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Abstract 
Doctor of Philosophy

The breadcrumbs left behind by our technologies have the power to fundamentally
transform the health and development of societies. Metadata about our whereabouts,
social lives, preferences, and finances can be used for good but can also be abused.
In this thesis, I show that the richness of today's datasets have rendered traditional
data protections strategies outdated, requiring us to deeply rethink our approach.

First, I show that the concept of anonymization, central to legal and technical data
protection frameworks, does not scale. I introduce the concept of unicity to study
the risks of re-identification of large-scale metadata datasets given p points. I then
use unicity to show that four spatio-temporal points are enough to uniquely identify
95% of people in a mobile phone dataset and 90% of people in a credit card dataset.
In both cases, I also show that traditional de-identification strategies such as data
generalization are not sufficient to approach anonymity in modern high-dimensional
datasets.

Second, I argue that the second pillar of data protection, risk assessment, is simi-
larly crumbling as data gets richer. I show, for instance, how standard mobile phone
data-information on how and when somebody calls or texts-can be used to predict
personality traits up to 1.7 times better than random. The risk of inference in big
data will render comprehensive risks assessments increasingly difficult and, moving
forward, potentially irrelevant as they will require evaluating what can be inferred
now, and in the future, from rich data.

However, this data has a great potential for good especially in developing coun-
tries. While it is highly unlikely that we will ever find a magic bullet or even a one-
size-fits-all approach to data protection, there are ways that exist to use metadata
in privacy-conscientious ways. I finish this thesis by discussing technical solutions
(incl. privacy-through-security ones) which, when combined with legal and regula-
tory frameworks, provide a reasonable balance between the imperative of using this
data and the legitimate concerns of the individual and society.
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Introduction

Metadata have the power to fundamentally transform the health and development of

societies. The breadcrumbs left behind by the technologies of our daily lives dramat-

ically increase our capacity to measure and understand the behavior of individuals

and societies. The recent availability of large-scale behavioral datasets has been com-

pared by researchers to the invention of the microscope [206] and has given rise to a

new field, computational social science [129]. Metadata have great potential beyond

research. For commercial purposes, but also as a major new source of information in

developing countries [132]. For instance, metadata datasets have already been used

to generate accurate population censuses [89], to infer linguistic and ethnic bound-

aries [57], to compare lifestyles in rural and urban areas [93], and to help improve

responses to natural disasters [51].

The amount of metadata collected and their scope will only increase. More than

six billion mobile phones in the world are already generating metadata, including loca-

tional information, every time a phone call is made or a text is sent. Vehicle tracking

GPSs cost less than $40 and E-ZPass records more than 2.6 billion vehicles crossings

bridges, tunnels, and highways every year [92]. In the United States, one hundred

and twenty billion non-cash payments are been processed and recorded annually [28].

In Kenya, 31% of the GDP is accounted for by transactions made on Safaricom's M-

Pesa [142]. Worldwide, 39% of the population is using the internet [112], Americans

for more than 25 hours a week [158]. Moving forward, an ever increasing fraction of

our daily activities will be recorded in metadata by new sensors such as wearables or

the Internet of Things.

These metadata capture the most intimate details of our lives: rich information
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about our whereabouts, social life, preferences, and finances. Such sensitive and

personal information can be be used for good but can also be abused [33, 145]. Privacy

has been foundational to the development of our societies [122]. As new data collection

and analysis techniques are developed and deployed, it is essential to ensure that our

legal and technical approaches to data protection keep up with technology. There

are obvious benefits to the use of metadata datasets, but this first requires a solid

quantitative understanding of their privacy. Such understanding will enable us to

truly find the right balance between the privacy challenges of metadata and their

great potential for good. Only then, will we be able to use this data in privacy-

conscientious ways and in accordance with our choice of society.

In the first chapter of this thesis, I will show what I call the limits of anonymiza-

tion of modern high-dimensional datasets. I will introduce unicity and, using mobile

phones and credit cards metadata, I will show how individuals can easily be re-

identified in simply anonymized datasets and how traditional de-identification strate-

gies, such as data generalization, are not enough to provide anonymity.

In the second chapter of this thesis, I will discuss what I call the risk of inference

of rich datasets and argue that it will render comprehensive risks assessments increas-

ingly difficult. Here, I will show, for instance, how standard mobile phone metadata

can be combined with machine learning algorithms to predict personality traits up to

1.7 times better than random.

Finally, in the third chapter of this thesis, I will argue that the limits of anonymiza-

tion and the risk of inference require us to rethink our approach to data protection.

I will then discuss technical solutions for the privacy-conscientious use of metadata

with a focus on privacy-through-security frameworks.
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Chapter 1

The Limits of Anonymization
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The notion of anonymity has long been central to finding the balance between

the utility of the data and its privacy: the so-called privacy-utility trade-off. While

anonymity, from the Greek words an and onoma, can be translated literally to "with-

out name", its current understanding is that the data cannot be re-identified. The

risk of privacy loss or of the data being abused is strongly reduced if the data cannot

be linked back to an individual.

While anonymity had historically been achieved through the removal of names

and obvious identifiers, it became clear at the beginning of the century that the mere

absence of direct identifiers (pseudonymous data) might not be enough to prevent

individuals from being singled out in the data and re-identified. For instance, Latanya

Sweeney at Carnegie Mellon University showed that 87% of the U.S. population is

uniquely identified by their date of birth, gender, and 5-digit zip code [192]. This work

and others gave rise to the notion of quasi-identifiers. Quasi-identifiers are pieces of

information which, although they do not directly identify an individual, could be

collected and combined by an attacker to re-identify an individual in a dataset.

Since then, the concept of quasi-identifiers has been central to legal and technical

privacy work. From a technical perspective, k-anonymity has been developed to

ensure that no combination of quasi-identifiers could be associated with less than k

individuals. k-anonymity is achieved through generalization of records-for example,

by releasing the year of birth instead of the full date-and through suppression of either

columns or records. k-anonymity has been shown to be NP-hard [149], but good

approximations can be found [49]. Some of the potential limitations of k-anonymity

have, furthermore, been addressed by subsequent metrics. For instance, i-diversity

aims at maintaining the diversity of sensitive fields [141], while t-closeness takes into

account the distribution of sensitive attributes in each class [134]. From a legal

perspective, the concept of Personally Identifiable Information (PII) is similar to

quasi-identifiers, and is at the basis of most privacy regulation.

Results from Sections 1.1 and 1.2, however, put into question the achievability of

meaningful anonymity and provable de-identification of large-scale metadata datasets.

Taken together, they challenge our reliance on anonymization-based solutions as one
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of the primary approaches to data protection.

1.1 Mobile Phone Datal

Derived from the Latin Privatus, meaning "withdraw from public life," the notion of

privacy has been foundational to the development of our diverse societies, forming

the basis for individuals' rights such as free speech and religious freedom [122]. De-

spite its importance, privacy has mainly relied on informal protection mechanisms.

For instance, tracking individuals' movements has been historically difficult, making

them de-facto private. For centuries, information technologies have challenged these

informal protection mechanisms. In 1086, William I of England commissioned the

creation of the Doomsday book, a written record of major property holdings in Eng-

land containing individual information collected for tax and draft purposes [69]. In

the late 19th century, de-facto privacy was similarly threatened by photographs and

yellow journalism. This resulted in one of the first publications advocating privacy in

the U.S. in which Samuel Warren and Louis Brandeis argued that privacy law must

evolve in response to technological changes [205].

Modern information technologies such as the Internet and mobile phones, however,

magnify the uniqueness of individuals, further enhancing the traditional challenges

to privacy. Mobility data is among the most sensitive data currently being collected.

Mobility data contains the approximate whereabouts of individuals and can be used to

reconstruct individuals' movements across space and time. Individual mobility traces

T [Fig. 1-1A-B] have been used in the past for research purposes [117, 44, 70, 95, 94,

93, 118, 156, 160, 196, 172, 43, 148, 108, 185] and to provide personalized services to

users [12]. A list of potentially sensitive professional and personal information that

could be inferred about an individual knowing only his mobility trace was published

recently by the Electronic Frontier Foundation [59]. These include the movements of

a competitor sales force, attendance of a particular church or an individual's presence

'Published as de Montjoye, Y.-A., Hidalgo, C.A., Verleysen, M. and Blondel, V.D. Unique in
the Crowd: The privacy bounds of human mobility. Nature S.Rep. 3, 1376; DOI:10.1038/srepOl376
(2013).
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ABC

40) Antenna

Phone

Figure 1-1: (A) Trace of an anonymized mobile phone user during a day. The dots

represent the times and locations where the user made or received a call. Every time

the user has such an interaction, the closest antenna that routes the call is recorded.

(B) The same user's trace as recorded in a mobility database. The Voronoi lattice,
represented by the grey lines, are an approximation of the antennas reception areas,
the most precise location information available to us. The user's interaction times are

here recorded with a precision of one hour. (C) The same individual's trace when we

lower the resolution of our dataset through spatial and temporal aggregation. An-

tennas are aggregated in clusters of size two and their associated regions are merged.

The user's interaction are recorded with a precision of two hours. Such spatial and

temporal aggregation render the 8:32am and 9:15am interactions indistinguishable.

in a motel or at an abortion clinic.

While in the past, mobility traces were only available to mobile phone carriers,

the advent of smartphones and other means of data collection has made these broadly

available. For example, Apple recently updated its privacy policy to allow sharing

the spatio-temporal location of their users with "partners and licensees" [2]. 65.5B

geo-tagged payments are made per year in the US [174] while Skyhook wireless is

resolving 400M user's WiFi location every day [26]. Furthermore, it is estimated that

a third of the 25B copies of applications available on Apple's App Store access a user's

geographic location [1, 3], and that the geo-location of -50% of all iOS and Android

traffic is available to ad networks [19]. All these are fuelling the ubiquity of simply

anonymized mobility datasets and are giving room to privacy concerns.

A simply anonymized dataset does not contain name, home address, phone number

or other obvious identifier. Yet, if individual's patterns are unique enough, outside

information can be used to link the data back to an individual. For instance, in one

study, a medical database was successfully combined with a voters list to extract the

health record of the governor of Massachusetts [194]. In another, mobile phone data

20



have been re-identified using users' top locations [215]. Finally, part of the Netflix

challenge dataset was re-identified using outside information from The Internet Movie

Database [155].

All together, the ubiquity of mobility datasets, the uniqueness of human traces,

and the information that can be inferred from them highlight the importance of

understanding the privacy bounds of human mobility. We show that the uniqueness of

human mobility traces is high and that mobility datasets are likely to be re-identifiable

using information only on a few outside locations. Finally, we show that one formula

determines the uniqueness of mobility traces providing mathematical bounds to the

privacy of mobility data. The uniqueness of traces is found to decrease according to a

power function with an exponent that scales linearly with the number of known spatio-

temporal points. This implies that even coarse datasets provide little anonymity.

1.1.1 Uniqueness of Human Mobility

In 1930, Edmond Locard showed that 12 points are needed to uniquely identify a fin-

gerprint [136]. Our unicity test estimates the number of points p needed to uniquely

identify the mobility trace of an individual. The fewer points needed, the more unique

the traces are and the easier they would be to re-identify using outside information.

For re-identification purposes, outside observations could come from any publicly

available information, such as an individual's home address, workplace address, or

geo-localized tweets or pictures. To the best of our knowledge, this is the first quan-

tification of the uniqueness of human mobility traces with random points in a sparse,

simply anonymized mobility dataset of the scale of a small country.

Given I,, a set of spatio-temporal points, and D, a simply anonymized mobility

dataset, we evaluate S, the uniqueness of traces, by extracting from D the subset

of trajectories S(I,) that match the p points composing I, [See Materials]. A trace

is unique if JS(I,)J = 1, containing only one trace. For example, in Fig. 1-2A,

we evaluate the uniqueness of traces given Ip=2. The two spatio-temporal points

contained in Ip2 are zone I from 9am to 10am and zone II from 12pm to 1pm. The

red and the green traces both satisfy I=2, making them not unique. However, we
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A 6PM-7pB C

7am-8am

0.6 - - I
12pm-1pm 0.4 - - --- - + + ++

9am-10arr-
8am-a 0. 2 - -7-

CI

3pm-4p Dmin (p)
T 0.0

II\2 3 4 5
Number of spatio-temporal points

Figure 1-2: (A) I=2 means that the information available to the attacker consist of

two 7am-8am spatio-temporal points (I and II). In this case, the target was in zone I

between 9am to 10am and in zone II between 12pm to 1pm. In this example, the

traces of two anonymized users (red and green) are compatible with the constraints

defined by Ip=2. The subset S(Ip= 2) contains more than one trace and is therefore

not unique. However, the green trace would be uniquely characterized if a third

point, zone III between 3pm and 4pm, is added (I=3). (B) The uniqueness of traces

with respect to the number p of given spatio-temporal points (I,). The green bars

represent the fraction of unique traces, i.e. IS(Ip)I = 1. The blue bars represent the

fraction of IS(I)I < 2. Therefore knowing as few as four spatio-temporal points taken

at random (Ip=4) is enough to uniquely characterize 95% of the traces amongst 1.5M

users. (C) Box-plot of the minimum number of spatio-temporal points needed to

uniquely characterize every trace on the non-aggregated database. At most eleven

points are enough to uniquely characterize all considered traces.
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can also evaluate the uniqueness of traces knowing Ip=3, adding as a third point zone

III between 3pm and 4pm. In this case IS(Ip= 3)I = 1, uniquely characterize the green

trace. A lower bound on the risk of deductive disclosure of a user's identity is given by

the uniqueness of his mobility trace, the likelihood of this brute force characterization

to succeed.

