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This paper presents a new method of synthesizing an output feedback adaptive controller for a class of
uncertain, non-square, multi-input multi-output systems that often occur in hypersonic vehicle models. The
main challenge that needs to be addressed is the determination of a corresponding square and strictly positive
real transfer function. This paper proposes a new procedure to synthesize two gain matrices that allows the
realization of such a transfer function, thereby allowing a globally stable adaptive output feedback law to be
generated.

The unique features of this output feedback adaptive controller are a baseline controller that uses a Luen-
berger observer, a closed-loop reference model, manipulations of a bilinear matrix inequality, and the Kalman-
Yakubovich Lemma. Using these features, a simple design procedure is proposed for the adaptive controller,
and the corresponding stability property is established. The proposed adaptive controller is compared to the
classical multi-input multi-output adaptive controller.

A numerical example based on a 6 degree-of-freedom nonlinear, scramjet powered, blended wing-body
generic hypersonic vehicle model is presented. The adaptive output feedback controller is applied to result in
stable tracking of uncertainties that destabilize the baseline linear output feedback controller.

I. Introduction
A state feedback linear quadratic regulator (LQR) baseline controller with integral action and augmented with an

adaptive component has proven to be an effective choice for accommodating the parametric uncertainties present in
flight control applications, and ensuring satisfactory reference tracking.1–7 However, such a controller requires that
the state is measurable, which may not always be possible. Also, inaccuracies in the system output measurements
may render state feedback controllers sensitive to measurement errors and thus not applicable. For these reasons there
has been an increasing drive to develop an adaptive output feedback extension of the robust integral-augmented LQR
baseline plus adaptive controller.

Existing classical methods of multi-input multi-output (MIMO) adaptive control are applicable for plants that are
square. An m⇥m transfer matrix is used to represent the dynamic behavior of the plant, and the existence of a stable
adaptive solution depends on the available prior information about this plant transfer matrix.8, 9 The solution relies
on non-minimal controller representations to dynamically decouple the plant, and the controller structure consists of
a feedforward gain and two filters in the feedback path, the order of which depends on m and an upper bound on
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the observability index of the plant, ⌫. The resulting classical MIMO adaptive solution will introduce 2m⌫ controller
states and 2m2⌫ adjustable parameters.

More recent methods of MIMO output feedback adaptive control have adopted a Luenberger observer-based ap-
proach in which a minimal observer is used to generate a state estimate to use for feedback control.7, 10–12 This observer
also serves as the reference model which is used by the adaptive controller, and the presence of the observer feedback
gain L provides the structure known as the closed-loop reference model, or CRM.13–16 These CRM based approaches
have relied on the so-called squaring-up procedure17 to add fictitious inputs to a tall system (one where the dimension
of the output is greater than the dimension of the input) making it square and ensuring any transmission zeros are
stable. These fictitious inputs are used only to synthesize a postcompensator S1 and the CRM gain L which ultimately
render a set of underlying error dynamics strictly positive real (SPR). These SPR error dynamics allowed stable update
laws to be chosen to guarantee system stability. We note that systems with transmission zeros cannot be squared up
using the method as described in Reference [17], which has led to a recent modification to overcome this limitation
and allow the design of output feedback controllers for systems with stable transmission zeros.18

The CRM based output feedback design procedure proposed in this paper takes an alternative approach to synthe-
sizing S1 and L which does not require the system first be squared-up. Instead, the postcompensator S1 is determined
as a generalized inverse of the system matrices, and a state feedback approach is used to stabilize a related lower order
plant subsystem. This results in a feasible linear matrix inequality (LMI) which is solved to yield L. We consider in
this work the case of tall systems, but the case of wide systems holds by duality. Furthermore, because L is a com-
ponent of both the baseline and adaptive controllers, it is crucial that it be selected to provide good frequency domain
properties for the baseline control system, as well as desirable adaptive control performance. This procedure is able to
exploit the structure of the given system to obtain a large amount of freedom in the selection of L in order to achieve
a robust baseline control design and the desired adaptive performance.

In Section II we introduce the class of uncertain plants which we wish to control, propose a control architecture,
and formulate the control problem of interest. In Section III we provide some preliminaries which will be used in
the synthesis of a globally stable controller for the uncertain system. Section IV provides a constructive procedure
for obtaining an update law for an adaptive controller which guarantees global stability, and compares the proposed
controller to the existing classical controller. Finally, a numerical example is presented in Section V to illustrate the
efficacy of this method when applied to a 6-DOF nonlinear generic hypersonic vehicle (GHV) model.6, 19

II. Control Problem Formulation
Consider the following MIMO uncertain open-loop system
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E) (a) ⇤ is nonsingular and diagonal with entries of known sign

(b) k 
p

k2 < ⌦ < 1, where ⌦ is known

In order to facilitate command tracking, we introduce integral action, and for this purpose an additional state x
e

is
defined as

ẋ
e

= zcmd � z (2)

This integral error state is appended to the plant in (1) leading to the following augmented open-loop dynamics
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The system in (3) can be written more compactly as follows

