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ABSTRACT
Much research has been conducted on fracture toughness and there has been a debate about
whether the fracture toughness varies with specimen size. The purpose of this research is to
investigate the size effect on the fracture toughness of mortar specimens. First, the methods for
calculating elastic modulus, tensile strength, and fracture toughness in previous research are
discussed. Some of the fracture toughness calculation methods proposed in them are not
convincing, since the underlying assumptions have not been verified by experiments. Then, the
experimental setup, including the material properties, specimen preparation, and the testing
apparatus, are introduced. The mortar specimens were cast from Type III Portland Cement, fine-
grained silt, and water. Next, the numerical work on calculating the elastic modulus and the tensile
strength is presented.

The experimental results are shown. 107 experimental results at different specimen sizes (two-
inch, three-inch and four inch) and different flatness angles (23', 28', and 390) were used to
investigate how the elastic modulus E, tensile strength at, averaged compressive stress at local
maximum loading GA, and averaged compressive stress at local minimum loading aB change with
size and 2a (flatness angle). The change of fracture toughness, based on the local maximum
loading, KICA, and the local minimum loading, KICB, with size and 2a was analyzed. KICA and KICB

appear to be independent of the specimen size; while at, aA, and aB decrease with increasing
specimen sizes. As for the effect of 2a, at appears to be independent of 2a, while cYA and aB

decrease with increasing 2a. In addition, High speed videos and high resolution images indicate
that the primary crack initiated at the specimen center, and propagated along the vertical center
line.

Thesis Supervisor: Herbert H. Einstein

Title: Professor of Civil and Environmental Engineering

Thesis Supervisor: John T. Germaine

Title: Professor of Civil and Environmental Engineering, Tufts University
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Chapter 1 Introduction

1.1 Motivation

Hydrocarbon extraction from oil and gas reservoirs, carbon dioxide sequestration, nuclear waste

disposal, and underground construction require a comprehensive understanding of rock fracture

processes, which include fracture initiation, fracture propagation and fracture coalescence. A

comprehensive understanding of fracture processes relies on a detailed understanding of fracture

toughness. Thus, fracture toughness has been extensively researched in the past and there has been

a debate about whether the fracture toughness varies with specimen size. If fracture toughness is

dependent on size it would not be a basic material property. Hence, the size effect on fracture

toughness should be adequately researched experimentally.

1.2 Approach

Mortar was used to investigate the size effect on fracture toughness because it was relatively less

time-consuming to prepare mortar specimens. The fracture toughness was determined through

flattened Brazilian tests since it is relatively convenient to conduct the tests and is less prone to

local failure near the loading surfaces (Wang and Xing, 1999; Wang et al., 2004; Keles and

Tutluoglu, 2011; Agaiby, 2013). The detailed approaches are discussed in Chapter 2 (Background),

Chapter 3 (Experimental Setup), Chapter 4 (Numerical Analysis) and Chapter 5 (Experimental

Results and Discussion).

1.3 Objective

The purpose of this research is to verify whether the fracture toughness of mortar specimens varies

with the specimen size.
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1.4 Organization of thesis

The thesis is organized as follows:

* Chapter 2 - Background. The basic theories of fracture mechanics are reviewed first; this

includes Linear Elastic Fracture Mechanics (LEFM), fracture process zone (FPZ), and

Griffith theory. Then, conventional Brazilian tests and flattened Brazilian tests are

compared, from the prospective of testing procedures, apparatus, analytical work and

numerical work.

" Chapter 3 - Experimental Setup. This chapter first introduces the mortar specimen

preparation and the flattening processes. It is followed by a description of the loading

apparatus and the testing procedures.

* Chapter 4 - Numerical Analysis. This discusses how to determine the elastic modulus and

the tensile strength of the specimen, based on the measurements.

* Chapter 5 - Experimental Results and Discussion. Experimental results are presented first.

The discussion shows that the fracture toughness of the mortar specimen does not change

much with specimen size.

" Chapter 6 - Conclusions and Recommendations.
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Chapter 2 Background

This chapter presents a general review of basic fracture mechanisms and flattened Brazilian tests.

First, fundamental concepts and equations of basic fracture theories (LEFM and Griffith Theory)

are briefly discussed. Next, conventional Brazilian test and flattened Brazilian test are briefly

described and compared.

2.1 Basic Fracture Theories

2.1.1 Fracture types and fracture processing

Anand (2014) defined fracture as the parting of the solid into two or more pieces. In rock

mechanics, cracks are often used to represent small scale rock fractures. Based on failure mode, a

crack can be classified as tensile crack or shear crack. In addition, Engelder (1987) classified

cracks into three main categories based on crack size: microcracks, mesocracks and macrocracks.

A microcrack extends 1 to 102 microns, a mesocrack extends hundreds of microns to few

millimeters and a macrocrack extends several millimeters to decimeters (Engelder, 1987). In this

research project, mortar samples underwent tensile failure so we will focus on tensile crack.

Previous research has discovered that rock cracking is quasi-brittle (Irwin, 1961; Dungdale, 1960;

Barenblatt, 1959). Anderson (2005) stated that there is a fracture process zone, where plasticity

plays a significant role, ahead of the propagating crack tip. The fracture process zone consists of

the tractional bridging areas and microcracking areas (See Figure 2.1). Microcracks occur before

a macrocrack is formed. To introduce quasi-brittle rock fracture, it is important to introduce brittle

failure first, followed by comments on the fracture process zone.
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Traction-Free Crack
- I -

Figure 2.1 Fracture process zone ahead of a crack tip in concrete. The fracture process zone is

characterized by tractional bridging and microcracking (Anderson, 2005)

2.1.2 Fracture modes

Irwin (1957) summarized fracture into three modes:

(1) Mode I, the tensile opening mode;

(2) Mode II, the shear mode (or the in-plane sliding mode);

(3) Mode III, the anti-plane tearing mode (or out of plane shear mode).

The three modes are illustrated in Figure 2.2.

Mode I: penng Mode II: in-plane shear
Mode III: out-of-plane shear

Figure 2.2 Different fracture modes (Whittaker et al., 1992)
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2.1.3 Theoretical fracture strength

From an atomistic point of view, fracture involves separation of atomic planes. In dislocation,

atomic planes glide past each other and result in shape changes. On the contrary, the fracturing

process creates new free surfaces. Therefore, the theoretical fracture strength should be the stress

required to simultaneously break all bonds across a plane. According to Anand (2014), theoretical

fracture strength can be expressed as

Etheo = (2.1)

where E is the Elastic Modulus, ao is the lattice spacing (see Figure 2.3) and y, is the surface

energy per unit area of the crystallographic cleavage plane. The detailed derivation is complicated

so only the final equation is introduced.

+-O O
0 0 . e

a0

Figure 2.3 Atomistic point of view of fracture (Anand, 2014)

Anand (2014) stated that the specific energy ys of most solids is given to an adequate

approximation by

Ys ~ to (2.2)

100 10

Substituting Equation 2.2 into Equation 2.1 gives

E E
Utheo = - to - (2.3)
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Equation 2.3 predicts the upper bound to the fracture strength of a perfect crystalline solid without

any cracks. Based on equation 2.3, theoretical fracture strength of rocks and metals should be at

GPa level, which is much higher than the measured fracture strength (the measured fracture

strength is usually at the MPa level). This discrepancy is because that most rocks and metals

contain intrinsic microcracks or crack-like micro-defects (Irwin, 1957; Evans, 2015; Anand, 2014).

For a sharp crack or crack-like discontinuity, stress concentration can occur (Irwin, 1957;

Demkowicz, 2012; Anand, 2014). The stress concentration can increase the local stress at the crack

tip to the magnitude approaching Utheo even though the applied far field tensile stress is very small

compared with theo. To predict the measured fracture strength, it is important to relate the applied

far field tensile stress to local stress at the crack tip.

2.1.4 Macroscopic fracture criterion (Linear elastic fracture mechanics, LEFM)

Consider a sharp elliptical crack of major axis 2a and minor axis 2b (a >> b), within an infinite

plate and subjected a far field tensile stress (To (See Figure 2.4). Kolosov (1907) and Inglis (1912)

expressed local tensile stress at the crack tip as:

clocal = ( + 2 )O (2.4)

where p is the radius of curve at the crack tip (p = -

22



Go

local radius p

Slocal

I I Go

Figure 2.4 An elliptical crack in an infinite plate subjected to far field tensile stress (To (Anand,
2014)

Anand (2014) pointed out that the sharpest physical crack would have a minimum crack tip radius

of curvature of around the interatomic spacing (lattice spacing)

Pmin ao

where ao is the lattice spacing (See Figure 2.3). Anand (2014) assumed that for the sharp crack,

a >> ao (for a very sharp crack, the crack length is normally much larger than the lattice spacing).

Therefore, equation 2.4 becomes

6ocal = 2 T-o (a >> ao) (2.5)

The local fracture criterion

Olocal - Otheo

becomes

2 a 6 !theo (2.6)
ao

Introduce

K = uOV (2.7)
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and

Kc - 2* (2.8)IC 2

where K, is called the mode I stress intensity factor (Irwin, 1957) and Kic is called mode I critical

stress intensity factor (Anand, 2014). Substituting Equation 2.7 and Equation 2.8 into Equation 2.6

gives

K, ! Kc (2.9)

For a sharp crack of length 2a within an infinitely wide and infinitely thick plate, K, = uovFa.

Irwin (1957) stated that, for other geometrical configurations, in which the characteristic crack

length is a and the characteristic applied far field tensile stress is co, Ki can be expressed as

K, = Qo/ff- (2.10)

where Q is a dimensionless factor needed to account for geometry different from that of Figure

2.5. Q is called configuration correction factor and it is usually determined by relevant geometrical

quantities (the geometrical quantities are referred as crack length, sample width, sample thickness,

sample height, etc).

G~o

V2a]

Figure 2.5. Sharp crack of length 2a within an infinite plate (Anand, 2014)

Therefore, the macroscopic failure criterion is that brittle fracture will occur if stress intensity

factor K is larger than critical stress intensity factor Kic. Mathematically, it can be expressed as

K, ! K, c (2.11)
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where

* K, = Qaov7Ti is called the mode I stress intensity factor. It is a function of sample

geometry, applied far field tensile stress ao and crack length a.

* Kjc is called the mode I critical stress intensity factor. It is also called fracture toughness

and it measures the resistance of a material to crack propagation (Irwin, 1957).

Table 2.1 listed fracture toughness-value of some typical materials.

Table 2.1 Some typical Mode I fracture toughness values (Whittaker et al., 1992; Zhang et al.,

1998; Demkowicz, 2012)

2.1.5 Comments of macroscopic fracture criterion (LEFM)

The macroscopic fracture criterion defines the lower limit on Kic since the plasticity within the

fracture process zone is ignored. Demkowicz (2012) and Anand (2014) stated that plasticity makes

it more difficult to create new free surfaces as plasticity absorbs a large amount of energy with

crack initiation and propagation. Therefore, plasticity increases the fracture toughness. Since we

neglect plasticity, the fracture toughness may be underestimated.

For brittle materials (i.e. ceramics, glasses), the inelastic deformation is negligible compared with

elastic deformation so the macroscopic fracture criterion is reasonably accurate. On the contrary,

for ductile material (i.e. metals, polymers), the inelastic deformation is significant and as a result,

25
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Epoxy 0.6

Oil Shale 0.6-1.1

Concrete 1.2

Basalt 1.8-3.0

PVC 3.4
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Steel 66-120



the actual Kic value is much larger than the elastic estimate of Kic value predicted by Equation 2.8.

Macroscopic fracture criterion is no longer applicable.

LEFM also has some other liinitations. Consider a sharp crack within an infinite plate (See Figure

2.6). Based on LEFM, Westergaard (1939) and Muskhelisvili (1963) derived the equations of

stress components near the crack tip:

URR = cos - (1 + sin2-) (2.12)
UR -12i7 2 2

coo = a - (2.13)

6 R6 = r sin -cos - (2.14)

ayy

Y
Txy

r TY

0

CRACK
X a

Figure 2.6 Coordinate system of a crack (Backers, 2004). It includes both Cartesian coordinates
and cylindrical coordinates

Equations 2.12, 2.13 and 2.14 indicate that the stress near the crack tip will approach infinity if the

distance to the crack tip r approaches zero, which is not realistic. Therefore, LEFM fails to predict

the stress at the location, which is very near to the crack tip. Barenblatt (1959), Irwin (1960) and

Dugdale (1960) postulated that stress very near the crack tip is the yield stress (an intrinsic material

property) and the material undergoes plastic deformation. This zone is termed as the Fracture

Process Zone (Irwin, 1960) and within this zone, the material deforms plastically. Fracture Process

Zone and plastic deformation are very significant for ductile materials (i.e. metals and polymers).
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Previous researches indicated that concrete and mortar can be referred to as a quasi-brittle material

and plastic deformation is not negligible (Irwin, 1961; Dugdale, 1960; Barenblatt, 1959).

Therefore, the plastic zone (fracture process zone) is introduced next.

2.1.6 Fracture process zone (plastic zone)

Irwin (1960) considered an elliptical crack (See Figure 2.6), and reformulated Equation 2.12,

Equation 2.13 and Equation 2.14 in terms of polar coordinates:

Uys = i f() (2.15)

where K1 is the mode I stress intensity factor (K = or V'W, see Equation 2.7), 7ys is the yield stress

and f(O) is a function dependent on 0. When 0 = 0 (directly in front of the crack), f(O) = 1.

Rearranging Equation 2.15 gives:

21 K1= 2 (2.16)

where rp is the size of the fracture process zone. Here Irwin (1960) approximated the fracture

process zone as a circular disc of radius rp centered at the crack tip. Irwin (1960) stated that by

assuming specimen yielding starts when stress a reaches 88% to 115% of the material yield stress,

the actual process zone size ranged from 80% to 130% of the rp determined by Equation 2.16.

Therefore, Equation 2.16 provides a reasonably accurate estimation of the process zone size.

Dugdale (1960) also determined the plastic zone size but with different assumptions than Irwin.

Dugdale (1960) assumed that the crack is rectangular and that the material over a distance s beyond

the crack would have yielded (See Figure 2.7 on the next page). After derivation, Dugdale (1960)

expressed the size of the fracture process zone as:

r = (2.17)
8 6yield

where T is the applied remote loading. Dugdale's theory is not applicable here because the cracks

in flattened Brazilian tests are not rectangular.

27



Figure 2.7 The crack shapes considered by Dugdale and Irwin (Brooks, 2013). The left side is

Dugdale's model and the right side is Irwin's model.

2.1.7 Original Griffith Theory

Griffith (1921) proposed a thermodynamic criterion (energy-based criterion) for crack propagation

in solids. The assumptions of Griffith Theory are summarized below:

1. All materials have a distribution of pre-existing cracks inside them and some cracks are

oriented in a way that maximize the stresses at their tip.

2. As the applied stress increases, the stress at the tip of one pre-existing crack exceeds the

theoretical strength of the pre-existing crack.

3. There are two energies that determine if a crack can propagate:

a. Surface energy: fracture creates new surface area and this has a surface energy ys (per

unit area) associated with it. Thus, increasing surface energy inhibits crack propagation.

b. Potential energy: elastic energy stored inside the material and the external potential

energy due to applied loads. Crack propagation releases the elastic stored energy so a

decrease in elastic energy promotes crack propagation.
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Griffith (1921) stated that if the rate of potential energy decrease exceeds the rate of surface energy

increase, a crack will propagate. Mathematically, it can be expressed as

a (Autot) a (AUe + Au) = ar2 + 4ays) = - , a + 4ys 0 (2.18)

where

7ra 2a2
* AUe - ___ = Stored elastic energy and (2.19)

* Aus = 4ays = Surface energy created by the crack (2.20)

where a is the crack half length in an infinite plate (See Figure 2.5), E is the elastic modulus of

the solid and ys is the specific surface energy. From Equation 2.19, Aue decreases when a increases,

indicating that increasing a helps to release the stored elastic energy. Therefore, an increase in a

promotes crack propagation. Substituting Equation 2.19 and 2.20 into 2.18 gives

Fcri = (2.21)
ira

2.1.8 Comments on original Griffith theory

Original Griffith theory (1921) neglected the inelastic deformation (in other words, only

considered the elastic deformation) of the material around the crack front. For brittle materials

(glass, ceramic) for which the inelastic deformation is negligible, the original Griffith theory

provides excellent agreement with experimental data. On the contrary, for ductile materials

(metals, polymers) for which inelastic deformation is significant, the original Griffith theory

underestimates the tensile strength (inelastic deformation also absorbs energy during crack

initiation and propagation). Thus, for ductile material, plastic deformation needs to be taken

into account when we determine ys (See Equation 2.21).

Previous research (Irwin, 1961; Dugdale, 1960; Barenblatt, 1959) indicated that concrete and

mortar can be referred to as a quasi-brittle material but original Griffith theory is still

reasonably applicable. In addition, in flattened Brazilian tests mortar samples failed in tension.
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Therefore, original Griffith theory forms the basis of tensile strength prediction and size effect

explanation.

2.1.9 Size effect on tensile strength

It is also worth noting that based on Equation 2.21, for the same material, samples with larger

crack length (larger flaw) have lower tensile strength. Previous research (Weibull, 1951;

Glucklich and Cohen, 1967; Glucklich and Cohen, 1968; Einstein, 1970; Einstein, 1981;

Demkowicz, 2012) proved that for the same material, larger samples have lower tensile

strength compared with smaller samples (See Figure 2.8). The size effect can be explained by

both extreme value theory (Epstein, 1948; Weibull, 1951) and stored strain energy theory

(Glucklich and Cohen, 1967).

