supply. These wells are not well charted.  

 
 
The methodology described previously was applied to line C tunnel (Figure 6 and Figure 7) of the Porto 

Metro. This tunnel was excavated by an 8.7 m Herrenknecht Earth Pressure Balance Machine. This 

machine can advance in different modes: i) open: operation of the machine without any active face 

support; ii) closed: work chamber is completely filled with excavated pressurized material; iii) semi-

closed: work chamber is only partially filled with muck and compressed air is used to support the empty 

part of the chamber to prevent local instability of the face. 
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Figure 6 Line C Tunnel layout (adapted from Transmetro, 1999)
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 Figure 7 Longitudinal Profile of Line C tunnel (adapted from Transmetro 1999) 

 

The designer considered seven geomechanical groups of homogeneous conditions in terms of 

weathering. These design geomechanical groups and associated conditions are presented in Table 

1. The geomechanical groups g1 to g4 are rock like materials g5 to g6 are soil like materials, 

saprolite and residual soil. g7 is manmade material and alluvial soils. 

 

Table 1 Geomechanical groups and associated conditions (Russo et al., 2001) 

Geomechanical 
groups 

Weathering 
degree (W) 

Fracturing 
degree (f)

(1)
 

Correlation 
[%] W-f 

Discontinuity 
Condition

(2)
 

GSI 

g1 W1 f1-f2 80-85 d1-d2 68-85 

g2 W2 f1-f2 80-85 d1-d2 45-65 

g3 W3 f1-f2 70-75 d1-d2 30-45 

g4 W4 f1-f2 65-70 d1-d2 15-30 

g5 W5 (f5) 90-95 (d5) (<20) 

g6 W6 n.a. - n.a. n.a. 

g7
(3)

 n.a. n.a. - n.a. n.a. 

 
Notes: (1) based on ISRM (1981), the classes correspond to the following (in cm) discontinuity spacing ranges: f1:>200, 

f2:60-200, f3:20-60, f4:6-20, f5<6; (2)classes of subsurface conditions for “GSI-Based geomechanical groups “; (3)g7 

corresponds to manmade material and alluvial soils.  

 

Three accidents occurred during the excavation of the first 300 m of line C tunnel. The first 

accident happened on 30 September 2000, when the EPBM had advanced 120 m from the 

beginning of construction as it intercepted a former well resulting in the discharge of its water. 

The overburden in this area was 12 m. The ground collapsed below two buildings causing 

damage to the structures. The settlement at the surface was about 2.5 m, within an area of 

approximately 40 m
2
.  

 

The second accident (Figure 8) happened on  22 December 2000 when, after the passage of the 

TBM cracks were observed in the walls of a building followed by 250 m
3
 of subsidence of the 

back gardens (over-excavation during installation of rings 318, station 0+606.51, and 327, station 
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0+619.15). The tunnel depth was about 26 m. This accident is located a couple of meters just 

before the TBM stopped.  

 

The third and last accident (12 January 2001) occurred under houses 182 and 183 (see Figure 8), 

under approximately rings number 297 to 301 (station 0+570.99 to station 0+576.60). A building 

fell into the 8mx8mx6m crater resulting in the death of a person. The overburden was of about 

25m.  The TBM had passed under these houses on the 16 to 18th of December 2000, and it was 

stopped 50 m ahead of the 3rd accident location since 28 December 2000. This stoppage was due 

excessive settlement at the surface and to fill a cavity of around 15 m3 due to over-excavation 

(2nd accident). In the period between 28 December 2000 and 12 January 2001 (when the third 

accident occurred) consolidation works from the tunnel and the surface were executed. In 

addition, the ground below Building n.183 was injected through 5 inclined boreholes from the 

surface. These injection holes had been decided upon after it was realized that the machine had 

over-excavated when driving underneath this building (Transmetro/Geodata, 2001). The 

consolidation works underneath building n. 183 were concluded on 29 December 2000. Figure 8  

shows the location of the second and third accidents, while Figure 9 shows a longitudinal 

crossection and the predicted geology. 

