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Abstract

This thesis is devoted to stochastic shortest path games. These are two-player, zero-
sum stochastic games where one player seeks to drive an underlying finite-state system
to a terminal state along a least expected-cost path. The other player acts to prevent
termination-and otherwise seeks to make termination as expensive as possible. At
every stage of the game, the players implement control actions selected from compact
constraint sets. They make their decisions simultaneously with full knowledge of the
current state of the system but without knowledge of what the other player will do.
We impose relatively mild assumptions about the transition probabilities and cost
functions. One special case of this formulation is that of mixed strategies over finite
action sets. We employ an undiscounted, additive cost structure which generalizes
many of the stochastic games previously considered. Policies for the minimizer which
permit the maximizer to prolong the game indefinitely are allowable as long as the
resulting cost is infinite from some initial state. We do not assume nonnegativity
of cost; we make alternative assumptions which guarantee that the terminal state is
reached with probability one, at least under equilibrium policies.

Our main results relate to proving the existence of equilibrium solutions, charac-
terizing the equilibria, and establishing the convergence of algorithms. We show that
both players have stationary equilibrium policies. We also show that the equilibrium
cost-to-go function is characterized as the unique solution to a game-theoretic gen-
eralization of Bellman’s equation. We prove that value iteration and policy iteration
converge to the equilibrium. We also consider several interesting variations of policy
iteration, some of which converge in theory and others only in practice. We end the
thesis by relating stochastic shortest path games to a broad class of average cost
games. This allows us to derive new results for the latter concerning the existence of
solutions and the convergence of algorithms.
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Chapter 1

Introduction

.

Game theory, the theory of multiagent optimization, has intrigued researchers in the
mathematical sciences for years. This interest is well justified since game-theoretic
models emerge naturally in many fields including economics, finance, biology, engi-
neering systems, and operations research.

This thesis is devoted to the theory of a new class of games, called stochastic
shortest path games. These are two-player, zero-sum stochastic games where one
of the players (the minimizer) seeks to drive an underlying finite-state system to a
terminal state along a least expected-cost path. The other player (the maximizer)
acts to prevent termination and otherwise seeks to make termination as expensive
as possible. These games generally fit into the framework of Markov decision pro-
cesses, however, instead of having a single controller, we now have two players who
act independently. These “competitive Markov decision processes” are often called
stochastic games, and we refer the reader to a new book by Filar and Vrieze [20]
for a general introduction. The main distinguishing feature of stochastic shortest
| path games is that they employ a more general cost structure than earlier Stochastic
games. Specifically, by assuming the existence of a terminal state which is reached
with probability one under equilibrium policies, we allow stochastic shortest path
games to evolve on an infinite time horizon without cost discounting or averaging. A
second distinguishing feature of stochastic shortest path games is that they allow the

players to choose actions from more general constraint sets than previously consid-



ered. The traditional approach in stochastic games is to restrict attention to the case
where each player has only finitely many control options at each state. To achieve
an equilibrium in such games it is usually necessary for the players to employ “mixed
actions,” which are probability distributions over the underlying finite action sets.
In stochastic shortest path games, however, the players are allowed to choose from
more general compact constraint sets. Our main results extend the state of the art
in several areas, particularly in establishing the existence of equilibrium solutions,
characterizing the equilibria, and establishing the convergence of algorithms.
Stochastic shortest path games are useful in modeling conflict situations where
there is a notion of the game ending (terminating) at some random future time and
where one of the players wishes to minimize the cost of reaching termination while

the other wishes to maximize this cost. We list the following conceptual examples.

1. Pursuit and Evasion: minimize the time required to capture an intelligent,
evasive opponent. This is a very common model in logistics, e.g. aircraft avoid-
ing other aircraft or missiles, submarines avoiding destroyers, etc. The “vehi-
cles” in these games do not have to be physical devices. An example we will
consider in the sequel is an inspection game involving a manufacturer who must
dump waste and an inspector who wants to catch the manufacturer “in the act”

two nights in a row.

2. Minimax Resource Allocation: apply resources to mitigate the effect of
a worst-case opponent (perhaps as a model for nature). As an example from
warfare, consider the problem of theater missile defense where it is necessary to
defend against incoming missile attacks with a limited number of interceptors.
The game ends when the attacker runs out of missiles, and the objective of the

defender is to minimize the expected worst-case damage.

3. Parlor Games: move pieces on a playing-board to achieve a certain goal. In
particular, consider two-player games where there is one clear winner such as

backgammon or chess.
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1.1 Outline

In Chapter 2, we provide a rigorous formulation of stochastic shortest path games.
We indicate how previously studied stochastic games, such as the terminating games
of Shapley, can be viewed as special cases of the stochastic shortest path model. We
also describe two concrete examples of stochastic shortest path games. These will be
revisited in subsequent chapters.

In Chapter 3, we establish the existence of a long term equilibrium cost function
(equilibrium value function) for stochastic shortest path games. We show that the
equilibrium can be achieved by stationary policies of the opposing players and is
characterized as the unique solution of a game-theoretip generalization of Bellman’s
equation.

In Chapter 4, we consider various dynainic programming algorithms for solv-
ing stochastic shortest path games. Specifically, we prove the convergence of game-
theoretic versions of value iteration and policy iteration. The policy iteration we
discuss generates a sequence of policies for only one of the players. (Policy evaluation
amounts to computing the worst-case response of the opposing player.) We introduce
and prove the convergence of an asynchronous form of policy iteration, indicating
that policy iteration is relatively robust. To complete this notion, we prove an error-
bound result which indicates that, for some stochastic shortest path games, if the
policy evaluations and updates are accurate enough, then eventually the worst-case
costs of the policies generated by the algorithm approach the equilibrium infinitely
often. Next, we consider an alternative form of policy iteration, called naive policy
iteration, where a sequence of pairs of policies is generated (one for each player) and
where policy evaluation requires only the computation of expected costs in a Markov
reward process. It is well-known that naive policy iteration is not a globally con-
vergent algorithm, even in the benign case of discounted cost games. We are led to
examine a modification of the algorithm due to Filar and Tolwinski [19] which relies
on an interpretation of naive policy iteration as Newton’s method. Next, we show

how some of the general dynamic programming algorithms specialize to the case of
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symmetric sequential games. It turns out that the resulting symmetric value itera-
tion is globally convergent, whereas symmetric policy iteration, being equivalent to
naive policy iteration, is not. Thus, symmetry (by itself) is not enough to provide a
mechanism for convergence of naive policy iteration.

In Chapter 5, we explore the relationship between stochastic shortest path games
and stochastic games with an average cost objective function. Games of the latter
type have been the subject of intense study almost since the time of Shapley. We first
describe an alternative proof for a result from Chapter 3 which uses well-known results
from the literature on average cost games. We then show how our more general theory
about stochastic shortest path games provides insight into a broad class of average
cost games, leading to new results.

Chapter 6 finishes the thesis with a summary of results and a statement of open
problems. Two appendices are included. Appendix A states and proves a number of
technical results which are used throughout Chapters 3, 4, and 5. Appendix B lists
a number of alternative algorithms for stochastic games which have been suggested
since the time of Shapley. A number of these algorithms can be applied to stochastic
shortest path games, but their convergence properties are unclear at present.

The introductory section of each chapter contains a review of the pertinent liter-

ature.

1.2 Contributions

Aside from the specific technical results we dévelop, several broad themes have emerged

in this work which represent the true contributions of this thesis.

1. Our stochastic shortest path assumption gives rise to a more general cost struc-

ture than has previously been considered in stochastic games.

2. Our regularity assumptions are also more general than those previously consid-
ered, especially in the context in average cost games. Our assumptions allow

both players to choose actions from arbitrary compact subsets of metric spaces.
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In the case of mixed strategies, the players are effectively required to choose from
simplicial constraint sets. Our results show that this type of special structure is
unnecessary in proving the existence of solutions to games and in establishing

the convergence of algorithms.

3. Stochastic shortest path games can be viewed as a direct extension of the
stochastic shortest path problems originally studied by Bertsekas and Tsitsik-
lis in [8]. The results contained within this thesis serve to show the extent to
which their analytical techniques and constructions apply. Similarly, our results
about recurrent-state average cost games (in Chapter 5) illustrate the power and

flexibility of some new analytical devices introduced by Bertsekas in [3].

4. As a whole, our analytical techniques represent an alternative to the so-called
“limit discount equation approach” which is the traditional way in which undis-
counted stochastic games are studied and requires the players to optimize with

respect to mixed strategies over finite sets of actions.

1.3 Scope

While we are somewhat concerned with approximations, this thesis will not continue
the analysis of Whitt [65] or Tidball and Altman [58] which is directed toward games
whose state spaces are infinite, where solutions are obtained (or at least proven to
exist) through state aggregation and the solution of a sequence of simpler finite-state
games. In a similar vein, we do not consider two recent algorithms of Harmon and
others [23, 24, 22] (advantage updating and advantage learning), which are geared
toward solving discrete approximations of differential games.

We omit from consideration a number of algorithms which take advantage of spe-
cial structure in games. In particular, we leave out linear programming-based meth-
ods that are specialized to games with a single controller, switching controller, and/or
games with separable rewards or additive rewards and transitions. For a survey of

these topics, we refer the reader to Raghavan et al. [43] or Filar and Vrieze [20].
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Chapter 2
Formulation

This chapter serves to define stochastic shortest path games. Generally speaking,
stochastic shortest path games are two-player, zero-sum games where one of the
players (the minimizer) seeks to drive an underlying finite-state system to a special
terminal state along a least expected cost path. The terminal state is absorbing and
cost-free. ‘' The other player (the maximizer) seeks to interfere with the first player’s
progress so as to maximize the expected total cost. In actual play, the players choose
actions from compact constraint sets at each stage. They have full knowledge of the
state of the system but are unaware of what the other player will do. We employ
aﬁ undiscounted additive cost structure, and we admit policies for the minimizer
which allow the maximizer to prolong the game indefinitely at infinite cost to the
minimizer. We do not assume nonnegativity of cost. We make alternative assumptions
which guarantee that, at least under optimal (equilibrium) policies, the terminal
state is reached with probability one. The formal assumptions for stochastic shortest
path games generalize (to the case of two-players) those for stochastic shortest path
problems of Bertsekas and Tsitsiklis [8]. In particular, our games are characterized
by either inevitable terminatioﬁ (under all policies) or an iﬁcentive for the minimizer
to drive the system to termination in a finite expected number of stages.

Dynamic games with stochastic payoff and transition sequences have been studied
for some time. The field was initiated by Shapley in his famous paper [52]. In

Shapley’s games, two players are successively faced with matrix games (in mixed
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strategies) where the costs to the minimizer and the transitions to new matrix games
are influenced by the decisions of the players at each stage. In this formulation, the
state of the system is exactly the matrix game currently being played. It is assumed
that this set of states is finite and that there is a nonzero minimal probability that at
any stage the game will transition to a terminal state, ending the sequence of rewards
and payofs.

In the time since Shapley’s paper, game theorists have actively studied extensions
to his terminating-game model. Kushner and Chamberlain in [28] studied undis-
counted, pursuit-evasion games where, in a state space of n + 1 elements, there is
a terminal state éorresponding to the evader being “caught.” 'After making some
regularity assumptions on the transition probability and cost functions, they consider
pure strategies over compact action spaces. In addition, they assume that either of

the following are true.

1. There exists € > 0 such that for all pairs of stationary policies the probability

of terminating within n stages is at least e.

2. The transition costs are uniformly bounded below by é > 0 and there exists a
stationary policy for the pursuer and an € > 0 such that for every stationary

policy of the evader the probability of terminating within n stages is at least €.

In [60], van der Wal considered a special case of Kushner and Chamberlain’s games,
where the pursuer is endowed with more power to drive the system to termination.
In [20], Filar and Vrieze described “transient” stochastic games, where there is no
cost discounting but the expected number of stages to termination is always finite.
As will be shown in this and the following chapter, the class of stochastic shortest
path games includes all of these earlier games as special cases. |
Other extensions of Shapley’s model are possible. Maitra and Parthasarathy (32,
33], Parthasarathy [38], and Kumar and Shiau [27] have considered stochastic games
with general state spaces and action sets. These models lie beyond the scope of the
present work. Game theorists have also studied stochastic games with average cost

objectives. We shall consider games of this type in Chapter 5.
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2.1 Mathematical Formulation

Let S = {1,2,...,n} U {Q} denote a finite state space. For each i € S, let U(7)
and V(i) denote the sets of actions available to the minimizer and maximizer at
state 7, respectively. These are collectively referred to as control constraint sets. The
probability of transitioning from i € S to j € S under u € U(i) and v € V(i)
is denoted p;;(u,v). The expected cost to the minimizer of transitioning from ¢ € S
under u € U(i) and v € V(4) is denoted ¢;(u, v). The state 2, called the terminal state,
has special significance to us; it is absorbing and has zero-cost. That is, paa(u,v) = 1
and cq(u,v) = 0 for all w € U(Q) and v € V(Q).

Let M and N denote the sets of allowable one-stage policies for the minimizer and

maximizer, respectively, defined by
M = {u:SH JUG | w6) e UG), wes},
= ,

N = {V:Sl—)UV(i) | v(@) e V(5), VieS}.

€S

The players are allowed to use nonstationary policies to optimize additive cost. Let

M and N denote the sets of allowable nonstationary policies, defined by

M = {7FM={,U,0,/J,1,...} | MkEM, Vk},
N = {ay={vo,n1,.-.} | weN, Vk}.

Given p € M and v € N,

P11 (#‘(1)7 V(l)) T pl'n(.u‘(]-)’ V(l)) (6] (,u(l), V(l))
P(p,v) = : : : , c(p,v) = :
pu(p(n),v(n)) -+ pra(p(n), v(n)) cn(p(n), v(n))

are the corresponding transition probability matrix and cost vector, respectively.

(Note that the row-sums of P(u,v) are less than or equal to one.)

16



Given two policies, Tp = {po, f11,--.} € M and 7y = {vo,11,...} € N,

Jrrgmy (1) = liminf Al (3), i=1,...,n, (2.1)

t—00 TMTN

is the objective function which the two players seek to minimize and maximize, re-

spectively, where

iy n () 2 | c(o, o) +i[P(“0=VO)P(N15yl)"'P(ﬂ'k—h’/k—l)]c(ﬂ'kayk) . (2.2)
k=1 i

Note that hf

i) can be interpreted as the expected (¢t+ 1)-stage cost from ¢ under
TM,TN g

7a and 7. Similarly, Jr,, »y (i) can be (loosely) interpreted as the expected total
cost from 7. Because the terminal state 2 € S is absorbiﬁg and cost free, the expected
total cost from € is zero under all pairs of policies. It is often convenient to think of
the cost functions Jy,, », as vectors in R™ with components Jry, xy (1), .., Jrpymn (0)-

We now state a few useful definitions. We say that a policy mas = {0, i1, ...} € M
is stationary if ux = u for all k. When this is the case and no confusion can arise, we
use 1 to denote the corresponding policy 7y, and we refer to 7y as the stationary
policy . Similar definitions hold for stationary policies of the maximizer. Now
consider an arbitrary pair of policies, mpr = {0, fi1,--.} € M and mn = {vo,14,...} €
N. We say that the corresponding Markov chain terminates with probability one if
the following limit satisfies

lim P (po, vo)P(p1,v1) - - - Pty 1) = Onxn,

t—00

where 0, xn 18 thevn x 1 matrix whose elements are all zero. We shall refer to a pair
of policies (mpr, mn) as terminating with probability one if the corresponding Markov
chain terminates with probability one. If the pair (mpr, 7n) is not terminating with
probability one, then we refer to the pair as prolonging. A stationary policy u € M for
the minimizer is said to be proper if the pair (u, 7y) is terminating with probability
one for all 7y € N. A stationary policy u is improper if it is not proper. [If u is

improper then there is a policy 7y for the maximizer such that under (1, mn) there

17



is a positive probability that the game will never terminate from some initial state.|
The designation of proper (or improper) applies only to stationary policies of the
minimizer.

Let J denote the set of all functions J that map {1,...,n} to R. Again, it is often
useful to view the elements of J as vectors in R™. Let 0 € J be the vector whose
components are all zeros, and similarly let 1 € J be the vector whose components are
all ones. Given J € J and a scalar vy, then vJ € J is defined so that (vJ) (i) = vJ (7).
Also, given J,J € J, we say J < J if J(i) < J(:) for every i = 1,...,n. We now

define the “dynamic programming” operators which apply on J:

TwJ = c(p,v)+ Pp,v)J, peM,ve N, (2.3)
TuJ = sup le(u,v) + P(p,v)J],  neM; (2.4)
TJ = jnf sup [e(u, v) + P(p,v)J]; (2.5)
T,J = ulél{/{ [e(p,v) + P(u,v)J], v EN; (2.6)
TJ = 52}[\){;@{4 [c(p, v) + P(u,v)J]. (2.7)

The suprema and infima in the above are taken componentwise. For example,

TJ)(7) = inf sup |c(u,v)+ ii(u, v)J (g
TN = g, sup |axtwv) + Lop(w,0)0)
We use the notation Tf“,J to denote the t-fold composition of T}, applied to J. Similar
definitions hold for 7}.J, T*J, TtJ, and T*J (whenever they are well-defined).
Stochastic shortest path games are now formally defined by the following two
assumptions. (They are in effect from here through Chapter 4, unless specifically

stated otherwise.)

18



Assumption R (Regularity) The following are true.

1. For each i € S, the control constraint sets U (i) and V(i) are compact subsets

of metric spaces.

2. The functions p;j(u,v) are continuous with respect to (u,v) € U(i) x V(i). The

functions ¢;(u,v) are

(a) lower-semicontinuous with respect to u € U(i) (with v € V(i) fized) and

(b) upper-semicontinuous with respect to v € V(i) (with u € U(z) fized)

3. The outer extrema in the operators T and T are achieved by elements of M and
N, respectively. (That s, for every J € J, there ezists p € M and v € N such
that TJ =T, J €J and TJ=T,J € J.)

4. For every J € J, we have TJ = TJ.

Assumption SSP (Stochastic Shortest Path) The following are true.

1. There exists a proper policy for the minimizer.

2. If a pair of policies (mpr, my) s prolonging, then the ezpected cost to the min-
imizer 18 infinite for at least one wnitial state. That is, there is a state © such

that  limy 0 h%, ., (i) = 0o

Note that part 1 of Assumption R implies that the sets A/ and N are compact.
Moreover, parts 1 and 2 of Assumption R, along with the extreme value theorem
(a.k.a. the Weierstrass Theorem), imply that the operators T, and T, are achieved
by elements of N and M, respectively. (That is, for every J € J, there exists
v € N such that T,J = T,,J € J, and similarly there exists u € M such that
T,J = T,,J € J.) Part 4 of Assumption R is satisfied under conditions for which
a minimax theorem can be used to interchange “inf” and “sup”. Some examples of
games which satisfy Assumption R are given in Section 2.3.

We remark that the regularity assumptions of Kushner and Chamberlain in [28]

differ from ours only by requiring the functions ¢; to be continuous.
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The following lemmas characterize three important properties of the dynamic
programming operators. These results are generally well known and their proofs

appear in Appendix A.

Lemma A.1 [Monotonicity] Given J,J € J, if J < J, then
TJ<TJ.

The same s true of the other dynamic programming operators.

Lemma A.2 Given J € J and a positive scalar r,
T(J+7r1)<TJ+rl.

The same inequality holds for the other dynamic programming operators. The in-

equalities are reversed if r < 0.

Lemma A.3 [Continuity] Given J,J € J, then
IT(J = Nlloo < 1T = Tlco-

Thus, T 1s nonezpansive on J and therefore continuous. The same s true of the

other dynamic programming operators.

2.2 The Generality of Assumption SSP

Here we collect some remarks which indicate the generality of the stochastic shortest

path cost structure.

2.2.1 Testing for Proper Policies

To verify that a stationary policy u € M is proper, we need only check whether (u, v)
is terminating with probability one for all stationary policies v € N. Furthermore,

if 4 € M is improper, then we can always find a stationary policy v € N which is
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prolonging when paired with p. This is clear from the following lemma whose proof

appears in Appendix A.

Lemma A.4 If u € M is such that the pair (i, v) is terminating with probability one
for all v € N, then p s proper.

2.2.2 Relation to Discounted Cost Games

Discounted cost stochastic games incorporate a discount factor @ € [0,1) which at-
tenuates the present value of future costs. Specifically, o! is the present value of a
unit of cost incurred ¢ stages in the future. As a result, the minimizer’s expected

(t + 1)-stage discounted cost from state 7 € {1,...,n}, would be defined as

h’:rM,WN (1) = {c(uo, vo) + kz_: ak[P(ﬂoa vo)P(p1, 1) - - - Ppk—1, Vk—1)] et Vk)}.,

and the correspondihg operator T" would be defined as

TJ = ‘}g{/{sgg [e(p, v) + aP(p,v)J].

We note that every discounted cost game can be transformed into an equivalent
stochastic shortest path game. Indeed, if S = {1,...,n} is the state space of a dis-
counted cost game, then we may augment S with an extra state Q2 which is absorbing
and cost-free. The effect of the discount factor can be obtained by defining transi-
tion costs ¢;(u,v) in the new game to be the same as in the original game and the
transition probabilities p;;(u,v) as py;(u, v) = ap;;(u, v) and Pip(u,v) = 1 — « for all

4,7 €{1,...,n} and u € U(3), v € V(3).

2.2.3 Relation to Terminating Games

Shapley’s Terminating Games The terminating games of Shapley in [52] are
defined by the assumption that for each state 7 (in a finite state space) there is a

minimal probability ¢; > 0 of terminating in the next transition. In this case, it is
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clear that all stationary policies of the minimizer are proper and Assumption SSP is
satisfied. In Chapter 3, we will show that Kushner and Chamberlain’s pursuit-evasion

games [28] satisfy Assumption SSP.

