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This paper presents an adaptive augmented, gain-scheduled baseline LQR-PI controller applied to the
Road Runner six-degree-of-freedom generic hypersonic vehicle model. Uncertainty in control effectiveness,
longitudinal center of gravity location, and aerodynamic coefficients are introduced in the model, as well as
sensor bias and noise, and input time delays. The performance of the baseline controller is compared to
the same design augmented with one of two different model-reference adaptive controllers: a classical open-
loop reference model design, and modified closed-loop reference model design. Both adaptive controllers show
improved command tracking and stability over the baseline controller when subject to these uncertainties. The
closed-loop reference model controller offers the best performance, tolerating a reduced control effectiveness
of 50%, rearward center of gravity shift of up to -1.6 feet (11% of vehicle length), aerodynamic coefficient
uncertainty scaled 4× the nominal value, and sensor bias of up to +3.2 degrees on sideslip angle measurement.
The closed-loop reference model adaptive controller maintains at least 70% of the delay margin provided by
the robust baseline design when subject to varying levels of uncertainty, tolerating input time delays of between
15-41 ms during 3 degree angle of attack doublet, and 80 degree roll step commands.

I. Introduction
With a history spanning well over a half century, hypersonic flight continues to be a topic of significant research

interest. Air-breathing hypersonic vehicles are particularly attractive due to their potential to serve as high speed pas-
senger transports and long range weapon delivery systems, and provide cost-effective access to space.1 Hypersonic
vehicles are likely to be inherently unstable,2 and the integration of the airframe and engine in an air-breathing hy-
personic vehicle contributes to additional modeling and control challenges. With limited wind tunnel data, harsh and
uncertain operating environments, poorly known physical models, and largely varying operating conditions, it is of
great importance to ensure that any control scheme will be significantly robust to ensure safe operation during flight.
This paper introduces an adaptive control design which aims to improve tracking and stability of the AFRL Road
Runner generic hypersonic vehicle (GHV) when subject to uncertainties including control effectiveness, longitudinal
center of gravity shifts, sensor noise, and time delays during cruise flight.

A major challenge associated with the control of hypersonic vehicles, in addition to the interactions between
airframe, engine, and structural dynamics, is the limited ability to accurately determine the aerodynamics characteris-
tics.3, 4 In this work we consider, among other things, aerodynamic uncertainties in the yawing and pitching moments
of the GHV, as well as changes in control surface effectiveness.

II. Hypersonic Vehicle Model
The Road Runner GHV which is used as a platform for analysis and control design is shown in Figure 1. The GHV

is a small, pilotless, blended wing-body vehicle, with 3-D inlet and nozzle, and axisymmetric through-flow scramjet
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engine. There are four aerodynamic control surfaces which can be moved independently, consisting of two elevons
and two rudders. The equations of motion were derived using a Lagrangian approach adapted from Reference [5].
These equations of motion describing the GHV are developed for a rigid body about a spherical, rotating Earth.6, 7 It
is assumed that the atmosphere travels uniformly with Earth as it rotates, and that the aircraft is sufficiently rigid that
flexible structural effects can be neglected, which is a reasonable assumption for the class of vehicle being modeled.

Figure 1. AFRL Road Runner generic hypersonic vehicle

Aerodynamic and engine data for this model are stored in look-up tables within the simulation package. The
aerodynamic look-up tables take as inputs the flight Mach number, angle of attack, sideslip angle, and control surface
deflections to calculate the total aerodynamic forces and moments acting on the vehicle. The aerodynamic data for the
GHV were calculated using the Supersonic/Hypersonic Arbitrary Body Program (S/HABP) code. The engine look-up
tables take as inputs the flight Mach number, angle of attack, dynamic pressure, and equivalence ratio (throttle). The
engine data were calculated using the Ramjet Performance Analysis (RJPA) code developed at the Applied Physics
Laboratory at Johns Hopkins University. Some relevant vehicle properties are in Table 1.

