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Abstract 
This paper deals with the problem of time-varying point loads applied onto the surface of an 
elastic half-space and the stresses that such loads elicit within that medium. The emphasis is on 
the evaluation of the isobaric contours for all six of the stress components at various frequencies 
of engineering interest and for a full range of Poisson’s ratios. The extensive set of pressure 
bulbs presented herein may of help in predicting the severity of dynamic effects in common 
practical situations in engineering —or even the lack thereof.  

Introduction 
Perhaps few problems are more familiar to geotechnical engineers than the assessment of 
settlements caused by loads applied onto the surface of a soil, and part of such task relies on 
estimating the excess stresses elicited within the soil mass by the applied load. The latter are 
often obtained by assuming the soil to be relatively homogeneous, and inferring the stresses at 
depth from normalized nomographs for either circular or square vertical and horizontal loads 
applied on the surface in the context of a superposition scheme to obtain the stresses for 
arbitrarily loaded areas. Alternatively, the exact formulae for the so-called Boussinesq and 
Cerruti problems can also be used to directly determine the desired stresses, provided that the 
points in the soil where the stresses are sought lie deeper than the characteristic dimensions of 
the foundation so that only the intensity and not the spatial distribution of the load is relevant. 
The aim of this paper is to extend this technique to dynamic loads applied on the surface with a 
harmonic variation in time. 

Pressure Bulb for Static Loads 
Intimately related to the problem of stresses in the ground is the concept of the pressure bulb, 
which is simply a contour plot of the stress components with depth. Considering that the 
homogeneous elastic half-space is a medium lacking any characteristic length, the stress 
components anywhere do not depend on the elastic moduli, although they generally depend on 
Poisson’s ratio ν , or alternatively, on the ratio of the elastic Young modulus to the shear 
modulus, ( )/ 2 1E G ν= + . 
 
It is a rather remarkable fact that in the ideal case of a homogeneous elastic half-space subjected 
to static point loads in any direction applied at the surface, the stresses in horizontal planes do not 
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depend on Poisson’s ratio (see Appendix I for a full list of these stresses). Inasmuch as the 
stresses in the soil due to an arbitrary static load distribution on the surface —including the 
contact stresses elicited by a rigid foundation welded to the soil and undergoing any mode of 
displacement, including rocking— are obtained by simple superposition of (i.e. convolution 
with) the stresses due to a point load, it is clear that such stresses must be independent of 
Poisson’s ratio as well, even if the rigidity of the plate should depend on that ratio. Inasmuch as 
the spatial distribution of contact stresses underneath a smooth rigid plate does not depend on 
Poisson’s ratio, this means that for any total horizontal-vertical load applied to the plate, the 
stresses in horizontal planes will not change either as this ratio varies continuously from 0ν =  to 

0.5ν = . Peculiarly, this property does not hold for any of the displacement components, which 
depend all on Poisson’s ratio, and stranger still, this privileged property of the half-space does 
not extend to the full space either, even though it is more “regular” and “simpler”, and thus could 
be expected to exhibit further symmetries.  We hasten to add, however, that this remarkable 
property ceases to hold when the soil is inhomogeneous and/or consist of two or more layers, or 
the load is not on the surface, or the loads are dynamic as considered herein. 
 
With reference to the coordinate system and definitions shown in Figure 1 and the formulas 
listed in Appendix 1, it follows that the static stresses in an elastic half-space are inversely 
proportional to the square of the distance to the load. Choosing an arbitrary reference distance 

0R , a reference inclination 0φ  (either 0 ,45 or 90  depending on both the stress component and 
the load case), and a reference azimuth 0 0 ,90θ =  as they case may require, we can divide that 
stress by its value at the reference location, i.e. 
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Setting this ratio to 1±  for equal stress amplitudes and solving for the radial distance, we obtain 
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0

, ,ij
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R
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The locus defined by this equation is referred to as the pressure bulb for that stress component. 
For a horizontal load, it changes as cosθ  or sinθ  around the vertical axis, and it is rotationally 
symmetric for vertical loads. Clearly, this function equals unity at 0φ φ= , at which 0/ 1R R = . In 
general, this function is defined everywhere, except at the point of application of the load 0R = , 
where a singularity will be observed. Surfaces of other equal stress magnitudes are homothetic4 
to the reference pressure bulbs defined by the equation above, and their magnitudes are inversely 
proportional to the square of their linear size, that is, ( ) ( ) ( )2