Our dataset contains 15 months of mobility data for 1.5M people, a significant

and representative part of the population of a small European country, and roughly

the same number of users as the location-based service Foursquare@ [6]. Just as with

smartphone applications or electronic payments, the mobile phone operator records

the interactions of the user with his phone. This creates a comparable longitudinally

sparse and discrete database [Fig. 1-3]. On average, 114 interactions per user per

month for the nearly 6500 antennas are recorded. Antennas in our database are

distributed throughout the country and serve, on average, ~ 2000 inhabitants each,

covering areas ranging from 0.15 km2 in cities to 15 km2 in rural areas. The number

of antennas is strongly correlated with population density (R2 = .6426) [Fig. 1-3C].

The same is expected from businesses, places in location-based social networks, or

WiFi hotspots.

Fig. 1-2B shows the fraction of unique traces (E) as a function of the number of

available points p. Four randomly chosen points are enough to uniquely characterize

95% of the users (E > .95), whereas two randomly chosen points still uniquely char-

acterize more than 50% of the users (E > .5). This shows that mobility traces are

highly unique, and can therefore be re-identified using little outside information.

1.1.2 Scaling Properties

Nonetheless, E depends on the spatial and temporal resolution of the dataset. Here,

we determine this dependence by lowering the resolution of our dataset through spa-

tial and temporal aggregation [Fig 1-1C]. We do this by increasing the size of a region,

aggregating neighbouring cells into clusters of v cells, or by reducing the dataset's tem-

poral resolution, increasing the length of the observation time window to h hours [see
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Figure 1-3: (A) Probability density function of the amount of recorded spatio-
temporal points per user during a month. (B) Probability density function of the
median inter-interaction time with the service. (C) The number of antennas per

region is correlated with its population (R2 =.6426). These plots strongly emphasize
the discrete character of our dataset and its similarities with datasets such as the one

collected by smartphone apps.

Materials]. Both of these aggregations are bound to decrease 8, and therefore, make

re-identification harder.

Fig. 1-4A shows how the uniqueness of mobility traces E depends on the spatial

and temporal resolution of the data. This reduction, however, is quite gradual. Given

four points (p=4), we find that E > .5 when using a resolution of h = 5 hours and

v = 5 antennas.

Statistically, we find that traces are more unique when coarse on one dimension

and fine along another than when they are medium-grained along both dimensions.

Indeed, given four points, E > .6 in a dataset with a temporal resolution of h = 15

hours or a spatial resolution of v = 15 antennas while 8 < .4 in a dataset with a

temporal resolution of h = 7 hours and a spatial resolution of v = 7 antennas [Fig.

1-4A].

Next, we show that it is possible to find one formula to estimate the uniqueness of

traces given both, the spatial and temporal resolution of the data, and the number of

points available to an outside observer. Fig. 1-4B and C show that the uniqueness of

a trace decreases as the power function 8 = a - x'O, for decreases in both the spatial

and temporal resolution (x), and for all considered p = 4, 6, 8 and 10 (see Table 1.1.5).

The uniqueness of human mobility can thus be expressed using the single formula:

E = a - (v * h)". We find that this power function fits the data better than other
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Figure 1-4: Uniqueness of traces [E] when we lower the resolution of the dataset with
(A) p = 4 and (D) p = 10 points. It is easier to attack a dataset that is coarse
on one dimension and fine along another than a medium-grained dataset along both
dimensions. Given four spatio-temporal points, more than 60% of the traces are
uniquely characterized in a dataset with an h = 15-hours temporal resolution while
less than 40% of the traces are uniquely characterized in a dataset with a temporal
resolution of h = 7 hours and with clusters of v = 7 antennas. The region covered
by an antenna ranges from 0.15 km2 in urban areas to 15 km2 in rural areas. (B-C)
When lowering the temporal or the spatial resolution of the dataset, the uniqueness
of traces decrease as a power function E - a - xO. (E) While E decreases according
to a power function, its exponent / decreases linearly with the number of points
p. Accordingly, it would always be possible to re-identify mobility datasets using
information only on a few outside locations.
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two-parameters functions such as a - exp (Ax), a stretched exponential a - exp x6, or

a standard linear function a - Ox (see Table 1.1.5). Both estimators for a and # are

highly significant (p < 0.001) [48], and the mean pseudo-R2 is 0.98 for the p=4 case

and the Ip=10 case. The fit is good at all levels of spatial and temporal aggregation

[Fig. 1.1.51.

The power-law dependency of 8 means that, on average, each time the spatial or

temporal resolution of the traces is divided by two, their uniqueness decreases by a

constant factor - (2)-0. This implies that privacy is increasingly hard to gain by

lowering the resolution of a dataset.

Fig. 1-2B shows that, as expected, E increases with p. The mitigating effect of p

on 8 is mediated by the exponent 3 which decays linearly with p: # = 0.157- 0.007*p

[Fig. 1-4E]. The dependence of / on p implies that a few additional points might be

all that is needed to identify an individual in a dataset with a lower resolution. In

fact, given four points, a two-fold decrease in spatial or temporal resolution makes it

9.3% less likely to identify an individual, while given ten points, the same two-fold

decrease results in a reduction of only 6.2% (see Table 1.1.5).

Because of the functional of S on p through the exponent 3, mobility datasets are

likely to be re-identifiable using information on only a few outside locations.

1.1.3 Discussion

Our ability to generalize these results to other mobility datasets depends on the sen-

sitivity of our analysis to extensions of the data to larger populations, or geographies.

An increase in population density will tend to decrease 8. Yet, it will also be accom-

panied by an increase in the number of antennas, businesses or WiFi hotspots used

for localizations. These effects run opposite to each other, and therefore, suggest that

our results should generalize to higher population densities.

Extensions of the geographical range of observation are also unlikely to affect the

results as human mobility is known to be highly circumscribed. In fact, 94% of the

individuals move within an average radius of less than 100 km [108]. This implies that

geographical extensions of the dataset will stay locally equivalent to our observations,
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making the results robust to changes in geographical range.

From an inference perspective, it is worth noticing that the spatio-temporal points

do not equally increase the likelihood of uniquely identifying a trace. Furthermore,

the information added by a point is highly dependent from the points already known.

The amount of information gained by knowing one more point can be defined as the

reduction of the cardinality of S(I,) associated with this extra point. The larger the

decrease, the more useful the piece of information is. Intuitively, a point on the MIT

campus at 3AM is more likely to make a trace unique than a point in down-town

Boston on a Friday evening.

This study is likely to underestimate E, and therefore the ease of re-identification,

as the spatio-temporal points are drawn at random from users' mobility traces. Our

IP are thus subject to the user's spatial and temporal distributions. Spatially, it

has been shown that the uncertainty of a typical user's whereabouts measured by its

entropy is 1.74, less than two locations [185]. This makes our random choices of points

likely to pick the user's top locations (typically "home" and "office"). Temporally,

the distribution of calls during the week is far from uniform [Fig. 1.1.5] which makes

our random choice more likely to pick a point at 4PM than at 3AM. However, even in

this case, the traces we considered that are most difficult to identify can be identified

uniquely knowing only 11 locations [Fig. 1-2C].

For the purpose of re-identification, more sophisticated approaches could collect

points that are more likely to reduce the uncertainty, exploit irregularities in an

individual's behaviour, or implicitly take into account information such as home and

workplace or travels abroad [155, 106]. Such approaches are likely to reduce the

number of locations required to identify an individual, vis-h-vis the average uniqueness

of traces.

We showed that the uniqueness of human mobility traces is high, thereby empha-

sizing the importance of the idiosyncrasy of human movements for individual privacy.

Indeed, this uniqueness means that little outside information is needed to re-identify

the trace of a targeted individual even in a sparse, large-scale, and coarse mobility

dataset. Given the amount of information that can be inferred from mobility data, as
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well as the potentially large number of simply anonymized mobility datasets available,

this is a growing concern. We further showed that while . ~ (v * h) 3 , #3 -p/IO0.

Together, these determine the uniqueness of human mobility traces given the traces'

resolution and the available outside information. These results should inform future

thinking in the collection, use, and protection of mobility data. Going forward, the

importance of location data will only increase [143] and knowing the bounds of indi-

vidual's privacy will be crucial in the design of both future policies and information

technologies.

1.1.4 Methods

The dataset

This work was performed using an anonymized mobile phone dataset that contains

call information for -1.5M users of a mobile phone operator. The data collection took

place from April 2006 to June 2007 in a western country. Each time a user interacts

with the mobile phone operator network by initiating or receiving a call or a text

message, the location of the connecting antenna is recorded [Fig. 1-lA]. The dataset's

intrinsic spatial resolution is thus the maximal half-distance between antennas. The

dataset's intrinsic temporal resolution is one hour [Fig. 1-1B].

Unicity test and the likelihood of deductive disclosure

The considered dataset contains one trace T for each user. The traces spatio-

temporal points contain the region in which the user was and the time of the inter-

action. We evaluate the uniqueness of a trace given a set Ip of p randomly chosen

spatio-temporal points. A trace is said to be to be compatible with I, if Ip C T [Fig.

1-2A]. Note that this notion of compatibility can easily be extended to noisy or richer

data. A brute force characterization is performed by extracting from the entire dataset

of 1.5M users S(Ip), the set of users whose mobility traces T are compatible with I.

All mobility traces in the dataset T are successively tested for compatibility with Ip.

A trace is characterized "out of x", if the set of traces that are compatible with the

points contains at most x users: IS(I) I < x. A trace is uniquely characterized if the

set contains exactly one trace: IS(I,)j = 1. The uniqueness of traces is estimated as
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the percentage of 2500 random traces that are unique given p spatio-temporal points.

The p points composing I, are taken at random among all the interactions the user

had with the service. As discussed, we do not apply any constraints regarding the

choice of Ip.

Minimum number of spatio-temporal location needed to uniquely char-

acterize every trace

Fig. 1-2B shows that .95 < E < 1 given Ip4. Fig. 1-2C evaluates the minimum

p needed to uniquely characterize every trace in a given set. This set contains a

random sample of 1000 heavy-users, i.e. users that used their phone at least 75 times

per month as their randomly chosen points might make their trace less unique.

Spatial aggregation

Spatial aggregation is achieved by increasing the size of the regions in which the

user is known to be during his interactions with the service. In the case of discrete

data, a bijective relation exists between antennas (known in this case as centroids)

and the region defined by the Voronoi tessellation. The tessellation is defined so that

every point in a region is closer to the region's antenna than to any other antenna. In

order to increase the region's area, one should group antennas into clusters of a given

size v. While the problem of optimally grouping places in a 2D space into groups of

given sizes v is non trivial, it can be approximated through clustering methods. The

canonical clustering methods focus on minimizing the within-cluster sum of squares

rather than producing balanced clusters. This drawback can be controlled by the use

of a Frequency Sensitive Competitive Learning scheme [111]. Fig. 1.1.5 shows the

resulting group size histogram optimized for clusters of size 4. Once antennas are

aggregated into groups, their associated regions are merged.