Extreme value theory (Epstein, 1948; Weibull, 1951) assumes a normal distribution of flaw

sizes. The larger the specimen size, the more extreme values occur for the flaw size (both

positive extreme values and negative extreme values) (Weibull, 1951). Therefore, larger

specimens are more likely to contain larger flaws (Weibull, 1951) and according to Equation

2.21, larger flaws have less tensile strength. The material tensile strength is dependent on the

weakest flaw (flaw which has the lowest strength) because it takes only one critical flaw for

the entire specimen to fail even though other flaws are stable (Demkowicz, 2012). Thus,

larger specimens are more likely to have lower tensile strength (Demkowicz, 2012).

Later, Glucklich and Cohen (1967, 1968) tested notched beams which had identical cross-

section area but different lengths so the statistical effect was eliminated. However, they still

found that tensile strength was decreasing with increasing specimen size and to explain this

phenomenon, they proposed stored strain energy theory (Glucklich and Cohen, 1968). When

cracks propagate, stored strain energy is released and it drives the crack propagation together

with external work (Glucklich and Cohen, 1968). The larger the specimen size, the more

stored strain energy is available (Glucklich and Cohen, 1968). As a result, the crack

propagation is accelerated and the tensile strength is lowered (Glucklich and Cohen, 1968).
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Figure 2.8 Tensile strength decreasing with increasing sample size (Einstein, Baecher and
Hirschfeld, 1970)

2.2 Conventional Brazilian Tests and Flattened Brazilian Tests
In this section, the conventional Brazilian test and the flattened Brazilian test are described and

compared, from the perspective of testing procedure (including apparatus), analytical work, and

numerical work. In addition, the conventional Brazilian tests are compared with uniaxial extension

tests.

2.2.1 Basic introduction and testing procedure

2.2.1.1 Conventional Brazilian test

The Brazilian test is a simple indirect testing method which is used to determine the tensile strength

of brittle materials or quasi-brittle materials, such as rock and concrete. Since it was developed by

Brazilian and Japanese scholars in 1940s (Akazawa 1943; Cameiro, 1943; Barcellos and Carneiro,
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1953; Akazawa, 1953), the Brazilian test has become very popular because it is relatively easy to

prepare the specimen and run the test.

First, the rock specimen is cut into right-angled circular cylinders with the following characteristics:

" The length (thickness) of the specimen t is approximately equal to the radius (D = 2t, see

Figure 2.9). This ratio is suggested by ISRM (1978).

* Specimen sides smooth, straight and perpendicular to the specimen ends (see Figure 2.9).

* Specimen ends flat and perpendicular to the cylindrical axis.

Then, circular cylinders are diametrically compressed (See Figure 2.9), and the apparatus is

illustrated in Figure 2.10. Two steel loading jaws are designed to contact the disc-shaped specimen

at diametrically-opposed surfaces, and the arc of contact is approximately 100 (ISRM, 1978). The

suggested loading rate is 200N/s (ISRM, 1978).

As illustrated in Figure 2.9, during the test the specimen center is under vertical compressive stress

and horizontal tensile stress. As a result, the specimen undergoes tensile failure (tensile splitting),

and the axial tensile crack should be the primary crack. ISRM (1978) stated that at primary failure,

there will be a brief pause in the load increase. The load at primary failure should be recorded and

the tensile strength can be determined correspondingly.

Compression Load S

CrackgSpecimen end

Tension Tension D

Compression Load Specimen end

I Specimen side

Figure 2.9 Conventional Brazilian tests (Guan, 2013)
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Figure 2.10 Apparatus of conventional Brazilian tests (Guan, 2013)

In conventional Brazilian tests, the applied loading may not be a line load (Yang, 2012; Guan,

2013). As a result, shear or crushing failure near the loading point may occur before the primary

tensile crack, and the specimen should be discarded in this case (this will be explained in Section

2.2.6.1). In addition, ISRM (1978) stated that the maximum horizontal tensile stress occurs along

the vertical center line (see the red line on the left side of Figure 2.9). Therefore, the primary crack

should initiate on the vertical center line and propagate along the vertical center line. If the primary

tensile crack initiates at the specimen periphery, or does not propagate approximately parallel to

the vertical center line, the specimen should be rejected (ISRM, 1978).

2.2.1.2 Flattened Brazilian test

Wang and Xing (1999) first proposed flattened Brazilian test. By running one test, the elastic

modulus E, tensile strength at, and fracture toughness Kic of the specimen can be obtained (How

to determine those parameters will be discussed in Chapter 2.2.2 and Chapter 2.2.3). Different

from conventional Brazilian tests, two parallel planes of equal width are introduced on the

Brazilian disc (See Figure 2.11). First, cylindrical discs are cut according to the specimen

requirements of conventional Brazilian tests (see Chapter 2.2.1.1). Then, two parallel flattened

surfaces, with a flatness angle of 2a (see Figure 2.11), are cut.
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2R

Figure 2.11 Flattened Brazilian test. P is the summation of distributed loading and the dashed

line represents the primary crack. (Wang and Xing, 1999)

During the test, the applied loading P is distributed through a loading plate to the flattened surface

(see Figure 2.11). Wang and Xing (1999) stated that, similar to the conventional Brazilian test, in

the flattened Brazilian test the specimen center is under vertical compressive stress and horizontal

tensile stress. The primary crack initiates at the sample center and propagates along the vertical

center line (the dashed line, see Figure 2.11).

In flattened Brazilian tests, a curved steel jaw is no longer required since the surface is flattened.

Only four papers discuss experimental analysis of flattened Brazilian tests but none of them

discusses the apparatus. It is assumed that the basic equipment is a loading frame, two loading

plates, extensometers and a data acquisition system. As for the loading rate, only Wang and Wu

(2004) suggested that the loading should be displacement controlled (constant displacement rate),

but they did not recommend a specific displacement rate. The testing procedure can be divided

into three stages, as illustrated in Figure 2.12.
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Figure 2.12 A typical load displacement curve (Wang and Xing, 1999)

Stage 1 corresponds to segment oa in Figure 2.12. The applied loading starts from zero to a local

peak loading (point a). When the specimen is vertically compressed, the specimen center is under

horizontal tensile stress, which is similar to conventional Brazilian tests (Wang et al., 2004) (See

Figure 2.13). Wang et al. (1999) stated that when the loading reaches point a, a tensile crack

initiates at the specimen center since the horizontal tensile stress is maximum at the center (this

will be explained later). The stress at point a is used to determine the tensile strength because it is

the stress required to initiate the tensile crack (Wang et al., 2004). In addition, the specimen

deforms linearly in stage I and the average slope of segment oa is used to calculate the specimen

elastic modulus (Wang et al., 2004).

Compressive
stress region

Tensile stress region If
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Figure 2.13 Stress distribution within the specimen in flattened Brazilian tests (the boundary is

sketched roughly)

Stage 2 corresponds to segment ab in Figure 2.12 and the primary tensile crack (initiated at point

a) grows at this stage. The displacement rate is kept the same throughout the test. The loading drop

is caused by the crack propagation. Wang et al. (2004) stated that the horizontal tensile stress is

the largest along the vertical center line (See Figure 2.14). Therefore, the crack propagates along

the center line from the center to the location where the tensile stress intensity at the crack tip is

equal to the specimen fracture toughness (See Figure 2.15). Beyond that location, the stress

intensity is smaller than the specimen fracture toughness and the crack cannot propagate (the

horizontal tensile stress is decreasing when it becomes closer to the flattened surface). The crack

propagation causes the loading to drop and the loading reaches the local minimum loading (point

b) when the crack propagation stops. Wang et al. (2004) assumed that the primary tensile crack

starts to propagate from the crack tip when the loading is very close to the loading at point b so

therefore, the loading at point b is used to calculate the fracture toughness. This argument is

disputable because whether the crack starts to propagate near point b has not been verified by

experiments. How to calculate the fracture toughness will be explained in detail in Section 2.2.3.

Surface A:
ahorgszon (+ is tension)

Horizontal
surface A

Figure 2.14 Horizontal stress distribution along horizontal surface A. The maximum tensile

stress occurs in the centerline. The stress curve is sketched roughly.
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Crack propagation stops at the point where the
horizontal tensile stress is not large enough to
drive the crack propagation.

Tensile stress
region

Crack
propagates

Compressive stress region

Figure 2.15 Tensile crack propagation. The crack shape and the boundary between tensile stress

and compressive stress are sketched roughly

Stage 3 corresponds to segment bc and the primary crack propagation has stopped. Wang and Wu

(2004) stated that the specimen undergoes tensile total failure at point c and the loading at point c

should be smaller than the loading at point a. However, their statement is considered to be wrong.

In the real test, at stage 3 the specimen undergoes compressive total failure and the loading at point

c should be larger than the loading at point a. This will be explained in detail in Chapter 5.

2.2.2 Analytical work with conventional Brazilian tests and flattened Brazilian tests

2.2.2.1 Conventional Brazilian test

By assuming that the specimen is under uniformly distributed tensile stress (see Figure 2.16),

Carneiro (1953) and Barcellos (1953) stated that the tensile strength can be expressed as:

2P
-=- (2.22)

irDt

where P is the applied loading when the specimen fails, D is the cylinder diameter, t is the specimen

length (thickness) (see Figure 2.9). Equation 2.22 is used to calculate the tensile strength.
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Figure 2.16 Stress distribution of conventional Brazilian tests

2.2.2.2 Flattened Brazilian test

Wang et al. (2004) proposed an analytical formula to calculate the tensile strength. The detailed

derivation is presented below.

Hoek and Brown (1980) reinterpreted Griffith's criterion (1924). Some conventional triaxial tests

had been done on rock specimens and an empirical Mohr's envelope was plotted. The Mohr's

envelope is approximately parabolic (see Figure 2.17) and mathematically, the parabolic curve can

be expressed as:

U3 = -TO ,

(a1-U3__ - TO
8(U1 +" 3 )

if a1 + 3q3 < 0

if a, + 3u3 > 0

where ai is the maximum principal stress, 03 is the minimum principal stress and To is the

magnitude of the tensile strength (so To is positive). Compressive stress is considered to be positive.
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Figure 2.17 The empirical parabolic Mohr's envelope for the Griffith-based criterion (Pei, 2008)

In cylindrical system, the stress inside the sample can be expressed by ao and ar (see Figure 2.18).

Wang et al. (2004) assumed that there is no shear stress in the direction of (o and 0 r. They also

carried out finite element analysis (it will be discussed in detail in Section 2.2.3), and the analysis

indicated that ao is always smaller than ar. Thus, Oa = q3 and or = CV1 . Wang et al. (2004) also

stated that their analysis results showed that cr, + 3a6 > 0. Therefore, and according to equation

2.24, the tensile strength can be expressed as

(ar-ao)2 
- TO

8(ar+oo)

y

GO

0s,

(2.25)

Or

x

Figure 2.18 Illustration of ao and Or
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To determine To, Wang et al. (2004) derived approximate formulae for ao and ar and they assumed

that the crack initiates at the specimen center. Wang et al. (2004) expressed a pair of differential

forces (see F on the left side of Figure 2.19) applied on the circular boundary (see Figure 2.19) as:

FsinO

F FCOS 0

R

dd
0 x' d, 0

0

/ B

Fcos 0 01 F

FsinO

Figure 2.19 The differential stresses caused by a pair of differential forces (Wang et al., 2004)

F = pRdO = p (E dO (2.26)

where D is the diameter, p is the stress, dO is the differential angle, and F is the summation of the

stress p along the arc (see the right side of Figure 2.19, F is the load per unit thickness).

Decompose the F into a radial compressive force FcosO and a tangential shear force FsinO (See

Figure 2.19). From Figure 2.19, FcosO is pointing to the specimen center so it is a radial

compressive force; FsinO is tangential to the circular specimen so it is a tangential force.

Timoshenko and Goodier (1970) stated that when a Brazilian disc is subjected to a radial

compressive force, the stress solution on the loading diameter can be expressed as:

2P
CO= --- (2.27)

2P 4D2

U r - ( - 1) (2.28)
r Dt D-r

where P is the radial compressive force, D is the specimen diameter, t is the specimen thickness

and r is the distance to the specimen center. At the specimen center, r = 0. Wang et al. (2004) stated
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that from Figure 2.19, Fcos0 is the radial compressive force per unit thickness, so P = FtcosO.

Substituting P = Ftcos0 into equation 2.27 and 2.28 gives:

2F cos0 (2.29)
rD

or=6F cose9
Ur 6Fco= (2.30)

7rD

Wang et al. (2004) then took the second order derivative of cao and cYr based on Equation 2.29 and

2.30. do and da' (see the left side of Figure 2.19) are obtained and can be expressed as:

da = -2Fcos0 (2.31)

6F cos 0
dOa' = (2.32)7rD

Wang et al. (2004) also stated that the stresses along the center line (y axis, see Figure 2.19) is the

most important because theoretically, the crack propagates along it. The stress components

expressed in Equation 2.31 and 2.32 were rotated as illustrated in Figure 2.20 (Wang et al., 2004).

d r

d 0

Figure 2.20 Transformation of stress components (Wang et al., 2004)

Taking y axis (see Figure 2.19) as the new radial direction so a, is the radial stress and aO is the

tangential stress. Wang et al. (2004) integrated dab and dar into do-O and dar as

(6cos sinzO 2cos6cosz6" F (2.33)
7rD 7rD

(6 cos ecosz6 2 cos fsinz 0 F (2.34)
drD ,rD
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Then, Wang et al. (2004) made an approximation F ~ pdx (see the x axis Figure 2.21), where p

is the pressure and x represents the horizontal position on the flattened surfaces. At the vertical

center line, x = 0. Therefore,

cos 6= 1 (X/R)2 (2.35)

sine = x/R (2.36)

P (resuhtanifince)

I I II I I P
A

2

B

D

x

Figure 2.21 Specimen subject to a uniform diametric loading (Wang et al., 2004)

Substituting Equation 2.35 and 2.36 into Equation 2.33 and 2.34 gives:

2F 3x 2 1 xR )2

d D R( R

2Fr 3 (1 -
( 2)2

(2.37)

(2.38)

(X ()3/2)R 
-

R R2

Wang et al. (2004) then integrated Equation 2.37 and 2.38 for x in the interval (-b, b):

07 = fb due x - - - - (b) 3/2 sin-l(b/R)
R ~b IR

42

(2.39)



b = ur 2F - 2 + -2/ +bI sin- Rb R)
0'r d = 7r R _F________) b n(2.40)

=-b F ~ 1(.)+ 1- (jJ/ + b/R (.0

Wang et al. (2004) replaced b by a: sin a = bIR and cos a = 1 - (b/R)2. In addition, since F

is the load per unit thickness, P = Ft (P is the total load and t is the thickness) (Wang et al., 2004).

Therefore, Equation 2.39 and 2.40 become:

-70 -- cos3 a-. (2.41)
rDt sina

1r (cos3a + cos a + -) (2.42)
rDt a sin a

Wang et al. (2004) substituted Equation 2.41 and 2.42 into Equation 2.25. Thus, To is expressed

as:

2P (2COS3a + cos a + sin a )2 a (2.43)
T IDt 8(cosa+sina/a) sinal

Wang's method makes it convenient to calculate the tensile strength but this method is limited to

samples with 2a values smaller than 30'. In the derivation, an approximation F ~ pdx was made.

According to Wang et al. (2004), this approximation is invalid when 0 (See Figure 2.18) is not

small. Wang et al. (2004) stated that when 0 is larger than 15' (which means the 2a value is larger

than 30'), the approximation is invalid and as a result, Equation 2.35 is not accurate. Therefore,

Wang's method is only applicable when 2a value is smaller than 30'.

2.2.3 Numerical work of flattened Brazilian test

2.2.3.1 Elastic modulus

Wang et al. (2004) conducted numerical analysis on elastic modulus, and the only available

numerical solution of elastic modulus was proposed.
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The 'ANSYS' software was used to determine the elastic modulus. Several numerical analyses

with different sample sizes and different sample geometries were run and the empirical equation

was obtained by curve fitting:

E = - (1 - ft) - ln (1 + a (2.44)
ITAwt (sin a)2 sin a

where E is the elastic modulus, P is the applied loading, Aw is the end-to-end displacement of the

sample, t is the specimen thickness, pt is the Poisson's ratio, sin a = 2b/D (2b is the width of flat

surface and D is the specimen diameter, see Figure 2.21).

Equation 2.44 is not applicable in this research project. During the test it was very difficult to

measure the end-to-end displacement because it was almost impossible to install extensometers

near the flattened surfaces. The machine reading was also not the end-to-end displacement because

the machine reading included the compressive displacement of the loading plate and the hydraulic

jack. Actually, the extensometers were installed in other positions (See Section 3.4.2) and

additional numerical analysis was conducted to determine the elastic modulus from the

extensometer readings (See Chapter 4).

2.2.3.2 Tensile strength

Wang et al. (2004) not only derived analytical formula for tensile strength but also carried out

numerical analysis. They used the 'ANSYS' software to determine Go and Gr along the y axis of

the specimen (see Figure 2.18), and the flatness angle 2a varied from 5' to 300. The simulation

results indicated that (To is always smaller than Gr, and ar + 3ao > 0. Therefore, from Equation

2.25, the tensile strength can be expressed as

Wheeit a - T
8(o-r+cre)

Where To is the magnitude of the tensile strength.
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In flattened Brazilian tests, the primary tensile crack should initiate at the specimen center, and

Wang et al. (2004) analyzed the central crack initiation condition. They introduced a new

parameter cG and they expressed yG as:

(Or-=O)2 G = (2.45)
8(0r+cO)

Wang et al. (2004) stated that c must reach a maximum value at the specimen center to produce

the central crack initiation. They used Equation 2.45 to calculate GG along the y axis based on their

results of cGo and ar, and the result of cG is plotted in Figure 2.22 below.

2.40 - 2a = 5*
2.20 -
2.00 -
1. 80 -
1.60 -
1.40 

2a =1001. 20
' g 1.00

N 0.80
0.60 2a =15*
0.40 2a = 20*
0.20 0
0.00

0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r/R

Figure 2.22 Numerical simulation results of GG (Wang et al., 2004). r is illustrated in Figure 2.23.
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Figure 2.23 Illustration of r.