0 0/ij ijR R R Rσ σ= . Except for the 
radial component that depends explicitly on Poisson’s ratio, all other ratios are independent of 
this ratio, because the factor in ν cancels out in all cases except for rσ . This means that the shape 
of most static pressure bulbs do not depend on Poisson’s ratio. These static pressure bulbs are 

                                                 
4 Homothecy: Enlargement (or contraction) of a figure relative to some arbitrary center from which all radial lines 
are increased by the same factor. This transformation changes the size, but not the shape of the figure.  



 3

shown later on as special cases of the dynamic pressure bulbs, where it should be observed that 
the presence of multiple lobes in any one quadrant of a pressure bulb is an indication of stress 
reversals. 
 
We comment in passing about another remarkable characteristic of the solution to the Cerruti 
problem (i.e. the horizontal point load problem), namely that the tangential shearing stress in 
horizontal planes zθτ  (which equals the vertical shearing stress zθτ  in vertical-radial planes) 
vanishes everywhere, i.e. 0zθτ = . This will not be the case for the dynamic stress, which means 
that the concept of dynamic magnification for that stress component is meaningless, inasmuch as 
the magnification factor would be infinite everywhere. 

Displacements and stresses due to harmonic loads 
A very general method to obtain the displacement field caused by a load distribution on the 
surface having a harmonic (or static) variation in time is by means of integral transforms. The 
details are well-known, so only final results need be shown, and even these can be relegated to 
Appendix II.  The interested reader may find full derivations in Chapter 10 of Kausel (2006), 
among other sources. For circular loads of radius a , such integral (i.e. Hankel or Fourier-Bessel) 
transforms are of the form 
 
 ( ) ( ) ( )

0
, , ,mn m nI f k r z J kr J ka dkω

∞
= ∫        (3) 

 
in which ω  is the frequency of excitation, k  is the horizontal wavenumber, ,r z  is the range and 
depth (i.e. position) of the receiver in cylindrical coordinates, , 0,1m n =  are indices that depend 
on the load case and response direction being considered, and ,m nJ J  are Bessel functions of the 
first kind and order ,m n  as the case may be. Also, ( ), , ,f k r zω  is an appropriate flexibility 
function (or Green’s function), which depends on the frequency and the horizontal wavenumber. 
Additional details can be found in Appendix II. 
 
In principle, a formulation based on integral transforms is exact, but in only rare cases are such 
improper integrals tractable by exact analytical means, e.g. Veletsos & Wei (1971). In fact, even 
in the static case and when the loads are distributed rather than concentrated, closed-form 
expressions are generally lacking, even if they are known for some loads distributions. Thus, the 
integrals must be evaluated numerically, a task that is fraught with difficulties. Among the 
problems encountered are: 

a) The singularity at the so-called Rayleigh pole;  
b) The rapid oscillation of the kernels (integrands) when either the range r  or the frequency 

ω  is large; and  
c) The contribution of the tail beyond which the numerical integrals must necessarily be 

truncated. While the kernel is oscillatory, it decays roughly as 1k −  for receivers at the 
same elevation as the source, so the contribution of the tail is not negligible.  

An excellent strategy to deal with the latter problem is to subtract the static solution in the 
wavenumber domain from the kernel, and then add it back in the spatial domain, considering that 
it is known in closed form, at least for point loads. That way, the tail virtually disappears. 
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Clearly, an integral transform solution is strictly numerical, even if the underlying formulation 
should be exact. 
 
After carrying out the integral transforms, the displacements in the soil are found to be of the 
form 

 ( ) ( )
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in which the choice of trigonometric function depends on the direction of both the load and of 
the response, and 0,1n =  for vertical and horizontal loads, respectively. Also, ( ), ,U r zω  is a 
response function which is generally complex, so it has both amplitude and phase.  Similar 
expressions can be written for the other components, and any of these can readily be evaluated 
over some appropriately fine grid and plotted as may be needed. 
 