ẋ = Ax+B(⇤u+ >x) +Bcmdzcmd

y = Cx
(4)

where ⌃ = (A,B,C, 0), and where A 2 Rn⇥n, B 2 Rn⇥m, Bcmd 2 Rn⇥ne , and C 2 Rp⇥n are the known matrices
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e

. We make the following assumptions about the
system ⌃ in (4), which are equivalent to Assumption 1 related to the plant in (1):
Assumption 2

a) (A,B) is controllable.

b) (A,C) is observable.

c) B, C, and CB are full rank.

d) Any finite transmission zeros of ⌃ are strictly stable.

e) (a) ⇤ is nonsingular and diagonal with entries of known sign

(b) k k2 < ⌦ < 1, where ⌦ is known

f) ⌃ is tall: p > m.

Remark 1 The system in (1) satisfying Assumption 1A-D when augmented with the integral error state as shown
in (3) also satisfies Assumption 2a-d. In other words, under Assumption 1A-D, integral error augmentation does not
destroy controllability, observability, or the rank conditions. Nor does it add any transmission zeros.10

Remark 2 Assumptions 2a and 2b are standard. Assumption 2c implies that inputs and outputs are not redundant,
as well as a MIMO equivalent of relative degree unity. Assumption 2d is a standard requirement for output feedback
adaptive control. Assumption 2f can be considered without loss of generality as the case of wide systems p < m holds
by duality. The case of square systems has been given in Reference [20] and is discussed in Section IV.

A. Baseline Control Design
The underlying problem here is to design a control input u in (4) so that the closed-loop system has bounded

solutions and z tends to zcmd with bounded errors in the presence of the uncertainties ⇤ and  . In this section, we
describe the baseline control design for the nominal case when there are no uncertainties present, that is when ⇤ = I
and  = 0.
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A controller along the lines of References [10–12] is proposed, as it leads to a low order robust controller. This
controller includes a Luenberger observer together with LQR feedback control gains. As our ultimate goal is to develop
an adaptive controller which in turn requires a reference model, we propose a control design where the reference model
has components of an observer as well. In particular, we introduce a feedback component into the reference model,
with the corresponding feedback gain L chosen similar to a Luenberger gain, that is, so that it ensures adequate stability
margins for the nominal closed-loop system. The resulting reference model is referred to as a closed-loop reference
model (CRM) which has been shown recently to result in highly desirable transient properties13–16 and is described as
follows:
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B. Adaptive Controller

With the baseline controller determined as above, the next step is to design an adaptive controller in the presence
of ⇤ 6= I and  6= 0. Suppose we augment the nominal controller in (6) as
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x
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(7)

where ⇥(t) is to be determined by a suitable update law. The question is if the introduction of the parameter ⇥ as in
(7) is sufficient to accommodate the parametric uncertainties. For this purpose, we introduce a matching condition as
described in Remark 3 below.
Remark 3 (Matching condition) The selection of the reference model state matrix as A

m

= A + BK>
x
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the existence of a parameter ⇥⇤ that satisfies the following matching condition.
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Given a system satisfying Assumption 2, the matching condition in Remark 3, and the proposed control architec-
ture, the reference tracking control problem is reduced to selecting the CRM gain L in (5) and a suitable adaptive law
for updating ⇥(t) in (7).

In summary, the problem that is addressed in this paper is the determination of an adaptive augmented robust
baseline output feedback controller as in (7) to control the plant in (4) using the CRM/Observer as in (5). This in
turn necessitates finding an adaptive law for adjusting ⇥ in (7) and the observer gain L in (5). The main tools used
for determining the adaptive controller involve the Kalman-Yakubovich9 and matrix elimination lemmas,21 which
help reduce the problem of finding L to a state feedback problem of a related lower order subsystem. Preliminaries
pertaining to these tools are described in Section III. The complete adaptive control design and the corresponding
stability result are presented in Section IV, and a numerical example is presented in Section V.

III. Preliminaries
The following well-known lemma gives necessary and sufficient conditions to ensure that the system (A,B,C, 0)

is SPR.
Lemma 1 (Kalman-Yakubovic) Given the strictly proper transfer matrix G(s) with stabilizable and detectable
realization (A,B,C, 0), where A 2 Rn⇥n is asymptotically stable, B 2 Rn⇥m and C 2 Rm⇥n, then G(s) is SPR if
and only if there exists a P = P> > 0 such that

A>P + PA < 0 (8)

PB = C> (9)
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PROOF The proof can be found in Reference [22].
Corollary There exists a matrix P = P> > 0 that satisfies (9) if and only if

CB = (CB)> > 0 (10)

Furthermore, when (10) holds, all solutions of (9) are given by

P = C>(CB)�>C +B?XB?> (11)

where X = X> > 0 is arbitrary and B? 2 Rn⇥(n�m) is a basis for the orthogonal complement, or annihilator of
B. That is B? must satisfy B>B? = 0.
PROOF The proof can be found in Reference [20].