 

 
 

Figure 8 Location of the 2
nd

 and 3
rd

 accidents of Line C tunnel (adapted from 

Transmetro/Geodata, 2001) 

Excavation 

direction 

TBM 
stopped due 
to excessive 

deformation  



 

11 

 

 
Figure 9 Predicted Geology in the 3rd accident zone: design Phase (adapted from 

Transmetro/Geodata, 2001) 

 

4.2 Reported causes  

 

The Official accident commission’s report (Porto Metro Accident Commission, 2001) determined 

that the causes of the 3
rd

 accident were: 

i) Deficient design, which did not include continuous analysis of the crossed geology and 

adjustment of the excavation to the encountered conditions; ii) Insufficient geological 

characterization of the ground due to the lack of boreholes from the surface and the lack of 

boreholes from the machine’s face that were required in the design but where never done; iii) No 

prompt analysis of the monitoring results; iv) Deficient supervision of the work and 

communication between the different teams.  

 

4. 3 Risk Analysis Methodology 

 

The decision support framework described previously was applied to the Porto Metro case. Recall 

that the decision support framework consists of two models: a geology prediction model and a 

construction strategy decision model (Figure 10). During the design phase the geology prediction 

is a simple model only based on the results of the existing geological survey and geological 

profiles. During the construction phase the geologic prediction model is a Bayesian network 

prediction model that allows one to predict the geology ahead of a tunnel machine based on 

observations of various machine parameters, during construction. Note that this is the geological 

prediction model as used in the Porto Metro Case presented here. Other types of observations 

may be used in the model. The construction strategy decision model, common to the design and 

the construction phases, is a Bayesian network based model that allows one to decide on the 
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optimal construction strategy for a given the geology. When combined the models allow one to 

asses risks during tunnel construction. 

 

 

 

Figure 10 Decision support framework 

 

4.4 Geology Prediction Model 

 

The model makes use of information that becomes available during construction to update the 

geologic predictions ahead of the machine. The ultimate aim of the model is to act as a decision 

aid for assessing and mitigating risk. If one knows the geology ahead of the face, then one can 

prepare for any risks, and chose optimal construction methods as was described previously.  Prior 

to developing the model, it is necessary to chose parameters that are important in distinguishing 

between geologies. These are the parameters that the model will be based on, and that are 

observed during construction. Hence, an extensive analysis of the TBM data from the Porto 

Metro case is performed in order to find which parameters are important in distinguishing 

between geologies. The inter-relationships between parameters are also analyzed. The important 

parameters and the important inter-relationships are then retained in the model to develop its 

structure. Once the structure of the model is chosen, the model is applied to the Porto Metro Case. 

A portion of the dataset is used to ‘learn’ the model. The model is then used to predict the 

geologies ahead of the EPB machine and the results are then compared to the actual geologies 

encountered. 

 

 

4. 5 Machine Data Analysis 

 

The EPBM used in the line C tunnel, registers automatically every 10 seconds several operation 

related parameters. The ones considered in this study are presented below: 

 

- Weight of excavated material (ton): The extracted material is weighed by scales located in the 

conveyor belt.  

- Penetration rate (mm/rev): The rate at which the machine penetrates the ground, measured in 

mm per revolution 

- Torque of the cutting wheel (MNm): Twist force applied to the cutting wheel.  
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- Total Thrust (KN): Corresponds to the total force applied by the thrust cylinders (or jacks) 

required to push the shield forward. The last segmental lining ring built inside the shield tail 

serves as abutment for the thrust cylinders.  

- Cutting wheel Force (KN): Force that is transmitted onto the cutting wheel. 

 

Based on the project information, mainly on the geological interpretative profiles (Transmetro, 

1999), eight possible ground scenarios (Figure 11) along the tunnel were determined. For 

simplifying purposes only the face conditions will be considered in the definition of ground 

classes. For this reason the geological conditions of Porto Metro Line C tunnel were simplified to 

soil (G1), mixed (G2) and rock (G3). Soil (G1) corresponds to ground scenarios 1 and 2, i.e. the 

face of the tunnel is completely in the soil formation (geomechanical groups g5 and g6 in Table 

1).  Rock (G3) corresponds to ground scenarios 7 and 8, i.e. the face of the tunnel is completely in 

the rock formation (geomechanical groups g2, g3 and g4 in Table 1).  Mixed (G2) corresponds to 

ground scenarios 3 to 6, i.e. the face of the tunnel is in a mixed formation, a combination of Soil 

(G1) and Rock (G3). The ground scenarios are mainly based on the face conditions since this is 

the only information that was completely recorded through face mapping.  