The solution being numerical, the final displacements are known only at points on a grid, and not 
as functions over the continuum. Thus, a direct evaluation of the strains from the displacements 
would in principle call for the use of finite differences. To avoid this problem, it is preferable to 
formulate the strains and stresses directly in the frequency-wavenumber domain and obtain their 
values by numerical integration over wavenumbers, and this is precisely the strategy pursued in 
this work. At least for point loads on the surface, the static components of the stresses in the 
wavenumber domain can be subtracted from the kernels, and later on, their contribution added 
back in the spatial domain, as described in Appendix II. 

Dynamic Pressure Bulb 
To illustrate the differences between static and dynamic stresses and begin to focus ideas, we 
proceed to make a brief detour and consider first the case of a dynamic vertical point load acting 
within a full, homogeneous space, i.e. the so-called Stokes problem. In comparison to the half-
space, this problem has the advantage that its solution is known in closed form throughout, both 
in the time domain and in the frequency domain; thus its usefulness as a fundamental solution in 
the Boundary Element Method.  Hence, we can use this solution to help us surmise the general 
form of the solution for the half-space. The vertical stress due to a harmonic vertical point load in 
a full space can be shown to be given by (Kausel, 2006): 
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In the limit of zero frequency (static load), the functions ,ψ χ  are no longer functions of position, 
but are constants: 
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in which case 
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As can be seen, the ratio of dynamic to static vertical stress does not depend explicitly on R , 
because neither ,ψ χ  nor the products /R Rχ∂ ∂ , /R Rψ∂ ∂  are functions of R . However, this 
ratio is not only a complex function of the dimensionless frequency SΩ , but depends also on the 
inclination 3 / cosz Rγ φ= = −  of the source-receiver line with the vertical axis. Hence, surfaces of 
constant static stress do not coincide with surfaces of constant dynamic stress. That is, the shape 
of the pressure bulb evolves with frequency. Furthermore, because the functions involved are 
complex, the pressure bulb for dynamic loads are generally defined in terms of contours of equal 
magnitude and phase, both of which form a set of orthogonal lines.  
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The case of a half-space is similar to that of the full space in that the problem lacks a 
characteristic length. Hence, the products 2

ij Rσ  will solely be functions of the dimensionless 
frequency SΩ , of the direction anglesφ , θ  and of Poisson’s ratio ν , but not of R . Thus, for any 
given dimensionless frequency SΩ , the response functions can be obtained and evaluated over a 
dense grid in the neighborhood of 1R ≈ , normalized by the corresponding static stress at the 
reference location 0 0,R φ , and from the resulting magnification field a set of contour lines can be 
inferred and then plotted in terms of magnitude and phase. The exception is zθτ , which does not 
exist in the static case, and can thus only be plotted by itself without scaling or normalization.  
 
After implementing the formulation succinctly outlined above to the problem of harmonic point 
loads acting on the surface of an elastic half-space —the so-called Lamb’s problem— we have 
obtained displacements and stresses over a sufficiently large grid in the neighborhood of the load 
from which contour lines for equal amplitudes that constitute the pressure bulbs were obtained. 
Figures 2 through 7 show the set of bulbs for all stress components at three different values of 
Poisson’s ratio, namely 0, 0.33, 0.49ν = . All bulbs were computed with a model for which the 
nominal shear wave velocity is 200sC =  m/s and the nominal radial distance to the reference 
point on the static bulb is ( )0 0 1R φ =  meter (i.e. the radial distance along the ray 0 0 ,45 ,or90φ = , 
depending on the stress component). 
 
To help interpret the results shown in these plots, begin with a thought experiment.  Consider for 
this purpose any given stress component, say zσ  i.e. the vertical stress due to a vertical load.  
Then for constant Poisson ratio and constant shear wave velocity, this stress (in spherical 
coordinates) is of the form 
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φ
σ =           (10) 

 
where 0 / sa R Cω=  is the dimensionless frequency, R  is the radial distance, and φ  is the angle 
from the vertical.  The dynamic bulbs shown in Figs. 2 to 7 have all the same amplitude, so if 

0 1,R R  are respectively the radial distances to the static and dynamic contours at some 
dimensionless frequency 0a , then by definition  
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The above expressions imply all of the following: 
 

1) While the frequency ω  is constant on each contour, the dimensionless frequency 0a  is 
not, because the bulbs are not at a constant radial distance from the load, i.e. ( )R R φ= . 
Thus, on any one contour ( )0 0a a φ= . 