Lemma 2 (Matrix Elimination) Given

G+ C>L>P + PLC < 0 (12)

where G 2 Rn⇥n, C 2 Rp⇥n, and P = P> 2 Rn⇥n is full rank, an L 2 Rn⇥p exists which satisfies (12) if and only
if the following inequality holds

C>?>GC>? < 0

where C>? 2 Rn⇥(n�p) satisfies CC>? = 0.
PROOF The proof can be found in Reference [21].

IV. Adaptive Control Design
In this section we provide the process for selecting the CRM gain L in (5) and the update law for ⇥ in (7). To

accomplish the goal of reference tracking we take an approach which focuses on the error between the closed-loop
plant and the reference model states, as opposed to each of these trajectories individually. Thus, the goal of reference
tracking can be ensured by appropriately selecting the update law to drive this state error to zero. Similarly, we consider
the error between the parameter ⇥ in (7) and ⇥⇤ in Remark 3. The resulting state tracking error and parameter error,
respectively, can be defined as

e
x

= x� x
m

e⇥ = ⇥�⇥⇤

The problem of finding an adaptive law for ⇥ that guarantees stability depends on the relationship between the two
errors above. This relation, denoted as error model, in turn provides cues for determining the adaptive law. In the
problem under consideration, the underlying error model can be described as

ė
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where e
y

is the measured output error. As mentioned earlier, the problem of finding a stabilizing adaptive controller is
equivalent to finding an L and an adaptive law for adjusting e⇥ in (13). Determining a stable adaptive law for an error
model as in (13) relies on properties of an underlying transfer function that is SPR,9 which in turn enables the use of
Lemma 1 in Section III. However, the definition of SPR is restricted to square transfer functions. As such, for these
properties to be applicable to the error model in (13), a suitable static postcompensator S1 2 Rm⇥p has to be chosen
such that

S1C(sI �A� LC �B >)�1B 2 Rm⇥m

p

(s)

where R
p

(s) denotes the ring of proper rational transfer functions with coefficients in R. That is the underlying transfer
matrix is square, and therefore can be evaluated in terms of SPR properties. We therefore introduce a synthetic output
error e

s
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e
s

= S1Ce
x
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With this postcompensator, the underlying error model is modified as

ė
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= (A+ LC +B >)e
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+B⇤e⇥>x
m
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= S1Ce
x

(14)

Thus, the design of an output feedback adaptive controller is reduced to selecting matrices S1 2 Rm⇥p and L 2 Rn⇥p

such that the error dynamics in (14) are SPR.
In Section IV-A we provide a procedure to construct S1 and L. This procedure requires S1 to be solved as a

generalized inverse based on the matrices of ⌃ in (4) alone. L is found by satisfying Lemma 1 (Kalman-Yakubovich),
the solution of which is reduced to a state-feedback problem of a lower-order plant subsystem which ultimately leads
to a feasible LMI which is solved numerically to obtain L.

A. Finding S1 and L

In this section we provide a method for selecting S1 and L which ensure the system in (14) is SPR. The conditions
from Lemma 1 to ensure (A+ LC +B⇤ >, B, S1C) is SPR are given by

(A+ LC +B >)>P + P (A+ LC +B >) < 0 (15)

PB = (S1C)> (16)

where, by the corollary to Lemma 1, a P exists which satisfies (16) if and only if S1CB = (S1CB)>.

1. Finding S1

The matrix S1 satisfying (16) can be computed as a generalized left inverse of CB as

S1 =
�
(CB)>CB

��1
(CB)> (17)

Note that this choice of S1 is not unique.

2. Finding L

The annihilator matrices B? and C>? in Section III are not unique. In the following subsection we will use the
notation N and M to represent particular annihilators that satisfy NB = 0, CM = 0, and a few additional desired
properties. That is, N represents a particular B?> and M a particular C>?. Given arbitrary annihilators B? and
C>? we provide a constructive process for obtaining N and M , and use these matrices to find L. The inequality (15)
is satisfied if the following inequality is satisfied

(A+ LC)>P + P (A+ LC) +Q < 0 (18)

for
 B>P + PB > < Q (19)

Using (16), the inequality (19) can be written as

 S1C + ( S1C)> < Q (20)

Note that Q satisfying (20) is independent of P . Using Lemma 2, an L exists satisfying (18) if and only if a P exists
which satisfies

M>(A>P + PA)M < �M>QM (21)

Using (11), P is given by
P = (S1C)>(S1CB)�>S1C +N>XN (22)

Substituting (22) into (21) we obtain

(NAM)>XNM + (NM)>X(NAM) < �M>QM (23)
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Thus, the problem of finding an SPR L which satisfies (15) is now reduced to finding the matrix X satisfying (23).
An X satisfying (23) specifies a P as in (22) that reduces (15) to a feasible LMI in L. This feasible LMI can then be
easily solved using any widely available numerical LMI solver.