1.1.5 Appendix
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Fig. S1. Probability of having a location recorded per hour (blue, right
axis) and per day (orange, left axis). Intuitively, knowing a point at
3AM is more likely to make a trace unique than a point at 4PM. As

Fig. S2. Number of antenna per centroids
when the algorithm for spatial aggregation
aims at clusters of size four.
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Table S1. Power-law function fitting

Parameters and goodness of fit of E = a - xO
Goodness of fit of alternative functions

=a - exp (x) E = a - & 9 = a - exp x3
p </3 >T MSRE < pseudo-R2 > < pseudo-R2 > < pseudo-Rz > < pseudo-R2 >

4 0.1282 +/- 0.009 * 0.018 0.983 0.813 * 0.842 * 0.987
6 0.1164 +/- 0.019 * 0.012 0.987 0.863 * 0.886 % 0.976 *
8 0.1011 +/- 0.024 * 0.010 0.984 0.903 t 0.921 T 0.967 t
10 0.0860 +/- 0.025 * 0.011 0.975 0.915 t 0.930 t 0.960 t
Overall one-tailed paired t-test between the MSRE: p<0.001 p<0.001 p<0.001
t+/- as SD, *** indicates a p<0.001, I Indicates a p<0.001 on a one-tailed paired t-test between the MSRE of
8 = a - xa and of alternative functions



1.2 Credit Card Data2

1.2.1 Introduction

Large-scale data sets of human behavior have the potential to fundamentally trans-

form the way we fight diseases, design cities, or perform research. Ubiquitous tech-

nologies create personal metadata on a very large scale. Our smartphones, browsers,

cars, or credit cards generate information about where we are, whom we call, or

how much we spend. Scientists have compared this recent availability of large-scale

behavioral data sets to the invention of the microscope [176]. New fields such as

computational social science [129, 104, 207] rely on metadata to address crucial ques-

tions such as fighting malaria, studying the spread of information, or monitoring

poverty [209, 67, 94]. The same metadata data sets are also used by organizations

and governments. For example, Netflix uses viewing patterns to recommend movies,

whereas Google uses location data to provide real-time traffic information, allowing

drivers to reduce fuel consumption and time spent traveling [162].

The transformational potential of metadata data sets is, however, conditional on

their wide availability. In science, it is essential for the data to be available and

shareable. Sharing data allows scientists to build on previous work, replicate re-

sults, or propose alternative hypotheses and models. Several publishers and funding

agencies now require experimental data to be publicly available [60, 147, 58]. Gov-

ernments and businesses are similarly realizing the benefits of open data [15]. For

example, Boston's transportation authority makes the real-time position of all pub-

lic rail vehicles available through a public interface [40], whereas Orange Group and

its subsidiaries make large samples of mobile phone data from C6te d'Ivoire and

Senegal available to selected researchers through their Data for Development chal-

lenges [84, 56]. These metadata are generated by our use of technology and, hence,

may reveal a lot about an individual [145, 82]. Making these data sets broadly avail-

2 Published as de Montjoye Y.-A., Radaelli L., Singh V. K., Pentland A. S., Unique in the
shopping mall: On the reidentifiability of credit card metadata. Science 347 (6221), 536-539.
DOI:10.1126/science.1256297 (2015).
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able, therefore, requires solid quantitative guarantees on the risk of reidentification.

A data set's lack of names, home addresses, phone numbers, or other obvious identi-

fiers [such as required, for instance, under the U.S. personally identifiable information

(PII) "specific-types" approach [178]], does not make it anonymous nor safe to release

to the public and to third parties. The privacy of such simply anonymized data sets

has been compromised before [79, 155, 184, 194].

Unicity quantifies the intrinsic reidentification risk of a data set [79]. It was

recently used to show that individuals in a simply anonymized mobile phone data set

are reidentifiable from only four pieces of outside information. Outside information

could be a tweet that positions a user at an approximate time for a mobility data set

or a publicly available movie review for the Netflix data set [155]. Unicity quantifies

how much outside information one would need, on average, to reidentify a specific

and known user in a simply anonymized data set. The higher a data set's unicity

is, the more reidentifiable it is. It consequently also quantifies the ease with which a

simply anonymized data set could be merged with another.

Financial data that include noncash and digital payments contain rich metadata

on individuals' behavior. About 60% of payments in the United States are made

using credit cards [28], and mobile payments are estimated to soon top $1 billion in

the United States [97]. A recent survey shows that financial and credit card data

sets are considered the most sensitive personal data worldwide [29]. Among Ameri-

cans, 87% consider credit card data as moderately or extremely private, whereas only

68% consider health and genetic information private, and 62% consider location data

private. At the same time, financial data sets have been used extensively for credit

scoring [120], fraud detection [55], and understanding the predictability of shopping

patterns [127]. Financial metadata have great potential, but they are also personal

and highly sensitive. There are obvious benefits to having metadata data sets broadly

available, but this first requires a solid understanding of their privacy.

To provide a quantitative assessment of the likelihood of identification from finan-

cial data, we used a data set D of 3 months of credit card transactions for 1.1 million

users in 10,000 shops in an Organisation for Economic Co-operation and Development
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shop userid time price price-bin

7abcla23 09/23 $97.30 $49-$146

7abcla23 09/23 $15.13 $5-$16

3092fc10 09/23 $43.78 $16- $49

7abcla23 09/23 $4.33 $2-$5

4c7af72a 09/23 $12.29 $5-$16

89cO829c 09/24 $3.66 $2-$5

7abcla23 09/24 $35.81 $16 -$49

Figure 1-5: Financial traces in a simply anonymized data set such as the one we

use for this work. Arrows represent the temporal sequence of transactions for user

7abcla23 and the prices are grouped in bins of increasing size.

country (Fig. 1-5). The data set was simply anonymized, which means that it did

not contain any names, account numbers, or obvious identifiers. Each transaction

was time-stamped with a resolution of 1 day and associated with one shop. Shops

are distributed throughout the country, and the number of shops in a district scales

with population density (r2 = 0.51, P < 0.001) (Fig. 1-10).

1.2.2 Results

We quantified the risk of reidentification of D by means of unicity 8 [79]. Unicity is

the risk of reidentification knowing p pieces of outside information about a user. We

evaluate E, of D as the percentage of its users who are reidentified with p randomly

selected points from their financial trace. For each user, we extracted the subset S(IP)

of traces that match the p known points (Ia). A user was considered reidentified in

this correlation attack if IS(Ip)I = 1.

For example, let's say that we are searching for Scott in a simply anonymized

credit card data set (Fig. 1-5). We know two points about Scott: he went to the
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Figure 1-6: The unicity Sof the credit card data set given p points. The green
bars represent unicity when spatiotemporal tuples are known. This shows that four
spatiotemporal points taken at random (p = 4) are enough to uniquely characterize
90% of individuals. The blue bars represent unicity when using spatial-temporal-
price triples (a = 0.50) and show that adding the approximate price of a transaction
significantly increases the likelihood of reidentification. Error bars denote the 95%
confidence interval on the mean.

bakery on 23 September and to the restaurant on 24 September. Searching through

the data set reveals that there is one and only one person in the entire data set

who went to these two places on these two days. |S(Ip)l is thus equal to 1, Scott is

reidentified, and we now know all of his other transactions, such as the fact that he

went shopping for shoes and groceries on 23 September, and how much he spent.

Figure 1-6 shows that the unicity of financial traces is high (E4 > 0.9, green

bars). This means that knowing four random spatiotemporal points or tuples is

enough to uniquely reidentify 90% of the individuals and to uncover all of their

records. Simply anonymized large-scale financial metadata can be easily reidentified

via spatiotemporal information.

Furthermore, financial traces contain one additional column that can be used to

reidentify an individual: the price of a transaction. A piece of outside information,

a spatiotemporal tuple can become a triple: space, time, and the approximate price
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of the transaction. The data set contains the exact price of each transaction, but we

assume that we only observe an approximation of this price with a precision a we

call price resolution. Prices are approximated by bins whose size is increasing; that

is, the size of a bin containing low prices is smaller than the size of a bin containing

high prices. The size of a bin is a function of the price resolution a and of the median

price m of the bin. Although knowing the location of my local coffee shop and the

approximate time I was there this morning helps to reidentify me, Fig. 1-6 (blue bars)

shows that also knowing the approximate price of my coffee significantly increases the

chances of reidentifying me. In fact, adding the approximate price of the transaction

increases, on average, the unicity of the data set by 22% (Fig. 1-11, when a = 0.50,

(AE) = 0.22).

The unicity E of the data set naturally decreases with its resolution. Coarsening

the data along any or all of the three dimensions makes reidentification harder. We

artificially lower the spatial resolution of our data by aggregating shops in clusters of

increasing size v based on their spatial proximity. This means that we do not know

the exact shop in which the transaction happened, but only that it happened in this

geographical area. We also artificially lower the temporal resolution of the data by

increasing the time window h of a transaction from 1 day to up to 15 days. Finally,

we increase the size of the bins for price a from 50 to 75%. In practice, this means

that the bin in which a $15.13 transaction falls into will go from $5 to $16 (a = 0.50)

to $5 to $34 (a = 0.75) (table 1.2).

Figure 1-7 shows that coarsening the data is not enough to protect the privacy

of individuals in financial metadata data sets. Although unicity decreases with the

resolution of the data, it only decreases slowly along the spatial (v), temporal (h), and

price (a) axes. Furthermore, this decrease is easily overcome by collecting a few more

points (tablel.1). For instance, at a very low resolution of h = 15 days, v = 350 shops,

and an approximate price a = 0.50, we have less than a 15% chance of reidentifying

an individual knowing four points (E4 < 0.15). However, if we know 10 points, we

now have more than an 80% chance of reidentifying this person (Eio > 0.8). This

means that even noisy and/or coarse financial data sets along all of the dimensions

36



C B A

-0.9
350 350 350

300 300 300 0.7

250 250 250 - 0.6
200 -0.5

200 200 200

150 150 150 0.3115 0.31
100 1315 100 13 101 1315 0.2

CO50 7 1 50 9 150 9 -10.1
5 7 50 5 757

1 3 1 3 1 35

.50 .75 no price Price Resolution [a]

Figure 1-7: Unicity (94) when we lower the resolution of the data set on any or all
of the three dimensions; with four spatiotemporal tuples [(A), no price] and with
four spatiotemporal-price triples [(B), a = 0.75; (C), a = 0.50]. Although unicity
decreases with the resolution of the data, the decrease is easily overcome by collecting
a few more points. Even at very low resolution (h = 15 days, v = 350 shops, price
a = 0.50), we have more than an 80% chance of reidentifying an individual with 10
points (Si1 > 0.8) (table 1.1).

provide little anonymity.

We also studied the effects of gender and income on the likelihood of reidentifi-

cation. Figure 1-8A shows that women are easier to reidentify than men, whereas

Fig. 1-8B shows that the higher somebody's income is, the easier it is to reidentify

him or her. In fact, in a generalized linear model (GLM), the odds of women being

reidentified are 1.214 times greater than for men. Similarly, the odds of high-income

people (and, respectively, medium-income people) to be reidentified are 1.746 times

(and 1.172 times) greater than for low-income people. Although a full causal analysis

or investigation of the determinants of reidentification of individuals is beyond the

scope of this paper, we investigate a couple of variables through which gender or

income could influence unicity. A linear discriminant analysis shows that the entropy

of shops, how one shares his or her time between the shops he or she visits, is the

most discriminative factor for both gender and income.
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Figure 1-8: Unicity for different categories of users (v = 1, h = 1). (A) It is sig-

nificantly easier to reidentify women (E4 = 0.93) than men (E4 = 0.89). (B) The

higher a person's income is, the easier he or she is to reidentify. High-income peo-

ple (84 = 0.93) are significantly easier to reidentify than medium-income people

(E4 = 0.91), and medium-income people are themselves significantly easier to rei-

dentify than low-income people (84 = 0.88). Significance levels were tested with a

one-tailed t test (P < 0.05). Error bars denote the 95% confidence interval on the

mean.

1.2.3 Discussion

Our estimation of unicity picks the points at random from an individual's financial

trace. These points thus follow the financial trace's nonuniform distributions (Fig. 1-

9A and Fig. 1-12A). We are thus more likely to pick a point where most of the points

are concentrated, which makes them less useful on average. However, even in this case,

seven points were enough to reidentify all of the traces considered (Fig. 1-13). More

sophisticated reidentification strategies could collect points that would maximize the

decrease in unicity.

Although future work is needed, it seems likely that most large-scale metadata

data sets-for example, browsing history, financial records, and transportation and

mobility data-will have a high unicity. Despite technological and behavioral differ-

ences (Fig. 1-9B and Fig. 1-12), we showed credit card records to be as reidentifiable

as mobile phone data and their unicity to be robust to coarsening or noise. Like

credit card and mobile phone metadata, Web browsing or transportation data sets

are generated as side effects of human interaction with technology, are subjected to

the same idiosyncrasies of human behavior, and are also sparse and high-dimensional
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Figure 1-9: Distributions of the financial records. (A) Probability density function
of the price of a transaction in dollars equivalent. (B) Probability density function of
spatial distance between two consecutive transactions of the same user. The best fit of
a power law (dotted line) and an exponential distribution (dot-dashed line) are given
as a reference. The dashed lines are the diameter of the first and second largest cities
in the country. Thirty percent of the successive transactions of a user are less than
1 km apart (the shaded area), followed by, an order of magnitude lower, a plateau
between 2 and 20 km, roughly the radius of the two largest cities in the country.
This shows that financial metadata are different from mobility data: The likelihood
of short travel distance is very high and then plateaus, and the overall distribution
does not follow a power-law or exponential distribution.
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(for example, in the number of Web sites one can visit or the number of possible

entry-exit combinations of metro stations). This means that these data can probably

be relatively easily reidentified if released in a simply anonymized form and that they

can probably not be anonymized by simply coarsening of the data.