Table 1. Vehicle properties

Parameter Unit Value

Gross weight [lbm] 1220.3

Vehicle length [in] 175.9

Span [in] 58.6

Planform [ft2] 42.178

The equations of motion describing the GHV can be represented in state-space form as

Ẋ = f(X,U)

with state vector
X =

[
VT α q θ h β p r φ ψ λ τ

]>
(1)

where VT is the total velocity, α and β are the angle of attack and sideslip, φ, θ, and ψ are the roll, pitch, and yaw
angles, p, q, and r are the absolute angular velocity components, and λ, τ , and h are the latitude, longitude, and
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altitude, of the GHV, respectively. The input vector is given by

U =
[
δth δelv δail δrud

]>
(2)

where δth, δelv, δail, and δrud are the throttle, elevator, aileron, and throttle inputs, respectively.
The entries of the state vector are arranged so as to facilitate separation of the lateral and longitudinal equations

of motion during control design. The deflection of the elevons is accomplished through static mixing, combining
differential and collective deflections from the aileron and elevator commands, respectively, while both rudders are
actuated together using the single rudder input. The control vector U5 contains the deflections of the right and left
elevons (δr,elv, δl,elv), rudders (δr,rud, δl,rud), and throttle as

U5 =
[
δth δr,elv δl,elv δr,rud δl,rud

]>
The control allocation matrix M is the matrix which defines the following transformation between control vectors U5

and U as
U = MU5

where control allocation matrix is

M =


1 0 0 0 0

0 1/2 1/2 0 0

0 1/2 −1/2 0 0

0 0 0 1/2 1/2


A. Actuator and Sensor Models

The propulsion system is modeled as a first order system with a cutoff frequency of 10 rad/s to capture fuel system
delivery limits. Second order actuators with rate and deflection limits were included in the simulation model on all
four of the aerodynamic control surfaces. The transfer function for the control surface actuators is

Gcs(s) =
ωn

2

s2 + 2ζωns+ ωn2

and the block diagram for the control surfaces as implemented is shown in Figure 2, where the signal ucmd is generated
by the controller, and due to the actuator dynamics the actual control surface deflection is given by usat.

deflection
saturation

+ ω2
n + 1

s

rate
saturation

1
s

deflection
saturation

2ζωn

ucmd + + ü u̇ u usat

−−

Figure 2. Second order actuator block diagram

The relevant values used in the second order aerodynamic control surface actuators are listed in Table 2.
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Table 2. Second order aerodynamic control surface actuator parameters

Parameter Unit Value

Elevon deflection limit [deg] −30 to 30

Rudder deflection limit [deg] −30 to 30

Elevon rate limit [deg/s] −100 to 100

Rudder rate limit [deg/s] −100 to 100

Damping ratio ζ 0.7

Natural frequency ωn [rad/s] 150

First order low-pass filters were placed at the sensor outputs in order to reduce sensor noise being fed back to the
controller. The velocity filter has a cutoff frequency of 20 rad/s, while the incidence, angular rate, and Euler angle
sensor filters all have a cutoff frequency of 150 rad/s. These filters are implemented to model the effect of a navigation
filter in the control loop.

B. Implementation

The GHV simulation block diagram is in Figure 3. The controller was implemented in discrete time and operated
at 100 Hz with a zero-order hold on the control signal output. The output sensors are operated at 600 Hz, white noise
was injected into the sensor signals, and an input time delay was used.

Controller

100 Hz

τdelay

Actuator
Dynamics Plant

+ ZOH Filter
zcmd

x

noise

600 Hz

Figure 3. GHV flight control simulation block diagram

III. Open-Loop Analysis
The open-loop behavior of the GHV was analyzed about a nominal flight condition of M = 6, h = 80, 000

ft, corresponding to a dynamic pressure of 1474 psf. The geographical coordinates and heading of the GHV are
insignificant in the equations of motion for the purposes of inner-loop control law development,5 and these state
variables are dropped from the state vector in Eq. (1) for trim, linearization, and control.

X =
[
VT α q θ h β p r φ

]>
(3)

The state X ∈ Rn from this point forward is used to mean the truncated state in Eq. (3), and the dynamics of the
system that uses the truncated state are described by

Ẋ = f(X,U) (4)

The trimmed state Xeq, and input Ueq satisfy

Ẋeq = f(Xeq, Ueq) = 0 (5)

The equilibrium state Xeq is found for the nominal steady, level cruise condition, and the equations of motion in Eq.
(4) describing the GHV are linearized about this trim state. Defining x and u to be state and input perturbations about
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equilibrium we have

X = Xeq + x

U = Ueq + u

The linearization results in the state-space system given below

ẋ = Ax+Bu (6)

Using this linear system, the open-loop dynamic modes of the GHV during the nominal steady, level cruise condi-
tion are analyzed through a sensitivity analysis.