 

      

Figure 11 Geological scenarios along Line C tunnel 

 

The machine parameter data corresponding to the section of the tunnel from ring 336, station 

0+631, to ring 1611, station 2+418 (i.e. the section beyond the location where the machine was 

stopped due to the last collapse) were analyzed. This was done to develop the model in a section 

where the “predicted conditions” could be compared to the encountered conditions. 

 

Emphasis was placed on choosing the machine parameters that best distinguish between 

geological conditions. For this a single parameter analysis is first done. This consists of 

determining the mean values, standard deviations and relative frequencies of the parameters. The 

relative frequencies for different geologies are compared (Figure 12). If there are significant 

differences then the parameter is considered to be good at distinguishing between geologies. A 

two-parameter analysis followed in order to determine which inter-relationships between these 

parameters are important in distinguishing geologies (Figure 13). This consists of finding the 

relative frequency of two parameters at a time, for different geological conditions. The joint 

relative frequencies of two parameters for different geologies are compared. Again, if there is a 

significant difference between joint relative frequencies for different geological conditions then 
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the relationship between the two parameters is important when distinguishing between geologies; 

consequently the parameters and inter-relationships of importance were retained in the model. 

 

 

Figure 12 Parameter Selection (distinguishing between ground classes). Single parameter 

analysis 
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a)            b) 

 

 

 

 

 

 

 

 

 

 

 

 

   c)            d) 

  

 

 

 

 

 

 

 

 

 

 

 

e) 

Figure 13 Parameter Selection. Two parameter analysis. 

Note: all relationships between variables that are presented in Figure 13 are considered important 

 

The discrimination between "important" and "not important" parameters (and relationships) was 

based on the analyses of the relative frequencies, mean values and standard deviations and 

sensitivity analysis. First we looked at the relative frequencies (mean values and standard 

deviations) and consider that the important parameters were those that allowed one to distinguish 

between classes, i.e. those for which the relative frequencies had noticeably different distributions 

among the different ground classes. This analysis included also looking at the mean and standard 

deviation of each parameter for the different classes. We did not consider threshold values, 
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however. The decision was mostly based on the direct observation of the graph (i.e. engineering 

judgment) .The parameters considered important were retained in the model, specifically the 

single parameter analysis in Figure 12 shows that Penetration rate (P) and cutting wheel force 

(CF) are important parameters when distinguishing between ground conditions, while torque of 

the cutting wheel (TO) and Total Thrust (TT) are less important.  Although torque (TO) by itself 

is not important to distinguish between ground conditions, the relation between torque, cutting 

wheel force and penetration is extremely important. This can be seen in Figure 13b) and c). In 

addition, the ratio between some machine parameters was considered as one variable and found to 

be important when distinguishing between geologies. This is the case for torque of the cutting 

wheel over the cutting wheel force (TOC) (Figure 12). This ratio is important in all geologies but 

it becomes more important as the geological conditions are closer to rock conditions. Another 

parameter ratio that proved to be important when identifying ground conditions is the cutting 

wheel force over total thrust (COTT) (Figure 12). The total thrust is the force that is applied by 

the thrust cylinders (or jacks). Only a portion of this force will reach the cutting wheel, the 

remainder is needed to overcome the friction of the ground around the shield. In soil COTT is 

lower than in rock since a larger portion of the total thrust is lost by friction around the shield, due 

to the fact that soil formations are more deformable than rock.   

 

Some other interesting results follow from this study. Penetration rates are lower in rock than in 

soil and the data is more scattered in soil-like formations. This is probably related to the fact that 

the Porto Granite is a highly heterogeneous weathered formation with many boulders.  We were 

also able to observe lower and upper bounds for torque and cutting wheel force. The lower 

bounds are the minimum torque and cutting force necessary to penetrate through the material. 

The upper bound in the case of torque is a machine related limit and in the case of the cutting 

wheel force most likely is a limit related to lining resistance.  

