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Abstract

During geologic storage of carbon dioxide (CO2), trapping of the buoyant

CO2 after injection is essential in order to minimize the risk of leakage into

shallower formations through a fracture or abandoned well. Models for the

subsurface behavior of the CO2 are useful for the design, implementation, and

long-term monitoring of injection sites, but traditional reservoir-simulation

tools are currently unable to resolve the impact of small-scale trapping pro-

cesses on fluid flow at the scale of a geologic basin. Here, we study the impact

of solubility trapping from convective dissolution on the up-dip migration of

a buoyant gravity current in a sloping aquifer. To do so, we conduct high-

resolution numerical simulations of the gravity current that forms from a

pair of miscible analogue fluids. Our simulations fully resolve the dense,

sinking fingers that drive the convective dissolution process. We analyze the

dynamics of the dissolution flux along the moving CO2–brine interface, in-
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cluding its decay as dissolved buoyant fluid accumulates beneath the buoyant

current. We show that the dynamics of the dissolution flux and the macro-

scopic features of the migrating current can be captured with an upscaled

sharp-interface model.

Keywords: CO2 sequestration, gravity current, convective dissolution,

sharp interface model, upscaling

1. Introduction1

The injection of carbon dioxide (CO2) into deep saline aquifers is a2

promising tool for reducing anthropogenic CO2 emissions [1, 2, 3, 4]. Af-3

ter injection, the buoyant CO2 will spread and migrate laterally as a gravity4

current relative to the denser ambient brine, increasing the risk of leakage5

into shallower formations through fractures, outcrops, or abandoned wells.6

One mechanism that acts to arrest and securely trap the migrating CO27

is dissolution of CO2 into the brine [5]. Dissolved CO2 is considered trapped8

because brine with dissolved CO2 is denser than the ambient brine, and sinks9

to the bottom of the aquifer. In addition to providing storage security by10

hindering the return of the CO2 to the atmosphere, this sinking fluid triggers11

a hydrodynamic fingering instability that drives convection in the brine and12

greatly enhances the rate of CO2 dissolution [6, 7, 8, 9].13

Although this process of convective dissolution is expected to play a major14

role in limiting CO2 migration and accelerating CO2 trapping [4], the inter-15

action of convective dissolution with a migrating gravity current remains16

poorly understood. This is due primarily to the disparity in scales between17

the long, thin gravity current and the details of the fingering instability. Re-18
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solving these simultaneously has proven challenging for traditional reservoir19

simulation tools [10]. Upscaled theoretical models [11, 12] and laboratory ex-20

periments [13, 14] have recently provided some macroscopic insights, but by21

design these capture only the averaged dynamics of the dissolution process.22

Here, we study the impact of convective dissolution on the migration of23

a buoyant gravity current in a sloping aquifer by conducting high-resolution24

numerical simulations of a pair of miscible analogue fluids. Our simulations25

fully resolve the small-scale features of the convective dissolution process.26

We define an average dissolution flux and use it to study the dynamic in-27

teractions of the fingering instability with the migrating current. We then28

compare these results with the predictions of an upscaled theoretical model29

to investigate the degree to which this simple model can capture the macro-30

scopic features of the migrating current.31

2. Analogue fluids32

For simplicity, and to focus on the role of convective dissolution, we ne-33

glect capillarity and assume that the two fluids are perfectly miscible. We34

adopt constitutive laws for density and viscosity that are inspired by a pair35

of miscible analogue fluids that have been used to study this problem ex-36

perimentally [15, 16, 13, 14]. This system captures three key features of the37

CO2-brine system: (1) a density contrast that stratifies the pure fluids and38

drives the migration of the gravity current, (2) an intermediate density max-39

imum that triggers and drives convective dissolution (discussed below), and40

(3) a viscosity contrast between the pure fluids that influences the shape and41

propagation speed of the gravity current.42
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We write the dimensionless density ρ and viscosity µ as functions of the43

local concentration c of the buoyant fluid. We scale the concentration c by the44

solubility so that c ∈ [0, 1]. Since the analogue fluids have different densities45

(ρ(c = 1) < ρ(c = 0)), the buoyant one will “float” and migrate above the46

denser one. Since they are perfectly miscible, they will be separated by a47

transition zone that forms and grows through diffusion, and within which48

the local concentration transitions from c = 0 to c = 1 and the local density49

and viscosity vary accordingly.50

To trigger convective dissolution, the essential feature of the density law51

is that it must be a non-monotonic function of concentration with an inter-52

mediate maximum (Fig. 1). This shape introduces a neutral concentration
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Figure 1: Non-monotonic density law (dimensional) inspired by miscible analogue flu-

ids [15, 16]. The density has a maximum at c = cm. The contour of neutral concentration

c = cn (red line) acts as an interface: mixtures with c < cn (left of the red line) are denser

than the ambient brine and will sink, whereas those with c > cn (right of the red line)

are buoyant relative to the ambient brine and will rise. ∆ρm is the characteristic density

