
Towards DIVE: A platform for automatic visualization and analysis of

structured datasets.

by

Kevin Zeng Hu

S.B. Physics, Massachusetts Institute of Technology (2013)

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

at the NOV 2 5 2015
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LIBRARIES
September 2015

@ Massachusetts Institute of Technology 2015. All rights reserved.

Signature redacted
A uthor ..;

Program in M a Ats and Sciences
August 7, 2015

Signature redacted
Certified by

K...)',C~sar). Hidalgo
Associate Professor of Media Arts an iences

Program in Media Arts and Sciences
Thesis Supervisor

Signature redacted
Accepted by

Pattie Maes
Academic Head, Program in Media Arts and Sciences

2

Towards DIVE: A platform for automatic visualization and analysis of structured

datasets.

by

Kevin Zeng Hu

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

on August 7, 2015, in partial fulfillment of the
requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract
Our world is filled with data describing complex systems like international trade, personal mo-

bility, particle interactions, and genomes. To make sense of these systems, analysts often use vi-
sualization and statistical analysis to identify trends, patterns, or anomalies in their data. However,
currently available software tools for visualizing and analyzing data have major limitations because
they have prohibitively steep learning curves, often need domain-specific customization, and require
users to know a priori what they want to see before they see it. Here, I present a new platform for
exploratory data visualization and analysis that automatically presents users with inferred visualiza-
tions and analyses. By turning data visualization and analysis into an act of curation and selection,
this platform aspires to democratize the techniques needed to understand and communicate data.

Conceptually, for any dataset, there are a finite number of combinations of its elements. There-
fore there are a finite number of common visualizations or analyses of a dataset. In other words, it
should be possible to enumerate the whole space of possible visualizations and analyses for a given
dataset. Analysts can then explore this space and select interesting results. To capture this intuition,
we developed a conceptual framework inspired by set theory and relational algebra, and drawing
upon existing work in visualization and database architecture. With these analytical abstractions, we
rigorously characterize datasets, infer data models, enumerate visualizable or analyzable data struc-
tures, and score these data structures. We implement this framework in the Data Integration and
Visualization Engine (DIVE), a web-based platform for anyone to efficiently analyze or visualize
arbitrary structured datasets, and then to export and share their results. DIVE has been under de-
velopment since March 2014 and will continue being development in order to have a alpha version
available by September 2015 and a beta version by the end of 2015.

Thesis Supervisor: C6sar A. Hidalgo
Title: Associate Professor of Media Arts and Sciences
Program in Media Arts and Sciences

3

Towards DIVE: A platform for automatic visualization and analysis of structured

datasets.

by

Kevin Zeng Hu

The following people served as readers for this thesis:

A

Signature redacted

Thesis Reader....................................
C6sar Hidalgo

Associate Professor of Media Arts and Sciences
MIT Media Lab

Signature redacted
Thesis Reader....................................

Deb Roy
Associate Professor Medi Arts and Sciences

MIT Media Lab

Signature redacted
Thesis Reader...........................

Ethan Zuckerman
rincipal Research Scientist

MIT Media Lab

4

Acknowledgments
Im thankful to have many people and circumstances to include in these acknowledgements. It's

a privilege to work with such wonderful people on interesting problems. My first thanks goes to my

family: my mom, dad, and Siss. I'm extremely lucky to have a family that is not only supportive,

but also inspiring.

My second thanks goes to my second family, my friends from all places and times. You know

who you are and I love you all very much - the CK CompSci lab crew, Suite C, Funfetti. This list

includes but is not limited to: Sophie, Charlie, Mike, Franck, Will, Taylor, Andrei, Travis, Jeremy,

Thariq, Alexis, Julie, Savannah, Matt.

Also I thank my research group, Macro Connections, and especially my advisor Cesar Hidalgo.

Good teachers teach things, great teachers teach how to learn and how to think. In that way, he has

been the greatest teacher in my life.

I thank my readers Ethan Zuckerman and Deb Roy for their patience and extremely helpful

feedback. Writing turns out much better while imagining a massively intelligent audience.

Lastly, a shout-out to the current and former DIVE team, Vikas Velagapudi, Yachi Judy Chang,

Guru Mahendran and Mike Wang. It's been a pleasure working with you all at some point or another,

let's keep hustling to make DIVE a real thing.

5

6

Contents

1 Introduction

1.1 The Data Pipeline .

1.2 Related Work .

1.2.1 Research .

1.2.2 Tools .

1.3 Problem Statement and Motivation

2 Conceptual

2.1 Brief Description of Visualization

2.2 Dimensions of Semiotic Space and Visualization Types . . .

2.3 Data Structures for Visualization

2.4 Describing Datasets .

2.4.1 Types: Categorical vs. Quantitative

2.4.2 Transformation and Aggregation Functions

2.4.3 Entities .

2.4.4 Hierarchical Relationships

2.5 Mapping from Datasets to Visualizable Data Structures . . .

2.5.1 Cases A, B: Only quantitative variables

2.5.2 Cases C, D, E: One categorical variable

2.5.3 Cases F, G, H: More than one categorical variable . .

2.5.4 Summary .

2.5.5 Visualization data with time

2.6 Conditionals .

2.7 Automation: Enumerating, Filtering and Scoring Visualizable Data Structures

2.7.1 Enumerating possible visualizations

7

9

. 10

. 10

. .. . 11

. 12

. 12

15

. 16

. 17

. 18

. 20

. 20

. 2 1

. 22

. 22

. 23

. 24

. 26

. 28

. 30

. 30

. 30

31

31

2.7.2 Filtering visualizations 32

2.7.3 Scoring visualizations . 32

2.8 Dealing with Multiple Datasets . 33

2.8.1 Relationship Inference . 33

3 Implementation 35

3.1 Architecture . 35

3.2 Technology Stack . 38

3.3 Data Pipeline . 39

3.3.1 Data Ingestion and Property Inference . 39

3.4 User-facing Design . 40

3.4.1 Interface Design . 40

3.4.2 Experience Design . 40

3.4.3 Content Design . 40

3.5 Future Work . 41

3.6 Discussion . 42

4 Evaluation 47

4.1 Versatility . 47

4.2 Qualitative Evaluation of Usability and Speed . 47

4.2.1 Results . 48

5 Conclusion 51

8

. 32

Chapter 1

Introduction

"What we call the past is built on bits."

- John Archibald Wheeler

In the past century, computers have transformed how we think of ourselves, interact with others,

design institutions, and conduct scientific work.[1, 2] More recently, computers have also become

ubiquitous data collection and storage devices, resulting in an explosion of data describing the state

of diverse systems, from international trade networks to subatomic particle interactions.[3]. To

explore and understand these systems, scholars have developed a large number of data analysis and

visualization techniques that they use to uncover the structure of these systems and to test theories

about the dynamics that drive them. Yet, as the data in these systems become increasingly large, our

ability to explore them is limited by the absence of more flexible software tools.

There are many software tools and accompanying workflows for data visualization and analysis.

But many existing tools present users with a list of possible visualization types and force users to

choose a type and specify how their data maps to these types. But what if we inverted this approach,

by starting from a user's data and then showing how it could be visualized? In a sense, a data

model should enumerate the whole space of possible visualizations or analyses, and a user's

domain-specific knowledge constrains or searches that space. The "relevant" visualizations

and analyses are a subset of computationally possible visualizations and analyses. This is

because there are a limited number of dimensions that can be represented meaningfully on a screen,

and a limited number of ways that data can be manipulated into those dimensions.

For example, if we had a three column table of people, their occupations, and their incomes,

we can easily list the visualizations we could imagine of this dataset. We can bin on occupations to

9

receive a histogram visualizing the number of people in occupations, and we can bin on incomes to

receive histogram of the number of people in different income brackets. We can take two columns by

grouping occupations to find average incomes, the standard deviation of incomes, and the minimum

or maximum of incomes. We can take three columns to form a network connecting people to

occupations to income brackets.

In this thesis, we begin by characterizing tools and prior visualization research. Then, we iden-

tify common limitations of existing tools. From there, we propose a framework that overcomes

these limitations. Lastly, we describe DIVE, a tool implementing this framework. We aim for

public release of DIVE by the end of 2015.

1.1 The Data Pipeline

Deriving conclusions from data consists of sequential processes that I call the data pipeline. The

data pipeline, and accompanying workflow, usually has four steps: first, collecting data (e.g. exper-

imental observations); second, processing data into a workable form; third, generating analyses or

visualizations; finally, integrating analyses and visualizations into a coherent whole (e.g. a paper,

article, book). We can unpack the processing step into three more stages: cleaning data, possibly

transforming it into an intermediate form, then constructing a data model it in a given system. This

pipeline is shown in Figure 3-1, read from left-to-right.

But working with data is rarely truly this straightforward, with feedback loops, multiple agents,

and different tools at different steps. For example, a visualization can reveal data errors that must

be addressed in the previous data cleaning stage, or a statistical test can indicate that a specific vi-

sualization may be meaningful. Further, each stage in the pipeline can be a bottleneck: users can be

"stuck" at different points, and these bottlenecks vary depending on circumstances and skillsets.[4]

We are concerned mostly with the last two stages of modeling data and then using it. While

many applications and toolsets separate these concerns, or completely hide the data modeling stage,

a user's data model should inform his visualizations and analyses.

1.2 Related Work

The past three decades have witnessed a huge body of work in data visualization and analysis,

both in academic literature and embodied in tools and libraries.