2) The dimensionless frequency 0a  depends also on the shear wave velocity sC , which 
generally will differ from the nominal 200sC =  m/s  used herein. Hence, all frequencies 
annotated on the contours must be scaled in the ratio /s sC C  (i.e. softer soils imply lower 
frequencies, stiffer soils imply higher frequencies). 

3) The ratio of dynamic to static stress at any arbitrary point for some stresses observed 
along the ray φ  = constant —the dynamic amplification factor—equals the ratio squared 
of the scaled (i.e. nominal) radial distances to the dynamic and static bulbs, which again 
depends on the inclination angle φ . Hence, the degree of separation of the bulbs is a 
measure of the severity of dynamic effects due to wave propagation and focusing. 

4) All pressure bulbs can be enlarged homothetically with respect to the point of application 
of the load by any arbitrary factor without affecting their relative shapes. However, 
because of the dependence of the dimensionless frequency on the radial distance, this 
implies that the frequencies for each contour line thus augmented in size would drop in 
proportion to the geometric scaling factor. For example, if the bulbs were enlarged by a 
factor 10 i.e. ( )0 0 10R φ =  m, then the frequencies of all bulbs would have to be divided by 
10.  

 
It should be added that while the static bulbs lack any scale length, strictly speaking the dynamic 
bulbs do indeed have one, namely the wavelength of shear waves 2 /sCλ π ω= . Hence, the 
dimensionless frequency can be interpreted as a measure of the radial distance in wavelengths, 
i.e.  
 

0 / 2 /sa R C Rω π λ= =          (14) 
 
Thus, homothecy for the dynamic bulbs continues to hold if the radial distance to any bulb, 
expressed in wavelengths, remains constant. A brief discussion of the implications of the 
previous considerations is taken up in the next section. 

Conclusions 
As indicated earlier, all dynamic bulbs were computed using a nominal shear wave velocity of 
200 m/s and evaluated in the neighborhood of ~ 1R  meter. The following conclusion may be 
drawn: 

• At low to moderate frequencies, say below 25 Hz, the dynamic effects range from 
negligible to moderate, and can probably be ignored. However, observe that this 
frequency threshold descends in tandem with the ratio of actual to nominal shear wave 
velocity, i.e. /s sC C . Above that threshold, the dynamic effects become very important 
and stress patterns are evident which deviate substantially from the static. This effect is 
particularly relevant to the design of machine foundations. 



 8

• Dynamic stresses reach deeper into the soil, and strong focusing (directivity) effects 
become readily apparent. In addition, additional lobes and shadow zones appear which 
add complexity to the stress patterns. These result from constructive and destructive 
interference of waves.  

• The dynamic stress bulbs depend strongly on Poisson’s ratio, and become especially 
dramatic for nearly incompressible soils ( 0.49ν = ). 

• The stress component zθτ , which for none of the two static cases exists, exhibits strong 
frequency dependence for dynamic horizontal loads. 

 
A word in closing: Sharp-eyed readers may well have noticed that there exist stress bulbs for 
which the contour lines intersect other lines. This is not an error because the contour lines are for 
different frequencies, so they have a different physical meaning. The various contour lines only 
share one common attribute, namely that their amplitude of stress is the same, even if not phase.  
 
[Note: The online version of this paper has all figures in color.] 
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Appendix I: Static stresses in Cerruti and Boussinesq problems 
Consider a right-handed system of cylindrical coordinates in which both z and the vertical load 
are positive up, see Figure 1. Also, 2 2r x y= +  is the range, 2 2R r z= +  is the source-receiver 
distance, θ  is the azimuth , and φ  is the (south-polar) vertical angle, which satisfies 
cos /z Rφ = − , sin /r Rφ = ,  and. In the particular case of unit horizontal and vertical point loads, 
these stresses are (Note: normal stresses are positive when tensile):  
 
a) Unit horizontal load in x 

 
( )

2
22

1 1 2cos sin 3sin
2 1 cos

r R
νσ θ φ φ

π φ

⎡ ⎤−
= − −⎢ ⎥
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1 2 sin sin
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r r Rθ θ
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π φ
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       (A1-1d) 

