
ARCHIVES
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

NOV 2 5 2015

LIBRARIES

Me.TV: A Visual Programming Language and Interface
for Dynamic Media Programming

Vivian Chan Diep

B.S. in Management, Boston College (2012)

Submitted to the Program in Media Arts and Sciences, School of Architecture and
Planning, in partial fulfillment of the requirements for the degree of

Master of Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2015

@Massachusetts Institute of Technology 2015. All rights reserved.

Signature redacted
A uth o r: ..

Program in Media Arts and Sciences
August 7, 2015

Signature redacted
Certified by: ...

Andrew Lippman
Senior Research Scientist

Signature redacted
Accepted by:.......

Prof. Pattie Maes
Academic Head, Program in Media Arts and Sciences

1

Me.TV: A Visual Programming Language and Interface for
Dynamic Media Programming

by
Vivian Chan Diep

Submitted to the Program in Media Arts and Sciences, School of Architecture and
Planning,

on August 7, 2015, in partial fulfillment of the requirements for the degree of
Master of Science

Abstract
Sit back. Relax. And don't touch that dial.

The culture of televised media experiences has changed very little since the time it
began in the 1930s, but new internet technologies, like Netflix, Hulu, and Youtube, are
now quickly forcing major change. Although these new internet technologies have given
the viewer more control than the historical dial, they have also left behind some of the
greatest contributions of traditional television. These contributions include not just the
well-favored simplicity of use, but also the sense of social experience and connectedness,
the ease and continuity of scheduled programming, and the understanding that television
is now, current, and pulsing.

This thesis presents Me.TV, a web platform that combines the benefits of traditional
television and on-demand viewing for a new experience that allows us to let go, watch
the same channels as our friends, flip our preferences around, get constant, current con-
tent, and still have control over the type and timing of content. To make this experience
possible, we present a visual programming language at the center of the Me.TV platform
that enables users to create complex rules with simple interactions. The visual language
constructs allow users to create static preferences, such as genre constraints, and plan
for non-static ones, such as a current mood, in as many channels as they want. To
support the Me.TV programming language, the platform comprises of an editor, transla-
tion engine, application programming interface, video player and navigation dashboard,
which we prototype in this thesis as a javascript web application.

Work reported herein was funded by the Media Lab Consortium and the Ultimate Media
Program.
Thesis Supervisor: Andrew Lippman
Title: Senior Research Scientist

2

Me.TV: A Visual Programming Language and
Interface for Dynamic Media Programming

by
Vivian Diep

Signature redacted
Thesis Advisor...

Andrew B. Lippman
Senior Research Scientist and Associate Director, MIT Media Lab

Signature redacted
Thesis Reader.

Matt Carroll
Research Scientist, MIT Media Lab

/
Signature redacted

Thesis Reader.... V
Cesar A. Hidalgo

Associate Professor, MIT Media Lab

3

I

Acknowledgements

For the many stories, crazy ideas, straight-talk, Blazing Saddles quotes, and
outpouring of knowledge and wisdom, I thank Andy, my advisor. You showed me how to
embrace the magical, wacky ideas and turn them into something productive and, most
importantly, 'Viral'. I have learned how hard it is to make something a physically
affective experience with digital materials but I have learned also, at least a little more,
how to make it happen. For this thesis and much, much more, I am forever grateful.

I thank my thesis readers Matt Carroll and Cesar Hidalgo. Matt, thank you for your
relentless support and your honest feedback during the many stages of the
development of Me.TV. Cesar, thank you for your discerning comments and advice.

Thank you to all of Viral Communications for your friendship, advice, conversations,
and solidarity. Savannah Niles, Travis Rich, and Thariq Shihipar: thank you for being
willing soundboards and for sharing your experiences with me. To my office-mates and
friends, Amir Lazarovich and Tomer Weller, who have sincerely helped me through tough
times and wrestled the chaos of ideation with me more than they probably enjoyed, I
am extremely grateful. Thank you, Margaret Yu, for your contributions as a UROP to the
development of the Me.TV prototype and your joyful spirit of the office every Monday,
Tuesday, and Wednesday. And of course, thank you, Deborah Widener, for your support
and generosity.

Within the Media Lab, I thank my friends and classmates for all the friendship,
laughter, and support. For helping me with this thesis more than your fair share, I am
very grateful to Bianca Datta, Valerio Panzica La Manna, Juanita Devis, Ermal Dreshaj,
and Sunny Jolly. And for helping me manage the panic of the thesis process, thank you,
Linda Peterson and Keira Horowitz.

Thank you also to my friends outside of the Media Lab, and especially Narek
Shougarian and Lukas Schrenk for also contributing to this thesis.

Lastly, I thank the people I hold dearest: my parents, my brother, and my partner,
Sydney Do. For your constant love and support, I could never thank you enough.

4

Contents

1 Introduction 6

2 Contribution 8

3 Background and Context 8
3.1 Visual Programming Languages . 8
3.2 Navigation Design . 21

4 Related Work 23
4.1 Visual Programming Languages . 23
4.2 Navigation Design . 25

5 Design and Implementation 30
5.1 Sum m ary . 30
5.2 Language *. 31

5.2.1 Media Object Nodes . 32
5.2.2 Events . 34

5.3 System Framework . 38
5.3.1 Server . 38
5.3.2 Programming Environment . 42
5.3.3 Video Player . 44
5.3.4 Channel Navigator . 46
5.3.5 Socket Messaging Structure . 47
5.3.6 Users and Network . 48

6 Evaluation 49

7 Future Work 51

8 Survey Results 52

9 Bibliography 58

5

1 Introduction

From channel surfing to binge watching, the transformation of the visual media
experience is unmistakable. We have gone from scheduled programming and rigid
channels to a multitude of on-demand systems available on any device from nearly
every provider, whether friends, corporations, or algorithms. The options have become
seemingly infinite and the choice is all ours. At first glance, we are empowered and
thrilled by the level of control. Then we are consumed by it. The choice becomes a part
of the problem. This big bang moment of media, with all its new abilities and resources,
has created a new set of challenges without fully resolving the question: "What do we
want to watch?"

Whereas a human being scheduled our TV programming every day, we now have the
option to choose our own at any instant. The caveat is that we either don't know what
we want or we don't want to have to figure out what we want. We know we want
entertaining, relevant content that suits our current mood and whims, but we also want
to be surprised and discover new things like we did with television. The media
experience as a whole is an organic process that pulsates with popular culture, our
friends' interests, and our immediate yet transient state. This undefined, temporal
personality is what cannot be captured with static preference settings, but perhaps can
be captured with the programmability of media programming. This thesis presents
Me.TV, a visual programming language and platform that retrieves media output based
on user-defined inputs.

Me.TV bridges the gap between traditional television and on-demand viewing.
Current media viewing takes place in one of three programming styles: traditional
television, on-demand, and algorithmic media programming.

Traditional television is the concept of scheduled and pre-selected media content for
broadcasted viewing. Television is curated by humans and is associated with simple and
limited controls over content. These controls include channel selection by entering the
channel number or browsing the channels through an up and down button. The
constant browsing through channels, avoiding ads, and just searching for something
new and interesting is a behavior we all know as channel surfing. On-demand viewing
was the supposed remedy to channel surfing. It is the concept of nearly all content for
instant viewing and includes a selection process by exact identification through text
search and browsing by categorical menus such as genres, of which Netflix has reached
in the thousands.

6

On-demand providers like Youtube, Netflix, and Hulu have proved to be incomplete
solutions to traditional television's problems as we still cannot find something to watch.
It is so hard, in fact, to decide on something to watch that comedians have made
parodies of the endless browsing, thoughtless recommendations, and overly specific
content genres [1]. The only problem in common between traditional television and
on-demand viewing is the endless browsing, which was at least more efficient with
television.

It seems that as we move from traditional television to on-demand viewing, we are
sacrificing three of the greatest benefits of televised, scheduled programming. Firstly,
broadcast television is inherently social. Viewers on the same channel see exactly the
same programming, creating an experience that is shared remotely. We have some
inkling of what our friends are watching and the time-sensitive nature provides fodder
for day to day conversation. Secondly, broadcast television is minimal input. Controlling
the output of the television monitor is a simple button click and allows us to leave it and
forget it. Thirdly, television is now. Television feels live and content is tailored to be
relevant to its audience.

Me.TV empowers one to program their own programming by taking advantage of
external web services and browser-based viewing. In order to combine the elements of
surprise, a sense of social input, and experiential control, Me.TV is a system design that
includes a visual programming language, programming environment, custom video
player, navigation system, and back-end architecture. Each of these components work
together to allow a user to create, subscribe, and modify channels that grab content
dynamically according to programmed rules. These rules are specific enough to cater
to our on-demand preferences while retaining the television experience where we can
set to a soft preference and see the world's media in addition to our own.

7

2 Contribution

A visual programming language that allows media content to be retrieved, queued,
and removed according to user-defined constraints and input variables

In order to prototype this, we also provide a system that consists of a programming
environment for this language, an engine to translate visual programming into
executables, a video player for playback of created scripts in the form of channels, and
a dashboard design for channel navigation.