10

Data Usage

Data Sourcing Data Processing
-ataVisualization

Data Dt
Data Acquisition Preparation Transformation Data Modeling

and Cleaning

-4 Analysis

DIVE

Figure 1-1: General dataflow and conceptual workflow for data-driven projects.

1.2.1 Research

Research advances fall into five domains: development of novel visualization techniques, evalu-

ation of visualization effectiveness, creation of new visualization paradigms and principles, study of

workflows, and design of new software architectures and design patterns for building visualizations

We're mainly concerned with the latter two categories. Novel visualization techniques, like

using 3D graphics engines to render visualizations, using wearables as visualization interfaces, or

manifesting visualizations in physical space, are outside the scope of this thesis, which is concerned

more with what is presented than how it is presented, and therefore uses existing libraries for ren-

dering visualizations. Work in visualization paradigms and principles include research in creating

visualization taxonomies[5, 6], visualization principles, [7, 8, 9]. This body of work, lead by Tufte,

Card, and Mackinlay, provides heuristics and best-practices, and are invaluable for thinking about

single-visualization design. However, they provide few concrete, generative procedures.

Examples of research into new paradigms for visualization tools include InfoVis[10, 11], a

toolkit providing data structures and visualization components for Java swing applications; The

Information Visualizer[12], a system implementing a user interface concept called the informa-

tion workspace designed around optimizing the amount of user-system interactions; Prefuse[13], a

framework providing abstractions for different components in the data pipeline, like I/O libraries,

filters, and renderers; Polaris (precursor to Tableau), an tool extending the pivot table interface for

exploring multidimensional databases by mapping from relational queries to visualization specifica-

tions [14]; DEVise[15], a data exploration system integrating multiple datasets and allowing users

to explore visualizations at multiple levels of detail. Some research is not accompanied with an

instantiation but is still incredibly informative, like Chi's work on the data state model, a formalism

11

describing the visualization process using a graph model.[16]

These previous visualization frameworks-turned-tools, with early work on visualization lan-

guages and automation like SeeDB[17, 18, 19], Visualization Languages [20, 21], Tableau's ana-

lytic data engine,[22] and Data Visualization Management Systems [23] are the direct inspiration

for DIVE.

1.2.2 Tools

In the data visualization and analysis space, many research papers are usually accompanied by

tools, as listed in the previous section. On the other end of the spectrum are software tools and

libraries that are necessarily useful but not necessarily based on any framework. A popular subset

of these tools and libraries are compiled in Table 1-2.

We can categorize data tools along several dimensions: how accessible the tool is, what in parts

of the data pipeline the tool is used, whether the tool is stand-alone, whether the tool is web-based

or desktop-based or necessarily used in a development environment, whether the tool is open-source

or proprietary, whether the tool is free or commercial, the popularity of the tool, and the intended

audience of the tool.

Some open-source tools are libraries accessed by existing languages. For example, Matplotlib

is used with python, ggplot with R, Processing, or d3 with Javascript. These libraries are in contrast

with stand-alone products. Some of these products are designed specifically for data visualization,

like Tableau, DataHero and ManyEyes. Others products, like R, Excel, and MATLAB, are designed

for more general data work but include data visualization functionality. Similar exploratory data

analysis tools include Mirador, DataHero, and Raw, but approach data visualization from the same

outcome-first perspective as previous tools.

1.3 Problem Statement and Motivation
The previously existing tools, which I call outcome-centric tools approach data visualization

and analysis from the perspective of the outcome. These outcome-centric tools offer a series of

plots or analyses to be actively created given a users understanding of their data and the tool. For

example, an Excel user can choose to create a piechart or linechart or barchart by directly mapping

fields of data to visual attributes.

DIVE inverts the outcome-centric approach by centering on a single idea: there are a finite

number of combinations of a dataset, and therefore there are a finite number of common visualiza-

tions or analyses of a dataset. Further, with knowledge of the properties of specific datasets and the

12

user's data model, we can filter and rank different visualizations or analyses. In that way, DIVE is a

data-first tool that, given an understanding of a users data, automatically generating visualizations

that can be chosen rather than necessarily created from scratch. In generating these visualizations,

in addition to possibly making a user's experience much richer and exploratory, we can also enforce

best practices and optimizations.

The goals of this thesis are to show the assumptions, ideas and language that inform our team

while we build a tool towards this vision, the implementation details in building this tool, prelim-

inary results about UI design, workflow, analysis, system architecture, and the evaluations we've

conducted of our tool thus far. Further, this thesis aims to be useful for the development team work-

ing on this project, and our collaborators. Hopefully it can also be useful for future users and other

tool builders.

13

Name

D3Plus --- i
Vega

metricsgraphics js

FusionCharts

Chart.is

Google Charts

Highcharts

Leaflet

dygraphs

Chartist.js

NVD3

Ember Charts

Morris. s

Cytoscape.js

Rickshaw

Cubism.is

Canvs!.js

Datawrapper

Tableau

Raw

TimelineJS

Infogram

Plotly

Chartblocks

Visage

Domo

Spotfire

Gephi

Cytoscape

QlikView

SpotFire

Trifacta
Mirador

ggplot2

R

S PSS

SAS

matplotlib

Bokeh

Seaborn

iPygaL

Plot.ly

Type Domain
Library (JS) General

Library)JS) General

Library (JS) General

Library (JS) .Time series, bivariate

Library JS) General

Library (JS) General

Library JS) General

Library (JS) General

Library (JS)

Library (JS)

Geographic

Time series / line charts

_TLi~rar~__1S _ General1

Library (JS) General
Library (JS) General

Library OS) General

Library (JS) Network

Library (iS) Time series

Library (JS) Temporal

Library (JS) General

Web General

Desktop + Web General

Web General

Web Time Lines

Web General

Web General
Web G-jenerat -

W~ebI General

Web BI

Desktop BI

I Desktop Networks

Desktop Networks

Library (iS) Networks

Desktop BI
Desktop BI

Web General

-We General
Desktop General

Library R General

Language General

Language General

Language General

Library (Python) General

Library (Python) General

Library (Python) General

Library (Python) General

Library (Python]
+ Web General

Audience utput (V and A) I
Developers (low-level V

Developers (high-level)

Developers (high-level
Developers (high-level)

Developers (high-level)

Developers (high-level

Developers (high-level)

Developers (high-level)

Developers (high-Level)

[Developers (high-Level)

Developers (high-level)

De -opers (high-level
Developers (high-level)

Developers (high-level

Developers (high-Level)

Developers (high-level)
Developers (high-level)
Developers (high-level)

G enera L

General

General

General

General

General

General

General

General

General

General

General

General

General

General

General
General

General

Geveloprs (Low-eve
Developers (low-level)

Developers (low-level)

Developers (Low-Level)

Developers (low-level)

Developers (low-level)

Developers (low-level)

Developers (low-level)

Developers (high-level)

V

V

V

V

V

V

V

V

V

V
V

V

V

V

V

V

V

;V

V

V

V

V

V

IV
V

V

V

V

VandA

IV an .d .1A

VandA

V

V
!V

V

Figure 1-2: Categorized collection of data visualization and analysis tools and libraries.

14

Adience 0 utu Vand A)I

Chapter 2

Conceptual

Why is it so simple to create a chart-builder tool for building scatterplots given two columns in a

dataset, but so difficult to build a tool that is a little bit smarter? Because with the huge varieties of

data structure, size, and visualization types that exist, the smallest bit of flexibility requires a huge

amount additional complexity.

One approach is to limit our scope. We dont deal with all data structures, but with those that

are common and easy to reason with. The same holds for visualizations, in that we wont deal with

all visualization types, but with those that visualization creators are used to reasoning with, and that

visualization consumers are used to interpreting. Or, with statistical analyses, we will be concerned

with the simplest statistical tests and models before proceeding to more complex tests and models.

In any case, we start by defining the entities we are dealing with and establishing rules for how

they are dealt with. Then, we can attempt to create a framework with which we can think about

the relationship between data, visualization, and analysis, and finally state some of the ideas and

procedures that are core to DIVE. We start by establishing a language that exactly describes data

sets, operations on datasets, and achievable data structures from chaining operations. This language

will draw upon notation from set theory and computer science. While it will be clumsy at times, the

formalism tries to both capture common intuitions about manipulating and describing data, but also

exactly describe these operations. Sometimes an operation, like determining hierarchical structure,

would be most easily represented with pseudocode. Other times, like in describing data structure,

set notation is most appropriate.

Then, we will abstracting the concept of datasets into a tractable form and enumerate visualiz-

able and analyzable data structure for given datasets. Finally, we will map from these data structures

to specifications for visualizations and analyses. The conceptual progression from data sources to

15

final specifications of visualizations and analyses is shown in Figure 2-1, progressing from left-to-

right. Each stage is a gray rectangle, and the important data within each stage is a nested white

rectangle.

Data Modeling Visualizabte Visualization Final
Data Structures Specifications Specifications

Object List of Key- Type: TreemapTye r ma
Properties Pairs Category: Group Filter, Type: Treemap

Data ourcs I D keyProfile, ..
Data Sources List of Key- Size: value and Data: List of Key-

Attribute Types Tupte Pairs Free parameters: Score Value Pairs

Data Sets _grea o er Elements: 54

Object LI of List of - Secondary Score: 4Ontotogies Key -Vatue Pairs Parameter aegry Rank: 5
Data: List of Key- Total Rank: 7

Attribute List of List of Value Pairs
Hierarchies Key-Tuple Pairs

Figure 2-1: Data State Diagram of our proposed Specification Generation Pipeline.