difference that drives convective dissolution and ∆ρgc is the one that drives the migration

of the buoyant gravity current.
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c = cn for which the density of the mixture is equal to the density of the53

ambient fluid. Fluid with concentration c > cn (i.e., to the right of cn)54

is less dense than the ambient and tends to float, whereas fluid with con-55

centration c < cn (i.e., to the left of cn) is denser than the ambient and56

tends to sink. The contour of neutral concentration within the transition57

zone therefore emerges as a natural “interface” between buoyant and sinking58

fluids: the fluid above is buoyant and stably stratified (density decreasing59

as concentration increases from c = cn to c = 1), the fluid below is dense60

and unstably stratified (density decreasing as concentration decreases from61

c = cn to c = 0), and diffusion continuously transfers fluid from the stable62

region to the unstable region.63

The concentration c = cm at which the density maximum occurs plays64

the role of a solubility in this system since the density of the underlying fluid65

increases toward this value as dissolved buoyant fluid accumulates. Convec-66

tive dissolution stops entirely when diffusion at the interface is no longer able67

to generate a mixture that is denser than the fluid below it.68

To make the density law dimensionless, we shift it by the brine density69

and scale it by the height of the density maximum so that the dimensionless70

brine density is always ρ(c = 0) = 0 and the dimensionless density maximum71

is always ρ(c = cm) = 1. We represent the density law with a polynomial of72

degree three, ρ(c) = 6.19c3−17.86c2 +8.07c, which has neutral concentration73

cn = 0.56, a density maximum at cm = 0.26, and a dimensionless CO2 density74

of ρ(c = 1) = −3.6. This density law is qualitatively and quantitatively75

similar to the true density law for mixtures of propylene glycol (c = 0, brine76

analogue) and water (c = 1, CO2 analogue) [16].77
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We choose an exponential constitutive law for the dimensionless viscosity,78

µ(c) = exp[R(cm − c)], where we have scaled µ(c) by characteristic viscosity79

µm so that µ(c = cm = 0.26) = 1. The parameter R = lnM, where M =80

µbrine/µCO2 = µ(c = 0)/µ(c = 1) is the mobility ratio. This viscosity law is81

qualitatively and quantitatively similar to the true viscosity law for mixtures82

of propylene glycol and water for R ≈ 3.7 [16].83

Since these analogue fluids are perfectly miscible, our results do not in-84

corporate the various impacts of capillarity, including residual trapping, the85

development of a capillary fringe, and capillary pressure hysteresis. The86

absence of capillarity is a limitation in the sense that these analogue fluids87

cannot capture every aspect of the CO2-brine system, but it is also an advan-88

tage in the sense that it allows us to isolate and study convective dissolution89

as a transport process without these additional complications [15, 16, 13, 14].90

Capillarity may impact the dynamics of the gravity current. For exam-91

ple, the gravity current will shrink due to residual trapping along its trailing92

edge [17, 18, 19]. The formation of a capillary fringe between the CO2 and the93

brine may change the shape and reduce the propagation speed of the gravity94

current [20, 21, 22]. Capillary pressure hysteresis may also reduce the prop-95

agation speed of the gravity current and even arrest its migration [23, 24].96

All of these effects can be incorporated into upscaled models for CO2 migra-97

tion, but incorporating them into our 2D simulations is less straightforward.98

These effects would impact the total dissolution rate by changing the length99

of the “interface” between the two fluids, and by reducing the amount of100

ambient fluid available for “storing” dissolved CO2. However, we would not101

expect them to change the dynamic interactions of migration and dissolution102
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as described here.103

Capillarity may also have a quantitative impact on the onset and sub-104

sequent rate of convective dissolution [25, 26, 27]. These effects have never105

been studied experimentally and are not well understood, but we expect the106

same qualitative behavior of the dissolution flux (diffusion, onset, convec-107

tion). Although miscible analogue fluid systems may feature quantitatively108

different fluxes, they are useful for studying the dynamics of the dissolution109

flux and its impact on migration.110

3. Mathematical model111

We consider a two-dimensional aquifer in the x-z plane, with dimensional112

length Lx and uniform dimensional thickness Lz. The aquifer is tilted by113

an angle θ relative to horizontal. This can be viewed as a cross-section of114

a sedimentary basin taken perpendicular to a line-drive array of injection115

wells [28, 4]. We assume that the aquifer is homogeneous and with isotropic116

permeability.117

We use the classical model for incompressible fluid flow and advective-118

dispersive mass transport under the Boussinesq approximation, modeling119

hydrodynamic dispersion as a Fickian process with a velocity-independent120

diffusion–dispersion coefficient. The governing equations for this model in121

dimensionless form are [29]122

∇ ·u = 0, (1)123

u = − 1

µ(c)
(∇p− ρ(c)êg) , (2)124

∂c

∂t
= −u ·∇c+

1

Ra
∇2c (3)125

126
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where p is the scaled pressure deviation from a hydrostatic datum, u is the127