A. Sensitivity Analysis

The methods of reference [8] were used to calculate the sensitivity matrix for the linear system given in Eq. (6).
The sensitivity analysis indicated the presence of two longitudinal and three lateral flight modes as shown in Figure 4.
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Figure 4. Open-loop poles of A for M = 6, h = 80, 000 ft steady, level cruise

The sensitivity analysis aims to determine which entries in a given eigenvector are small when the units of each
state variable are not the same. This method examines slight changes in the initial condition of each state separately,
in order to determine whether this change will influence some modes more strongly than others. This analysis will
provide knowledge of what modes the GHV exhibits, which states are dominant in each of these modes, and the
stability of the modes. This knowledge will facilitate the control design process. Comparing the magnitude of the
entries in the sensitivity matrix for the GHV, each of the modes was separated by at least one order of magnitude
difference, indicating a strong decoupling of the flight modes.

The GHV has a highly unstable irregular short period mode, dominated by α and q, and an unstable dutch roll
mode. The phugoid mode is neutrally stable, and the rolling mode is stable. The velocity mode is given by a pole
at the origin, and is omitted from Figure 4. This analysis allowed the velocity, longitudinal, and lateral-directional
subsystems to be decoupled, and each of these three plant subsystems to be represented as

ẋp = Apxp +Bpu (7)

where xp ∈ Rnp , Ap ∈ Rnp×np , Bp ∈ Rnp×m and u ∈ Rm. Note that these sizes will differ for each of the
subsystems.
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B. Representation of Uncertainties

It can be shown that the parametric uncertainties considered in this work and described above manifest themselves
in the linear system given in Equation (7) as

ẋp = Apλxp +Bpλu (8)

where
Apλ = Ap +BpΛWp

> Bpλ = BpΛ (9)

Λ ∈ Rm×m and Wp ∈ Rnp×m. These uncertainties are called “matched” uncertainties, as they enter the system
dynamics through the control channels.9 The adaptive controller that is designed in Section V is carried out so as to
accommodate such uncertainties. Other unmatched uncertainties, such as sensor bias/noise are introduced as well, and
the control design must be sufficiently robust to these, as they are not accommodated for explicitly in the synthesis of
the controller.

IV. Baseline Control Design
This section outlines the basic architecture used for the inner loop flight controller. The baseline flight controller

will be used to stabilize the GHV during flight, and track reference commands. The modal analysis showed a strong
separation between velocity, longitudinal, and lateral-directional dynamics of the GHV. This separation allows these
dynamics to be considered independently for control design, allowing several lower order controllers to be designed, as
opposed to a single higher order one. In addition, due to the timescale separation between the short period and phugoid
modes, only the fast states, α and q, are used for longitudinal feedback control. The following table summarizes the
order of each of the three subsystems for which a full-state feedback LQR-PI controller will be designed.

Table 3. Plant Subsystem Order

Subsystem Order (np) Feedback States

Velocity 1 VT
Longitudinal 2 α, q
Lateral 4 β, p, r, φ

The velocity and longitudinal subsystems are both single input systems. The throttle input δth controls only the
velocity VT , and the elevator input δelv controls the longitudinal states. The lateral subsystem is multi-input, with the
aileron δail and tail δrud as control inputs.

Each linear subsystem is expressed using the state-space representation with the regulated output z as follows

ẋp = Apxp +Bpu

z = Czpxp
(10)

where Cpz ∈ Rne×np , and z ∈ Rne . Note again that these sizes will differ for each of the subsystems. For each of
the three subsystems described by Eq. (10) an LQR-PI baseline controller is designed assuming the plant parameters
are fully known. The LQR-PI control architecture is represented by the following block diagram, where din is an input
load disturbance, dout is an output load disturbance or sensor bias, and n is sensor noise.
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Figure 5. General MIMO feedback control block diagram

The integral error states are added by differencing a collection of perturbation state variables of interest and the
corresponding reference value zcmd as follows.

ẋe = zcmd − z (11)

Using the error description in Eq. (11), the state vector xp from the plant in Eq. (10) is augmented to include the state
error xe as a state variable as [

ẋp

ẋe

]
=

[
Ap 0

−Cpz 0

][
xp

xe

]
+

[
Bp

0

]
u+

[
0

I

]
zcmd (12)

Using x = [ x>p x>e ]> the linear state-space representation in Eq. (12) can be expressed more compactly as

ẋ = Ax+Bu+Brefzcmd (13)

where

A =

[
Ap 0

−Cpz 0

]
B =

[
Bp

0

]
Bref =

[
0

I

]
(14)

and A ∈ Rn×n, B ∈ Rn×m, and Bref ∈ Rn×ne . The following baseline control law will is used for the integral-
augmented plant

ubl = K>lqrx (15)

where the gain Klqr is selected using LQR, and ensures (A+BK>lqr) is a Hurwitz matrix. Such a baseline control law
with integral action provides good frequency domain properties, and guarantees zero steady-state error through the
addition of the integrator.