One measure of success is if this formalism can produce the exact set of optimal visualizable

data structures given an arbitrary dataset. I'd say that false positives are acceptable, and that more

important is creating a framework accommodating to user input. At the least, we'd want a frame-

work giving visualization creators a path forward to thinking rigorously about mapping from data

to visualizations.

2.1 Brief Description of Visualization

Visualization used in diverse fields, from journalism to scientific research to design, with practi-

tioners coming from equally diverse casts of mind. We have designers creating beautiful visualiza-

tions for public consumption, developers building visualization to monitor system state, scientists

creating visualizations to reason about and communicate experimental data, and so on. Visualization

is one medium for representing, reasoning with, and communicating complexity.

Here we are concerned with 2D visualizations created and consumed on a flat surface, usually a

screen or on paper. We're concerned specifically with data visualizations, in which the state, relative

orientation, and relative position of visual elements are determined by the value of quantitative

variables. Unfortunately, not all visual dimensions are created equal. Look at the visualization

below in Figure 2-2.

Here, volume is used to encode dimension. However, both the absolute and relative magnitude

of these 3-D disks is hard for a user to estimate. In this case, using just a list would have worked.

16

CALLINGS

Proportion of respondents
who attribute "very great
prestige" to the
following professions:

(57%) FIREFIGHTER

(56) SCIENTIST

(53) DOCTOR

(52) NURSE

152) TEACHER

(46) MILITARY OFFICER

(401 CLERGY

(28) CONGRESSMAN

124) LAWYER

(201 ATHLETE

(18) JOURNALIST

(61 ACTOR

Source: The Harrim Poll, July 2008
C har t by 1I3K DE GRAAff ArtEZ Academy
of Visual Arts, the Netherlands

Figure 2-2: A three dimensional, layered take on the pie chart: visualization of survey data measur-

ing the amount of prestige attached to specific professions.

The visualization in Figure 2-3 has better use of visual dimensions than the previous pie chart

in Figure 2-2. It encodes more information than Figure 2-2, and even includes redundancies (both

size and Y position encode company value) but it is clear. Perhaps this isn't the provably optimal

visualization of this data, but let's start from the following statements: 1) the fewer visual dimen-

sions used to represent data, the better; and 2) some visual dimensions are better' [24] for encoding

data than other dimensions. The risk is not only that poor visualizations are difficult to interpret, but

that they are misleading.

2.2 Dimensions of Semiotic Space and Visualization Types

Some visual dimensions are experimentally shown to be better than otherscan be quantitatively

shown not created equal. In particular, there are seven visual dimensions we are concerned with:

1. position (X and Y), 2. length, 3. area, 4. volume, 5. value, 6. color hue, 7. orientation, and 8.

shape.[25]

Common visualization types are just conventional uses of these visual dimensions. The simplest

scatterplot uses X and Y position to encode data, a treemap uses area but forgoes the exact use of

position, a geographic map uses value or color but forgoes position, length, and area, and so on. In

"Better" meaning that the relative magnitude of elements in some dimensions are more accurately estimated, that

changes in these dimensions are more readily detected, that they facilitate classification, and take advantage of pre-

attentive features.

17

Company Facebook Famvox,
value
Mms This is the same chars on a logarithmic scale. With this

scale, percentage increases and decreases are comparable.

% 00

Ya...

19 ~ ~ ~ RO IO5 $j 1 O.99r,

Figure 2-3: A scatterplot showing the relation between year of I.P.O. and company value.

this way, every visualization type is a "formula" that assembles bits into pixels.

We are going to constrain the problem by dealing with visualizations that possess, at most, four

"free" dimensions. By free dimensions, we mean dimensions that are not structurally part of the

visualizations, like country position and size on a standard world map. In particular we are dealing

with:

2.3 Data Structures for Visualization

What is the minimum amount of structure we need in data for the data to be visualizable? What

is the maximum amount of structure in data that we can reasonably and possibly visualize? Here,

we mean data structure not in the strict computer science sense (i.e. of particular organizational

schemes of data that possess certain operational qualities) but in the sense of different kinds of

collections of data.

The most general structure dataset is a list of points of with arbitrary amounts of attached data,

represented as a list of length L containing tuples of length n:

[(Vi,1 v12,i ..., i n), (V21, iV22, ..., V2n), (V Ii, VL2, ... , VLO)]

As shorthand, we can denote this same structure as [(Vn)]L, which captures the cardinality L

and dimension n. Because this structure is flat, and our our data can be more easily interpreted if it

is more nested, we see the following structures more often:

18

Visualization Type Free Dimensions Num. Dimensions

Scatterplot X, Y, size, color 4

Treemap Size, color 2

Piechart Size, color 2

Linechart X, height, color 3
Barchart X, Y, color 3

Histogram X, Y 2
Network Node size, link size, node color, link color 4

Parallel coordinates X, Y, color 3
Geographic (discrete) Color 1

Geographic (continuous) X, Y, Size, Color 2

Figure 2-4: Table of visualizations and associated visual dimensions that we are concerned with

(not comprehensive but covers common use cases).

1. List of key-value pairs: Lk,, = [{k : v}]L

This data structure could be represented many as a treemap (size), scatterplot (x, y),

barchart (x, y), network (edge existence between nodes k and v), and geometric maps (if k is

a geographic entity).

2. List of list of key-value pairs: Lk,L, = [{k : [{ : V}]L}]Lk = [{k : Lk,v}]Lk

This data structure is most commonly used to represent multiple line charts, or time se-

ries. It is also used to represent groupings of elements in grouped visualizations like treemaps.

It is also used to generate multiple grouping visualizations, akin to faceting.

3. List of key-tuple pairs: Lk,g = [{k : (vI, v2, ... , vn)}]Lk =[k : (vn)}]Lk

This data structure is commonly used to attach more data to the visualizations generated

by structure 1) Lk,,.

4. List of list of key-tuple pairs: Lk,Lj,, [{k : [j : (Vn)]Lj]Lk = [{k : Lk,I}]Lk

This high-dimensional dataset is most often used to encode groupings of time series or

line charts, or multiple time series or line chart plots.

A key factor approach to determining the mapping from datasets to these data structures is

dimensional analysis and keeping track of cardinalities. Since these four data structures can all be

mapped to a list of tuples, we can count the dimensions of the list of tuples that encodes the same

information as these data structures to get their effective dimensionality.

19

Number Data structure Dimension

1 Lk,v ={k : v}]L L X 2

2 Lk,Lj = [jU (V]]L [k : Lk,v]L Lk X L7 X 2=3

3 Lk, [{k : (v1, v2,., Vn)}1L L X n = n + 1

4 LkL [{k: [{j (vI, v2, ... ,vn)}]}]L Lk X Lj X n = n+ 2

2.4 Describing Datasets

The three simplest conceptual types of datasets:[26]

" Long datasets. The record model of datasets, in which each row is an instance of an object

with attributes described by the columns.

* Wide datasets. Each row contains an instance of a series of values. Pivoting is the operation

of transforming a long dataset into a wide dataset.

" Network datasets. Network datasets can be either long or wide (edge-list or incidence matrix),

with accompanying node and edge data.

In all three of these cases, the concept of an object is key: what data is an object, what is an

instance, and what is an attribute of an object? To give examples that we will return to later, in a

long dataset each row can be thought of as an instance of an object. If the long dataset has headers,

these headers can be taken as attributes of that object. Network datasets can be expressed as long

and wide datasets. Wide datasets can be unpivoted to long datasets as necessary.

2.4.1 Types: Categorical vs. Quantitative

Our model of data types follows the classification of variables in statistics. That is, every vari-

able is either categorical (C) or quantitative (Q). Categorical variables, also called discrete or

qualitative variables, are meaningfully countable, cannot be and only take on a certain set of values.

Categorical variables include binary variables. Examples of categorical variables are gender, names,

and cities. In contrast, quantitative, or continuous, variables are not countable.

However, certain mathematical operations, such as addition and multiplication, are meaningful

for quantitative but not categorical variables. Quantitative variables include count variables and

real-valued variables. Examples of quantitative variables include age, height, and income. Note

20

that the distinction is based on interpretation rather than data type; while strings are always cate-

gorical, numeric variables are not necessarily quantitative (e.g. numeric, discrete survey entries are

categorical).

Temporal variables are a special case because time can be considered both categorical and quan-

titative, as seen in Tableau's type system.[19] Like many quantitative variables, temporal variables

have a natural ordering and has well-defined ratios. But unlike quantitative variables, certain tem-

poral variables can also be treated as categorical variables, like month or hour. Further, there are

analysis techniques (like forecasting and de-seasonalization in time series analysis) that are valid

for all numeric domains but are only meaningfully interpreted with a temporal variable. However,

in our case, temporal variables are not distinct from categorical or quantitative variables and can be

either depending on user input.

Type Detection

Automatically detecting the type of an arbitrary list X is not always reliable and ultimately

relies on user corrections. But our type detection system are based on computer data types and

is based on a combination of methods: 1) detecting predefined attribute labels (e.g. labels like

"Country" or "Year" are heavily weighted), 2) random sampling from X and checking elements

against predefined sets, 3) regular expression matching from most general types (e.g. numeric) to

most specific (e.g. float).

Relating these computer data types to statistical data types, we classify strings, geographic en-

tities, booleans as categorical. Integers and floats are quantitative. Lastly, datetimes in various

formats (e.g. UTC, ISO) names of time periods (e.g. week, days, months) are categorical.