 

 2
2

3 cos sin cos
2zr rz R

τ τ θ φ φ
π

= =       (A1-1e) 

 
 0z zθ θτ τ= =          (A1-1f) 
 
b) Unit vertical load in z 
 

 2
2

1 1 23cos sin
2 1 cosr R

νσ φ φ
π φ

⎡ ⎤−
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On the basis of these formulas, the pressure bulbs due to static loads are as listed below. Except 
as indicated, all bulbs are defined in the vertical x z−  plane ( )0θ = . Also, 0φ  is the angle at 
which the reference radial distance 0 1R =  is defined, or more precisely, where the ratio 0/ 1R R = . 
The angle 0 0φ =  defines the vertical axis while 1

0 2φ π=  is the free surface. Definition of this 
reference angle facilitates comparisons between static and dynamic results.  
 
a) Unit horizontal load in x 
 

rσ : ( )
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2
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b) Unit vertical load in z 
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⎝ ⎠

    1
0 4φ π=   (A1-4d) 
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Appendix II: Integral transform for displacements 
Consider an elastic half-space 0z ≤  with mass density ρ , Poisson’s ratio ν , shear modulus 

2
SCµ ρ= , material (hysteretic) damping ratios ,P Sξ ξ  and wave propagation velocities ,P SC C  for 

P and S waves, respectively. This half-space is subjected to harmonic horizontal and vertical 
point loads acting at the surface. The response functions in cylindrical coordinates (with the z 
axis, vertical load and vertical displacement defined positive upwards, see Fig. 1) obtained by 
integral transform methods are as follows: 
 
a) Horizontal load 
 

( ) ( ) ( ){ }( )1 10 0
11

2, , cosrx xx yy
d

d kr kru r z f J kr dk f J kr dkπµω θ
∞ ∞

= +∫ ∫   (A2-1a) 

 

( ) ( ) ( ){ }( )1 10 0
11

2, , sinx xx yy
d

kr d kru r z f J kr dk f J kr dkθ πµω θ
∞ ∞

= + −∫ ∫   (A2-1b) 

 

( ) ( ){ }( )10
1

2, , coszx zxu r z f J kr dkπµω θ
∞

= ∫      (A2-1c) 

 
b) Vertical load 
 
 ( ) ( )10

1
2, ,rz xzu r z f J kr dkπµω

∞
= − ∫       (A2-1d) 

 
 ( ) ( )00

1
2, ,zz zzu r z f J kr dkπµω

∞
= ∫       (A2-1e) 

 
The kernels of these expressions involve flexibility functions in the frequency-wavenumber 
domain ,xx zzf f , which are as follows: 
 
 

 ( )21
2 1

2xx xx p s
sf k G e s eµ ⎡ ⎤= = − +⎣ ⎦∆

      (A2-2a) 

 

 ( )21
2

1 1
2zx zx p sf k G ps e s eµ ⎡ ⎤= = − +⎣ ⎦∆

      (A2-2b) 

 

 ( )21
2

1 1
2xz xz s pf k G pse s eµ ⎡ ⎤= = − +⎣ ⎦∆

      (A2-2c) 

 

 ( )21
2 1

2zz zz s p
pf k G e s eµ ⎡ ⎤= = − +⎣ ⎦∆

      (A2-2d) 
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 1
yy yy sf kG e

s
µ= =         (A2-2e) 

 
 ( )221

4 1ps s∆ = − +  = Rayleigh function     (A2-2f) 
 
in which 
 

 11 P
c
P P

i
C C

ξ−
=   complex P-wave velocity    (A2-3a) 

 
11 S

c
S S

i
C C

ξ−
=   complex S wave velocity    (A2-3b) 

 

 
2

1 c
P

p
kC
ω⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

, ( )Im 0p ≥       (A2-3c) 

 
2

1 c
S

s
kC
ω⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

, ( )Im 0s ≥       (A2-3d) 

 
 ( ) ( )exp exppe kpz kp z= = −        (A2-3e) 
 

( ) ( )exp expse ksz ks z= = −        (A2-3f) 
 

1 2
2 2

S

P

Ca
C

ν
ν

−
= =

−
        (A2-3g) 