Our results render the concept of P11, on which the applicability of U.S. and

European Union (EU) privacy laws depend, inadequate for metadata data sets [178].

On the one hand, the U.S. specific-types approach-for which the lack of names, home

addresses, phone numbers, or other listed PII is enough to not be subject to privacy

laws-is obviously not sufficient to protect the privacy of individuals in high-unicity

metadata data sets. On the other hand, open-ended definitions expanding privacy

laws to "any information concerning an identified or identifiable person" [73] in the

EU proposed data regulation or "[when the] re-identification to a particular person is

not possible" [197] for Deutsche Telekom are probably impossible to prove and could

very strongly limit any sharing of the data [80].

From a technical perspective, our results emphasize the need to move, when possi-

ble, to more advanced and probably interactive individual [85] or group [91] privacy-

conscientious technologies, as well as the need for more research in computational

privacy. From a policy perspective, our findings highlight the need to reform our

data protection mechanisms beyond PII and anonymity and toward a more quantita-

tive assessment of the likelihood of reidentification. Finding the right balance between

privacy and utility is absolutely crucial to realizing the great potential of metadata.

1.2.4 Supplementary Materials

Materials and Methods

The dataset. This study was performed on an anonymized financial dataset of credit

card transactions for ~ 1.1M people in an OECD country. The financial data along

with individual gender (24% women) and income level (39% low, 35% medium, 22%

high, 4% unknown) was provided to us by a major bank active in the region. The

threshold between low and medium income is approximately the median household
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income in the country while the threshold between medium and high income is ap-

proximately 2.5 times the median household income. The data collection took place

from January 1 to March 31. The median (resp. first and third quartile) of the num-

ber of transactions of people with at least one transaction every month is 8 (resp. 5

and 14). We report prices into dollars equivalent and we eliminate from the dataset

138 transactions whose price is higher than $22,800. These would make a user unique

with very few points and removing them only decreases unicity. The unicity calcu-

lation [Algorithm 2] requires the entire set of raw data points for every individual.

For contractual and privacy reasons, we unfortunately cannot make this raw data

available. Upon request we can however make individual level data of gender, income

level, resolution (h, v, a), and unicity (true, false) along with the appropriate doc-

umentation available for replication. This allows the recreation of Fig. 1-6, 1-7 and

1-8, as well as the GLM model and all the unicity statistics.

Spatial resolution

The basic spatial resolution of the dataset is the location of the shop where the

transaction took place. We decrease the spatial resolution of the data by grouping

shops according to their location using a clustering algorithm. While traditional

clustering aims at grouping data using a distance-based metric, Frequency-Sensitive

Competitive Learning [88] also produces clusters of roughly the same size. In short,

in Frequency-Sensitive Competitive Learning, the chances of a cluster to win a new

data point are inversely proportional-although not directly-to previous wins. This

allows the algorithm to maintain a balance between clusters so that all the clusters

get a similar share of the data. We here group shops using a Frequency-Sensitive

Competitive Learning algorithm with p as the number of shops that each cluster

should aim to contain. Fig. 1-14 shows an example of the distribution of shops into

clusters when the algorithm is run with parameter p = 6.
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Price resolution

The dataset contains the exact price of each transaction but, as described in the

manuscript, we assume that we only observe an approximation of this price with a

precision a we call price resolution. Prices are grouped in bins whose size is increasing,

i.e. the size of a bin containing low prices is smaller than the size of a bin containing

high prices. For instance, a $5.33 transaction falls in the ]1.8, 5.4] bin while a $35.81

transaction falls in the ]16.2, 48.6] bin.

The size of bins is a function of the price resolution a and of the median price m

of the bin, m (m - a). We create bins incrementally starting from a bin centered

around .4. Algorithm 1 describes in pseudo-code how we iterate from there. The

algorithm has one parameter, the price resolution a and the algorithm terminates

when the maximum price $22,800 is reached.

We report our price bins for a = .50 and a = .75 in Table 1.2 in dollars equivalent

and with rounded boundaries for simplicity. We use bins computed in the original

currency, and we use floating numbers in our implementation.

Unicity estimation

We estimate the value of unicity SP of a dataset by performing a unicity test on

t=10,000 sampled users with at least p points, as described in [79]. For each test

we sampled without replacement a set of p points from the user's trace. The test is

positive and the user is said to be unique if he is the only user in the entire dataset

whose trace contains the p points. The unicity of the dataset is estimated as the

percentage of tests that resulted in a unique trace.

Ep = I{u E users : IS(Ip) = 11 forIp <- draw(u,p)}I/Iuserl

A pseudo-code for the estimation of the unicity of a dataset is given in Algorithm 2

and takes as input the number of points p. This estimation does not consider an

individual gender or income level to be known; this would only increase unicity. Given

a dataset D of financial traces of users, we call trace a sequence of points where the
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user was, Ipthe set of points drawn from a user's trace, and IS(I)| the set of traces

containing Ip.

Average unicity

(A) quantifies how much adding a dimension to the data increases unicity. We

compute the average unicity (M) at different resolutions of space and time over the

linearly interpolated surface to avoid effects of sampling. It is interesting to notice

in Fig. 1-11 that the biggest gain in unicity is achieved in the central region, where

data along one dimension is high resolution and data along the other dimension is

low resolution, or where data along both dimensions have a medium-grain resolution.

We can also see that while adding the price of the transaction does not really help

overcome a low temporal resolution (e.g. at h = 13, v = 50), it does help overcome a

low spatial resolution (e.g. at h = 3, v = 300). This is likely to be because most of

the transactions of a shop fall in a few bins. The transactions of a coffee shop will fall

in the ]2, 5] or the ]5, 16] bins while the transactions of a shoe shop will fall in the ]49,

146] or ]146, 437] bins. Indeed, when the prices are binned at a = .75, the average

entropy of prices per shop is S = .31. This is very low and means that, if we had 3

bins, 96% of the transactions would be in one bin and only 4% of the transactions

would fall in the other two bins. This emphasizes the need for further computational

privacy research to understand the determinants of unicity of a dataset

GLM

We use one Generalized Linear Model with a logit link function to estimate the effect

of gender and income on unicity where we control for h, v, and a as factors. We used

10,000 samples per v-h-a-levels and 504 levels. All coefficients (h, v, a) are significant

(p < 0.001).

Linear Discriminant Analysis

While a full causal analysis or investigation of the determinant of re-identification of

an individual are beyond the scope of this paper, we investigate potential variables
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Price Resolution [a]
0.50 0.75 no price

4 .13 .06 .00

E6 .40 .25 .03

S10 .86 .72 .21

Table 1.1: Unicity at very low spatio-temporal resolution (h = 15, v = 350) knowing
four ( 4), six (E6), and ten (E10) points.

through which gender or income could influence E; the number of transactions an

individual made, the number of shops or the entropy of the shops she or he went to,

the number or the entropy of price bins the items she or he bought felt into (a = .50

and a = .75). We use a linear discriminant analysis with either gender or income

as dependent variable and the potential variables as independent variables. For both

gender and income, the entropy of the shops is the most discriminative variable.

Credit Card and Mobile Phone Records Distributions

Figure 1-12 shows that the behavior recorded by credit cards is very different from the

one recorded by mobile phones. For example, while the use of mobile phones drops

during the weekend the use of credit card strongly increases. We can also see e.g.

that the use of credit cards increases steadily throughout the day until approximately

6-7pm while the use of mobile phones drops in the middle of the day during lunch

hours and then peaks at approximately the same time as the use of credit cards.

Finally, while the use of mobile phones peaks on Thursdays, the use of credit cards

is constant across weekdays.

Algorithm 1 Bins(a)

top +- .4 + (.4 - a)
bins <- {.4 - (.4 - a), top}
while top < 22800 do

bottom <- top
m +- bottom/(1 - a)
top <- m - (1 + a)
bins <- bins + {top}

end while
return bins
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Algorithm 2 Unicity Estimation(p)
users +- select(D, p, 10000)
for u E users do

I, +- draw(u, p)
is-unique +- true

for x E D \ {u} do
if I, C x.trace then

is-unique +- false
break

end if
end for
if is-unique then

uniqueUsers +- uniqueUsers + {u}
end if

end for
return luniqueUsers/lusersl

108

loll

a.
106

1U S 1I0

C -

10 102 103

Number of shops
104

Figure 1-10: The number of shops per district is strongly correlated with its popula-
tion (r2 = 0.51, P < 0.001). This emphasizes our ability to generalize these results to
other financial datasets.
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Figure 1-11: Gain in unicity (A 9) when adding a third dimension, the approximate

price of a transaction (A, a = 0.50; B, a = 0.75). We see that the gain in unicity A

Sis higher in the central region marked with dashed lines.
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Figure 1-12: (A) Probability of having a credit card record per hour (blue right axis)

and per day (orange, left axis). (B) Probability of having a mobile phone record per

hour (blue, right axis) and per day (orange, left axis) as reported in [79].
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Figure 1-13: While a trace may not be uniquely re-identified with p spatio-temporal-
price triples, the same trace might be unique if more triples are known. We here
evaluate the minimum number of triples p needed to uniquely characterize every
trace in a set of 10,000 randomly sampled traces with at least p points (h = 1,
V = 1, a = 0.50). In this set of traces, 7 spatio-temporal-price points are enough to
re-identify all of them including the most difficult one.
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Bin # Range
0 ]0.2, 0.6]
1 ]0.6, 1.8]
2 ]1.8, 5.4]
3 ]5.4, 16.2]
4 ]16.2, 48.6]
5 ]48.6, 145.8]
6 ]145.8, 437.4]
7 ]437.4, 1312.2]
8 ]1312.2, 3936.6]
9 ]3936.6, 11809.8]
10 ]11809.8, 35429.4]

B
Bin # Range

0 ]0.1, 0.7]
1 ]0.7, 4.9]
2 ]4.9, 34.3]
3 ]34.3, 240.1]
4 ]240.1, 1680.7]
5 ]1680.7, 11764.9]
6 ]11764.9, 82354.3]

Table 1.2: (A) Bins for a = 0.50. (B) Bins for a = 0.75.

48

A



Chapter 2

The Risk of Inference
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2.1 Personality Prediction from Mobile Phone Data

2.1.1 Introduction

How much can one know about your personality just by looking at the way you use

your phone? Determining the personality of a mobile phone user simply through

standard carriers' log has became a topic of tremendous interest. Mobile cellular sub-

scriptions have hit 6 billion throughout the world [71] and carriers have increasingly

made available phone logs to researchers [94] as well as to their commercial part-

ners [72]. If predicted correctly, mobile phones datasets could thus provide a valuable

unobtrusive and cost-effective alternative to survey-based measures of personality.

For example, marketing and phone companies might seek to access dispositional in-

formation about their customers to design customized offers and advertisements [86].

Appraising users dispositions through automatically collected data could also benefit

the field of human-computer interface where personality has become an important

factor [38]. Finally, finding ways to extract personality and, more broadly, psycho-

social variables from country-scale datasets might lead to unprecedented discoveries

in social sciences.

The idea of predicting people's personalities from their cellphone stems from re-

cent advances in data collection, machine learning, and computational social science

showing that it is possible to infer various psychological states and traits from the way

people use everyday digital technologies. For example, some researchers have shown

that pattern in the use of social media such as Facebook or Twitter can be used to

predict users' personalities [41, 74, 188]. Others have used information about peo-

ple's usage of various mobile phone applications (e.g., YouTube, Internet, Calendar,

Games, etc.) or social network to draw inferences about phone owners' mood and

personality traits [68, 90, 202, 187, 167]. Although these approaches are interesting,

they either require to have access to extensive information about people's entire so-

cial network or people to install a specific tracking application on their phone. These

'Published as de Montjoye, Y.-A.*, Quoidbach J.*, Robic F.*, Pentland A., Predicting people
personality using novel mobile phone-based metrics. Proc SBP, Washington, USA (2013)
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Figure 2-1: (A) Accuracy of the prediction with respect to the baseline, (B) most

useful features to predict personality traits, and (C) the distribution of personality

traits across our dataset.

constraints greatly undermine the use of such classification methods for large-scale

investigations.

The goal of the present research is to show that users' personalities can be reliably

inferred from basic information accessible from all mobile phones and to all service

providers. Specifically, we introduce five sets of psychology-informed metrics-Basic

phone use, Active user behaviors, Mobility, Regularity, and Diversity-that can be

easily extracted from standard phone logs to predict how extroverted, agreeable,

conscientious, open to experience, and emotionally stable a user is.