2.4.2 Transformation and Aggregation Functions

Here we will define general types of functions that operate on our datasets, categorized by their

inputs, effect on dimension, and effect on cardinality.

Functions on list a of N elements

Functions acting on lists of cardinality N either preserve dimension or reduce dimension, and

can return either a single list as a result or a tuple of lists. These families of quantitative transfor-

mation functions are defined as F : R" --+ R', transformation T : R" -+ R' such that m <; n, and

aggregation A : R' --+ R1. F denotes functions that preserve cardinality, such as cumulative sum

and cumulative average. T denotes functions that reduce cardinality, but not to a scalar value, and

21

includes term-to-term difference and calculating quantiles. A denotes functions that reduce lists to

scalar values, mostly used for descriptive statistics, like maximum, minimum, mean, and standard

deviation.

Functions on multiple lists of N elements

Here, standard notation for dimensionality gets clunky, but there are really one case we're con-

cerned with: functions that apply operations pair-wise across input lists of the same cardinality (e.g.

summing two rows) and output a list of the same cardinality as the inputs. We will denote this

function as TNQ-1-.

2.4.3 Entities

Core to building an object model of our datasets is finding the fields that denote entities. While

this too depends on user input, we can attempt to detect entities by 1) detecting uniqueness of

categorical fields and 2) finding the similarity between categorical fields. In case two we can define

a similarity function s(, Y) that accepts two vectors of equal length. If s(Y, y') ; C, then we say

that i and ' represent the same entity e= = u jy such that Y, y c

2.4.4 Hierarchical Relationships

Define ordered hierarchical tuple of categorical vectors 'W = (Ci,..., ON) - For two vectors

C0 and Cj, with 1 < i <j N, and the corresponding ordered unique vectors C0o and CjA,

the following relation holds: For any two elements ci,n, ci,m c Ci,A, with n # m, the sets of

corresponding values cj(Ci = ci,n) and cj(Ci = ci,m) from 0jo are distinct. That is, cj(Ci

ci,n) r cj (Ci = ci,m) = 0. Further, we require that Ii/ne I < I0 j/ne L, making the assumption that

the parents in a hierarchical relationship have less elements than children.

In practice, due to either messy data or duplicate names, we can define an overlap function

O(x, y) and a constant C such that if O(cj (Ci = ci,n), c1 (Ci =, ci,m)) < C we can effectively

state that cj (Ci = ci,n) and cj (Ci = ci,m) are distinct. For example we can use the Jaccard

coefficient as the overlap function O(X, Y) = Q .

Consider the following table of unique cities and the countries and continents in which they

belong:

An example of this procedure is the following: The set of the first Continent column is C0,i=

{North America, Africa, Asia}. Each element in this list has the corresponding Country sets

02(C1 North America) = {Canada, USA}, 02(C1 = Africa) = Nigeria, Morocco}, and

02(C1 Asia) = {India, China, Japan}.

22

Continent Country City

North America Canada Toronto
North America Canada Vancouver
North America USA Houston

Africa Nigeria Lagos
Africa Nigeria Abuja
Africa Morocco Casablanca
Asia India New Delhi
Asia China Shanghai
Asia China Beijing
Asia Japan Kyoto

Table 2.1: Table of cities, with associated country and continents

2.5 Mapping from Datasets to Visualizable Data Structures

We start with a dataset with an arbitrary amount of categorical and quantitative fields:

Starting with some notation, Nc =C|, and NQ = |Q|. We define the variable D = {C1, ... CNc, Q I,-, QNQ}

{C, Q} where C = {C1, ... CNc I and Q (Qi, ... QNQ 1. Given any vector X, the vector containing

the distinct elements of X can be notated as X0

With a our distinction between categorical and quantitative variables, by counting the number

of both types in a dataset, we can classify a dataset into one of eight cases, as shown in Table 2.2

Ne = 0 1 Nc > 1

NQ = - C F

NQ = 1 A D G

NQ > 1 B E H

Table 2.2: The eight cases used to categorize datasets based on the number of categorical and
quantitative fields.

23

C1 ... CNC Q1 -.. QNQ

Cii ... C1,Nc qi,i -.. qt,NQ

Ci,1 ... C1,NC q2,1 qt,NQ

2.5.1 Cases A, B: Only quantitative variables

In the first two cases we deal with a purely quantitative dataset with no categorical variables.

On one hand, numeric datasets lend themselves to easy visualization as-is, in that a visualization

creator can plot raw values. On the other hand, numeric datasets can be meaningfully and naturally

transformed.

Case A) One quantitative variable and no categorical variables (NQ = 1 and N, = 0)

An example dataset with this structure is shown in Table 2.4, which is a column of daily high

temperatures that we will refer to as Qj, the elements of which are qj.

High Temperature
98
80
98
92

74

Table 2.3: Example of NQ = 1: Daily High Temperature Measurements

Keeping in mind that we need to create data with at least as much structure as a list of key-value

pairs (Structure 1), we rule out the possibility of plotting the data as-is as [qi], which results in a

one dimensional list, or aggregating the data into A(Q), which results in a single scalar value.

There are four intuitive procedures to map this data into a list of key-value pairs:

1. Plot the temperatures against their respective indexes, so we get data of form [{index(Qj, qi) : qi

In this case, we get [{1: 98}, {2: 80}, ... , {N: 74}], which we can plot as a scatterplot, bar-

chart, or linechart.

2. Count the number of occurrences of each high temperature, to get data of form [{qi, : count(<, qi)}]

We can plot this as a treemap, piechart, or barchart.

3. Bin the temperature values into NB ranges B = (bi, b 2 , ... , bNB) (e.g. 0-40, 40-80, 80-120),

which can be one-sided or two-sided, and inclusive or exclusive. Then, we map each bin

range to the a function of the values within that range. For example, we can calculate the

number of high temperatures within 80 and 120, or find the average temperature within that

range. Here we get data of form {b, : A(qi E b, jVb, E B, or I[bn : A(qi E b}] , where A is

an aggregation function. This can also be represented as a treemap, piechart, or barchart.

24

4. We can transform the column values into a vector T(Q) and proceed do either of the three

steps above. For instance, we can calculate the cumulative average and then plot each element

against respective indexes as a scatterplot.

High Temperature
98
80
98
92

74

Table 2.4: Example of NQ = 1: Daily High Temperature Measurements

Case B) Multiple quantitative variables and no categorical variables (NQ > 1 and N, = 0)

Here we have a set of NQ quantitative vectors Q = {Q, Q2, ... , QNQ }. An example dataset

fitting this case is shown in Table 2.5, which has two columns of low temperature and humidity

appended to the previous Table 2.4. Since we have NQ single quantitative vectors, this case contains

NQ instances of Case A.

Table 2.5: Example of NQ = 3: High temperature, low temperature, and humidity measurements

But unlike Case A we can now create a derived column based on function of the NQ vectors,

denoted as Q' =TN-M(Q). For example, the function f(Q) = Q1 - Q2 will find the pairwise

difference difference between the high and low temperatures. From then, we have another case

that fits into Case A. The number of derived columns we compute is denoted as NQ,. Given these

derived columns, now have two actions that can act on multiple vectors of numeric data, and thus

two new ways to generate 2-D key-value pairs of form [{k : v}]:

1. We can take the raw data as-is and plot the elements of one vector against the corresponding

elements of another to create data of the form [{qi : qj}] {q : qj}]. There are (NQ+N,)

25

High Temperature Low Temperature Humidity
98 72 10
80 65 14
98 82 12
92 70 9

74 60 23

possibilities of this case where Nv, denotes the number of derived columns. For example. we

can plot humidity against temperature range as a scatterplot.

2. We can bin across one variable and aggregate on the corresponding values of another. So if

we have a vector Qj binned into intervals bnli, the corresponding values of another vector

Qj are A(qj(qi e bn). Then, our data structure is of form [: A(qj(qi E . For

Table 2.5, an example is finding the average humidity for high temperatures between 60 and

100. This can be plotted as a barchart or scatterplot.

Further, we can also create lists of tuples [{k : (V,) }] L. There are two methods to generate this

structure, analogous to the previous procedures. We can:

1. We can take the raw data as-is and plot the elements of one vector against multiple corre-

sponding elements of another to create data of the form [{qi : (qj, ... , qNQ }]'. For example,

we can use a scatterplot to plot high temperature (X) against low temperature (Y) and include

the humidity (size) of each record.

2. We can bin across one variable and aggregate on the corresponding values of multiple other

variables. Then, our data structure is of form [{bn : (A(qj (qj e bn), ... , A(qNQ (qi)

An example is finding the highest humidity and highest low temperature for different intervals

of high temperatures, representable as a barchart with color encoding a dimension.

2.5.2 Cases C, D, E: One categorical variable

With a categorical variables, we now have the notion of performing aggregations not on bins but

on elements. For example, we can find the average income for teachers vs firefighters. Aggregation

is not meaningful when all elements are unique, but this is a specific case that will be excluded from

the general inferred data structures.

Case C) One categorical variable and no quantitative variables (NC = 1 and NQ = 0)

An example dataset with this structure is shown in Table 2.6. With one categorical variable C

and no numeric variables, it is only possible to form a visualizable data structure by counting the

unique values of C to receive data of structure [{cio : count(C, cit}] . In our example, procedure

creates a treemap or barchart using size to show the number of reviews a book has received. This

counting is meaningless for unique elements, and should not be performed.