 
Observe that we use d z=  as the depth below the surface. We also define the wavenumbers 
 

 P
P

k
C
ω

= , S
S

k
C
ω

= , R
R

k
C
ω

=      (A2-4) 

 
in which RC  is the Rayleigh wave velocity, which satisfies the secular equation ( ) 0Rk∆ = . The 
three propagation velocities satisfy the condition R S PC C C< < , which implies in turn 

P S Rk k k< < . To a close approximation and for any Poisson’s ratio, the Rayleigh wave velocity 
can be obtained as 
 
 ( )( )0.874 0.197 0.056 0.0276RC ν ν ν= + − +      (A2-5) 
 
For static loads, the kernels reduce to  
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( )0 1
21 kz

xxf kz eν= − + ,  ( )0 1
2 1 2 kz

xzf kz eν= − − +     (A2-6a) 
 
 ( )0 1

2 1 2 kz
zxf kz eν= − − − , ( )0 1

21 kz
zzf kz eν= − −     (A2-6b) 

 
 0 kz

yyf e=          (A2-6c) 
 
Observe the changes in sign in kz , which imply 0 0

xz zxf f≠  and 0 0
xx zzf f≠  . The numerical integrals 

are then performed as in equations A2-1a through A2-1d, but replacing ijf  by 0
ij ij ijF f f= − , 

which effectively subtracts the static solution. This is compensated later by adding explicitly the 
static solution in the spatial domain, inasmuch as the displacement field for point loads is known. 
 
Similar integral transforms can be written for each and every of the stress components. This 
requires the availability of the spatial derivatives /iu r∂ ∂  and /iu z∂ ∂ , which can be obtained 
from the above formulas by direct derivation under the integral sign. To avoid mistakes, this is 
best accomplished via Matlab’s symbolic manipulation capabilities, but the final expressions are 
too complicated to be reproduced herein.  
 
Writing the displacement components for horizontal ( )1n =  and vertical ( )0n =  loads as 

( )( ), cosr ru u r z nθ= , ( )( ), sinu u r z nθ θ θ= −  and ( )( ), cosz zu u r z nθ= , the stresses can be obtained 
as follows: 
 
a) Circumferential (cylindrical) surfaces 
 

 

( ) ( )

( )

( )

2 cos

sin

cos

rr z
r

r
r

z r
zr

u nuu u n
r r z

u nu u n
r r

u u n
r z

θ

θ θ
θ

σ λ µ λ θ

σ µ θ

σ µ θ

⎧ ⎫−∂ ∂⎡ ⎤= + + +⎨ ⎬⎢ ⎥∂ ∂⎣ ⎦⎩ ⎭
∂ −⎧ ⎫= + −⎨ ⎬
∂⎩ ⎭
∂ ∂⎧ ⎫= +⎨ ⎬
∂ ∂⎩ ⎭

    (A2-7) 

 
b) Radial-vertical surfaces 
 

 

( )

( ) ( )

( )

sin

2 cos

sin

r
r

rr z

z
z

u nu u n
r r

u nuu u n
r z r

u nu n
z r

θ θ
θ

θ
θ

θ
θ

σ µ θ

σ λ λ µ θ

σ µ θ

∂ −⎧ ⎫= + −⎨ ⎬
∂⎩ ⎭

−⎧ ⎫∂ ∂⎡ ⎤= + + +⎨ ⎬⎢ ⎥∂ ∂⎣ ⎦⎩ ⎭
∂⎧ ⎫= + −⎨ ⎬
∂⎩ ⎭

    (A2-8) 
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c) Horizontal surfaces 
 

( )

( )

( ) ( )

cos

sin

2 cos

z r
rz

z
z

rr z
z

u u n
r z

unu n
r z

u nuu u n
r r z

θ
θ

θ

σ µ θ

σ µ θ

σ λ λ µ θ

∂ ∂⎧ ⎫= +⎨ ⎬
∂ ∂⎩ ⎭

∂⎧ ⎫= + −⎨ ⎬
∂⎩ ⎭

⎧ ⎫−∂ ∂⎡ ⎤= + + +⎨ ⎬⎢ ⎥∂ ∂⎣ ⎦⎩ ⎭

    (A2-9) 
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Figure 1: Cartesian vs. spherical coordinates 
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