Reference [20] gave the inequality (23) for a square system, suggesting that X be obtained by solving this LMI
numerically. However, it was shown in Reference [23] that for a square system, the eigenvalues of NAM are the
transmission zeros of the system and the annihilators N and M can be always be selected such that NM = I . Given
a square system with only stable transmission zeros, this selection reduces (23) to a Lyapunov equation where the
matrix NAM is stable, and the existence of X > 0 satisfying this inequality is guaranteed.24 Thus, when the system
⌃ in (4) is square, (23) can be solved to obtain X , and P can be computed using (22). The inequality (15) can then
be solved for L. For a non-square systems the matrix NAM is not square, and so determining X > 0 satisfying (23)
requires additional steps.

DETERMINING A SIMILARITY TRANSFORM We will now define a similarity transform ⌅ that will allow annihilator
matrices N and M in (23) to be computed given arbitrary annihilators B? and C>?. Defining ⌅ as25

⌅ =
h
B F C>?

i
(24)
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Note that these choices are not unique. Define

N = N0⌅
�1 (28)

M = ⌅M0 (29)

Note that with the selection of M0 in (27) and with ⌅ in (24) that M = C>?. The matrix NM is given by

NM =
h
0(n�p)⇥(p�m) I(n�p)⇥(n�p)

i>
(30)

The inverse of ⌅ is given by

⌅�1 =

2
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where R 2 Rm⇥n, N1 2 R(p�m)⇥n and N2 2 R(n�p)⇥n, and ⌅�1 must obviously satisfy
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h
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where the matrix F , and thus ⌅�1 are yet to be determined. From this we have that N2B = 0(n�p)⇥m

, N2F =
0(n�p)⇥(p�m), and N2C

>? = I(n�p)⇥(n�p). With this choice of ⌅ the matrix NAM can be expressed as

NAM =

"
Ā22

Ā32

#
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i
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0
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(32)

Note that with the choice of NM satisfying (30), we can partition X as

X =

"
X11 0(p�m)⇥(n�p)

0(n�p)⇥(p�m) X22

#
(33)

where X11 2 R(p�m)⇥(p�m) and X22 2 R(n�p)⇥(n�p) and X > 0 if X11 > 0 and X22 > 0. Evaluating XNM we
have

XNM =

"
0(p�m)⇥(n�p)

X22

#

And so (23) is equivalent to the following Lyapunov equation

Ā>
32X22 +X22Ā32 = �M>Q

✏

M (34)

for Q
✏

> Q. The matrix F in (24) must be selected such that Ā32 is Hurwitz, thus allowing X22 to be obtained as
the solution to the Lyapunov equation in (34). X11 > 0 can then be selected arbitrarily to specify X . Expanding (32)
using (28) and (29) we have

"
Ā22

Ā32

#
=
h
0(n�m)⇥m

I(n�m)⇥(n�m)

i
2

64
R

N1

N2

3

75A
h
B F C>?

i " 0
p⇥(n�p)

I(n�p)⇥(n�p)

#

From which we can see
Ā32 = N2AC>?

Recall that N2 has to satisfy N2B = 0, and N2C
>? = I . To satisfy these two conditions we see that N2 lies in the

nullspace of B> and so we have
N2 = KB?> (35)

where K 2 R(n�p)⇥(n�m). The last condition requires KB?>C>? = I . We can satisfy N2F = 0 by selecting F
to lie in the nullspace of N2, where dimension of the nullspace of N2 is equal to p. With this choice of N2 we can
express Ā32 as

Ā32 = KB?>AC>?

The requirements described above are stated as: find K 2 R(n�p)⇥(n�m) such that

KB?>C>? = I(n�p)⇥(n�p) (36)

Ā32 = KB?>AC>? is Hurwitz (37)

AN EQUIVALENT STATE FEEDBACK PROBLEM We continue by showing how the selection of F which defines the
similarity transform ⌅ in (24) depends on N2 in (31), which depends on K in (36) and (37), can be found by solving
a state feedback problem. The requirement in (36) is that K is a left inverse of the tall matrix B?>C>?. This matrix
has full rank by Assumption 2c. The generalized inverse of a tall matrix T 2 R(n�m)⇥(n�p) with full rank is given by

T� = T † + U(I(n�m)⇥(n�m) � TT †)
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where U 2 R(n�p)⇥(n�m) is arbitrary. This gives a form of all K satisfying (36) as

K = (B?>C>?)† + U
�
I(n�m)⇥(n�m) � (B?>C>?)(B?>C>?)†

�

This can be simplified as
K = (B?>C>?)† + U

�
I(n�m)⇥(n�m) � J

�

J = (B?>C>?)(B?>C>?)†
(38)

(39)

where J 2 R(n�m)⇥(n�m) is a rank n� p matrix. Thus Ā32 is given by

Ā32 =


(B?>C>?)† + U

�
I(n�m)⇥(n�m) � J

��
B?>AC>?

which can be written
Ā32 = G+ UH (40)

where G 2 R(n�p)⇥(n�p) and H 2 R(n�m)⇥(n�p) are given by

G = (B?>C>?)†B?>AC>?