26

Table 2.6: Example of NC = 1: A list of products reviewed on Amazon, with one entry per review.

Case D) One categorical variable and one quantitative variable (NC = 1 and NQ = 1)

We now append one column to the previous book review data to include the number of stars in

the review. These two columns we denote as the categorical variable C and the numeric variable V.

This case contains one instance of Case A and one instance of Case C.

Amazon Reviews Review Stars

The Blank Slate 5
Sapiens 4

Why Information Grows 5
Rewire 5

Alone Together 4
Alone Together 3

1Q84 4

Sputnik Sweetheart 5

Table 2.7: Example of Ne = 1 and NQ = 1: A list of products reviewed on Amazon and the

number of stars in review, with one entry per review.

There are two procedures to map this data into a list of key-value pairs:

1. If the categorical variable is unique, plot the values of the categorical variable against the

corresponding quantitative variable to get [{ci : vi}] . This can be represented as a treemap

with size corresponding to review, or barchart with height corresponding to review.

2. We can aggregate on C by a function A of V(ci#Ici c CE(), we receive data of structure

[{ci: : A(V(ci:))} V ci e C#] ,where cij are the unique elements of C.

Case E) One categorical variable and multiple quantitative variables NC = 1 and NQ > 1

Here, we expand to the general case of an multiple quantitative variables by including the date

of a review in our dataset, shown in Table 2.8. In the general case of NQ > 1, just like in Case

27

Amazon Reviews
The Blank Slate

Sapiens
Why Information Grows

Rewire
Alone Together
Alone Together

1Q84:
Sputnik Sweetheart

C, can we perform arbitrary functions on the set of continuous vectors Q {Q1, Q2, -.. , QNQ I.

If NQ = 2, for instance, we can perform a pair-wise functions on two continuous variables to

produce a derived column Q' = TN->M (Q, Q2). As a function of all continuous vectors, we have

a function accepting NQ inputs Q' = TN-M (i, Q2, -, NQ). With a categorical variable, now

we can perform aggregations on Qo like in the case of a single numeric variable. Here, we receive

data of structure [{ci: : A(Q'(ci#))} V cit e C].

Amazon Reviews Review Stars Date
The Blank Slate 5 8/1/15

Sapiens 4 6/2/15
Why Information Grows 5 7/20/15

Rewire 5 7/10/14
Alone Together 4 6/3/15
Alone Together 3 1/2/14

1Q84 4 8/7/15

Sputnik Sweetheart 5 8/7/15

Table 2.8: Example of Nc = 1 and NQ = 1: A list of products reviewed on Amazon and the
number of stars in review, with one entry per review.

This case contains contains NQ instances of Case C, one instance of case B, and NQ instances

of case D.

2.5.3 Cases F, G, H: More than one categorical variable

Here we have a set of categorical vectors C = {0C, 02,.., ON, }, a set of entities = {I, 2, .-, ENE

and a set of hierarchical relationships 7. With more than one categorical variable, we introduce

data structures that represent connections between categorical variables and can be visualized as

networks. In Cases F-H, we are considering those in which every categorical variable represents a

separate entity, so all visualized networks are N-partite networks. That is, all connections are be-

tween nodes of separate types. The case of multiple categorical variables with an unequal number of

entities occurs in two instances: first, the dataset has a hierarchical relationship, second, the dataset

has an multiple occurrences of the same entity.

Case F) Nc > 1 and NQ = 0

An simple example of this case is a dataset of mentions on Twitter, showing only the source

profile and destination profile.

We start with categorical variables C = {C1, 02, ..., CNC = { 1 E2, ... , ENE} and an

28

example given in Table 2.9. We can create data structures taking pairs of raw variables: [{[ei : ej]}]NE

where i # j and i, j <; NE. There are (N E) of these possibilities. Further, we can send combina-

tions of these pairs, representing an N-partite network [{ (ci, c9 , ck) }]

There are N0 cases of B in this case, [{cio : COUNT(C, cio}].

Twitter Mention Source Twitter Mention Destination
@whitehouse @CIA

@cesifoti @macroMIT
@kevinzenghu @cesifoti

@MIT @cesifoti

Table 2.9: Example of NC = 2 and NQ = 0: A list of mentions on Twitter, with only the source
and the destination of the mention.

Case G) Nc > 1 and NQ = 1

Let's append a numeric column to the previous table showing the number of favorites that a

tweet received, as shown in Table 2.10. The new case is that the numeric column is a property of

either the entities or the edge (in this case, the number is a column of the edge but one can imagine

having a column like "Destination Followers" that is a a property of the destination node).

Given that we are interpreting each categorical variable as a node in a network, a quantitative

variable Q in this dataset can describe either node attributes or an edge attribute. This depends on

the the user's specification, but if Q is interpreted as a node attribute, we can create accompanying

node data in the form [{ei : q}]. If q'is interpreted as an edge attribute, we can create edge data as

Twitter Mention Source Twitter Mention Destination Favorites
@whitehouse @CIA 102

@cesifoti @macroMIT 32
@kevinzenghu @cesifoti 5

@MIT @cesifoti 15

Table 2.10: Example of NC = 2 and Nq = 1: A list of mentions on Twitter, the source, destina-
tion, and number of favorites of the mention.

Case H) NC > 1 and NQ > 1

Lastly, with more than one quantitative variable, we have an arbitrary amount of node and edge

data, as shown in Table 2.11. That is, we can create [{(ei, ej) : (qk,. qm)] . Here we include

29

one instance of Case B, one instance of Case E, and NQ instances of Case G.

Mention Source Mention Destination Favorites Source Followers Target Followers

@whitehouse @CIA 102 6600000 834200
@cesifoti @macroMIT 32 5795 908

@kevinzenghu @cesifoti 5 505 5795

@MIT @cesifoti 15 32000 5795

Table 2.11: Example of NC = 2 and NQ = 3: A list of mentions on Twitter, with the source, the
destination of the mention, the number of followers of the source, and number of followers of the
target.

2.5.4 Summary

In general, we begin with a dataset with attributes of various types. From the simplest cases

of single categorical or quantitative attributes, we see that there are a finite number of meaningful

transformations that can act on our datasets, and a finite number of visualizable data structures that

can come out of the data. With both a categorical and quantitative variable, we can group categorical

variables and aggregate quantitative variables based on that grouping.

For the general case of more than one categorical variable, we can have data structures that rep-

resent networks, though we need to be mindful of hierarchical structure and repetitions of entities.

For the general case of more than one quantitative variable, we can have functions that act on mul-

tiple quantitative fields to produce derived fields. The more general cases include several instances

of the simpler cases, depending on the number of variables.

2.5.5 Visualization data with time

With time variables, the amount and type of visualizable data structures of a dataset do not

change. It depends on whether time is considered a categorical variable or quantitative variable. In

our case, unless time is explicitly categorical (for example, in data with "week" as a field), it will

always be treated as a quantitative variable that can be binned. However, time does differ from other

quantitative variables because of standard bins: we default to binning by predefined periods, like

hours, days, weeks, years.

2.6 Conditionals

Conditional statements, also called selections in relational algebra or filters in scientific com-

puting, act on a collection of elements and returns only those elements evaluating to true given a

30

NQ = 0 0 C) [{ci, :count(0, ci}], F) {[ei ej]}]NE '
[{ci : vi}] if unique, [{(ci,cj,ck)}], and Nc

[{ci : count(C, ci, }] if cases of B.
not unique

NQ = 1 A) [{index(Qiqi) : qi }], D) [ci: G) [{(ei,e3) : q}], one

qi : count(Qi, qig)}], A(V (cio))} V cj E CO], case of F.
[{b, : A(qi e b,}] one case of C, and one

case of A.

NQ > 1 B) E) [{ci: H) [{(ei, ej)
[{bni : A(qj(qi e bn)}], A(Q'(ci#))} V ci, e (q, , q)}], one

[{q: (qj, -,qNQ }], C6], one case of A and case of E and G.

[{bi : (A(qj(qi e C.
bn), ... , A(qNg (qi c bn)),
and NQ cases of A

Table 2.12: The eight cases and used to categorize datasets based on the number of categorical and
quantitative fields, and accompanying data structures.

propositional formula. However, conditionals do not change the structure or interpretation of visu-

alizations, and are the key to enumerating multiple visualizations.

2.7 Automation: Enumerating, Filtering and Scoring Visualizable Data

Structures

Proceeding from the formalism just laid out in the previous sections, we can start approaching

the central problem of presenting visualizations to the user. This has three steps: first, enumerating

possible visualizations, then filtering visualizations, and finally scoring visualizations of different

types and visualizations of the same type.

2.7.1 Enumerating possible visualizations

We start with the process of mapping from a dataset D to a set of visualizable data structures V,

following the procedures laid out in the previous section and summarized in Table 2.12. Then, we

map from V onto visualization specifications S by using a visualization grammar, like in Table 2-4.

Our specifications, then, are dictionaries containing visualization types, associated data structures,

and functions used to arrive that those data structures.

31

Nc = 0 NC = 1 Nc > 1

2.7.2 Filtering visualizations

Visualizations are filtered out based mainly on visual interpretability. If the number of visual

elements exceed a threshold that is renderable or useful (e.g. > 1000 nodes on a network visualiza-

tion), we remove the specification. This threshold is determined through experimentation and the

capabilities of browsers on commodity hardware.