2.1.2 Results

Table 2.1.2 displays the different indicators and their respective contribution in pre-

dicting the big 5. Specifically, 36 out of our indicators were significantly related to

personality and were all included in the final SVM classifier. As depicted in Figure 2-

1, the model predicted whether phone users were low, average, or high in neuroticism,

extraversion, conscientiousness, agreeableness, and openness with an accuracy of 54%,

61%, 51%, 51%, and 49%, respectively. The baselines being between 36 and 39%, we

predict on average 42% better than random. For neuroticism, the predictive power

of the model was further increased by including participants' gender as a predictor,
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increasing the accuracy to 63%. This finding is not surprising given that neuroticism

is one of the traits that is most strongly associated with gender, with women having

higher means levels than men in most countries world-wide [137].

An investigation of the most important feature to predict each trait revealed in-

teresting associations. Indicators linked to users' mobility (i.e., distance traveled and

entropy of places) were useful to predict Neuroticism. The entropy of participants'

contacts helped predict both Extraversion and Agreeableness. These findings are in-

line with past research showing these traits both relate to different aspects of the

diversity of one's social network: extraverts tend to seek more friends than intro-

verts, agreeable individuals tend to be selected more as friends by other people [180].

Highly consistent with past research showing that conscientious individuals tend to

like organization, precision, and punctuality [139], we found that the best predictor

of Conscientiousness was the variance of the time between phone calls. Lastly, the

strongest predictor of Openness was the average time between text interactions-a

finding that remains be explained be future research.
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N E Q C A

Regularity

Average inter-event time (call) * * * * *

Average inter-event time (text) * 0

Average inter-event time (c&t) * a *

Variance of inter-event time (call) 0 0

Variance of inter-event time (text) * *

Variance of inter-event time (c&t) . . . .

Home regularity 0 0

AR- 91 0

AR- W4 0 0

AR- (p5 * 0 0

AR- (p12 0 0

AR- (p24 * 0

Number of call regularity * 0

Diversity

Entropy of contacts (call) 0 * *

Entropy of contacts (text) * * * * *

Entropy of contacts (c&t)

Contacts to interactions ratio (call) * e e 0

Contacts to interactions ratio (text) e *
Contacts to interactions ratio (c&t) * . *

Number of contacts (call) 0 .

Number of contacts (text) 0

Number of contacts (c&t) * a

Spatial behavior

Radius of gyration (daily) * 0

Distance traveled (daily) e 0 * * *

Number of places * * * . 0

Entropy (places) * * * * *

Active behavior

Response rate (call) 0

Response rate (text) * * a

Response latency (text) 0

Percent during the night (call) 0 0 0

Percent initiated (text) 0 0

Percent initiated (call) * * * .

Percent initiated (c&t)

Basic Phone use

Number of interactions (text)

Number of interactions (call) 0 * *

Number of interactions (c&t) * * * *
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2.1.3 Methodology

Participants and Procedure

The empirical sections of this work are based on a dataset collected from March 2010

to June 2011 in a major US research university [128]. Each participant was equipped

with a Android smartphone running the open sensing framework Funf [36]. While

the framework is designed to collect a wide range of behavioral data from the user's

phone, we voluntarily limit ourself to data available in standard carriers's logs such

as phone calls, text messages sent and received, etc. These CDR (Call Data Record)

have recently become widely use for computational social science research [94, 160,

148, 43, 108]. After removing participants who had less than 300 call or text per year

and/or that failed to complete personality measures, our final sample was composed

of 69 participants (51% male, Mean age = 30.4, S.D. = 6.1, 1 missing value).

Metrics

We developed a range of novel indicators allowing us to predict users' personality. To

build our list of indicators, we examined theories and research in personality psychol-

ogy and, more specifically, the literature five factor model of personality, the dominant

paradigm in personality research [146]. The five-factor model is a hierarchical orga-

nization of personality traits in terms of five basic dimensions: Extraversion (i.e, the

tendency to seek stimulation in the company of others, to be outgoing and energetic),

Agreeableness (i.e, the tendency to be warm, compassionate, and cooperative), Con-

scientiousness (i.e., the tendency to show self-discipline, be organized, and aim for

achievement), Neuroticism (i.e, the tendency to experience unpleasant emotions eas-

ily), and Openness (i.e, the tendency to be intellectually curious, creative, and open

to feelings).

From this literature review, we generated novel indicators that can be easily com-

puted from carriers logs and that we believed would meaningfully account for potential

differences in personality (see Table 2.1.2). These indicators fall under 5 broad cate-

gories: Basic phone use (e.g., number of calls, number of texts), Active user behaviors
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(e.g., number of call initiated, time to answer a text), Location (radius of gyration,

number of places from which calls have been made), Regularity, (e.g.,temporal calling

routine, call and text inter-time), and Diversity (call entropy, number of interactions

by number of contacts ratio). These indicators are detailed hereafter.

Entropy: Is a quantitative measure reflecting how many different categories there

are in a given random variable, and simultaneously takes into account how evenly the

basic units are distributed among those categories. For example, the entropy of one's

contacts is the ratio between one's total number of contacts and the relative frequency

at which one interacts with them. H(a - c) = - Zc f, log fc where c is a contact and

fc the frequency at which a communicates with c. The more one interacts equally

often with a large number of contacts the higher the entropy will be. This work

considers the entropy of calls, text, calls+text but also the entropy of places one

visits.

Inter-event time: Is the time elapsed between two events. This work then

consider both the average and variance of the inter-event time of ones' call, text,

call+text. call+text means that an interaction, a call or an text, happened between

two users. Therefore, even though two users have the same inter-event time for both

call and text, their mean inter-event times for call+text can be very different.

AR coefficients: We can convert the list of all calls and texts made by a user into

a time-series. We discretized time by steps of 6 hours. For example, the time-series

Xt contain the number of calls made by a user between 6pm and 12am on Monday

followed by the number of calls made by the same user between 12am and 6am on

Tuesday and so on. We then train a auto-regressive model per user. This model takes

the form Xt = c + E WiX-i + et where c is a constant and et are noise terms. The

coefficients Si can thus be interpreted as the extent to which knowing how many calls

a person made in the previous 6 hours, the day before at the same time predicts the

number of calls that person will make in the coming 6 hours. We only kept the coef-

ficient that were statistically significant for at least 3 traits: W1,4,8,12,18,24. Note that

while we see some patterns in the statistically significant coefficients, interpretation

of such patterns requires caution given that (1) this analysis has been done post-hoc
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and (2) our relatively small sample size.

Response rate and latency (text): We consider a text from a user (A) to be

a response to a text received from another user (B) if it is sent within an hour after

user A received the last text from user B. The response rate is the percentage of texts

people respond to. The latency is the median time it takes people to answer a text.

Note than by definition, latency will be less or equal to one hour.

Number of places and their entropy: The dataset was collected using the

open sensing framework Funf which prevent us from directly using cell phone towers.

We instead empirically defined places by grouping together the GPS points of a

user that are less than 50m apart and by defining their center of mass as the lat-long

coordinate of the place. 50m made sense given the sampling resolution of our dataset.

Finally, we only kept the places where a user spend more than 15 minutes in a row.

Radius of gyration: This is the radius of the smallest circle that contains all

the places a user have been to on a given day.

Distance per day: This is sum of the distance between the consecutive places

a user has visited in a given day.

Home and call regularity: We look at regularity at which a user is coming back

home (home regularity) or receiving/making a call (call regularity) using a neural

coding inspired metric [211].

Personality

As part of a larger questionnaire, participant completed the Big Five Inventory (BFI-

44 [123]), a 44-item self-report instrument scored one a 5-point Likert-type scale

measuring the Big Five personality traits. The BFI-44 has been widely used in per-

sonality research and has been shown to have excellent psychometric properties [123].

As depicted in Figure 2-1, participants personality scores follow a normal distribu-

tion: Neuroticism (A = 0.3012, p = 0.5698), Openness (A = 0.2592, p = 0.7042),

Extraversion (A = 0.2884, p = 0.6074), Conscientiousness (A = 0.4380, p = 0.2869),

and Agreeableness (A = 0.4882, p = 0.2162).
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Class prediction

Because the relationship between personality traits and numerous behavioral and

psychological factors can often be non-linear [52, 75], we choose to use SVM over the

more traditional GLM as the former automatically model non linear relationships.

Consequently, following [138] we classified each user as low, average, or high on each

on the five personality dimensions.

We then selected the most relevant features using a greedy method similar to [114].

At each iteration, features are ranked using the squared weight and the worst feature

of the set is removed. We stop removing features when removing a subset of worst

features of size less than 3 degrades the performance and report the 3 highest ranked

features. We then classified using an SVM with a 10-fold cross validation.

2.1.4 Discussion

The present study provides the first evidence that personality can be predicted from

standard carriers' mobile phone logs. Using a set of novel indicators that we developed

based on personality research and that are available to virtually anyone, we were able

to predict whether users were low, average or high on each of the big five from

29% to 56% better than random. These levels of accuracy were obtained while we

purposefully adopted a restrictive approach only using phone logs.

To our knowledge, these predictions exceed all previous research linking psycho-

logical outcomes to mobile phone use. In particular, a previous study that used a

combination of information from mobile phone logs and people's usage of mobile

phone applications such as YouTube, Internet, and Games predicted the personality

of their owners with a mean accuracy of 15% [68]. In comparison, the mean accuracy

in the present research is almost three times as high (i.e., 42%).

It is interesting to note that Extraversion and Neuroticism were the traits that

were best predicted in our study. These two traits are the dimensions of personality

that are the most directly associated with emotion. In particular, extraversion is a

strong predictor of positive emotions and neuroticism is a strong predictor of negative
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emotion [107]. This raises the hypothesis that our indicators might be picking up on

the emotional components associated with these two traits. It would be interesting to

investigate whether our indicators can predict emotional variable such as happiness

in future studies. In addition, contrasting cellphone-based vs. questionnaire-based

measures of personality when predicting various psycho-social outcomes might lead

to interesting asymmetries. In line with this idea, recent research in personality

shows that ratings of one's personality that are made by oneself and ratings of one's

personality that are made by others are both valid but different predictors of behavior.

For example, self-ratings predict behaviors like arguing or remaining calm, whereas

other-ratings predict behaviors like humor and socializing [201].

Although more research is needed to validate our model and the robustness of our

indicators for use on a large-scale and more diverse population, we believe that our

findings open the door to exciting avenues of research in social sciences. Our person-

ality indicators and the ability to predict personality using readily available mobile

phone data may enable cost-effective, questionnaire-free investigation of personality-

related questions at the scale of entire countries.
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Chapter

Privacy- Conscientious Solutions
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3.1 Privacy-Conscientious Uses of Mobile Phone

Datal

Mobile phones are now ubiquitous in developing countries, with 89 active subscrip-

tions per 100 inhabitants [121]. Though many types of population data are scarce

in developing countries, the metadata generated by millions of mobile phones and

recorded by mobile phone operators can enable unprecedented insights about indi-

viduals and societies. Used with appropriate restraint, this data has great potential

for good, including immediate use in the fight against Ebola [98].

To operate their networks, mobile phone operators collect call detail records-

metadata of who called whom, at what time, and from where. After the removal

of names, phone numbers, or other obvious identifiers, this data can be shared with

researchers to reconstruct precise country-scale mobility patterns and social graphs.

These data have already been used to study importation routes of infectious dis-

eases [209], migration patterns, or economic transactions [93]. Such data are now

being actively sought to inform the fight against Ebola [208] but, despite the promise,

this effort appears stalled [30, 31].

As part of MIT's Big Data initiative, we examined two operational use cases of

mobile phone data for development modeled on previous research. The first case,

involved the use of location metadata to understand and quantify the spread of infec-

tious diseases (e.g. malaria or Ebola) within and among countries [30, 31]. The second

case considered the use of behavioral indicators derived from mobile phone metadata

to micro-target outreach or drive uptake of agricultural technologies or health seeking

behavior [191]. Here, mobile phone data could be used to define subgroups based on

specific traits and behaviors, which would then receive messages or other outreach

from the mobile operator 2. We also considered cases where the data could be used

'Published as de Montjoye, Y.-A., Kendall, J., and Kerry, C. (2014) Enabling humanitarian use
of mobile phone data. Brookings, Issues in Technology Innovation, 26.

2 This is very similar to how some mobile marketing interfaces work where marketers will specify
the criteria and identifying characteristics for the people they want to target with specific mes-
sages but would not receive actual numbers. Alternatively, anonymized data could be shared with
encrypted identifiers which would be passed back to the operator to trigger outreach.
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to select individuals to be identified and contacted directly in limited circumstances.

These two scenarios are quite distinct from a regulatory and privacy perspective, as

we discuss below.