The velocity and longitudinal subsystem were each augmented with an integrator to allow velocity and angle of
attack commands to be tracked. The lateral controller was augmented with two integrators to command zero sideslip,
and the desired roll angle.

A. Frequency Domain Analysis

While LQR optimization can simplify the control design process by reducing the selection of individual feedback
gains to selection of cost function weights, there is still a lot of freedom left to tune the controller to achieve the desired
performance. Each of the weighting matrices for the three baseline control subsystems were adjusted to return gains
which would not be too large and demand an excessive rate or deflection from the actuators, but also that resulted
in quick transient performance, command tracking with zero steady state error, and an acceptable level of robustness
against noise and unmodeled dynamics.

The LQR weighting matrix selection followed an iterative tuning process from reference [10]. The objective is to
set the control weighting matrix Rlqr to an identity matrix, and use a diagonal state weighting matrix Qlqr, initially
with all entries zero except those corresponding to the integral error states. An algebraic Riccati equation is solved,
yielding the optimal gain feedback matrix Klqr. With this feedback gain matrix, the closed-loop system can then be
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analyzed by simulating the time response of the system, and by plotting frequency domain data. This process was
repeated while adjusting only the integral error weights in Qlqr and the input weighting matrix Rlqr, to achieve the
desired performance. The resulting LQR weighting matrices for the longitudinal control subsystem are shown below.

Qlqr,long = diag
(
[ 0 0 170 ]

)
Rlqr,long = 0.0001

The velocity and lateral subsystems had weighting matrices which were selected in the same way, with a nonzero
weight placed on the lateral Qlqr matrix term corresponding to roll rate. This essentially added roll damping to the
system.

For the SISO plant sub-systems, the magnification of signals through the control loop depends only on the fre-
quency of the signal, and so frequency domain data can be analyzed using Bode plots. The loop transfer function is
found by breaking the control loop at either the input (Lu) or the output (Ly), and other transfer functions of interest
are then calculated using the loop transfer function. In general, these two transfer functions will be different, but in
the SISO case they are the same.

In the case of MIMO systems, the magnification of signals through the control loop depends additionally on the
direction of the input, and thus the singular values of the various transfer matrices were considered. By looking at
the maximum and minimum singular values of these transfer matrices, much information can be determined about
the relative stability of the control system. The six transfer matrices of interest, termed the “gang-of-six” in reference
[11] are useful in examining the frequency domain properties of the system, and are plotted for each subsystem in the
following figures.

The maximum and minimum singular values of a transfer matrix M(s) are denoted by σ(M) and σ(M), re-
spectively. The singular value stability margins are defined using the return difference matrix I + Lu and stability
robustness matrix I + L−1

u as follows. First define

ασ = σ(I + Lu) βσ = σ(I + L−1
u )

Calculate the phase margin and gain margin from the return difference matrix as

GMI+L =

[
1

1 + ασ
,

1

1− ασ

]
PMI+L = ±2 sin−1

(
ασ
2

)
(16)

and from the stability robustness matrix as

GMI+L−1 = [1− βσ, 1 + βσ] PMI+L−1 = ±2 sin−1

(
βσ
2

)
(17)

Taking the union of these two gain and phase margin expressions yield the following multivariable margins.

GM = GMI+L ∪GMI+L−1 PM = PMI+L ∪ PMI+L−1 (18)

These margins are more conservative than classical stability margins calculated for SISO systems. The delay margins
are calculated as follows, where ωcg is the loop gain crossover frequency, given by the frequency where σ(Lu(s))
crosses 0 dB.

τ =
PM

ωcg

Figures 6-10 show Bode plots for the velocity and longitudinal control subsystems for the LQR-PI controllers as
designed for the plant at the nominal M = 6, h = 80, 000 ft flight condition, and singular value plots for all three
control subsystems.
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Figure 6. Velocity loop transfer function Bode plot
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Figure 7. Velocity loop transfer function singular values
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Figure 8. Longitudinal loop transfer function Bode plot
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Figure 9. Longitudinal loop transfer function singular values
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Figure 10. Lateral loop transfer matrix singular values

B. Inner Loop Controller Summary

For each of the three subsystems above, adjustment of the LQR weighting matrices was guided by time response
plots, and Figures 6-10 above. As the feedback gains were increased, the GHV became more responsive, as indicated
in time response data, but at the expense of reduced margins. As such, a balance was reached which gave both good
time response performance and margins. The resulting crossover frequency of the loop transfer function for each
subsystem is shown in Table 4.