3 Background and Context

3.1 Visual Programming Languages

Me.TV's visual language takes cues from many older visual programming languages.
Here we offer some background on visual programming languages to illustrate some of
the lessons learned applied to Me.TV as well as the classification of Me.TV within the
field. Firstly, we answer what constitutes a visual programming language and the
classification system applied to them. As we begin to understand the elements of a
visual programming language, we form some of the requirements of Me.TV and design
guides for accomplishing the goals of the Me.TV language. Secondly, we examine
research that offers guidance on how to create the necessary language elements to
achieve the type of language we want. Third and last, we summarize work in navigation
design for media browsers as context for the Me.TV browsing platform.

The history of visual programming languages is relatively short, sitting at less than
50 years old and has not changed drastically. Some of the first visual programming
languages are based on the flowchart, which, in computing was used mainly as a way to
help assembly language programmers organize program structures and process flow,
aiding in the ability to enforce structured programming and cleanly progress without
getting lost in lower-level details. A sample flowchart is shown in Figure 1. Until the
1970s, however, the flowchart was not executable, leaving it digital but short of being
called a visual programming language.

Robert Taylor's First Programming Language (FPL) software allowed users to
generate flowcharts based on a given set of symbols and textual input, which the
software translates into Pascual for execution. The elements of the flowchart as a visual
programming language have persisted, joined by icons as technological strides were
made in computer graphics, processing, and memory. As flowchart-like languages and

8

icon-based languages developed, a third type of visual programming language was
formed - table and form-based systems.

These table and form-based systems are middle-of-the-spectrum languages that rely
on graphic representations but do not consider these icons to be central to the
language. They are often used to describe schemas and databases.

These three broad categories are the result of Nan C. Shu's concept of the profile of a
visual language [2]. Shu's work helped organize visual programming languages and
outlined much of the early history of the field. Still, debate goes on regarding

Start

Input
annual
Income

Incomme <

60,000

Student Individual Business
No Tax Pay Tax Tax

Figure 1: Example of flowchart, a diagram that represents process or flow through visual
connections between structural elements. [3]

classification. Visual programming languages have harder and softer definitions
depending on who you ask. Some languages are still considered visual languages
although they are largely text based and rely only on a single spatial relationship.
Regardless of the nuances to the definition, there are dimensions to a visual
programming language that can be examined and explained. These are the three

9

dimensions of visual programming languages laid out by Shu in Figure 2:

1. Visual Extent

2. Language Level

3. Scope.

visual extent

b1

0

scope

language leve)

Figure 2: Shu's Three Dimensions of Visual Programming Languages

These dimensions help to classify the many visual programming languages out there.
By looking at each dimension, we have the ability to discuss languages in more generic
terms and evaluate them on the combination of dimensions a language possesses.

The first dimension is visual extent. For a language with a high visual extent, it will
utilize visual expressions, which are 'meaning visual (non-textual)
representations.. .used as language components to achieve the purpose of
programming.' [2, pp. 139]

The second dimension is language level. Language level is determined by observing
the complexity of code required to perform a task. When there are fewer elements
involved or fewer lines of code required to complete a task, then the language is

10

W

considered to be a higher level language. Conversely, if a task requires many steps and
lines of code, it is a low-level language.

Lastly, Shu defines the third dimension, 'scope', as a measure of language capability,
rating languages that allow a user to create, control, or do more as a widely or generally
scoped language. Languages that are specific to a domain or geared towards particular
capabilities and ignore many others are considered narrowly or specifically scoped.

With these dimensions in mind, a review of some historically significant visual
programming languages can be put into perspective with regards to Me.TV.

1. Diagrammatic Languages

Diagrammatic languages include charts, graphs, and diagrams that are
executable. Typically, symbols are used to represent processes and objects.
Spatial and visual connections are made between symbols to denote a flow. The
best known flow chart in visual language research is the Nassi-Shneiderman (N-S)
diagram. N-S diagrams are easy to read and hard to introduce sneaky errors. By
using space-efficient rectangular constructs with visually-obvious boundaries and
logic the N-S diagram system became a favorite in the early attempts to make
flowcharts executable. N-S diagrams are strict and clear with no possibility of
arbitrary transfer of control. An example of a few N-S diagram symbols is
illustrated in Figure 4.

One example of research expanding on the N-S diagram is the
Programming-Support System. This 'pioneering work' by the IBM San Jose
Laboratory is explained by Shu [2, pp. 157-166] where the N-S diagram system is
used to create a system aimed at "

(a) Establishing charting techniques to specify programs in a way that clearly
shows their structure and logic;

(b) Providing an interactive graphics system for the drawing and editing of these
charts;

(c) Providing a preprocessor/compiler mechanism to translate charts into
executable code; and

(d) Providing self-documentation as a by-product of the program development
process." [2, pp. 61].

11

An example of the Programming-Support System is detailed in Figure 5. The
system includes a graphical user interface and allows for both textual and pointer
input (cursor). A user would use keyboard inputs to create a new NSD program
(an extension of the N-S diagram system to include headers for programming)
and symbolic constructs within the program such as 'IF', 'DO-LOOP', and 'CASE'
blocks. Inserting text and other similar functions are accessible through the
keyboard but a cursor is used in conjunction to allow for embedded code blocks
within structures like loops. These rules of creation result in a diagram of textual
elements that is written code but spatially arranged for improved flow
understanding. [2, pp. 164]

Once the user has completed the script, a preprocessor is used to translate the
created charts into PL/I (programming language developed by IBM) source
programs for compiling by a regular PL/I compiler and then executed. An example
program created with this system is detailed in Figure 6.

After the introduction of NSDs, the preprocessor was recognized as a drawback
in one aspect of programming: debugging. When debugging, it is useful to have
interactive execution. Programming with Interactive Graphical Support (PIGS)
came out as an experimental system for the University of Hong Kong. PIGS
implemented interactive support for testing and debugging at execution by
making a number of changes, the most significant of which is the use of an
interpreter rather than a compiler to allow the user to interact with the program
during execution and make changes to the NSD program. Users can watch the
execution of the program and follow the flow, allowing the user to visually
understand what is going wrong when the code executes.

A popular, active, and highly influential development in the world of
programming languages is the Smalltalk, created by Adele Goldberg, Dan Ingalls,
and Alan Kay. Like PIGS, Smalltalk as a language and programming environment
built in the responsiveness of the programming through the use of an interpreter
which immediately showcased results of the code. This ability to inspect code line
by line and its pure object-oriented nature made Smalltalk a powerful but also
human-friendly language. Figure 3 shows Smalltalk example code, much of which
is legible to non-programmers because of the use of objects which is closer to the
real world and the English language. Programming environments for Smalltalk
introduced concepts like inspection and the Model View Controller (MVC) user
interface paradigm. Smalltalk's influence is still felt today and Me.TV can easily
trace back some of its components to this pioneering work. [4]

12

Smalltalk-71 Programs

to T 'and' :y do 'y'
to F 'and' :y do F

to 'factorial' 0 is 1
to 'factorial' :n do 'n*factorial n-l'

to 'fact' :n do 'to 'fact' n do factorial n. fact n'

to :e 'is-member-of' (do F
to :a 'is-member-of' :group

do'if e - firstof group then T

else e is-member-of rest of group'

to 'cons' :x :y is self
to 'hd' ('cons' :a :b) do 'a'
to 'hd' ('cons' ta :b) '<-' :c do 'a <- c'

to 'tl' ('cons' :a :b) do 'b
to 'tl' ('cons' :a :b) '<-' :c do 'b <- c'

to :robot 'pickup" :block
do 'robot clear-top-of block.

robot hand move-to block.
robot hand lift block 50.
to 'height-of' block do 50'

Figure 3: Smalltalk-71 Program

The ability to debug line by line through an interpreter became a necessary
feature for Me.TV in order to support understanding of the content retrieval
system. Instead of the typical interaction with the flow of the code, however, we
focused on presenting the results of the code as the code was being built and
allowing for the interaction to happen immediately, on the same screen. So while
this provides the programmer feedback on the results of the programming, the
readability of the visual language is still in question. To further improve the
legibility of the programming language, we look to diagrams. Diagrams show the
flow of data instead of focusing on the structure of the programming.

In order to describe the flow of data, Shu presents 'data flow programs' as a
category of diagrammatic languages. Data flow programs are intuitive to read and
combinable into larger programs. Each node, however, does not inherently exhibit
self description. It is therefore necessary to augment them with other cues such
as text or extended graphics. An example of a diagramming language that
describes data flow rather than code structure is the state transition diagram.

NSDs, PIGS, and other similar languages are concerned first and foremost with
the functions of the program being developed and the data upon which it
operates. State transition diagrams, however, are a category of languages
concerned with the human computer interaction and how the user understands

13

the programming. "One of the principle virtues of state transition diagram
notations is that, by giving the transition rules for each state, they make explicit
what the user can do at each point in a dialog, and what the effects will be." [5,
pp. 51-59]

Me.TV implements code as icons, structures with visual elements, but its
diagramming elements make it much more like a state transition diagram. Here,
the necessity of that feature is because the user is programming for media data to
be processed and queued in real time and is rather less concerned with the actual
code structure. The actual code is largely abstracted away into form-based
interactions.

Diagrammatic programming languages in use today with success include
LabVIEW [6], Grasshopper 3D [7], and Node-Red [8]. Each of these examples are
domain-specific, providing the visual elements most necessary and relevant to
their respective domains. In particular, Grasshopper 3D is an example of a
modeling language and environment within the category of computer-aided
design (CAD) software solutions. It uses direct manipulation and icons to
generate graphics.