 

In order to determine the most suitable model (i.e. the one that “best” predicts reality) sensitivity 

analyses were then performed. Thirty one different models were considered and three different 

data sets were used. All data sets consisted of 720 rings
1
 chosen randomly in the section of the 

tunnel from rings 336 to 1611. The training sets used are as follows: 

 

A: Training data set A with Hierarchical discretization of continuous variables 

B: Training data set B with Hierarchical discretization of continuous variables 

A1: Training data set A with uniform bin width discretization of continuous variables 

 

The data set A consisted of an equal distribution of soil, mixed, and rock data, i.e. 1/3 of soil 

(G1), to 1/3 of mixed (G2) and 1/3 of rock (G3). Data set B data corresponds to a contribution of 

34% of soil (G1) rings, 22% of mixed (G2) rings, and 44% of rock (G3) rings. The “real” 

geological states along the tunnel, which were used in the learning, are the ones determined by 

the contractor/designer, based on face surveys. At the face survey locations the geological states 

are known. Between face surveys the geological states were estimated by the contractor/designer.  

 

Figure 14 presents some of the models used in the sensitivity analysis. The models considered 

varied from simple structures in which only one parameter is used to estimate the geology to 

more complex models with three or more parameters. Different inter-relationships between the 

parameters (shown by the different arrows between variables) were considered.  

 

                                                           
1
 Corresponds to a ring of lining, which in the case of Porto metro is approximately 1.4 m wide.  
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Note that other machine parameters, were besides the ones presented in Figures 12 and 13 were 

considered in the sensitivity analyses performed. These parameters included the earth pressure 

records from the EPBM. The results showed that these other parameters were not relevant when 

trying to predicted geology.  

 

 

Figure 14 Sensitivity analysis: model structure selection 

(GC=ground class; P=penetration; TOC=torque/cutting wheel force; CF=cutting wheel force; TO=torque; 

COTT=cutting wheel force/ total thrust) 

 

The chosen model is shown Figure 15.The sensitivity analysis considered different parameters 

and different relationships between parameters (different models). The results of this analysis 

shows which models (i.e. parameters and their relationships) are important to consider when 

predicting geology. In this paper only the “best” model is presented, as shown in Table 2. The 

“best” model is defined as the one that correctly predicts the highest percentage of all ground 

conditions. However, because the geological conditions ranged from hard rock to soil, it is also 

important to evaluate how the models perform in each geological condition. Note also that the 

model was tested only on rings that were not used to train the models.  

 

Table 2 Accuracy results for the “best” geological prediction model 

Accuracy Best Model 

Overall 71.9% 

G1 72.8% 

G2 63.1% 

G3 82.1% 

 
This model, which performed the best overall (see Table 2), contained the parameters penetration 

rate (P), cutting wheel force (CF), and torque of cutting wheel (TO), and considered the inter-

relationship between torque and penetration as well as the inter-relationship between cutting 

wheel force and penetration, and torque and penetration. Note that despite the fact that TO is not 
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an important variable on its own when distinguishing geologies, the relationship between TO and 

P, and therefore TO was considered in the model.  

 

 

Figure 15 “Best” geological prediction model 

 

 

4. 6 Construction Strategy Decision Model 

 

Based on geological, construction and environmental information on the project, a Bayesian 

network model (extended influence diagram) was built in order to support the decision process 

during construction. The construction strategy decision model for the Line C tunnel of the Porto 

Metro is presented in Figure 16. The concept of the model was to support the decision in selecting 

the optimal construction strategy for the tunnel. In this specific case, it seems that one of the 

major issues was what would be the optimal mode for the EPBM to operate in given geological 

conditions. For this reason two construction strategies (Open Mode and Closed Mode) were 

considered in the model.  

 

 

Figure 16 Decision Model for Line C tunnel 

 

The model, a Bayesian network extended to a decision graph, contains 6 chance nodes, 1 decision 

node and two utility nodes.  
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The decision nodes represent different decisions or actions. The chance nodes identify an event in 

a Bayesian Network where a degree of uncertainty exists. The utility nodes represent the utilities 

associated with the different decisions/actions. 

The Decision node, Construction Strategy (CS), represents the two possible Construction 

Strategies: 

CS1- Open Mode  

CS2- Closed Mode.  

 

The chance node Ground condition at the face (GC) represents the different possible geological 

states that can be found in the sections at the face: 

1- Soil (GC1);   

2- Mixed (GC2)  

3- Rock (GC3).  

 

The chance node Piezometric Level (PL) represents the possible piezometric levels:  

1 – piezometric level < 10m ; 

2 – piezometric level >10m 

 

The chance node Combined ground class (CGC) represents the combination between face 

condition and piezometric level.  