scaled Darcy velocity, and êg = (− sin θ,− cos θ) is the unit vector in the128

direction of gravity. ρ(c) and µ(c) are the dimensionless density and viscosity129

as functions of the scaled concentration c, as discussed in §2. The Rayleigh130

number Ra is given by131

Ra =
∆ρmgkLz

φDmµm

, (4)132

133

where g is the body force per unit mass due to gravity, φ is porosity, k is the134

aquifer permeability, Dm is the diffusion–dispersion coefficient, ∆ρm is the135

characteristic density difference driving convective dissolution, and µm is the136

characteristic viscosity. We write Eqs. (1–3) in dimensional form and give137

the complete details of the scaling with which we make them dimensionless138

in Appendix A.139

The behavior of a buoyant gravity current is then completely character-140

ized by Eqs. (1–3), the value of Ra, the constitutive laws ρ(c) and µ(c), and141

appropriate initial and boundary conditions.142

To study convective dissolution from a gravity current, we solve Equa-143

tions (1–3) numerically in a rectangular domain of dimensionless height 1144

and length A = Lx/Lz = 20. We discretize the equations for flow (Eqs. 1–2)145

and transport (Eq. 3) in space using 2nd-order finite volumes and 6th-order146

compact finite differences (4th order for boundary conditions), respectively,147

in a domain of 10000×500 grid blocks (see Appendix B). We evolve this sys-148

tem in time using an explicit 3rd-order Runge-Kutta scheme. Perturbations149

are triggered by small numerical errors [30].150

We prescribe the pressure along the right boundary and take the other151

boundaries to be impervious. We then write the dimensionless boundary152
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conditions as153

p = 0 at x = A (5)154

u ·n = 0 elsewhere (6)155
156

for flow, and157

∇c ·n = 0 (7)158
159

for transport.160

Initially, the region x ≤ 4 is filled with CO2. We do not add any per-161

turbation to trigger the instability. A sequence of snapshots from a typical162

simulation is shown in Figure 2. These results are qualitatively similar to the163

fingering patterns observed in experiments using water and propylene glycol,164

although those fluids have a much higher value of R ∼ 3.7 [16, 14].165

4. Effect of dissolution on CO2 migration166

We quantify the evolution of the buoyant current with four macroscopic167

quantities: its mass, its length, the total dissolution rate of CO2 into the168

brine, and the average dissolution flux per unit length of the current. These169

quantities characterize the spreading and migration of the current and the170

effectiveness of dissolution trapping, which have implications for planning171

and risk assessment [31, 32].172

The dissolution flux between two miscible fluids must be defined with173

care since there is no true interface across which mass is transferred. In-174

stead, there is an initial concentration distribution that homogenizes as mix-175

ing progresses. Although the natural characterization for such a system is176

9



Figure 2: Sequence of snapshots from a high-resolution simulation of convective dissolution

from a buoyant current in a sloping aquifer for Ra = 5000, R = 1, and θ = 2.5◦ (not shown)

at dimensionless times 0, 3, 9, and 27. The domain extends to x = 20, but only 0 ≤ x ≤ 15

is shown here. The red line marks the contour of neutrally buoyant concentration c = cn,

which separates the buoyant current from the sinking fluid (Fig. 1).

through the evolution of the mean scalar dissipation rate [33], it is useful in177

practice to define a dissolution flux. Here, we define the dissolution flux via178

the non-monotonic behavior of fluid density with concentration. Since mix-179

tures with concentration c = cn are neutrally buoyant relative to the ambient180

fluid, this concentration can be used to define a neutral contour separating181

the buoyant, mobile CO2 (c ≥ cn) from the dense brine with dissolved CO2182

(c < cn; Fig. 1). This is an unstable equilibrium point and any perturbation183

of concentration causes significant buoyancy forces that trigger convection.184

To define the dissolution flux, we first compute the mass of buoyant fluid as185

Mb(t) =
∫

Ωb(t)
c dΩ, Ωb(t) := {(x, z) | c(x, z, t) > cn} (Fig. 3a). We then define186

the total dissolution rate as −dMb/dt (Fig. 3b). By dividing this quantity187

by the length of CO2-brine interface, which we measure as the length of the188
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neutral contour (Fig. 3c), we obtain the average dissolution flux (Fig. 3d).189