The grand ancestor of Grasshopper 3D and other CAD-like software is, of
course, the famous Sketchpad created by Ivan Edward Sutherland for his PhD
thesis. Sketchpad was developed as a new mode of communication with the
computer, utilizing a 'light pen' as the direct input and the ability to explicitly
manipulate and store drawn symbols.

Me.TV uses the cursor as the means of allowing the user to drag and drop items
wherever the user pleases. A program is drawn to how a user wants to see it, but
employs the use of connectors like those in diagrams to denote the flow of code.
In that way, the construction of the visuals is nearly entirely up to the user but it
does not provide the same level of control that Sketchpad does, or its
descendants aim to.

2. Iconic Languages

Iconic languages are those that use icons and their spatial arrangement to
instruct, rather than using these visual elements to do or show. To instruct is to
use visual elements to create instructions to be executed. To do or show, also

14

TEN I IF.. ELSE

Figure 4: "NSD symbols for code structure"

known as 'Programming by Rehearsal' by Finzer and Gould, is to interact with
visual elements to produce an outcome in rehearsal which can be later performed
in the same manner. Shu considers only those iconic languages that instruct, or
follow the 'do as a I say' constraint, to be true visual programming languages.
Rehearsal languages are 'program development methodology' [2, pp. 195].

To illustrate some significant early work and the variety of visual elements and
systems for icon-based languages, we examine VennLisp, Xerox Star, and PICT.

VennLisp had executable graphics based on the Lisp programming language.
Users nest function calls and the parser creates a parsing tree based on the
spatial enclosing relations among the visual objects. Figure 7 illustrates the
VennLisp programming language. VennLisp was developed in order to further
understand how humans use graphics to communicate, specifically how well
spatial parsing facilitates understanding.

Xerox Star is an early example of user interface design utilizing metaphors to
guide the design. Xerox's Star system applied the metaphor of the office
environment to the digital environment, complete with files, drawers, printers,
baskets, and slightly more abstract concepts of properties, options, windows and
commands. Xerox's complete devotion to the design of a conceptual model of

15

SEQUENCE

FOR

NAME: sorti (n. list)
SPEC sort a list of elements

PARAMETERS NAME EXAMPLE DIMENSION
IN: n 9999999
MOD: list 99,99 ()

LOCAL VARS maxval list(l)
maxpos n
temp 9999
m n

I n

LOOP m - n to 2 by -1: /* find max in list(m) /

maxval list(1);
maxpos = 1:

LOOP I = 2 to m:

iist(l) gt maxval

TRUE FALSE

maxval - list(l).
maxpos L

/* interchange max and last in list(m) /
temp list(m):
list(m) list(maxpos);
list(maxpos) = temp;

Figure 9-16. An example of an NSD program.

Figure 5: "An example of an NSD program [2]"

user interaction with the full system has been strongly influential in the computer
industry with adoption of this metaphor easily recognized today. Figure 8
illustrates the Star system's desktop.

16

PRIME: PROCEDURE;
SPEC: this program computes the first n (>2) prime numbers

PARAMTERS: SIZE TYPE (I/R/CICV) USE (I/O/M)
NAME
LOCAL/ GLOBAL VARIABLES: SIZE TYPE (I/RICICV) USE (L/G)
NAME 1000 integer local

35 integer local

n, x, lim, square, pr integer local

p (1) - 2; x - 1; lim - 1; square - 4; /*initialization*/

get list (n) ; put skip edit (p0). (f(10)

LOOP i 2 to n

pr = 0;

LOOP while (pr - 0) /* loop while not prime */

x-x+2-

vilim) = square ;
lim -4im + 1;
square = p (lim) * p (lim);

pr = 1 ;

LOOP k-2tolim-lwhile (pr= 1)

TRUE

v(k)-v(k) +p(k);

pr 0;

p(i)x; put skip edit(x) (f (10));

Figure 9-18. (a) An NSD program.
(b) PL/I procedure generated for the program in (a).

(Ng'0 . 0 1979 IEEE. Original art courtesy of R, Williams.)

(a)

Figure 6: "An NSD program [2]"

Xerox Star's metaphor-based system was an intuitive design, where settings
and applications were accessible through the mapping of the metaphor to the
office. Me.TV is based on the idea of a television experience and so uses
terminology and iconography from traditional television. The point of failure in
using the metaphor is when we consider the abstract concept of a unit of media.

17

Figure 10-4. A VennLisp form.
(Lakin". Reprinted by permission of Plenum Publishing Corp.)

Figure 7: "VennLisp recursive function [2, pp. 196]"

The terminology is slightly too specific with television and there does not exist a
generic vocabulary for metadata excepting the obvious such as 'title' and
'publication date.'

The properties of media, to the layperson, are not commonly referred to but is
increasingly so given the extensive use of digital media today. Events are even
more abstract as a concept and disparate from the concept of television, but are
similarly going to be more familiar to the average person, especially as the
internet of things creates opportunities for event-based programming. For those
items, we rely more on iconography and the use of an interpreter to demonstrate
code at every new element or structure. PICT exemplifies a highly visual language
wherein users draw their algorithms as a logically structured, multi-dimensional
picture, connecting the available icons to create the desired flow of control.
Because of the design of PICT's icons and the necessity of 'fit' between icons and
their connectors in the editor, PICT has a narrow scope as the Xerox Star does. An
example of the symbols within PICT is illustrated in the PICT library in Figure 9.

As Me.TV was of a slightly broader scope than PICT, the pure use of icons as
code blocks without further interaction made the creation process too involved
and unnecessarily complicated for Me.TV's purposes. Taking the result from one

18

XEROX STAR Userrinterfac4

DocU~111001104 File

9P Oi@Oph

7I U ile0I'aphc.,,aw.I
"MI i.

U- M U L O M

Iema -OI..e eAW

ien ..4.M

Sm.r e mbe

AQMO
Heilp

figure M016. A desktop as it appears on the $tair screen
(Smith et al.'. Reprinted with permission of Xerox Corporation.)

Figure 8: "A desktop as it appears on the Star screen [2, pp. 208]"

icon and passing it to the next connected one, however, is an important feature of
Me.TV, used in the creation of event objects. Each of these and other iconic
programming languages emphasize the need for clarity in the design of icons as
well as a consistent and structured set of principles of operation and use.
Implementation of an iconic language, if done well in designing the visual
communication of icons, can significantly decrease the barrier to creating code
for novices. The development of icons themselves as a field of study is also worth
mentioning in the scope of understanding the background of visual programming
languages. To be an effective communication device, the design of icons is of
great importance. [2, pp. 206-212]

Icons can range from the representation to the arbitrary. When icons are
representation, they are clearly understood when they represent objects we know
and are metaphorical to the function of the icon. If the icon is abstract, we are
symbolizing a function or concept that is familiar or comparable to what we know.
When we do not have physical reality and common knowledge to rely upon, our

19

ter Mn.'4

*ep3n

I

I

Figure 10-22. Areas of display

b~m

I
V.

ppp'

Figure 10-23. Program library.
(Glinert and Tanimoto'. 1984 IEEE, original art courtesy of E. Glinert.)

Figure 9: "PICT program library [2, pp. 216]"

icons become more arbitrary and function as signs. [9]

Once we've created an icon system, we then have to transform the images into
language by further exploring two attributes of the icons. The first being the
aspects of the icon which includes its bitmap, icon, and window names, its menu

20

(Sub) (Sub)
program system Help bulletin board/
name indicator data structure display

System
menu / User program /
input Easel
keyboard

tables, and its built-in functionality. The second is the relations of the icon which
includes any points to parent icons, siblings, and child icons. Within an icon
editor, the icons can become a high level language where the design of the editor
can aid in the ability to craft coherent visual code. Me.TV has an icon set that is
mostly abstract as the data and functions we symbolize are not perfectly
represented by the physical world.

Design Function
representational picture
abstract symbol
arbitrary sign

Table 1: Lodding's classification of icons

Visual programming languages are heralded as technologies that will lower the
barrier of entry to powerful computation and complex computer instruction but many
have proved to be incoherent, illegible, or simply difficult to maintain as code can easily
be updated but images may not.

3.2 Navigation Design

As we move towards a visual media experience governed less and less by a
programmer, we reconsider the interfaces we are using and the level of control we
actually have, either in the grand scheme or within our smaller circumstance. With our
navigation still relatively limited to a simple remote control with regards to television,
our navigation desires and media habits have outpaced our current interface. From this
pain point middle-ground solutions have cropped up, such as Chromecast, Amazon
Stick, and Apple TV to name a few.

Furthermore, as the interaction moves from changing channels to the asynchronous
ability to watch anything on-demand, new approaches and evaluations of current media
browsing systems and especially recommender systems have come to the forefront of
discussion. Visual media, or television as we used to know it, has increased
requirements of interaction. With greater personalization of our experiences through
systems like TiVO and Netflix, we have allowed our preferences to be made explicit with
only the expectation of our content in return, although recommendation systems can
help but not especially hurt a system. [10]

21

Largely this has been a boon for marketers as greater troves of information on our
preferences are handed over without bounds [11]. Mostly, however, these navigation
interfaces are created for the lowest common denominator possible. They are
ultra-simple and allow for basic personalization in the form of watchlists, playlists, and
other crafted lists such as 'top trending' lists [11]. More complex media navigation
systems have been explored in the form of 3D browsing [12], visual querying [13], and
even adaptive user interfaces which employ machine learning to create automated
changes in the user interface rather than increase the complexity of interaction [10].