The possible values are: 

1-Soil with low piezometric level; 

2- Soil with high piezometric level; 

3-Mixed with low piezometric level;  

4-Mixed with high piezometric level ; 

5- Rock.  

 

The chance node Failure (F) represents probability of failure of the face given the combined 

geological and hydrological conditions, and the construction strategy used. The possible values 

are: 

 

1- Failure;  

2- No Failure.  

 

The chance node Surface Occupation (SO) represents the occupation degree at the surface. The 

possible values are: 

1- Low; 

2-Medium;  

3- High. 

 

The chance node Damage Level (DL) represents the vulnerability, i.e. the fact that if the failure 

occurs the consequences are uncertain. The possible values are:   

1- No damage;  

2- Level 1 damage. This damage level corresponds to the situation of the first and second 

accident that occurred at the Line C tunnel, i.e. damages at the surface to buildings and other 

structures due to excessive deformation, including partial collapse of a building.  

3- Level 2 damage. This damage level represents a collapse up to the surface causing total 

collapse of at least a building and damage to buildings and other structures at the surface. This is 

the situation of the 3rd collapse that occurred in the Line C tunnel. Note that in the model the 

Damage Level also depends on the surface occupation (Figure 16).  
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The utility node Total Utility consists of the cost of Construction (UC) and Cost of Failure (UF), 

which represent the costs associated with the construction and a possible failure, respectively.  

 

The prior probability-and conditional probability tables, as well as utilities, attached to each node 

of the influence diagram of Figure 16 are presented in Tables 2 to 6. Note that the probability of 

the ground class (GC) comes from the geological prediction model.  

Table 3 Prior Probability of piezometric level  

PL P (PL) 

Low 0.10 

High  0.90 

 

Table 4 Probability of CGC  

  P(CGC|FC, PL) 

GC= PL = Soil low (1) Soil high (2) Mixed low (3) Mixed high (4) Rock (5) 

Soil (G1) Low (1) 1 0 0 0 0 

Mixed 

(G2) Low (1) 0 0 1 0 0 

Rock (G3) Low (1) 0 0 0 0 1 

Soil (G1) High (2) 0 1 0 0 0 

Mixed 

(G2) High (2) 0 0 0 1 0 

Rock (G3) High (2) 0 0 0 0 1 

 

 

Table 5 Probability of Failure given CGC and construction strategy, P (Failure| CGC, CS) 

 

Combined Ground 

Class 

Soil low PL 

(1) 

Soil high PL 

(2) 

Mixed low 

PL (3) 

Mixed high 

PL (4) 

Rock  

(5) 

Construction Strategy CS1 CS2 CS1 CS2 CS1 CS2 CS1 CS2 CS1 CS2 

Failure (1) 0.2 0.01 0.3 0.02 0.15 0.01 0.25 0.1 0.01 0.005 

No Failure (2) 0.8 0.99 0.7 0.98 0.85 0.99 0.75 0.9 0.99 0.995 

 

Table 6 Probability of Damage Level given SO and Failure 

  P (DL| Failure, SO) 

Failure Surface Occupation No Damage (1) Level 1 (2) Level 2 (3) 

Failure (1) High (1) 0.02 0.18 0.8 

No Failure (2) High (1) 1 0 0 

Failure (1) Medium (2) 0.05 0.4 0.55 

No Failure (2) Medium (2) 1 0 0 

Failure (1) High (3) 0.1 0.5 0.4 

No Failure (2) High (3) 1 0 0 

 

Table 3 presents the prior probability table for the piezometric level, P (PL). The prior 

probabilities of the piezometric level were determined subjectively, based on results of the 
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exploration borings and on what is known regarding the rainfall in winter around the Porto area. 

Table 4 shows the probability of CGC. This was considered, for simplification reasons, to be a 

deterministic variable that just combines geological state and hydrological state. The probability 

of failure depends on the geological and hydrological conditions as well as on the construction 

strategy employed. Table 5 shows the conditional probability table P (Failure| CGC, CS), for the 

variable Failure (F). The probability of failure was determined subjectively. Note that the 

probability of failure could have been determined based on mechanical models for face stability 

with EPBM, such as the method of Jancsecz and Steiner (1994), the method of Leca & Dormieux 

(1990) or the method of Anognostou and Kovari (1996).  