2.7.3 Scoring visualizations

The last step, with this list of possible and interpretable visualizations, is to sort them in a way

corresponding to their usefulness, interestingness, or meaningfulness. Our approach to this problem

is to pre-compute descriptive or statistical properties of enumerated data structures. For instance,

for simple 2-D scatterplot visualizations we can find the correlation of one axis against another. Or,

we can test for normality of different histograms. However, is correlation, anti-correlation, or no

correlation interesting? This depends on the dataset on the user, but at the least we can compute

metrics that are proxies for interestingness and allow the user to search, sort, and filter on this metric.

The interestingness metrics we compute depend on dimension and type of visualization. For

visualizations based on aggregations and result in a data structures with a single quantitative dimen-

sion, we can compare aggregations visualized on specific columns against aggregations against all

other columns, inspired by the SeeDB system[17]. That is, we define a similarity function F, that

accepts two data structures Vi and V and returns the similarity between those two data structures.

Further, we can compute the normality p-value, Gini coefficient of inequality, entropy, and model

fits of the distribution,

If this aggregation results in a list of two dimensional quantitative tuples or a key-value pair

of quantitative variables, we then have two quantitative vectors Q, and Q2. With these two vec-

tors, we compute the Pearson correlation corr(Qi, Q2)) and a linear regression of the two variables

regress(Qi, Q2)) If the number of quantitative dimensions is greater than two, then perform a linear

regression across all the variables, using the key (if available) as the dependent variable. The regres-

sion model used can change based on user input, computational feasibility, and regression results.

For instance, if all regressions result in high p-values and little variance explained, we can continue

try a different model.

32

2.8 Dealing with Multiple Datasets

2.8.1 Relationship Inference

Beyond capturing objects and attributes of objects, we are also concerned with relationships

between objects. Here we are concerned with three types of relationships:

" One-to-one (one person is associated with one birth certificate)

" One-to-many (one person has one biological mother, but one mother may have many biolog-

ical children)

" Many-to-many (one person many see several doctors, and one doctor may see several pa-

tients.)

The combination of the set of relationships 1Z corresponding to datasets D and the properties of

each dataset {P-D} comprise the data model, or ontology. Obtaining an accurate and comprehensive

data model the crucial first step in DIVE.

Relationships are crucial to visualizations because neglecting relationships between datasets can

leave out a significant amount of possible visualizations. First, we're assuming that relationships

exist only on entities, and thus only on categorical variables. Second, relationships are inferred

taking the following heuristics into account:

1. Matching header names

2. Matching types

3. Similarity between uniqued data vectors.

4. Comparison of data vector cardinalities.

Given this model of relationships, we rely on un-pivoting long datasets and joins on multiple

datasets so that, effectively, we are dealing with single long datasets.

33

34

Chapter 3

Implementation

A software tool incorporating the previous ideas and principles can be manifested in many forms on

many devices. DIVE could plausibly be a desktop application, an extension for an existing desktop

application, a mobile application, a browser plug-in, or a command-line tool. Instead of these

forms, DIVE is being developed as a web application because of: time to develop, accessibility

of development skills, testability, and internet penetration and the ubiquity of sufficiently powerful

browsers.

DIVE is currently developed as a web application with clear distinctions between user interface,

API, data access, data query, and data storage. DIVE is developed in accordance with the principles

of modularity, safety, and incrementalism and designed according to the principles of discoverabil-

ity, time-to-visualization, and shallow learning curves. This section serves two purposes: first to

describe the state of DIVE as a platform, and second to generally describe an implementation of the

previous ideas in a user-facing application.

3.1 Architecture

In general, our approach is inspired by the data state model described by Chi,[16]. We store all

data descriptors, properties, visualization specifications, analysis specifications, and exported result

specifications. A high-level architecture (not fully implemented) is shown in Figure 3-1. The data

flows from top to bottom, with black horizontal separating conceptual stages. The first stage is data

ingestion, in which data is read and stored. The second stage involves the detection of the data model

/ ontology. In other words, here we compute all the metadata necessary to enumerate visualization

and analysis specifications In the third stage, we enumerate, score, and filter the specifications.

Lastly, we expose these inferred specifications to the DIVE front-end. Here, a user can search

35

through the specifications (right now, through the builder interface) and select specifications of

interest.

36

Flat Files (*SV Key-vaue Datab Data Streams

C SON, XMLI) S'L. noSOL) Dt tem

Data Ingestion

Data
Transformation

Temporary
Database

1. Data ingestion and
Transformation

Detection of Fieds Detection of Detection Of
Hierarchies Relationsh I:ps

Ontology
Editing

(:: I D2. Ontology Identification

Visuaization
and

Analysis inference

VisuaO uaation
and Analysis

Selection

Optimized
Database API Endpoint

Generation 3. Visuatization, API, and
Question Generation

Generation and Seletion
Rendering

Embe U frs DIVE hosting

4. Output Generation and
Rendering

User input DIVE Background
Process Data Store

Legend

Figure 3-1: DIVE data flow and high-level architecture, read downwards from the top. Circular

nodes denote data stores, white rectangles denote queued background processes and analyses, gray

rounded rectangles denote stages at which output is presented to the user and during which the user

can provide user input.

37

We prescribe to the data lake model of data storage,' in which user data is always stored in raw

form before being ingested into our application databases and indexed along all fields if size permits.

Data access in performed through the Python Blaze2 , and all datasets of reasonable size are read

into memory as a Pandas data frame3 or Numpy matrix4 . By doing so, we can take advantage of

accessible analysis libraries, minimize read/access occurrences, and manipulate data with a unified

interface.

3.2 Technology Stack

In general, it is important for us to use modern web technologies. But because we we are still

developing a first prototype, we choose components of our stack based on ease-of-use and speed of

implementation.

The front-end of DIVE is implemented with the AngularJS javascript framework5 in order to al-

low two-way data-binding, modular implementation, and clear code distinctions between interface,

visualization and visualization. Interface elements use Angular Material which AngularJS compo-

nents described by Google Material Design.6 . Code is written in Coffeescript and LESS, which are

augmented javascript and CSS preprocessors, respectively. Visualizations are developed using D37,

D3Plus8 , and MetricsGraphics 9 , depending on customization and visualization type.

The backend API is built using the python web framework Flask 0 , wrapped in Gunicorn' 1 or

Nginx12 depending on deployment environment. At the data access layer, we use the Python scien-

tific computing libraries Pandas, Numpy, Scipy, Statsmodels, and Blaze. Finally, for persistence we

are currently using MongoDB but will transition PostgreSQL. For messaging and queueing back-

ground tasks in this system, we are in the process of incorporating RabbitMQ' 3 .

1http://www.pwc.com/us/en/technology-forecast/2014/cloud-computing/features/data-lakesjhtm
2http://blaze.pydata.org/en/latest/
3http://pandas.pydata.org/
4http://www.numpy.org/
5https://angularjs.org/

'https://material.angularjs.org,https://www.google.com/design/spec/material-design
7http:d3js.org
8http://d3plus.org
9http://metricsgraphicsjs.org/

lohttp://flask.pocoo.org
"http://gunicorn.org/
12http:://nginx.org
13 http://www.rabbitmq.com

38

For each file / sheet

Pre-read properties Post-read properties

Compute Format Read and Size
FLat Files Pre-read Location Compute - 1 Dimensions User Feedback

CSV, TSV, Excel Puote character Properties Type
Carriage Return UDitue vaiues

Dataset Project Property
Document DB Document

4 4
Post-read properties

Authenticate + Pre-read properties Read and Size
D Concion Compute CoptIimninDatabases URL Pre-read -Cr l- Schema ope D n sionsUserFeedback

CeetasSrcuePost-read StructureUsrFebcCredentiats Properties Structure Properties Type

Distributions

For each connection / table

Figure 3-2: Data ingestion and property inference stages.

3.3 Data Pipeline

A user interacts directly with a dataset in four ways: initial upload, access (read), modification,

and deletion. Between a user uploading a dataset and DIVE storing the dataset in a persistent form,

its necessary to compute and record properties of the dataset necessary to read it, as well as the

properties of the dataset after reading it. This data ingestion scheme is shown in Figure 3-2.

At this stage, we create pre-read and post-read property documents for each dataset. Upon a

new data upload or on user feedback, an ontology document is generated that captures the current

state of the data model, and then associated with a user's project.

3.3.1 Data Ingestion and Property Inference

Data ingestion in DIVE includes four sequential processes: first, a user uploads a dataset or a

locator to database, DIVE storing this dataset; second, DIVE read this data or a sample of this data

into memory; third DIVE analyses this data; and lastly, DIVE then returns a sample of this data. The

analysis is the most important part for later visualization and analysis, and is shown in Figure 3-2.

Proceeding from either a flat file or a database, we first analyze properties of datasets that we need

to read the dataset, or that we can get without reading the dataset. For flat files, this would include

the file type, size, and delimiters. For databases, this includes the schema (if it exists). After reading

the respective data, then we compute the types and distribution of each column in the data. Small

datasets are read into memory at this step. Large datasets are analyzed by sampling both randomly

and by the first N lines, the results of which are then compared.

39

3.4 User-facing Design
As any user-facing application, design is a key component of DIVE. Design is especially impor-

tant in an application trying to implement ideas of intelligence alongside principles of transparency,

two ideas that can at times be counter to each other. By design, we mean the design of interfaces

(how components look), experiences (how workflows feel), and content (what is shown, and when).