Table 4. Loop transfer function crossover frequencies and margins

Subsystem Crossover [rad] Crossover [Hz] GM [dB] PM [deg] Delay margin [ms]

Velocity 1.95 0.31 ∞ 65.6 587
Longitudinal 16.6 2.64 -14.8 71.3 75.0
Lateral 11.4 - 17.5 1.82 - 2.78

[
−7.5 281.5

]
43.9 43.8

It is desirable that the maximum singular value of the loop transfer function be sufficiently large at low frequen-
cies for good command tracking, avoid an excessively large crossover frequency, and roll off at high frequency. The
crossover frequency was selected so as to provide sufficiently large bandwidth tracking, while also maintaining sepa-
ration from actuator bandwidth.

C. Gain Scheduling

Section IV described the design of the baseline control gains using a linear model that was valid about a nominal
trim point. For maneuvers which depart significantly from this nominal trim condition, the controller performance can
deteriorate as the open-loop plant may be very different from the plant for which the controller was designed. For this
reason, it was important to gain schedule the baseline controller over the entire flight envelope.

The primary factor which affects how the open-loop plant behavior changes across the flight envelope is dynamic
pressure, and this was used to schedule the feedback control gains. The dynamic pressure over which the GHV operates
is from 800-2000 psf, and this range was broken into intervals of 100 psf for the schedule. The linearized dynamics
of the GHV vary across dynamic pressure, changing the A and B matrices used in calculation of the feedback gain.
In addition to using these matrices to determine the feedback gains at each scheduling point, the weighting matrices
Qlqr and Rlqr used in the cost function were also changed. A detailed frequency domain analysis could be performed
for each scheduling point to select suitable weighting matrices. Instead, the nominal input weighting matrix Rlqr was
scheduled to be directly proportional to dynamic pressure, thereby penalizing large control inputs more when the
dynamic pressure is high and such large control inputs are not necessary.
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The gain schedule was then created off-line, and produced an output containing the trim state and input at each
operating point, the corresponding linear model, and the feedback gains. The nominal feedback gain is then changed
by interpolating within the schedule using dynamic pressure. The scheduling interval of 100 psf was validated by
evaluating controller performance at many points across the scheduling interval.

V. Adaptive Control Design
The baseline controller in the following section has been designed to have adequate margins, and should be robust

to some reasonable variations in plant parameters. However, due to the magnitude of the uncertainties associated with
hypersonic vehicles during flight, even a suitably robust baseline controller may not always be able to ensure stability.
It is for this reason that adaptive augmentation was used.

In the presence of parametric uncertainties, it is unknown how the GHV will respond to input commands during
flight. However, under nominal circumstances the plant is known, and the baseline controller was designed to achieve
an ‘ideal’ response to a given input. A model-reference adaptive control (MRAC) structure was chosen as it will
attempt to recover this nominal behavior by directly using the error between the ideal and actual response to drive
parameter adaptation. The ideal response is provided by the reference model. This adaptive MRAC controller is
designed to ensure good command tracking performance and stability in the presence of these uncertainties.12 In
addition, the MRAC control architecture can be added without any modification to the baseline controller. This
baseline-plus-adaptive control architecture is represented by the block diagram shown in Figure 11.

Baseline
Controller

Adaptive
Controller

Actuator
Dynamics Plant

Sensors

zcmd
ubl +

uad

+

Controller

Figure 11. Baseline plus adaptive control block diagram

Adaptive controllers will be added to the longitudinal and lateral control subsystems. Augmenting the uncertain
linear plant in Eq. (8) with an integral error state gives the following[

ẋp

ẋe

]
=

[
Ap 0

−Cpz 0

][
xp

xe

]
+

[
BpΛWp

> 0

0 0

][
xp

xe

]
+

[
Bp

0

]
Λu+

[
0

I

]
zcmd (19)

Equation (19) can be expressed using W> = [ Wp
> 0 ] as[

ẋp

ẋe

]
=

[
Ap 0

−Cpz 0

][
xp

xe

]
+

[
Bp

0

]
ΛW>

[
xp

xe

]
+

[
Bp

0

]
Λu+

[
0

I

]
zcmd

The integral augmented, uncertain plant for which an adaptive controller will be designed is given by

ẋ = (A+BΛW>)x+BΛu+Brefzcmd (20)

where Aλ = A+BΛW>.