H =
�
I(n�m)⇥(n�m) � J

�
B?>AC>?

(41)

(42)

Selecting U such that Ā32 is Hurwitz is possible in general if (G>, H>) is controllable. The uncontrollable modes
of (G>, H>) correspond to the transmission zeros of ⌃.26 If the system has any unstable zeros, no U can be found
such that Ā32 is Hurwitz. If the system has stable transmission zeros, (G>, H>) is stabilizable, and U can be selected
to stabilize the remaining modes. If the system has no transmission zeros, (G>, H>) is controllable, and U can be
picked to make the poles of Ā32 arbitrarily. By Assumption 2d ⌃ has no unstable transmission zeros, so (G>, H>)
will be at least stabilizable. With U computed using the desired state-space technique, Ā32 is determined as in (40).
K can then be solved for from (38) and (39) and N2 computed using (35). F is then selected to lie in the nullspace
of N2, and to make ⌅ full rank. With this choice of F , the matrix ⌅ is completely specified, and N can be solved for
from (28) and M given by M = C>?. Finally, (34) must be solved to obtain X22, which requires the specification of
Q > 0. The following paragraph and theorem provide a method to select an appropriate Q.

SOLVING THE LMI TO OBTAIN L All that remains to solve the LMI in (18) for L is to specify P as given by (22)
and Q. Solving (34) for X22 also requires Q, although this equation places no restriction on how Q > 0 is selected.
However, we must choose an appropriate Q which guarantees the feasibility of the LMI in (18) by satisfying (20), as
given by the following theorem.
Theorem 1 If Q is chosen as

Q = 2⌦kC
s

k2In⇥n

(43)

where C
s

= S1C and ⌦ is defined as in Assumption 1E-(b), then (20) holds.
PROOF Using C

s

= S1C the inequality (20) can be written

 C
s

+ ( C
s

)> < Q

Using  C
s

 k C
s

k2I  k k2kCs

k2I < ⌦kC
s

k2I the matrix Q in (43) satisfies (20).
With Q picked as in (43) and Ā32 made stable by selection of U in (40), the Lyapunov equation in (34) can be

solved to obtain X22. This procedure guarantees the feasibility of the LMI in (18) which can be solved numerically
with any widely available solver. This procedure is summarized in the following subsection.

B. Summary of the Design Procedure for S1 and L

Subsection IV-A provided a procedure to determine S1 and L for the system ⌃ satisfying Assumption 2 which
render (14) SPR. This subsection summarizes the overall procedure. Given known plant matrices A, B, Bcmd, C, and
uncertainties ⇤ and  in (4), reference model in (5), and control law in (7), the following steps provide a procedure to
determine S1 and L such that the underlying error dynamics in (14) are SPR:
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1. Solve for S1 as in (17).
2. Determine arbitrary annihilators B? and C>? such that B>B? = 0 and CC>? = 0.
3. Calculate matrices G and H using (39), (41), and (42) and then solve for U such that Ā32 in (40) is Hurwitz.
4. Compute K using (38) and define N2 as in (35).
5. Determine F in null(N2) such that ⌅ = [ B F C>? ] is full rank.
6. Define N0 as in (26). Calculate N = N0⌅�1 and set M = C>?.
7. Select Q as in (43) and solve (34) to obtain X22. Assemble X as shown in (33) where X11 > 0 is arbitrary.
8. Solve for P as in (22).
9. Solve the LMI in (18) to obtain L

Remark 4 In the case where p � m � n � p, we are ensured that H in (40) is a matrix of full column rank and so
H†H = I(n�p)⇥(n�p). This provides the freedom in selecting U to not only make Ā32 stable, but to select it to be
any stable matrix. This allows us to select X22 > 0 arbitrarily, and then solve for Ā⇤

32 as the solution to the Lyapunov
equation Ā⇤>

32 X22 +X22Ā
⇤
32 = �M>Q

✏

M . Then U can be picked in step 3 as

U =
�
Ā⇤

32 �G
�
H† (44)

Remark 5 The calculation of L should conclude with the verification that A + LC + BK>
x

is Hurwitz. While this
is not a theoretical requirement, for practical implementation on systems such as the one presented in Section V, this
requirement is enforced to ensure the reference model in (5) is stable.

C. Adaptive Law and Stability Proof
Using the closed-loop reference model defined in (5) with L selected as described in Section IV-A, we then propose

the following update law:
ė⇥ = ��x

m

(S1ey)
>sgn(⇤) (45)

where S1 is chosen using (17). Globally stability of the closed-loop system is guaranteed by the following theorem.
Theorem 2 Given the uncertain linear system in (4) which satisfies Assumption 2, the reference model in (5), and
control law as in (7), the update law in (45) results in global stability, with e

x

(t) ! 0 as t ! 1.
PROOF Propose the following radially unbounded Lyapunov function candidate

V (e
x

, e⇥) = e>
x

Pe
x

+ tr
�
|⇤|e⇥>��1e⇥

�

using (45) the time derivative of V along system trajectories can be evaluated as V̇ = �e>
x

bQe
x

 0 where bQ > 0,
and indeed the proposed candidate does serve as a Lyapunov function for this system. Furthermore, it can be shown
using Barbalat’s lemma that e

x

(t) ! 0 as t ! 1.
With e

x

(t) ! 0 as t ! 1, we achieve desired bounded reference tracking of zcmd by z. In the following section
we demonstrate the efficacy of the proposed method by providing a numerical example, but first we examine the
applicability of the CRM based method as compared to the classical MIMO adaptive control method.