Both the total dissolution rate and the average dissolution flux evolve as190

the buoyant current migrates (Fig. 3b,d). Much like for a stationary layer191

of CO2 dissolving into brine [9, 30, 15, 16, 33, 34], we distinguish three dis-192

tinct regimes in convective dissolution from the migrating current: a diffusive193

regime at early times, a constant-flux regime during intermediate times, and194

a decay at late times. The early-time evolution of the gravity current in this195

system is a classical lock exchange, where an initially vertical interface be-196

tween a buoyant fluid and a dense fluid evolves by tilting and stretching (here197

with the added complication of convective dissolution). The classical sharp-198

interface model for lock exchange predicts that the length of the interface199

will grow proportional to t1/2 [35]. This regime ceases here when the left-200

traveling edge of the interface hits the left boundary of the domain, at which201

point the dynamics of the interface change suddenly as the gravity current202

detaches from the bottom of the aquifer and enters a migration-dominated203

regime [36]. Both the dissolution rate and dissolution flux are small at early204

times as the CO2-brine interface tilts from its initial, vertical orientation and205

diffusion–dispersion dominates. After the onset of convection (t ≈ 1), the206

dissolution flux becomes roughly constant (t ≈ 1–4), as expected for a sta-207

tionary layer, and the growth of the interface slows down. Before the fingers208

interact significantly with the bottom boundary, our computed dissolution209

flux exhibits the same qualitative behavior as has been observed previously210

for dissolution of a stationary layer [30, 37, 33]. However, our flux differs211

quantitatively from these previous measurements. This is expected since the212

value of the flux has been shown to depend strongly on the concentration213
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at which the density maximum occurs [33], and also on the nature of the214

boundary condition at the boundary where dissolution occurs (here across a215

moving interface between two miscible fluids vs. across a rigid boundary with216

prescribed concentration) [33, 26]. The total dissolution rate grows strongly217

during this period since the interface length grows rapidly (Fig. 3c) while218

the flux remains roughly constant. At later times (t > 5), the accumulation219

of dissolved CO2 under the leftmost part of the current begins to suppress220

further convective dissolution there and the average dissolution flux begins to221

decay (Fig. 3d) [13, 34]. The total dissolution rate also decays (Fig. 3b) even222

though the length of the interface continues to increase (Fig. 3c), reflecting223

the fact that the accumulation of dissolved CO2 is suppressing convective224

dissolution along a progressively larger fraction of the interface (Fig. 2).225

As Ra increases, we find that the dynamics of this process converge to a226

common high-Ra limit, indicating that relevant macroscopic quantities are227

independent of Ra for Ra ≈ 5000 and higher [33]. We therefore fix Ra = 5000228

in what follows.229

5. Upscaled model230

We now consider the extent to which the dynamics of convective dissolu-231

tion from a migrating gravity current can be captured by a simple upscaled232

model. Such models have recently been used to develop insight into the233

physics of CO2 migration and trapping [38, 39, 36, 18, 40, 19, 12, 41].234

We have elsewhere presented an upscaled model for the migration and235

trapping of a buoyant current of CO2 in a sloping aquifer [12]. The model236

adopts the sharp-interface approximation, assumes vertical flow equilibrium,237
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Figure 3: We characterize the dynamics of convective dissolution from a migrating gravity

current with the time evolution of four macroscopic quantities: (a) the remaining buoyant

mass, Mb(t), (b) the total dissolution rate, −dMb/dt, (c) the length of the CO2-brine

interface, L(t), measured as the length of the neutral contour, and (d) the average disso-

lution flux per unit interface length, −(1/L)dMb/dt. Results shown here are for R = 0,

θ = 2.5◦, and several values of Ra, as indicated.
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and neglects capillarity. The model accounts for residual trapping, but we238

ignore this here for simplicity. Here, we extend the model to include the239

slumping of the CO2-rich brine layer against the bottom of the aquifer as in240

[13]. We outline the derivation of this model in Appendix C.241

The model incorporates convective dissolution as a constant flux of CO2242

per unit length of CO2-brine interface [30, 37, 15, 16, 33]. This rate will decay243

as dissolved CO2 accumulates in the brine beneath the buoyant current, and244

we account for this effect by assuming that a dense mound of brine with a245

uniform and constant concentration of dissolved CO2 grows on the bottom of246

the aquifer as the buoyant current shrinks. The model is designed to capture:247

(1) the decay in dissolution flux by stopping convective dissolution locally248

where the dense mound fills the region beneath the buoyant current [12],249

and (2) the slumping of the CO2-rich brine layer against the bottom of the250

aquifer [13].251

The model takes the form of two coupled partial differential equations to252

be solved for the local thickness h(x, t) of the buoyant current and the local253

thickness hd(x, t) of the dense mound [12, 13]. We write it in dimensionless254

form as255

∂h

∂t
+

∂

∂x

[
(1− f)h

(
Ns −Ng

∂h

∂x

)
+ δfhd

(
Ns +Ng

∂hd
∂x

)]
= −Ñd, (8)256

257

258

∂hd
∂t

+
∂

∂x

[
− fdh

(
Ns −Ng

∂h

∂x

)
− δ(1− fd)hd

(
Ns +Ng

∂hd
∂x

)]
=
Ñd

Γd

, (9)259

260

where x and t are defined and scaled as in Eqs. (1–3) and h and hd are261

scaled by the aquifer thickness, Lz. The dimensionless parameters Ns, Ng,262

and δ measure the speed of migration due to aquifer slope relative to the263
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speed at which the fingers fall, the speed of buoyant spreading due to gravity264