A. Classical Model-Reference Adaptive Controller

The reference model for this classical model-reference adaptive controller is selected by apply the nominal full
state feedback controller ubl = K>lqrx to the nominal plant model, where Klqr is the baseline control gain gain that was
calculated to optimize control of the nominal plant. That is, using the augmented nominal state and input matrices

A =

[
Ap 0

−Cpz 0

]
B =

[
Bp

0

]
Bm = Bref

12



with the nominal control gain Klqr, the reference model is given by

ẋom = Amx
o
m +Bmzcmd (21)

where Am = A + BK>lqr is a Hurwitz matrix. This reference model will provide the nominal response which will be
used in calculating the tracking error which will drive adaptation.

With the reference model given in Eq. (21), the tracking error eo is defined as

eo = x− xom (22)

The adaptive control law is defined as
uad = θ(t)>x (23)

where θ(t) ∈ Rn×m is the adaptive parameter. The following adaptive control gain update law is proposed, where
P o = P o> > 0, and details on the projection operator are found in references [10,13].

˙̃
θ = ProjΓ(θ,−Γoxeo>P oBsign(Λ)) (24)

The total control is given by summing the nominal and adaptive components giving

u = (Klqr + θ)>x (25)

Substituting the control law in equation (25) into equation (20) the closed-loop system becomes

ẋ =
[
A+BΛW> +BΛ(θ +Klqr)

>]x+Brefzcmd

Comparing this expression to the reference model, the existence of an ideal feedback gain matrix θ∗ that results in
perfect reference model tracking can be verified from the following expression.

A+BΛW> +BΛ(θ∗ +Klqr)
> = A+BK>lqr (26)

The adaptive parameter error is defined as
θ̃ = θ − θ∗ (27)

Differentiating Eq. (22), and substituting Eq. (20) and (21) in, the error equation can be expressed as

ėo = Aλx+BΛu+Brefzcmd − [Amx
o
m +Bmzcmd]

Substituting Eq. (25), and using Bm = Bref the error dynamics become

ėo = Ax+BΛW>x+BΛ(θ +Klqr)
>x+Brefzcmd −Amxom −Brefzcmd

Using Am = A+BK>lqr and Eq. (26) the expression

A = Am −BΛW> −BΛ(θ∗ +Klqr)
>

is obtained, allowing the error dynamics to be written as

ėo =
(
Am −BΛW> −BΛ(θ∗ +Klqr)

> +BΛW> +BΛ(θ +Klqr)
>)x−Amxom

which finally simplify to
ėo = Ame

o +BΛθ̃>x (28)

The goal of the adaptive controller is to drive the error eo(t) to zero by adjusting the parameter θ(t). The following
candidate Lyapunov equation is proposed, where Γo ∈ Rn×n is a symmetric, invertible, positive definite gain matrix,
and the operation | · | takes the absolute value of each entry of the matrix argument.
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V (eo, θ̃) = eo>P oeo + tr
(
θ̃>Γo−1θ̃|Λ|

)
(29)

Differentiating
V̇ = ėo>P oeo + eo>P oėo + tr( ˙̃

θ>Γo−1θ̃|Λ|) + tr(θ̃>Γo−1 ˙̃
θ|Λ|) (30)

Substituting Eq. (28) into Eq. (30), and letting −Qo = Am
>P o + P oAm gives

V̇ = −eo>Qoeo + 2x>θ̃ΛB>P oeo + tr( ˙̃
θ>Γo−1θ̃|Λ|) + tr(θ̃>Γo−1 ˙̃

θ|Λ|) (31)

Substituting Eq. (24) into Eq. (31) and letting y = −xeo>P oBsign(Λ) gives

V̇ = −eo>Qoeo + 2tr
(
θ̃>
(
Γo−1ProjΓ(θ,−Γoy)− y

)
|Λ|
)

(32)

Using the following property of the projection operator10

θ̃>(Γ−1ProjΓ(θ,Γy)− y) ≤ 0 (33)

implies V̇ (eo, θ) ≤ 0. Thus, the candidate Lyapunov function which was proposed does serve as a valid Lyapunov
function for this system.