22

4 Related Work

4.1 Visual Programming Languages

1. Scratch
Scratch is a web-based graphical programming language, programming
environment, and social network.

"Three core design principles for Scratch: Make it more tinkerable, more
meaningful, and more social than other programming environments."
[14, pp. 65]

Figure 10: "Sample Scratch script (from Pong-like game) highlighting computational and
mathematical concepts" [14, pp. 64]

The visual language of Scratch is based on simple blocks fitting together in only
syntactically logical ways, like pieces of a puzzle, and the programming
environment is similarly conducive to engaging novice programmers, allowing for
'tinkering' by considering spatial arrangements in a physically natural sense. For
instance, code blocks of parallel positioning on the editor are run as parallel
threads.

The blocks are created by Scratch's developers and designers to be as
supportive of meaningful projects as possible. Scratch's designers "know that
people learn best, and enjoy most, when working on personally meaningful

23

Variable

Random
Numbers

Loop

projects" [14, pp. 64]. In order to create a more meaningful programming
environment, the Scratch designers prioritized embedding diversity and
personalization into the programming. Because of that, Scratch supports many
different types of programming projects including animations, stories, and games
by providing a variety of tools. It even allows programmers to import personal
media into their projects. Scratch's last design tenant is to be more social,
engaging the community of users to collaborate and support each other. "For
many Scratchers, the opportunity to put their projects in front of a large
audience- and receive feedback and advice from other Scratchers- is strong
motivation" [14, pp. 65].

2. IFTTT - If This, Then That
IFTTT, read like '-ift' in 'gift', is an automated task service that connects APIs
(Application Programming Interfaces) between web services and products. For
instance, the publication of a new NASA Astronomy Picture of the Day can trigger
a Facebook [15] post linking to it without any input beyond establishing and
enabling this task. IFTTT further simplifies this process by exhibiting previously
established and popular recipes from other users and itself. To create a custom
recipe requires only a few steps for the most part and greatly empowers the
average user, especially in professional settings.

"The simple-but-useful concept has gained the company its
largest-ever funding from Andreessen Horowitz and Norwest Venture
Partners. With the additional cash, the company is looking to expand its
service to the physical world by tapping into Internet-connected devices
and the so-called Internet of Things. Future IFTTT software could be
used to program lights or air conditioners to turn off in a home at a
certain time of day, for example - indeed, some IFTTT users are already
using Yo-based recipes to do just that." [16]

The simplicity of the interface, like Scratch, uses blocks to communicate
'buildability' and is a much more high level language, if that, than other visual
programming languages. A sample of step one to programming an IFTTT recipe is
shown in Figure 12. A completed recipe, ready to be turned on/off, is shown in
Figure 11.

24

If Image of the day by NASA, then send me an
email

Figure 11: Sample recipe that sends an email whenever a NASA Astronomy Picture of the
Day is posted

3. Recast
Recast is a recent thesis project from the Viral Communications group at the MIT
Media Lab and inspiration for Me.TV. It is a platform for the average user to
become their own broadcaster, cultivating snippets of the latest and greatest in
trending news, by phrase, keyword, publication date, and source, to name a few
filters. Figure 13 shows a keyword filter about to be applied to a content block,
the representation of a command to fetch content.

Other specifications include the ability to set the length of the clip, see and
select related items, as shown in Figure 15, and add voiceovers using the default
microphone detected by the browser as shown in Figure 14. All of this happens
within the same editor and can be tested immediately. Recast is a high level
language of narrow scope but powerful enough to spin out a channel of the
newest content in just a few minutes with more control and access than can be
currently boasted with existing technologies for its purpose.

Within Figure 13, we also see that Recast has the ability to accept keywords,
either by direct textual input or through a voice command using voice-to-text
technology, simplifying the programming process further.

4.2 Navigation Design

1. Movie Map
The ability to discover content without venturing too far away from what is, in our
minds, established preferences has caused a number of different systems to arise
for cultivating, searching, featuring, and sampling unfamiliar media. A visually
significant system, however, is more rare with both browser limitations and the
unfamiliarity of spatially arranged titles as barriers. Movie-map [17] is an
in-browser exploration tool where one defines a search title and a graph of related
titles is generated and displayed. The graph arranges titles as clusters of

25

Choose Tdgger Chaflel

.;l Cfa -t.1

500px Amazo Androi Androi Androi An roi

P #0 @1 0
Androi Adroi Androi App.ne AppZa Autom,

Beemir Best bftly Blogge Boxsh Btt"

Buffer BuznFe Campfi Chain Craigst Dallym

Dash Date Deezer Del do Digg Diigo

DocS4a Dropbt eBay ecobee Email Enterta

Epicuri ESPN Etsy Evemo Eyefi Facebr

Facabc Feed Feedly ffffouru Ftbit Frerr

Flic Fhckr Follow(Foursq Garage GE

GE Genius Giphy GtHub Gmail Googl

Figure 12: The THIS specification step of the IFTTT recipe building process

relatedness. A user can then click on a title and be taken to another map where
the selected title becomes the center of the graph and other related titles are
generated around it. In this way, a user is genuinely exploring by taking nearest
paths and confining themselves less to establish genres. Figure 16 is a screen
capture of the force-directed graph generated by the title Pride and Prejudice.

2. Netflix

26

Figure 13: Recast video retrieval based on keywords

....... HAL. .&L.AMA" Io - -I
04L 00

Figure 14: Recast audio recorder allows
tested immediately

for voice-overs created while in the editor and

Figure 15: Image previewer allows users to see image search
images to include in their final product

results and select related

Netflix has been said to be "crushing the competition", forcing cable companies to
offer more on-demand content, accelerating the demise of the movie rental
business, and fundamentally changing the way media is consumed with new
habits like binge-watching [18]. The ability of the customer to dictate to Netflix

27

Figure 16: Movie-map.com, force-directed graph of search term "Pride and Prejudice"

what content is preferred is, in contrast, limited. Taste and preferences can be set
by rating different storyline, genres, cultures, or interests through a survey.
Alternatively, a newer feature using Facebook is available as a way to discover
new content. Friends can recommend content or view each others' current and
past Netflix consumption. Other external influences on featured content include
popularity metrics, recently added content, and genre-based content. Given these
direct-interaction options for finding content, Netflix has precise information on
each user's taste and behaviors in searching for content [19]. So precise that
there are, in fact, actually over 200 genres and more than 3000 genres by type of
movie, for example: 'Action and Adventure based on a book from the 1960s' [20].

The UI, then, needs to be explorable without feeling overwhelming. Largely,
there is default content tailored to the taste of the detected user on the front page
but Netflix's newest user interface change goes beyond that. Netflix removed its
infamous carousels for browsing content and implemented the long-favored 'god
mode' [21], previously only available through a separate service. Netflix's lead
product designer, Navin Prasad, says "On the new one we really want to display all
the information in one line, so it's all very app-like, like Gmail." Netflix's UI in
addition to being more apparent, "approximates the low-pressure ease of channel
surfing, something we've called for in the past." [22]

3. DiggTV
Fully into the 'lean-back' experience of traditional television and the frame-rate
heartbeat of the internet, Digg released DiggTV to get us back to the
popcorn-eating simplicity of watching video content. As a popular news

28

Figure 17: Netflix new UI image from USAToday [19]

aggregator and curator, Digg has the experience and power necessary to create
playlists of the most popular or newest videos from all across the web. DiggTV
precisely presents the best and newest and has simple controls to the content:
back, forward, pause, explore (genre list), or exit. The video is always full
screened until interactions cause the menu overlay and even transitions between
videos with a television static video.

29

Figure 18: Screen capture of DiggTV genre menu and video player menu on hover

30

5 Design and Implementation

5.1 Summary

The overall design goals for the system are:

1. To Empower The Average User to Program Their Own Media
The Me.TV system design is aimed at empowering the viewer to go beyond the
boxes of genres and time schedules and create rules that can provide for how a
person is at a given point in time. While we often prefer one genre over another,
many of us feel more dictated by our mood than our previous viewing patterns. To
not be at the mercy of an external programmer for a cultivated experience might
mean a lot to someone who cannot stand horror or horror-themed films but wants
to stay in on Halloween night.

Beyond such an occasional use case, we have probably all experienced a time
when we simply needed utterly stupid and slapstick comedy to freshen us up
before our nightly news watching. But after an hour of the doom-and-gloom of
news, we want to turn up the dial back up on joy and light-heartedness. Me.TV's
core design goal is to make these and other types of rules possible with minimal
user input. We avoid the playlister scenario where users pick and choose each
and every time while providing customized content lineups. A user should create a
Me.TV script once and be able to run it forever.