The vertical axis represents the dimensionless stress ( 2 aG" ), where P is the applied load, D is
2P/irDt'

the specimen diameter and t is the specimen thickness. The horizontal axis represents the distance

between a point on y axis and the specimen center (see r in Figure 2.23). In the simulation, they

tried different 2a (flatness angle) values. For each 2a value, P, D, and t were kept constant. r was

increased from 0 (the specimen center) to 0.9R and by changing r, different OG values were

obtained. From Figure 2.22, when 2a is equal or larger than 20*, 2rG reaches maximum value

when r =0, which means that OG reaches maximum value at the specimen center. Therefore, Wang

et al. (2004) stated that when 2a is equal or larger than 20*, the primary tensile crack will initiate

at the specimen center.

Based on Wang's results (2004), when 2a is very small (i.e. 5* and 10*), the maximum stress does

not occur at the specimen center. This is similar to the results reported by Trollope and Brown

(1965). Trollope and Brown (1965) stated that for conventional Brazilian tests, the maximum stress

occurs on the compressive diametrical line but is away from the specimen center. Wong and Li

(2013) carried out numerical analyses, and the results are in excellent agreement with Trollope's

statement. The numerical results of Wong and Li (2013) are illustrated in Figure 2.24 below.

_ _ _Maximum tensile
stress occurs here
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Figure 2.24 Numerical simulation results for the principal stresses distribution along the

compressive diametrical line. The red line represents the horizontal tensile stress. From the figure,

the maximum stress occurs away from the specimen center.

Wang et al. only conducted numerical analysis and analytical derivations (see Section 2.2.2.2), for

2a value smaller than 300. Later, Keles and Tutluoglu (2011) expanded the numerical analysis to

2a value larger than 300 by using the 'ABAQUS' software. Approximate formula for To were

determined by curve fitting.

Keles and Tutluoglu (2011) also stated that in their numerical analysis Ti + 33 > 0 was always

valid so therefore, Equation 2.24 is valid based on the Hoek-Brown criterion (1980). Keles and

Tutluoglu (2011) determined formulae for c1 and G3 to calculate To. In their numerical analysis,

the 21 angle value was varied between 15' and 60' while applied loading P, specimen diameter D,

specimen thickness t were kept as constant. For each 2a value, Keles and Tutluoglu (2011)

determined Gi and G3 at the center. Next they determined the dimensionless principal stresses at

the center 'j and U3 as:

P/7Dt

and 07= 2P/U
P/7Dt

For each 2a, -7 and d3 were obtained and seven 2a values were tried in total. Then, -j- versus 2u

and 67 versus 2a were plotted. By curve fitting, the relationship between 7- and 2a, and the

relationship between U3 and 2u, were obtained. They are expressed as:

Ti = 2 P/D = 1.08 cos a + 1.92 (2.46)

and -T = 2 3 = -0.94 cos a - 0.04 (2.47)
P/7Dt

Substituting Equation 2.46 and 2.47 into Equation 2.24 gives

To = 2P t = 0.83 cos a + 0.15 (2.48)
/TDt=
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and Equation 2.48 can be used to determine the tensile strength. The method proposed by Keles

and Tutluoglu (2011) makes it very convenient to calculate the tensile strength when 2u value is

larger than 300. Nonetheless, both Wang's method and Keles' method should be used with caution.

Both methods assumed that the flattened specimen is subjected to a uniformly distributed loading

(uniform stress over the flattened surface). In the experiments of this research project, however,

the loading may not be a uniformly distributed loading (it will be discussed in Chapter 4) so

therefore, additional numerical analysis is required to determine tensile stress accurately.

2.2.3.3 Fracture toughness

Wang and Xing (1999) stated that the fracture toughness could be determined by the flattened

Brazilian tests. Their numerical work will be introduced first, followed by the comments on their

method.

Wang and Xing (1999) proposed the equation below to calculate the fracture toughness:

KIc = a, - (2.49)

where Kic is the fracture toughness, P is the applied loading, R is the specimen radius, t is the

speicmen thickness and 4 is a constant depends on the 2a value and a/R ratio (a is the half length

of crack).

Wang and Xing (1999) then studied how 4 changes with the a/R ratio using the boundary element

method. In their numerical analysis, they rearranged Equation 2.49 to determine 4:

0 = KicJt (2.50)

Kic, t, a and R were kept constant in the numerical analysis while for each calculation, the crack

half length a was varied. As a result, P varied correspondingly, and 4 was determined based on

Equation 2.50. versus a/R was then plotted in Figure 2.25 below. They stated that based on Figure

2.25, when a was increasing from zero, j increased to a maximum value first and then decreased.

In addition, they stated that 4inax is only dependent on 2a, and it can be determined numerically
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before the test. They have done all this for two values of 2a: when 2a was 20', 4 mnax = 0.78 and

a/R = 0.8; when 2u was 300, 4max 0.58 and a/R 0.73.

b

a \ Ca/R

Figure 2.25 4 value changing with half crack length a (Wang and Xing, 1999)

Figure 2.12 (the load displacement curve) shows that in flattened Brazilian tests, the loading

increases to a local maximum value at tensile crack initiation. The loading drops as crack

propagates and the loading drops to a local minimum value when the cracking stops. Then, the

loading increases again. Based on Figure 2.12 and Figure 2.25, Wang and Xing (1999) formulated

a hypothesis which relates the change of # to the change of load. They stated that the fracture

toughness Kic is a material property so during one test, the right side of Equation 2.49 should be

constant. In addition, during one test, the specimen radius R and the specimen thickness t do not

change; only the loading P and ) change. Thus, to keep P0 (the right side of Equation 2.49) a
aaet

constant, a decrease in P must lead to an increase in 4; and vice versa (Wang and Xing, 1999). In

Figure 2.12, the loading starts to decrease at point a and increases again at point b (loading at point

b is the minimum loading after the crack initiation). Therefore, 4 should start to increase at point

a, reach maximum value (4)iax) at point b, and then decrease (Wang and Xing, 1999).

Wang and Xing (1999) stated that based on their numerical analysis (Figure 2.25), 4,ax is only

dependent on 2a and 4nax corresponds to point b. Therefore, the fracture toughness can be

determined based on 2(1 and the loading at point b:

KIc = _L max(a) (2.51)

They also stated that only 4max is independent of a (the half length of the crack). If loadings at other

points are used, 4 becomes dependent on the crack length so the crack length needs to be measured.
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As a result, the testing becomes more complicated and time-consuming. Therefore, they suggested

that the loading at point b should be used.

Later, Wang et al. (2004) used the finite element method to calculate 4 (they only showed the

results without providing other details). When 2a was 20', 4max = 0.7997 and a/R = 0.81; when 2a

was 30', 4max = 0.5895 and a/R = 0.73 (see Figure 2.26) (Wang et al., 2004). They stated that the

results for the finite element method (Wang and Xing, 1999) and the boundary element method

(Wang et al., 2004) were very similar.

0.9 = 0,7997

0. 8

0.7 
2a - 20*

0.6

0. 5

e0. 4 2= 30*

0. 3

0.2
0. 1

0
0 0.1 0.2 0.3 0.4 0.5 0,6 0.7 0.8 0.9 1

aIR

Figure 2.26 4 changing with a/R (Wang et al., 2004)

Wang's method (2004) is not convincing. The loading at point b (see Figure 2.12) can be used

only if the crack starts to propagate very close to point b. However, this has not been proven by

any experiments. In addition, the 4 versus a/R curve (see Figure 2.25) has not been verified by any

tests. In other words, the trend that 4 increases first, reaches maximum at point b, and then

decreases has not been verified by experiments. In Figure 2.25 (or Figure 2.26), at point a (a=0,

where the crack initiates), 4 = 0. Based on Equation 2.49, the fracture toughness at crack initiation

becomes zero, which is not realistic. Therefore, the initial part of the 4 versus a/R curve (the

segment close to point a) is wrong.
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2.2.4 Comparison of conventional Brazilian test with uniaxial tension test and three-point

bending test

2.2.4.1 Uniaxial tension test

The uniaxial tension tests directly measure the tensile strength of a rock specimen. As illustrated

in Figure 2.27 and Figure 2.28, tensile stress is applied by a universal testing machine with

cylindrical metal caps cemented to the specimen ends.

Figure 2.27 Uniaxial tension test (Deluce, 2011)

Metal cap The cap is cemented to
the specimen end

Rock specimen

Apply tensile
stress

Height

Figure 2.28 Illustration of uniaxial tension test

ISRM (1978) suggests that the specimen should be a right-angled cylinder, with a height to

diameter ratio between 2.5:1 and 3.0:1. The diameter should be no less than 54mm (ISRM, 1978).

In addition, to reduce the eccentricity, the ends should be smooth and 'shall not depart from

perpendicularity to the axis of the specimen by more than 0.001 radians (about 3.5min) or 0.05 in

50mm' (ISRM, 1978). ISRM (1978) also recommended that the loading rate should be between

0.5MPa/s and 1.0 MPa/s.

The direct tensile strength is expressed as:

P
at =~ -(2.52)A
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where P is the maximum loading applied to the specimen (loading at failure) and A is the specimen

original cross-section area.

Uniaxial tension tests often predict lower tensile strength compared to conventional Brazilian tests

or flattened Brazilian tests (Wright, 1955). The discrepancy can be explained by the "weakest link"

theory, which states that under uniformly distributed tensile stress, the specimen fails at the

weakest flaw (Epstein, 1948). In uniaxial tension tests, the stress distribution within the specimen

is uniform so the specimen fails at the weakest flaw. However, in conventional Brazilian tests or

flattened Brazilian tests, the tensile stress distribution is non-uniform (Wong and Li, 2013), which

indicates that the weakest flaw may not be under the maximum tensile stress. As a result, the

specimen may not fail at the weakest flaw if the weakest flaw is not near to the locations where

the tensile stress reaches a maximum. Therefore, the measured tensile strength in conventional

Brazilian tests or flattened Brazilian tests is often higher than the measured tensile strength in

uniaxial tension tests.

2.2.4.2 Three-point bending test

The three-point bending test is used to determine the bending elastic modulus and bending tensile

strength (flexural strength) of materials. As illustrated in Figure 2.29, a vertical loading is applied

on the middle of the specimen, while the specimen is supported by two rollers at the specimen

ends (see Figure 2.29). Maximum compressive stress occurs at point A and maximum tensile stress

occurs at point B.

P

L/2 L/2

A b

BA
00 B Roller _ o0
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Figure 2.29 Illustration of three-point bending test

Figure 2.30 Three-point bending test (Wikipedia, 2014)

ASTM D790-10 (2002) recommends that the specimen should have a rectangular shape and the

strain rate should be 0.0 1mm/mm/min. ASTM (2002) expresses the specimen bending tensile

strength as:

= (2.44)

where P is the loading at failure, L is the support span, b is the specimen width (see the right side

of Figure 2.29) and d is the specimen depth (d is perpendicular to the paper so it is not in Figure

2.29).

The bending tensile strength obtained in the three-point bending test is often higher than the tensile

strength obtained in the uniaxial tension test (Whitney and Knight, 1980; Leguillon et al., 2015).

The discrepancy can again be explained by the "weakest link" theory, which states that under

uniformly distributed tensile stress, the specimen fails at the weakest flaw (Epstein, 1948). In

uniaxial tension tests, the stress distribution within the specimen is uniform so the specimen fails

at the weakest flaw. However, in the three-point bending tests, the maximum tensile stress occurs

at point B (see Figure 2.29), and the tensile stress decreases from point B to the rollers (see Figure

2.29) (Whitney and Knight, 1980; Leguillon et al., 2015). As a result, the specimen will not fail at

the weakest flaw if the weakest flaw is not near to point B (Whitney and Knight, 1980; Leguillon

et al., 2015). Therefore, the measured tensile strength in the three-point bending test is often higher
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than the measured tensile strength in the uniaxial tension test (Whitney and Knight, 1980;

Leguillon et al., 2015).

Although some articles compare bending tensile strength to direct tensile strength, it appears that

the difference between bending tensile strength and indirect tensile strength (the strength obtained

by Brazilian test) is not discussed.

2.2.5 Comments on conventional Brazilian test and flattened Brazilian test

2.2.5.1 Comments on conventional Brazilian tests

The conventional Brazilian tests are much easier to perform compared with other tests, such as the

uniaxial tension tests and the three-point bending tests. However, conventional Brazilian tests also

have some disadvantages. First, the applied loading may not be a line load. During the experiment,

the specimen may deform and the contact surface between the specimen disk and the jaw may be

enlarged so therefore, the loading is no longer a line load (see Figure 2.31, the upper loading is not

a line load) (Yang, 2012; Guan, 2013). When the loading is not a line load, shear or crushing failure

near the loading line can occur, which is not desirable (Yang, 2012; Guan, 2013).

y

Figure 2.31 Non-point load due to enlarged contact area (Guan, 2011)

In addition, in Equation 2.22, it is assumed that the tensile stress in the x-direction (ax, see Figure

2.16) is uniformly distributed (Wong, 2013). However, this assumption may be invalid because ax

distribution may be non-uniform (Wong, 2013). Also, the specimen may be heterogeneous, which
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will cause the non-uniform distribution of as (Wong, 2013). As a result, Equation 2.22 may be

inaccurate (Wong, 2013).

2.2.5.2 Comments on flattened Brazilian tests

The flattened Brazilian tests provide a convenient way in determining the fracture toughness for

rock specimen. In flattened Brazilian tests, it is relatively easy to prepare the flattened circular

discs and run the tests. In addition, on a single specimen, tensile strength, fracture toughness and

elastic modulus can be determined. Thus, flattened Brazilian tests can help to save time and effort

in rock laboratory testing.

Also, Wang et al. (2004) pointed out that flattened Brazilian tests can help to avoid local failure

near the loading line. In conventional Brazilian tests, the contact area between the specimen and

the loading jaw is small so therefore, when loading is applied, the local stress concentration can

be very large. On the contrary, in flattened Brazilian tests, the contact area between the flattened

surfaces and the loading plate is relatively large (the contact area is the whole flattened surface).

Thus, when the surface is flat, the local stress near the flattened surfaces in flattened Brazilian tests

can be much lower than the local stress near the loading line in conventional Brazilian tests, if the

applied loadings are similar. Therefore, flattened Brazilian tests reduce local failure near the

loading point by reducing the stress concentration.

In flattened Brazilian tests, it is of vital importance that the flattened surfaces are really flat and

parallel to each other. If the flattened surfaces are bumpy, the contact area between the loading

plate and the flattened surfaces will be reduced and as a result, calculation errors will be generated

(All previous numerical analyses assumed that the flattened surfaces are ideally flat). In addition,

Wang and Wu (2004) stated that if the surfaces are not flat enough, after crack initiation, there

might be a total failure of the specimen (see Figure 2.32).
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Figure 2.32 An invalid test result (Wang and Wu, 2004). The loading dropped drastically and did

not increase again, indicating that the test was unstable and total failure occurred after crack

initiation.

Wang and Wu (2004) also stated that if the flattened surfaces are not parallel to each other (see

Figure 2.33), the maximum horizontal tensile stress may not occur along the vertical center line of

the specimen. Therefore, the primary crack may not initiate at the specimen center and for this

case, the specimen should be rejected.
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Figure 2.33 Illustration of non-parallel flattened surfaces. As a result, maximum tensile stress may

not occur along the vertical center line so the primary crack may not initiate at the specimen center.
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Chapter 3 Experimental Setup

3.1 Introduction

To verify whether Mode I fracture toughness of rock varies with specimen size, flattened Brazilian

tests were performed on mortar specimens. These mortar specimens vary in size and flatness angle.

In total, 126 tests were performed, and for two tests among them, a high speed camera and a high

resolution camera were used to observe the crack propagation. This chapter describes the material

properties, sample preparation, and apparatus.

3.2 Material properties

Type III Portland Cement (C25), fine-grained silt, and water were used to cast mortar specimens.

This type of cement was used to reduce the time for specimen preparation. Concrete made of Type

III Portland Cement gains 90% of its ultimate strength after seven days, while concrete made of

Type I Portland Cement (the most commonly used cement in construction) gains only 70% of its

ultimate strength, even after 28 days (Fowler, 1985; Kwan, 2012). Thus, mortar cutting and testing

can be carried out only one week after mortar specimens are cast. As a result, the time between

specimen casting and specimen testing will not affect the fracture toughness, so the specimen

testing schedule becomes more flexible. However, it is worth noting that not all the cement was in

fine powder form. Before the mortar was cast, the cement had already absorbed some water vapor

(the cement was not perfectly sealed), so some cement powder had clumped together. As a result,

some clumps were formed beforehand and could be felt by the fingers.

The inclusion effect can play an important role in concrete fracture toughness (Irwin, 1960; Fowler,

1985; Anderson, 2005). In this research project, fine-grained silt (see Figure 3.1) was used instead

of aggregates to reduce the inclusion effect. The fine-grained silt was mainly industrial quartz, and

the particle size distribution is illustrated in Figure 3.2.
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Figure 3.1 Fine-grained Silt

600, 100 Particle size distribution curve
1000

90 355, 95.65

80

70

60
212, 55.06

50

40

30
150, 25.37

20 125, 16.26

1 0 74, 5.33
106,1l1.03

400 200 100 50

Particle size (pm)

Figure 3.2 Particle size distribution curve for fine-grained silt
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Figure 3.3 Microscopic view of the silt

3.3 Specimen preparation

Cement, silt, and water were mixed at a weight ratio of cement: silt: water = 2:2:1, which is

commonly adopted in the construction industry (Kwan, 2006; Kwan, 2012). Cement, silt, and

water were mixed manually for 20 minutes before the mixture was vibrated. 20-minute mixing

was relatively long, to guarantee that they were mixed evenly. Each time, 8kg cement, 8kg silt,

and 4kg water were used.