D. Comparison Between CRM based and Classical MIMO Adaptive Control
Given the classical approaches used in the literature thus far, the obvious question that is raised is how the proposed

MIMO controller fares compared to the classical ones. The first point to note here is that the classical approaches are
limited to square plants while our approach proposed here is not. This is the most obvious advantage of our method.
The next question that arises is a comparison of the two approaches when the underlying plant is square. This is
addressed below.

As a first step, we provide relevant definitions below:
Definition 1 (Markov Parameters) [27] Given a transfer matrix G(s), the Markov Parameters are given by

H0 = lim
s!1

G(s), H1 = lim
s!1

s(G(s)�H0), H2 = lim
s!1

s2(G(s)�H0 �H1s
�1)

and so forth.
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Theorem 3 The set (A,B,C,D) is a realization of G(s) if and only if

H0 = D H
i

= CAi�1B, i = 1, 2, . . .

PROOF The proof can be found in Reference [27].
Definition 2 (Relative Degree One) The MIMO system G(s) with realization (A,B,C,D) is said to be Relative
Degree One if H0 = 0 and H1 = CB is full rank.
Lemma 3 Reference [9] Given a square nonsingular strictly proper transfer matrix W

p

(s) 2 Rm⇥m

p

(s), its Her-
mite form is diagonal if and only if the constant matrix E(W

p

(s)) is nonsingular, where E is calculated as follows.
Calculate r

i

as the minimum relative degree in the ith row of W
p

(s) and the rows of E are

E
i

= lim
s!1

sriW
p,i

(s) (46)

where W
p,i

(s) corresponds to the ith row of W
p

(s).
PROOF The proof can be found in Reference [28]

Given W
p

(s) 2 Rm⇥m

p

(s), the assumptions that must be satisfied for a classical adaptive control solution to exist
are as follows.9

Assumption 3

(i) The high frequency gain matrix K
p

is of the form K
p

= K
p

⇤ where K
p

is known and sign(⇤) is known.

(ii) The right Hermite normal form H
p

(s) of W
p

(s) is known.

(iii) An upper bound ⌫ on the observability index of W
p

(s) is known.

(iv) The zeros of W
p

(s) lie in C�.

Theorem 4 Given the square plant W
p

(s) 2 Rm⇥m

p

with realization (A,B,C, 0), the Hermite form H
p

(s) of W
p

(s)
is diagonal if CB is full rank. Furthermore, the high frequency gain matrix is given by K

p

= CB.
PROOF Theorem 3 connects the Markov Parameters of Relative Degree One systems to the realization of W

p

(s)
with H0 = 0 and H1 = CB. With this and Definition 1 we have that lim

s!1 sW
p

(s) = CB is full rank, and so
the minimum relative degree in each row of W

p

(s) is r
i

= 1. By Lemma 3 E(W
p

(s)) = CB and the Hermite form
H

p

(s) of W
p

(s) is diagonal. In Reference [9] it is shown that E(W
p

(s)) = K
p

.
Using Definitions 1 and 2 as well as Theorems 3 and 4, we show in Proposition 1 that the classical and our CRM

based MIMO adaptive control solution in this paper are equally applicable when the system in (1) is square.
Proposition 1 Consider the uncertain system in (1) where ` = m and the plant transfer matrix is given by

W
p

(s) = C
p

(sI �A
p

�B
p

 >
p

)�1B
p

⇤ (47)

if the plant in (1) satisfies Assumption 1, then the corresponding W
p

(s) in (47) satisfies Assumption 3.
PROOF Assumption 1E-(a) and Theorem 4 can be shown to imply that the corresponding K

p

satisfies Assumption
3(i). Assumption 1C together with Theorem 4 implies that the corresponding Hermite form is diagonal with known
entries and is therefore known, which leads to Assumption 3(ii). Assumption 3(iii) follows from the fact that n

p

is
known. Finally Assumption 1D is equivalent to Assumption 3(iv).