B. Closed-Loop Model-Reference Adaptive Controller

In this section, a modification to the classical model-reference adaptive controller described in section V.A is intro-
duced. This modification includes an observer-like gain in the reference model, with feedback from the state x. This is
referred to as a closed-loop reference model (CRM), and can provide improved transient properties over the classical
model-reference adaptive controller, which we denote as the open-loop reference model (ORM) controller.14, 15 The
modified reference model is given by

ẋcm = Amx
c
m +Bmzcmd − L(x− xcm) (34)

From Eq. (34) it can be seen that the inclusion of the gain L allows the closed-loop reference model response to
deviate from that of the open-loop reference model. In the case when the gain L is reduced to zero, the open-loop
reference model is recovered. The modified reference model Jacobian is defined as

Am = Am + L (35)

and the tracking error is given by
ec = x− xcm (36)

For the CRM adaptive controller, the same adaptive control law as Eq. (23) is used

uad = θ(t)>x (37)

with the following update law
˙̃
θ = ProjΓ(θ,−Γcxec>P cBsign(Λ)) (38)

Note that this update law is the same as that in Eq. (24) used for the ORM adaptive controller, with the exception of
the tracking error term ec now being used in the place of eo. The following candidate Lyapunov function is proposed

V (ec, θ̃) = ec>P cec + tr
(
θ̃>Γ−1θ̃|Λ|

)
which has time derivative

V̇ = −ec>Qcec + 2tr
(
θ̃>
(
Γ−1ProjΓ(θ,−Γy)− y

)
|Λ|
)

14



As in the ORM case, this implies V̇ (ec, θ) ≤ 0. Thus, the candidate Lyapunov function which was proposed serves as
a valid Lyapunov function for this system. It can also be shown that ec → eo as t→∞.

The inclusion of the feedback gain L in the reference model allows the closed-loop reference model response to
depart from the open-loop reference model response. While this can provide improved transient response16–18 and
other benefits which are observed in simulation, there is also the potential for L to be made sufficiently large so as
to deteriorate the time response of the system. The ideal time response of the system is essentially defined by the
open-loop reference model, and the goal is to minimize the tracking error eo. However, in attempting to realize some
benefits through the addition of L, the closed-loop reference model behavior will be allowed to deviate from the open-
loop reference model. In doing so, while the tracking error ec may be very small, the overall time response of the
system may be poor due to large differences between the behavior of the two reference models. So, while using the
error ec to drive adaptation can improve performance, the tracking error eo should still be considered in analyzing
performance of the adaptive control system.

VI. Simulation Results
The following figures show the time response of the GHV with the baseline and baseline+adaptive controllers

when subjected to parametric uncertainties during a nominal cruise flight condition at M = 6, h = 80, 000.
The simulation cases below represent two desired tasks, each with one of three uncertainties. The tasks are: 3

degree angle of attack doublet (1) and 80 degree roll step (2). The uncertainties are: reduction in control effectiveness
(A), rearward CG shift (B), Cmα scaled (C), and sensor bias on sideslip angle measurement (D). Gaussian white noise
was introduced into the plant output, and the input delay was set to zero for these simulation results.
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Figure 12. 1A: 50% control surface effectiveness on all surfaces
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Figure 13. 1B: Longitudinal CG shift: -0.9 ft rearward (6% of the vehicle length)
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Figure 14. 1C: Pitching moment coefficient Cmα scaled 4×
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Figure 15. 1D: Sensor bias of +2.0 degrees on sideslip measurement
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Figure 16. 2A: 50% control surface effectiveness on all surfaces
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Figure 17. 2B: Longitudinal CG shift: -1.6 ft rearward (11% of the vehicle length)
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Figure 18. 2C: Pitching moment coefficient Cmα scaled 4×

18



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

50

100

Roll Angle

time [s]

φ
[d
eg

]
 

 

Baseline
ORM Adaptive

ORM Reference

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−10

0

10

Aileron Deflection Angle

time [s]

δ a
[d
eg
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−10

0

10

Rudder Deflection Angle

time [s]

δ r
[d
eg
]

Figure 19. 2D: Sensor bias of +3.2 degrees on sideslip measurement

In many of the cases presented here, the baseline controller is not able to maintain stability for the given task
when subject to uncertainty. Moreover, the ORM adaptive controller also is not able to maintain stability responses
1B and 1C, whereas the CRM adaptive controller is able to maintain stability. For task 1, the CRM adaptive controller
provides good closed-loop performance, with good transient response, minimal overshoot, almost no oscillations. In
response 1A, the baseline and ORM adaptive controller oscillate slightly more in the time response. This behavior
is even more pronounced as control effectiveness is reduced further, to the point where there is insufficient control
authority to maintain stability. In response 1B, the baseline and ORM adaptive controllers fail to maintain stability.
This is triggered by an oscillation in the lateral-directional dynamics. However, the CRM adaptive controller maintains
stability and good time response performance. A similar situation is observed in response 1C, as the increased pitching
moment coefficient has a very similar influence on the plant dynamics as a rearward CG shift. In response 1D, both
adaptive controllers perform nearly identically to the baseline controller.