relative to the speed at which the fingers fall, and the migration speed of265

the buoyant current relative to that of the dense one, respectively. They are266

given by Ns = (∆ρgcµm sin θ)/(∆ρmµCO2), Ng = (∆ρgcµm cos θ)/(∆ρmµCO2),267

and δ = ∆ρdµCO2/(∆ρgcµd), where ∆ρgc is the amount by which the density268

of the brine exceeds the density of the buoyant CO2, ∆ρd is the amount269

by which the density of the mound of brine with dissolved CO2 exceeds the270

density of the ambient brine, µCO2 is the dynamic viscosity of the CO2, µd is271

the dynamic viscosity of the dense brine with dissolved CO2, and qd is the272

volume of CO2 that dissolves per unit area of CO2-brine interface per unit273

time. The dissolution flux vanishes locally where the mound of brine with274

dissolved CO2 fills the aquifer beneath the buoyant current:275

Ñd =


Nd if h+ hd < 1,

0 if h+ hd = 1.

(10)276

277

where Nd = qdµm/(∆ρmgk). The volume fraction Γd is the equivalent vol-278

ume of free-phase CO2 dissolved in one unit volume of the mound of brine279

with dissolved CO2. This determines both the rate at which the dense280

mound grows and also the density and viscosity of the dense mound via281

the constitutive laws for density and viscosity. The fractional-flow func-282

tions f and fd are given by f(h, hd) =Mh/[Mh+Mdhd + (1−h−hd)] and283

fd(h, hd) = hd/[Mh +Mdhd + (1− h− hd)], where M = µbrine/µCO2 is the284

mobility ratio for the buoyant current (µbrine is the dynamic viscosity of the285

brine) and Md = µbrine/µd is the mobility ratio for the dense mound.286

All of the parameters in this upscaled model are readily derived from the287

parameters and constitutive laws for the full problem with the exception of288
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the upscaled dissolution flux Nd and the volume fraction Γd. We measure289

the dissolution flux directly from our high-resolution numerical simulations,290

taking the dimensionless upscaled flux to be the typical average flux per291

unit length before the brine begins to saturate, Nd ≈ 0.015 (Fig. 3d). We292

treat the concentration Γd as a fitting parameter, choosing Γd ≈ 0.18 as a293

value that captures the rate at which the dissolution flux decays as the brine294

saturates for Ra = 5000 and R = 0. Further numerical simulations and295

laboratory experiments for a stationary layer and for a migrating current296

will be necessary to study the details of this accumulation process to develop297

a predictive model for the value of Γd. Here, we use these values of Nd and298

Γd for all comparisons (i.e., R = 0 and R = 1).299

We find that this upscaled model captures the evolution of the buoy-300

ant current and also the suppression of convective dissolution under the left301

portion of the current as dissolved CO2 accumulates in the brine (Fig. 4).302

Although the dissolution flux in the upscaled model can take only one of303

two values locally, Ñd = 0.015 or 0 (Eq. 10), we find that this is sufficient304

to capture the dynamics of the decaying average dissolution flux from the305

high-resolution simulations (Fig. 5).306

6. Conclusions307

Using high-resolution numerical simulations, we have studied the detailed308

dynamics of convective dissolution from a buoyant current of CO2 in a sloping309

aquifer. We have found that, much like for a stationary layer of CO2 dissolv-310

ing into brine, the dissolution flux from a buoyant current is characterized by311

three regimes: an early-time diffusive regime before the onset of convection,312
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Figure 4: The upscaled model captures the macroscopic shape of the buoyant current.

Here, we compare the prediction of the upscaled model (dashed blue line) with the evolu-

tion of the neutral contour (c = cn = 0.56, red line) from a high-resolution simulation for

Ra = 5000, R = 1, and θ = 2.5◦ at dimensionless times 0, 3, 9, and 27 (same parameters

and times as in Fig. 2). Only a portion of the domain is shown (0 ≤ x ≤ 15). The con-

centration field (black to gray map) show the suppression of the fingering instability by

the accumulation of dissolved CO2 in the brine. We capture this in the upscaled model by

disabling convective dissolution locally wherever the dense mound of brine with dissolved

CO2 (dashed cyan line) touches the buoyant current.
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Figure 5: The inclusion of the mound of brine with dissolved CO2 allows the upscaled

model (dashed lines) to capture the decaying average dissolution flux from the high-

resolution simulations (solid lines). We again characterize the dynamics of convective

dissolution via the time evolution of (a) the remaining buoyant mass, Mb(t), (b) the total

dissolution rate, −dMb/dt, (c) the length of the CO2-brine interface, L(t), and (d) the

average dissolution flux, −(1/L)dMb/dt. Results shown here are for Ra = 5000, θ = 2.5◦,

and R = 0 (blue) and 1 (cyan).
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an intermediate constant-flux regime, and a late-time decay as convection313