These mobile phone data case studies revealed ways in which, despite the promise,

regulatory barriers and privacy challenges are preventing the use of mobile phone

metadata from realizing its full potential. More specifically, our analysis showed (1)

the lack of commonly-accepted practices for sharing mobile phone data in privacy-

conscientious ways and (2) an uncertain and country-specific regulatory landscape for

data-sharing especially for cross-border data sharing.

While some forward-looking companies have been sharing limited data with re-

searchers in privacy-conscientious ways, these barriers and challenges are making it

unnecessarily hard for carriers to share data for humanitarian purposes [84, 56]. We

describe these issues further and offer recommendations moving forward.

3.1.1 Protecting the Identity of Subjects

Mobile phone metadata made available to researchers should never include names,

home addresses, phone numbers, or other obvious identifiers. Indeed, many regula-

tions and data sharing agreements rely heavily on protecting anonymity by focusing

on a predefined list of personally-identifiable information that should not be shared.

In the United States, for example, the privacy rule issued by the Department of

Health and Human Services to protect the privacy of patient health records specifies

18 different types of data about patients that must be removed from datasets for

them to be considered de-identified [159].

However, elimination of specific identifiers is not enough to prevent re-identification.

The anonymity of such datasets has been compromised before and research [79] shows

that, in mobile phone datasets, knowing as few as four data points-approximate places

and times where an individual was when they made a call or send a text-is enough to

re-identify 95% of people in a given dataset. In general, there will be very few people

who are in the same place at the same time on four different occasions, which creates

a unique "signature" for the individual making it easy to isolate them as unique in
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the dataset. The same research also used unicity to shows that simply anonymized

mobile phone datasets provide little anonymity even when coarsened or noised.

This means that removing identifying information makes isolating and identifying

a specific person in the dataset only slightly more challenging because that person can

be identified using available sources of data that link location with a name or another

identifier (e.g. geo-tagged posts on social media, travel schedules, etc.). Wholesale re-

identification is more difficult, however, because re-identification of a large fraction of

the dataset requires access to a full list of people and places they have been, which may

not be as easy to acquire. Nevertheless, a determined attacker can still re-identify

people using such data. Therefore, removing personally identifiable information is

only a first step in most instances and more stringent approaches are required unless

trust in the recipient of a dataset is high.

Recognizing the limits of an approach to anonymity and re-identification that

focuses only on identity information like names or ID numbers, governments have

sought to expand protection beyond identity to any information that can be used to

identify an individual. In 2007, the federal Office of Management and Budget added

to its list of identifiers "any other personal information which is linked or linkable

to an individual." [99] In Europe, the Directive 95/46/EC cautions that "account

should be taken of all the means likely to be used" to identify an individual, [200]

and a thorough recent opinion of EU privacy regulators provided technical guidance

on the challenges and risks of re-identification [165].

The challenge of these broad definitions is that they are open-ended. No existing

anonymization methods or protocols can guarantee at 100 percent that mobile phone

metadata cannot be re-identified unless the data has been greatly modified or aggre-

gated. Hence, open-ended requirements can be unverifiable and, taken to their logical

extreme, so strict as to prohibit any sharing of data even when risk of re-identification

is very limited.

We believe this places too much emphasis on a limited risk of re-identification and

unclear harm without considering the social benefits of using this data such as better

managing outbreaks or informing government response after a disaster [51]. Special
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consideration should be given to cases where the data will be used for significant public

good or to avoid serious harm to people. Furthermore, data sharing should allow for

greater levels of disclosure to highly trusted data recipients with strong processes,

data security, audit, and access control mechanisms in place. For example, trusted

third parties at research universities might warrant access to richer, less anonymized

data for research purposes and be relied on not to try to re-identify individuals or to

use the data inappropriately.

For both use cases, we defined data-sharing protocols that would allow for the

intended analysis, while protecting privacy. We contemplate releasing anonymized

data to research teams and NGOs in a form that adds technical difficulty to re-

identification, limits the amount of data that would be re-identified, and further

limiting the risk of re-identification or abuse with a legal agreement that specifies

that only specific purposes and other protocols can be applied to the data. In our

analysis, we focused on a middle ground scenario of relatively open sharing of data

with multiple research teams and/or NGOs, with some (but limited) accountability

and auditability. We did not consider a fully-public release where a very high level of

anonymization would be required, nor a release to a highly trusted third party with

strong data protection in place that might allow weakly-anonymized data sharing.

For our first use case, we concluded that a 5 percent sampling of the data on

a monthly basis, resampled with new identifiers every month for a year and coars-

ened temporally and spatially into 12-hour periods (7 a.m. to 7 p.m.) and by re-

gions within countries would be the right balance between utility and privacy 3. It

would adequately show individuals' mobility across regions under study and the num-

ber of nights spent in infected regions while providing significant-but not absolute-

protection of identity and limiting the amount of data that would be re-identified.

3The back-of-the envelope reasoning goes as: We use a spatial resolution of 17 antennas on
average (v = 17) and a temporal resolution of 12 hours (h = 12). This means that with 4 points
in a given month, we'd have a approx. 20% chance (S = .20) at re-identifying an individual in
a given month (resp. E = .55 with 10 points)(see http://www.nature.com/srep/2013/130325/
srepO1376/f igtab/srep1376_F4.html). This means that, to have between 20% to 55% chances
of re-identifying an individual, we'd need 4 to 10 points every month meaning 48 to 120 points total
for a year. Even in this case, as we use a 5% sampling and we resample every month, an individual
has only a 45% chance to be in at least one of the sampled month (1 - 0 .9 512months).
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For our second use case, we concluded that the behavioral indicators [77] derived

from metadata can be shared with the researchers safely, provided outliers have been

removed. Researchers could then use this data to segment the population into specific

sub-groups based on traits like calling patterns, mobility, number of contacts, etc.

People fitting these criteria could then be contacted by the mobile phone operators

through text messages or other communications. Their phone numbers would be

known only to the mobile phone operators.

We also considered cases where specific individuals could be contacted based on

criteria applied to the data. To do so would require either (a) including in the dataset

pseudonymous-but unique-identifiers that make it possible to connect data showing

certain traits (such as a likely exposure to disease based on travel patterns) with spe-

cific individuals, or (b) including telephone numbers in the dataset so that researchers

and/or NGOs can contact the individuals identified directly. Because it enables re-

identification, the former would be a departure from good privacy practices unless

the data recipient were highly trusted, and the second would be a clear departure

because it disclosed unmodified personally identifiable information.

Nevertheless, re-identification could be vital in case of emergencies such as an

earthquake [51]. These alternate use cases illustrate further the need to develop

mechanisms for trusted third parties to maintain data under strong controls for use,

access, security, and accountability 4.

More generally, promising computational privacy approaches to make the re-

identification of mobile phone metadata harder include sampling the data, making the

antenna GPS coordinates less precise through voronoi translation for example [76],

or limiting the longitudinality of the data to cover shorter periods of time. These

could go as far as to set up systems or collaborations where researchers could pose

questions of the data, but where mobile operators would only share with researchers

"answers," [78, 85] such as behavioral indicators or summary statistics '. Each of

4We assume here that the mobile operator does not have explicit permission from the data subject
to disclose their information. If users were to opt-in to sharing this would then become permissible.

5While promising, these solutions are not yet ready for prime-time. Standardized software to
process call detail records along with testing and reporting tools are still under development while
the use of online systems allowing researchers to ask questions that would be run against the data
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these alternatives could be employed depending on the use the data is put to, the

amount and sensitivity of the data that would be uncovered, how and by whom the

data will be governed and housed, and the attendant risks of harm.

3.1.2 Engaging Government Support

The second challenge we identified to humanitarian use of mobile phone metadata is

an uncertain and country-specific regulatory landscape for data-sharing. Our study

focused on Africa, where data privacy regulation has been evolving along two lines.

The Francophone countries-mostly located in West Africa, where current exposure

to Ebola is greatest-have tended to adopt privacy frameworks modeled on the 1995

European Privacy Directive and supervised by national data protection authorities.

Meanwhile English-speaking countries with common law systems either have not yet

adopted comprehensive privacy laws, or have adopted country-specific laws.

This landscape presents a number of barriers to humanitarian use of mobile phone

metadata. First, legal uncertainty complicates the design of data-sharing protocols.

Indeed, even in countries that have had laws and regulatory agencies in place for some

time, the relevant rules have not developed in enough detail to address an issue that

is often uncertain even in the most developed legal systems.

Second, as discussed above, questions about the validity of most methods of

de-identification persist particularly in countries that use open-ended definitions of

anonymization such as the EU one. There exist no widely accepted data-sharing

standards to help various actors achieve a rational privacy/utility tradeoff in using

mobile phone metadata.

Third, regardless of legal systems, compatible data-sharing protocols-including

data de-identification-have to be designed and validated on a country by country

basis. For example, data-sharing protocols have to be compatible, which includes

having both the phone number and the mobile phone identifier 6 hashed with the

and only receive answers would imply architectures investments from mobile phone operators
'IMEI or International Mobile Station Equipment, a unique number that identifies a mobile

phone on the network.
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same function and salt ' to allow for mobile phones to be followed across border,

even if the user changes SIM cards. These issues make cross-border data sharing or

intra-regional tracking of population flows particularly complex and costly. Yet such

cross-country sharing is essential in the fight against diseases such as malaria or the

current Ebola outbreak [157].

Fourth, our second use case contemplated that, in general, only behavioral indi-

cators derived from carriers' metadata would be shared with researchers but that, in

specific and limited circumstances where these indicators show an individual would

benefit from intervention, the identity could be used to enable remote intervention

such as targeted texts sent by the operator, or identification through mechanisms

that carefully control the release and use of this information.

In the absence of explicit consent from users to such disclosure and use of data

from their mobile phones, these forms of re-identification of data subjects presents

obvious privacy challenges and may come into conflict with most privacy legal regimes

absent specific exceptions. The EU Privacy Directive provides that data processing

must have a lawful basis, but that such a basis may be "to protect the vital interests

of the data subject," or "in the public interest, or in the exercise of official authority,

and recognizes "public health" as such a public interest." ' Thus, it will take the

support of national governments, their health ministries, and their data protection

authorities to enable use of data especially in such exigent situations, but also for a

range of humanitarian applications '.

7 One potentially interesting solution here would be to rely on multiple hash functions that can
be nested.

8 European Union, Directive 95/46/EC, Article 7 (d), (e). An update to this legislation, the Pri-
vacy Regulation proposed by the European Commission in 2012, http: //ec . europa. eu/justice/
data-protection/document/review20l2/com_2012_11_en.pdf, also included an exception from
certain requirements for "scientific, historical, statistical, and scientific research purposes," but
this was removed from legislation as passed by the European Parliament. http: //www. europarl.
europa.eu/meetdocs/2009.2014/documents/libe/pr/922/922387/922387en.pdf.

'Under the World Health Organization's International Health Regulations, the WHO and mem-
ber states undertake to conduct "surveillance" for public health purposes and member states are
permitted to "disclose and process personal data where essential for purposes of assessing and manag-
ing public health risks." WHO, Fifty-eighth World Health Assembly Resolution WHA58.3: Revision
of the International Health Regulations, Articles 1 (definition of surveillance), 5.4, and 45 . 2005,
http://www.who. int/ipcs/publications/wha/ihrresolution.pdf.
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3.1.3 Conclusion: Roadmaps Needed

These privacy challenges and regulatory barriers are making humanitarian data-

sharing much harder than it should be for mobile phone operators and are significantly

limiting greater use of mobile phone metadata in development or aid programs and in

research areas like computational social science, development economics, and public

health.

To realize the potential of this data for social good, we recommend the following:

1) There is a clear need for companies, NGOs, researchers, privacy experts, and

governments to agree on a set of best practices for new privacy-conscientious metadata

sharing models in different development use cases-a wider and higher-level discussion

of the kind our MIT working group conducted. These best practices would help

carriers and policymakers strike the right balance between privacy and utility in the

use of metadata and could be instantiated by data-protection agencies, institutional

review boards, and in data protection laws and policies. This would make it easier

and less risky for carriers to support humanitarian and research uses of this data, and

for researchers and NGOs to use these metadata appropriately.

2) Such best practices should accept that there are no perfect ways to de-identify

data-and probably will never be. [154] There will always be some risk that must be

balanced against the public good that can be achieved. While much more research

is needed in computational privacy, widespread adoption of existing techniques as

standards could enable this trend of sharing data in a privacy-conscientious way.

3) Standards and practices as well as legal regulation also need to address and in-

corporate trust mechanisms for humanitarian sharing of data in a more nuanced way.