2. To Lean Closer to a Television-ish Experience
One of the major design concerns in feedback of older design iterations was
over-involvement of the viewing experience. The experience of television where
one turns on and flips forward or back has been under less review for change than
the problem of content recommendation although it remains an almost immovable
requirement. In fact, one of the few major experiments was the second screen. As
a packaged product, it has been largely dismissed altogether by the industry as a
failed experiment [23]. But it still exists in the wild, organically created when we
experience lulls in the content we watch or when we are itching to share a thought
on it.

The beauty of the organic second screen was that it was a welcome distraction
from the first screen, fully controlled by the user and not simply an opportunity for
more advertising. The manufactured second screen is the increase in involvement
with the programming, or content, when one would rather let it go for the most
part and just react to what we see or feel. Me.TV aims to provide the opportunity
for reactions without requiring any actual interaction.

31

The systems working together should result in a visual media experience that is
at once custom and continuous. The experience should not require constant
intervention, nor should it rely on a third party to provide the content lineup.
Instead, it should allow for both permanent and temporary inputs. These inputs
could be from the viewer, the viewer's friends, or from interruptions like breaking
news events.

In the design of Me.TV, the idea around inputs manifested itself in a custom
video player, using dials whose connected actions and title are set by the channel
creator. For instance, a channel can have an 'optimism' dial that when turned up
will respond with more light-hearted news to play next. When the optimism dial is
turned down, the channel might be programmed to respond with more news
about war and death. The intensity and motion of the dial's needle is detected by
the channel script and responds according to the user's programmed listeners.
Figure 30 illustrates a dial within the video player.

3. To Integrate A More Social Attitude Around Sharing Media Preferences
Like the ability to recommend content to Facebook friends in Netflix, Me.TV aims
to bridge the action of content viewing and sharing or recommending.
Recommendations from friends, or word-of-mouth, is an established and
researched marketing strategy. Research from 2010 by The Diffusion Group
details how 90% of social network users consumed media because a friend
shared it [24]. So it turns out that although we try to hyper-personalize media,
our intake in fact does come significantly from friends and it seems to be
something we want.

Instead of sharing individual content or viewing watched content lists of
friends, Me.TV aims to share future experiences by making channel scripts entirely
shareable, modifiable, and synchronous. In other words, channel scripts can be
made public, taken from and by anyone, experienced simultaneously, and used
either within another channel script or opened as copy of the original script to
view and modify in the editor. In a sense, this interaction design is more aligned
with the style of Youtube, where channels are playlists of videos that can be
subscribed to for new content, and easily shared via social media.

5.2 Language

The goal with Me.TV was to create a language that was simple to adopt, legible,
powerful, and scalable to support nearly any whim for a media experience. The
language should be expandable so that although users now work purely with

32

event-driven visual code, in the future they should be able to create more complex code
structure with controls like conditionals and loops. Working with an abstract concept
like visual media metadata, however, proved to be less intuitive when creating cohesive
icons and interactions. Therefore, Me.TV's visual programming language is a hybridized
or middle-of-the-spectrum visual programming language.

The language uses diagrammatic grammar to describe flow and connectivity between
code representations. Icons represent code structures and provide an access point to
form-based interaction for greater specification of the structure, allowing for granular
details to come into play in the programming process. This ability to scope up or down
with details around code elements means greater scalability for future development of
the language. While the fundamental rules remain consistent, the language maintains
readability and can expand functionality without becoming an overwhelming set of
iconography and diagrammatic grammar.

The built prototype of Me.TV contains two major structures that create complete
rules. These are media object nodes and event objects. Each structure is represented by
an icon and shape. Circles are used to denote items that serve as either data retrievers
or data containers and so are the shape of media objects. Rectangular elements denote
action and represent code structures that plan for events, making them the shape of
our event objects.

5.2.1 Media Object Nodes

Media object nodes are central to the visual programming language and are step one of
building a channel script. For any channel to contain content, the channel's script must
provide the rule for fetching content to fill its queue. A media object node is that basic
rule. It provides a series of parameters that make refinement of content fetching much
like an advanced filter search. Instead of pure search using text and regular
expressions, however, the scope of the visual language and iconographic style allows
for the use of largely non-textual icons that can communicate soft parameters such as
mood or emotion. This is illustrated in Figure 19, which shows a parameter selection
interface that uses animated GIFs to communicate a concept while attaching a name to
it.

The other parameters of the media object nodes are:

1. Keywords
Create a list of keywords, which can function as tags for inclusion or exclusion, as
a part of the search for contents

2. Genres & Mood

33

du ration

rnc

formnat add

GENRE & MOOD
SMLLlA BASiLZ ON LMO! I{)NAL QUAi'l

Figure 19: Using animated GIFs as icons in a selection interface for a media object pa-
rameter. This redundancy is aimed at reducing the possibility of miscommunication but
also flattening the learning curve by reducing the need for strenuous interpretation of
visual elements.

Add genres or moods to the search, which filters out content that does not fit the
selected genres/moods

3. Duration & Quantity
Add restrictions to the length of the content retrieved, the number of items
retrieved, or the amount of time to be filled by this media object's retrieved queue

4. Single Source
Add specific sources from which all content from this object node must be
retrieved

5. Format
Add a specification on the type of content to be retrieved, such as 'movie', 'tv
show', or 'music video'

34

DONE!

genre
F_

6. Distribution
This is a toggle that tells our script reader to either 'add evenly', 'add
front-loaded', or 'remove' the content node from the queue. Adding allows for
specification of distribution within the queue during the viewing session. Media
object nodes are defaulted to 'add evenly'.

Each of the media object parameters are represented as icons as illustrated in Figure
20. Each icon is set within a circle to remind the programmer of the nature of the icon.
Below this enclosed icon is text. While the icon is inert, meaning it has not been clicked
and therefore does not factor into the media object's retrieval of content, the text
remains a label of the icon. If the icon has been acted upon, two signals help the
programmer easily read what the media object has been specified to do. The first signal
is a simple change of color of the enclosing circle's outline from black to red. The
second signal is the changing of the text to reflect the parameter specifications. After

unttied

single keyword genre duration format add
source & & evenly

mood quantity

Figure 20: This is a media object freshly made without any specifications made yet.

each parameter is set, the visual code is interpreted and a request is made to the server
to produce the resulting queue, creating a 'hot code'. The resulting queue is presented
in the preview area as it would be presented if the channel script were executed as a
whole in that current state. The necessity of this 'hot code' feature means that the
visual code needs to be kept tracked of and updated after every interaction. To fully
read the visual elements and create executable instructions to send to the back end
would increase the time necessary to make updates to the previewer but is also more
difficult to debug.

Therefore, we take advantage of the local storage available in the web browser to
store data on the elements created and parameterized. Figure 21 shows the data
structure in local storage. When a media object is updated, its slot in the local storage
system is updated appropriately and a POST request is made to the server by passing
the local storage slot as data. A POST request is a type of HTTP request that allows us
to send data along with our HTTP request.

Similarly with events, we store their creation and specifications in local storage and
make HTTP requests to the server after each interaction.

35

..........

..

MEDIA OBJECT:

id

nare

created

lastModified

bbox

parameters

type

EVENT OBJECT:

id

name

created

lastModified

(bbc~J

input

output

eventType

[ypeJ

Figure 21: Local Storage Data Structure

5.2.2 Events

One of the most tightly packed functions within the language is the concept of events.
Events are occurrences that trigger a message to be sent or broadcast. These
messages often lead to further instructions, called event handlers. Like their name
implies, event handlers are instructions for handling the occurrence of a specific event.

Events are well established systems and allow user interfaces to be interactive by
employing event-driven programming, whereby a program's flow of execution is
entirely determined by events. For example, a program establishes a mouse click as an
event that then triggers a handler to create pink circles on the screen. In this program,
a keyboard press might create blue squares next to every pink circle. It is not
established that pink circles are drawn before blue squares but the events allow for this
to be a possible outcome through a series of user interactions. Other outcomes may
occur as well and be as valid.

36

Current examples of event-driven programming are everywhere online, most
especially evident in javascript applications. Recently, however, greater conceptual
examples of event-driven programming have made the ranks. The web service IFTTT
and it's peers are event-driven systems where not just the interface is event-driven. The
entire concept of IFTTT's service is creating event-driven programs that can be turned
on and off, custom-made by users or pre-made.

For Me.TV, we take a page from IFTTT and pack functionality into extra simplistic
interfaces so that any user can understand the event occurrence and set a handler.
Each event is a categorical event, focusing more on the type of event than the specific
API(s) it may employ. For example, a 'Breaking News' event might include listeners in
the background that poll several news organizations' APIs for news alert but output a
single event to the channel when any of the APIs returns a positive occurrence. The
event object data structure is described in the following list of event components.

1. Input
Input is indicated by a 'TRIGGER' label and square handle acting like a child of the
event object. The handle shape is meant to help the programmer determine what
the event arm's purpose is and to what it can be connected. Clicking the square
handle in the prototype's event set opens a dialogue box containing a form to
further specify the event terms within the selected event.

2. Output
Output is indicated by a circle handle and 'OUTPUT' label, which communicates
the need to connect a media object node to the handle. If the output to the queue
should be the content from the event, the circular handle can be dragged into the
event object's input handle and connected, signaled by a darkening of the
connected media object's outline. In that case, the ID saved for output will be that
of the event ID.