3.4.1 Interface Design

The interface of DIVE is based on the dashboard paradigm seen in most data manipulation

tools. The general layout of DIVE is shown infigs. 3-4 to 3-8. Within a specific project, the top-

most blue bar is used to navigate between viewing data, visualizations, and analyses. At each stage,

the secondary top-bar is used to manipulate and filter elements on the page, or to navigate between

secondary pages.

3.4.2 Experience Design

There are two user "modes" in DIVE, the top-level mode and the project-specific mode. In

the top-level mode, users can create new projects, view currently available projects, and browse

public examples from other projects. We are optimizing the workflow of DIVE to minimize the

time for a user to arrive at a visualization and analysis. In practice, this involves including features

such as predefined datasets and automatically creating projects for first-time users. After a user has

navigated to a project, or has created a new one, the first pane is the interface for uploading and

interacting with specific datasets. After a user has uploaded datasets, he can arrive at the un-filtered

galley view shown in Figure 3-4 in order to filter down visualizations by a pre-defined grammar.

Given the importance of user experience to the success of user-facing applications, and the

specific necessity of user input in our framework of filtering down enumerated visualizations, we

have described specific grammars for the filtering of visualizations and analyses. An example of the

workflow used in building visualizations is shown in Figure 3-3, which shows the steps necessary

for filtering down enumerated visualizations.

3.4.3 Content Design

The visual content of DIVE is centered on the visualization and the data used to create this

visualization, as seen in the single-visualization pages in figs. 3-7 and 3-8. Here, we are optimizing

the amount of the screen dedicated to the specific visualization, while allowing easy access to the

data used to generate the visualization, formatted as a table.

40

if elements of
primary field are

Visualize dataset by unique factors secody Cannot be child of
VS primary field

grouped secndary with on
by beld

If elements of
aprimary field binning ,.7 _n ith bin
are non -unique If elements of by I transform tion I width

primary field are
numeric and
continuous

Uniqued elements of primary Ield
mill Ellr ou. p I Ednsecondary with

on

Figure 3-3: Decision tree and user interaction scheme in the visualization builder stage. Gray boxes
indicate free parameters that a user does not need to specify. If not specified, DIVE will return the
visualization data according to all possible visualizations in accordance with the previous clauses.

3.5 Future Work

DIVE is currently in preparation for an alpha MVP by end of summer 2015, and release as a

publicly available as a beta platform by the end of 2015. For the alpha MVP, we are aiming to

support more data sources (e.g. network data formats, APIs), more visualization types, and a ro-

bust user-feedback loop for users interacting with inferred data properties. By the beta platform,

we will implement queueing and messaging features for asynchronous data processing, robust ses-

sion management, encryption, authentication, public datasets, and analysis and visualization export

capabilities. Future work beyond 2015 depends on feedback from the 2015 beta.

In parallel, we will be continuing to collaborate with Colgate-Palmolive company to ensure that

DIVE encompasses their use cases and that our visualizations and statistical analyses have business

impact. In particular, this may involve developing individual, internal deployments of DIVE.

With respect to the conceptual work of DIVE, depending again on the 2015 beta, we will be

drafting a paper documenting the formalism and releasing open-source libraries implementing spe-

cific aspects of the data ingestion and automatic enumeration of statistical analyses and visualiza-

tions. These packages will be modular versions of the backend functionality that already exists

within DIVE.

A table showing the features that currently exist, and those that we plan for the MVP and final

version are shown in Table 3.1.

41

4- G iSv. medi miteduarta i4& i inader

Divsion Channel Mafactrer

Significant

Sales (2015) by Division Sales (2015) by Channel Sales in East Asia over Time Sales by P&G over Time

All Visualizations

By Division By Channel By Manufacturer

1a. Visualizations - Gallery
After uploading datasets, you're taken to the Gallery. The Gallery lists significant/recommended visualizations at the top. All other
visualizations are grouped by Entity below. Clicking on an entity group Is the same as filtering on It in the filter bar above.

Figure 3-4: Unfiltered multi-visualization gallery view.

3.6 Discussion

Here we have documented the development of DIVE, a web-based software platform, planned

for public release, that implements the automatic visualization functionality detailed in the previous

section. DIVE is designed to minimize the time necessary for a user to see a result, and to maximize

the amount of results a user can digest on a single page. DIVE is implemented modularly so that,

eventually, other applications could be built on top of DIVE's exposed API endpoints.

The main implementation concerns we face in developing DIVE are the same as those facing

any other "big data" tool. In this case, we can address each the three types of big data: high variance

in type/structure, high velocity, and high volume.

DIVE accommodates many types and structures of data, though it is difficult to work with every

dataset that exists. This is mainly a development issue, and though it is our hope that we can develop

more data adapters (e.g. for Salesforce, SAP, and different databases), our first concern is testing

the usability of our workflow and design at scale.

42

7!- JE

S
~im.~mUAdu/proleds/314837NOviatzeAiuIIdev

1-kift Chart"l Manifaturue With Proprti

More Manufactuter
Compansons by tvsion

Sales (2015) by Division Sales by Division over Time P&G vs GSK: 2012$ by Division

Division to Manufacturer

0--
-C

C

Division to Channel Mom & Pops vs Drug & Pharmacy:
2014$ by Division

Division Breakdown

2b. Visualizations - Gallery, select first entity
The user selected the *By Division" group, which filtered on the available visualizations. Some (but not all) individual comparisons
between two entities are shown, with a link to see more comparisons.

Figure 3-5: Multi-visualization gallery view without selecting secondary field.

43

MVr Charn Cnmpansnw
by Div son

h

------ ----

...........

V x

vamw~*mlI alu/nmle 114837A builder

Ch&nnel MINu11611"r

Where Manurfacturer X in a P&G.GSK

With Properties

Time

2011FES - l. La

20114AAR 1.* {d

2011-JUN .

2011-JUL . .

P&G vS GSK: 7011 -FF by Divison P&G vs GSK: 2011-MAR by
Division

P&G vs GSK 201 i-.JUN by DMsion P&GvsGSK 7011-JUL by Dvision

4
C

Division to Manufacturer Divisions with (P&G and GSK) over
Time

2c. Visuali7ations - Gallery, select second entity
The user selected the "More Manufacturer Comparisons by Division" group, which filtered on the available visualizations. It auto-
selected a particular conditional on Manufacturers being P&G and GSK, but the user can change this.

Figure 3-6: Gallery view before selecting secondary field.

44

h

. 11 , -": - I~~ 1 -11, ' - __ __ -- :: --- _- Z__ _ - , -

. I

wanswearnnaldu/nrnin
0! x

114837A bil~der

DIV4 L (vt~meda.mt~edu/prtgeels/3141137/viatiz /u1ert ;f

C.10" MOw UffiitEr With 2011-JAN aggegatIng by %SUI

Where Munufacturw X is P&G GK

jI-JAN

Division 2011 -JAN for P&G 2011 -JAN fcr GSK

Asia92983 177165

Norh America 74916 11289

d. Visuali7ations - View visuali7ation

The user selected a particular visualization. If applicable, they can choose how they want to aggregate data in the graph. A datatable
shows the individual values of the points below.

Figure 3-7: Single-visualization view without conditionals.

While DIVE does not address real-time data in its current state, its data pipeline will be able to

work with real-time data given some degree of persistence of its data model and a "pool" of streamed

data. We will accommodate real-time data using active polling on the back-end and an updating data

model based on pooled data. This solution depends on the speed and volume of incoming data, but

from early experiments it returns meaningful results for real-time APIs.

Lastly, while each stage in DIVE takes a reasonable amount of time (up to 10 seconds) for

datasets up to 100MB (-100,000 rows) on commodity machines, some of the operations necessary

for constructing data models and enumerating visualizations scale non-linearly with the number of

fields in a dataset. Further, more expensive statistical operations scale non-linearly with the number

of elements in its arguments. Because of this limitation, given a user's datasets, it is necessary to

profile the amount of time each process takes, and perform some processes asynchronously.

45

_'OM. _ ------ __.:: __ -_ --jumommo - - __ __ -

...

P"G

D
A & L .a., .11ti *ni at /wn e1A% tisif7/isr

Wkth 2011-JAN aggregatingby sum L . . c%

Where Manufactkrer X is P&GSK -

2011-JAN X 100000

P&G 2011-JAN

GMK

DMson 2011-JAN for P&G 2011-JAN for GSK

2e. Visualizations - View visualization, add conditional

Conditionals can be used to fifter the data shown in a visualization. The visualization-type toggle buttons can be used to switch
between different types of visualizations.

Figure 3-8: Single-visualization view, after filtering from the gallery and specifying conditionals.

Current Project creation, DIVE-specific authenti- Type detection, hierarchy detection, on-

cation, data uploader and previewer, visu- tology detection, specification enumera-

alization builder, partial analysis builder tion, specification scoring, visualization
data creation from specification C, regres-

sion calculation

MVP Visualization export, comprehensive visu- Compatibility with all flat file data

alization integration, analysis export, more types, messaging system, queueing sys-

analysis type support, public datasets tem, asynchronous tasks, task profiling

Final OAuth authentication, public/private Data cleaning features, integration with

project separation, public project view- other databases, real time APIs compati-

ing, walkthrough, function tooltips, bility, learning from user visualization and

specification-to-natural language conver- analysis selection (personalization), sup-

sion, full interactive website assemble port for data changes

and export, multiple export types, manual

statistical model into

Table 3.1: The eight cases used to categorize datasets based on the number of categorical and

quantitative fields.

46

Back-end FeaturesFront-end Features

..

.