 

The utilities of construction are presented in Table 7. They are based on the cost (expressed in 

utilities) of construction costs in euro (million) per section (each section is about 160 m). 

 

Table 7 Construction costs per section 

CS Open (CS1) Closed (CS2) Open (CS1) Closed (CS2) Open (CS1) Closed (CS2) 

GC Soil (G1) Soil (G1) Mixed (G2) Mixed (G2) Rock (G3) Rock (G3) 

UC -1 -9 -1 -9 -1 -8 

 

The utilities associated with consequences of failure and respective damage levels, presented in 

Table 8, were determined based on collapse cases from a database of accidents (Sousa, 2010).  

 

4.7 Results 

 

The decision framework, consisting of a geology prediction model and a decision model 

described in this paper was applied to the Porto Metro in the following approach: 

 

First, the geology prediction model was applied from ring 336, station 0+631 (after the accidents) 

to ring 1611, station 2+418, i.e. in a section beyond the one where the accidents occurred.  The 

results of the geologic prediction model showed good agreement with the observed geological 

conditions, particularly in identifying soil (G1) and rock (G3). In the case of soil, 77.2% of the 

rings sections that consisted of soil were correctly identified, 20.4% were misclassified as mixed 

and 2.4% as rock. In the case of rock, 82.4% of the ring sections that consisted of rock were 

correctly identified, while 10.9% were misclassified as mixed and 6.7% as soil. These results 

served as an indication of how well the geological model performed.  

 

Second, the geology prediction model was used to predict the geological conditions for about 

320 m (between rings 104 and 335) of the Line C of the Porto Metro, where the accidents 

occurred. Information on the geological conditions was available where the last accident 

occurred, because a post accident survey was made. The geological prediction model was also 

combined with the Bayesian decision model to determine optimal construction strategies ahead of 

the tunneling, in this section.  

 

Figure 17 shows the predicted geology ahead of the face at different locations of the tunnel, from 

ring 217 to ring 335 (this is the area where the two last accidents occurred). It shows that as the 

EPBM face advances and gets closer to the 3
rd

 accident zone, the model predicts changes in 

geology and suggests changes in construction strategy. At ring 282 the predicted geology changes 

from G3 to G2, and as the excavation progresses one can observe that the probability of softer 

geological conditions (G1) increases as one approaches the 3
rd

accident zone. These results 

indicate that the construction strategy should have been changed from CS1 (open/semi-closed 
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mode) to CS2 (closed mode) around ring 282, i.e. about 140 m before the location of the 3
rd

 

accident.   
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Table 8 Failure “costs” (per section) 

CS Open (CS1) Closed (CS2) Open (CS1) Closed (CS2) Open (CS1) Closed (CS2) Open (CS1) Closed (CS2) Open (CS1) Closed (CS2) 

GC Soil (1) Soil (1) Mixed (2) Mixed (2) Rock (3) Rock (3) Soil (1) Soil (1) Mixed (2) Mixed (2) 

DL No Damage (1) No Damage (1) No Damage (1) No Damage (1) No Damage (1) No Damage (1) Level 1 (2) Level 1 (2) Level 1 (2) Level 1 (2) 

UF 0 0 0 0 0 0 -50 -50 -10 -40 

 

CS Open (CS1) Closed (CS2) Open (CS1) Closed (CS2) Open (CS1) Closed (CS2) Open (CS1) Closed (CS2) 

GC Rock (3) Rock (3) Soil (1) Soil (1) Mixed (2) Mixed (2) Rock (3) Rock (3) 

DL Level 1 (2) Level 1 (2) Level 2 (3) Level 2 (3) Level 2 (3) Level 2 (3) Level 2 (3) Level 2 (3) 

UF -15 -5 -100 -70 -80 -50 -50 -10 
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Figure 18, shows summaries of the results of applying the combined risk assessment model from ring 263 

to ring 335. First they show the prediction of Geology that the tunnel passed through. They also show the 

optimal construction strategy for one ring ahead of the face. Regarding the geological prediction, the 

model predicts that the machine goes through mostly rock (G3) and mixed (G2) until the zone of accident 

3, where the TBM enters a zone of soil (G1) that lasts until the zone of accident 2 (ring 318). From there 

until ring 335, where the machine stopped is an area of higher probability of mixed (G2), but with 

considerable probability of soil (G1). These results seem to be in good agreement with what the accident 

report suggests, and with the survey results done in the area of collapse 3, after the work stopped. 