After 20-minute mixing, mortar was poured into cylindrical molds (see Figure 3.4) and was

vibrated on a vibration table (see Figure 3.5). The mortar was vibrated to get rid of the air bubbles;

the vibration process is illustrated in Figure 3.6. Cylindrical molds had three different sizes: two-

inch, three-inch, and four-inch diameter. First, approximately one-third of the cylindrical mold

volume was filled with mortar and the mortar was vibrated for 8 minutes. Then, some additional

mortar was poured into the cylindrical mold until two-thirds of the cylindrical mold volume was

filled up and the mortar was again vibrated for 8 minutes. Finally, the last one-third of the

cylindrical mold volume was filled with mortar and the mortar was vibrated for a final 8 minutes.
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Figure 3.4 Two-inch, three-inch and four-inch cylindrical molds

Figure 3.5 Vibration table
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Figure 3.6 The vibration process in mortar casting

After vibrating, the cylindrical molds (filled with mortar) were covered by lid (to reduce

evaporation) and left in the concrete room. After six or seven days, hydrated mortar specimens

were extruded from the cylindrical molds and the mortar specimens were stored in water. At this

time, the mortar specimens had a long cylindrical shape.

Then, the mortar specimens were cut by the wetsaw (see Figure 3.7). First, the long cylindrical

mortar specimens were cut into right-angled circular cylinders with the following characteristics:

" The length of the specimen, t, was approximately equal to the radius (D:t = 2:1; see Figure

3.8). This ratio is suggested by ISRM (1978).

" The specimen sides were smooth, straight, and perpendicular to the specimen ends (see

Figure 3.8).

" The Specimen ends were flat and circular.
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Figure 3.7 Wetsaw

Specimen end Specimen end

D

Specimen side

Figure 3.8 Geometry of circular cylinders of mortar

For each batch of mortar, six cylinders were obtained with two-inch, three-inch, and four-inch

diameters, respectively (six cylinders for each size). It is worth noting that, after cutting, we can

see black dots at the specimen ends (see Figure 3.9). The black dots are the clumps (cement powder

that absorbed water vapor and then hydrated prior to mixing) mentioned in 3.2. The clump size is

not very large (the maximum diameter is around four millimeters), so the clumps did not lead to

serious inclusion effects during testing.
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Specimen end

Figure 3.9 Clumps within mortar specimen (the black dots on the surface)

Next, the circular cylinders were flattened by the wetsaw, and the flattened sample geometry is

illustrated in Figure 3.10. There are two possible factors that might affect the measured fracture

toughness: specimen size (diameter) and flatness angle 2a; however, this study is mainly aimed to

investigate the size effect on fracture toughness. Therefore, to control the variables, for each batch

of mortar, the flatness angle value 2a for each specimen was controlled not to deviate too much.

For the first three batches of mortar, the 2a angle was around 280; for the fourth and the fifth

batches, the 2a angle was around 40'; for the sixth and the seventh batches, the 2a angle was

around 230. The 2a angle for each batch of mortar is shown in Table 3.1 below. The flatness angle

2a for different batches was varied to verify whether the flatness angle would affect the fracture

toughness. The experimental results will be discussed in Chapter 5 (Experimental Results and

Discussion). After flattening, the mortar specimens were stored again in water.
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Table 3.1 Planned flatness angles for each batch of mortar

Batch Angle 2a (*)
number 2-inch 3-inch 4-inch

1 28 28 28

2 28 28 28

3 28 28 28

4 39 39 39

5 39 39 39

6 23 23 23

7 23 23 23

R R

Figure 3.10 Sample geometry after flattening

3.4 Testing Apparatus

The testing apparatus includes: a loading frame (Instron, MODEL 1331), two extensometers

(Extensometer 9212 and Extensometer 10520), a data acquisition system, a high speed camera,

and a high resolution camera. The schematic and the photo of the setup are shown in Figure 3.11

and Figure 3.12 below.
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Figure 3.11 Schematic illustration of the experimental setup

PREEF Instron loading frame
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jack Data acquisition

system
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Figure 3.12 Photograph of the experimental setup

3.4.1 Loading frame (Instron)
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The Instron (MODEL 1331), with a capacity of 1 OOkN, was used as the loading frame for flattened

Brazilian tests (see Figure 3.13).

Figure 3.13 Loading frame (Instron)

The loading rate can have either constant displacement increase or constant loading increase.

According to Rudolph and Germaine (2015), the specimen will be more stable if the loading rate

has a constant displacement increase. Therefore, the initial loading rate was chosen to be

0.2mm/min (the possible loading rate of the Instron is between 0.1 mm/min to 1 mm/min). After

testing five batches of mortar, the loading rate was decreased to 0.1 mm/min. The loading rate was

reduced so the loading right after the crack initiation (which was used to determine the fracture

toughness) could be measured more accurately. The load drop for the sixth and seventh batches of

mortar is larger than the load drop for the first five batches of mortar, which means that the loading

right after the crack propagation may be more accurately captured (this will be explained in detail

in Section 5.9). However, as a result, tests became much more time-consuming.

During the test, the Instron measured the load and the machine displacement in the form of voltage.

The voltage change was recorded by the data acquisition system and was converted into kN and

mm. The conversion factors are l0kN/1V and 5mm/iV. The sampling frequency of the data

acquisition system can be chosen between 1Hz and 10 Hz. For the testing of the first five batches
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of mortar, the sampling frequency was 2Hz, and for the last two batches, the sampling frequency

was increased to 10Hz to improve the measurement accuracy.

The only disadvantage of the Instron is that it cannot measure the end-to-end displacement of the

mortar sample. The displacement measured by the Instron includes the displacement of the

hydraulic jack. In addition, seating errors may occur. Thus, extensometers are needed to determine

the sample displacement.

3.4.2 Extensometers

Two extensometers (Extensometer 9212 and Extensometer 10520) were used to measure the

specimen displacement. The gauge length of both extensometers can be adjusted to 1 inch, 1.5

inch, or 2 inch. Each extensometer was installed in the center line of the specimen and its gauge

length was set to the specimen radius, R (see Figure 3.10 and Figure 3.14. In Figure 3.9, the two

small circles represent the top and the bottom of the extensometer, and in Figure 3.14, two arrows

point to the top and the bottom of the extensometer).

Extensometers measured the displacement in the form of voltage. The voltage was recorded by the

data acquisition system and was converted to mm. For Extensometer 9212, the conversion factor

is 216.35mm/V and for Extensometer 10520, the conversion factor is 201.325mm/V. The sampling

frequency can be chosen as either 1Hz or 2Hz, and 2Hz was selected to improve the measurement

accuracy.
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Extensometer bottom

Figure 3.14 Extensometers

3.4.3 Data acquisition system

The data acquisition system recorded the voltage change from the Instron and two extensometers.

The sampling frequency of the Instron and two extensometers was controlled by the data

acquisition system. For the testing of the first five batches of mortar, only one data acquisition

system was used, but for the testing of the last two batches, two data acquisition systems were used

(see Figure 3.15).

Two
Extensometers

Two
extensometers

Loading
from Instron Loading

from Instron

Figure 3.15 The left half represents the data acquisition system for the first five batches of mortar
and the right half represents the data acquisition system for the last two batches
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In the testing of the first five batches of mortar, the data acquisition system received voltage change

from both the two extensometers and the Instron. The Instron exported the voltage change for

loading and displacement, but only the voltage change for loading was used. As mentioned above,

the possible maximum frequency of the two extensometers was 2Hz and for the Instron it was

10Hz. However, the maximum frequency of the data acquisition system was determined by the

least possible maximum frequency of all the devices connecting to it. For instance, if one data

acquisition system controls both extensometers and the Instron, the maximum sampling frequency

the acquisition system can set is only 2Hz. If the sampling frequency is 5Hz (between 2Hz and

10Hz), it works well for the Instron but it does not work for extensometers. Therefore, in the testing

of the first five batches of mortar, the sampling frequency of the data acquisition system was 2Hz.

After the testing of the first five batches of mortar, it became evident that the sampling frequency

of the Instron needed to be raised to measure the applied loading more accurately. Therefore, in

the testing of the last two batches of mortar, two data acquisition systems were adopted. One data

acquisition system monitored two extensometers, and the sampling frequency was 2Hz. The other

data acquisition system monitored the Instron, and the sampling frequency was 10Hz (see Table

3.2). For the last two batches of mortar, the load displacement curve is plotted based on the data

from data acquisition system 1. Then, the peak loading and the loading right after the crack

propagation is replaced by the peak loading and the loading right after the crack propagation

obtained by data acquisition system 2.

Table 3.2 Sampling frequency for different batches of mortar specimens

Data acquisition system 1 Data acquisition system 2

Batch Sampling frequency (Hz) Sampling frequency (Hz)

number Extensometer Instron Instron Instron
(Displacement) (Loading) (Displacement) (Loading)

1 2 2 - -

2 2 2 - -

3 2 2 - -

4 2 2 - -

5 2 2 - -

6 2 2 10 10

7 2 2 10 10
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Figure 3.16 Data acquisition system

3.4.4 Camera

In two flattened Brazilian tests, both the high speed camera and the high resolution camera were

used to detect the primary crack initiation and propagation. A PhotronTM SA-5 high speed camera

with a TamronTM 90mm lens was used to capture high speed video (see Figure 3.17). The camera

captured 5,000 frames per second and the number of the frame can be adjusted by the laptop

controlling the camera. The camera was continuously recording and once it was triggered, the last

1.25 seconds of high speed frames were stored. The pixel resolution was 512 x 512. In addition, a

NikonM D90 high resolution camera with a 105mm lens was also used to get high resolution

images (See Figure 3.18), and the shooting frequency is 2Hz.
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Figure 3.17 PhotronTM SA-5 high speed camera (Morgan, 2015)

Figure 3.18 NikonTM D90 high resolution camera (Morgan, 2015)
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Chapter 4 Numerical Analysis

4.1 Introduction

As stated in Chapter 2, Wang and Xing (2004) used the 'ANSYS' software to determine the elastic

modulus of a flattened Brazilian specimen. Several numerical analyses with different specimen

sizes and different specimen geometries were conducted and the empirical equation was obtained

by curve fitting:

E = )21p) l(1 -7- (5.1)
inewt (sina)2 sin a

where E is the elastic modulus, P is the peak loading (the loading when crack initiates), Aw is the

end-to-end displacement of the sample, t is the specimen thickness, p is the Poisson's ratio, a is

the flatness angle.

However, it is very difficult to measure the end-to-end displacement of the specimen, and it is

much easier to measure the displacement between the points on the center line of the specimen

(See Figure 4.1. Two small circles represent the above mentioned points, which are also the top

and the bottom of the extensometers). During the experiments the extensometer displacement was

measured instead of the specimen end-to-end displacement. Thus, a finite element analysis was

carried out to determine the elastic modulus of the specimen from the peak loading and the

extensometer displacement.

2a

R R
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Figure 4.1. The position of the extensometer (Represented by two small circles)

Wang and Xing (1999) also proposed an equation for calculating the tensile strength from the peak

loading:

2P (2cos3a + cos a + sin a )2 a
7t = rG =TDt 8(cos a + sin aa) sin a

Where P is the peak loading, D is the specimen diameter, t is the thickness and a is the flatness

angle. The complete derivation process is shown in Section 2.2.2.2. However, Equation 5.2 is only

applicable when 2a value is between 200 and 30' (Wang and Xing, 1999). Keles and Tutluoglu

(2011) proposed an empirical equation:

2P
Ut = -- (0.83 cos a + 0.15) (5.3)

7rDt

where P is the peak loading, D is the specimen diameter, t is the thickness and a is the flattnes

angle. Keles and Tutluoglu (2011) stated that Equation 5.3 is applicable when 2a is between 150

and 60'. Equation 5.3 is discussed in detail in Section 2.2.3.2.

Both methods assumed that the flattened specimen is subjected to a uniformly distributed loading

(uniform stress over the flattened surface). In this research project, however, a point load was

applied to the loading plate by the hydraulic jack (see Figure 4.2). As a result, the displacement

along the flattened surface is uniform but the stress distribution along the flattened surface is non-

uniform (see Figure 4.3), and additional numerical analysis is required to determine tensile stress

accurately.

In this chapter, I will first describe the basic geometry of the nodes. Then, I will discuss the

boundary conditions and the material input. Finally, I will discuss how to determine the elastic

modulus and the tensile strength.

74



Force applied by the
hydraulic jack

Loading plate

Specimen

Non-uniform stress distribution
on the flattened surface

fK.

Figure 4.2 Non-uniform stress distribution on the flattened surface

Stress in green
is larger than the
stress in yellow

Figure 4.3 Vertical compressive stress distribution in the specimen (side view) obtained by

numerical analysis. The black thick line represents the flattened surface and different colors

represent different magnitudes of stress. On the flattened surface, the color changes, which

illustrates that the stress distribution is non-uniform.
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4.2 Basic geometry

The 'Lisa 8.0' software was used in the finite element analysis since it is relatively easy to learn

and run. However, the maximum nodes for a model is limited to 1,300, and the software can only

perform analysis under linear elastic deformation. Due to symmetry, I generated the mesh only for

the first quadrant of the specimen (See Figure 4.4). Figure 4.4 is the undeformed mesh generated

for the finite element analysis (z direction is perpendicular to the paper). Red dots represent the

nodes and green lines form the mesh. The green arrow represents the loading applied by the

hydraulic jack. The upper rectangle represents the loading plate and the lower part (a quadrant of

the flattened specimen) represents the mortar specimen. In addition, the red triangles represent the

boundary conditions which will be discussed next.

y
Loading plate

(steel properties)

B

% of the whole
mortar specimen

E

0 A

Figure 4.4 Mesh for finite element analysis (A quadrant)

4.3 Boundary conditions

Three boundary conditions are applied in the finite element analysis:
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1. Zero vertical displacement in the y = 0 line (x-axis, see Figure 4.4). Due to specimen

symmetry, there is no vertical displacement in line AA' (See Figure 4.5), which is the y

0 line in Figure 4.4.

A' o

y

B

A

B'

x

Figure 4.5 Geometry of the flattened sample

ii. Zero x-direction displacement in the x = 0 line (See Figure 4.4). Due to specimen symmetry,

there is no x-direction displacement in line BB' (See Figure 4.5), which is the x = 0 line in

Figure 4.4. However, in the experiments, if the crack does not initiate at the specimen

center, the x-direction displacement in the x = 0 line will not be zero.

iii. There was no z-direction movement in point D (See Figure 4.6, the middle of OC line).

Theoretically, point D is the geometrical center of the flattened specimen so point D should

not have any displacements in the x, y, and z directions.
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y

D C
0

Figure 4.6 Side view of the sample (point D is in the middle of OC line and it is the specimen
geometrical center)

4.4 Material input

In the finite element analysis, the inputs are the elastic modulus of the steel loading plate, the

Poisson's ratio of both the loading plate and the mortar specimen. The elastic modulus of steel is

suggested to be taken as 200GPa (Connor, 2012; Young, 2014; Au, 2012), and the Poisson's ratio

of concrete and mortar is suggested to be taken as 0.2 (Swamy, 1971; Ulm, 2003; Kwan, 2004;

Hong Kong Buildings Department, 2013).

The Poisson's ratio of steel usually varies between 0.27 and 0.32 (Young, 2014; Anand, 2014). In

the numerical analysis, a brief investigation of the effect of the loading plate's Poisson's ratio was

conducted (the Poisson's ratio varied from 0.25 to 0.35). It showed that the Poisson's ratio of the

loading plate has little influence on the simulation results (elastic modulus and tensile strength of

the mortar). For example, for one specimen, when the Poisson's ratio is 0.25, the elastic modulus

is 17.50 GPa and the tensile strength is 4.18MPa; when the Poisson's ratio is 0.35, the elastic

modulus is 17.30GPa and the tensile strength is 4.17MPa. Hence, the Poisson's ratio for steel was

chosen as 0.3 for convenience.
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4.5 Methods to determine the elastic modulus

The elastic modulus is determined first. The steps are listed below:

" In FE (Finite Element) software, set the applied loading (green arrow in Figure 4.4) equal

to half of the crack initiation loading (loading at point A, see Figure 4.7). Due to symmetry,

the loading in the FE specimen should be half of the applied loading in the experiments.

" Randomly choose an elastic modulus value of the mortar and input that value.

* Run the program and get the displacement between 0 and E (E is the mid-point of line OB;

see Figure 4.4). Denote the displacement as S1.

* Adjust the elastic modulus value of the mortar and run the program until 61 is equal to

half of the averaged extensometer displacement at point A (see Figure 4.7). Due to

symmetry, the displacement between OE should be half of the displacement between two

circles in Figure 4.1, which is the averaged extensometer displacement.

* The elastic modulus of mortar (Emonra) is equal to the average slope of line OA (See Figure

4.7).

Load displacement curve
35

30 C

25

A20

15

10

5

0

0 0 0.02 0.04 0.06 0.08 0.1 0.12

Averaged extensometer displacement (mm)
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Figure 4.7 A typical load displacement curve

4.6 Methods to determine the tensile strength

The loading at point A (see Figure 4.7) is the loading required to generate tensile failure (initiate

the tensile crack) so the tensile strength calculation should be based on the loading at point A. The

tensile strength is obtained based on the Einorar determined in Section 4.5:

* Set the applied loading (green arrow in Figure 4.4) equal to half of the crack initiation

loading (loading at point A, see Figure 4.7). Based on the Emortar determined in Section 4.5,

calculate the stress distribution within the specimen.

* Take x at the specimen center (point 0 in Figure 4.4. axx is the horizontal tensile stress

in the x direction) as the tensile strength. As discussed in Chapter 2, when the 2a value is

larger than 19.5', the maximum tensile stress always occurs at the specimen center (Wang

and Xing, 1999; Keles and Tutlougu, 2011).