3. Event type
Event type is the event object itself. Like IFTTT, the programming is simplified by
simply offering the selection in full as icons. Upon opening the event menu, event
type is chosen based on the category of event being sought. For example, a
schedule-based event can be based on the actual time or a calendar event.
Because both of these events fall into a 'scheduling' category, they are only
specified as one or the other with more detailed terms in the input dialogue box.

The event objects created in this prototype are shown Figure 22. At the top-left, we
have created a user input event with an icon of a user with a lightning bolt. This event
creates a dial with minimum and maximum values specified in the TRIGGER dialogue
box. This dial is added to the user interface of the video player when the channel is

37

played. Upon moving the dial needle, the output of the event either retrieves more
content based on the connected media object to the output handle or removes items
from the queue that match the connected media object. A fully connected event object
with a set TRIGGER is shown in Figure 23.

Secondly we have the event object with the newspaper icon in the top-right corner.
This event object is triggered when a breaking news event occurs. Further specification
of the news event allows certain categorical news to be the focus rather than any news
alert. When the specified news event occurs, the connected output media object's
retrieved results are added to the channel's queue.

Thirdly, we have the schedule object with the clock icon in the bottom-left corner. The
scheduler event object allows a programmer to use a schedule event to decide when to
add or remove content to the queue. A schedule event is determined in the TRIGGER
dialogue box to either be an exact hour and minute of the day or when a type of event
rolls around on a connected Google calendar.

Lastly, the bottom-right corner shows the Google Fit icon. This event is based on a
connected Google Fit account and the step-count goals specified in the TRIGGER
dialogue box. Like the other event objects, reaching the terms of the specifications in
the TRIGGER, the output is the addition or removal of content from the connected
media object.

5.3 System Framework

5.3.1 Server

The server is what processes all requests from the front-end, serves the content as a
list of urls to be played in the video player, translates the visual programming into
executable javascript, and manages the users and their script sharing. All
communication between the front-end interface and the back-end code is done through
the Application Program Interface (API). All data is stored in the MongoDB database,
chosen for the ease of use and variability of data structures. A high level view of the
architecture for the video player is shown in Figure 24. Figure 25 shows the relevant
architecture when the user is engaged in the programming environment rather than the
video player. Within the architecture, the major API endpoints provide the access to
necessary back-end scripts and data. These API endpoints are described here:

1. Back-end Scripts
The back-end scripts encompass all the code that requests, processes, and
returns data through the use of events and sockets. These scripts are the

38

TRIER

TRIER

OU4UT

TRIER

UI- E

TRIGER

OuTa-

Figure 22: The square denotes that the object belongs to the 'event' class. Events are
selected based on the API they connect to and the input arm interfaces with the user as
a selection box upon clicking the handle. The selection box allows specification of the
exact event through use of the API. The circular handle of the output arm indicates it
should be connected to a content node.

catsBeingSilly

OuWUT single
source

cats hilarious
nonsensical

(t)
duration

&
quantity

format add
evenly

SILLYCATS DIAL
,

I

Figure 23: Fully connected event object with the resulting dial.

connection to the database and external APIs. The front-end makes all requests
for data or database changes by emitting these requests either through socket

39

..... - - - - -- , - __ - -, - - - - - _ _ - 11 _ - _ _ - . - - W - - .- . I

.

811YMts

AIGO
DAT4 BA SE

BAI(A EAD MESSA(;I.X(
SCRPTS

EXI ERXVI IA COl(ECUO V

Figure 24: The back-end consists of the Mongo datab
data from the database as well as external APIs. Icons
GNU License.

ALZ
(I .\ 1

ase and the scripts that process
courtesy of Icomoon [25] under

messages using Socket.io [26] or HTTP requests where the server then
distributes the necessary tasks to back-end scripts and returns the requested
information. The different endpoints of the API are explained below.

(a) New Channel Script
Creating a new script in the front-end triggers a request to the back-end to
create a slot in the database for the new script, saving certain details like the
date of creation and the user's id. This API endpoint returns the id of the
script so that further requests to update the database can be made
efficiently.

(b) Load Channel Script
When a script is saved and is opened to be edited, the request to the
back-end is to load a script based on the given script id and user id. The
details of the script are passed to the front-end for processing and
rendering. The processing and rendering essentially programmatically create
the visual elements with all the relevant events attached so that the old
elements are editable again. The previewer is populated with the appropriate

40

MONGO
II IBA SE

B t A1 Dl
ITSIA&FEM 01 FW -C LIEAT

BA CK- END PR E 1'7E i' TR

SCRIPTS

Figure 25: This overview shows the difference between the video player process and
the programming environment process. The programming environment relies on HTTP
requests between a single client's previewer in the scripting environment. Icons courtesy
of Icomoon [25] under GNU License.

elements like the dials and the queue preview. The queue is created by
sending a hot code request, as described next.

(c) Hot Code Request
When creating and editing a script, the programming environment's preview
area is populated with a queue of content. Whenever a new code structure is
completed, such as a parameter specification, a hot code request is
triggered, sending a POST request to the back-end with the data structure of
the media object. In return, a list of content metadata, that includes the ID of
the data structure that caused it into being, is used to create the preview
queue.

(d) Run Channel Script
While a hot code request gets real and real-time data, running a channel
script requires more of the back-end and so this becomes a different
process. Here, the script is essentially compiled by the back-end, sockets are
initiated, and the data is sent continuously to create a seamless experience.
The data structure sent to the video player is also slightly different in that it
must include the event object's data when the event object includes user
input. This defines a portion of the video player's user interface.

41

Furthermore, the queue of content itself can include more metadata than the
hot code request based on events. Rather than keeping track of individual
content's relationship to the media objects, keywords and other metadata
are directly included and events that may remove items of certain matching
keywords is run directly in the front-end.

The major components of the architecture as a whole are described here:

2. Database
Because metadata on media varies greatly between sources and our system
works purely in javascript, MongoDB was the chosen database since MongoDB is
scalable and stores documents in a JSON-like structure. Me.TV's database
structure is outlined in Figure 2.

Users Channels UserMediaHistory
holds data about users holds data about channels holds data on media that

and their scripts has been viewed and by
whom

id id id
name name name
date-joined creation-date creation-date
last-login-date last-access date last modified date
extra-information sourceauthor id userslist
profile current-author mediametadata
friendsid_ list script

Table 2: The core three database collections are detailed here by column. Within each,
the bolded field name indicates that the field contains a nested data structure

3. External APIs
In order for many of the events to work, such as the 'breaking news' event,
external APIs have to be employed. In particular, this iteration of Me.TV uses the
Youtube V3 API and New York Times API for fetching content. The reasoning
behind the choice of these two APIs as demonstrations of media is:

(a) Accessibility
The API is not overly restrictive with access and call limits

(b) Documentation
The API is well documented and widely used by a community to ensure ease
of debugging and availability of wrapper libraries

42

(c) Content The API provides less restrictive access to actual content
(d) Metadata The API provides some minimal amount of metadata with the

content

(e) Variable Use The API allows for demonstration of non-traditional causes of
change in media programming

As current APIs for any broadcast television is not available at the time of this
prototype, media selection based on actual broadcast television was eliminated from
the prototype.

5.3.2 Programming Environment

The programming environment incorporates a toolbar, a preview section, and the editor
where the programming occurs.

1. The Toolbar
Within programming environments, a helpful feature, as demonstrated by
successful visual programming systems like Scratch and Grasshopper3D [7], is a
defined set of tools by which one can refer to frequently and immediately [27] but
also always be able to see in totality as a helpful way to know the system. The
toolbar consists of an icon for the event object menu but in future will include
other major categories of programming structures.

The toolbar presents each option as a drop-down menu of the available
constructs. Selection of the event construct closes the menu and adds the
graphical construct to the editor for dragging, dropping, and interaction. This
drop-down is shown in Figure 26.

2. The Editor
The editor is the defined area in which the programmer creates code. Me.TV's
editor is a blank space that when clicked produces a content object node as
shown in Figure 20.

In the design of this interaction, a frequently voiced problem was the inability
for novices in such an environment to know where to begin without a lot of
guidance. Given a toolbar, many asked for a default action to ease them into the
process. Therefore, the first interaction defaults to the creation of the most
important aspect of the programming language, the one action that is required for

43

II

Figure 26: The event drop-down menu

catsBeingSilly

OUfUT single
source

cats hilarious
nonsensical

(t)
duration

&
quantity

format add
evenly

SILLYCATS DIAL

Figure 27: A new event is created by using a simple drop-down menu with connectors
ready to be dragged to their destination

44

.

Figure 28: The Me.TV programming environment, the editor.

any channel to be created: a media object node. Interaction with the media object
produces immediate results in the preview area which further aid in
understanding the programming being created.

3. The Preview
The preview area provides immediate feedback to the programmer on the type of

results that can be expected from their most recently code. When a media object

node's parameter is specified, the preview area updates with the type of content

being fetched by the content object node given the parameters specified. The

preview is a peek into the channel experience and includes the ability to interact

with the video player's user inputs as they are created and defined in addition to

seeing the type of content queued by the script.

The biggest caveat with the preview feature, however, is that unlike other hot

code features in programming environments where dynamic media is not involved,

this one boasts less accuracy because the content is fetched in real time at any

time the script is executed, fundamentally changing the type of results that are

retrieved from the server.

5.3.3 Video Player

The video player incorporates three main elements to create the custom experience of

Me.TV.