-, +

Chapter 4

Evaluation

A DIVE beta test to the larger visualization community is planned for September 2015. But because

DIVE is not yet publicly available, evaluation on the current state of the platform relies on versatility

to different datasets, speed to arrive to specific visualizations or analyses, and qualitative feedback.

4.1 Versatility

DIVE is developed in collaboration with the Colgate-Palmolive company, a multinational con-

sumer products company focused on home and oral care, who have generously provided five re-

search and development datasets related to regional toothbrush sales, bacterial genomics, patent

research, product stability and clinical oral research. Of these five datasets, the former three are

based on single databases, while the latter two are composed of multiple datasets. Further, the

datasets vary in structure. The sales dataset a wide time series dataset with 58,000 rows. The ge-

nomic dataset is a long data set with 500 rows and a single time column. The patent research dataset

is an extremely dense, long dataset with 2,500 rows. The product stability dataset consists of thirty-

three files each containing with a long time series dataset of stability metrics per batch of product.

Lastly, the clinical research dataset is four separate studies with hundreds of rows. Using DIVE, we

have successfully ingested and visualized all of these datasets.

4.2 Qualitative Evaluation of Usability and Speed

The two primary metrics we're concerned with are usability and speed. That is, given a task,

is a user able to achieve that task without becoming confused or blocked, and if so, did it take a

reasonable amount of time? Further, given that DIVE implements a user workflow that may be

foreign to users familiar with other visualization tools, what is the threshold for gaining a working

47

understanding the different abstractions?[27]

The current version of DIVE was evaluated by three graduate students and one software engineer

working in industry. Participants had varying levels of visualization expertise and background.

First, these five individuals were given a computer running DIVE locally, a synthetic dataset (long-

format, two numeric columns and one categorical column), and a brief overview of the motivation

behind DIVE without a tutorial about the various workflow stages. Then, they were told to complete

five sequential tasks: 1) upload the dataset, 2) check inferred types and data model, 3) generate a

treemap visualization, and 4) run a simple linear regression. Participants were given twenty minutes

to complete the tasks and were encouraged to "think-aloud" while completing the tasks.

4.2.1 Results

All five participants completed the five assigned tasks, with varying levels of difficulty. Some

difficulties were expected, others unexpected, though all were instructive in informing our future

design and evaluation. The most common difficulty was for users to understand the language used

in the "visualization" page, such as the difference between "comparison" and "vs." after selecting

a dataset to visualize and a primary field in visualization. One participant, even after understand-

ing the distinction, said "In my mind, comparison is always vs.". This confusion was expected,

and though the confusion was resolved for two of five participants by simply trying out both op-

tions, in the future we will create more descriptive language and a walk-through feature and in-line

explanations.

Another pain-point was the transition between data upload and visualization or analysis. That

is illustrated by a reaction of one participant after uploading a dataset and observing inferred types,

who asked "what exactly do I do now?" This difficulty was surprising given our design of the

top bar, and will be addressed by either implementing a "notification" feature that highlights the

visualization or analysis steps with the number of results shown in the respective galleries.

Lastly, two participants were confused about the relationship between "Visualization" and "Anal-

ysis" in transitioning between the third task of creating a treemap visualization and the fourth task

of running a simple linear regression. To summarize one participant's comments, it was confusing

to navigate between the two because he expected visualization and analysis to both be available in a

single mode, like in most data applications. This feedback is not as easily resolvable as the previous

two, though it may be addressed in the future by closer integration of the two modes (e.g. being

able to navigate between scatterplots and corresponding regressions).

48

On the whole participant reaction to DIVE was encouraging, even from those who had difficulty.

Many participants said that the idea of enumerating visualizations and analyses "made a lot of sense"

and that it was surprising that "this doesn't already exist, at least as...a MATLAB application." Even

though this evaluation had a small number of participants, participant feedback has been extremely

helpful in revealing the language and workflow that DIVE's developers have taken for granted, but

that may confuse and block users. By the end of Summer 2015 MVP version, we plan to conduct

more thorough, quantitative evaluation.

49

50

Chapter 5

Conclusion

In this thesis we have introduced DIVE, a framework and web-based platform for automatically

creating visualizations and analyses of arbitrary structured datasets. DIVE implements a new

framework for exploratory data visualization and analysis as a series of data ingestion and pro-

cessing modules, supporting the creation of the most commonly used 2D web visualizations, such

as treemaps, scatterplots, barcharts, and time series. In particular, DIVE contributes scalable ab-

stractions and API endpoints for data 1/0, retrieving specifications for possible visualizations and

analyses given a dataset, and returning results corresponding to specifications.

DIVE is part of a larger move to rethink the outcome-centric focus in current data tools and

workflows and bring more automation into data analysis and exploration. In future work, we plan to

introduce more powerful feedback loops for users to iterate on inferred data structures, provide more

data adapters, implement a new analytic data engine for query optimization, allow for visualization

export and sharing, and support more visualization types.

51

52

Bibliography

[1] Wikipedia. Moore's law - wikipedia, the free encyclopedia, 2015. [Online; accessed 21-
July-2015].

[2] Bruno Latour. Visualisation and Cognition: Drawing Things Together . Knowledge and
Society Studies in the Sociology of Culture Past and Present, pages 1-33, November 2011.

[3] EMC. Emc digital universe study with research and analysis by idc.

[4] S Kandel, A Paepcke, and J M Hellerstein. Enterprise data analysis and visualization: An
interview study. Visualization and..., 2012.

[5] B A Price, R M Baecker, and I S Small. A principled taxonomy of software visualization.
Journal of Visual Languages & Computing, 1993.

[6] C Daassi, L Nigay, and M C Fauvet. A taxonomy of temporal data visualization techniques.
Information-Interaction-Intelligence, 2005.

[7] Edward R Tufte. The Visual Display of Quantitative Information, 1992.

[8] Stuart Card, Mackinlay Card, Jock Mackinlay, and Ben Shneiderman. Readings in Information
Visualization. Using Vision to Think. Turtleback, January 1999.

[9] Min Chen, David Ebert, Hans Hagen, Robert S Laramee, Robert Van Liere, Kwan-Liu Ma,
William Ribarsky, Gerik Scheuermann, and Deborah Silver. Data, Information, and Knowl-
edge in Visualization. Computer Graphics and Applications, IEEE, 29(1):12-19, 2009.

[10] Jean-Daniel Fekete. The InfoVis Toolkit. IEEE Symposium on Information Visualization,
pages 167-174, 2004.

[11] Hadley Wickham, Dianne Cook, Heike Hofmann, and Andreas Buja. Graphical inference
for Infovis. Visualization and Computer Graphics, IEEE Transactions on, 16(6):973-979,
November 2010.

[12] Stuart K Card, George G Robertson, and Jock D Mackinlay. The information visualizer, an
information workspace. ACM, New York, New York, USA, April 1991.

[13] Jeffrey Heer, Stuart K Card, and James A Landay. prefuse: a toolkitfor interactive information

visualization. a toolkit for interactive information visualization. ACM, New York, New York,
USA, April 2005.

[14] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: a system for query, analysis, and visual-
ization of multidimensional relational databases. Visualization and Computer Graphics, IEEE

Transactions on, 8(1):52-65, 2002.

53

[15] M Livny, R Ramakrishnan, K Beyer, G Chen, D Donjerkovic, S Lawande, J Myllymaki,
K Wenger, D Donjerkovic, S Lawande, J Myllymaki, and K Wenger. DEVise: integrated
querying and visual exploration of large datasets, volume 26 of integrated querying and vi-
sual exploration of large datasets. ACM, June 1997.

[16] Ed H Chi. A taxonomy of visualization techniques using the data state reference model. IEEE
Visualization 2000, pages 69-75, 2000.

[17] Manasi Vartak, Samuel Madden, Aditya Parameswaran, and Neoklis Polyzotis. SeeDB: auto-
matically generating query visualizations. Proceedings of the VLDB Endowment, 7(13):1581-
1584, August 2014.

[18] A Parameswaran and N Polyzotis. Seedb: Visualizing database queries efficiently. In Pro-
ceedings of the VLDB..., 2013.

[19] J D Mackinlay and P Hanrahan. Show me: Automatic presentation for visual analysis. ... and
Computer Graphics, 2007.

[20] Pat Hanrahan. VizQL: a language for query, analysis and visualization. a language for query,
analysis and visualization. ACM, New York, New York, USA, June 2006.

[21] P Hanrahan, C Stolte, and J Mackinlay. visual analysis for everyone. Tableau White paper,
2007.

[22] Richard Wesley, Matthew Eldridge, and Pawel T Terlecki. An analytic data engine for visual-
ization in tableau. the 2011 international conference, pages 1185-1194, June 2011.

[23] Eugene Wu, Leilani Battle, and Samuel R Madden. The case for data visualization man-
agement systems: vision paper. Proceedings of the VLDB Endowment, 7(10):903-906, June
2014.

[24] Jeffrey Heer and Michael Bostock. Crowdsourcing graphical perception: Using mechanical
turk to assess visualization design. In ACM Human Factors in Computing Systems (CHI),
pages 203-212, 2010.

[25] Jacques Bertin and William J Berg. Semiology of Graphics. Diagrams, Networks, Maps. Esri
Press, 2011.

[26] William Kent. Data and Reality: Basic Assumptions in Data Processing Reconsidered. Else-
vier Science Inc., New York, NY, USA, 1978.

[27] B Myers, S Hudson, and R Pausch. Past, present and future of user interface software tools.
1999.

54