Regarding the risk assessment and choice of optimal construction strategy ahead of the face, the results 

show that the optimal construction strategy is CS2 (EPBM in closed mode) in the zone between ring 217 

to ring 234; ring 244 to ring 253; ring 283 to ring 335 (zone of accident 2 and 3). This correspond to 

zones where soil (G1) and mixed (G2) were predicted. The optimal construction strategy is CS1 (EPBM 

in open mode) in the zones where rock was predicted, from ring 235 to ring 243; ring 254 to ring 257; 

ring 259 to ring 260 and form ring 263 to ring 282.  

 

Figure 19 shows the design profiles, the post accident survey results and geology predicted by the model. 

Once again it is possible to see that there is a good agreement between geology predicted with the model 

and the results of the post accident borehole results. The design profiles (based on the initial geological 

survey (Figure 9), predicted that the tunnel would go through mainly rock in this section but the results of 

the post accident survey show that this area consisted mainly soil and mixed conditions at tunnel level. 

This is captured by our geology prediction model. 
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Actual Strategy: CS1 (Open/ Semi-Closed Mode) 
Model Result: Optimal Strategy: CS1 (Open/Semi-Closed Mode) 

a) Ring 266 

 

 

Actual Strategy: CS1 (Open/ Semi-Closed Mode) 
Model Result: Optimal Strategy: CS2 (Closed Mode) 

c) Ring 294 

    

 

 

 

 

 

 

  

 

 

 

 

 

 
 

Actual Strategy: CS1 (Open/ Semi-Closed Mode) 

Model Result: Optimal Strategy: CS1 (Open/Semi-Closed Mode) 

b) Ring 282 

 

Actual Strategy: CS1 (Open/ Semi-Closed Mode) 

Model Result: Optimal Strategy: CS2 (Closed Mode) 

d) Ring 297 

Figure 17 Predicted geology ahead of the face at different locations of the tunnel (from ring 217 to ring 335)
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Figure 18 Summary of the combined risk assessment model results (from ring 263 to ring 335) 
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Figure 19 Post accident survey results versus predicted geology by decision framework (adapted from 

Transmetro/Geodata, 2001) 

 

5. Conclusions 

 

A decision support framework for assessing and avoiding risks in tunnel construction was developed and 

successfully applied in a case study. The decision support framework consists of the geology prediction 

model and the construction strategy decision model both of which are based on Bayesian Networks. TBM 

performance data are used to predict geology, which is then used to help decide on the construction 

method involving the lowest risk.  

 

The presented risk model contains two models, a geological prediction model and a decision model. The 

geological model was trained (or calibrated) with the data from a specific project (the Porto Metro). 

Afterwards, the models were applied, i.e. tested on another section of the Porto Metro. The data that were 

used to test the model were not those used to the train the model. The results of the predictions of geology 

on the part of tunnel that was not used to train the model can predict changes in geology.  

 

The application to the Porto Metro tunnel case, in which several accidents occurred, shows that the 

decision support framework fulfills its objectives. Specifically the results show that the model can predict 

changes in geology and that it suggests changes in construction strategy. This is most visible in the zone 

of accidents 2 and 3, where the model accurately predicts the change in geology and occurrence of soil. 

The “optimal” construction strategy determined by the combined risk assessment model is EPBM in 

closed mode, i.e. with a fully pressurized face, in the areas where accident 2 and 3 occurred, and not what 

was actually used during construction, EPBM in open/semi closed mode. This difference is due to the fact 
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that during the actual construction there was no effective system to predict changes in geology and 

therefore adapt the construction strategy.  

 

Clearly the question arises how the proposed methodology process would work in other cases. If the 

geological prediction model were applied elsewhere (in another type of geology) it would need 

calibration. There is also the issue of not having data to calibrate the model at the beginning of 

construction. A way to use and calibrate this type of prediction model in cases where initial data do not 

exist (from a nearby project or similar geology) would be to use at the beginning of the construction 

subjective probabilities given by the experts (e.g. What is the probability that one is in Geology G1, if the 

Penetration rate is high (i.e. greater than a certain value), etc), and then update these probabilities as the 

construction progresses.  
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