Transient Games The “transient” games of Filar and Vrieze [20] are defined by
the assumption that the expected number of stages to termination is finite for all

pairs of policies; that is

o0

> [P(po,n) -+ P(pi—1,1-1)] - 1 < 00

t=0

for all mpr = {po, 11, - ..} € M and 7y = {vg,v1,...} € N. Consequently, the Markov
chain associated with each pair (mp,7x) is terminating with probability one, and

each such game satisfies Assumption SSP.

2.3 The Generality of Assumption‘ R

Assumption R is stated in such a way that it is easy to prove mathematical results
about stochastic shortest path games. It is, in fact, a very general assumption which

includes a large number of interesting special cases.

2.3.1 Games with Finite Constraint Sets

Games with finite constraint sets are allowable within the context of Assumption R.
Let W denote a generic set of actions available to one of the players at some state. W
can be viewed as a finite subset of a metric space (e.g. a finite set of real numbers).
As a finite set, W is compact. With the subspace topology on W, every map from W
to R is continuous, so parts 1 and 2 of Assumption R are satisfied. Moreover, since
“inf” and “sup” are always achieved on finite sets, part 3 of Assumption R is also
satisfied. All that remains to be verified is part 4. This will be true whenever the
one-stage game defined by the operators T and T has equilibrium solutions in pure

strategies for all terminal costs J € J. Unfortunatély, this is not true in general,
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and it may be necessary to allow the players to use randomized policies (i.e. mixed

strategies), as discussed in Section 2.3.4.

2.3.2 Sequential Games

Vafious types of sequential games satisfy Assumption R. Generically, what makes a
game “sequential” is the fact that, at any given stage, only one player has a decision
to make. To capture this in our framework, we specify that, at each state, at least
one of the players must choose from a singleton constraint set. We now consider
two types of sequential games; they are distinguished by the order in which decisions
affect state transitions.

The first type of sequential game is “truly sequential;’ in that state transitions oc-
cur immediately after each nontrivial decision. As an example, consider a board-game
where players move pieces in turn (sequentially). Each movement here corresponds
to a change of state in a finite state space. At every stage, depending on the state
of the game, one of the players must choose from a set of actions containing only a
single element, while the other player chooses from an arbitrary compact subset of
a metric space. Given that part 2 of Assumption R is satisfied, parts 3 and 4 hold
trivially.

The second type of sequential game is one where the conflict situation is naturally
modeled as follows: at any given sfage a “leading player” announces his decision first;
the “following player”, knowing the decision of the leading player, chooses an action in
response; and finally, after both players have made their decisions, a state transition
occurs within a finite state space. We shall refer to these as leader/follower games.
(As an example, consider an attack/defense game where the attacking player always
leads with a profile of attack resources against various targets, and the defending
player then responds with a profile of defense resources.) As long as the leading
player always has only finitely many actions from which to choose, leader/follower
games can be transformed into sequential games of the first type. This can be done
by augmenting the original state space S with a set of new states S which consists of

all pairs (¢, w) with < € S and w € W(3), where W (i) = U(i) if the leading player at
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state 7 is the minimizer, and W (i) = V(i) otherwise. Then, S S is the state space
of a sequential stochastic shortest path game of the first type. (In the transformed
version of the game, the system transitions from i € S to (i, w) € S when the leading
player chooses w (knowing i); the system then probabilistically transitions back to a
state in S once the following player chooses an action. Since the leading player always

has only finitely many options, the augmented state space S| S is finite.)

2.3.3 Symmetric Sequential Games

Many interesting games are symmetric in the sense that, if the system is in a particular
state, an action that would be rational for one of the players would be rational for
the other player if the “tables were turned”. Many popular board games, such as
chess and backgammon, fit this description. In this section, we formalize the notion
of symmetric sequential games, and later we will show how the general results for
stochastic shortest path games apply.

Let the minimizing player be identified as player 1, and let the maximizing player
be identified as player 2. Let S denote a finite set of positions, with elements labeled
i = 1,...,n. The state space for the symmetric sequential game is S = ({1,2} x
S) U {Q}, where Q denotes a terminal state. As in Section 2.3.2, there is, at every
state in the game, a notion of “whose turn it is”. In this particular framework, when
the state of the game is (z,7) € S, player z € {1,2} gets to choose from a set of
actions W (i) (which is a compact subset of a metric space), while the other player
chooses from a singleton. Let s: {1,2} — {1,2} be a “switching function” such that
5(1) = 2 and s(2) = 1. The probability of transitioning from (z,7) € S to (z,7) € S
under a € W (%) is denoted p;;(a). The probability of transitioning from (z,7) € S to
(s(2),7) € S under a € W (i) is denoted 7y;(a). Clearly, 1 — ¥, 5i5(a) — 25 Fij(a)
is the probability of transitioning from (z,7) to Q under the action a € W(i). The
expected cost to player 1 of transitioning from (1,7) € S under a € W (7) is denoted
¢;(a). The expected cost to player 1 of transitioning from (2,7) € S under a € W (1)
is —c¢;(a). We assume that, under all pairs of policies, the terminal state is reached

with probability one.

24



At this point it is possible to introduce sets of stationary policies, M and N, and
nonstationary policies, M and N, for the opposing players, subject to the sequential

constraints of the game. The space of cost functions may be expressed as

X . -
J=<J= X: SR Y:S—R
Y

J, X, and Y may be interpreted as vectors in Euclidean spaces with appropriate
dimensions. The transition probability matrix under 4 € M and v € N may be

expressed as

1. P(u) is the matrix whose (4, )-th element is ﬁij(u(l, 7)),
2. P(v) is the matrix whose (4, 7)-th element is p;;(v(2, 1)),
3. R(u) is the matrix whose (i, j)-th element is 7;;(u(1,7)), and
4. R(v) is the matrix whose (i, 7)-th element is 7;;(v(2, 7)).

The expected transition cost vector under 4 € M and v € N may be expressed as

where
1. ¢(u) is the vector whose i-th component is ¢;(u(1,1)) and

2. ¢(v) is the vector whose i-th component is ¢;(v(2,17)).
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2.3.4 Games in Mixed Strategies Over Finite Action Sets

In many games where the control constraint sets U(¢) and V (2) are finite, the equality
of TJ and TJ for all J € J cannot be guaranteed. One way to get around this is to
modify the game so that the new constraint sets are actually the sets of probability
distributions over the underlying pure actions. That is, in formulating their policies,
the players choose probability distributions (“mixed actions”) rather than specific
pure actions. In the literature on games, these randomized policies are often called
mixed strategies. For convenience, whenever we refer to “mixed strategies”, we are
referring to probability distributions over finite underlying sets of actions. The case
of mixed strategies over arbitrary action sets is beyond the scope of this thesis. Also,

i

we do not consider “behavioral strategies,” where the mixed actions selected at each
stage can depend on the entire past history of play.

At this p'oint it is useful to define a special notation for the case of mixed strate-
gies. Let A(z) and B(7) denote the finite sets of underlying actions available to the
minimizer and maximizer (respectively) at state i. The players’ control constraint

sets for the game are

UG = {uG?R'A("” l S oua=1; ug > 0},

a€A(7)

V@E) = {v € RIBOI

Z w=1, v, 2 O}

beB(i)

The functions p;;(u,v) and ¢;(u, v) are respectively of the form

pij(u’v) = Z Z Bij(a’b)uavba

a€A(i) beB(i)

a(u,v) = Y > > gij(a,b)gij(a,_b)uavb.

JES a€ A(3) beB(3)

where the functions P, and g,; are the transition probabilities and costs associated
with the pure actions. The Minimax Theorem of von Neumann [61] implies that

Assumption R is satisfied.
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2.3.5 Games Satisfying a Generalized Minimax Theorem
Assumption R is satisfied if:

1. the sets U() and V(i) are nonempty, convex, compact subsets of Euclidean

spaces,

2. the functions p;;(u, v) are bilinear of the form v'Q;;v, where Q;; is a matrix with

dimensions commensurate with U(z) and V' (3), and
3. the functions ¢;(u, v) are

(a) convex and lower semi-continuous as functions of v € U(4) with v fixed,

and

(b) concave and upper semi-continuous as functions of v € V(i) with u fixed.

This follows from the Sion-Kakutani theorem (see [55], p.232 or [46], p. 397), which
can be viewed as a generalization of the Minimax Theorem of von Neumann [61].

By restricting the domain of the dynamic programming operators to
J+ £ { functions : {1,...,n} — Ry},

the Sion-Kakutani theorem also implies that part 4 of Assumption R is satisfied if

statements 1 and 3 above are true and statement 2 is weakened so that the functions

pij(ua 'U) are
1. convex and lower semi-continuous as functions of u € U(i) with v fixed, and
2. concave and upper semi-continuous as functions of v € V(i) with u fixed.

However, to ensure that 7" and T map J, to J, we would also have to assume that

the transition costs ¢;(u,v) are nonnegative.
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2.4 Examples

2.4.1 A Tabletop Pursuit-Evasion Game

Consider a game which is played around a table with four corners. One player, the
pursuer, is attempting to “catch” the other player, the evader, in minimum time.
The game evolves in stages. At every stage, the players implement actions simul-
taneously. When the players are across from one another, they each decide (inde-
pendently) whether to stay where they are, move one corner clockwise, or move one
corner counter-clockwise. When the two players are adjacent, they each decide (inde-
pendently) whether to stay where they are, move toward the other’s current location,
or move away from the other’s current location. The pursuer catches the evader only
by arranging to land on the same corner as the evader. (The possibility exists that,
when they are adjacent, they can both move toward each other’s current location.
This does not result in the evader being caught “in mid-air”.) The evader is slower
than the pursuer in the sense that, when the evader decides to change location, he
succeeds in doing so only with probability p € (0,1). (The evader will fail to move
with probability 1 — p.) Thus, the pursuer can ultimately catch the evader as long
as he implements an appropriate policy (such as “always move toward the present
location of the evader”). On the other hand, there exist policies for the pursuer (such
as “always stay put”) which allow the maximizer to prolong the game indefinitely.
This results in infinite cost (i.e. infinite capture time) to the pursuer.

We now describe the game in the notation for stochastic shortest path games.
There are three states: evader caught (state §2), players adjacent to one another
(state 1), and players across from one another (state 2). Thus, S = {1,2} U {Q}. In
state one, when the players are adjacent, the players may move toward the other’s
location (action 1), stay where they are (action 2), or move away from the other’s
location (action 3). Thus, A(1) = B(1) = {1,2,3}. From our earlier description, it’s
not hard to see that

pa(y,v) = wf(vy +vs)(1—p)+ va| + U201 P,
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pi(u,v) = (ur+us)(vy + v3)p + uzl(vy + v3)(1 — p) + va),

P12(U, U) = uUsp + Us[(vl + Us)(l - P) + Uz]-

In state two (when the players are on opposite corners of the table), the players may
move clockwise toward the other’s current location (action 1), stay where they are
(action 2), or move counter-clockwise toward the other’s location (action 3). Thus,

A(2) = B(2) = {1,2,3}. It’s not hard to see that

paa(u,v) = ujvsp + uzuip,
po1(u,v) = (uy +usz)[(vy + v3)(1 = p) + vo] + uz(vy + v3)p,

p2(u,v) = wvip + uz[(v1 + vs)(1 — p) + va] + uzvsp.

The transition costs reflect time away from termination, so ¢;(u,v) = 1 for all u €

U(1), and v € V(1) and cp(u,v) =1 for all u € U(2) and v € V(2).

2.4.2 An Industrial-waste Inspection Game

In this section we describe a more practical game of pursuit and evasion. The players

in this game are

1. a manufacturer who produces industrial waste which has to be dumped (ille-

gally) every night and

2. an inspector who seeks to detect the manufacturer dumping two nights in a row

in an effort to put the manufacturer out of business.

The game we describe is similar to one Filar and Vrieze used as an example in [20]. It
is different in that our cost structure reflects a true stochastic shortest path game and
the dynamics of the game are augmented so that state transitions are not governed
by a single player.

Let us suppose there is a finite number of geographically disparate sites where

industrial waste can be dumped. The manufacturer must dump waste at one of these
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sites every night while avoiding detection by the inspector. To detect dumping activ-
ity, the inspector must arrange to be at the same site as a dump and even then there
is a nonzero probability of failure to detect. The probability of detection (conditional
on the manufacturer and the inspector being at the same location) depends upon the

following considerations.

1. The closer the current dump site is to the preceding dump site, the greater the
probability of detection. (This is due to the environment’s limited ability to

absorb the waste.)

2. The closer the current inspection site is to the preceding inspection site, the
greater the probability of detection. (The more time the inspector spends trav-
eling and setting up equipment, the less time there is to look for dumping

activity.)

If the inspector manages to detect the manufacturer two nights in a row, then, ac-
cording to the state’s environmental protection laws, the inspector can put the manu-
facturer out of business. The inspector’s objective is to minimize the number of days
to shut-down, while the manufacturer seeks to maximize it’s time in business. In
deciding where to go each day, the manufacturer and the inspector are both aware of
where the last night’s dump and inspection occurred. Moreover, they are both aware
of whether the manufacturer got caught last night.

To give a mathematical description, let L = {s1,...,sn} € R? represent the sites
where dﬁmping may occur. Let d(s,5) denote the Euclidean distance between the
sites s and 3, and let d = max, s d(s,5) be the maximum distance between any
two sites. Let z, denote the site where the inspector searched during stage (t — 1),
let y; be the site where dumping occurred in stage (¢ — 1), and let z; be a boolean
variable which is TRUE if the manufacturer was caught dumping during stage (t—1).
The triple (z:,y:,2:) describes the state of the system at stage ¢. (There are 2N?
nonterminal states.) Suppose that the inspector chooses to search at site a; € L and
the manufacturer chooses (independently) to dump at site b, € L. Given that the

manufacturer has not yet been shut down, the probability that the manufacturer will
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be detected at stage ¢ is defined to be

D(Tey Yty at, be) = Pt %[kld(ah m)* Fadh yt)] o=t
0 otherwise,

where 0 < ps < p1 < 1 are worst-case and ideal probabilities of detection and k;
and ko are positive weighting factors. If z; = FALSE, then the system transitions
to state (as, by, TRUE) with probability p(z:, s, as, b;); otherwise the system transi-
tions to (as, b;, FALSE). If zz = TRUE, then the game terminates with probability
p(¢, Ys, s, by); otherwise the system transitions to (a¢, b, FALSE). The cost of transi-
tions from all nonterminal states is one, regardless of the controls applied. By allowing
the players to randomize their actions we obtain a stochastic shortest path game of
the type described in Section 2.3.4. Note that any policy for the inspector which is
pure (i.e. not random) is improper because, knowing this policy, the manufacturer
can always arrange to avoid being detected. On the other hand, the random policy
which selects sites for the inspector uniformly will eventually result in the manufac-
turer getting caught, so there exists a proper policy. The essence of the inspector’s

problem is to choose a set of probability distributions to minimize the worst-case

expected pursuit time.

2.5 Chapter Summary

The purpose of this chapter was to formulate stochastic shortest path games. We
observed that, thanks to Assumption SSP, stochastic shortest path games generalize
the terminating games originally considered by Shapley. Next, we showed that the
regularity conditions encompassed by Assumption R are consistent with a variety of
important dynamic games, including stochastic (dynamic) games in mixed strategies,
sequential games, and symmetric sequential games. Following these general remarks,

we described two concrete examples of stochastic shortest path games.
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Chapter 3

Existence and Characterization of

Equilibria

A fundamental question about stochastic shortest path games is whether they have

“value.” That is, given a stochastic shortest path game, is it true that

inf_ sup Jryay(3) = sup inf_ Jr, .,(0), i=1,...,n7
TMEM ryeN WNEN"MEM

If equality holds for all ¢, then the game is said to have value in nonstationary policies
and the common quantity for each ¢ is called the value of the game from state . If
equality prevails when M and N are replaced by M and N respectively, then the game
is said to have value in stationary policies. The existence of value is a fundamental

question in zero-sum games. A priori, we can only be sure that

inf_ sup Jp,, ay(3) > sup inf_ Jp, o .,(0), i=1,...,n,
WMEMWNEN WNEN‘"MEM

and strict equality is crucially dependent on J. (i) and the sets M and N.
Now suppose for the moment that a stochastic shortest path game has value in

nonstationary policies. This by itself is not enough to assure the existence of policies
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7%, € M and 7 € N such that

inerGM Supmvel‘_f JWM,‘"N (7’) = Supﬂ—Neﬁ ']W;,,.WN (Z)’ 1= lr ceey Ty (3 1)

SUP,yen I0fry e iz Jrpsmy (1) = inf e Jmpyay (1), i=1,...,7

A pair of such policies (7}, 7%) is called an equilibrium solution of the game, and
74 (respectively 7y is called an ecjuilibrium solution for the minimizer (respectively
maximizer). If an equilibrium solution exists, then the game is said to have a equi-
librium (also called a Nash equilibrium), and Iy, mn, 18 called the equilibrium value
function of the game. Note that by definition, an equilibrium solution (7}, 7) sat-

isfies

']1|’M,1r]'v Z Jﬂhﬂr;\,) v M € M}

Jﬂ-;/!,‘,w < Jr J, VWNGN,

MTN
where, as usual, the inequalities are taken componentwise. Notice that if a game has
a value but does not have an equilibrium solution, then the players can only choose
policies which are arbitrarily close to achieving the value of the game, and the game
is said to have an e-equilibrium. A policy (or pair of policies) which comes to within
¢ of the value of the game at each state is called an e-equilibrium solution.

The main result of this chapter is that all stochastic shortest path games have
stationary equilibrium solutions (and therefore have a value in stationary policies).
Another main result is that the equilibrium value function of a stochastic shortest
path game can be characterized as the unique solution to a functional equation, known
as Bellman’s equation.

The results of this chapter generalizé Shapley’s earlier results for terminating
stochastic games. Shapley’s analysis is relatively straightforward because the cor;
responding dynamic programming operator is a contraction mapping. In the more
general class of stochastic shortest path games, the corresponding dynamic program-
ming operator loses this contraction property, and a much more sophisticated analysis

is required. The results of the present chapter also generalize the findings of Kushner
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and Chamberlain [28] and Filar and Vrieze [20] (regarding transient games).

In general, questions about the existence of value and the characterization of equi-
libria are difficult to answer. Maitra and Parthasarathy [32, 33], Parthasarathy [38],
and Kumar and Shiau [27] analyzed stochastic games with mild assumptions about
the state space and control constraint sets. In the most recent of these papers, Kumar
and Shiau established the existence of an extended-real value in games with nonneg-
ative cost when the players are allowed to use behavioral strategies (where the mixed
actions chosen at each stage can depend on all of the past states and controls, as well
as the current state). They showed that the minimizing player can always achieve this
value using a stationary mixed strategy. They also showed that if the state space is
finite, then the maximizing player has e-equilibrium solutions in the set of stationary
mixed strategies. Because of our assumptions relating to termination, the results of
this chapter are stronger than the conclusions of Kumar and Shiau [27] for games
whose state-spaces and underlying action sets are finite.

Assumptions R and SSP are standing assumptions throughout this chapter; they

hold unless specifically stated otherwise.

3.1 Preliminaries

We collect here a few lemmas which will be useful in establishing the main results of

the chapter. Most of the proofs of these lemmas are deferred to Appendix A.

3.1.1 A Contraction Property

Given a vector w € R™ whose elements are positive, the corresponding weighted

sup-norm, denoted || - ||, is defined for all J € J by
17ll5 = ,max_|J(i)/wil .

The following lemma states that when all stationary policies for the minimizer are

proper, the operator T is a contraction with respect to a weighted sup-norm.
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Lemma 3.1 Assume that all stationary policies for the minimizer are proper. Then,
there ezists a positive vector w € R™ and a scalar B < 1 such that ||TJ — TJ||% <
BI|J — J||& for all J, J € J. Moreover, for all p € M (all of which are proper) and
v € N, the operators T, T,, and T,, are contraction mappings with respect to the
same weighted sup-norm, and the same contraction modulus 3 applies. The vector of

weights w can be scaled by a positive factor without affecting the contraction modulus.

Proof: First we will establish the result for the operator T. Our strategy is to
identify a vector of weights w and to show that this set of weights is such that T'is a
contraction with respect to || - ||%.

We begin by defining a new single-player stochastic shortest path problem (of the
type considered by Bertsekas and Tsitsiklis in [8]'). This problem is defined by setting
all of the transition costs from i = 1,...,n to —1 and allowing the two players (in the
original game) to work together to minimize cost. That is, we set ¢;(u,v) = —1 for all
i € S and (u,v) € U(i) x V (i), and we make M x N the decision space for the single
player of the new problem. We leave all of the transition probabilities unchanged. The
result is a stochastic shortest path problem where all stationary policies are proper.
Using the results of [8], there is an optimal cost vector J € J which can be achieved
using a stationary policy (f, 7) € M x N. Note that, since the transition costs from
all nonterminal states are set to —1, we have J < —1. Moreover, from Bellman’s

equation we have

J=-1+P(i,0)J.
Also, for all p € M and v € N,

J < =1+ P(u,v)J.

In [8], Bertsekas and Tsitsiklis studied single-player stochastic shortest path problems. They
imposed two main assumptions which are equivalent to our Assumptions R and SSP (when restricted
to a single player). They proved the existence of optimal stationary policies and characterized
the optimal value function as the unique solution to Bellman’s equation. They also proved the
convergence of value iteration and policy iteration.
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Thus, forall p € M, v € N,and foralli =1,...,n,

n

> —pii(p(a), v

J=1

where

Jé) = max
i=1

@)J(G) < —-J@) -1
< —J@), (3.2)
(J() +1)/J(5).