It is worth noting that for all specimens, the simulation results satisfied Yxx >> czz (i.e. For one

specimen, when cxx was 5.2MPa, az was only 0.36MPa). Thus, the principal stress in the z-

direction can be neglected (a,,z- 0). Mathematically, the plane stress condition is defined where

one of the principal stresses is zero so therefore, the specimens can be assumed to be under plane

stress conditions.

Z
Z

&z=0 Z = 0~x~y

Plane Stress Plane Strain
(Thin Body) (Thick Body)

Figure 4.8 Plane stress condition and plane strain condition
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This chapter only discusses the simulation approaches. The simulation results will be discussed,

together with the experimental data, in Chapter 5.
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Chapter 5 Experimental Results and Discussion

5.1 Introduction

This chapter presents and discusses the experimental results. In total, 126 flattened Brazilian tests

(including two tests using the high speed camera and the high resolution camera) were carried out

on mortar specimens with different sizes and different 2a angles. First, the result acceptance

criteria and data interpretation methods will be introduced. Next, the experimental results will be

presented. It will be discussed how the elastic modulus, tensile strength, fracture toughness,

averaged applied compressive stress at crack initiation (the local maximum loading), and the

averaged applied compressive stress when cracking stops (the local minimum loading) change

with size. Finally, analyses of the high speed video and high resolution images will be given.

5.2 Result acceptance criteria

To get reliable experimental results, the following acceptance criteria were used:

Ideally, the flattened surface should be a rectangle. However, during specimen cutting and

flattening, for some specimens, the specimen sides were not exactly perpendicular to the

specimen ends (See Figure 5.1). As a result, after flattening, the flattened surface was a

trapezoid (See Figure 5.1). If the length of AB was less than 90% of the length of CD (AB

and CD are the surface widths and AB is shorter than CD), the specimen was rejected.

Blade of the wetsaw

A B

Specimen end

Specimen Specimen
side

Specimen end C D

Specimen side is not Flattened surface is a trapezoid
perpendicular to specimen ends
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Figure 5.1 One trapezoid flattened surface

* Under ideal conditions, for the same specimen, two flattened surfaces should have the same

width. However, for some specimens, after flattening, the widths for two surfaces were not

the same. The specimens of which the shorter width was less than 90% of the longer width

were discarded. Figure 5.2 illustrates two flattened surfaces having different widths.

A B

C D

Figure 5.2. Two flattened surfaces having different widths (Exaggerated). AB represents one

flattened surface and CD represents another flattened surface. The length of AB is shorter than the

length of CD, which indicates that two flattened surfaces have different widths.

* The primary crack should initiate at the specimen center. If the primary crack did not

initiate in the specimen central region, or secondary cracks (shear cracks) occurred before

the primary crack, the testing results of that specimen were not accepted. Figure 5.3 and

Figure 5.4 show a typical central crack.
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Figure 5.3 A central crack for three-inch specimen

Figure 5.4 The central crack is a typical tensile crack.

Under the above criteria, the testing results of 19 specimens were rejected, so the testing results of

107 specimens were accepted.
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5.3 Data interpretation

During the experiments, specimen geometry (2a value, specimen diameter D and specimen

thickness t), two extensometer displacements, local peak loading PA (the loading when crack

initiates, see point A in Figure 5.5) and local minimum loading PB (the loading when tensile crack

propagation stops, see point B in Figure 5.5) were measured. The two extensometer displacements

were averaged as 6,ag (6 avg - 2

Load displacement curve
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C
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A
20

15 15
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5

0

0 0 0.02 0.04 0.06 0.08 0.1 0.12

Averaged extensometer displacement (mm)

Figure 5.5 A typical load displacement curve of flattened Brazilian tests
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2aL

RR

Figure 5.6 The position of the extensometer (Represented by two small circles)

Figure 5.5 shows that the load displacement curve is similar to the load displacement curve

proposed by Wang and Xing (1999) (see Figure 5.7, which is also Figure 2.12). During the tests,

the loading was displacement controlled, and a constant displacement rate was applied (this is

explained in Chapter 3). As stated in Section 2.2.1.2, the testing procedure can be divided into

three stages (Wang and Xing, 1999).

Stage 1 corresponds to segment OA in Figure 5.5 (which is also segment oa in Figure 5.7). The

applied loading starts from zero to a local peak loading (point A), and when the loading reaches

point A, a tensile crack initiates in the specimen central region. In addition, as shown in Figure 5.5,

the specimen deforms linearly in stage I and the average slope of segment OA is used to calculate

the elastic modulus.

Stage 2 corresponds to segment AB in Figure 5.5 (which is also segment ab in Figure 5.7). The

displacement rate is kept the same throughout the test and the loading drop is caused by the crack

propagation. At this stage, the crack propagates along the center line and the loading reaches the

local minimum loading when the crack propagation stops. Stage 1 and stage 2 have been explained

in details in Section 2.2.1.2.

Stage 3 corresponds to segment BC in Figure 5.5 (which is also segment bc in Figure 5.7). For

stage 3, Figure 5.5 and Figure 5.7 are different. Wang and Wu (2004) stated that the specimen

undergoes tensile total failure at point c and the loading at point c should be smaller than the

loading at point a. However, this statement is disputable. In the testing, at stage 3 the specimen
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central region is no longer under tensile stress because primary tensile cracking has occurred.

Numerical analyses (see the methods in Section 4.5 and Section 4.6. The stress distribution within

the specimen can be obtained) indicate that the specimen periphery (near the two flattened surfaces)

is under a large vertical compressive stress and a relatively small horizontal stress (horizontal stress

can be either compressive or tensile). For example, for a two-inch specimen with 2a = 22.50, right

after the primary crack initiation, the vertical compressive stress at the specimen periphery is

37.1MPa while the horizontal compressive stress is 8.2MPa (Compression is taken as positive).

When the loading increases, the vertical compressive stress may increase much faster than the

horizontal stress. As a result, the compressive strength may be reached before the tensile strength,

although the compressive strength of mortar is larger than the tensile strength (Hong Kong

Buildings Department, 2013; Au, 2012; Kwan, 2006). Therefore, the specimen may undergo

compressive failure. One high speed video showed that the specimen underwent compressive

failure. However, only one high speed video is not enough to support the compressive failure

statement, and further investigations need to be carried out.

P(kN) a

15.0- C

10.0

5.(0

0 0.3 0.6 0.9 1.2 1.5 v(mm)

Figure 5.7 Load displacement curve proposed by Wang and Xing (1999)

5.3.1 Elastic modulus calculation
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The elastic modulus E is determined as the averaged slope of segment OA (see Figure 5.5), and

was discussed in Section 4.5.

5.3.2 Tensile strength calculation

The magnitude of tensile strength at is calculated based on the specimen geometry and local peak

loading PA (see point A in Figure 5.5). PA is used to determine tensile strength because stress at

point A is the stress required to initiate the tensile crack. Section 4.6 discusses the at calculation.

It is worth noting that, when the flatness angle 2a is around 390, some specimens start to deform

nonlinearly before tensile crack initiation, as illustrated in Figure 5.9. When the flatness angle 2a

is around 390, the specimen center is under relatively larger vertical compressive stress compared

with the specimen center when 2a is 230 or 280. For example, for three-inch diameter specimens,

when 2a is 39', the vertical compressive stress in the specimen center is around 15.50MPa; when

2a is 230 and 280, the vertical compressive stresses are 10.45MPa and 12.50MPa, respectively (the

vertical compressive stresses for each 2a is determined by averaging the vertical compressive

stresses for ten specimens). Therefore, local compression yielding may occur in the specimen

center, which means that the specimen already starts to yield before tensile crack initiation. Under

this case, the loading at point D PD (see Figure 5.9) should be used to calculate the tensile strength.

Vertical compressive
stress

Horizontal tensile Specimen Horizontal tensile
stress center stress

Vertical compressive
stress

Figure 5.8 Stresses in the specimen center
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Linear line

PC

Crack initiati
point A
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nonlinearly here. point D

0.02 0.03

int B

ion,
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Figure 5.9 Local compression yielding before tensile crack initiation

5.3.3 Fracture toughness calculation

Wang and Xing (1999) proposed an equation for fracture toughness calculation:

KIc = $B0max (5.1)

where PB is the loading at point B (see Figure 5.5), R is the specimen radius, t is the specimen

thickness, max is a factor, which is only dependent on 2a. Their analysis has been introduced in

Section 2.2.3. As discussed in Section 2.2.3, their method is not convincing. In their analysis, they

assumed that the crack starts to propagate when the loading is very near to the loading at point B.

However, this is not verified by experiments. In addition, the 4max value, which was determined

by numerical analysis, has not been proved by tests. Therefore, their method will not be used.

Since max is unknown, in the fracture toughness calculation 4max is assumed to be 1. Therefore,

Equation 5.1 becomes:

(5.2)KICAB =
vRt
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where P is the loading at either point A or point B (see Figure 5.5). The crack propagation may

start at any point in the segment AB since no experiment has been conducted to explore where the

crack starts to propagate. During the experiments, the loadings at A and B are the only two

available loadings. Therefore, the loadings at point A and B are used to calculate the fracture

toughness.

In flattened Brazilian tests, when the specimen diameter R and specimen thickness t is kept

constant, the loading for crack propagation P may be dependent on 2a. Thus, a factor that is

dependent on 2a may needs to be included in the fracture toughness calculation. However, # is not

included in Equation 5.2 because 4 could not be determined in the current work. Therefore, the

fracture toughness can be compared only if the specimens have the same 2a (so the effect of 4 on

fracture toughness can be eliminated).

5.4 Experimental results for specimens with 2a ~ 28* (first three batches of
mortar specimens)

5.4.1 Experimental results for the first three batches of mortar specimens

The 2a was approximately 28' for the first three batches of mortar specimens, 230 for the fourth

and fifth batches, and 390 for the sixth and seventh batches. The experimental results for the first

three batches of mortar are presented in Table A. 1 through Table A. 15 in Appendix Al. The elastic

modulus E, tensile strength at, cG (the averaged compressive stress acting on the flattened surfaces

at point A, see Figure 5.5), GB (the averaged compressive stress acting on the flattened surfaces at

point B, see Figure 5.5), KICA (fracture toughness based on PA, see Figure 5.5), and KICB (fracture

toughness based on PB, see Figure 5.5) changing with size are summarized in Table 5.1 and Table

5.2, and Figure 5.10 through Figure 5.15 below.

Table 5.1 Summary of experimental results for the first three batches of mortar (2a = 28')

Mean SD of Mean of SD of Mean of SD of Mean of SD of No. of
Size of E E Ut Ot GA GA GB GB specimens

(GPa) (GPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

2-inch 18.35 2.42 4.60 0.55 31.89 3.41 27.63 4.16 15

3-inch 16.03 1.42 3,81 0.42 26.90 2.79 24.74 2.81 14

4-inch 18.27 1.87 3.20 0.30 22.99 2.59 20.77 2.41 15
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Note: SD means standard deviation.

Table 5.2 Summary of experimental results for the first three batches of mortar (2a = 280)

Mean of KICA SD of KICA Mean of KICB SD of KcB No. of
Size (MPam0

.
5) (MPamnP 5) (MPamO. 5) (MPam"-5) specimens

2-inch 2.47 0.27 2.14 0.33 15

3-inch 2.52 0.24 2.32 0.30 14

4-inch 2.48 0.23 2.23 0.22 15

E versus size
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Figure 5.10 Elastic Modulus changing with size (error bars represent standard deviation)
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a, versus size
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Figure 5.11 Tensile strength changing with size (error bars represent standard deviation)
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Figure 5.12 OA changing with size (error bars represent standard deviation)

92

.......... ............ ........ ...... .............. .................................... ...................

... ........ . I ..........



cB versus size
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Figure 5.13 GB changing with size (error bars represent standard deviation)

KICA versus size
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Figure 5.14 KICA changing with size (error bars represent standard deviation)
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KICB versus size
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Figure 5.15 KICB changing with size (error bars represent standard deviation)

5.4.2 Discussion

Figure 5.10 illustrates that the elastic modulus decreases (from 18.3 5GPa to 16.03GPa) when the

specimen size increases from two inches to three inches; then increases again (from 16.03GPa to

18.27GPa) when the specimen size increases from three inches to four inches. Elastic modulus is

always considered to be a material property (Demkowicz, 2012; Anand, 2014). All the specimens

(with different sizes) are cast from the same materials and with the same process. Therefore, the

Elastic modulus for specimens with different sizes should be the same. The difference may be due

to the installation of extensometers. As shown in Figure 5.16, the extensometers were attached to

the specimen surface by rubber bands, and it was assumed that there is no relative movement

between extensometers and the specimen surfaces. However, for the two-inch and four-inch

specimens, the rubber bands used to attach the extensometers were relatively loose; while for the

three-inch specimens, the rubber bands were relatively tight. Thus, for the two-inch and four-inch

specimens, the extensometers might not be attached tightly and there might be relative movements

(see Figure 5.16, Figure 5.17 and Figure 5.18). The measured displacement might be
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underestimated due to the relative movement, so therefore, the elastic modulus might be

overestimated.

Specimen side view Rubber band

Extensometer top Extensometer top
moves relatively up I

Extensometer-s
bottom moves Extensometer
relatively down bottom

Blue arrows represent
specimen movement

Figure 5.16 Illustration of the extensometer relative movements. Blue arrows represent the

specimen movement during the tests (specimen is compressed). The orange lines represent the

rubber bands, the black lines represent the extensometers, and the green arrows represent the force

that the rubber bands exert on the extensometer tops and bottoms. For two-inch and four-inch

specimens, the force exerted by the rubber bands might not be large enough. As a result, there

might be relative movement between the extensometers and the specimen. The movements

measured by the extensometers might be smaller than the actual specimen displacements, so

therefore, the elastic modulus might be overestimated.

Load

Relative movements
between extensometers

and specimen occur

o Displacement
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Figure 5.17 The load displacement curve (exaggerated) when relative movements occur. When

relative movements occur, the measured displacement is lower than the real displacement. As a

result, the slope becomes steeper.

10

Relative
8 movement occurs

6

4

2

Figure 5.18 The load displacement curve for one test (the specimen size was two-inch). The red

line is the averaged slope. In the test relative movements occurred (the black arrow shows a typical

example for relative movements).

Figure 5.11 shows that the tensile strength is decreasing with increasing specimen size (the tensile

strength for four-inch specimen is 69.6% of the tensile strength for two-inch specimen). This is in

excellent agreement with the size effect theory: the tensile strength decreases with increasing size

(Weibull, 1951; Glucklich and Cohen, 1967; Glucklich and Cohen, 1968; Einstein, 1970; Einstein,

1981; Demkowicz, 2012). The size effect theory has been explained in detail in Section 2.1.9.

Figure 5.12 shows that GA also decreases with size (the GA for four-inch specimen is 72.1% of the

aA for two-inch specimen). In addition, Figure 5.13 shows that GB decreases with increasing size

(the oB for four-inch specimen is 75.2% of the aB for two-inch specimen). Further investigations

are required to explain these phenomena.

Table 5.2 and Figure 5.14 indicate that KICA is almost constant with different specimen sizes. On

the contrary, Figure 5.15 shows that KIcB increases slightly (from 2.14 MPam 5 to 2.32 MPam 5 )
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when the specimen size increases from two inches to three inches; then decreases slightly (from

2.32 MPam0 to 2.23 MPam0 ) when the specimen size increases from three inches to four inches.

The averaged KICB for three-inch specimens is within the standard deviation range of KICB for two-

inch specimens, so therefore, the size effect is not very obvious. In the fracture toughness

calculation (see Equation 5.2), the term 1 may help to reduce the size effect. It is worth noting

that the calculated fracture toughness is much higher than the fracture toughness of concrete.

Demkowicz (2012) stated that the fracture toughness of concrete is usually taken as 1.2MPam0 .

Therefore, the reduction factor 4, which is dependent on 2a, may be eventually needed. The 4 will

not be correct until the fracture toughness is below 1.5MPam05 . Further investigations need to be

carried out to explain the change of KICA and KICB.

5.5 Experimental results for specimens with 2a ~ 390 (the fourth and fifth
batches of mortar specimens)

5.5.1 Experimental results for the fourth and five batches of mortar specimens

The experimental results for the fourth and fifth batches of mortar specimens are presented in

Table A. 16 through Table A.25 in Appendix Al. The E, ct, GA, GB, KICA, and KICB changing with

size is summarized in Table 5.3 and Table 5.4, and Figure 5.19 through Figure 5.24 below.

Table 5.3 Summary of experimental results for the fourth and fifth batches of mortar (2a = 390)

Mean SD of Mean of SD of Mean of SD of Mean of SD of No. of

Size of E E at Gt CA GA B GB specimens
(GPa) (GPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

2-inch 18.65 1.63 4.66 0.81 27.76 3.89 27.12 3.70 10

3-inch 16.79 1.63 3.75 0.38 22.68 1.76 22.08 1.62 10

4-inch 18.78 1.67 3.17 0.45 19.33 2.38 18.66 2.21 10

Table 5.4 Summary of experimental results for the fourth and fifth batches of mortar (2a = 390)

. Mean of KICA SD of KICA Mean of KICB SD of KICB No. of
Size (MPam05 ) (MPam05 ) (MPam05 ) (MPam0 5 ) specimens

2-inch 3.04 0.39 2.97 0.38 10

3-inch 2.98 0.23 2.90 0.21 10

4-inch 2.87 0.35 2.77 0.32 10
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Figure 5.19 Elastic Modulus changing with size (error bars represent standard deviation)
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Figure 5.20 Tensile strength at changing with size (error bars represent standard deviation)

aA versus size
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Figure 5.21 aA changing with size (error bars represent standard deviation)
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Figure 5.22 aB changing with size (error bars represent standard deviation)
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KICA versus size
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Figure 5.23 KICA changing with size (error bars represent standard deviation)

KICB versus size
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Figure 5.24 KICB changing with size (error bars represent standard deviation)
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5.5.2 Discussion

Figure 5.19 shows that that the elastic modulus decreases (from 18.65GPa to 16.79GPa) when the

specimen size increases from two inches to three inches; then increases again (from 16.79GPa to

18.78GPa) when the specimen size increases from three inches to four inches. This is similar to

the E changing with size for the first three batches of mortar, and the reason has been discussed in

Section 5.4.2.