In addition to the main advantage of our proposed method of applicability to non-square plants, our proposed
controller is of lower order, requiring only n controller states and nm adjustable parameters, as compared with the
classical solution which will introduce 2m⌫ states and 2m2⌫ parameters. This reduces the number of states and
parameters necessary by at least two, since n  ⌫m.29 Finally our solution is based on a CRM, which has been shown
to possess a superior transient performance.13–16

It should be noted that of Assumptions 1A-E, which are required to be satisfied for the proposed controller, the
most restrictive one is Assumption 1C, which implies that the MIMO system must have Relative Degree One. In most
aerial platforms including hypersonic vehicles, this assumption is easy to satisfy as the relative degree of the transfer
functions between the control surface deflections and aircraft angular rates is unity. Additionally, the structure of the
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plant as in (1) which has matched uncertainties is also commonly present in flight control applications where much of
the plant uncertainty is in the aerodynamic moment coefficients and loss of control effectiveness, which are spanned
by the columns of B. It is however required that the uncertainty  

p

satisfy Assumption 1E-(b), which is not required
in the classical approach.

V. Numerical Example
We now present a numerical example using this output feedback design procedure applied to the control design

for a 6-DOF GHV model.6, 19 The GHV is a small blended wing-body vehicle, with 3-D inlet and nozzle, and axisym-
metric through-flow scramjet engine. The nonlinear equations of motion describing the GHV are linearized about a
nominal flight condition of Mach 6 at an altitude of 80,000 feet, corresponding to a dynamic pressure of 1474 psf.
Modal analysis allowed the linearized equations of motion to be decoupled, and the resulting uncertain longitudinal
and lateral-directional plant subsystems are represented as in Equation (1). In Reference [6] a state feedback LQR
baseline controller with integral action and augmented with an adaptive component was applied to design two inde-
pendent CRM based state feedback adaptive controllers - one for each of the plant subsystems. This approach was very
effective at maintaining stability and tracking performance in the presence of uncertainty, but assumed availability of
angle-of-attack and sideslip angle measurements. In this work, we no longer assume that these incidence angles are
measurable, which is more realistic for this class of vehicle, thus turning the problem into one of output feedback. The
adaptive control design procedure described in Section IV was used to design two independent CRM based output
feedback adaptive controllers - one for each of the two plant subsystems.

A. Longitudinal Subsystem
The state, control, output, and regulated output for the linear longitudinal subsystem as represented in (1) are given

by

x
p

=
h
↵ q

i>
u = �

e

y
p

= q z = q

respectively, where ↵ represents the angle of attack, and q is the pitch rate. The control input �
e

represents the elevator
deflection angle. The pitch rate is measurable but the angle of attack is not. The control goal is to track pitch rate
commands zcmd = qcmd. The longitudinal subsystem satisfies Assumption 1. The state vector x

p

is augmented with
the integral error state as in (2) resulting in a system of the form (4) which satisfies Assumption 2. The augmented
state and output vector are

x =
h
↵ q x

e

i>
y =

h
q x

e

i>

The baseline control gain K
x

in (6) was computed resulting in the following state feedback gain and phase margin

GMsf = [ �14.5, 165.7 ] dB
PMsf = 60 deg

The controller was then tuned by selecting X11 > 0 and solving for X22 in step 7 resulting in

X =

"
2 0

0 13.3

#

This provided the following gain and phase margin for the resulting output feedback compensator

GMof = [ �14.2, 33.2 ] dB
PMof = 59 deg

The numerical values for the linear system matrices and LQR weighting matrices can be found in the appendix.
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B. Lateral Subsystem
The state, control, output, and regulated output for the linear lateral-directional subsystem as represented in (1) are

given by

x
p

=
h
� p r �

i>
u =

h
�
a

�
r

i>
y
p

=
h
p r �

i>
z = �

respectively, where � represents the sideslip angle, p the roll rate, r the yaw rate, and � the roll angle. The control
inputs �

a

and �
r

represent the aileron and rudder deflection angles, respectively. All states are measurable except the
sideslip angle. The control goal is to track roll angle commands zcmd = �cmd. The lateral-directional subsystem can
be shown to satisfy Assumption 1. The state vector x

p

is augmented with the integral error state as in (2) resulting in
a system of the form (4) which satisfies Assumption 2. The augmented state and output vector are

x =
h
� p r � x

e

i>
y =

h
p r � x

e

i>

The baseline control gain K
x

in (6) was computed resulting in the following state feedback gain and phase margin

GMsf = [ �6.5, 161 ] dB
PMsf = 60 deg

Since the conditions of Remark 4 are satisfied, X22 can be selected arbitrarily. The controller was then tuned by
selecting X11 > 0 and X22 > 0 resulting in

X =

2

64
2 0 0

0 2 0

0 0 2

3

75

This provided the following gain and phase margin for the resulting output feedback compensator

GMof = [ �7.3, 14.5 ] dB
PMof = 48 deg

The numerical values for the linear system matrices and LQR weighting matrices can be found in the appendix.

C. Simulations
The linear, adaptive augmented baseline controllers designed for the longitudinal and lateral-directional systems

as described by (1) with reference model in (5), control law as in (7), and update law in (45) were then implemented
in a simulation of the GHV model. Second order actuator dynamics were included in the simulation on the elevators,
ailerons, and rudders. The numerical property values are listed in Table 1.