)

Notice that § € [0,1) since J < —1. Also, w 2 _Jis strictly positive.

Let us now resume consideration

of the original stochastic shortest path game.

Let J and J be any two elements of J such that ||J — J||, = c¢. Let p € M be such

that T,J =TJ, and let v € N be suc

TJ-TJ

h that T,,j = Tu,,j . Then,

TJ-T,J

IA

T, —T,J

T, J —T,J

IA

T — T J.

Thus, TJ —TJ < P(u,v)-(J—J)and foralli=1,...,n

(TN@E - (THE
cw(3) -

<

<
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(The last inequality follows from (3.2).) Thus, we get

(T7)(0) - (D))

w(7)

<cB, Vi=1,...,n.

Similarly, we can show that

(D)6 - (7))

>—cB, Vi=1,...,n.

Combining these inequalities, we see that ||TJ — T'J||%, < ¢f. This proves the result
for the operator 7.

The reasoning of the preceding paragraph also applies to the other “T" operators.”
For example, suppose u is a stationary policy for the minimizer. Given J and J
such that ||J = J||“, = ¢, choose v € M so that T,J = T,,J. Then, T,J — T,J <

Tu,,j —T,,J, and it follows that

@HO = TN _ o iy p
- < e, R

Similar arguments show that

(TuJ) (i) = (T ]) ()
w(?)

>—c8, Vi=1,...,n,

which proves the result for 7. (This does not affect the contraction modulus.)
The last statement of the proposition follows from || - |5 = (1/a)|| - ||%, with

a>0. Q.E.D.

Remark 1: This proof uses a style of argument which is common throughout this
thesis. In general, we shall make heavy use of the theory that already exists for the

single-player case.

Remark 2: The modulus of contraction A3 is equal to 1 — 1/Ny,qy, where Ny, is
the largest expected time to termination given that both players work together to

prolong the game.
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Corollary 3.1 If u is proper, then T, is a contraction with respect to a weighted

sup-norm.

Proof: Apply Lemma 3.1 to a new stochastic shortest path game where for each ¢

the control constraint set U (%) is set equal to {u(i)}. Q.E.D.

Remark: In [28], Kushner and Chamberlain describe a class of terminating games
more general than Shapley’s in [52]. In particular, they assumed that either of the

following are true.

1. The n-stage probability transition matrix [P(u, v)]™ is a “uniform contraction.”
(That is, for some ¢ > 0 and all pairs (y, v), the matrix [P(u, v)]" has row-sums

less than 1 —¢.)

2. The transition costs (to the pursuer) are uniformly bounded below by § > 0
and there exists a stationary policy ji for the pursuer that makes [P(f,v)]" a

uniform contraction with respect to v € N.

In light of Lemma 3.1, the first alternative would be true in the special case of
stochastic shortest path games where all stationary policies of the minimizer are
proper. The second alternative above is very close to our statement of Assumption
SSP but is slightly stronger in that it requires that the costs to the minimizer be
strictly positive and bounded away from zero. (Under Assumption SSP, ¢;(u,v) can

take on negative values for some 4, u, and v.)

3.1.2 On Fixing a Policy for One of the Players

Given a policy 7y for the minimizer, we use Ji,, to denote the worst-case cost of ms,
defined by
Jry, (1) = lim inf max A (4). (3.3)

t—ooo gyneN T™MTN

Appendix A shows that thanks to Assumption R the maximum in (3.3) is attained
for every t (see Lemma A.6). The cost of a stationary policy u for the minimizer is

denoted J, and is computed according to (3.3) where 7 = {4, 4, - -}
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Similarly, given a policy 7y for the maximizer, we use J,, to denote the worst-case

cost of 7y, defined by
Jey (i) = liminf min A% (4). (3.4)

t—ooo gyeEM M TN

As before, Assumption R assures that the minimum above is attained for every t.
The cost of a stationary policy v for the maximizer is denoted J, and is computed

according to (3.4) where 7y = {v,v,...}.
Lemma A.9 Given a proper policy u, the following are true.
1. J, is the unique fized point of T, within J.

2. Jy=sup; ey Jumy-

3. T‘ﬁJ — J, for all J € J, with linear convergence.

Lemma A.10 For any v € N, the following are true.
1. J, is the unique fized point of T, within J.
2. J, =inf,, cir Jrnppo-
3. T,fJ — J, for all J € J. If for all p € M, the pair (u,v) terminates with
probability one, then the convergence is linear.
3.1.3 Testing for Proper Policies
The following lemma provides a useful test for determining whether a stationary
“policy is proper.

Lemma A.11 Given u € M, if there exists J € J such that J > T,J, then p 1is

proper.
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3.2 Main Results

In this section we establish the existence of a unique equilibrium value for stochastic
shortest path games. Central to the proof is the fact that the operator T has a unique
fixed point in J. This fact is obvious for the case that all stationary policies for the
minimizer are proper (cf. Lemma 3.1 and the contraction mapping theorem). When

there exists an improper policy a more sophisticated argument is required.

Proposition 3.1 The operator T has a unique fized point J* in J.

Proof: We begin by showing that 7" has at most one fixed point in J. Suppose
J and J are both fixed points of T in J. By Assumption R, we can select u € M
and i € M such that J = TJ = T,J and J = TJ = T,J. By Lemma A.11,
we have that p and fi are proper. Lemma A.9 implies that J = J, and J = Ja
From the definition of 7', J = T'J < T;J. By induction, using the monotonicity of
Tz, we obtain J = T*J < T}LJ for all t > 0. Thus, by Lemma A.9, we have that
J <limy,oo T = Jp = J. Similar arguments show that J < J. Thus, J = J and T
has at most one fixed point in 7.

To establish the existence of a fixed point, fix a proper policy p € M for the
minimizer. (One exists thanks to Assumption SSP.) By Lemma A.9, we have that
J, = T,J,. Thus, J, > TJ,. Similarly, by fixing a stationary policy v € N for the
maximizer, we obtain from Lemma A.10 that J, = T,J,. Thus, J, < TJ,, =TJ,.

We now claim that J, < J,. To see this, note that, for every mpy € M, ny € N, and

t>0,
t t
Pocrg e S T2 Py s
where h _is the vector whose components are defined in (2.2). We also have that
t : t
h’?fMﬂrN z il:}g]lw hirMﬂrN‘
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Thus, for any 7y € N and for any mp € M

. t i
min h: < max h. - .
"'rMEM TM TN 7_|'N€N TM,TN

By taking the limit inferior of both sides with respect to ¢, we see that Jry < Jn,, for
all 7y € N and 7y, € M. In particular, J, < J,.

Using the monotonicity of 7 we have that
J,<TJ, <TJ, < J,.
Again from the monotonicity of 7', we see that, for all ¢ > 1,
J, <T", <T', < J,.

Thus, the sequence {T%J,} converges to a vector J* € J. From the continuity of T,
y

we have that J®° = T'J*®. Thus, T has a fixed point in J. Q.E.D.

Remark: Now that we have established the existence of a unique fixed point of T,
it is relatively easy to prove that the fixed point is the equilibrium value function of

the game.

Proposition 3.2 The unique fized point J* = TJ* is the equilibrium cost of the
stochastic shortest path game. vThere' exist stationary policies u* € M and v* € N
which achieve the equilibrium. Moreover, if J € J, p € M, and v € N are such that
J=TJ=T,J=T,J, then

1=,
2. JWM,V Z Ju,ua Vﬂ'M € M)

3. JI_L,ﬂ'N S Ju7,/, Vﬂ'N S N

Proof: That there exists a unique fixed point J* = T'J* follows from the Propo-
sition 3.1. Let u* € M be such that J* = T,.J*, and let »* € N be such that
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J* =T,-J*. (Such policies exist thanks to Assumption R.) By Lemma A.11, we have
that u* is proper. Thus, by Lemma A.9, we have that J* = J,» = sup,  ex Jyu=nn-

Similarly, by Lemma A.10, we have that J* = J,. = inf,, cx5 Jrp,v-. Combining

these results we obtain

lnf_ Sllp J7|'M,7rN S J* S Sup lnf— J7er7rN'
“MGMWNGN TnENTMEM

Since in general we have

inf_ sup Jrppy = sup inf_ Jp oo
”MEM'”NEN ”Nejv‘n'MEM

(a statement of the minimax inequality), we obtain the desired result:

inf_ sup Jppy oy =J° = sup inf_ Jp, .y
TMEM 7 yeN TneENTMEM

Q.E.D.

3.3 Example: Tabletop Pursuit-Evasion

Recall the tabletop pursuit-evasion game from the preceding chapter. We will show

that the equilibrium value function of this game is

1 2-p ’
Jr=——]. 3.5
(1 -p 1= P) (85)
Moreover, we will show that the mixed strategies u* and v* such that

ru“*(l) = (1’ 01 O)I’ #*(2) = (u’la Ov ’U,3)’ )

(3.6)
v*(1) = (v1,0,v3)",  v*(2) =(0,1,0),

form an equilibrium solution to the game. Thus, in state one (where the players are

adjacent),
1. any mixed decision for the evader is optimal, as long he never remains at his
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current location, and

2. the pursuer’s best option to move toward the evader with probability one.
On the other hand, in state two (where the players are across from one another),

1. any mixed decision for the pursuer is optimal as long as he never remains at his

current location, and

2. the evader’s best option is to stay at his current location with probability one.

When both players use this equilibrium solution, the game will transition from state
2 to 1 in a single stage. Note that this is reflected in the equilibrium cost function:
JH2) = =1+ J(1).

To verify that we have found an equilibrium solution, we will show that J* =
TJ* =T, J*. = T,.J* (Notice that the policy u* corresponds to one where the
pursuer always decides to move in the direction of fhe current location of the evader.
This policy is clearly proper. The desired result follows from Proposition 3.2)

Let us first consider the case where the two players are adjacent (i.e. state 1).
Let J denote a generic estimate of the equilibrium value function. (We shall soon
consider the case where J = J*, as suggested by (3.5).) To evaluate (7'J)(1), we must
compute

min max u'G1(J)v,
ueU(1) veV (1)

where the matrix G;(J) is computed as

1+pJ(1) 1 1+pJ(1)
Gi1(J) = 1+ (1-p)J(1) 14+J(1) 141 -p)JQ)+pJ(2)
1+pJ(A)+(1=p)J(2) 1+J(2) 1+pJ(1)+(1-p)J(2)

In other words, (T'J)(1) is equal to the value of the matrix game G;(J). It is well
known that matrix games have solutions via linear programming [62]. Thus,

1 min 1’V

(TI)1)  subject to G1(J)¥ > 1, ¥ >0,
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v* argmin 1’9
S

(TJ)(1) subject to G1(J)¥ > 1, ¥ > 0,

where v* is an equilibrium strategy for the maximizer in the matrix-game. We shall
refer to the linear program above as the “primal” problem. The corresponding dual
problem characterizes equilibrium strategies u* for the minimizer:

u* argmax 1'd

€
(TJ)(1) ™ subject to Gy(J)% <1, & > 0.

Now consider G(J*). Using (3.6), define

@ = p(1)/J1) = 1-p)(1,0,0),
v o= v(1)/J(1) = (1-p)(v1,0,03)".

It is straightforward to verify that ¥* is feasible for the primal problem and that 4~
is feasible for the dual problem. Moreover, the primal cost corresponding to ¥* is
exactly 1 —p, just as the dual value of 4* is also exactly 1 —p. Thus, we have found a
primal/dual feasible pair for which the primal cost equals the dual value. According
to the duality theorem of linear programming, * and 4* are primal/dual optimal, and
the optimal values of the primal and dual problems equal 1 — p which is exactly J;(l)
This verifies that J*(1) = (T'J*)(1) and that p*(1) and v*(1) form an equilibrium
solution at state 1.

Let us now consider the case where the two players are across from one another

(i.e. state 2). To evaluate (T'J)(2) for general J € J, we must compute

. min max u'Ga(J)v,
ueU(2) veV (2)
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where Go(J) is a matrix computed as

1+(1-p)J1)+pJ(2) 1+J(1) 1+ (1—-p)J(1)
Go()=| 1+pJ(V)+ (1 —p)J2) 1+J(2) 1+pJQ1)+(1-p)J(2)
1+ (1-p)J(1) 1+J(1) 1+ (1—p)JQ)+pJ(2)

Thus, (T'J)(2) is equal to the value of the matrix game G,(J), which can be found

via linear programming:
min 1’0
subject to Go(J)v > 1, ¥ > 0,
max 1'U
subject to Go(J)u <1, 4 > 0.

Now consider G,(J*). Using (3.6), define

W o= w27 = ;:g(ul,ﬂ,u;;)',
o= M2))J(2) = %(0,1,0)’.

Again, it is straightforward to verify that ¥ and % form a feasible primal/dual pair,
where the primal cost of ¥ equals the dual value of %. Thus, by the duality theorem,
¥ and % are primal/dual optimal. This time the optimal cost works out to be ;—:g
which is exactly ﬁ)- This verifies that J*(2) = (T'J*)(2) and that p*(2) and v*(2)

form an equilibrium solution at state 2.

3.4 Chapter Summary

We have shown that stochastic shortest path games have value in stationary policies‘
and that they have stationary equilibrium solutions. The equilibrium value J* is the

unique fixed point of Bellman’s equation TJ = J.
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Chapter 4

Dynamic Programming Algorithms

In this chapter we are concerned with dynamic programming algorithms for stochas-
tic shortest path games. The most basic algorithm we consider is value iteration.
We establish the convergence of this method despite the fact that the corresponding
dynamic programming operator is not a contraction. This result generalizes the ear-
lier convergence result of Shapley for terminating stochastic games. Another basic
algorithm we consider is policy iteration, where a sequence of policies for the mini-
mizer is generated based on worst-case evaluations of cost and corresponding policy
improvements. Extending the earlier convergence result of Rao et al. [44], we use
the existence of a unique fixed point of the dynamic programming operator to estab-
lish the convergence of this method. We also consider several variations on policy
iteration including asynchronous policy iteration (which generalizes van der Wal’s al-
gorithm [59]), naive policy iteration (usually called the algorithm of Pollatschek and
Avi-Itzhak [40]), and the modified Newton’s method of Filar and Tolwinski [19]. Af-
ter this long discussion about general algorithms, we show how several of the dynamic
programming algorithms specialize to the case of symmetric sequential games. The
chapter ends with an application of the general algorithms to the inspection game of
Section 2.4.2.

As in Chapter 3, Assumptions R and SSP are standing assumptions for all of the

results of this chapter.
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4.1 General Algorithms

In this section we consider algorithms for the general class of games described in
Chapter 2. Later, we will consider how some of these algorithms can be adapted to

the special case of symmetric games.

4.1.1 Value Iteration

In [52], Shapley proposed an iterative algorithm for solving discounted cost stochastic
games. The same algorithm may be applied in our present context and is called value

iteration.
Algorithm 4.1.1 (Value Iteration)
1. Choose an initial cost function Jo € J.

2. Given Jy_1 € J, compute J, € J as

Je =TTk

In games with a discount factor and in games where termination is inevitable
under all policies, the dynami(; programming operator 7' is a contraction mapping,
and this fact can be used (as Shapley did in [52]) to prove the convergence of value
iteration. Unfortunately, in general stochastic shortest path games (where not all
stationary policies of the minimizer are proper), the dynamic programming operator
loses this contraction property. Despite this, it is possible to prove the convergence

of value iteration, as in the following proposition.

Proposition 4.1 For every J € J, there holds

lim T%J = J*,

k—o0

where J* is the unique equilibrium cost vector.
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Proof: The existence and uniqueness of a fixed point for T was established in Propo-
sition 3.1. Let J* be the unique fixed point, and let u* € M (proper) be such that
TJ* =T, J*. Our objective is to show that TkJ — J* for all J € J. Let 6 be some
positive scalar. Let J® be the unique vector in J satisfying T),- Jo = J% —61. (Such
a vector exists because u* is proper, making the operator T, (-) + 61 a contraction.)

Note that

J = T,.J+é1
= max[e(u’,v) + P(u",v)J’] + 61

= me%c[c(u*, v) + 61+ P(u*,v)J°].

Thus, J° is the worst-case cost of the fixed policy u* with the immediate transition

cost vector ¢(u*, ) replaced with c(p*, ) + 61. We have that
JO =T, J°+ 61> T, J°
Thus, from the monotonicity of 7). we have that for all k£ > 0
TnJ < J.

By taking the limit as k — oo, we see that J,. < J°. (This is also implied by our
interpretation of J® above.)

Now lising the monotonicity of T and the fact that J* = J,., we get
J*=TJ" <TJ <T,J =J0-41<J°,
Proceeding inductively, we get
JT<TR <TI0 < 0

Hence, {T*J®} is a monotonically decreasing sequence whichis bounded below and.
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therefore converges to some J* € J. By continuity of the operator T, we must have
that J® = T'J*. By the uniqueness of the fixed point of T', we have that J> = J*.
We now examine the convergence of the operator T* applied to J* — 1. Note
that,
J'—1=TJ -1 <TJ -601)L<TJ" =J",

where the first inequality follows from the fact that P(u, )1 < 1 for all p € M and
v € N (see also Lemma A.2). Once again, the monotonicity of 7' prevails, implying
that T%(J* —61) is monotonically increasing and bounded above. From the continuity
of T we have that limy_,c T*(J* — §1) = J*.

We saw earlier that J® = T,-J% + 61 and that J° > J*. Then,

J =T, J? 461> TpJ* + 61 =J" 461

Thus, for any J € J we can find § > 0 such that J* — 61 < J < J°. By the

monotonicity of T, we then have
TFJ* —61) < T*J <TFJ°, Vk>1.
Taking limits, we see that limy_,. T%J = J*. Q.E.D.

Remark: In addition to generalizing Shapley’s result [52], Proposition 4.1 also gen-
eralizes Kushner and Chamberlain’s convergence result [28] since Assumption SSP

does not require the costs c(u, v) to be strictly positive and bounded away from 0.

4.1.2 Policy Iteration

In [25], Hoffman and Karp proposed an iteration in policy-space for solving average-
cost stochastic games. A modification to their algorithm may be applied to stochastic

shortest path games. We will refer to this algorithm as policy iteration.
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Algorithm 4.1.2 (Policy Iteration)
1. Choose an initial proper policy py € M.
2. Given pr_1 € M:
(a) (Policy Evaluation) Compute the unique fized point J,,,_, € J of the T, ,

operator.

(b) (Policy Improvement) Compute py € M such that TJy, , =Ty, Jy, ;-

It was shown in [44] by Rao et al. that policy iteration converges for discounted
cost games in mixed strategies. We provide a similar result below for stochastic

shortest path games.

Propositioh 4.2 Given a proper policy po € M, we have that
Jy, = J”

where J* is the unique equilibrium cost vector and {ux} is a sequence of policies

generated by policy iteration.

Proof: Choose p; € M such that T, J,, = TJ,,. (Assumption SSP implies that
an initial proper policy pg exists.) We have T, J,, = TJyy < Tyodyy = Juo- By
Lemma A.11, p, is proper. By the monotonicity of T, and Lemma A.9, we have that
forallt

Juo > Ty =Ty o 2 T Jo

Thus, . ‘
Juo 2 Tdyo 2 tl_ifgoT;tuJuo =y

Applying this argument iteratively, we construct a sequence {ux} of proper policies
such that,
Jy 2 TJy, > J, >J, Vk=0,1,.... (4.1)

HEk+1
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Since {J,, } is monotonically decreasing and bounded below by J*, we have that the
entire sequence converges to some vector J°. From (4.1) and the continuity of T', we
have that J® = T J*. Since J* is the unique fixed point of 7" on J, we have that
J,, = J*. Q.E.D.

Remarks: Each step of policy iteration requires the maximizer to solve a dynamic
programming problem where termination is inevitable under all policies. This is
to be contrasted with conventional, one-player policy iteration, where evaluating a
policy u is equivalent to solving a system of linear equations. As a result, each
policy evaluation step in policy iteration (for games) involves a significant amount of
computation. Note that the dual form of policy iteration, where a sequence of policies

for the maximizer is generated, also converges by the same argument.

4.1.3 Asynchronous Policy Iteration

In [66], Williams and Baird introduced an algorithm for single-player Markov decision
problems which was revisited by Bertsekas and Tsitsiklis in [9]. The algorithm is called
asynchronous policy iteration, and it has a direct extension to stochastic shortest path

games, as presented below.
Algorithm 4.1.3 (Asynchronous Policy Iteration)

1. Start with an initial estimate for the equilibrium cost function, Jo € J, and an

wnitial policy po € M.

2. Given (Jx_1, ur_1), select a subset Sy of the states, and compute (Ji, px) by

either

(a) updating the cost function estimate on Sk according to

(T, Je-1)(4), ifi € Sk,

Jk(i) =
Je—1(2), otherwise,

(4.2)

while leaving the policy unchanged by setting px = pix—1, OT
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(b) updating the policy on Sk according to

arg minyep) hi(u), ifi € S,

pi(1) € (4.3)

{ue-1(3)}, otherwise,

where

veV (1) jes

hi(u) = max (Ci(U,U) + Zpij(i,U,U,j)Jk—l(j)) :
while leaving the cost function estimate unchanged by setting J = Je_1.

Note that the value update rule [cf. (4.2)] corresponds to a single step of value iteration
for the maximizer in computing the worst-case cost of the minimizer’s policy. Also,
note that in the policy update rule [cf. (4.3)] we used the symbol “€” in place of an
equals sign to indicate that there may not exist a unique minimum. It was shown
in [66, 9] (for the case of a single player) that if Jy is such that T),,Jo < Jo, then the
sequence of cost function estimates J; converges to the optimal cost-to-go function
J*. The same result is also true for stochastic shortest path games, as shown in the

following proposition.