Figure 5.20 shows that the tensile strength is decreasing with increasing specimen size (the tensile

strength for four-inch specimen is 68.0% of the tensile strength for two-inch specimen). This is in

excellent agreement with the size effect theory: the tensile strength decreases with increasing size

(Weibull, 1951; Glucklich and Cohen, 1967; Glucklich and Cohen, 1968; Einstein, 1970; Einstein,

1981; Demkowicz, 2012). The size effect theory has been explained in detail in Section 2.1.9.

Figure 5.21 shows that GA also decreases with size (the GA for four-inch specimen is 69.6% of the

YA for two-inch specimen); and Figure 5.22 shows that GB decreases with increasing size (the GB

for four-inch specimen is 68.8% of the GB for two-inch specimen). Further investigations need to

be conducted to explain these phenomena.

Figure 5.23 shows that KICA also decreases slightly with size (the KICA for four-inch specimen is

94.41% of the KICA for two-inch specimen). The size effect is not obvious since the averaged KICA

for four-inch specimens is within the standard deviation range of the KICA for two-inch specimens.

Figure 5.24 shows that KICB decreases with increasing size (the KICB for four-inch specimen is

93.27% of the KICB for two-inch specimen). Similar to KICA, the size effect is also not prominent

since the averaged KICB for four-inch specimens is within the standard deviation range of the KICB

for two-inch specimens. In the fracture toughness calculation (see Equation 5.2), the term 1

may help to reduce the size effect. It is worth noting that the calculated fracture toughness is much

higher than the fracture toughness of concrete. Demkowicz (2012) stated that the fracture

toughness of concrete is usually taken as 1.2MPam0 5 . Therefore, the reduction factor 4, which is

dependent on 2a, may be eventually needed. The 4 will not be correct until the fracture toughness

is below 1.5MPam 5 . Further investigations need to be carried out to explain the fracture toughness

change.
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5.6 Experimental results for specimens with 2a ~ 230 (the sixth and seventh
batches of mortar specimens)

5.6.1 Experimental results summary for the sixth and seventh batches of mortar

The experimental results for the sixth and seventh batches of mortar specimens are presented in

Table A.26 through Table A.35 in Appendix A l. The E, Gt, aA, GB, KICA, and KICB changing with

size is summarized in Table 5.5 and Table 5.6, and Figure 5.25 through Figure 5.30 below.

Table 5.5 Summary of experimental results for the sixth and seventh batches of mortar (2a = 23 )

Mean SD of Mean of SD of Mean of SD of Mean SD of No. of
Size of E E at at GA GA of GB GB specimens

(GPa) (GPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

2-inch 19.28 1.54 4.58 0.44 35.19 3.43 31.59 3.08 10

3-inch 18.51 2.69 3.86 0.32 30.84 2.90 27.43 2.76 9

4-inch 18.87 1.82 3.19 0.30 25.38 2.52 22.86 2.17 10

Table 5.6 Summary of experimental results for the sixth and seventh batches of mortar (2a = 230)

. Mean of KICA SD of KICA Mean of KICB SD of KICB No. of
Size (MPam0 5) (MPam0' 5) (MPam0-5) (MPam0-5) specimens

2-inch 2.30 0.22 2.06 0.22 10

3-inch 2.39 0.20 2.13 0.20 9

4-inch 2.24 0.23 2.02 0.20 10
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Figure 5.25 Elastic modulus changing with size (error bars represent standard deviation)
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Figure 5.26 Tensile strength changing with size (error bars represent standard deviation)
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(A versus size
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Figure 5.28 UB changing with size (error bars represent standard deviation)
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KICA versus size
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Figure 5.29 KICA changing with size (error bars represent standard deviation)
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Figure 5.30 KICB changing with size (error bars represent standard deviation)
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5.6.2 Discussion

Figure 5.25 illustrates that the elastic modulus decreases slightly (from 19.28GPa to 18.51GPa)

when the specimen size increases from two-inch to three-inch; then increases slightly (from

18.51 GPa to 18.87GPa) when the specimen size increases from three-inch to four-inch. It is worth

noting that the difference between the elastic modulus of the two-inch specimens and the three-

inch specimens for 230 specimens is less than the difference for 28' specimens or 390 specimens.

As discussed in Section 5.4.2, for the two-inch and four-inch specimens, the extensometers might

not be attached tightly by the rubber bands. The measured displacements might be lower than the

real displacements so the elastic modulus might be overestimated. For the three-inch specimens of

the sixth and seventh batches of mortar, relatively loose rubber bands were used to attach the

extensometers, instead of the tight rubber bands which were used for the three-inch specimens of

the first five batches of mortar. As a result, the elastic modulus for the three-inch specimens might

also be overestimated so the difference became relatively smaller.

Figure 5.26 shows that the tensile strength is decreasing with increasing specimen size (the tensile

strength for four-inch specimen is 69.7% of the tensile strength for two-inch specimen). This is in

excellent agreement with the size effect theory: the tensile strength decreases with increasing size

(Weibull, 1951; Glucklich and Cohen, 1967; Glucklich and Cohen, 1968; Einstein, 1970; Einstein,

1981; Demkowicz, 2012). The size effect theory has been explained in detail in Section 2.1.9.

Figure 5.27 illustrates that GA decreases with size (GA for four-inch specimen is 72.1% of GA for

two-inch specimen). Figure 5.28 shows that GB also decreases with increasing size (GB for four-

inch specimen is 72.4% of GB for two-inch specimen). Further investigations need to be conducted

to explain these phenomena.

Figure 5.29 shows that KICA increases slightly (from 2.30MPam0 5 to 2.39MPam 05 ) when the

specimen size increases from two-inch to three-inch; then decreases slightly (from 2.39MPam0 5

to 2.24MPam0 5 ) when the specimen size increases from three-inch to four-inch. The size effect

for KICA is not significant because the averaged KICA for four-inch specimens is within the standard

deviation range of the KICA for three-inch specimens. Figure 5.30 shows that KICB increases slightly

(from 2.06MPam0 5 to 2.13MPam 05 ) when the specimen size increases from two-inch to three-

inch; then decreases slightly (from 2.13MPam 05 to 2.02MPam0 5 ) when the specimen size
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increases from three-inch to four-inch. The size effect for KICB is also not remarkable because the

averaged KICB for four-inch specimens is also within the standard deviation range of the KICB for

three-inch specimens. In the fracture toughness calculation (see Equation 5.2), the term 1 /V-m may

help to reduce the size effect. It is worth noting that the calculated fracture toughness is much

higher than the fracture toughness of concrete. Demkowicz (2012) stated that the fracture

toughness of concrete is usually taken as 1.2MPam 0 -5 . Therefore, the reduction factor 4, which is

dependent on 2a, may be eventually needed. The 4 will not be correct until the fracture toughness

is below 1.5MPam -
5. Further investigations need to be carried out to explain the fracture toughness

change.

5.7 Elastic modulus, tensile strength, A and GB changing with 2CE

5.7.1 Elastic modulus changing with 2a

The elastic modulus changing with 2a is summarized in Table 5.7 and Figure 5.31 below.

Table 5.7 Elastic modulus changing with 2a

Size Averaged E (GPa)
(inch) 230 280 390

2 19.28 18.35 18.65

3 18.51 16.03 16.79

4 18.87 18.27 18.78
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E versus size -23 - -39
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Elastic modulus changing with 2a (Blue line represents 23', grey line represents 280,
and orange line represents 390)

From Figure 5.31, the elastic modulus (E) is almost independent on 2a when the specimen size is

two-inch or four-inch. For three-inch specimens, the elastic modulus for 230 specimens is slightly

larger than the elastic modulus for 28* or 390 specimens. The reasons have been explained in

Section 5.6.2.

5.7.2 Tensile strength changing with 2a

The tensile strength changing with 2a is summarized in Table 5.8 and Figure 5.32 below.

Table 5.8 Tensile strength changing with 2a

Size at (MPa)
(inch) 230 280 390

2 4.58 4.60 4.66
3 3.86 3.81 3.75
4 3.19 3.20 3.17
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Figure 5.32 Tensile strength changing with 2a (Blue line represents 230, grey line represents 28*,
and orange line represents 390)

Figure 5.32 shows that the tensile strength is almost independent of 2a.

5.7.3 U changing with 2a

GA changing with 2a is summarized in Table 5.9 and Figure 5.33 below.

Table 5.9 aA changing with 2a

Size aA (MPa)
(inch) 230 280 390

2 35.19 31.89 27.76

3 30.84 26.90 22.68

4 25.38 22.99 19.33
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Figure 5.33 GA changing with 2a (Blue line represents 230, grey line represents 28' and orange
line represents 390)

Figure 5.33 shows that GA decreases with increasing 2a. This means that when 2a is increasing,

the averaged vertical compressive stress required to initiate the tensile crack is decreasing. Hence,

GA varies with both size and 2a, while at only varies with size. Further investigations are required

to explain this phenomenon.

5.7.4 aB changing with 2a

GB changing with 2a is summarized in Table 5.10 and Figure 5.34 below.

Table 5.10 UB changing with 2a

Size aB (MPa)
(inch) 230 28* 390

2 31.59 27.63 27.12
3 27.43 24.74 22.08
4 22.86 20.77 18.66
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Figure 5.34 GB changing with 2a (Blue line represents 230, grey line represents 280 and orange
line represents 390)

Figure 5.34 shows that GB decreases with increasing 2a. Further investigations need to be

conducted to explain the change.

5.8 High speed camera and high resolution camera

A high speed camera and a high resolution camera were used for two three-inch specimens (with

2a~28') to examine the crack initiation position and the crack length. Both tests verified that the

crack initiated at the specimen center, and the crack length was approximately 70% of the specimen

diameter.

5.8.1 Specimen one

The high resolution image showing the crack initiation position and the primary tensile crack after

the crack propagation is shown in Figure 5.35. Then, the crack initiation and propagation are traced

from the high speed video. The traces of crack initiation and propagation are shown in Figure 5.36
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through Figure 5.38. It is difficult to see the crack propagation from the snapshots of high speed

video, so only the traces are shown here.

Figure 5.35 Primary tensile crack after crack propagation

Figure 5.36 Trace of crack initiation. Two parallel lines at the top and bottom represent the

flattened surfaces (for the trace length and location reference).
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Figure 5.37 Trace of the crack during the crack propagation

)

Figure 5.38 Trace of the crack right after the crack propagation

The camera was stopped before the total failure occurred. Therefore, there is no photo showing the

total failure for specimen one. Also, the stress strain curve is wrong. In this test, a mistake was
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made that the actuator was not turned on. As a result, the loading became loading rate controlled

instead of displacement rate controlled (the loading was increased throughout the test instead of

the displacement) so therefore, the loading drop cannot be seen in the stress strain curve. In

addition, the displacement measured by the machine is wrong. Figure 5.39 shows the stress strain

curve. For some parts of the curve, when the stress increases, the strain decreases, which is not

realistic. Therefore, the stress strain curve cannot be used so the trace of the crack initiation and

propagation cannot be related to the stress strain curve.

40

Crack

35 initiation point

30

25

Crack stop
point

p 20
The stress increases but

15 the strain decreases,
which is not realistic.

10

5

0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Strain (%)

Figure 5.39 The stress strain curve for specimen one

5.8.2 Specimen two

The crack initiation position and the primary tensile crack after the crack propagation are shown

in Figure 5.40. Figure 5.40 verifies that crack initiates in the central region, and the crack

propagates along the center line. Figure 5.41 shows the final failure of the specimen and this failure

can be considered as compressive failure.
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Primary crack
initiation location

Locations where the
crack propagation stops

Figure 5.40 High resolution image and trace of primary tensile crack after the crack propagation

I

Figure 5.41 High resolution image and trace of total compressive failure.

In both two experiments, the high speed camera was continuously recording and once it was

triggered by the laptop, the last 1.8 seconds of high speed frames was stored (Chapter 3 discusses

this in detail). In this experiment, unfortunately, the high speed camera was triggered so late that

the primary tensile crack initiation and propagation occurred before the last 1.8 seconds. As a result,

the crack initiation and propagation were not captured by the high speed video. The crack initiation
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point and the crack stopping point cannot be related to the stress strain curve, so the stress strain

curve becomes useless. Thus, the stress strain curve is not shown, so the traces in Figure 5.40 and

Figure 5.41 are not related to the stress strain curve.

It is worth noting that during the tests, the hydraulic jack also deformed linearly, so the hydraulic

jack acted as a spring (see Figure 5.42). During the crack propagation, the vertical displacement

of the specimen increased. As a result, the hydraulic jack might expand vertically, and some stored

elastic energy might be released. The released energy might go into the specimen and drive the

crack to propagate even further.

Hydraulic jack

The hydrau
jack was sim

to a sprinj

Crack pr

lic
ilar

The hydraulic T
jack expansion

opagation

rack)

The hydraulic
jack expanded,
and the stored
elastic energy

might be released

Figure 5.42 Hydraulic jack expansion

5.9 The measurement error in PB (Loading at point B, see Figure 5.5)

During the test, the real loading right after the crack initiation might not be captured due to low

sampling frequency. The high speed video proves that the primary crack propagation (the load

drop) is within 0.1 seconds. However, the loading sampling rate for the first five batches of mortar

is 1Hz and for the last two batches of mortar is 0.1Hz. Therefore, the loading may start to increase

again before the data acquisition system measures the loading after crack initiation (see Figure

5.43).
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Figure 5.43 Illustration of the possible problem in loading capture

Figure 5.43 illustrates the possible problem in the loading capture process. In the figure, the red

line represents the assumed load displacement curve and the green line represents the measured

load displacement curve. As stated above, the loading drops within a very short time and the data

acquisition system fails to capture the loading at point B. Instead, the loading at point B' is

measured when the loading starts to increase again. Therefore, the loading at point B becomes the

measured PB, and the green line is the measured load displacement curve. Thus, PB may be

overestimated and as a result, GB (the averaged compressive stress acting on the flattened surfaces

at point B) will also be overestimated.

5.10 Summary

In short, Ut, GA, and GB decrease with increasing specimen sizes. On the contrary, KICA and KIcB

do not change much with size. The two tests with high speed camera and high resolution camera

verified that the primary crack initiated at the center of the specimen and propagated along the

vertical center line.
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Chapter 6 Conclusions and Future Research

6.1 Summary and conclusions

This research intends to investigate the size effect on fracture toughness of mortar through flattened

Brazilian tests. To achieve this goal, a literature review, numerical analyses, and experiments were

conducted.

Basic fracture mechanics, which include Linear Elastic Fracture Mechanics, and fracture of brittle

and quasi-brittle materials, were reviewed. In addition, the methods for calculating elastic modulus,

tensile strength, and fracture toughness were examined. The fracture toughness calculation

methods discussed in previous articles are not convincing, since the underlying assumptions have

not been verified by experiments. Specifically, whether the crack starts to propagate near the local

minimum loading (see PB in Figure 5.5) has not been verified by experiments.

Then, numerical analyses were carried out because the methods for tensile strength- and elastic

modulus calculation reported in the literature are not satisfactory. The methods for tensile strength-

and elastic modulus calculation assume that the flattened specimen is subjected to a uniformly

distributed loading (uniform stress over the flattened surface). In this research project, however, a

point load was applied to the loading plate by the hydraulic jack (see Figure 4.2). As a result, the

displacement along the flattened surface was uniform but the stress distribution along the flattened

surface was non-uniform. Thus, numerical analyses were required to determine the tensile strength

and elastic modulus accurately. During the tests, the extensometer displacements and the local

maximum loading (see PA in Figure 5.5) were measured. With them, the elastic modulus and

tensile strength were determined by finite element analysis.

Next, experimental results were shown. Cylindrical mortar specimens were cast from Type III

Portland cement, fine-grained silt, and water, at a weight ratio of cement: silt: water = 2:2:1. The

cylindrical specimens were then cut into small disks and flattened. The Brazilian tests were

conducted by loading the flattened disks at a constant displacement rate, and the loading as well

as the displacement (of mortar alone) were measured. 126 experiments with different specimen

sizes (two-inch, three-inch and four inch) and different flatness angles (23', 28', and 390) were

run, from which 107 experimental results were accepted. Specifically, the load displacement curve
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was used to determine the local maximum and minimum loading (see PA and PB in Figure 5.5).

These loads were then used to calculate the fracture toughness, based on the local maximum

loading, KICA, and the local minimum loading, KICB. In addition, the elastic modulus E, tensile

strength at, averaged compressive stress at local maximum loading GA, and averaged compressive

stress at local minimum loading GB were determined. Two tests with high speed camera and high

resolution camera were conducted. They showed that the primary crack initiated at the center of

the specimen and propagated along the vertical center line.

The change of KICA and KICB with size and flatness angle was analyzed. Most importantly, the

effect of size and flatness angle on E, at, GA, and GB were investigated. The results indicate that at,

GA, and GB decrease with increasing specimen sizes. On the contrary, E, KICA, and KICB do not

change much with size. In addition, at appears to be independent on 2a, while A and GB decrease

with increasing 2a.

6.2 Recommendations for future research

The recommendations are summarized below:

1. A high speed camera should be used to examine where the crack starts to propagate

between PA and PB.

2. Numerical analyses are required to verify the Wang's (2004) 4 versus a/R curve.

3. Numerical work and analytical work needs to be conducted to derive an empirical or

analytical formula to calculate the fracture toughness for flattened Brazilian tests.