is suppressed by the accumulation of dissolved CO2 in the brine. We have314

found, further, that these dynamics are independent of Ra for Ra ≈ 5000315

and higher (Fig. 3).316

We have shown that the macroscopic evolution of the buoyant current317

can be captured with an upscaled, sharp-interface model that assumes a318

constant dissolution flux and accounts for the accumulation of dissolved CO2319

with a dense mound that grows and slumps on the bottom of the aquifer as320

the buoyant current shrinks and spreads (Fig. 4). The upscaled dissolution321

flux qd is the essential input for upscaled models such as the ones discussed322

here and elsewhere [12, 11, 13, 14]. Our high-resolution simulations allow323

us to obtain realistic values for this parameter in the context of a migrating324

current. The upscaled model also captures the smooth decay in the average325

dissolution flux even though we use a binary “on-off” model for the flux326

locally (Fig. 5). These results provide support for insights derived previously327

from upscaled models based on similar assumptions [12, 11, 13]. In addition,328

this provides us with a sound base for extending the upscaled model to more329

complex systems such as heterogeneous aquifers, which will be subject of330

future work.331

We have assumed in the upscaled model that dissolved CO2 accumulates332

in the brine as a dense mound of constant and uniform CO2 concentration [12,333

13]. This concentration determines both the rate at which the dense mound334

grows and also the rate at which it slumps relative to the ambient brine, and335

is unknown a priori. Here, we have treated this concentration as a fitting336

parameter. Further high-resolution simulations for a stationary layer and for337
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a migrating current will be necessary to study the details of this accumulation338

process. At later times, the slumping and down-slope migration of the dense339

mound will compete with mixing driven by diffusion and dispersion [42].340

In our high-resolution numerical simulations, we have neglected capillarity341

and instead assumed that the buoyant fluid and the dense fluid are perfectly342

miscible, taking advantage of constitutive laws inspired by the analogue fluids343

that have been used to study convective dissolution in the laboratory [15,344

16]. This assumption will be reasonable when the capillary pressure is small345

relative to typical viscous and gravitational pressure changes in the flow. The346

impact of capillarity on the evolution of gravity currents is increasingly well347

understood [20, 21, 41, 23, 22]. Recent studies also suggest that capillarity348

can have a quantitative impact on the dissolution flux [25, 41, 26, 27], but a349

complete understanding of these effects will require further study including350

laboratory experiments in addition to mathematical modeling and numerical351

simulation.352

Our 2D analogue-fluid model requires a dimensionless density law and353

three other dimensionless parameters: the Rayleigh number; the log of the354

mobility ratio; and the aspect ratio of the initial condition. The dimension-355

less density law can be characterized by two parameters: the concentration356

at which the density maximum occurs and the ratio of the two density dif-357

ferences (Fig. 1). The concentration at which the density maximum occurs358

plays the role of the solubility since convective dissolution will stop as the359

density of the ambient fluid approaches the maximum attainable density. For360

the analogue fluids used here, this value is cm = 0.26. Appropriate values361

for carbon sequestration are 25 to 50 times smaller (∼ 0.005–0.01 [4]). This362
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means that the brine underlying the CO2 would saturate with dissolved CO2363

much more quickly than in our analogue system. However, the ratio of the364

density difference that drives the migration of the gravity current to the one365

that drives convective dissolution is much smaller in the analogue system366

(∼ 3.6) than in the field (∼ 25–60 [4]). This means that a gravity current of367

supercritical CO2 in the field would generally migrate faster compared to the368

rate at which it dissolves than in our analogue-fluid simulations, implying369

that the saturation of the water beneath the plume will tend to play a lesser370

role in the field. Similarly, the density-driven migration of the mound of wa-371

ter with dissolved CO2 is likely to be much less important in the field since it372

migrates very slowly compared to the buoyant plume. However, both effects373

can be extremely important in horizontal or weakly sloping aquifers [12, 13].374

Reported values of the Rayleigh number in real CO2 sequestration scenar-375

ios range over several orders of magnitude, from as low as 100 in thin, low-376

permeability aquifers to as high as 105 in thick, high-permeability aquifers.377

Our results here target the middle of this range, Ra ∼ 5000, to explore378

the limit in which diffusion is still important and to capture the asymptotic379

behavior for large Ra.380

The mobility ratio for a real CO2-brine system isM≈ 5–12 or R ≈ 1.5–381

2.5 [4], which is somewhat higher than the values used here (R = 0 and 1).382

The mobility ratio has a direct impact on the dynamics of the gravity current,383

which is longer, thinner, and more strongly tongued for larger R [18, 40]. It384

also has a weak impact on the magnitude of the dissolution flux, as shown385

in [33] and in the present work (Fig. 5d).386

The aspect ratio of the initial condition is the width of the initial rectangle387
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of buoyant fluid relative to the width of the thickness the aquifer, which we388

take here to be 4. This is a realistic value for carbon sequestration, although389

field values can range from an order of magnitude smaller (∼ 0.4) to an order390

of magnitude larger (∼ 40) depending on the thickness of the aquifer and the391

volume of CO2 injected [4].392

We have confined our modeling and simulations here to two dimensions,393

but three-dimensional flow effects can be important in scenarios where, for ex-394

ample, the lateral extent of the plume is not large compared to its length [43].395