Proposition 4.3 Let (Ji, ux) be the sequence generated by asynchronous policy iter-

ation. Assuming that
1. the updates in (4.2) and (4.3) are executed infinitely often for all states, and
2. the initial conditions (Jo, wo) are such that Ty, Jo < Jo;

the cost functions Ji converge to J* and all policies py generated by the algorithm are

proper.

Proof: The proof is essentially identical to the proof in [9]. The difference, of
course, is that here the operator T involves a minimax operation (instead of just a
minimization) and 7T}, involves a maximization (instead of nothing at all). Since T
and T, are monotonic and continuous, the same proof holds. We spell out the proof

below for completeness.
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First we claim that for all &, if T,,, Jx < Ji, then

T,

Hik+1

Jer1 £ Jey1 < i (4.4)
To see this, suppose that at iteration k we have T),, Jy < Ji. Consider the following
two possibilities.

1. The value update (4.2) is ezecuted next. Then we have

Jen1 (1) = (T, Ji) (1) < Jk(5), ifi € Sk, (4.5)

and

Jea(i) = Ju(0), ifi € Sk, (4.6)

so that Jy;1 < Ji. From the monotonicity of T, and the fact that uri = ux,

we have that

T,

Hik+1

Jerr = Ty Jerr < Ty, i (4.7)

From (4.5) we have
(T Jo) () = Jua(6), ifi € S,
while from (4.6) and the hypothesis that T, Jy < Ji, we have that
(T Je) (1) < Jk(2) = Jrg1(2), if 0 & Sk.

These two relations imply that T}, Jx < Ji41, which when coupled with (4.7),
shows that T,

wee1 Jk+1 < Jrg1, completing the proof of (4.4) for the case of a

value update.

2. The policy update (4.8) is ezecuted next. In this case, we have that Jyy; = Jy,
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and using the hypothesis that T}, Jx < Ji, we obtain

(Tyg o) (1) = (D ) (6) = (T i) (8) < (T Je) (0)

(4.8)
< Jk(’t) = Jk+1(i), if i € S,
and
(Tﬂk+1 Jk+1)(i) = (Tuk+1 Jk)(z) = (Tﬂrk Jk)(”’) (4 9)
< Jk(z) = Jk-}-l(i)a if 7 g Ska
so that T, | Jkt1 < Jr+1, and (4.4) is shown for the case of a policy update.

Equation (4.4) and the hypothesis that T,,Jo < Jo imply that
Jesr < Joy TJe <ToJi < Ji, VE. (4.10)

From this, Lemma A.11 implies that all policies u; generated by the algorithm are
proper. Moreover, from the monotonicity of T', we also have T™J; < Ji for all m,
and by taking the limit as m — oo, we obtain J* < Ji for all k. From this equation

and (4.10), we see that J, converges to some limit J € J satisfying
TJ<J<J, Vk. (4.11)
Furthermore, from (4.7)-(4.9), we have that

T

Hik+1

Je1 < T Jey VEk. (4.12)

To form a contradiction, suppose there is a state i such that (TJ)(s) < J(1).
From the continuity of 7, there exists an integer k such that for all k£ > k we have
(TJi)(5) < J(i). Let k > k be an iteration index such that the policy update (4.3)
is executed for state i. Let k' be the first iteration index with k' > k such that the

value update (4.2) is executed for state . Then

Jor1(1) = (T Ji)(9)
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< (T 1) (1)

< (Duasn T (@)

= (TJ()

< J(@), (4.13)

where the first equality follows from the value update (4.2), the first inequality fol-
lows from (4.12), the second inequality follows from the relation Jxi1 < Ji and the
monotonicity of T}, ,,, and the second equality follows from the policy update (4.3).
The relation (4.13) contradicts (4.11). Thus we must have that (T'J)(i) = J(:) for all
i, which implies that J = J* since J* is the unique fixed point of T. Q.E.D.

Remark: In [59] van der Wal proposed the following algorithm for discounted cost

stochastic games.
Algorithm 4.1.4 (Generalized Policy Iteration [59])*

1. Choose an initial cost function Jy € J with the property that TJy < Jy. Also,

choose € > 0 and a positive integer m.
2. Gwen Jy_1 € J,

(a) (Policy Improvement) Compute px € M such that TJr_y = Ty, Jx-1.

(b) (Policy evaluation) Compute Jp = T Jx_1.

3. Stop when
b1 — Yr-1 < (1 — a)/a,

where « is the discount factor and

de-1 = max[(TJe-1)(5) = Je1 ()] ¥e1 = minl(TJk-1)(0) = Jea(2))-

For single-player Markov decision processes, this algorithm would be recognized as modified
policy iteration (see [42, 4]).
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We observe that generalized policy iteration is actually a special case of asynchronous
policy iteration. In [59] it was shown that (for discounted cost games in mixed
strategies) generalized policy iteration will terminate after a finite number of stages.
Moreover it is shown that, given the terminal value function approximation J € 7,
the policies i € M and o € N such that TJ = T,J and T,J = TJ form an e-

equilibrium policy pair.

4.1.4 Approximate Policy Iteration

We now consider what happens when approximations are used in the policy iteration

algorithm.

Algorithm 4.1.5 (Approzimate Policy Iteration with Function Approzimation)
1. Choose'. an wnitial proper policy po € M.
2. Givqn the policy pr—y € M:

(a) (Approzimate Policy Evaluation) Compute an approzimation J(-,7%) of
Sy -
(b) (Approzimate Policy Improvement) Compute a proper policy py such that

TJ(,r*) =T, J(-,rF).

For single-player Markov decision problems there is a recent result due to Bertsekas

and Tsitsiklis ([9], Proposition 6.3 on page 279) which states that

1. if the cost function approximations for the successive policies are accurate (in

a specific mathematical sense) and

2. if the policy updates are computed accurately with respect to the approxima-

tions,

then the resulting policies will ultimately yield costs which are close to optimal. The
bounds on limiting performance are proportional to the accuracy of the approxima-

tions. This type result guarantees that there are no hidden bugs in the methodology
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which can lead a priori to poor performance. The following proposition provides an

analogous result for stochastic shortest path games.

Proposition 4.4 Let M, denote the set of proper policies for the minimizer. Define

p = max sup sup Prob(i, # Q | ip =1, u,v).
1=1,...,n HEM, veEN

Assume that p < 1. In addition, assume that in implementing approzimate policy

iteration the following are true

||J("Tk+1) - ']uk”oo < € k =0,1,---, (414)
(T,

Hk+1

JE) =TI )l < 6, kE=0,1,..., (4.15)

where € and § are fized positive scalars. If each policy px generated by approrimate

policy iteration is proper, then

n(1 —p+n)(5+2e)_

i, (4.16)

limsup ||J,, — J*]|oo <
k—o0 :

Remark: The assumption that p < 1 is satisfied whenever the set of proper policies
M, is compact. This is true, for example, in sequential games with finite constraint
sets and in games where all stationary policies for the minimizer are proper. In the
special case of stochastic shortest path games which reflect a discount factor o < 1,

the bound in (4.16) can be improved to (¢ + 2ae)/(1 — a)?.

The following lemma will be helpful in proving Proposition 4.4.

‘Lemma 4.1 Let P = P(u,v), where p € M is proper and v € N, and let c be a
nonnegative scalar. Assume that p (as defined in the statement of Proposition 4.4)

satisfies p < 1.

1. If a vector x satisfies ¢ < Pz + cl, then

z(i) <




2. If a sequence of vectors zy satisfies Ty, < Pzy + cl for all k, then

nc

lim sup z; (7)) < , Vi=1,...,n.

k=00 1—p

Proof: (a) Let y(i) = max{0,z(¢)}, ¢ =1,...,n. Then, z < Pz + ¢l < Py +cl,
which together with the relation 0 < Py + c1, implies y < Py 4 c1. We then have

y < P(Py+cl) +cl < P?y+ 2cl.
By repeating this process n — 1 times, we have
y < P"y + ncl.
By the definition of p, we have
Py <p (miaxy(i)> 1,

and it follows that

max y(i) < pmaxy(i) + nc.
1 1

Hence, z(4) < max; y(i) < nc/(1 — p), as desired.

(b) Proceeding as in part (a), we obtain
MaX Yn (i) < pmaxye(i) +ne, Yk,
where y; (1) = max{0, zx(7)}. Hence,
lim sup (mlax yk+n(1})) < plimsup (miax yk(i)) + ne,

k— oo k—o0

and the result follows. Q.E.D.
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Proof of Proposition 4.4: To simplify the notation, let us define Ji to be equal
to J(-,7**1) which is the approximation of the worst-case cost J,, of the minimizer
using the policy . From (4.14) and (4.15) we have for all &,

T

ulc+1JMk —e€l S Tu Jk S TJk + 01.

k41
From (4.14), we have for all &,

TJ, <TJ,, +¢€l.
Combining these relations, we obtain for all k,

T,

Hk+1

Ju Ty, + (6 +26)1< T, Jy, + (64 2€)1. (4.17)

From (4.17) and the fact that T}, J,, = J,,, we have

TMHIJM < Jyu, + (0 +2€)1.
By subtracting from this relation the equation T}, J,, ., = J,,,,, we obtain
Toeirdie = Tanor Jiess < iy — Jugey + (6 + 26) 1.
Let 7 achieve the maximum in Tl-‘k 1) ey, We obtain
e = Tue < Plptst, 2) Ty — J) + (6 + 26)1. (4.18)

Define & = ||J,,., — Jullo- Then, from (4.18) and Lemma 4.1(a), we obtain

k+1

n(é + 26).

& <
1-p

(4.19)

Let u* be an equilibrium policy for the minimizer. Note that y* must be proper.
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From (4.17), we have

TperJue < Ty + (64 2€)1
< Tpedy, + (6 +2€)1
= Tpdy —Tpedue +J7 + (04 2¢)1
< Pt o)(Ju, — I+ I 4+ (64 26)1,

where 7 achieves the maximum in T}-J,,. (We have used the fact that T,.J,. =

J,» = J*.) We also have that

T,

Hk+1

Jmczj

Hk+1

+ T,

Hik+1

I, —T,

Hi+1

Jﬂk+1 2> JHA-,+1 + P(/J‘k+1> Ij)(‘]ﬂlk - ']ﬂk+1)’

where ¥ achieves the maximum in T}, ,, J,,,,. Combining these relations, we obtain

J,

Hk+1

It < P, 0) (T~ T) + Pl 9) (]

Hik+1

From the definition of &, we get

P(u, ) (T — ) + € P (ptrs1, 7)1 + (6 + 2€)1
< P o) (Jy — J) + &1+ (64 2€)1.

—J*

IN

Hi41

With (4.19), this implies

(1= p+n)(6 + 2e)

J —,

ey — ISPt 0)(Jy = J7) + 1.

From Lemma 4.1 we obtain the desired result:

lim sup(J,,, (¢) — J* (7)) < n(l—p+n)( + 2

m su 1= )7 , VieS.

Q.E.D.
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4.1.5 Naive Policy Iteration

In the preceding chapter we described the policy iteration method (Algorithm 4.1.2)
for computing the equilibria of stochastic shortest path games. In policy iteration,
proper policies for the minimizer are generated via a sequence of policy evaluations
and policy improvements. In evaluating the policy pg it is necessary to compute
the worst-case cost J,, = sup,,ecxy Jyu,,ny Which is equivalent to solving a dynamic
programming problem for the maximizer (with the minimizer’s policy fixed). Given
the “complexity” of this method, we are led to examine other related algorithms
which are at least conceptually easier to implement. In this and the following section
we will consider two such algorithms: naive policy iteration and modified Newton’s
method

To introduce naive policy iteration, we cite the work of Pollatschek and Avi-
Itzhak [40]. They proposed an algorithm which is similar to policy iteration in that
it proceeds as a sequence of policy evaluations and improvements. The key difference
is that instead of generating a sequence of policies just for the minimizer, a sequence
of pairs of policies is generated (one for each player). As a result, policy evaluation

only requires computing the expected additive cost for a Markov reward process.
Algorithm 4.1.6 (Naive Policy Iteration [{0])*

1. Choose an initial proper policy po € M and choose an initial stationary policy
for the mazimizer vy € N. (Alternatively, start with an initial guess J € J for

the equilibrium cost function and skip to step 2.(b), setting J,_, ,_, equal to J.)
2. Given ux_y € M and vy_y € N:

(a) (Policy Evaluation) Compute Ju, | v, _,-
(b) (Policy Improvement)

i. Compute p € M such that TJy, | v, = TS 1 w1 -
=Ty s

—1Vk-1"

i. Compute vy € N such that TJ,, _

1,/Vk—-1

2This algorithm is often called the “Algorithm of Pollatschek and Avi-Itzhak.”
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Pollatschek and Avi-Itzhak derived sufficient conditions [40] which guarantee that
the algorithm converges for any initial pair of stationary policies in discounted cost
games. Unfortunately, these conditions are very restrictive, and it is not clear how
they can be improved. In their numerical examples (none of which satisfied the
sufficient conditions), the algorithm converged very quickly to the equilibrium. This
led many researchers to conjecture (and even publish incorrect proofs, as in Rao et
al. [44]) that the algorithm is globally convergent. However, van der Wal in [59]
presented an example which shows that this is untrue.

Naive policy iteration has an extra failure-mode when applied to stochastic short-
est path games: it may generate at some point a pair of stationary policies (u,v)
which is not terminating with probability one. When this happens, the cost to the
minimizer J,,(2) is infinite for at least one initial state € S, and there is no basis

for the algorithm to continue.

Interpretation as Newton’s Method

In their original analysis [40], Pollatschek and Avi-Itzhak used a geometric interpre-
tation of their algorithm as Newton’s method. This interpretation, reproduced here,

is useful for two reasons:

1. It provides insight into why naive policy iteration sometimes fails. (In particu-

lar, we’ll see how van der Wal’s example works.)

2. It suggests a technique for improving naive policy iteration, resulting in “mod-

ified Newton’s method,” to be discussed in the following subsection.

Let us formally define the Bellman error function ¥ : J — J as
U(J)y=TJ-J.
Pure Newton’s method for finding the roots of ¥(J) is given by the recursion:
Ji=J—[VU(J)] e(J). (4.20)
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Suppose 4 € M and v € N are such that 7J = T,J and TJ = T,J. Then,
V(J) = c(p,v) + (P(u,v) - 1) J,

where I, is the n x n identity matrix. Wherever the minimax solution (4, v) in the

evaluation of T'J is unique, ¥ is differentiable and the gradient may be computed ags
VU(J) = [P(u,v) - L.

Using the matrix inversion lemma, it can be shown [40] that the cost Jy., associated

with the pair (y,v) equals the right hand side of (4.20).

Van der Wal’s Counter-example

We déscribe here van der Wal’s example which shows that naive policy iteration is
not a globally convergent algorithm. Consider the game shown in Figure 4-1. This is
a discounted cost - game with two states. While in state 1, each player has two control
options. In order for there to be g nonzero probability of transitioning to state 2,
the minimizer must implement action 2, and the maximizer must implement action
1. Assumption SSP is satisfied in this game because of the discount factor o — 3/4.

The transition costs 9(u,v) are shown in the figure.

a=3/4

g(1,1)=3 g2 1)=6

g(1,2) =2 Qp(z, D=2/3 Q
22 1)=6 1 = 2
82,2)=1

Figure 4-1: The example of van der Wal.

It turns out that this game has an equilibrium in pure strategies. Clearly, the
equilibrium cost from state 2 is zero, so the only unknown is the equilibrium cost
from the state 1. As shown in Figure 4-2, the policies which achieve T and T are

also pure for all estimates of the equilibrium cost-to-go. In Figure 4-3, we graph the
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Greedy Actions

0.5 L L L
o 2 a 6 8 10 12 14
J(1)

Figure 4-2: Greedy policies for van der Wal’s example plotted as a function of esti-
mates J(1) of the equilibrium cost-to-go from state 1. The solid line represents the
greedy action for the minimizer, and the dashed line represents the greedy action for
the maximizer.

Bellman error ¥ evaluated at state 1 as a function of estimates J(1) of the equilibrium
cost-to-go from 1. We note that there two points where ¥ is not differentiable. These
are points for which either pure strategy is optimal for one of the players. In the
discussion which follows, we will constrain ourselves to J(2) = 0. (Naive policy
iteration will only produce estimates of the equilibrium cost within this subspace.)
Since ¥ here is effectively a function of a single variable, Newton’s method can easily
be described geometrically. Given an estimate of the equilibrium cost J(1), draw
the line tangent to ¥ at J(1). The point where the tangent line intersects the J(1)-
axis is the corresponding Newton step. Thus, the Figure 4-3 tells us everything we
need to know about van der Wal’s example. For initial estimates J(1) in the set
(—o0,6) U (10, 00), sﬁcceeding iterates of naive policy iteration will oscillate between
4 and 12. For initial estimates in (6,10), the method converges to the equilibrium in
a single step. What results when J(1) € {6,10} depends on which pair of policies is
selected.

Apparently, it is not the fact that ¥ is nondifférentiable which causes naive policy

iteration to fail. Rather, the problem stems from the fact that ¥ has linear segments
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-3 1
o 2 a 6 8 10 12 14
J(1)

Figure 4-3: Bellman error ¥(J)(1) for van der Wal’s example plotted as a function
of estimates J(1) of the equilibrium cost-to-go from 1. The solid line is the graph of
¥. The dashed traces are the lines tangent to ¥ extended to the points where they
intercept the J(1)-axis.

which are aligned so as to produce an oscillation in Newton’s method. We would
obtain this oscillatory behavior even if the nondifferentiable points were somehow

smoothed out.

4.1.6 Modified Newton’s Method =5

In [19], Filar and Tolwinski rec'onsidergd the interpretation of naive policy iteration as
Newton’s method. They proposed a modification of the algorithm in which an Armijo-
like stepsize rule is used to prevent the Newton updates from being too ambitious.
To be more precise, after selecting an update direction according to (4.20), their
algorithm employs Armijo’s rule to guarantee a certain minimal relative improvement
to

2

G(J) & Zw(J)u(J).

[N

We give a formal statement of their algorithm, called modified Newton’s method,

below.
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Algorithm 4.1.7 (Modified Newton’s Method [19])

1. Select two parameter values: By € (0,1) and B, € [.5, .8]. Also, choose an initial

estimate for the equilibrium cost function, Jo € J.
2. Given Jk—l € ..7,

(a) Compute pg—1 € M and vg_y € N such that TJy = T, Jr and TJ =
Ty, Ji.

(b) Compute Dy_1 € J as

D1 =y _yny — Ji-15

i1k, LS the cost function associated with (pix—1, Vk—1)-

(c) Set v =1.

(d) Test the inequality

where J

G(Jk—1 + mDx) — G(Jk-1) < b1 v VG (Jk-1) D

If the inequality is satisfied, then set J, = Jx—1 + YxDk. Otherwise, set
Y = Payk and re-test the inequality.

If ¥ is differentiable at J, then the gradient of G can be computed as
VG(J) = [VI(J)]¥(J]).
Moreover, as we remarked earlier, if ¥ is differentiable at Jx_;, then
Dy = —[VU(Je1)'] 71 (Jk-1)
and we have that

VG(Jior) Dy = =0 (Jesy) VU [V (Ji-1) )1 (Jp=1) = = |8 (Jemr)|* < 0.
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Thus, the update directions for modified Newton’s method are directions of nonin-
crease for the objective function G. Unfortunately, this argument breaks down at
points where ¥ is no longer differentiable. Indeed, the algorithm itself is not well
defined since the gradient of G may fail to exist at some Ji. If this is the case, then it
is easy to let the algorithm proceed by replacing VG(Ji) with a directional derivative.
However, it is possible that the algorithm can get stuck at a point where Armijo’s
rule cannot find a stepsize which yields a decrease in G.

In {19], Filar and Tolwinski argued (erroneously) that, with initial value function
approximations Jy € J in some nonempty bounded set, modified Newton method
will converge to the unique equilibrium value function for diS(':ounted cost games.
Their argument uses classical results from the theory of nonlinear programming for
continuously differentiable objective functions. In particular, they attempt to use a
well-known result which states that the limit points of a gradient-related recursion
under Armijo’s rule (see [35, 5]) are stationary. This type of argument cannot be
employed because he.re because the notion of a gradient-related sequence is not defined
for the nondifferentiable objective function G.

Despite these difficulties, modified Newton’s method seems to work well on aca-
demic examples. In particular, the method converges for van der Wal’s example (as
can be seen from Figure 4-3). Modified Newton’s method also converges for the in-

spection game of Section 2.4.2, although it is quite slow and computationally intense.

4.2 Algorithms for Symmetric Sequential Games

In this section, we specialize our earlier results to the case of symmetric sequential
‘games (the type described in Section 2.3.3). Recall that the state space of these
games consists of pairs (z,4), where z € {1,2} indicates whose turn it is, and i € S=
{1,...,7} indicates the relative positions of the two players. Also, for each i, the
set, of controls available to player z is denoted W (%) and is assumed to be a compact
subset of a metric space. Finally, we assume that termination is inevitable under

all pairs of policies. Thus, these games fit into the framework for stochastic shortest
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path games, and Propositions 3.1 and 3.2 apply. In particular, each such game has a
unique equilibrium cost function J* which can be found as the limit of value iteration.
We note that J* has a special structure due to the symmetric nature of the game. In
particular,
= | (4.21)

—_X*
To see this, consider the value iteration algorithm applied to an initial cost function
estimate Jy of the form

Xo

- X,

J():

Due to the symmetry of the game, each iterate Ji in value iteration has the same
(symmetric) form. Since the iterates converge, they must converge to a vector of the
form in (4.21).