Response 2A shows the baseline controller again exhibiting significant oscillations in the time response when
control effectiveness is reduced. Both adaptive controllers significantly reduce this oscillation. Minimal benefit of the
adaptive controllers is observed in responses 2B and 2C, but this is largely due to the limited affect the longitudinal
CG shift and pitching moment coefficient have on the lateral directional dynamics which are excited during the roll
command. Finally, response 2D shows the baseline controller failing to maintain stability when subject to the sensor
bias on the sideslip angle measurement.

Typically, both the ORM and CRM adaptive controllers have similar performance in terms of rise time and settling
time, with the CRM controller typically requiring slightly decreased control effort. Both adaptive controllers have
more highly damped response when compared to the baseline controller, thus better tracking the desired command.
Overall, both adaptive controllers show improved performance over the baseline controller in every case.

A. Time Delay Margins

For each of the tasks and uncertainties demonstrated in simulation above, time delay margins were computed
empirically for the three controllers by determining the maximum allowable input time delay that could be tolerated
while maintaining stability. Table 5 shows the delay margins for each case, with varying values of the uncertainties.
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Table 5. Delay margins (ms)

Controller
Task Uncertainty Baseline ORM CRM

1

none 34 38 38
A: 50% 33 36 41
B: -0.6 ft 10 13 15
C: 3.5× 8 1 15
D: +2.0 deg 23 16 17

2

none 40 24 28
A: 50% 34 13 26
B: -1.6 ft 24 18 20
C: 3.5× 22 19 21
D: +2.0 deg 23 18 20

In most of the cases shown here, the ORM adaptive controller deteriorates some of the delay margin provided by
the baseline controller. However, in every case the CRM adaptive controller has a delay margin equal to, or greater
than the ORM controller. The delay margin of the CRM controller is at least 70% that of the baseline controller,
while the ORM controller has a delay margin which is as little as 13% of that for the baseline controller. Adaptation
is required to maintain stability and provide good tracking performance, but must do so without sacrificing the delay
margin to an unacceptable level. The CRM adaptive controller is able to satisfy these requirements better than both
the baseline and ORM adaptive controllers.

VII. Conclusion
The performance of a generic hypersonic vehicle was evaluated during angle of attack and roll commands, when

subject to a loss of control effectiveness, stability derivative uncertainties, longitudinal CG shift, and sensor bias, while
in the presence of sensor noise, and input delay. Three controllers were considered: a baseline full-state feedback LQR-
PI, and the same baseline controller augmented with a classical open-loop reference model adaptive controller, as well
as a closed-loop reference model adaptive controller. Both adaptive controllers exhibited improved performance and
stability over the baseline controller when given a commanded trajectory in the presence of parametric uncertainties.

In three of the simulation cases shown, the baseline controller was not able to maintain stability. The ORM adaptive
maintained stability in all but two cases, and the CRM adaptive controller maintained stability in all cases. In addition,
considering the cases where stable performance was maintained by both the baseline and adaptive controllers, the
CRM adaptive showed improved time response behavior over the other two controllers. Finally, when a time delay
was introduced at the control input, the CRM adaptive controller maintained a greater percentage of the time-delay
margin provided by the baseline controller than the ORM adaptive controller did. Overall, the CRM adaptive controller
offers the best performance, tolerating a reduced control effectiveness of 50%, rearward center of gravity shift of -0.9 to
-1.6 feet (6-11% of vehicle length), aerodynamic coefficient uncertainty scaled 4× the nominal value, and sensor bias
of up to +3.2 degrees on sideslip angle measurement. The closed-loop reference model adaptive controller maintains
at least 70% of the delay margin provided by the robust baseline design, tolerating input time delays of at least 15 ms
during 3 degree angle of attack doublet, and 80 degree roll step commands. These results demonstrate the necessity
of an adaptive controller to provide stable and acceptable tracking performance, while still maintaining much of the
delay margin provided by the robust baseline design.
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