Protection of individual privacy includes not only protection against re-identification,

but also data security and protection against unwanted uses of data. Risk of re-

identification is not a purely theoretical concept nor is it binary and it should be

assessed vis-a-vis the level of trust placed in the data recipient and the strength of

their systems and processes. Tracking of migration patterns or analysis of behavior

patterns may offer enormous benefits for disease prevention and treatment, but it is
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possible to envision more malignant uses by actors ranging from disgruntled employ-

ees of the data recipient to authoritarian governments. The recognition of trusted

third-parties and systems to manage datasets, enable detailed audits, and control the

use of data could enable greater sharing of these data among multiple parties while

providing a barrier against risks.

There is a need for governments to focus on adopting laws and rules that simplify

the collection and use of mobile phone metadata for research and public good pur-

poses. Governments should also seek to harmonize laws on the sharing of metadata

with common identifiers across national borders. The African Union took what could

be a step in this direction last June, when it approved the African Convention on Cy-

ber Security and Personal Data Protection seeking to advance Africa's digital agenda

and harmonize rules among African nations [9]. The treaty, which will not take effect

until adopted by 15 member states, commits members to adopting a legal framework

that follows the template of the European Privacy Directive. Clear and consistent

rules will help but only provided they take a pragmatic and privacy-conscientious

approach to anonymization, cross-border transfers, and novel uses that enable public

good uses of data and allow for public health emergencies and other valuable research.

Research based on mobile phone data, computational privacy, and data protection

rules all may seem secondary when confronted by the challenges of poverty, disease,

and basic economic growth. But they are on the critical path to realizing the great

potential of information technology to help address these critical problems.
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3.2 Privacy-Conscientious Data Release: D4D-Senegal 0

3.2.1 Introduction

There are Big Hopes associated with Big Data: it has been dubbed the oil of the

digital economy [166], the next big thing in medical care [189], and a vital tool for

building smart cities [18]. In science, the availability of large-scale behavioral datasets

has even been compared to the invention of the microscope [129].

There is little doubt that impressive work has already been done by the compu-

tational social science and mobile phone research communities. Metadata has, for

example, been used to better understand the propagation of malaria, to monitor

poverty [209, 94], to analyse human mobility [108], and to study the structure of

social communities at a national level [183]. Big Data has, however, to be made more

broadly available to further realize its promises. Understanding context remains criti-

cal, particularly for a sound interpretation and solution of practical questions. Devel-

opment economists, urban planners, sociologists, and NGOs need to become familiar

with this data. "Inanimate data can never speak for themselves, and we always bring

to bear some conceptual framework, either intuitive and ill-formed, or tightly and

formally structured, to the task of investigation, analysis, and interpretation" [109].

This is why, in 2012, Orange launched the Data For Development challenge in

partnership with the University of Louvain and MIT. D4D-Cote d'Ivoire made five

months of mobile phone metadata available [56]. The results were impressive: 260

applications from around the world were submitted to access the data and, after

three months, more than 80 research papers had been produced [8]. These papers

covered topics as diverse as optimizing bus routes, analyzing social divisions [54], and

studying disease containment policies [135].

We are now launching, in collaboration with Sonatel Senegal, the second challenge:

D4D-Senegal where selected teams will have access to one year of metadata for up to

300,000 people across Senegal. This paper describes the data pre-processing and the

l0 Published as de Montjoye, Y. A., Smoreda, Z., Trinquart, R., Ziemlicki, C., and Blondel, V.
D. (2014). D4D-Senegal: the second mobile phone data for development challenge. arXiv preprint
arXiv: 1407.4885.
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three datasets that will be made available, as well as a set of research questions that

have been suggested by local partner organizations. More details and the application

to participate in the challenge are available at http: //www. d4d. orange. com.

3.2.2 Data preprocessing

The Call Detail Records (CDR) have been collected for a year, from January 1 to

December 31, 2013. The customer identifiers were anonymized by Sonatel before the

data was transferred to Orange Labs who did the preprocessing.

The original dataset contained more than 9 million unique aliased mobile phone

numbers. When preparing datasets, we retained only users meeting both of these

criteria:

1. users having more than 75% days with interactions per given period (biweekly

for the second dataset, yearly for the third dataset)

2. users having had an average of less than 1000 interactions per week. The users

with more than 1000 interactions per week were presumed to be machines or

shared phones.

For commercial and privacy reasons, we do not release the real geographical coor-

dinates of the site where BTSs, the mobile network antennas, are located. Note that

several BTS can be co-located. We assigned a new position to each site uniformly

in its Voronoi cell (the region consisting of all points closer to that antenna than to

any other) to make it harder to re-identify users [76]. The SITEARRLATLON. csv file

contains the new, noisy, latitude and longitude of the site.

For example:

siteid,arrjid,lon,lat

1,2,-17.5251,14.74683

2,2,-17.5244,14.74743

3,2,-17.5226,14.7452

4,2,-17.5164,14.74673
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3.2.3 Datasets

Simply anonymized mobile phone datasets have been shown to be re-identifiable. For

instance, it is possible to find a user in a large-scale mobility data using only four

spatio-temporal points and coarsening the data only makes it slightly harder [79].

To balance the potential of the data being broadly used with the risks of re-

identification we provide three sampled and aggregated datasets for this challenge:

" Dataset 1: One year of site-to-site traffic for 1666 sites on an hourly basis,

" Dataset 2: Fine-grained mobility data (site level) on a rolling 2-week basis with

bandicoot behavioral indicators at individual level for about 300,000 randomly

sampled users meeting the two criteria mentioned before for each 2 week period,

" Dataset 3: One year of coarse-grained (123 arrondissement level) mobility

data with bandicoot behavioral indicators at individual level for about 150,000

randomly sampled users meeting the two criteria mentioned before for a year,

Each dataset has been designed to balance utility with privacy, utility beeing the

research that can be done with the data while privacy is the potential risk of re-

identification of users. Datasets are thus either precise spatially and temporally but

limited in the time they span (dataset 2), or aggregated geographically (dataset 3) or

across users (dataset 1) but covering a longer period of time. Finally, precomputed

indicators are provided to help inform behavioral research. Columns that might help

re-identification have been 3-anonynized when binned to remove outliers [193].

Note that a fourth dataset of synthetic data will be made available in September

and will be described in a future paper.

Individual indicators

Mobility datasets 2 and 3 are supplemented with behavioral indicators from [82]

computed from metadata using the bandicoot toolbox [77].

The indicators we provide are:

o active-days-callandtext mean
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" activedays-callandtextsem

" duration_oftcallsmeanmean

" durationofcallsmeansem

* entropy-of-contactscallmean

" entropy-of-contactscallsem

" entropy-of-contacts-textmean

" entropy-of-contactstextsem

" entropy-of-contactscallandtextmean

" entropy-of-contactscallandtextsem

" entropy-places-callandtextmean

" entropy-places-callandtextsem

" interactions-per-contact-callandtextmeanmean

" interactions-per.contact-callandtextmeansem

" interactions-per-contact-call-meanmean

* interactions-per-contact-callmeansem

* interevents-callandtext-mean-mean

" interevents-callandtextmeansem

* intereventscallmeanmean

" interevents-call-mean sem

" interevents-textmeanmean

" interevents-text-meansem
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Places are in this case sites and nocturnal is defined as 7pm to 7am. A full

description of the indicators can be found on the bandicoot document in the data

repository and the indicator files have been 3-anonymized on binned data on specific

columns to remove outliers [193].

Dataset 1: Antenna-to-antenna traffic

This dataset contains the traffic between each site for a year.

The files SET1V-MO1. csv through SET1V_M12. csv contain monthly voice traffic

between sites and are structured as follow:

" timestamp: day and hour considered in format YYYY-MM-DD HH (24 hours

format)

" outgoing-site-id: id of site the call originated from

" incoming-site-id: id of site receiving the call

" number-of-calls: the total number of calls between these two sites during this

hour

* totaLcall-duration: the total duration of all calls between these two sites

during this hour

For example:

timestamp, outgoingsite-id, incoming-site-id, ...

... number_of_calls, total-callduration

2013-04-01 00,2,2,7,138

2013-04-01 00,2,3,4,136

2013-04-01 00,2,4,7,121

2013-04-01 00,2,5,13,272

2013-04-30 23,1651,1632,1,3601

2013-04-30 23,1653,575,1,20

2013-04-30 23,1653,1653,2,385
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2013-04-30 23,1659,608,1,3601

The files SET1S_MO1. csv through SET1SM12. csv contain monthly text traffic

between sites and are structured as follow:

" timestamp: day and hour considered in format YYYY-MM-DD HH (24 hours

format)

" outgoing-site-id: id of site the text originated from

" incoming-site-id: id of site receiving the text

" number-of-sms: the total number of texts between these two sites during this

hour

For example:

timestamp,

2013-05-01

2013-05-01

2013-05-01

2013-05-01

2013-05-31

2013-05-31

2013-05-31

2013-05-31

2013-05-31

outgoing-site-id, incoming-site-id, numberof_sms

00,2,12,6

00,2,14,1

00,2,21,1

00,2,28,9

23,1653,190,2

23,1653,314,3

23,1653,367,8

23,1653,520,1

23,1653,558,2

Note that calls spanning multiple time slots are considered to be in the time slot

they started in and only calls or texts between Sonatel customers are taken into

account.

The latitude and longitude of the sites is provided in SITEARRLATLON. csv.
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Dataset 2: Fine-grained mobility

This second dataset contains the trajectories at site level of about 300,000 randomly

selected users meeting the two criteria mentioned before over two-week periods. The

site locations are provided in SITEARRLATLON. csv.

The files SET2_P01. csv through SET2_P25. csv contain the userid, timestamp,

and siteid for each of the 25 two-week periods. The second digits of the minutes and

all the seconds of the timestamps have been replaced with zeros (format YYYY-MM-

DD HH:MO:00) For each period, a new sample of about 300,000 users was selected

and their userid scrambled. Note that this mean that even if a user were to appear

in two periods, he would have a different id, and vice versa, the same id in two periods

does not mean that it is the same person.

For example:

user-id,timestamp,siteid

1,2013-03-18 21:30:00,716

1,2013-03-18 21:40:00,718

1,2013-03-19 20:40:00,716

1,2013-03-19 20:40:00,716

1,2013-03-19 20:40:00,716

1,2013-03-19 20:40:00,716

1,2013-03-19 21:00:00,716

1,2013-03-19 21:30:00,718

1,2013-03-20 09:10:00,705

1,2013-03-21 13:00:00,705

The indicators are computed, for every user, over the course of the two week, and

are available in the files INDICATORSSET2_P01. csv through INDICATORSSET2_P25. csv.

Dataset 3: Coarse-grained mobility

This third dataset contains the trajectories at arrondissement level of 146,352 ran-

domly selected users meeting the two criteria mentioned before on a yearly basis.
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userid,timestamp,arrondissement_id

37509,2013-01-29 15:00:00,3

84009,2013-01-14 07:00:00,3

84009,2013-01-14 07:00:00,3

84009,2013-01-14 07:00:00,3

80150,2013-01-27 16:50:00,3

52339,2013-01-09 19:50:00,48

52339,2013-01-06 17:50:00,48

52339,2013-01-13 15:40:00,48

52339,2013-01-03 19:00:00,48

52339,2013-01-07 01:30:00,48

The files SET3_MO1. csv through SET3_M12. csv contain the userid, timestamp,

and arrondissementid month by month. The second digits of the minutes and all

the seconds of the timestamps have been replaced with zeros (format YYYY-MM-DD

HH:MO:00) The indicators are computed, for every user, on a monthly basis. They are

available in the files INDICATORSSET3_M01. csv through INDICATORSSET3_M12. csv.

The arrondissement shapefile is provided (SHAPEFILESENEGAL. zip) as well as a

summary table (SENEGALARR. csv).

The summary table contains:

" ARRID: the arrondissement-id

" REG: the name of the region

" DEPT: the name of the department

" ARR: the name of the arrondissement

For example:

ARRID,REG,DEPT,ARR

1,DAKAR,DAKAR,PARCELLES ASSAINIES

2,DAKAR,DAKAR,ALMADIES
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3,DAKAR,DAKAR,GRAND DAKAR

4,DAKAR,DAKAR,DAKAR PLATEAU

5,DAKAR,GUEDIAWAYE,GUEDIAWAYE

6,DAKAR,PIKINE,PIKINE DAGOUDANE

Contextual data

" GIS shapefiles for Senegal: Administrative divisions of Senegal shapefiles pro-

vided by the ADSN are included in the data package SHAPEFILESENEGAL .zip

" Weather data: http: //www. wunderground. com/weather-f orecast/Senegal.

html

* Demographic and socio-economic data: http: //donnees .ansd. sn/en/BulkDownload

" Import/Export data: http://atlas.media.mit. edu/explore/tree map/hs/

export/sen/all/show/2010/

* More references at: http: //www. d4d. orange. com/en/partners-resources/

resources
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3.3 Privacy-through-Security: On the Trusted Use

of Data1

3.3.1 Motivation

Personal Data has become the new oil of the Internet [23], and the current excitement

about Big Data is increasingly about the analysis of personal data: location data,

purchasing data, telephone call patterns, email patterns, and the social graphs of

Linkedln, Facebook, and Yammer. However, currently personal data is mostly siloed

within large companies. This prevents its use by innovative services and even by the

user who generated the data. The problem is that while there is substantial legal

and social policy scholarship concerning ownership and fair use of personal data, a

pragmatic technical solution that allows governments and companies easy access to

such data and yet protects individual rights and privacy has yet to be realized and

tested.