We are led to the definition of two new operators that map X, the space of real

valued functions from {1,...,7}, to itself. Given u € M, define Z, : X — & as

Now in analogy with T, define Z : X — A as

ZX = inf [e(p) + P(W)X — R(p)X] .

pneM

Given a stationary policy u for the minimizer, define the u-symmetric policy v, for the
maximizer such that v,(2,7) = p(1,1) for all ¢ € S. Note that due to the symmetry

of the game we have

X Z,X
Tuuu = )
e ~Z,X
T X X
\ -X —z2X
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Thus, the operators Z and Z, capture the essence of the computations that underly

T and T, when applied to symmetric estimates of the equilibrium cost function.

4.2.1 Symmetric Value Iteration

Fro.m the preceding discussion, we see that Z and Z, have unique fixed points which
can be computed as the limits of the recursions X := ZX and X := Z,X, respectively.
(We’ll refer to this recursion as symmetric value iteration.) A closer analysis reveals
that Z and Z, are contraction mappings. (This is obvious if the transition probabil-
ities reflect a discount factor. Otherwise, given that termination is inevitable under

all policies, the operators are still contractions with respect to a weighted sup-norm.)

4.2.2 Symmetric Policy Iteration

When policy iteration is applied to a symmetric game, two symmetric estimates of
equilibrium cost-to-go are maintained on the respective halves of the state space. In
this section we introduce a new algorithm which can be described as policy iteration

for only half of the state space.
Algorithm 4.2.1 (Symmetric Policy Iteration)

1. Choose an initial stationary policy uo for the minimizer. (The mazimizer will

implicitly play the pg-symmetric policy v,,.)
2. Given pur_1 € M:

(a) (Symmetric Policy Evaluation) Compute the unique fired point X, , € X

of the Z,,,_, operator.

k-1

(b) (Symmetric Policy Improvement) Compute pu, € M such that
ZXper = Zu Xy

Because the operators Z and Z, do not have the monotonicity properties that are

enjoyed by T and T}, the convergence of this algorithm is not immediately clear. Since
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symmetric policy iteration can be viewed as a special case of naive policy iteration,
there is good reason to suspect that the method is not globally convergent. Still,
without doing any analysis, one may hope that the special structure of symmetric
sequential games provides an extra mechanism for convergence. Unfortunately, a
simple example shows that this is not the case. Consider the game illustrated in
Figure 4-4. This is a discounted cost game where play strictly alternates between
the two players. For every state of the system, one player gets to choose one out of
two possible actions. Thus, each player has exactly eight pure policies. (There is no
need to consider the mixed extension of this game since only one player acts at a
time.) Figure 4-5 lists the costs to the minimizer of each of the eight policies. (In a
fashion consistent with symmetric policy iteration, it is assumed that whenever the
minimizer uses a policy 1 the maximizer uses the u-symmetric policy v,.) Also listed
are the corresponding unique policies which achieve the minimum in the Z operator
applied to the cost evaluations. (We call these policies “greedy”.) Note that policy
0 is the only policy which is greedy with respect to its own cost evaluation; thus it
is the unique equilibrium policy of the game. Policy 0 is also greedy with respect to
the evaluation of policy 7. In other words, if we initialized symmetric policy iteration
with policy 7, it would converge to the equilibrium solution in one step. To see that
this game actually represents a counter-example, we must examine the remaining

policies. Note that
1. polipy 2 is greedy with respect to the evaluation of policy 1,
2. policy 4 is greedy with respect to the evaluation policy 2, and
3. policy 1 is greedy with respect to the evaluation of policy 4.

Thus, policies 1, 2, and 4 vform a cycle for symmetric policy iteration. Moreover,
this cycle attracts all of the remaining policies: 3, 5, and 6. Obviously, if we were
to initialize symmetric policy iteration with any of these policies, then the algorithm
would fail to converge. The game is rigged in such a way that the cost-evaluations of

policies 1, 2, and 4 are “misleading” to the policy improvement step.
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Figure 4-4: A symmetric game for which symmetric policy iteration is not globally
convergent. Solid lines indicate possible transitions under action a = 1, while dashed
lines represent possible transitions under @ = 2. Whenever there is more than one
possible transition under a particular action, the probabilities are assigned uniformly.
The transition costs (to the minimizer) are indicated in the figure on the corresponding
arcs; the corresponding transitions from the states (2,%) are the negatives of the ones

shown in the figure.

[ Policy [ p(1) [ (2 [ @) [ X.(1) | X.(2) X,(3) | Greedy Policy |
0 1 1 1 -0.275784 | -0.762336 | 0.261992 0
1 2 1 1 10.2564 2.4598 -9.74359 2
2 1 2 1 -10.2564 9.74359 | 9.74359 4
3 2 2 1 10.2564 | -9.74359 | -9.74359 2
4 1 1 2 0.10376 -1.16185 | 1.50259 1
5 2 1 2 -1.03314 | -1.35716 | 2.14014 1
6 1 2 2 -10.2564 9.74359 | 1.24359 4
7 2 2 2 0.0511542 | -0.485965 | 0.998785 0

Figure 4-5: Table listing the eight policies of the game in Figure 4-4, along with their
expected costs and corresponding greedy policies.
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Linear

Cross

Pentagon

Figure 4-6: Three configurations for the industrial waste inspection game: linear,
cross, pentagon.

4.3 Example: Industrial-waste Inspection

We return now to the industrial-waste dumping and inspection game of Section 2.4.2.
Our purpose is to report on a small numerical study where we applied several dynamic
programming algorithms to games with 5 dump sites (50 states). We consider 3
different configurations of the dump sites: linear, cross, and pentagon; as shown in
Figure 4-6. The game parameters were chosen as follows: p; = .95, p; = .15, k; =2,
and k; = 1. Thus, the worst case probability of detecting a dump is .15, the best case
probability is .95, and the effect of the inspector changing sites is twice as strong as
the manufacturer changing sites. The dynamic programming algorithms we applied
include value iteration, policy iteration, asynchronous policy iteration, naive policy
iteration, and modified Newton’s method. We list details specific to each algorithm

below.

72



Value Iteration We initialized this algorithm with an initial cost function of all

Zeroes.

Policy Iteration We initialized this algorithm with the “uniform” policy where

each site is chosen with equal probability. (This policy is proper.)

Asynchronous Policy Iteration Let Sp denote the subset of states where the
manufacturer was detected last night. Each iteration of this algorithm consisted of
four steps in sequence: (1) a cost update on S — Sp, (2) a policy update on Sp, (3) a
cost update on Sp, and (4) a policy update on S — Sp. We initialized this algorithm
with the uniform policy and an initial cost function of 2500 times the function of all
ones. (We chose the initial cost estimate so that T,,,Jo < Jo, and we chose the initial

policy to be proper.)

Naive Policy Iteration We initialized this algorithm with the cost function that

results when the minimizer and maximizer both use the uniform policy.

Modified Newton’s Method Weset §; = .1 and (5, = .8, and chose an initial cost
function equal to the cost that results when the minimizer and maximizer both use
the uniform policy. (Using an initial cost function of all zeros caused the algorithm
to fail. It resulted in a target cost which was uniformly greater than the initial cost,

so that the Armijo loop would never terminate.)

Results: The results of this numerical study are summarized in the table of Fig-
ure 4-7. The table lists the number of iterations that were required for the sup-norm
“difference between successive estimates of equilibrium cost to be less than 107, In
addition to this, various other statistics are listed which indicate the efficiency of the
respective algorithms, including the total number of times the operator T' was ap-
plied. (To evaluate (T'J)(z), a linear program with five variables and five constraints
must be solved. To evaluate T'J, this has to be done fifty times.) In describing policy

iteration, we list the number of 1-player dynamic programming problems which had
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Configuration: Linear | Cross | Pentagon
Method: Notes:
Value Iteration Iterations 1062 1649 1757

T applications 1062 1649 1757
Policy Iteration Iterations 11 10 12

T applications 11 10 12

Worst Case Evals. || 11 10 12
Asynchronous Policy Iteration || Iterations 1526 2352 2497

T applications 1526 2352 2497

T,, applications 1526 2352 2497
Naive Policy Iteration Iterations 4 3 4

T applications 4 3 4

Pair Evaluations 4 3 14
Modified Newton’s Method Iterations 212 234 233

Armijo’s/Iteration || 15 15 15

T applications 3180 3510 3495

Pair Evaluations 3180 3510 3495

Figure 4-7: Table summarizing the computational difficulty of the inspection game.

to be solved before termination of the iteration. In describing asynchronous policy
iteration, we list the total number of times the T' and T}, operators were applied.
(Note: we counted one T and one T}, per global step of the method.) In describ-
ing naive policy iteration, we list the total number of times an exact evaluation of
a pair of policies was done. (Each evaluation involves inverting a 50 x 50 matrix.)
In describing modified Newton’s method, we list the average number of Armijo steps
which were required for each iteration. (Each Armijo step involves an application of
the T operator along with the exact evaluation of a pair of policies.)

For each configuration of sites, the algorithms produced estimates of equilibrium
cost-to-go that agree to at least four significant digits. As measured by compute-time,
the naive policy iteration and policy iteration algorithms were the fastest. (Both naive
policy iteration and modified Newton’s method converged even though there are no
theoretical guarantees that they should.) Modified Newton’s method was the slowest

of the algorithms, with asynchronous policy iteration being a close second.
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Comparing Naive Policy Iteration and Modified Newton’s Method Fig-
ures 4-8 through 4-10 show the evolution of modified Newton’s method as applied
to each of the three configurations of dump sites. Each global step of the method
typically required 14 to 15 Armijo steps, ultimately resulting in stepsizes between
5.5- 1072 and 4.4 - 1072. Consequently, each global update in modified Newton’s
method resulted in a very small adjustment to the estimate of the equilibrium cost-
to-go function. This is to be contrasted with naive policy iteration which would
always employ a stepsize of one in this framework. As shown in the figures, it is not
the case that modified Newton’s method approaches the pure Newton's method (i.e.
naive policy iteration) in the limit; a large number of Armijo steps is required even as
the method approaches a solution. In terms of computational effort, each Armijo step
in modified Newton’s method is roughly equivalent to a single step of naive policy
iteration. As a result, modified Newton’s method took at least 14-212/4 times longer

than naive policy iteration to produce an accurate estimate of the equilibrium cost

function.
120 T T T T 16 T B
110 15_5L ......... .......... .......... .......... _
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Figure 4-8: Modified Newton’s Method applied to the linear configuration.
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Figure 4-9: Modified Newton’s Method applied to the cross configuration.
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Figure 4-10: Modified Newton’s Method applied to the pentagonal conﬁguration;
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4.4 Chapter Summary

In this chapter we analyzed dynamic programming algorithms for stochastic short-
est path games. Regarding general algorithms, we first showed that value iteration
converges to J* for every initial estimate of the equilibrium cost. This is nontrivial
given that the operator T isn’t always a contraction. Next, we considered a policy
iteration (of the same type as considered by Rao et al. [44]), where a sequence of
policies for the minimizer is generated based on worst-case evaluations of cost. We
proved that this form of policy iteration yields a sequence of policies whose costs
converge monotonically to the equilibrium value of the game. We showed that a cor-
responding form of asynchronous policy iteration also converges to the equilibrium,
implying a certain robustness for policy iteration. We next proved an error-bound
result for appfoximate policy iteration. For completeness, we described naive policy
iteration (due to Pollatschek and Avi-Itzhak [40]) which is a variation on the earlier
policy iteration method. While this method is easier to implement than policy itera-
tion, it is not globally convergent, as illustrated by an example of van der Wal [59].
Filar and Tolwinski proposed a related algorithm called modified Newton’s method-
so named for a geometric interpretation originally due to Pollatschek and Avi-Ttzhak.
We discussed this method in brief detail only to show that Filar and Tolwinski’s proof
of convergence is incorrect, and it is unclear at present whether convergence actually
prevails. At this point, we switched gears to discuss specialized algorithms for sym-
metric sequential games. After deﬁning two new “dynamic programming operators”,
we showed that the corresponding symmetric value iteration method is globally con-
vergent, while the corresponding symmetric policy iteration is not. The last section
of the chapter was devoted to a computational study where we applied the general
algorithms of Section 4.1 to the inspection game of Section 2.4.2. All of the algo-
rithms we tested converged to an equilibrium solution of the game, including naive
policy iteration and modified Newton’s method (for which convergence results do not
exist). It is interesting to note that, while naive policy iteration was the fastest to

produce and equilibrium solution, modified Newton’s method was the slowest. This

7



indicates that the introduction of an Armijo’s rule to naive policy iteration signifi-
cantly impacts the evolution of the algorithm. In fact, modified Newton’s method

never implemented a pure Newton step.

78



Chapter 5

The Average Cost Connection

In this chapter we explore relationships between stochastic shortest path games and
games with an average cost objective. We first show that the existing literature on
average cost games can be used to obtain a subset of the results from Chapter 3 about
stochastic shortest path games. It turns out that this line of reasoning is quite limited
because the analysis of average cost games (to date) has been restricted to the case
where players optimize with respect to mixed strategies over finite underlying sets of
actions (as in Section 2.3.4). After making this point, we turn the tables and use the
general theory of Chapters 3 and 4 to obtain new results for average cost games. In
particular, we establish the existence of stationary equilibrium solutions for a broad
class of average cost games where players choose actions from arbitrary compact
constraint sets. We characterize the equilibrium value function of these games as
the effectively-unique solution to a form of Bellman’s equation, and establish the
convergence of several dynamic programming algorithms. In the remainder of this
introductory section we define basic terminology and review the pertinent literature
| on average cost games. '

As in earlier chapters, we restrict attention to finite state games. However, because
we will make use of an average cost objective, we do not require the existence of an-

extra terminal state Q. Given a pair of policies 7y € M and 7y € N, the average
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cost to the minimizer from state 7 is defined to be

- : o 1 :
']7TM17|'N (Z) = lltlzl_)glf t—i-_]. h:fMaﬂN (’L), (51)
where A%, .. (i) is the expected (¢ + 1)-stage cost from ¢ under (ma, my) which was

defined in (2.2). Unlike the existing literature for average cost games, we assume that
the control constraint sets for both players are arbitrary compact subsets of metric
spaces.

Gémes with average cost objectives have been studied for a long time, starting
with Gillette [21] in 1957. Gillette’s original formulation included finite underlying
sets of actions with the players allowed to use mixed strategies. In a famous example,
the big match [21], Gillette showed that average-cost games do not generally have
value in stationary policies. Additionally, he attempted to show that some special
classes of games (with enough special structure) not only have value but also have

stationary equilibrium solutions. The special classes he considered are

1. sequential games with finite constraint sets (cf. Section 2.3.2, otherwise known

as games of perfect information) and

2. irreducible games where, under all pairs of pure policies, the associated Markov

chain is irreducible. (Irreducible games are also sometimes called recurrent.)

Unfortunately, Gillette’s analysis of these games relied upon an incorrect general-
ization of the Hardy-Littlewood theorem which relates discounted summations to
Cesaro-averaged summations. Gillette’s results were eventually proven to be correct.
In [29], Liggett and Lippman used the existence of Blackwell optimal policies in one-
player Markov decisfon problems (with finite action sets) to establish that sequential
games have equilibria in (pure) stationary policies. In [25], after proving a result about
the continuity of linear programming, Hoffman and Karp established the existence of
stationary equilibrium policies in irreducible games. They also established the con-
vergence of an average cost version of policy iteration in irreducible games. Later on,

Federgruen [16] and van der Wal [60] gave successive approximation (value iteration)
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algorithms for these and slightly more general average cost stochastic games.

In the more general context of nonzero-sum games, Stern [54] used a dynamic
programming approach to show that stationary equilibrium policies exist in games
where the Markov chain associated with each pair of pure policies is unichain and
there is a special state which is recurrent under all pairs of pure policies. [We will
refer to these as recurrent-state games. These are to be distinguished from irreducible
(recurrent) games.] Equilibria in Stern’s games are characterized (but not uniquely)
by solutions to a generalized form of Bellman’s equation. In [53], Sobel established the
existence of stationary equilibrium solutions in N-player, nonzero-sum games where,
for each profile of pure stationary policies, there is a single class of communicating
states. (We will refer to these as unichain games. Notice that it is not required that
the same recurrent class prevail for all profiles of policies.) In [47], using a different
technique, Rogers obtained similar results.

Generally, as demonstrated by Gillette, average cost games do not have equilib-
rium (or even e-equilibrium) solutions in stationary policies. This left researchers
wondering whether average cost games have value in more general classes of policies.
In [11]), Blackwell and Ferguson showed that the big match does, in fact, have an
equilibrium value. They showed that one player has a stationary equilibrium solu-
tion, while the other player has an e-equilibrium solution in the form of a behavioral
strategy (which specifies mixed actions based on the entire history of play). The
question remained as to whether all average cost games have e-equilibria in behav-
ioral strategies. This question was eventually answered in the affirmative. Around
1980, Mertens and Neyman [36] and (independently) Monash [37] proved that all
average cost stochastic games have e-equilibria in behavioral strategies. Both sets of

researchers employed the earlier results of Bewley and Kohlberg in [10].

Remark 1: All of the results discussed above make use of Gillette’s original as-
sumption that the players are optimizing with respect to mixed strategies over finite
sets of actions. (We are unaware of any literature on average cost games where this

assumption is not made.) Thus, one purpose of this chapter is to show that Gillette’s
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assumption is not essential. In general, it 1s not necessary to require the constraint
sets U(4) and V'(7) be simplicial and the functions ¢;(u, v) and p;;(u,v) to be bilinear.
Rather, at least for some classes of games, it is sufficient to impose less restrictive

topological assumptions.

Remark 2: The literature on single-player, finite-state, average cost games with
compact constraint sets is fairly well developed.! In the following, we briefly review
(in chronological order) some of the highlights of this literature. Martin-Lof [34]
established the existence of optimal stationary policies in irreducible average cost
problems. Bather [2] established the existence of a solution to a single optimality
equation given that an “accessibility” condition holds where, for any pair of states
1 and j, there is a stationary policy such that after a finite number of transitions
there is a nonzero probability Qf reaching 7 from . In this way, Bather also estab-
lished the existence of optimal stationary policies. (The single optimality equation
Bather considered is analogous to the Bellman’s equation we develop in the sequel.)
Fainberg [14] established the existence of stationary optimal policies under either
the unichain assumption or the assumption that for each state the set of transition
probabilities contains a finite set of extreme points. Fainberg [15] established the
existence of e-optimal policies in general (multichain) average cost problems (without
the conditions he required in his earlier paper.) Federgruen and Tijms [18] consid-
ered semi-Markov decision processes with countable state spaces. They gave three
“recurrency” conditions (one of which is equivalent to our recurrent-state assumption
when restricted to problems with finite state spaces) which guarantee the existence
of a bounded solution to a single optimality equation (analogous to the Bellman’s
equation we develop in the sequel). Moreover, by allowing instantaneous transitions,
they are able to prove the .convergence of a policy iteration algorithm. Federgruen,
Schweitzer, and Tijms [17] proved the existence of a solution to a pair of optimal-

ity equations for multichain average problems where an “accessibility” assumption

!We refer the reader to [1] and [41] for surveys of the literature on single-player average cost
problems. '
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holds. Schweitzer [48] showed that if the optimal average cost (within the class of
stationary policies) is identical for all states then a single optimality equation (Bell-
man’s equation) has a solution. Schweitzer [49] showed that a solution exists to a
pair of optimality equations for multichain average cost problems if and only if at
least one nonrandomized maximal-gain policy exists and the bias-vectors of all such
maximum-gain policies are uniformly bounded above. Schweitzer [50] generalized
Bather’s results [2] by using Brduwer’s fixed point theorem to prove the existence of a
solution to a single optimality equation (Bellman’s equation) in average cost problems
satisfying an “accessibility” condition. Hordijk and Puterman [26] examined policy
iteration as applied to unichain Markov (not semi-Markov) decision processes. They
proved that the costs associated with the policies generated by the method converge
to the optimal average cost and if there is a unique minimizer in the dynamic pro-
gramming operator then the associated bias-vectors also converge to a solution of a
single optimality equation (Bellman’s equation). They establish these results by us-
ing a Newton’s method interpretation of policy itération which does not generalize to
the two-player case. (Their analysis does not require differentiability of the objective
function in the Newton’s method interpretation.) Dekker [13] gave counter examples
which show that (1), in the unichain case, Hordijk and Puterman’s [26] policy itera-
tion method does not converge finitely and (2) without the unichain assumption the

method may not converge to the optimal average cost.

5.1 An Alternative Proof for Proposition 3.1

Proposition 3.1 states that there exists a unique solution to Bellman’s equation in
additive cost games satisfying Assumptions R and SSP. It turns out that there are
several ways of proving this important result. The proof we gave in Section 3.2 is
quite different from an earlier proof (cf. [39]), where we showed that policy iteration
converges to a unique limit which solves J = T'J. This section is devoted to a third
proof, suggested by an anonymous SIAM reviewer, which applies to the case of mixed

strategies over finite underlying sets of actions. We outline the argument below.
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1. Consider the average reward version of the stochastic shortest path game. (That
is, simply impose the average cost objective function of (5.1), keeping the un-

derlying transition probabilities and cost functions the same.)

2. Fix a proper policy p € M for the minimizer. (One exists thanks to Assumption
SSP.) By Lemma A.9, we have that —oo < J,(i) < oo for all states ¢ € S. As
a result, we claim that

JI“!"N = 0

for all 7y € N, where 0 denotes the zero function in 7. This implies that

inf_ sup I <0.

M,TN
TMEM TNEN '

3. Now fix a stationary policy v € N for the maximizer. From Lemma A.10, we
know that —oco < J, (i) < oo for all states s € S. As before, this implies that
Jrpyw =0 for all mpyy € M. As a result,

sup inf_Jppan > 0.
TveN TMEM
4. Combining these inequalities, we see that the average cost version of the game
has a stationary equilibrium sblution and the equilibrium cost from all initial
states ¢ € S is zero. (Any pair of stationary policies for the two players will
achieve this value.) By Lemma 8.1.3 in [63], we have that there exists a fixed

point of T.