High-resolution simulations combining migration and convective dissolution396

in 3D, as we have done here in 2D, would be a very interesting follow-up397

study. Although extension of our modeling to three dimensions is straight-398

forward, such simulations would be extremely computationally expensive.399
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Appendix A. Equations in dimensional form406

Here we present the 2D mathematical model in dimensional form. We407

present the upscaled (1D) mathematical model in dimensional form in Ap-408

pendix C.409

Contrary to the rest of the paper, variables without decoration are di-410

mensional and those with tildes are dimensionless. The equations governing411

incompressible fluid flow and advective-dispersive mass transport, where we412

adopt the Boussinesq approximation and model hydrodynamic dispersion as413

a Fickian process, take the form [29]414

∇ ·u = 0, (A.1)415

u = − k

µ(c)

(
∇p+ ρ(c)g sin θ êx + ρ(c)g cos θ êz

)
, (A.2)416

φ
∂c

∂t
= −u ·∇c+ φDm∇2c, (A.3)417

418

Dimensional Eqs. (A.1–A.3) are related to their dimensionless counterparts419

Eqs. (1–3) by the scalings t = (φµmLz/∆ρmgk) t̃, ∇ = ∇̃/Lz, u = (∆ρmgk/µm)ũ,420

p = ∆ρmgLzp̃+ρ(c = 0)gz+p0, µ = µmµ̃, and ρ = ∆ρm ρ̃+ρ0. p0 and ρ0 are421

a dimensional reference pressure and dimensional brine density, respectively.422

The density difference ρ(c = cm) − ρ(c = 0) = ∆ρm drives convective423

dissolution, while the density difference ρ(c = 0) − ρ(c = 1) = ∆ρgc drives424

the migration of the gravity current.425

Appendix B. Convergence analysis426

Fingering instabilities are very sensitive to numerical discretization [44].427

To accurately capture the dynamics of convective dissolution, it is essential428
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for our simulations to resolve the smallest relevant length and time scales.429

The smallest such length scale for convective dissolution is believed to be430

the critical wavelength for the onset of convection, λc ≈ 90Lz/Ra [9]. We431

present results here for Ra as high as 10000 (Figure 3), for which λc/Lz ≈432

0.009. Larger values of Ra require proportionally finer spatial discretizations.433

Allocating at least two horizontal grid blocks per wavelength then suggests434

a minimum horizontal resolution of ∼ 220 grid blocks per unit dimensionless435

length for Ra = 10000. We use 500 grid blocks per unit length in both436

directions (10000× 500 for a domain of 20× 1) for all simulations, which we437

expect to be sufficient.438

Regarding the convergence of macroscopic quantities such as the disso-439

lution flux, we choose a discretization for which the results vary by a few440

percent or less when the grid is refined further. We perform such a conver-441

gence analysis by comparing a sequence of simulations performed on meshes442

of increasing resolution. We compare resolutions of 200–600 grid blocks per443

unit dimensionless length (same in the horizontal and vertical directions).444

Since the dimensionless height of the domain is always 1, the resolution is445

the same as the number of grid blocks Nz in the vertical direction. We il-446

lustrate this convergence quantitatively in Figure B.6 for Ra = 5000, R = 0,447

and a dimensionless initial width of 1. The domain has aspect ratio A = 5,448

so the finest mesh has 3000× 600 grid blocks (Nz = 600). We illustrate this449

convergence qualitatively in Figures B.7 and B.8 for R = 0 and R = 1, re-450

spectively. Based on these results, we choose a resolution of 500 grid blocks451

per unit length for all simulations presented here as a compromise between452

numerical accuracy and computational burden. We expect other parameters,453
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Figure B.6: Numerical convergence of macroscopic quantities with grid size. Here we

calculate the error in buoyant mass for grid size ∆x as the log of the maximum difference

between the value for that grid size and the next coarser one, log(max |Mk+1
b (t)−Mk

b (t)|).

These results are for R = 0, θ = 0, and Ra = 5000.
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Figure B.7: Convergence with grid size of (a) buoyant mass, (b) total dissolution rate,

(c) interface length (length of the neutral contour), and (d) dissolution flux for Ra = 5000,

R = 0, and a dimensionless initial width of 1. These macroscopic quantities converge to

within a few percent for Nz ≥ 500.
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Figure B.8: Convergence with grid size of (a) buoyant mass, (b) total dissolution rate,

(c) interface length (length of the neutral contour), and (d) dissolution flux for Ra = 5000,

R = 1, and a dimensionless initial width of 4. As for R = 0, these quantities converge to

within a few percent for Nz ≥ 500.