1. Video Viewing Area
This is essentially a basic HTML5 video player, modified to work with Me.TV

channel scripts, using default controls like play, pause, volume, skip, and back.

When content is not of a video format that can be played back by the HTML5 video

player, an iframe is created for the user to access the content. Video loading in a

web video player introduces lag into the viewing experience and so is as seamless

45

..

Learning Media

Figure 29: The Me.TV video player interface with queue showing and controls on the right.

as television, however, videos can be preloaded to a certain extent to minimize the
lag time between fetching video and playing it.

2. Queue
The queue is an area that contains a list of the content generated by the channel
script, display as images with text overlay. The queue appears whenever there is
interaction with the entire video player environment. These interaction cues are
events from the mouse and keyboard. The queue closes when the queue button is
toggled.

When a channel is chosen for immediate playing by the user, the channel script
is executed to obtain a JSON list of content metadata, called the media queue,
from the server. The queue of content is a list of content metadata where the URL
is rendered either within the appropriate video player or as an iframe, depending
on the video source. A rough sample outline of the media queue structure is
shown in table 3.

The channel scripts listen for events either from the server or the user interface
(the video player). Depending on the programming of the channel, the channel
script will change the queue in different ways. As certain events may by filtering
the queue in real time, fields like 'keywords' and 'categories' may be included in
the metadata of each item within the media queue. Therefore, not all items and
not all queues have the exact information but a basic few fields of metadata are
required.

These required fields are bolded in table 3. At present, the only media format
used here is video, but can be extended in future to include other types of media
for a fluid, boundary-free experience more in line with how we actually access
information within our browsers.

46

Each media queue's item metadata is stored in the user's history upon viewing
and the data field
history.

'lastaccessdate' is updated to the current time of storage in

Field Description
id Unique identifier that is used in saving the content to his-

tory.
name Title given by data source.
description Description given by data source.
duration Duration is the time length of content in seconds and may

or may not be available, but is usually given by data source.
source Source field is given by data source and is the URL at which

the content can be fetched.
format Format is, currently, either a web video format like MP4 or

set to 'page' to indicate necessity of iframe.
publish date Publication date given by data source.
lastaccessdate Last date content was viewed by user. Field is updated

when content gets loaded into player.
keywords Keywords field is available when script dictates an event

based on the value of this field.
interactiondata Interaction Data is an optional field that allows behavioral

data on user to be associated with content.

Table 3: Rough outline of media queue, showing the essential fields in bold

3. User Input Area
The user input area is a small area that contains the dials specified by the channel
script for user interaction. Any change in the dial's needle setting creates an
update to the queue that is visible while the user input area is also visible. The
dials' titles and end values are entirely defined by the user within the channel
script. Dials are direct manipulation images. See Figure 30 for the prototyped
player's user input area.

5.3.4 Channel Navigator

The channel navigator is a dashboard where the programming environment is
accessible as well as the video player. Most importantly, however, the channel navigator
presents a data-driven navigation system for channel scripts between users. By using a
data visualization that, like the movie-map [17], allows for exploration through links as
data objects, we simplify exploration from an intentional process with many decisions
to a more serendipitous one that acts more like a rabbit hole.

47

Learning Media

Figure 30: Video player with the user interface activated

By dragging and dropping channel nodes into one's own channels area, the channel
script becomes a reference to the author's channel. In order to copy the channel script
and save it in the state it's currently in without no updating from the original author, the
channel node is selected after the drag and drop. The selection causes a small menu to
appear with the option to either edit the script, create a full copy, play now, or delete.
This is illustrated in Figure 31.

1. Choosing to edit the script opens the channel script in the editor and is saved in
that state as well as all changes as a new channel script in place of the old
dragged and dropped channel node.

2. Choosing to create a full copy simply copies over the channel script associated
with the node as it currently is into one's channel node set. The copy is therefore
detached from the origin author and will not update as the original author
updates the script.

3. Choosing to play now will run the channel script, load the video player
immediately, and begin playing videos within the generated queue.

4. Choosing to delete simply removes the channel node from one's set.

5.3.5 Socket Messaging Structure

In order to make speedy and frequent requests to the server and serve out data as it
comes in according to the events structure, Me.TV relies on a socket communication
system when channel scripts are executed. As a user logs into a system, the front-end
connects to the server through the socket when a script is played, and retrieves the
necessary data to produce the user's video player or dashboard depending on which
page is being requested. If the script includes event listeners, the client will have

48

YOUR WORLD
UNIVERSE

Figure 31: Channel navigation system based on bubble visualization

listeners ready waiting for updates to the queue that are pushed from the server based
on the results of the API polling.

Whenever a script is created, the data structure detailing the script is saved in the
browser's local storage until the script is either saved to the database or deleted from
the database. Should a user open a pre-existing script in the editor, a request for the
script is made to the server. The front-end then uses the returned data structure as
instructions for essentially rebuilding the script into the Me.TV visual programming
language.

5.3.6 Users and Network

The last aspect of Me.TV is the concept of the user and the user's network. Each user is
stored in the database with a profile field to detail more information about the user as
the interaction grows. For example, a friends list to document the friend network of the
user and an 'extra information' field to document any behavioral data and preferences
not included within the scope of this prototype. Such behavioral and preferential data
would include items such as 'preference for horror' or 'horror followed by news'. These
data points, at their simplest, would require only a query on the channel scripts of the
user and a logging of behavioral data during channel viewing in the video player.
Similar to Amazon's collaborative filtering technique [28], Me.TV could cluster
individuals based on a selected preference, behavior, or combination of both.

49

YOUR WORLD UNIVERSE

6 Evaluation

In evaluating the Me.TV prototype, a small-scale, anonymous survey was conducted to
understand the legibility of the visual language, the level of detail required in the
tutorial to get an understanding of the visual language elements, and the satisfaction
with the type of media fetched in a given example.

The survey consisted of an introduction to Me.TV, a tutorial on the different elements
of the Me.TV language, and then followed with eight questions. The tutorial only
described Me.TV as a visual language for crafting unique media experiences. It did not
divulge information on other features of Me.TV, such as how the channels are populated
with media at each execution or that scripts are shareable. This maintains strict focus
on the language itself.

The first two questions asked respondents to write their interpretation of a given
Me.TV script and then rate the ambiguity of each of the main components. Respondents
understood the media objects very well but were slightly confused by what to expect
from the event given. The event, in the survey, was a user input event. The rating for
the event object in terms of ambiguity on its function and output was a strong 'Medium
Ambiguity', indicating some unclear components but overall not entirely ungraspable.
This result indicates that event objects and dials will require more well designed
tutorials or coding preview features that explain through experience.

The next question looks to determine the overall opinion of the visual mix - iconic and
diagrammatic. The icons were rated to be 'Very Helpful' in aiding respondents'
understanding of the code, but the use of connectors to create a diagram of data flow
left a quarter of the correspondents less impressed. This indicates that either stronger
structural rules should be in play to help communicate the data flow or they should be
done away with in favor of icons and spatial arrangements as with the media objects.

The next question asked for a rating of the media object's fetched content compared
to known media providers' systems. A little under three quarters of the respondents
liked the results of the media object more than both traditional television and current
on-demand systems like Netflix and Hulu. However, when it was compared to the act of
creating a playlist on youtube, it was rated to have a similar level of satisfaction. This
indicates that the level of engagement required in creating the Me.TV script felt equal to
that of creating a playlist on Youtube. Since respondents had no idea that this channel
script fetched new content at each execution, this may have felt like as much work as
picking and choosing content to queue up on Youtube.

50

Then, to understand the respondents a little more, we asked about their experience
with programming, visual languages, and the different media systems (traditional
television and on-demand). There was a nearly even split of expert programmers,
intermediate programmers, and novice/non programmers. This meant our results'
trends are not strongly influenced by the background the respondent.

In determining the amount of experience respondents had with visual languages,
including the ubiquitous flowchart, all had at least some experience. But once again,
the respondents were nearly evenly split amongst the expert, intermediate, and novice
categories.

The last questions tried to determine familiarity and habits around media from
traditional television and on-demand. On-demand was a much more familiar concept to
respondents with most having used at least one provider extensively. Traditional
television was a familiar concept to all but use was infrequent for most respondents.
This suggests that this sampling of the population was much more open to working
towards a media experience and making decisions to have one or the other.

These survey results inform us that future work is necessary in improving the event
object representation and interaction to limit the misunderstandings about their
functionality and output. A redesign of the communication of data flow may also be
necessary.

51

7 Future Work

Beyond the indications of work from the survey results, future work with Me.TV includes
a more expansive channel navigation system, control constructs for the language, more
event objects, and an improved video player.

1. Expanding the channel navigation system Currently, the channel navigation
system sets up a bubble visualization of channels. To properly explore channels
based on attributes of the code, a more complex visualization is required or more
options for interactivity with the bubble chart is required. For instance, a user
may want to copy over all channels related to their favorite
'short-horror-long-comedies' channel. Currently, there also is not a hookup
within the navigation system to find your friends explicitly and always have their
channels available nearby to explore.