Remark 1: In studying this argument, it is clear that Lemma 8.1.3 from [63] is
crucial. The proof of this lemma, as given in [63], begins with one of the players
fixing a stationary equilibrium policy (for the average cost version of the game). This
gives rise to a Markov decision problem faced by the remaining player. Using the fact

that the underlying sets of actions for this problem are finite, Theorem 3.1 from [51]2

2See also Theorem 9.1.4 in [41] or Proposition 2.4 in Chapter 4 of [4].
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assures that there exists a solution to the associated Bellman’s equation. This fact
is used to complete the proof. As a result, the preceding argument only applies to
stochastic shortest path games of the type considered in Section 2.3.4. [Before leaving
this point, we note that Federgruen was the first to prove the result of Lemma 8.1.3
(cf. Corollary 7.3.5 in [16]). While Federgruen’s basic approach was quite different
from Vrieze’s, it is also crucially dependent on the assumption that the underlying

sets of actions are finite.]

Remark 2: The results of [8] are necessary in order for the alternative argument to
hold. In particular, in the third step of the argument where we fix a stationary policy
v € N for the maximizer, we need the earlier results to be sure that the minimizer’s

best response results in bounded cost.

5.2 Recurrent-state Average Cost Games

In this section we return to the recurrent-state games considered by Stern in [54].
That is, we assume that the- Markov chain associated with each pair of stationary
policies is unichain and that there is a single state which is recurrent under all pairs
of stationary policies. (We maintain the assumption that there is a finite state-space
and that the control constraint sets are compact subsets of metric spaces.) We will
show that zero-sum games of this type have a unique equilibrium average cost which is
independent of the initial state and is characterized by the essentially unique solution
of Bellman’s equation. We will use a line of reasoning which appeared originally in [3]
for the case of a single player. Our results, while restricted to the zero-sum case,
- generalize the results of Stern since the control constraint sets are general compact
subsets of metric spaces. Consequently, we also generalize previously known results
about so-called irreducible games [21, 29] (see also [20]). '

To provide a formal mathematical setting, let S = {1,...,n} denote a finite set'
of states. Let U(i) and V(i) denote the sets of actions available to the players at

state 5. Let M and M be the sets of allowable one-stage (stationary) policies and

85



nonstationary policies for the minimizer, respectively. Let N and N be the similarly
defined sets of policies for the maximizer. Given p € M and v € N, let P(u,v) and
¢(u, v) be the corresponding transition probability matrix and expected transition cost
vector, respectively. Let all of the usual dynamic programming operators be defined
as in (2.3)-(2.7). (Eventually, we will interpret J as the space of all differential cost
functions for the average cost game.) We make the following regularity assumptions

which are slightly more restrictive than Assumption R.

Assumption R (Regularity) The following are true:

1. For each it € S, the control constraint sets U(i) and V(i) are compact subsets

of metric spaces.

2. The functions py;(u,v) and ¢;(u,v) are continuous with respect to (u,v) € U(i) x
V(i). (This implies that the outer extrema in the operators T and T are achieved
by elements of M and N, respectively. That is, for évery H € J, there exists
pEMandvEN suchthat TH=T,He J and TH=T,He J.)

3. For every H € J, we have TH = TH.

The following assumption will play a central role in the results of this section.

Assumption RS (Recurrent State) The Markov chain associated with each pair of
stationary policies (u,v) is unichain. Moreover, the state n € S is recurrent under

every pair of stationary policies.

Given Assumption RS, we can view the recurrent state n as a terminal state
which is inevitably reached in an infinite sequence of conventional stochastic shortest
path games. The results of Section 3.2 then help to establish the existence of an
equilibrium and the convergence of dynamic programming algorithms. To make a
formal definition, consider an average cost game satisfying Assumptions R and RS,

along with an estimate A of the equilibrium average cost. The associated stochastic
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shortest path game (A-SSPG), with transition probabilities p;;(u, v) and costs ¢;(u, v),

is obtained by
1. setting pi;(u,v) = p,-j(u,v) for all 4,7 € S with j # n,
2. setting p;,(u,v) =0foralli e S,

3. introducing an artificial terminal state {2 to which the system transitions from

state 7 with probability p; q(u, v) = pin(u, v) for all ¢ € S, and
4. setting ¢;(u,v) = ¢;(u,v) — A for aili € S.

The definitions and observations of the following paragraphs will be useful in the
sequel.

Let Jy ., (2) denote the cost of starting from 7 under the stationary policies u € M
and v € N in the A-SSPG. Let J) ,(i) = max,en Jx,, (i) denote the worst case cost of
starting from i under p. Let Jy(i) = min,ep maxpen Ja (i) be the equilibrium cost
of starting from :. (Note that these functions are well defined because Assumptions
SSP and R are satisfied in the associated stochastic shortest path game.)

Note that the dynamic programming operators for the associated stochastic short-
est path game are contractions with respect to a weighted sup-norm | - || (cf.
Lemma 3.1). In fact, there is a positive vector w € J and a scalar § € (0,1)
such that T, ,,T,,T,T,, and T are all contractions with respect to | - |2 with mod-
ulus S. We may assume without loss of generality that the weighting on state n is
unity. Throughout the rest of this chapter, we use || - || to denote such a “contractive”
weighted sup-norm, whereas || - || will denote the usual sup-norm.

It is useful to relate the dynamic programming operators for average cost games
and their associated stochastic shortest path games. Suppose H € J is such that
H(n)=0. Then, foralli=1,...,n,

i n—1 1

TH)(7) = inf sup |ci(u,v)+ si(u, v)H (5
TE)G) = jnf, s el e)+ 3 pylu )H()
[ n~1 1

= inf su c(u,v) + p;i(uw,v)H (7
ueU_(i)uevI(),-)_( ) ;PJ( ) (J)_
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Thus, T applied to H in the context of an average cost game is equivalent to T" applied
to the equilibrium cost function estimate H in an associated stochastic shortest path
game. As a result, T is a contraction on J = {H € J | H(n) = 0}. The same is true
of the other dynamic programming operators.

Let N, ,(z) denote the expected number of stages required to reach n in the original
average cost game under the policies p and v starting from . Define

Npyin = min min N, (7
mn pEMVEN i=1,..n (1),

N, = max max N,,(1).
maz pWEMVEN i=1,...n ()

(Again, the maximum and minimum exist because Assumptions SSP and R are sat-

isfied in an associated stochastic shortest path problem.) It is clear that Ny, > 1.

Lemma 5.1 The following are statements are true for average cost games satisfying

Assumptions R and RS.

1. Forallpe M, v e N, A, and X'; we have

Tann(0) = Tymn(i) + OV = NNu(@), i=1,...,m. (5.2)

2. For all p € M, the functions Jy (i) are continuous and decreasing as functions

of A and satisfy

Iy (@) + Nein (X = X) < Jna(§) < Jn (i) + Nmaa (N = ), i N 2 N,
(5.3)

In (@) + Npaz (X = X) < Tapw(i) < Iy u(@) + Npin(X = A), if X <A,

foralli=1,...,n.
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3. The functions Jy(i) are continuous and decreasing as functions of A and satisfy

Ty (@) + Noin (N = X) < Ja(0) < I (0) + Noag (X = A), if N > A,
(5.4)
J/\'(i) + Nmam(/\, - /\) < J/\(Z) < J/\’(z) + Nmin(/\, - A)a Zf)‘, < )\;

foralli=1,...,n

Proof: To prove statement 1, note that the second term on the right hand side
of (5.2) is the expected differential cost associated with A’ in the associated stochastic
shortest path game.

To prove statement 2, note that the continuity of the functions Jj ,(z) follows from
Proposition 7.32 in [7] and the joint continuity of Jj ,, (i) with respect to A, p, and
v. To see that the J, ,(¢) are decreasing, let A\; < A be given. For some 7 € N we

have

Jz\z,u(i) = J/\2 PZ)

S JAI M (1)

Finally, to see (5.3), let X' > X be given; then, for all v € N we have J, ,,(:) =
I (8) + (A = ANy o () > Jnpw (i) + (A — A)Npin. The right-most expression is

maximized by some 7 € N. Thus,

\Y

JA,F‘(Z.) JArurﬁ
> JA’,u,ﬁ + (/\, - /\)Nmin

= J,\r,# + ()\' — A)Nmin-

The remaining inequalities of (5.3) follow similarly.

To prove statement 3, note that the continuity of J,(z) follows from Proposition
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7.32 in [7] and the joint continuity of Jj ,(i) with respect to A and . To see that the

J(i) are decreasing, let A; < X, be given; then, for some 2 € M we have

JAl(i) = J/\h/—-" 7’)

V
3
®
=

(\V4
=~
%]
= ]
S P~ ~ ~
™. .
o —

> Jy,(0).
Finally, we obtain (5.4) from (5.3) and similar arguments. Q.E.D.

Remark: It can be shown that the functions J, ,(7) are convex with respect to A.
However, the functions Jy () are generally neither convex nor concave; they are only

strictly decréasing as stated above.

5.2.1 Existence and Characterization of Equilibria

In this subsection, we establish the existence of stationary equilibrium solutions in
average cost games satisfying Assumptions R and RS. We characterize the equilibrium
value function as the effectively unique solution to a form of Bellman’s equation. The
reéults of this subsection are analogous to the propositions of Section 3.2, and can
be viewed as a generalization of the results in [54] (cf. chapter 2, restricted to the

zero-sum case). Our techniques depend upon the analysis of [3].

Propositibn 5.1 The following statements are true for average cost games satisfying

Assumptions R and RS.

1. There is a unique equilibrium average cost from each state. The equilibrium
average cost is the same for each state and is denoted X*. There is a function

H* € J which, along with X*, satisfies Bellman’s equation

A1+ H*=TH". (5.5)
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Furthermore, if u € M achieves the minimum in TH* and v € N achieves
the mazimum in TH*, then (u, v) forms an equilibrium solution for the average
cost game. Out of all solutions (A, H) to (5.5), there is a unique solution for
which H(n) = 0.

2. If a scalar \ and a function H € J satisfy (5.5), then X is ezactly the equilibrium

average cost for each initial state.

3. Gwen a stationary policy . € M, the corresponding worst-case average cost A,

along with a unique function H, € J such that H,(n) = 0, satisfy

M1+ H, =T,H,.

4. Given a stationary policy v € N, the corresponding worst-case average cost \,,

along with a unique function H, € J such that H,(n) = 0, satisfy

M1+ H,=T,H,.

5. Given stationary policies p € M and v € N, the corresponding average cost

Auv, along with a unique function H,, € J such that H,,(n) = 0, satisfy

Awl+H,, =T,H,,.

Proof: We first prove part 3. Let C,,(n) denote the expected cost starting from
n up to the first return to n under the policies 4 € M and v € N in the average
_cost game. Let N, ,(n) denote the expected number of stages to return to n starting
from n, as defined earlier. Considering the 0-SSPG, we know from our results about
stochastic shortest path games and Assumptions R and RS, that C,,(n) and N, ,(n)
are bounded and continuous on the compact product space M x N. Since N, ,(n) > 2 |

for all 1 and v, the quotient C,,(n)/N,(n) is also continuous. As a result, with
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meE M fixed, there IS a policy Yu € N which achieves the Supremum ip

T Cru(n)
A, 2 — )
S Nyw(n)
Thus,

Moreover, since NV,

are trye:

1. Cﬂ,y(n) - XuNu

wv(n) <0 for all v ¢ v, and
2. ¢,

(v)=0if and only if Chupw(n) — /L‘N,‘,U(n) = (.

) =0, we have that Yu Maximizeg Cunln) — 3

Since Pu(v,

«Nuw(n). The rest of the
Proof for part 3 follows frq

ments simjlar to those for P
ilarly.

m argy

rop
]. Parts 4 and 5 follow gjy,

Osition 4.1 ip Chapter

To show part 1, note thay for
the Supremum ip Sup,,c

uw(n). From Proposition 7 32 in [7], the functjop
Ou,u(n)/Nu,u(”) . !

- Thus, there exists 2 minimax
which achieveg the infimum in

Observe that for g HEM

A O,uu(n) — jN#V(n)}
=su k() >0
¢(M) IJE]{/){ Nﬂ,y(n) -
Moreover, since Nuu(n) is bounded ang greater than o €qual to one, tpe foHowmg
are true;

1. Sup,,c {C’,,,,,(n) ~ XN,‘,,,(n)} 2 0 for aJ] 4 €M, and
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2. ¢(u) = 0 if and only if

,5,211\); {C,,,,,(n) — /\Nu,,,(n)} =0.
Since ¢(f1) = 0, we have that 4 minimizes sup, ¢y {Cu,,,(n) — ;\Nu,,,(n)}.

Now consider the associated stochastic shortest path game, A-SSPG. Since As-
sumptions R and RS are in effect, the :\-SSPG satisfies Assumptions SSP and R. As
a result there exists a unique function H* € J (equal to J5) such that

n—1

H* ) = i i\U, —5\ 74 5 H* ] , ] 1,..., 3
(1) = min max |ci(u,v) +j§=:lpg(u VHE(7)|, i€{l,...,n}

where we have used the fact that p,,(u,v) = 0. In fact, H* represents the equilibrium
cost-to-go function for the associated stochastic shortest path game. An equilibrium
policy p* € M minimizes sup, ¢y {Cu,,,(n) - S\Nu,,,(n)}, reducing it to zero [given our

previous observation about z]. Thus, H*(n) = J;(n) = 0 and

H*(i) + A = min max
weU(z) veV (i)

ci(u,v) + ipij(u,'v)H*(j)} , 1€{1,...,n}.

=1

Moreover, by Assumption R,

- n
H () + ) = vlg‘%() Jélc}ﬁ) lci(u, v) +;pij(u,v)H*(j)} , 1€{l,...,n}. (5.6)
Because we have found an equilibrium of the associated stochastic shortest path game
a policy v* € N which achieves the maximum in (5.6) for all states 1 € S maximizes
inf,ep {C’W,(n) - XNM,,,(n)}. (Such a policy exists thanks to Assumption R.)

Now consider the one-player average cost problem which results when the mini-
mizer announces the use of p*. The maximizer is left with a unichain average cost
problem for which the state n is recurrent under all stationary policies. From part 3,

the Bellman equations above characterize the average cost of this problem, resulting
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in the fact that for all states z € S

A= sup Jyeny(i).
‘ITNGN

Similarly, if the maximizer announces v* then we have that for all states 7

Combining these observations, we obtain

inf_ sup Jrp oy < sup inf_ Jr,, o1
TMEM ryeN TNEN TMEM

This, along with the usual minimax inequality, implies that equality holds and a
constant-valued equilibrium average cost A* = X exists. It is apparent that p* and v*
form an equilibrium solution for the average cost game.

Part 2 follows from similar arguments. Q.E.D.

Corollary 5.1 Under Assumptions R and RS, the following are true.

1. Japup(n) = 0 if and only if A = X,,, where \,, is the average cost associated

with u € M and v € N.

2. Jyu(n) = 0 if and only if X = X,, where \, is the worst case average cost

associated with u € M.

3. Jx(n) =0 if and only if A = A*, where \* is the equilibrium average cost of the

game.

Remark: For single—playér problems with finite action sets, it is possible to exploit
the connection with stochastic shortest path problems to analyze the full class of
unichain average cost problems. In particular, it is possible (as in [4]) to use the

existence of Blackwell optimal policies® to show that if every policy which is optimal

3 A policy is Blackwell optimal if it is optimal for all discount factors a in a neighborhood of 1.
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within the class of stationary policies is unichain, then there exists a solution to
Bellman’s equation and the optimal average cost is independent of the initial state.
If we allow the constraint sets to be arbitrary compact subsets of metric spaces, then
the existence of Blackwell optimal policies is not clear. As a result, the analysis
of [4] cannot be generalized easily to prove the existence of a solution to Bellman’s
equation in unichain average cost problems with compact constraint sets.* Similarly,
the analysis of [4] cannot be géneralized easily to prove the existence of solutions

to (5.5) in unichain games satisfying Assumption R.

5.2.2 Dynamic Programming Algorithms

In this subsection we state and discuss the convergence properties of several dynamic
programming algorithms.

Value Iteration

The first algorithm we consider is the value iteration algorithm of Chapter 3. It turns
out that given any terminal cost function J € J, the k-horizon equilibrium cost

divided by k approaches the equilibrium average cost of the game.

Proposition 5.2 Under Assumptions R and RS we have that

lim %TkJ = A1,

k—o00

for every J € J, where X* is the equilibrium average cost of the game.

Proof: The proof we give is nearly identical to an argument in [4] (cf. pages 318-

319). The only difference lies in the fact that our T' operator involves a minimax
R

operation. Since T remains nonexpansive, the proof goes through without any mod-

ifications.

4The existence of solutions to Bellman’s equation under the unichain assumption was established
in [50] by other methods.
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By Proposition 5.1, there exist \* and H* which solve Bellman’s equation. Set
Js = H* and recursively define J; ; = T'J;. Since A*1 4+ H* = TH*, we can show by
induction that

Jr=k\'1+ H*

for all £ < 0. Mo’reover, since T is nonexpansive, we have that
IT*J (1) = i@ < T - H[loo
for all £k > 0 and ¢ € S. Combining these inequalities, we obtain for all z € S
T (3) = BA*| < 1T = H[loo + 1 H [loo-
Thus, [T*J(2)]/k converges to A\*. Q.E.D.

Relative Value Iteration

An important practical difficulty of the value iteration method is that |(T*J)(:)]
may approach infinity for some states . Moreover, the method does not produce an
estimate of the equilibrium differential cost function H*. The relative value iteration
method presented here is designed to address these issues. Unfortunately, to assure

convergence, extra assumptions must be satisfied.

Algorithm 5.2.1 (Relative Value Iteration)
1. Choose 7 € (0,1], t € S, and an initial Hy € J.

2. Given Hy, compute
Hyp = (1 —7)Hy + T(7Hy) — T(TH)(t)1.

Remark 1: If this algorithm converges, say to H, then the limit satisfies

TH+T(tH)(t)1 =T(TH).
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As a result, T(THy)(t) converges to the equilibrium average cost \*, and H =

(1/7)H*, where H* is the unique solution to TH = H + A*1 with H*(t) = 0.

Remark 2: If we set t to be the recurrent state n and we choose the initial cost
function Hy such that Ho(n) = 0, then we have Hg(n) = 0 for every k > 1. Thus, ev-
ery time the T operator is applied in relative value iteration, it acts like a contraction.
Unfortunately, this does not seem to be of much help in establishing the convergence
of the method. To see this, let § < 1 be the weighted sup-norm contraction modu-
lus associated with the dynamic programming operators of the associated stochastic
shortest path game, and recall that ||-|| denotes the corresponding weighted sup-norm
whose weights are scaled so that the weight on state n is one. Let A\* be the equilib-
rium average cost of the game and let H* be the unique solution to TH = H + A*1
with H(n) = 0. Define H = (1/7)H*, and let ), denote T'(THy)(n). Using the fact
that Hx(n) = Hyy1(n) = H(n) = H*(n) = 0, we have for all k > 1

M= X = [T(rH)(n) = (TH)(m)
T H) - TH|

IN

< 6”7’Hk — H*”

0| Hx — H]|.

Thus,
(A = AL = e = N[ - 12 < 7812 - (| Hy — H]-

From the definition of H; and after some algebraic manipulation we get
Hk — FI = (]. - T)[Hk_l - Ij_r] + [T(THk_l) - T(T.FI)] + ()\k—l - )\*)1
From the triangle inequality we obtain

[Hy = H|| < [(1—7) + 781+ [[1D] - [| He—r — HI-
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Thus, the sequence of iterates Hj converges to H if
(A=) +7m81+[1D] <1 <« BA+][1) <1
From the proof of Lemma 3.1, we have

BL+1) = (1 — 1/Nmaz)(1 + Nrmaz /Nimaz (1)),

where Nz (n) = max,ep maxyen Ny (n). Since Nmgz > Npog(n) > 2, it is impos-

sible to have 8(1 + ||1]]) < 1, and the sufficient condition can never be satisfied.

Proposition 5.3 In addition to Assumptions R and RS, assume that there ezists a
positive integer m such that for every pair of admissible policies mpr = {po, g1, ...}

and 7n = {vo, V1, ...}, there ezists an € > 0 such that

[P(ﬂ‘ma Vm)P(:U’m—la Vm—l) ce P(/J'li Vl)]in

[P(/J'm—la V’m—l)P(um—Za Vm—Z) s P(UO, VO)]in 2 € 1= 1ba - 1,

\V;
“m
o~
Il
“l—"
E

where [];n denotes the element of the ith row and nth column of the corresponding

matriz. Then, setting t = n in relative value iteration, the sequence Hy converges to
a vector H such that (TH)(n)1 + H = TH. (This implies (TH)(n) is equal to the

equilibrium average cost of the game.)

Proof: Let u; be such that THy = T, Hy and define A\, = (T'Hy)(n), for every k.
We have

Hk+1 = Tﬂka - /\kl < T#k-1Hk - >‘k1

Hy=T, He1— M1l < Ty Hi1 — A1l
Defining ¢ = Hyy1 — Hj, we obtain

G > TuHe— Ty He1 + (Me—1 — M)l
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G < T“k_lHk - Tuk_lHk_l + ()\k—l - /\k)]-

Let vy be such that T, Hi—1 = T, ,, Hr-1 and similarly let 7 be such that T,,,  Hy =

Ty, 15 Hi, for every k. Consequently,

G > Puk,Ve)ge-1+ (A1 — M)l

G < Ppr—1,k)qk—1 + (Ae—1 — M) 1.