Table 1. Second order aerodynamic control surface actuator parameters

Parameter Unit Value

Surface deflection limit [deg] �30 to 30

Surface rate limit [deg/s] �100 to 100

Damping ratio ⇣ 0.7

Natural frequency !
n

[rad/s] 150

To demonstrate the performance and robustness of the adaptive controller, uncertainties were introduced in the
nonlinear model, which manifest themselves in the uncertain linear system as given in (1). The uncertainty is as
follows:
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• Control effectiveness on all surfaces is reduced to 60% of the nominal value.

• Center of gravity is shifted 1.6 feet rearward, effectively representing an unknown center of pressure location.

• The rolling moment coefficient C
l

is reduced to 10% of the nominal value.

The simulation block diagram is shown in Figure 1.

Figure 1. Simulation block diagram.

A 45 degree roll angle command was given, while commanding zero pitch rate. Figure 2 shows the response of the
nominal system, with no uncertainty and only the baseline control law: ⇥ = 0. Figure 3 shows the response of the the
system with the above uncertainty introduced and only the baseline controller: ⇥ = 0. Figure 4 shows the response of
the system with the uncertainties when the adaptive augmentation is used.

The baseline control law applied to the nominal linear system provides good stability margins and closed-loop
performance on the 6-DOF nonlinear evaluation model as shown in Figure 2. The system has a small rise time,
minimal overshoot, and a small settling time. With the baseline control law only, introduction of the uncertainties
causes greater initial overshoot, followed by significant high frequency oscillations, ultimately leading to instability
and loss of the aircraft, as shown in Figure 3. The use of the adaptive component in the control law recovers the
baseline control performance, as shown in Figure 4. When using the adaptive controller, both the control deflections
and rates are well within acceptable limits.

Figure 2. Time response of the nominal system: baseline controller with no uncertainty.
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Figure 3. Time response of baseline control applied to uncertain plant.

Figure 4. Time response of baseline controller with adaptive augmentation applied to uncertain plant.

15



VI. Summary and Conclusions
This paper has proposed a new alternative method for synthesizing a CRM based output feedback adaptive con-

troller for a class of uncertain MIMO systems which do not have any unstable transmission zeros. The controller is
composed of a baseline control gain augmented with an adaptive component to accommodate control effectiveness
uncertainty and matched plant uncertainty, and makes use of the closed-loop reference model to improve the transient
properties of the overall adaptive system. The adaptive controller requires the underlying error dynamics be made SPR
through the synthesis of the postcompensator S1 and CRM gain L, and the SPR relationship is enforced by reducing
an underlying bilinear matrix inequality to a feasible linear matrix inequality through appropriate selection of a tuning
matrix X . The procedure does not require the plant first be squared-up. It is computationally simple, and it requires
only the calculation of some generalized inverses, the solution of the Lyapunov equation, and the solution of a reduced
order state feedback problem. This procedure is summarized in nine straightforward steps. Furthermore, the degrees
of freedom in the tuning matrix X capture a large subset of all possible solutions which ensure the SPR property.
Using these degrees of freedom, X can be tuned to provide the desired stability margins for the baseline system, and a
globally stable update law. The result is a baseline output feedback controller with good stability margins and adaptive
augmentation capable of accommodating matched uncertainties.

This resulting robust baseline output feedback controller with adaptive augmentation is shown in simulation to
provide good tracking performance when applied to a 6-DOF simulation of a hypersonic vehicle with significant
uncertainty in control effectiveness, CG shift, and the rolling moment coefficient. The simulation results showed that
for this uncertainty the robust baseline controller alone was unable to maintain stability, whereas the adaptive controller
recovered nominal performance even with the presence of unmodeled actuator dynamics.
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Appendix
Longitudinal Subsystem Numerical Data

The nominal longitudinal plant matrices for a flight condition of Mach 6 at an altitude of 80,000 feet are:

A
p

=

"
�0.2398 1.0000

4.5689 �0.1189

#
B

p

=

"
�0.0001

�0.18561

#
C

p

=
h
0 1

i
C

pz

=
h
0 1

i

The following weighting matrices were used to compute K
x

as in (6) using the MATLAB command lqr

Qlqr = diag
�
[ 0, 0.3, 170 ]

�

Rlqr = 0.0001

Lateral Subsystem Numerical Data
The nominal lateral-directional plant matrices for a flight condition of Mach 6 at an altitude of 80,000 feet are:

A
p

=

2

6664

�0.0699 �0.0105 �1.0000 0.0053

�1331.0 �2.0308 �0.0076 0

1.9465 �0.0016 �0.0533 0

�0.0002 0.8536 0 0

3

7775
B

p

=

2

6664

0 0.0002

�8.1073 10.4560

0.0320 �0.2884

0 0

3

7775

C
p

=

2

64
0 1 0 0

0 0 1 0

0 0 0 1

3

75 C
pz

=
h
0 0 0 1

i

The following weighting matrices were used to compute K
x

as in (6) using the MATLAB command lqr

Qlqr = diag
�
[ 0, 0.2, 40, 0, 0.2 ]

�

Rlqr = diag
�
[ 0.005, 0.005]

�
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