such as the slope or the shape of the density curve, to have little impact on454

convergence.455

Appendix C. Derivation of the upscaled model456

Here we briefly outline the derivation of the upscaled (1D) model in di-457

mensional form. This model is an extension of the model of [12] to include458

the density-driven slumping of the dense CO2-rich brine layer against the459

bottom of the aquifer as in [13], but without residual fluids. The model460

may also be viewed as an extension of the model of [13] to include slope461

and a net background flow. We refer the reader to these previous works for462

a detailed discussion and justification of the main assumptions, which in-463

clude vertical-flow equilibrium and the sharp-interface approximation. Here,464

as in Appendix A and contrary to the rest of the paper, all quantities are465
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dimensional.466

We assume that the fluids are vertically segregated into three regions of467

uniform density and viscosity, and that these regions are separated by sharp468

interfaces. The three regions contain free-phase CO2, brine, and brine with a469

volume fraction Γd of dissolved CO2. At position x and time t, these regions470

have respective thicknesses h(x, t), hw(x, t), and hd(x, t), where h+hw +hd =471

Lz. The CO2 has density ρg and viscosity µg; the brine has density ρw and472

viscosity µw; and the brine with dissolved CO2 has density ρd and viscosity473

µd.474

We write the Darcy velocity of the fluid in each region as475

ug = − k

µg

(
∇pg + ρgg sin θ êx + ρgg cos θ êz

)
, (C.1)476

uw = − k

µw

(
∇pw + ρwg sin θ êx + ρwg cos θ êz

)
, (C.2)477

ud = − k

µd

(
∇pd + ρdg sin θ êx + ρdg cos θ êz

)
, (C.3)478

479

where pg, pw, and pd are the fluid pressures in each region. We next assume480

vertical-flow equilibrium, neglecting the vertical component of the fluid ve-481

locity relative to the horizontal one because of the characteristic long and482

thin nature of the flow. The z-components of Eqs. (C.1–C.3) then imply483

that the pressure distribution in each region is hydrostatic and given by484

pg = pi(x, t) + ρgg cos θ (Lz − h− z), (C.4)485

pw = pi(x, t) + ρwg cos θ (Lz − h− z), (C.5)486

pd = pi(x, t) + ρwg cos θ hw + ρdg cos θ (hd − z), (C.6)487
488

where pi(x, t) is the unknown pressure along the CO2 interface (z = Lz −h).489
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Substituting Eqs. (C.4–C.6) into the x-components of Eqs. (C.1–C.3) gives490

expressions for the horizontal fluid velocity in each region in terms of pi.491

Since we have taken the fluids and the rock to be incompressible, the492

total volume of fluid flowing through any cross-section of the aquifer must493

be conserved. This requirement can be written494

(ug · êx)h+ (uw · êx)hw + (ud · êx)hd = Q, (C.7)495

where the constant total volume flow rate Q may be nonzero when there496

is fluid injection or extraction, leakage, or if there is a natural groundwa-497

ter through-flow. Equation (C.7) can be combined with the expressions for498

the horizontal fluid velocity obtained from Eqs. (C.1–C.3) and (C.4–C.6) to499

eliminate the unknown pressure pi.500

Finally, local volume conservation dictates that the change in the thick-501

ness of each region must be balanced locally by the divergence of the flux502

of fluid through that region and the transfer of volume from one region to503

another. This requirement can be written504

φ
∂h

∂t
+

∂

∂x

[
(ug · êx)h

]
= −q̃d, (C.8)505

φ
∂hd
∂t

+
∂

∂x

[
(ud · êx)hd

]
=
q̃d
Γd

, (C.9)506

507

where q̃d is defined by508

q̃d =


qd if h+ hd < Lz,

0 if h+ hd = Lz.

(C.10)509

510

and qd is the flux due to convective dissolution, which transfers volume from511

the CO2-region to the region of brine with dissolved CO2. Combining all512
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of the above and eliminating hw through the requirement that the three513

thicknesses sum to the total thickness of the aquifer, the resulting model is514

given by515

∂h

∂t
+
Q

φ

∂f

∂x
+

∆ρgcgk

φµg

∂

∂x

[
sin θ (1− f)h− cos θ (1− f)h

∂h

∂x

]
+

∆ρdgk

φµd

∂

∂x

[
sin θ f hd + cos θ f hd

∂hd
∂x

]
= −q̃d/φ,

(C.11)516

517

518

∂hd
∂t

+
Q

φ

∂fd
∂x

+
∆ρgcgk

φµg

∂

∂x

[
− sin θ fd h+ cos θ fd h

∂h

∂x

]
+

∆ρdgk

φµd

∂

∂x

[
− sin θ (1− fd)hd − cos θ (1− fd)hd

∂hd
∂x

]
=

q̃d
φΓd

,

(C.12)519

520

where f(h, hd) and fd(h, hd) are as defined in §5. Equations (C.11) and (C.12)521

are related to their dimensionless counterparts Eqs. (8) and (9) by scaling h522

and hd with characteristic thickness Lz, x with characteristic length Lz, and523

t with characteristic time φµmLz/∆ρmgk. Note that we have taken Q = 0524

in Eqs. (8) and (9) for comparison with our 2D results, in which there is no525

net flow.526
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