Since relations like this hold for all £ > 1, we obtain

v

Gk [Pk k) - - - P(bk-mt1s Yomm+1)]@h—1 + (Ak—m — Ax)1 (5.7)

% < [P(pk—1,%%)---P(tk—m, T7k_-m+1)]¢1k—1 + (Me=m — M), (5.8)

By our assumption about the recurrent state n, there are two scalars ¢; > 0 and

€2 > 0 such that

[P()u’lmZk) s P(u'k—m+1a Zk—m+1)]in 2 €1, i= 1) R

[P(uk—1, %) - - - P(fbk—rms Vkemt1) ;. = €2, 1=1,...n.
From (5.8), we obtain
(1) < (1-¢) m?xqj_m(j) + XM — Ayt =1,...,m,
where € = min{e;, €2}. Thus,
' m]aqu(j) <(l1-¢ mjaxqj_m(j) + Xeem — Ak
Similarly, from (5.7), we obtain

mjin w(j) > (1—¢ mjinqj_m(j) + Me—m — k-
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Subtracting the last two inequalities, we get
ma gi(3) = min gx(5) < (1~ €) (maxgim(s) — mingsm(s))

and the rest of the argument follows the proof of Proposition 3.1 in Chapter 4 of [4].
Q.E.D.

Remark: As described in [4], it is possible to extend this result to the case where
t # n. Moreover, if the number of policies available to the respective players is finite,
then setting 7 < 1 can be viewed as a data transformation which gives rise to a game
with the aperiodic structure required in the hypothesis of the proposition. We note
that our results about relative value iteration generalize some of the earlier results of

Federgruen [16] and van der Wal [60].

Contracting Value Iteration

The next method we describe is a new type of value iteration for recurrent-state
average cost games. It generalizes a similar algorithm for single-player problems
described in [6] and is motivated by the connection with stochastic shortest path

games.
Algorithm 5.2.2 (Contracting Value Iteration)
1. Start with an initial estimate (Ao, Ho) of a solution to Bellman’s equation (5.5).
2. Given (A, Hy),

(a) first compute Hy @ = —)\;1 + THy;, and then

(b) compute M\ppq = A\ + YeHg+1(n).
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Proposition 5.4 Under Assumptions R and RS, there ezists a positive stepsize

such that if

Y% ST

for some minimal positive stepsize y and all k, the sequence (M, Hi) generated by con-
tracting value iteration converges linearly to the unique solution (\*, H*) of Bellman’s

equation (5.5) with H*(n) = 0.

Proof: The proof uses Lemma 5.1 and Corollary 5.1 and closely follows the proof
of Proposition 1 in [6]. To see this, associate Jj ,(¢) with hy ,(7) and Jy(z) with hy(3).

What is important is that these functions are
1. continuous and decreasing with bounded slope, and

2. the upper bound on their slopes is strictly less than zero. (The slopes of these

functions lie between — Npay and —Npin.)

Q.E.D.

Policy Iteration
We now examine the policy iteration algori£hm of Hoffman and Karp [25].
Algorithm 5.2.3 (Policy Iteration)

1. Choose an initial stationary policy puo € M.

2. Given pup € M:

(a) (Policy Evaluation) Compute the unique solution (\,,,H,,) to the equa-

tions

H,,.

Hi+1

(b) (Policy Improvement) Compute pr1 € M such that TH,, =T,
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Remark: This algorithm is known to converge [25] when both
1. U(i) and V(7) represent mixed strategies over finite sets of actions, and
2. the Markov chain associated with each pair of pure policies is irreducible.

The following proposition gives a monotonicity result under the less restrictive con-
ditions of Assumption R and RS. Unfortunately, it falls short of actually proving

convergence to a solution of Bellman’s equation.

Proposition 5.5 Under Assumptions R and RS, in the policy iteration algorithm,

for each k we either have

)‘I-Lk.+1 < /\Mk
or else we have
’\#k+1 = )‘uk’ Hmc+1 < Huk'

If équality prevails in the latter, then both uy and uxy, are stationary equilibrium

policies for the minimizer.

Proof: Let {ux} be a sequence of stationary policies generated by policy iteration.

= Ay and H <

Consider pug; we will show that either A .

H,, . Set Jy = H,,, and define

< Ay, or else A

Bi+1 Hk+1

Jm == Tﬂ-k+l Jm—l .

Note that J,,, is the m-stage worst-case cost function associated with the minimizer’s
policy p+1 when the terminal cost function is H,,. Thanks to Proposition 5.2 we

have that for every i € S

By Proposition 5.1 and the definition pk4+; and Jo,

J=TJy =T,

HE+1

Jo S Tp.k']O = /\Mkl + Jo.
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Consequently,

Jo = T,

Hk+1

Ji
< Tuk+1 (A#kl + JO)

= Aul+Tu. Jo

k+1

IA-

2)\%1 + Jo,

where the second equality follows from the fact that there is no terminal state in our

formulation of average cost games. Proceeding inductively, we obtain

Jm S m/\”kl + Jo.

Thus, ,
1 1
m m

and by taking the limit as m — oo we obtain A, ., < Ay,.

If A = \,,, then we can interpret H,, , asthe worst case cost of 44, produced

Hk41 k+1

by a policy iteration step in the associated stochastic shortest path game A, -SSPG.

From the monotonicity of policy iteration for stochastic shortest path games, it follows

that H,,,, < H,,.
If A\yey, = Ay, and Hy, . = H,,, then

)‘uk1+Hmc = /\uk+11+H

Hi+1

= T, . H

Be41*" Bk+1

= Ty Hy

Hie+1

= TH,,.

Thus, A, and H,, satisfy Bellman’s equation, and Proposition 5.1 implies that both

wr and pgy1 are equilibrium policies for the minimizer. Q.E.D.
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Corollary 5.2 If the minimizer has only finitely many policies, then policy iteration

converges in a finite number of iterations.

Remark: Convergence of policy iteration in the more general case (where U(i)
and V(i) are arbitrary compact subsets of metric spaces) is not clear. To begin the
analysis, we note that the pairs (), , H,, ) produced by the algorithm are all contained
within a compact subset of R**1. To see this, recall that, as a function of (u,v), the

unique solution (\,,, H,,) to the equations

M+H = T,,H,
H(n) = 0

is continuous over the compact product space M x N. Thus, the space of all possible
average and differential cost pairs is compact. Since for each p; there exists a station-
ary policy v such that (A, , Hyu,) = (Aupwer i), the assertion is true. As a result,
there is a convergent subsequence {(\,,, H,, ) Yeex, with limit (A, H), where H(n) = 0.
Consider the corresponding subsequence of policies {+1}rex,- Since M is compact,
there is a convergent subsequence of policies {41 }rex, (Where Ko C K;), with limit
. Tt is not difficult to show that TH = T,H. Since A,,1+ H,, =T, H,, > TH,,
for all k, we have (by taking the limit of the subsequence and the continuity of T)
that A\1 + H 2 TH = T,H. This implies A; < X by an induction argument. On the
other hand, since A,, is monofonically decreasing, A < Ay, 41 for all k. Thus, from
the continuous dependence of A, on u, we have 2 < Az. It follows that A= Az, and
therefore H; < H. If equality prevails in the latter, then we are done. However, if
the inequality is strict for some state , then there is nothing else to say. As a result,
the possibility exists that A, will converge to some A > A\* with \,, < A,,,, for every

k.5

5Unfortunately, we cannot pursue the type of analysis of Hordijk and Puterman in {26] which relies
upon a Newton’s method interpretation of single-player policy iteration which does not generalize
to the two-player case.
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e-Policy Iteration

In this subsection, we describe a variation of policy iteration which yields policies

that are arbitrarily close to equilibrium.

Algorithm 5.2.4 (e-Policy Iteration)

1. Choose € > 0 and an initial policy py € M. Compute the unique solution

(Auos Hyuo) to the equations

T.H = H4+ M,

Ho

2. Given (/lka )‘#k’ Hﬂk)r‘

(a) Choose fi such that
TH, T,H

pe — ity

and compute the unique solution (Az, Hz) to the equations

H(n) = 0.

(b) If Az < A\, — €, then set

(ﬂk+1, /\mc+1’ Hﬂk+1) = (ﬁ’ ’\ﬁ’ Hﬁ)

Otherwise, set fip = i and iterate as follows. Given [i},

1. Compute the unique solution flﬁj to the equation

Ty, H = H+ 1.
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u. If ﬁﬁj(n) < —¢, then stop this inner loop; set ugy1 = fi; and compute
the unique solution (A,,,,, Hy,,,) to the equations

T...H = H+Al,

Hi+1

H(n) = 0.
Otherwise, continue the inner loop by choosing fij11 such that

TH; =T

41 Hﬁ

g

Remark: The following observations are useful in interpreting this algorithm.

1. The process of computing the unique solution ()., H,) to the equations T,H =
H + )1 and H(n) = 0 is equivalent to computing the maximal average cost in
the single-player Markov decision problem which prevails when the minimizer

specifies u. By Corollary 5.1, A, is the unique scalar such that Jy, ,(n) = 0.

2. Given p and X [where ) is possibly not equal to A, (the worst-case average cost
of 11)], the process of computing the unique solution H such that T,H = H + A1
is equivalent to the compuﬁng the worst case cost of u in the A-SSPG. Thus,
H = Jy, If \=), then H(n) = J, ,(n) = 0. Moreover, if 4’ is such that
TH =T, H, then p' is the policy that results from one policy iteration step in
the A-SSPG, and J, » < H.

Proposition 5.6 After a finite number of global iterations, the e-policy iteration
method will keep executing (get stuck in) the inner loop of step 2.(b)ii, and the

which prevails is such that A, — A* <e.

Proof: Since ), is the worst case average cost associated with u, we have that
Ay, > A* for all k. Consider the global update where we start with (ug, Ay, , Hyy)-

If the resulting & is such that A; < A, — €, then because we choose pxi1 = fi the
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resulting improvement in worst case cost is at least €/Np,,,. Otherwise, there are two

cases to consider.

1. If Jy, (n) < —e, then, because policy iteration for the A, -SSPG converges, the
inner loop will terminate with some fi; for which Ji,, z;(n) < —e. Since Jy z,(n)
is strictly decreasing as a function of A, it is true that Az, < A,,. Moreover,

from (5.3), associating A" with A,,, A with Az;, and p with fi;, we have that
0= J’\ﬁj N (Tl) S J’\ﬂk’ﬁj (TL) + Nmax()‘uk — ’\ﬁj)v

which implies that A, — Az, > €/Nmaz- Since we choose pxy1 = fij, the resulting

global update results in an improvement of at least €/Nmqsz-

2. If Jy,, (n) > —e¢, then the inner loop of the algorithm will never terminate.

From (5.4), associating A" with A, and A with \*, we see that
J’\"‘k (n) + Nmin()\uk - )\*) S J/\a (ﬂ) = 0

Thus, Ay, — A* < €/Npin < €

Since there can be only finitely many improvements of €/Npqz, the algorithm must

eventually get stuck in step 2.(b)ii. Q.E.D.

Naive Policy Iteration

As with stochastic shortest path games, it is possible to define a naive policy iteration
for recurrent-state average cost games. Pollatschek and Avi-Itzhak [40] studied such
an algorithm and were unable to prove it’s convergence. Generally speaking, the
average-cost version of naive policy iteration is “well-known” to not work, and we do

not pursue it further here.
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5.3 Chapter Summary

The purpose of this chapter was to illustrate connections between stochastic shortest
path games and average cost stochastic games. It is appropriate to search for such
connections since both can be viewed generally as “undiscounted” games. It turns out
that the existing 'theory for average cost games can be used to prove (easily) a subset
of the results established in Chapter 3. Unfortunately, this line of reasoning does not
apply to the general case where U(i) and V (2) are arbitrary compact subsets of metric
spaces. On the other hand, the results of Chapter 3 and 4 can be used to extend
the theory of recurrent-state average cost games. We established the existence of an
equilibrium value for recurrent state games when U(¢) and V (z) are arbitrary compact
subsets of metric spaces and appropriate regularity assumptions are imposed. The
equilibrium value along with an equilibrium differential cost vector is characterized as
the essentialiy unique solution to Bellman’s equation and can be achieved by station-
ary policies for the opposing players. We also examine several dynamic programming
algorithm's for recurrent-state average cost games. One important conclusion to be
drawn from this chapter is that it is not necessary to assume finite underlying action
sets and mixed strategies to obtain powerful results for a broad class of average cost

games.
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Chapter 6

Conclusion

6.1 Summary

We have seen that stochastic shortest path games represent a very general class of
stochastic games, extending to two players the stochastic shortest path problems of
Bertsekas and Tsitsiklis [8]. Our formulation includes the terminating games of Shap-
ley [52] (which includes the class of discounted cost games), the pursuit-evasion games
of Kushner and Chamberlain [28], and the transient games of Filar and Vrieze [20].
Our stochastic shortest path assumption (Assumption SSP) represents the main point
of deviation from the existing literature on stochastic games. It stipulates the exis-
tence of a proper policy for the minimizer which forces termination regardless of the
maximizer’s policy. Improper policies, which permit the maximizer to prolong the
game indefinitely, are allowed as long as the resulting cost to the minimizer is infinite
for at least one initial state. Our regularity assumption (Assumption R), which agrees
with Kushner and Chamberlain’s formulation, allows both players to choose actions
| at each state from arbitrary compact subsets of metric spaces. Because of. this, it is
necessary to impose certain continuity properties on the transition probability and
cost functions. We must also make the extra assumption that the minimization and

maximization in the dynamic programming operator be interchangeable. That is,
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given any estimate J of the equilibrium cost-to-go function,

‘ A . A 7
TJ= min rgle%(c(u, v)+ Plu,v)J = max min c(p,v)+ P(u,v)J =TJ.

Since we do not require the constraint sets of the two players to be simplicial and
we do not require the transition probability and cost functions to be bilinear with
respect to the players action’s, our regularity assumptions generalize the conventional
“mixed-strategy” formulation for stochastic games.

Déspite the generality of our formulation, we are able to obtain all of the standard

results for stochastic games:
1. the existence of stationary equilibrium solutions,

2. a characterization of the equilibrium value function J* as the unique solution

of Bellman’s equation, and

3. a characterization of equilibrium solutions for both players in terms of the poli-

cies which achieve extrema in min,cps 7,,J* and max, TJ*.
peM Ly

Moreover, we obtain these results despite the fact that the dynamic programming
operator T is not generally a contraction mapping. Our analysis makes use of only
the most basic properties of T'. In particular, the monotonicity and continuity of 7" are
used repeatedly in this thesis, and without these properties there would be no hope
of establishing our main results. We are aided by the theory previously developed
by Bertsekas and Tsitsiklis in [8] for single-player stochastic shortest path problems.
That theory laid the groundwork for our present extension to two player, zero-sum
games.

Another main result of this thesis is that the classical methods of dynamic pro-
gramming are effective in solving stochastic shortest path games. We have determined
that value iteration and policy iteration both converge to the equilibriuni value func-
tion. The value iteration algorithm dates back to Shapley [52] who used the fact that
the dynamic programming operator is a contraction (in his terminating games) to

prove convergence. The policy iteration algorithm dates back to a related algorithm
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by Hoffman and Karp [25] for average cost games. Convergence of the discounted
cost version of policy iteration was established by Rao et al. [44]. (The earlier results
of Shapley, Hoffman and Karp, and Rao et al. were derived for the case of mixed
strategies over finite sets of actions.)

We note that the policy iteration algorithm generates a sequence of stationary
policies for one of the players based on evaluations of worst-case cost and correspond-
ing policy improvements. We have shown that if the policies are for the minimizing
player, then they are all proper and the costs of the respective policies converge
monotonically to the equilibrium value function. Since a corresponding asynchronous
policy iteration also converges, we see that policy iteration exhibits a fair degree of
robustness. Given some extra assumptions, we obtain an error-bound for approximate
policy iteration.

Naive policy iteration (due to Pollatschek and Avi-Itzhak [40]) generates a se-
quence of stationary policies for both players and is easier to implement than the
official form of policy iteration (at least conceptually). Unfortunately, naive policy
iteration is known not to converge, even in the presence of a discount factor [59]. A
well-known fix to naive policy iteration, called modified Newton’s method, is due to
Filar and Tolwinski [19]. It uses Armijo’s rule to prevent the policy updates from be-
ing “too greedy” with respect to the 2-norm of the Bellman error function. However,
due to the nonsmooth nature of the Bellman error function, Filar and Tolwinski’s
proof of convergence is incorrect, even for discounted cost games. We note that both
naive policy iteration and modified Newton’s method have an extra failure mode
when applied to stochastic shortest path games: they may generate at some point a
pair of policies for which the corresponding Markov chain does not terminate with
probability one. |

In the last chapter of the thesis we examined connections between average cost
games and stochastic shortest path games. It turns out that each type of game has
something to say about the other. When restricted to the case of mixed strategies,
standard results from the theory of average cost games can be used to prove the

existence of a solution to Bellman’s equation in stochastic shortest path games. The
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restriction to the case of mixed strategies is typical (if not universally observed) in the
literature on average cost games. Thus, average cost games cannot tell us everything
we want to know about stochastic shortest path games. On the other hand, by
proceeding in the reverse direction, we can derive new results for a broad class of
average cost games. Specifically, by transforming to associated stochastic shortest
path games, we can analyze recurrent-state average cost games, where the associated
Markov chain is unichain for all pairs of stationary policies and there exists a state
which is common to each recurrent class. This type of analysis was pioneered by
Bertsekas in [4]. Because of the generality of our regularity assumptions, we are able
to prove the existence of equilibrium solutions in recurrent-state games when both
players choose actions from arbitrary compact subsets of metric spaces. We are also
able to establish the convergence of several dynamic programming algorithms. All
of this can be done without resorting to the “limit discount equation approach” [20]

which is dominant in recent the literature on average cost games.

6.2 Future Work

The theory of finite-state, zero-sum stochastic games is more or less complete, thanks
to the efforts of many researchers over the years. However, there remains at least one

important open question:
What is there to say about naive policy iteration and its variations?

As we have discussed, it is easy to show that this algorithm does not always convergé,
but these examples are highly contrived. In practice, naive policy iteration seems
to work quite well, and when it converges, it does so very quickly (as in Newton’s
method). A convincing way of rectifying these observations has eluded researchers for
many years, and this thesis provides no new insight. Modified Newton’s method does
seem to improve the convergence properties of naive policy iteration. (For example, it

converges in games where naive policy iteration fails.) On the other hand, as shown in .
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our computational example (the inspection game), it is often quite slow and produces
a sequence of iterates which look nothing like that produced by naive policy iteration.

Other open questions remain about algorithms for stochastic shortest path games.
In this thesis we have focused primarily on conventional dynamic programming al-
gorithms: value iteration and policy iteration, and their closest variants. However, a
number of other algorithms are possible, some of which have been proven to converge
in the case of discounted cost gaﬁles. Appendix B contains a list of some alternative
algorithms. The convergence properties of these algorithms as applied to stochastic
shortest path games have yet to be determined.

Many open questions remain regarding extensions of the stochastic shortest path
model. For example, N-player, nonzero-sum, and infinite state versions of stochastic
shortest path games are possible and largely unexplored. Establishing the existence
of equilibrium solutions, characterizing these solutions, and developing appropriate

algorithms should be interesting topics for future research in this area.
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Appendix A
Proofs of Lemmas

For all of the results of this appendix we assume that Assumption R holds. We do
not require Assumption SSP (unless specifically stated otherwise). We remind the

reader of the following notation from Chapter 2 [cf. equation (2.2)]:

t

hf,M,,r»N(i)={ c(ko, o) Z (1o, Vo) H'l,Vl)"'P(Mk—lal/k—l)]c(/-"ka’/k)}-

= A

We will use At

TV, TN
1=1,...,n

to denote the vector in J whose components are hl (z) for

TMHTN

Lemma A.1 (Monotonicity) Given J,J € J, if J < J, then
TJ<TJ.

The same is true of the other dynamic programming operators.

Proof: Suppose J < J € J. If we are given 4 € M and v € N, then

Lwd = v)+ P(u,v)J

c(i,
< el )+ Pp,v)J
= T,J.
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Given € M, Assumption R implies that there exists v € N such that T,J = T,,J.
Thus,

IN

T,J =Tyl

T, 7
T,7.

IN

Similarly, Assumption R implies that there exists 4 € M such that TJ = T,J . Thus,

TJ

IN
=
<

< T,J=TJ.

Similar arguments apply for the operators T, (given v € N) and T, showing that
T,J <T,J and TJ < TJ. Q.E.D.

Lemma A.2 Given J € J and o positive scalar r,
CT(J+71) <TJ+rl.

The same inequality holds for the other dynamic programming operators. The in-

equalities are reversed if r < 0.
Proof: Suppose J € J and r > 0. For every 4 € M and v € N, we have
T (J+711) =c(p,v) + P(p,v) - (J+71) < (c(p,v) + P(p,v)J) +11 =T, J + 1.

" (The inequality holds because the row sums of P(u,v) are less than or equal to one.)

Consequently, given y € M,

T,(J+rl) = Iglea]\},{TW(J +71) < r,fleaj@{T“"J +rl=T,J+rl
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Therefore,
T(J+7r1)=minT,(J+rl) <minT,J+r1=TJ +rl.
LEM pweM

Similar arguments hold for the operators T, and T, showing that TV(J +71) < T, J+rl
and T(J +71) < TJ +rl.
The case that 7 < 0 is handled analogously. Q.E.D.

Lemma A.3 (Continuity) Given J,J € J, then

“T(J - j)“oo < ”J - j”oo

Thus, T 1is nonezpansive on J and therefore continuous. The same is true of the

other dynamic programming operators.