4. Data with higher sampling frequency should be used to measure PB more accurately.

5. More specimens need to be tested (at least 15 more per each 2a per each size) so the

experimental results will be statistically convincing.
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Appendix A Experimental Results

In this appendix, the experimental results of all the seven batches of mortar will be presented.

Table A. 1 Experimental results for the two-inch specimens for the first batch of mortar (The
extensometer displacement was averaged from two measured displacements)

Experimental results for two-inch specimen

Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 25.4 25.4 25.4 25.4 25.4 25.4 0

Angle 2a 28.21 27.77 27.77 27.77 28.26 27.96 0.23

Specimen
Diameter D (mm) 50.55 50.80 50.80 50.80 50.80 50.75 0.10

Specimen
Thickness t (mm) 26.72 26.04 26.06 25.48 26.62 26.18 0.45

PB (kN) 10.64 7.71 7.76 9.57 7.21 8.58 1.31

PA (kN) 11.99 8.39 9.44 10.43 8.98 9.85 1.26

E (GPa) 16.40 14.60 13.20 14.80 18.35 15.47 1.76

at (MPa) 5.33 3.73 4.20 4.64 3.99 4.38 0.56

GA (MPa) 36.43 26.45 29.71 33.57 27.21 30.67 3.81

GB (MPa) 32.33 24.29 24.43 30.81 21.83 26.74 4.08

KiCA (MPam0 5) 2.82 2.02 2.27 2.57 2.12 2.36 0.30

KICB (MPam0.5) 2.50 1.86 1.87 2.36 1.70 2.06 0.31

Extensometer
displacement (mm) 0.0302 0.0239 0.0359 0.0291 0.0190 0.0276 0.00577

Note: SD means standard deviation.
surfaces at point A (see Figure 5.6),

cA represents the averaged compressive stress acting on the flattened
cB represents the averaged compressive stress acting on the flattened

surfaces at point B (see Figure 5.6), at represents the magnitude of tensile strength, KICA represents the
fracture toughness based on PA, and KICB represents thefracture toughness based on PB.
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Table A.2 Experimental results for the three-inch specimens for the first batch of mortar

Experimental results for three-inch specimen
Items No.1 No.2 No.3 No.4 Mean SD

Gauge length (mm) 38.1 38.1 38.1 38.1 38.1 0

Angle 2a 26.02 28.26 28.45 22.29 26.26 2.48

Specimen Diameter
D (mm) 76.44 75.95 76.48 76.20 76.27 0.21

Specimen
Thickness t (mm) 36.93 36.86 37.41 37.39 37.15 0.26

PB (kN) 13.72 14.90 13.72 14.59 14.24 0.52

PA (kN) 18.01 16.92 15.19 17.22 16.83 1.03

E (GPa) 16.90 15.60 16.10 17.45 16.51 0.71

at (MPa) 3.60 3.38 3.04 3.44 3.37 0.20

cA (MPa) 28.34 24.76 21.61 31.27 26.49 3.65

aB (MPa) 21.60 21.81 19.52 26.49 22.35 2.55

KICA (MPam0
.
5) 2.49 2.36 2.08 2.36 2.32 0.15

KICB (MPam0 5) 1.90 2.08 1.88 2.00 1.96 0.08
Extensometer

displacement (mm) 0.0294 0.0298 0.0259 0.0269 0.0280 0.0016

Table A.3 Experimental results for the four-inch specimens for the first batch of mortar

Experimental results for four-inch specimen

Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 50.8 50.8 50.8 50.8 50.8 50.8 0

Angle 2a 27.41 27.92 28.29 27.70 28.29 27.92 0.34

Specimen Diameter
D (mm) 101.85 101.09 101.85 101.35 101.85 101.60 0.32

Specimen
Thickness t (mm) 45.62 49.20 46.71 50.24 50.50 48.45 1.95

PB (kN) 20.40 24.71 24.75 25.83 25.31 24.20 1.94

PA (kN) 25.03 28.30 27.75 29.45 27.59 27.62 1.45

E (Gpa) 15.35 16.95 14.95 16.70 16.00 15.99 0.76

at (Mpa) 2.81 3.17 3.11 3.30 3.09 3.10 0.16

UA (MPa) 22.74 23.59 23.87 24.17 21.95 23.27 0.81

GB (MPa) 18.53 20.60 21.29 21.19 21.14 20.35 1.00

KiCA (MPam0
.
5) 2.43 2.56 2.63 2.60 2.42 2.53 0.09

KiCB (MPam0.5 ) 1.98 2.23 2.35 2.28 2.22 2.21 0.12
Extensometer

displacement (mm) 0.0334 0.0341 0.0379 0.0359 0.0351 0.0353 0.0016
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Table A.4 Summary of experimental results for the first batch of mortar

. Mean E SD of E Mean of SD of at Mean of SD of GA Mean of SD of GB
Size (GPa) (GPa) Gt (MPa) (MPa) GA (MPa) (MPa) GB (MPa) (MPa)

2-inch 15.47 1.76 4.38 0.56 30.67 3.81 26.74 4.08

3-inch 16.51 0.71 3.37 0.20 26.49 3.65 22.35 2.55

4-inch 15.99 0.76 3.10 0.16 23.27 0.81 20.35 1.00

Table A.5 Summary of experimental results for the first batch of mortar

. Mean of KICA SD of KICA Mean of KICB SD Of KICB
Size (MPam05 ) (MPam0 5 ) (MPam05 ) (MPam0 5 )

2-inch 2.36 0.30 2.06 0.31

3-inch 2.32 0.15 1.96 0.08

4-inch 2.53 0.09 2.21 0.12

Table A.6 Experimental results for two-inch specimens for the second batch of mortar

Experimental results for two-inch specimen

Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 25.4 25.4 25.4 25.4 25.4 25.4 0

Angle 2a 29.5 28.39 27.82 28.81 28.69 28.64 0.55
Specimen Diameter

D (mm) 50.88 50.80 50.98 50.55 50.62 50.76 0.16
Specimen Thickness t

(mm) 26.85 24.79 26.16 26.16 26.31 26.06 0.68

PB (kN) 10.68 7.86 7.47 6.30 9.02 8.266 1.49

PA (kN) 11.74 9.23 9.24 9.14 10.33 9.936 1.00

E (GPa) 20.50 18.10 19.70 18.45 19.40 19.23 0.87

at (MPa) 5.22 4.10 4.11 4.06 4.59 4.42 0.45

UA (MPa) 33.76 29.89 28.82 27.79 31.30 30.31 2.08

IGB (MPa) 30.71 25.45 23.30 19.15 27.33 25.19 3.88

KiCA (MPam0-5) 2.74 2.34 2.21 2.20 2.47 2.39 0.20

KicB (MPam0.5 ) 2.49 1.99 1.79 1.51 2.15 1.99 0.33
Extensometer

displacement (mm) 0.0232 0.0206 0.0191 0.0201 0.0217 0.0209 0.00141
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Table A.7 Experimental results for three-inch specimens for the second batch of mortar

Experimental results for three-inch specimen

Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 38.1 38.1 38.1 38.1 38.1 38.1 0

Angle 2a 28.29 28.08 28.61 28.71 29.75 28.69 0.58

Specimen Diameter
D (mm) 76.28 76.20 76.40 75.95 76.20 76.21 0.15

Specimen
Thickness t (mm) 37.11 37.47 37.21 37.54 38.15 37.50 0.36

PB (kN) 18.64 17.92 15.15 21.47 19.32 18.50 2.05

PA (kN) 19.12 19.09 16.58 23.03 19.99 19.56 2.07

E (GPa) 15.00 14.80 14.90 14.70 13.55 14.59 0.53

at (MPa) 3.82 3.81 3.31 4.60 3.99 3.91 0.41

GA (MPa) 27.64 27.57 23.61 32.58 26.79 27.64 2.88

GB (MPa) 29.95 25.88 21.57 30.38 25.89 26.13 2.82

KiCA (MPam0 -5) 2.64 2.61 2.28 3.15 2.68 2.67 0.28

KCB (MPam0
.
5) 2.57 2.45 2.08 2.93 2.59 2.53 0.27

Extensometer
displacement (mm) 0.0350 0.0354 0.0306 0.0429 0.0404 0.0369 0.0043

Table A.8 Experimental results for four-inch specimens for the second batch of mortar

Experimental results for four-inch specimen
Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 50.8 50.8 50.8 50.8 50.8 50.8 0
Angle 2a 25.53 28.04 25.48 27.32 26.02 26.48 1.03

Specimen Diameter
D (mm) 101.04 101.19 101.35 101.24 101.75 101.32 0.24

Specimen
Thickness t (mm) 51.46 53.21 53.11 52.93 53.39 52.82 0.70

PB (kN) 27.58 25.25 25.72 22.35 31.83 26.55 3.13

PA (kN) 31.33 28.42 28.17 24.12 34.61 29.33 3.50

E (GPa) 19.50 18.90 19.75 19.10 20.70 19.59 0.63

at (MPa) 3.51 3.18 3.16 2.70 3.88 3.29 0.39

(A (MPa) 27.27 21.79 23.73 19.06 28.30 24.03 3.43

GB (MPa) 24.01 19.36 21.67 17.66 26.03 21.75 3.03

KiCA (MPam0
.
5) 2.71 2.37 2.36 2.03 2.87 2.47 0.30

KiCB (MPam0 -5) 2.38 2.11 2.15 1.88 2.64 2.23 0.26

Extensometer
displacement (mm) 0.0324 0.0305 0.0289 0.0257 0.0339 0.0303 0.0029
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Table A.9 Summary of experimental results for the second batch of mortar

Mean E SD of E Mean of SD of ot Mean of SD of GA Mean of SD of 5B
Size (GPa) (GPa) i5 (MPa) (MPa) GA (MPa) (MPa) GB (MPa) (MPa)

2-inch 19.23 0.87 4.42 0.45 30.31 2.08 25.19 3.88

3-inch 14.59 0.53 3.91 0.41 27.64 2.88 26.13 2.82

4-inch 19.59 0.63 3.29 0.39 24.03 3.43 21.75 3.03

Table A. 10 Summary of experimental results for the second batch of mortar

. Mean of KICA SD of KICA Mean of KICB SD of KICB
Size (MPam0 5) (MPam05 ) (MPam0 5) (MPam0 5)

2-inch 2.39 0.20 1.99 0.33

3-inch 2.67 0.28 2.53 0.27

4-inch 2.47 0.30 2.23 0.26

Table A. 11 Experimental results for two-inch specimens for the third batch of mortar

Experimental results for two-inch specimen

Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 25.4 25.4 25.4 25.4 25.4 25.4 0

Angle 2a 28.23 26.54 27.72 28.66 28.29 27.89 0.74
Specimen Diameter

D (mm) 50.77 50.65 50.62 50.57 50.83 50.69 0.10
Specimen Thickness

t (mm) 26.85 26.14 26.62 26.80 26.77 26.63 0.26

PB (kN) 9.82 8.80 10.35 10.56 10.90 10.09 0.73

PA (kN) 10.96 10.10 12.31 11.05 11.99 11.28 0.79

E (GPa) 20.70 20.10 20.90 21.20 18.80 20.34 0.85

ct (MPa) 4.87 4.49 5.47 4.91 5.33 5.01 0.35

UA (MPa) 32.97 33.24 38.14 32.95 36.06 34.67 2.09

OB (MPa) 29.54 28.96 32.07 31.49 32.78 30.97 1.47

KiCA (MPam0 5) 2.56 2.43 2.91 2.59 2.81 2.66 0.17

KiCB (MPam0
.
5) 2.30 2.12 2.44 2.48 2.55 2.38 0.16

Extensometer
displacement (mm) 0.0214 0.0204 0.0237 0.0210 0.0259 0.0225 0.0020
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Table A. 12 Experimental results for three-inch specimens for the third batch of mortar

Experimental results for three-inch specimen

Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 38.1 38.1 38.1 38.1 38.1 38.1 0

Angle 2a 28.83 27.94 28.20 28.25 28.18 28.28 0.30
Specimen

Diameter D (mm) 76.28 76.02 75.97 75.97 76.23 76.09 0.13
Specimen

Thickness t (mm) 41.15 41.50 40.26 41.81 42.09 41.36 0.63

PB (kN) 20.69 20.93 18.19 18.60 18.61 19.40 1.16

PA (kN) 21.17 22.10 18.84 19.71 20.03 20.37 1.14

E (GPa) 16.60 17.45 14.95 18.85 17.50 17.07 1.28

Ft (MPa) 4.23 4.42 3.76 3.94 4.06 4.08 0.23

aA (MPa) 27.10 29.02 25.29 25.43 25.65 26.50 1.42

GB (MPa) 26.48 27.48 24.42 24.00 23.83 25.24 1.47

KiCA (MPam0. 5) 2.63 2.73 2.40 2.42 2.44 2.52 0.13

KICB (MPam0. 5) 2.57 2.59 2.32 2.28 2.26 2.41 0.14
Extensometer

displacement (mm) 0.0350 0.0347 0.0345 0.0287 0.0315 0.0329 0.0024

Table A. 13 Experimental results for four-inch specimens for the third batch of mortar

Experimental results for four-inch specimen
Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 50.8 50.8 50.8 50.8 50.8 50.8 0

Angle 2a 28.7 28.43 29.72 28.21 29.38 28.89 0.57

Specimen
Diameter D (mm) 101.09 102.01 101.63 102.01 101.73 101.69 0.34

Specimen
Thickness t (mm) 51.79 53.62 51.77 50.69 52.73 52.12 0.99

PB (kN) 23.59 27.62 29.00 29.32 22.56 26.42 2.81

PA (kN) 25.94 29.46 30.98 31.32 25.33 28.61 2.51

E (GPa) 19.20 19.30 18.15 18.00 21.55 19.24 1.27

ut (MPa) 2.91 3.30 3.47 3.51 2.84 3.21 0.28

GA (MPa) 19.99 21.94 22.97 24.86 18.62 21.68 2.19

GB (MPa) 18.18 20.57 21.50 23.27 16.59 20.02 2.38

KiCA (MPam0 -5) 2.23 2.43 2.65 2.74 2.13 2.44 0.23

KICB (MPam0.5) 2.03 2.28 2.49 2.56 1.90 2.25 0.26

Extensometer
displacement (mm) 0.0274 0.0311 0.0348 0.0355 0.0239 0.0305 0.0044
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Table A. 14 Summary of experimental results for the third batch of mortar

. Mean E SD of E Mean of SD of ut Mean of SD of aA Mean of SD of 0
BSize (GPa) (GPa) at (MPa) (MPa) a. (MPa) (MPa) UB (MPa) (MPa)

2-inch 20.34 0.85 5.01 0.35 34.67 2.09 30.97 1.47

3-inch 17.07 1.28 4.08 0.23 26.50 1.42 25.24 1.47

4-inch 19.24 1.27 3.21 0.28 21.68 2.19 20.02 2.38

Table A. 15 Summary of experimental results for the third batch of mortar

. Mean of KICA SD of KICA Mean of KICB SD of KICB
Size (MPam 5 ) (MPam05 ) (MPam05 ) (MPa-m05 )

2-inch 2.66 0.17 2.38 0.16

3-inch 2.52 0.13 2.41 0.14

4-inch 2.44 0.23 2.25 0.26

Table A. 16 Experimental results for the two-inch specimens for the fourth batch of mortar

Experimental results for two-inch specimen

Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 25.4 25.4 25.4 25.4 25.4 25.4 0

Angle2a 39.08 40.86 40.85 37.81 40.79 39.88 1.24
Specimen Diameter

D (mm) 50.80 51.23 50.60 50.83 50.95 50.88 0.21
Specimen

Thickness t (mm) 27.05 27.31 27.20 27.28 27.23 27.21 0.09

PB (kN) 13.36 14.33 12.49 14.00 14.50 13.74 0.73

PA (kN) 13.82 14.45 12.58 14.54 14.71 14.02 0.78

PD (kN) 13.28 13.30 9.89 13.83 13.32 12.72 1.43

E (GPa) 19.60 17.55 19.15 18.85 17.80 18.59 0.79

at (MPa) 5.28 5.29 3.93 5.50 5.30 5.06 0.57

CA (MPa) 30.07 29.60 26.19 32.37 30.43 29.73 2.01

OB (MPa) 29.07 29.35 26.00 31.17 29.99 29.12 1.72

KiCA (MPam0.5) 3.21 3.31 2.91 3.34 3.38 3.23 0.17

KiCB (MPam0.5) 3.10 3.28 2.89 3.22 3.34 3.16 0.16
End-to-end

displacement (mm) 0.0253 0.0304 0.0240 0.0281 0.0300 0.0276 0.0025

Note: PD is the loading at point D where the specimen starts to deform nonlinearly (see Figure 5.9). Yt is

calculated based on PD instead of Pc (it is discussed in 5.3.2).
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Table A. 17 Experimental results for the three-inch specimens for the fourth batch of mortar

Experimental results for three-inch specimen

Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 38.1 38.1 38.1 38.1 38.1 38.1 0

Angle 2a 39.41 39.30 39.74 38.53 38.14 39.02 0.59
Specimen

Diameter D (mm) 76.25 76.23 76.50 76.07 76.71 76.35 0.23
Specimen

Thickness t (mm) 39.57 39.14 39.60 39.52 39.40 39.45 0.17

PB (kN) 24.38 23.52 21.92 23.76 21.23 22.96 1.19

PA (kN) 24.92 24.16 22.27 24.54 22.23 23.62 1.15

PD (kN) 21.92 22.65 17.32 22.61 20.31 20.96 2.05

E (GPa) 18.40 17.25 14.20 17.15 14.60 16.32 1.63

Ut (MPa) 3.88 4.01 3.09 4.00 3.93 3.78 0.35

UA (MPa) 24.50 24.08 21.63 24.74 22.52 23.49 1.21

GB (MPa) 23.96 23.45 21.29 23.95 21.50 22.83 1.19

KICA (MPam.5 ) 3.23 3.16 2.88 3.18 2.88 3.07 0.15

KICB (MPam0.5) 3.16 3.08 2.83 3.08 2.75 2.98 0.16
Extensometer

displacement (mm) 0.0327 0.0337 0.0378 0.0345 0.0366 0.0351 0.0019

Table A. 18 Experimental results for the four-inch specimens for the fourth batch of mortar
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Experimental results for four-inch specimen

Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 50.8 50.8 50.8 50.8 50.8 50.8 0

Angle 2a 39.47 38.39 38.40 40.07 38.33 38.93 0.71
Specimen

Diameter D (mm) 101.63 101.73 102.16 101.90 102.54 101.99 0.33

Specimen
Thickness t (mm) 51.84 51.66 51.87 51.94 51.97 51.86 0.11

PB (kN) 34.00 29.03 32.25 32.99 33.05 32.26 1.71

PA (kN) 35.37 30.97 33.12 33.08 34.11 33.33 1.45

PD (kN) 35.37 28.91 30.92 30.59 32.40 31.64 2.17

E (GPa) 21.35 20.20 16.55 18.65 17.25 18.80 1.79

at (MPa) 3.53 2.88 3.08 3.05 3.23 3.15 0.22

GA (MPa) 19.88 17.93 19.01 18.24 19.50 18.91 0.74

UB (MPa) 19.11 16.80 18.51 18.19 18.89 18.30 0.82

KICA (MPam0 -5) 3.03 2.66 2.83 2.82 2.90 2.85 0.12

KICB (MPam0.5) 2.91 2.49 2.75 2.81 2.81 2.75 0.14
Extensometer

displacement (mm) 0.0296 0.0274 0.0358 0.0317 0.0353 0.0319 0.0033



Table A. 19 Summary of the experimental results of the fourth batch of mortar

. Mean E SD of E Mean of SD of at Mean of SD of aA Mean of SD of 0
BSize (GPa) (GPa) at (MPa) (MPa) aA (MPa) (MPa) aB (MPa) (MPa)

2-inch 18.59 0.79 5.06 0.57 29.73 2.01 29.12 1.72

3-inch 16.32 1.63 3.78 0.35 23.49 1.21 22.83 1.19

4-inch 18.80 1.79 3.15 0.22 18.91 0.74 18.30 0.82

Table A.20 Summary of experimental results for the fourth batch of mortar

. Mean of KICA SD of KICA Mean of KICB SD of KIcBSize (MPam05 ) (MPam0 5 ) (MPam0 5 ) (MPam0 5 )

2-inch 3.23 0.17 3.16 0.16

3-inch 3.07 0.15 2.98 0.16

4-inch 2.85 0.12 2.75 0.14

Table A.21 Experimental results for the two-inch specimens for the fifth batch of mortar

Experimental results for two-inch specimen
Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 25.4 25.4 25.4 25.4 25.4 25.4 0

Angle 2a 40.82 40.18 41.24 40.10 41.05 40.68 0.46

Specimen
Diameter D (mm) 50.67 50.85 50.98 50.62 50.98 50.82 0.15

Specimen
Thickness t (mm) 26.75 27.08 27.05 27.15 27.00 27.01 0.139

PB (kN) 9.88 11.74 9.96 14.44 13.84 11.97 1.900

PA (kN) 10.26 11.97 10.00 14.78 14.45 12.29 2.017

PD (kN) 8.74 9.90 8.68 13.74 12.39 10.69 2.03

E (GPa) 20.40 21.20 15.00 17.95 19.00 18.71 2.17

ut (MPa) 3.48 3.94 3.47 5.47 4.94 4.26 0.81

UA (MPa) 21.71 25.31 20.59 31.37 29.95 25.79 4.30

UB (MPa) 20.91 24.83 20.51 30.64 28.68 25.11 4.06

KICA (MPam0 .5) 2.41 2.77 2.32 3.42 3.35 2.85 0.46

KICB (MPam0
.
5) 2.32 2.72 2.31 3.34 3.21 2.78 0.43

Extensometer
displacement (mm) 0.0182 0.0204 0.0240 0.0298 0.0275 0.0240 0.004
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Table A.22 Experimental results for the three-inch specimens for the fifth batch of mortar

Experimental results for three-inch specimen
Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 38.1 38.1 38.1 38.1 38.1 38.1 0

Angle 2a 38.85 40.83 39.41 39.41 39.27 39.55 0.670
Specimen

Diameter D (mm) 76.23 76.43 76.63 76.07 76.10 76.29 0.212
Specimen

Thickness t (mm) 39.75 39.55 39.24 39.57 39.83 39.59 0.202

PB (kN) 20.68 22.92 18.94 23.90 22.50 21.79 1.766

PA (kN) 21.03 23.55 19.29 24.91 22.94 22.34 1.972

PD (kN) 18.98 21.97 17.48 23.88 22.08 20.88 2.32

E (GPa) 16.35 17.90 14.85 18.20 19.00 17.26 1.48

at (MPa) 3.39 3.89 3.13 4.28 3.93 3.72 0.41

(A (MPa) 20.87 22.34 19.03 24.54 22.53 21.86 1.84

CB (MPa) 20.52 21.74 18.68 23.55 22.10 21.32 1.64

KICA (MPam"5) 2.71 3.05 2.51 3.23 2.95 2.89 0.25

KICB (MPam0.5) 2.66 2.96 2.47 3.10 2.90 2.82 0.22
Extensometer

displacement (mm) 0.0310 0.0317 0.0313 0.0328 0.0290 0.0312 0.001

Table A.23 Experimental results for the four-inch specimens for the fifth batch of mortar

Calculation Results for four-inch specimen

Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 50.8 50.8 50.8 50.8 50.8 50.8 0

Angle 2a 37.88 37.36 38.20 38.18 37.89 37.90 0.30
Specimen Diameter

D (mm) 102.46 101.73 101.68 101.73 101.78 101.87 0.30
Specimen Thickness

t (mm) 53.42 53.26 52.50 49.12 54.10 52.48 1.75

PB (kN) 32.66 29.44 27.36 32.47 43.34 33.05 5.51

PA (kN) 32.91 30.62 28.42 33.93 45.58 34.29 5.96

PD (kN) 28.75 28.70 26.82 31.98 42.87 31.82 5.77

E (GPa) 19.80 18.80 16.30 18.05 20.85 18.76 1.55

ot (MPa) 2.87 2.86 2.71 3.19 4.33 3.19 0.59

OA (MPa) 18.53 17.65 16.27 20.76 25.50 19.74 3.23

ciB (MPa) 18.39 16.97 15.67 19.87 24.25 19.03 2.97

KICA (MPamo-5) 2.72 2.55 2.40 3.06 3.73 2.89 0.47

KICB (MPam0 .5) 2.70 2.45 2.31 2.93 3.55 2.79 0.44
Extensometer

displacement (mm) 0.0297 0.0290 0.0312 0.0336 0.0390 0.0325 0.004
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Table A.24 Summary of the experimental results for the fifth batch of mortar

. Mean E SD of E Mean of SD of at Mean of SD of OA Mean of SD of GBSize (GPa) (GPa) at (MPa) (MPa) GA (MPa) (MPa) GB (MPa) (MPa)

2-inch 18.71 2.17 4.26 0.81 25.79 4.30 25.11 4.06

3-inch 17.26 1.48 3.72 0.41 21.86 1.84 21.32 1.64

4-inch 18.76 1.55 3.19 0.59 19.74 3.23 19.03 2.97

Table A.25 Summary of experimental results for the fifth batch of mortar

Mean of KICA SD of KICA Mean of KICB SD of KICBSize (MPam0.5) (MPam0 .5) (MPam0o 5) (MPam0 5)

2-inch 2.85 0.46 2.78 0.43

3-inch 2.89 0.25 2.82 0.22

4-inch 2.89 0.47 2.79 0.44

Table A.26 Experimental results for the two-inch specimens for the sixth batch of mortar
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Experimental results for two-inch specimen

Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 25.4 25.4 25.4 25.4 25.4 25.4 0

Angle 2a 25.24 23.77 25.07 24.19 23.12 24.28 0.795
Specimen

Diameter D (mm) 50.75 50.77 50.88 50.83 51.33 50.91 0.215

Specimen
Thickness t (mm) 27.15 26.97 27.00 27.25 27.13 27.10 0.103

PB (kN) 10.62 8.81 9.25 8.11 7.25 8.81 1.131

PA (kN) 11.42 9.48 9.90 9.44 8.40 9.73 0.980

E (GPa) 20.55 18.45 17.70 21.40 19.85 19.59 1.35

at (MPa) 5.27 4.37 4.56 4.35 3.87 4.48 0.45

GA (MPa) 37.93 33.61 33.21 32.53 30.10 33.48 2.54

UB (MPa) 35.28 31.24 31.03 27.94 25.98 30.29 3.18

KiCA (MPam-5) 2.64 2.21 2.30 2.17 1.93 2.25 0.23

KICB (MPam- 5) 2.46 2.05 2.15 1.87 1.67 2.04 0.27

Extensometer
displacement (mm) 0.0233 0.0215 0.0234 0.0183 0.0177 0.0209 0.002



Table A.27 Experimental results for the three-inch specimens for the sixth batch of mortar

Experimental results for three-inch specimen
Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 38.1 38.1 38.1 38.1 38.1 38.1 0

Angle 2a 23.17 24.34 22.95 22.34 22.58 23.08 0.694
Specimen Diameter

D (mm) 76.38 75.97 76.56 76.45 76.43 76.36 0.202
Specimen

Thickness t (mm) 40.44 40.41 40.16 40.39 40.56 40.39 0.132

PB (kN) 16.00 16.74 16.86 16.05 15.39 16.21 0.538

PA (kN) 17.38 18.63 19.20 18.85 16.84 18.18 0.909

E (GPa) 16.55 21.30 17.30 22.75 14.90 18.56 2.97

at (MPa) 3.56 3.81 3.93 3.86 3.45 3.72 0.18

UA (MPa) 28.02 28.79 31.40 31.52 27.75 29.49 1.64

aB (MPa) 25.80 25.87 27.57 26.84 25.36 26.29 0.81

KiCA (MPam- 5) 2.20 2.37 2.44 2.39 2.12 2.30 0.12

KicH (MPam0 -5) 2.02 2.13 2.15 2.03 1.94 2.05 0.07
Extensometer

displacement (mm) 0.0292 0.0243 0.0308 0.0230 0.0314 0.0277 0.003

Table A.28 Experimental results of four-inch specimen for the sixth batch of mortar

Experimental results for four-inch specimen
Items No.1 No.2 No.3 No.4 No.5 Mean SD

Gauge length (mm) 50.8 50.8 50.8 50.8 50.8 50.8 0

Angle 2a 23.51 22.39 22.71 21.83 22.09 22.51 0.58
Specimen Diameter

D (mm) 101.78 101.57 101.30 102.36 102.08 101.82 0.37
Specimen

Thickness t (mm) 55.50 55.17 55.02 54.99 55.09 55.15 0.18

PB (kN) 25.58 25.10 29.86 23.45 23.63 25.52 2.32

PA (kN) 27.35 28.20 32.83 25.64 26.66 28.14 2.49

E (GPa) 20.85 19.75 21.15 19.80 19.35 20.18 0.69

at (MPa) 3.15 3.25 3.78 2.95 3.07 3.24 0.29

CA (MPa) 23.77 25.92 29.92 24.06 24.75 25.68 2.25

aB (MPa) 22.23 23.07 27.22 22.00 21.93 23.29 2.01

KCA (MPam"5 ) 2.18 2.27 2.65 2.06 2.14 2.26 0.21

KICB (MPam0 -5) 2.04 2.02 2.41 1.88 1.90 2.05 0.19
Extensometer

displacement (mm) 0.0271 0.0295 0.032 0.0267 0.0284 0.0287 0.002
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Table A.29 Summary of the experimental results for the sixth batch of mortar

. Mean E SD of E Mean of SD of Gt Mean of SD of GA Mean of SD of GBSize (GPa) (GPa) Ut (MPa) (MPa) GA (MPa) (MPa) GB (MPa) (MPa)

2-inch 19.59 1.35 4.48 0.45 33.48 2.54 30.29 3.18

3-inch 18.56 2.97 3.72 0.18 29.49 1.64 26.29 0.81

4-inch 20.18 0.69 3.24 0.29 25.68 2.25 23.29 2.01

Table A.30 Summary of experimental results for the sixth batch of mortar

. Mean of KICA SD of KiCA Mean of KICB SD of KICBSize (MPamO-5 ) (MPam0 .5) (MPam0 -5) (MPam05 )

2-inch 2.25 0.23 2.04 0.27

3-inch 2.30 0.12 2.05 0.07

4-inch 2.26 0.21 2.05 0.19

Table A.31 Experimental results for the two-inch specimens for the seventh batch of mortar

Experimental results for two-inch specimen
No.2 No.3 No.4 No.5

Items No.1 (sand) (wax) (wax) (sand) Mean SD

Gauge length (mm) 25.4 25.4 25.4 25.4 25.4 25.4 0

Angle 2a 23.86 23.41 23.37 22.77 21.32 22.95 0.884

Specimen Diameter

D (mm) 51.16 51.23 50.93 50.80 50.80 50.98 0.180

Specimen Thickness
t (mm) 27.23 27.03 27.13 26.92 27.20 27.10 0.114

PB (kN) 9.70 8.10 9.90 8.60 8.85 9.03 0.676

PA (kN) 10.80 8.70 11.20 9.70 10.24 10.13 0.876

E (GPa) 17.80 20.00 16.65 19.00 21.40 18.97 1.66

Gt (MPa) 4.98 4.01 5.16 4.47 4.72 4.67 0.40

GA (MPa) 37.51 30.98 40.03 35.93 40.06 36.90 3.36

(B (MPa) 33.69 28.84 35.39 31.86 34.62 32.88 2.34

KiCA (MPam0
.
5) 2.48 2.01 2.59 2.26 2.36 2.34 0.20

KICB (MPam0 -5) 2.23 1.87 2.29 2.00 2.04 2.09 0.15

Extensometer
displacement (mm) 0.0254 0.0182 0.0281 0.0214 0.0187 0.0224 0.0038
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Table A.32 Experimental results for the three-inch specimens for the seventh batch of mortar

Experimental results for three-inch specimen
Items No.1 No.2 No.3 (wax) No.4 (sand) Mean SD

Gauge length (mm) 38.1 38.1 38.1 38.1 38.1 0

Angle 2a 23.32 22.95 22.03 22.72 22.76 0.47

Specimen
Diameter D (mm) 76.68 76.33 76.63 76.33 76.49 0.17

Specimen
Thickness t (mm) 40.13 40.56 40.54 40.21 40.36 0.19

PB (kN) 14.32 19.95 18.27 17.66 17.55 2.05

PA (kN) 16.96 21.74 20.85 19.37 19.73 1.81

E (GPa) 18.50 20.00 14.70 20.55 18.44 2.28

at (MPa) 3.47 4.45 4.27 3.97 4.04 0.37

GA (MPa) 27.27 35.30 35.13 32.05 32.44 3.25

GB (MPa) 23.03 32.39 30.78 29.22 28.85 3.55

KICA (MPamo-5) 2.16 2.74 2.63 2.47 2.50 0.22

KiCB (MPam0 -5) 1.82 2.52 2.30 2.25 2.22 0.25
Extensometer

displacement (mm) 0.0255 0.0302 0.0395 0.0262 0.0303 0.0056

Table A.33 Experimental results for the four-inch specimens for the seventh batch of mortar
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Experimental results for four-inch specimen
No.2 No.3 No.4 No.5

Items No.1 (wax) (wax) (sand) (sand) Mean SD

Gauge length (mm) 50.8 50.8 50.8 50.8 50.8 50.8 0

Angle 2a 22.07 23.43 23.93 22.14 21.74 22.66 0.86
Specimen

Diameter D (mm) 101.50 101.35 102.29 101.98 102.11 101.84 0.36
Specimen

Thickness t (mm) 55.17 54.61 55.35 52.10 55.19 54.48 1.22

PB (kN) 20.65 24.45 26.66 26.75 23.55 24.41 2.25

PA (kN) 22.95 26.76 29.35 30.41 26.90 27.27 2.58

E (GPa) 15.40 16.80 17.15 20.40 18.05 17.56 1.66

at (MPa) 2.64 3.08 3.38 3.50 3.10 3.14 0.30

GA (MPa) 21.42 23.82 25.01 29.81 25.31 25.07 2.74

aB (MPa) 19.27 21.76 22.72 26.23 22.16 22.43 2.24

KICA (MPam0 -5) 1.85 2.18 2.34 2.59 2.16 2.22 0.24

KICB (MPam0
.
5 ) 1.66 1.99 2.13 2.27 1.89 1.99 0.21

Extensometer
displacement (mm) 0.0308 0.0330 0.0354 0.0308 0.0308 0.0322 0.002



Table A.34 Summary of the experimental results for the seventh batch of mortar

Mean E SD of E Mean of SD of ut Mean of SD of GA Mean of SD of GBSize (GPa) (GPa) at (MPa) (MPa) GA (MPa) (MPa) GB (MPa) (MPa)

2-inch 18.97 1.66 4.67 0.40 36.90 3.36 32.88 2.34

3-inch 18.44 2.28 4.04 0.37 32.44 3.25 28.85 3.55

4-inch 17.56 1.66 3.14 0.30 25.07 2.74 22.43 2.24

Table A.35 Summary of experimental results for the seventh batch of mortar

. Mean of KICA SD of KICA Mean of KICB SD of KICBSize (MPam0-5) (MPam0-5) (MPam0-5) (MPam0 -5)

2-inch 2.34 0.20 2.09 0.15

3-inch 2.50 0.22 2.22 0.25

4-inch 2.22 0.24 1.99 0.21
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