2. Adding control constructs within the language During the design and
prototyping of Me.TV, the question of function in the scope of media retrieval for
programming constructs like for-loops and conditionals were difficult to answer.
Any future work should explore the possibility of additional programming
constructs to push the boundaries of how we understand a media experience and
how we might consider crafting one. At present, an event-based system satisfies
the obvious desires.

3. Increase the number of event objects In addition to increasing the number of
event objects, Me.TV must also be able to accept event objects developed by
users. The organization and process for such a system will need to be designed
with scale in mind. Questions of how many events will be overwhelming and how
users can add to existing events to maintain the sense of categorical functionality
of an event object have yet to be answered.

4. Improved video player The ability to start off at a full-screen, explore and edit
without obscuring the current picture, and play items other than video are all
improvements in the future of Me.TV. The playback experience could be enhanced
even further by offering non-screen controls, taking advantage of keyboards and
connected smartphones and smartwatches.

52

8 Survey Results

53

SurveyMonkey

Q1 Write your understanding of what the
code is requesting here:

Answered: 9 Skipped: 0

Q2 How difficult was it to understand the
script's components?

Answered: 9 Skipped: 0

Media Objects

Event Objects

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Easy (No confusion) * Medium (Some ambiguity) * Hard (Unclear what item does)

Easy (No confusion)

Media Objects

Event Objects

Medium (Some ambiguity)

66.67%
6

33.33%
3'

Hard (Unclear what item does) Total

33.33% 0.00%
3 0 9

55.56% 19
5 19

Q3 How helpful were the icons/diagram
elements?

Answered: 9 Skipped: 0

54

1/5

Me.TV

SurveyMonkey

0% 10%

Very Helpful

20% 30% 40% 50% 60% 70%

* Only Slightly Helpful * Unhelpful/Hindering

80% 90% 100%

Very Only Slightly
Helpful Helpful

How helpful were the icons in aiding your understanding of the code? 100.00% 0.00%
9 0

How helpful were the connecting lines between the event object and media object in aiding 77.78% 22.22%
your understanding of the code? 7 2

Overall, how would you rate the visual elements in terms of helpfulness in understanding the 66.67% .33.33%

code? 6 3

Q4 Rate the resulting channel queue
as someone with interest in cats, heavy

metal, and non-terror news:
Answered: 8 Skipped: I

Unhelpful/Hindering

0.00%
0

0.00%
0

0.00%
0

55

2/5

Me.TV

How helpful
were the ico...

How helpful
were the...

Overall, how
would you ra...

Total

9

9

9

I M--

SurveyMonkey

0% 10% 20% 30% 40% 50% 60% 70%

More Satisfied

80% 90% 100%

* Similarly Satisfied * Less Satisfied

Compared to watching TV, this que

Compared to creating playlists on Y

Compared to choosing these types
queue would make me:

More Satisfied

ue would make me: 75.00%
6

outube, this queue would make me: 37.50%
3

of items from on-demand providers like Netflix and Hulu, this 62.50%

Q5 How familiar with programming (in any
computer programming language) are you?

Answered: 8 Skipped: 1

Similarly Lss Total
Satisfied Satisfied

12.50% 12.50%
1 1 8

62.50% 0.00%
5 0 8

12.50% 25.00%
1 21 8

56

3/5

Me.TV

Compared to
watching TV,...

Compared to
creating...

Compared to
choosing the...

SurveyMonkey

(no label)

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2

Some Experience But Not Expert

25

Very Novice/ No Experience

.00% 37.50%
2 3

Total

8J

Weighted Average

2.00

Q6 How familiar are you with diagrams like
flowcharts and even modeling languages

like UML?
Answered: 8 Skipped: 1

(no label)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Very Familiar - Have
Created Them Before

Familiar - I Have Intera
With Them Before

37.50%
3

cted Not Very Familiar - I
Rarely Use Them

25.00% 37.1
2

50%

Unfamiliar - I Have Never Total Weighted
Used Them Average

0.00%
0 8 2.00

Q7 How familiar are you with on-demand
media systems like HBO, Nefflix, Hulu, and

Youtube?
Answered:

7 Skipped: 1

4/5

Very Familary

(no label) 37.50%
3

(no
label)

Me.TV

SurveyMonkey

(no label)

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2

Very Familiar - I Have Used More Familiar - I Have Used Not Very Familiar -
Than One System Before One System Before Have On-Demand Systems
Extensively Extensively Only Briefly

(no 50.00% 50.00% 0.00
label) 4 4

Unfamiliar - I Hav
Used an On-Dem
System

0

e Never Total Weighted
and Average

0.00%
0 8 1.50

Q8 How familiar are you with traditional
television?

Answered: 8 Skipped: I

(no label)

0 0.2 0.4 0.6 0.8

Very Familiar -
I Watch
Television
Frequently

37.50%
3

Familiar - I Have
Watched Televisl
Before But Not
Frequently

on

50.00%
4

Not Very Familiar - I Do Not
Watch Television Frequently or
Have Not Recently

12.50%
1

1.2 1.4 1.6 1.8 2

Unfamiliar - I Do Not Watch
Television and Do Not Remember

I What The Experience I. Like

0.00%
0

Total Weighted
Average

8 1.75

58

5/5

(no
label)

Me.TV

9 Bibliography

References

[1] T. Onion. Netflix introduces new 'browse endlessly' plan. [Online]. Available:
https://www.youtube.com/watch?v=3_Bm2WUYBxU

[2] N. C. Shu, Visual programming. New York: Van Nostrand Reinhold, c1988., 1988.

[3] (2007, April) Flowchart example. [Online]. Available:
https://en.wikipedia.org/wiki/File:Tax.PNG

[4] A. Kay. Th early history of smalltalk. [Online]. Available:
http://www.smaltalk.org/smalltalk/TheEarlyHistoryOfSmalltalkIII.htm

[5] R. Jacob, "A state transition diagram language for visual programming,"
Computer, vol. 18, no. 8, pp. 51-59, 1985.

[6] [Online]. Available: http://www.ni.com/labview/

[7] [Online]. Available: http://www.grasshopper3d.com/

[8] [Online]. Available: http://nodered.org/

[9] K. Lodding, "Iconic interfacing." IEEE Computer Graphics & Applications, vol. 3,
no. 2, p. 11, 1983.

[10] R Langely, "Machine learning for adapative user interfaces," in KI-97 Advances in
Artificial Intelligence, 1997, pp. 53-62.

[11] D. Chamberlain, "Television interfaces," Journal of Popular Film and Television,
2010.

[12] d.-r. Trindade, Daniell and a.-r. Raposo, Alberto1, "Improving 3d navigation
techniques in multiscale environments: a cubemap-based approach." Multimedia
Tools & Applications, vol. 73, no. 2, pp. 939 - 959, 2014.

[13] K. H. Y. H. N. S. F. Hirabayashi, "Media-based navigation for hypermedia systems,"
in Hypertext '93 Proceedings, 1993.

[14] M. RESNICK, J. MALONEY, A. MONROY-HERNANDEZ, N. RUSK, E. EASTMOND,
K. BRENNAN, A. MILLNER, E. ROSENBAUM, J. SILVER, B. SILVERMAN, and Y. KAFAI,
"Scratch: Programming for all." Communications of the ACM, vol. 52, no. 11, pp.
60 - 67, 2009.

[15] [Online]. Available: https://facebook.com

59

[16] V. Luckerson, "Ifttt has big plans for the internet of things." Time.com, p. 1, 2014.
[Online]. Available:
http://Iibproxy.mit.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth
live

[17] Movie-map. [Online]. Available:
http://www.movie-map.com/national+lampoon-27s+van+wilder.html

[18] How netflix is changing the tv industry. [Online]. Available:
http://www.investopedia.com/articles/investing/060815/how-netflix-changing-
tv-industry.asp

[19] M. Snider. Cutting the cord: A new user interface coming to netflix on the web.
[Online]. Available: http://www.usatoday.com/story/tech/2015/06/14/cutting-
the-cord-new-netflix-interface/28024595/

[20] Complete list of netflix genres. [Online]. Available:
http://www.bestmoviesonnetflix.com/netflix-hacks/complete-list-of-netflix-
genres/

[21] K. Bell. (2015, March) Netflix 'god mode' gets rid of the site's terrible horizontal
scrolling. [Online]. Available:
http://mashable.com/2015/03/18/netflix-god-mode/

[22] M. Rhodes. (2015, May) Netflix's redesign will finally ditch the slow carousels.
[Online]. Available: http://www.wired.com/2015/05/netflixs-redesign-will-finally-
ditch-slow-carousels/

[23] J. Thibeault. (2014, July). [Online]. Available:
http://blog.limelight.com/2014/07/using-second-screen-to-build-deep-and-
meaningful-relationships/

[24] W. Stockard. (2010, October). [Online]. Available:
http://www.reuters.com/article/2010/10/20/idUS223149+20-Oct-
201 O+MW20101020

[25] Icomoon app. [Online]. Available: https://icomoon.io

[26] Socket.io. [Online]. Available: http://socket.io/

[27] Toolbars. [Online]. Available: https://msdn.microsoft.com/en-
us/li brary/windows/desktop/Dn742395(v=VS.85).aspx

[28] G. Linden, B. Smith, and J. York, "Amazon.com recommendation - item-to-item
collaborative filtering." IEEE INTERNET COMPUTING, vol. 7, no. 1, pp. 76 - 80, n.d.

60