Proof: Let J and J be any two elements of 7, and let 7 = ||J — J||, Where || - [|oo

denotes the usual sup-norm on J. Then,
J-r1<J<J+rl,
where 1 = (1,...,1) € J. Lemmas A.1 and A.2 imply that
Tj—rlgTngJ+rL

Thus,
ITJ = TJ]leo < 1T = Jlloos

which shows that T' is nonexpansive on J and therefore continuous. Similar argu-

ments hold for the other dynamic programming operators. Q.E.D.
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Lemma A.4 If 4 € M is such that (u,v) terminates with probability one for all
v € N, then u is proper.

Proof: The proof uses the analysis of [8]. Let u € M be a fixed policy for the
minimizer, and suppose that the pair (p,v) is terminating with probability one for
all stationary policies of the maximizer v € N. With yu fixed, the maximizer is faced
with a stochastic shortest path problem of the type considered in [8]. (The maximizer
has no improper policies (against u).) Now modify the problem such that the costs
of transitioning from nonterminal states are all set to one but all of the transition
probabilities are left unchanged. The assumptions of [8] remain satisfied, so the
optimal expected cost for the maximizer in the new problem is bounded, even over
nonstationary policies. Thus, the maximum expected number of stages to termination
under g is finite. This is true for both the modified problem and the original version

of the game. This implies that u is proper. Q.E.D.

Lemma A.5 For any (n x n) matriz of nonnegative elements P and any J € J,

minmax P le(uw,v) + P, v)J] = Projgmaxle(u, 1) + P(w,v)J] = PTY,
max P [c(u, v) +P(u,v)z]] = P*rleak[ c(u, v) + P(p,v)J) = PT,J,

min P [c(u,v) + P, v)J] = P min [c(p, v) + P(u,v)J] = PT,J.

Proof: It is sufficient to show that the first equation holds. The remaining equations

follow as a corollary by redefining the control constraint sets for the respective players

as U(3) = {p(i)} and V(i) = {v(1)}.

The i-th component of P [c(u,v) + P(u,v)J] can be expressed as

3= i u(s) 1),

where pj, is the (i x s)-th component of P and g(u,v) = ¢,(u, v) + 301 Psj(w, v) I (4)
for u € U(s) and v € V (s).
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Since the min and max are taken componentwise and since the elements of P are

nonnegative, we have that

n

n
. _ o _ )
min r;le%c;pzsgs(u(S), v(s)) mip B s§=1ﬁ Pisgs(1(s), v°)

n
p— 3 0 S
= mip ;pzs max gs(u(s), v°)

Similarly, because the elements of P are nonnegative,

n

min Dis INax u’, v’
uleU(n,...,uneU(n);psvseV(s) 9s( )
n

= D;s Min ma st
; Pis useU(s) vSEV%ss) 9s (u )

= 3 pu(T)(s)

s=1

n
1 . s =
min s§=lﬁ Pis max. gs(u(s),v")

Since this expression applies for all 2 = 1,...,n, the desired result holds. Q.E.D.

Lemma A.6 For every J € J,

min max [ht +P(u0,y0)---P(ut,z/t)J] = T,

m T
my={p0, e} mv={vo,..e} b TN

max [ht +P(u,uo)---P(u,1/t)J] = T,

anv={vo,...Vt} HTN

min }[ht + P(uo,v) - P(uy,v)J] = T,

7I’N={IJO,---,L¢¢ MY
where u and the uy are elements of M, and v and the vy are elements of N.
Proof: It is sufficient to show that the first equation holds. The remaining equations

follow as a corollary by redefining the control constraint sets for the respective players.

Notice that

i hE 4 P, vo) - - Plue, ve)J
i L max [ o Plio,vo) -+ Pl ) ]
= min max {h:;ul,,w + Ple(pe, ve) + P, vt)J]}

WMZ{#O,---,#t} 7|'N={l/0,...,l/t}
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= min max {ht_l + nL?xP [e(pe, vt) + P, ut)J]}

m ™
7|'M={I‘0,-'-yll:t} 7rN={U01"'1Vt—l} Mo

= min min max {h‘_1 + 1113}:]5 le(pe, vi) + P, I/t)J]}

™ i3
mm={po,-wtt-1} Bt 7N {vo,..,vi-1} MOTN

> min max min {ht_l + rrbetmxp le(pe, ve) + P(pe, I/t).]]}

™
7rM={y'0)--"I-"t—l} 7rN={V0)"'lut—1} Ht MTN

= min max {h"l + I'Illlltn m:«tsz [c(us, r) + P(us, Vt).]]} ,

™ m
"M={u0 7777 I“'t—l} WN{VO,--‘,VL—]} MTN

where P = P(uo,v0) - P(us—1,v4-1). (The inequality follows from the minimax
inequality.)

We now prove the reverse relationship. First, we note that there exists a policy
i € M such that

1516111‘14 max Ple(us, i) + P, v1)z) = max Ple(@, v) + P(@, v)z).

To see this, notice that

min max P [c(uy, vi) + P(p, m)J] = P min max (c(uy, vi) + P(ps, ) J)
= Pmax(c(g,v) + P(g,n)J)

=. max P [c(@, u) + P, v)J],
MEN

where the first and last equalities follows from the preceding lemma and & is the
minimax solution to miny,ep maxyen [¢(pe, vt) + P(us, v¢)J). (The existence of z

follows from Assumption R.) Thus,

min min  max {ht‘l +max P [c(u, ve) + P(u, z/t)J]}

Tr={10, -1} KBt  wn={vo,. ., 1—1} T™ TN
— - t-1 : 5
= (R eenfhax {hm,m + minmax P [c(ue, vy) + P(p, Vt)J]}
< : t—l D 77 7 }
- WM={AIL{JIT,M—1} 7rN={I£i)-(,Ut—1} {h"Mﬂ"N + n’%}%xP (e, vi) + P, 1) J]
= min _ max {Vt + min max P [c(us, v¢) + P(us, Vt).]]} :
Ty ={po, - pt—1} mnv={vo, - vt-1} Lt vt
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Combining these inequalities, we obtain

h’:rM,ﬂ'N P(/J’U’ VO) e P(ut, Vt)J]

min max [
mpm={po,ut} Tn={vo, vt}
_ . t—1 . 5
T = oreit} =0 avon) {h"M a + minmax Ple(u;, 1) + P (“t’”t)‘]]}
_ : t-1 B
T = orenio) =0 aion) {h"M v+ Prginmaxc(u, 1) +P(“t’yt)‘]]}
= min max Kl + PTJ
T ={to, - nt-1} TN={v0, Vi- [ TMTN ]
= min max [herl,rN + P{uo, o) « - - P(pe—1, yt_l)TJ] )

"M={u0|-~-yl‘t-l} ﬂ'N={V01'-'1

Mathematical induction, repeating the same argument above, gives the desired result.

Q.E.D

Lemma A.7 For any (n x n) matriz with nonnegative elements P and any J € J

r&%gﬂp[C(u, v) + P(p,v)J] = Pmaxmin[c(u, v) + P(p,v)J] = PTJ.

Proof: The proof of this is exactly analogous to that given for Lemma A.5. The
interchange of the max and min has no bearing on the logical flow of the argument.

Q.E.D.

Lemma A.8 Forany J € J,

+P(,u0,1/0)---P(ut,l/t)J] = Tty

max min [h,r TN

av={vo,.-¥t} mm={po,...p}

where the uy are elements of M, and the vy are elements of N.

Proof: The proof of this is symmetrical to that given for Lemma A.6. Q.E.D.
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Lemma A.9 Given a proper policy u, the following are true.

t
HTN

1. J, 2 lim inf, o Max, x5 h is the unique fized point of T, within J.

2. Ju =supyyen Jumy-

3. We have TﬁJ — J, for all J € J, with geometric convergence.
Proof: Lemma A.6 implies that

T;*'0= max A,
an={vo,....t}

where 0 is the zero vector in 7. Thus, from Corollary 3.1 and the definition of Sy, it

is clear that

— 15 t+1
= Jim T

and J, is the unique fixed point of the contraction mapping T, within J.
Consider the following infinite-horizon stochastic shortest path problem for the

maximizer:

‘sup_lim inf {C(M, o) + D[P (i, v0) -+ P, vi—1)]e(ps, Vk)} -

nnEN k=1

This problem is covered by the theory developed in [8] since the fact that u is proper
implies that termination is inevitable under all policies in the maximizer’s problem.
The optimal cost of this problem is sup, ¢y Jury, and (according to the theory
of [8]) it is equal to the limit of value iteration applied to this problem, which is
lim; 00 7,710 Thus, sup,,cx Juny is equal to the unique fixed point of T},.

Finally, the linear convergence of T;*!J follows from the fact that T}, is a contrac-

tion. Q.E.D.
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Lemma A.10 In addition to Assumption R, let Assumption SSP hold. Then, for

any v € N, the following are true.

t
TN

1. J, 2 lim inf;_, oo min,  e7 b is the unique fized point of T, within J.

2. J,=inf, cir Jnpw

3. We have T'J — J, for all J € J. If for all p € M, the pair (u,v) terminates

with probability one, then the convergence is linear.

Proof: This follows directly from the theory of (single-player) stochastic shortest
path problems. [8] Q.E.D.

Lemma A.11 In addition to Assumption R let Assumption SSP hold. Given u € M,
if there exists J € J such that J > T,J, then p is proper. .

Proof: To reach a contradiction, suppose u is improper. According to Assumption
SSP and Lemma A.4, there exists a stationary policy 7 for the maximizer such that
(u, 7) is prolonging and results in unbounded expected cost from some initial state

when played against u. Thus, some subsequence of

o0

{é}ﬂmW%WJﬁ (A.1)

t=1

must have a coordinate that tends to infinity.
On the other hand, there exists (by hypothesis) J € J such that J > T,J.
Applying T, to J, we have that

J 2 T,J > c(p, ) + P(p, v)J,

where the second inequality follows from the definition of 7),. From the monotonicity

of T,,, we obtain
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\
~
<
v
3
<~
\Y

Tl‘v(c(“’ 17) + P(/J” l-/)J)

2 P(,LL, D)P(/.L, l-/)'] + [C(Uv 17) + P(P', D)c(#) ’7)]7

where the last inequality follows again from the definition of T,,. Proceeding induc-

tively (using the same steps) we obtain

t
J 2T > P(p, o) T+ ) Pp, 7)fc(p, 7).
k=0

Since the matrices P(u, 7)"*" are stochastic, the term involving J remains bounded.
Thus, we have contradicted our earlier observation about (A.1), and p must be proper.

Q.E.D.
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Appendix B

Other Algorithms

In this appendix we collect a few alternative algorithms for stochastic shortest path
games. To be consistent with the framework in which these algorithms were origi-
nally developed, we include a discount factor a € (0,1]. Generally, questions about
convergence remain for the full generality of Assumptions R and SSP (with a = 1).
In some cases, these algorithms are meaningful only in the context of mixed strategies

over finite sets of actions.

B.1 (@-learning

In [30], Littman proposed Minimax-Q, a simulation-based algorithm for games in
mixed strategies over finite sets of actions (based on Q-learning). In our statement
of the algorithm below, let A(¢) and B(i) denote the finite sets of underlying actions
available to the minimizer and maximizer (respectively) at state 7, with U(z) and V(%)

the corresponding sets of probability distributions.
Algorithm B.1.1 (Q-learning [30])

1. Let Qo(1,a,b) be an initial estimate of optimal long-term cost of the minimizer
applying a € A(i) and the mazimizer applying b € B(i) at state i € S. Let v,

be a positive stepsize factor for which ¥, v, = 00 and 3, (v)? < 0.

2. Given Qy_1,
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(a) Pick an element iy € S, and pick actions ax € A(ix) and by € B(iy).

(Make sure that each triple is visited infinitely often.)

(b) Realize a successor state i and transition cost ¢ from iy under the actions

ar and by.
(c) Compute a new Q-factor estimate Qi as:

7

Zf’L = Uk,
(1 - ’Yt)Qk_l(ik, A, bk) + 'Yt(f + aJk—l(E)) a = ay,
Q(1,a,0) = 4 b = by
\ Qx-1(4,a,b) otherwise
where,
Je-1(i) = min max > D Qx-1(3,a,b)uqvs. (B.1)

u€U() veV () 700y be B (i)

This algorithm is interesting in that it may be used in situations the game parameters
are not available explicitly but are built into a simulator which can be used to generate
sample data for the game. It was shown in [31] and [9] that J, converges with
probability one to J* in discounted cost games. Note that the finiteness of the sets
A(4) and B(7) is essential. An extension to the general case of compact constraint
sets does not seem possible.

Note that it is easy to evaluate Jy_; in sequential games since at least one of the
control constraint sets A(z) or B(7) >is a singleton. Thus, it is no longer necessary to
extend the matrix game Q_1(4,-,-) to mixed strategies, and (B.1) may be replaced
with

Je-1(3) = afgjg) max Qe-1(2,a,0).

where at least one of the suprema is degenerate.
In symmetric sequential games (cf. Section 2.3.3), a further simplification may be

employed: we only need to maintain @)-factor estimates on S.
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Algorithm B.1.2 (Symmetric Q-learning [31])

1. Let Qo(i,a) be an initial estimate of optimal long-term cost of player 1 imple-
menting action a € W(3) at position i € S. Let v, be a positive stepsize factor

for which ¥,y = 0o and Y (v)? < oo.
2. Gwen Qr_1,

(a) Pick an element iy € S and an action ax € W (4x). (Make sure that each
double is visited infinitely often.)

(b) Realize a successor state (2,1) and transition cost ¢ from (1,4g) under the

action ay.

(c) Compute a new Q-factor estimate Q as:

(1 - ’Yt)Qk—l(ika ak) + 7 [(-Z"f‘ a(—l)f‘le_l(f)] 1=1, = a

Qr-1(2,a) otherwise

Qk (7') a) =

Ji-1(2) = afenui}(li) Qr-1(2,a).

B.2 Fictitious Play and Sequential Improvement

In [12], Brown proposed an iterative algorithm (fictitious play) for computing the
value of matrix games in mixed strategies. The algorithm proceeds as an infinite se-
quence of fictitious realizations of the game, where the players make decisions which
are optimal with respect to running estimates of the equilibrium value and the other
player’s best action. The convergence of this algorithm (for matrix games) was es-
tablished by Robinson in [45]. ‘Later, Vrieze and Tijs [64] studied an extension (also

called fictitious play) for discounted cost stochastic games.
Algorithm B.2.1 (Fictitious Play [64])

1. Let Ry(i,a) be an initial estimate of the minimizer’s “worst case” cost of ap-

plying the pure action a € A(1). Let Sy(i,v) be an initial estimate of the mazi-
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mizer’s “worst case” long-term cost of applying the pure action b € B(i). Make

sure that
in Ry(7 = So(%, b),
aléljg) o(7,a) 52355 o(i,0)
in So(z,0) > J*(1).
Jmin, o(z,0) > J(4)

for every state i. Define Jo € J such that Jo(i) = maxpep() So(i, ). Let

ve = 1/k be a stepsize rule.
2. Gwen Jy_1, Rx_1, and Si_1, compute new iterates as follows:
ax(i) € arg min, Ry—1(i,a)

be(1) € argbreng()ic) Sk-1(3, )

J(i) = min{ max Sia(6,0), S (i)},

Rk(’i, a) = (1 — ’Yk)Rk—l(i, a) + Yk

ci(a, bk (1)) + zn:pij (a, bk(i))Jk(j)] )

Jj€l

Se(i,b) = (1 = %) Sk-1(4,0) + "

ci(ax(i), b) + épij(ak(i)v b)Jk(j)] :
j

In studying this algorithm, Vrieze and Tijs showed that the matrix-game version of

fictitious play also applies to a convergent sequence of matrix games (as would be

defined by an evolving estimate of the equilibrium cost-to-go in a stochastic game).

In the end, they showed that J, converges with probability one to J* in discounted

cost games.

Before we were aware of the work of Vrieze and Tijs [64], we independently pro-
“posed a closely related algorithm, called sequential improvement. In stating this
algorithm we make use of two new operators ArgT, and ArgT,. Given a propef
policy u € M and a cost function estimate J € J, we define (ArgT,J)(3) to be a-
uniquely-determined degenerate probability distribution which achieves the maximum

in (T,,J)(i). We define (ArgT,J)(i) similarly.
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Algorithm B.2.2 (Sequential Improvement)

1. Start with an initial estimate of the equilibrium cost function Jy, an initial
proper policy for the minimizer uo € M, and an initial stationary policy for the

mazimizer vy € N. Let v, > 0 be a decreasing stepsize rule such that 3, v¢ = 00

and T (x)* < co.
2. Given (Jk;—l) Hk—1, Uk—l);

" (a) Compute an intermediate estimate of the equilibrium cost function Jio1 €
J according to
'jk_l = Tﬂk—l Jr_1.

(b) Update the mazimizer’s policy according to
vi(i) = (1= w)ver (3) + v (ArgTh,_, Jer) (), i=1,...,m.
(c) Compute the new equilibrium cost function estimate Ji according to
Je =T, Jr_1. (B.2)
(d) Updqte the minimizer’s policy according to
i) = (1= e (8) + e (ArgTo Jer) (1), i=1,...,n.

What motivates this algorithm is the interpretation of Jx as an approximation of
T?Jy_, for each k. Note that a number of variations of this algorithm are possible.
One possibility is to use vx_; in place of v in (B.2). Another possibility is to reverse
the order in which the maximizer’s and minimizer’s policies are updated. There
are many other possibilities, including that of “asynchronizing” the various types of

updates, as in Asynchronous Policy Iteration.
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B.3 Approximate Naive Policy Iteration

In Section 4.1.4, we described an approximate version of the policy iteration algo-
rithm. Here we present an approximate version of naive policy iteration. (Caveat
emptor! Recall from Section 4.1.5 that (exact) naive policy iteration fails to converge
in some examples.) The interest in approximate naive policy iteration generally comes
from the reinforcement learning and artificial intelligence research communities. In-
deed, the algorithm we present below is already well-known within the context of

Neuro-Dynamic Programming (NDP) [9].
Algorithm B.3.1 (Naive Policy Iteration with Function Approzimation [9])

1. Choose an initial proper policy po for the minimizer, an initial stationary policy
vy for the mazimizer, and an initial parameter vector r°. (Alternatively, start

with just an initial parameter vector r° and skip to step 2(b).)
2. Given r*~! and the policies py_1 € M, vg—1 € N:

(a) (Approzimate Policy Evaluation)

i. Use a simulation to generate sample state/ cost-to-go data Dy under
the policies pux_1 € M, vg_1 € N.

ii. Let 7% be the end result of the training algorithm:
% = TrainingAlgorithm(Dy, r*71).

The parameter vector r* should be such that either Je, ™) = Ty ()
or (r* — r*=1) is a step toward obtaining such an approzimation.
(b) (Approzimate Policy Improvement)
i. Compute ux € M such that TJ(-,7%) = T, J(-,7F).

ii. Compute vy € N such that TJ(-,7%) = T, J(-,7*).

In general, J(-,7*) represents an approximation of Jy, ., ,(-). Note that it is not
necessary for the policies ; and vy to be explicitly computed and stored (in appro-

priate data structures); all that is needed is the ability to do on-line Monte Carlo
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simulation of the various control options (at each stage) to determine the actions

which are best with respect to J(-,7%). There are two basic modes of operation for

this algorithm:
1. approzimate, where a large amount of sample data is generated for each pair

of policies and the training algorithm is rigorous enough to yield an accurate

approximation of J,, | ., _,, and

2. optimistic, where very little training data is generated and r* usually represents

a small change to r*71.

While Algorithm B.3.1 has been discussed in the literature [9], it has not (as far
as we know) been used in practice. On the other hand, a variation on this algorithm
has seen considerable use. Specifically, Tesauro’s TD-Gammon [56, 57] (a computer
backgammon playing program) taught itself to play at a world competition level
using an (optimistic) approximate version of symmetric policy iteration. We state

this algorithm below.
Algorithm B.3.2 (Symmetric Policy Iteration with Function Approzimation)

1. Choose an initial proper policy puy € M for the minimizer. (The mazimizer
will implicitly “play” the u-symmetric policy v,.) (Alternatively, start with an

initial parameter vector r° and skip to step 2(b).)
2. Given 7! and the policy py—1 € M:

(a) (Approzimate Symmetric Policy Evaluation)

i. Generate sample data Dy, under the policy px—1 € M.

3. Let r* be the end result of the training algorithm:
r* = TrainingAlgorithm(Dy, m*7?).

(b) (Approzimate Symmetric Policy Improvement) Compute px € M such that



B.4 Approximate (-learning
In [9], Bertsekas proposed the following approximate form of Q-learning.
Algorithm B.4.1 (Minimaz-Q with Function Approzimation [9))

1. Let Q(z, a,b,7% be an initial approzimation of the equilibrium long-term cost of
the minimizer applying a € A(i) and the mazimizer applying b € B(%) at state
1€ S. Let+y, be a positive stepsize factor for which 2t = 00 and Yi(m)? < .

2. Given rk-1

(a) Pick an element 4, e S, and pick actions a;, € A(ig), and by € Bl(ig).

(b) Realize a successor state 7 and transition cost ¢ from i\, under the actions

ar dnd .

(c) Compute a new parameter vector r* for the equilibrium Q-factor approzi-

mation as:
Tk = T'k—l - ’karE(ik, g, bk7 Z: E; ’rk&l)a
where
1 ~ ~ 2
E(i,a,b,j,¢,r) = 5 le+ad(.r) = Qi .8, )]
and

j(z’,r): min max Z Z Q(i,a,b,r)uavb.

u€U(3) veV (i) a€A(%) be B(3)

One problem with this algorithm (as étated) is that E is not generally differentiable for
all values of the parameter vector . In particular, E fails to be differentiable wherever
the minimax solution in the evaluation of J is not unique. The usual approach in NDP
practice is to ignore this possibility and use a subgradient in place of the gradient and
hope for the best. As with the exact version of this algorithm, there are important

simplifications for the cases of sequential and Symmetric-sequential games.
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