We therefore develop and test an architecture for the trusted use of large-scale

personal data that is consistent with new "best practice" standards which require

that individuals retain the legal rights of possession, use, and disposal for data that

is about them. To accomplish this, we develop openPDS-an open-source Personal

Data Store enabling the user to collect, store, and give access to their data while

protecting their privacy. Via an innovative framework for third-party applications to

be installed, the system ensures that most processing of sensitive personal data takes

place within the user's PDS, as opposed to a third-party server. The framework also

allows for PDSs to engage in privacy-preserving group computation, which can be

used as a replacement for centralized aggregation.

Although our aim is to provide a technical solution, it is important for such

solution to be not only compatible but also aligned with political and legal thinking.

openPDS is compatible with and incorporates best practice suggestions of the US

Consumer Privacy Bill of Rights [27], the US National Strategy for Trust Identities

"Published as de Montjoye, Y. A., Wang, S. S., Pentland, A. (2012). On the Trusted Use of
Large-Scale Personal Data. IEEE Data Eng. Bull., 35(4), 5-8.
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in Cyberspace (NSTIC) [24], the Department of Commerce Green Paper, and the

Office of the Presidents International Strategy for Cyberspace [21]. In addition, it

follows the Fair Information Practices (FIPs) which have mandated that personal

data be made available to individuals upon request. In addition openPDS is aligned

with the European Commission's 2012 reform of the data protection rules [16]. This

reform redefines personal data as "any information relating to an individual, whether

it relates to his or her private, professional or public life." It also states the right for

people to "have easier access to their own data and be able to transfer personal data

from one service provider to another more easily" as well as a right to be forgotten.

All these ideas and regulations recognize that personal data needs to be under the

control of the user in order to avoid a retreat into secrecy where these data become

the exclusive domain of private companies, denying control to the user.

3.3.2 Personal Data Stores (PDS)

Many of the initial and critical steps towards implementation of these data ownership

policies are technological. The user needs to have control of a secured digital space,

a personal data store (PDS), where his data can live. Given the huge number of

sources of data that a user interacts with every day, mere interoperability is not

enough. There needs to be a centralized location that a user is able to view and

reason about the data that is collected about himself. The PDS should allow the

user to easily control the flow of data and manage fined grained authorizations for

third-service services, fulfilling the vision of the New Deal on Data [23]. A PDS-based

market is likely to be fair, as defined by the Fair Information Principles, as the user is

the one controlling the access to his data. The user can decide whether such services

provide enough value compared to the amount of data it asks for; the user can ask

questions like "Is finding out the name of this song worth enough to me to give away

my location?" The PDS will help the user make the best decision for himself. Using a

privacy-preserving PDS allows for greater data portability, as the user can seamlessly

interface new services with his PDS, and will not lose ownership or control of his

personal data.
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Thanks to the policy requirement of data portability, a PDS-based data market

is likely to be economically efficient, as the system removes barriers to entry for new

businesses. It allows the more innovative companies to provide better data-powered

services. The services chosen by the user will have access to historical data, which was

potentially collected even before the creation of the service. Moreover, the services

will not be forced to collect data themselves, as they will have access to data coming

from other apps. Service providers can thus concentrate on delivering the best possible

experience to the user. For example, a music service could provide you a personalized

radio station, leveraging the songs and artists you said you like across the web, what

your friends like, or even which nightclubs you go to. The real value of large-scale data

appears when innovators can create data driven applications on top of rich personal

user information.

3.3.3 Question Answering Framework

In the existing mobile space, personal data is offloaded from mobile devices onto

servers owned by the application creator. This model prevents users from being able

to control their own data; once they hand that data over to a corporation, it is difficult

or impossible to refute or retract.

The key innovation in the openPDS model is that computations on user data

are performed in the safe environment of the PDS, under the control of the user.

The idea is that only the relevant summarized data for providing functionality to the

application should leave the boundaries of the user's PDS.

Rather than exporting raw GPS coordinates, it could be sufficient for an app to

know which general geographic zone you are currently in. Instead of sending raw GPS

coordinates to the app owner's server to process, that computation can be done by the

PDS app in the user's PDS server. The system is still exposing personal data of the

user, but it is constrained to be what the app strictly needs to know, rather than the

raw data objects the user generates. A series of such computed answer would also be

easier to anonymized than high-dimensional sensor data. App designers would take

care to declare to users as well as in a machine readable format to be enforced exactly
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what data is being computed over, what inferences are being exposed to external

apps, and what data is being reported back to the company's servers.

With this model of computation, it is relatively easy to monitor the communication

between a PDS app and its Android counterpart. Since the user owns the platform on

which the PDS app executes, it is possible to eavesdrop on the data that is exposed

by the PDS app to the Android app. If an app is accessing and exporting more data

than it is supposed to be in order to provide the required services, it will be known

by people who use the app, and could potentially be reflected in the app's reviews.

This ability to monitor the results of computation on user data provides a coarse way

to verify that one's personal data is not being unexpectedly leaked.

3.3.4 The user experience

If Alice chooses to download a PDS-aware version of Spotify, the music streaming

service, she would install it just like she would any other Android application. Upon

launching the application, the Android app would prompt her to install a Spotify

app onto her PDS. The description of the PDS app would describe exactly what data

Spotify would access and reason over on her PDS, as well as what relevant summarized

information is passed on to Spotify's servers, for example to offer personalized music

radios to the user. This allows Alice to understand what it means for her privacy to

install the app.

When using the Spotify Android app, rather than storing Alice's personal data on

Spotify's servers, the Spotify PDS app would instead access and process the data on

Alice's PDS. Alice would have installed or bought a PDS instance on her favorite cloud

provider, or on her own server. Over time, her PDS would be filled with information

collected by her phone, but also information about her musical tastes, her contacts,

as well as a stream of other sensor information that Alice accumulates in her day to

day life. Alice would have full control over this data, and could see exactly what data

her phone, other sensors, and services gathers about her over time.

Because the Spotify PDS app is being run on a computing infrastructure that

Alice owns, the outgoing data can be audited to verify that no unexpected data is

81



escaping the boundaries of her PDS. In this way, rich applications and services can

be built on top of the PDS that leverage all of these disparate data sources, while

Alice still owns the underlying data behind these computations, and can take steps

to preserve aspects of her privacy.

3.3.5 Key Research Questions

This vision is a world in which personal data that is easily available but yet the

individual is protected. There are many technical challenges to accomplish this vision.

For instance, the question-and-answer mechanism that allows certified answers to

be shared instead of raw data requires the development of new privacy preserving

technologies for user-centric on-the-fly anonymization.

Similarly, auditing the distribution and sharing of information in order to confirm

that all data sharing is as intended requires the development of new algorithms and

techniques to detect breaches and attacks.

There are also significant user interface questions, so that users really understand

the risks and rewards they will be asked to opt into and are not overwhelmed with

choices. A key idea for these interface questions is to use experimentation to determine

user preferences for risk/reward, assessed via mechanisms such as differential privacy,

in this question-answering environment.

3.3.6 Conclusion

As technologists and scientists, we are convinced that there is amazing potential

in personal data, but also that the user has to be in control, making the trade-

off between risks and benefits of data uses. openPDS is one attempt to provide a

privacy-preserving Personal Data Store that makes it easy and safe for the user to

own, manage and control his data. By anonymously just answering questions on-the-

fly, openPDS opens up a new way for individuals to regain control over their data

and privacy while supporting the creation of smart, data-driven applications.
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3.4 openPDS/SafeAnswers 12

3.4.1 Introduction

Personal metadata - digital information about users' location, phone call logs, or

web-searches - is undoubtedly the oil of modern data-intensive science [129] and

of the online economy [177]. This high-dimensional metadata is what allow apps

to provide smart services and personalized experiences. From Google's search to

Netflix's "movies you should really watch," from Pandora to Amazon, metadata is

used by commercial algorithms to help users become more connected, productive, and

entertained. In science, this high-dimensional metadata is already used to quantify

the impact of human mobility on malaria [209] or to study the link between social

isolation and economic development [94].

Metadata has however yet to realize its full potential. This data is currently

collected and stored by hundreds of different services and companies. Such fragmen-

tation makes the metadata inaccessible to innovative services, researchers, and often

even to the individual who generated it in the first place. On the one hand, the lack of

access and control of individuals over their metadata is fueling growing concerns. This

makes it very hard, if not impossible, for an individual to understand and manage the

associated risks. On the other hand, privacy and legal concerns are preventing meta-

data from being reconciled and made broadly accessible, mainly because of concerns

over the risk of re-identification [79, 155, 194].

Here we introduce openPDS, a field-tested personal data store (PDS) allowing

users to collect, store, and give fine-grained access to their metadata to third parties.

We also introduce SafeAnswers, a new and practical way of protecting the privacy

of metadata through a question and answer system. Moving forward, advancements

in using and mining these metadata have to evolve in parallel with considerations

of control and privacy [85, 163, 32, 175]. openPDS and SafeAnswers allow personal

metadata to be safely shared and reconciled under the control of the individual.

' 2 Published as de Montjoye Y.-A., Shmueli E., Wang S., Pentland A., openPDS: Protecting the
Privacy of Metadata through SafeAnswers. PLoS One, 10.1371 (2014).
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Towards Personal Data Stores

While questions of data ownership and the creation of repositories of personal data

have been discussed for a long time [50, 204, 42, 153, 63, 119, 14, 20, 4], their deploy-

ment on a large-scale is a chicken-and-egg problem; users are waiting for compatible

services while services are waiting for user adoption. Revelations of the collection

and use of metadata by governments and companies [102, 110] have however recently

drawn attention to their potential. The combination of 1) a public interest in ques-

tions of control but also use of their data, 2) political and legal support on data

ownership [11, 22, 25, 17] and 3) the scale at which metadata can now be collected

and processed, might trigger the large-scale deployment of PDS.

openPDS fully aligns with these trends. It uses the World Economic Forum defini-

tion of "ownership" of metadata [25]: the rights of possession, use, and disposal. It fol-

lows policies of the National Strategy for Trust Identities in Cyberspace (NSTIC) [22]

and strongly aligns with the European Commission's reform of the data protection

rules [11]. Finally, it recognizes that users are interacting with numerous data sources

on a daily basis. Interoperability is thus not enough to achieve data ownership or

address privacy concerns. Instead, openPDS implements a secure space acting as a

centralized location where the user's metadata can live. openPDS can be installed on

any server under the control of the individual (personal server, virtual machine, etc)

or can be provided as a service (SaaS by independent software vendors or application

service providers). This allows users to view and reason about their metadata and to

manage fine-grained data access.

From an economic standpoint, data ownership by the individual fundamentally

changes the current eco-system. It enables a fair and efficient market for meta-

data [177, 179] - a market where users can get the best services and algorithms for

their metadata. Users can decide whether a service provides enough value for the

amount of data it requests, and services can be rated and evaluated. Users are em-

powered to ask questions like "Is finding out the name of this song worth enough to

me to give away my location?" Users can seamlessly give new services access to their
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past and present metadata while retaining ownership. From a business standpoint,

such data ownership is likely to help foster alternatives to the current data-selling

and advertising-based business model. New business models focusing on providing

hardware for data collection, storage for metadata, or algorithms for better using

metadata might emerge while software for data collection and data management

might be mostly open-source. The proposed framework removes barriers to entry

for new businesses, allowing the most innovative algorithmic companies to provide

better data-powered services [177].

Other approaches have been proposed for the storage, access control, and privacy

of data. Previous approaches fall into two categories: cloud storage systems and

personal data repositories. First, cloud storage systems, such as the ones that have

been commercially developed by companies like Dropbox [10] and Carbonite [7], are

a first approximation of a user-controlled information repository for personal data.

They however focus on storing files and only implement the most basic type of access

control, usually on a file or folder basis. They do not suggest any data aggregation

mechanisms and, once access has been granted, the raw data is exposed to the outer

world, potentially compromising privacy. Second, personal data repositories have

been developed in academic [50, 204, 42, 153, 63, 119, 125, 39] and commercial set-

tings [14, 20, 4]. All of these repositories are however restricted to specific queries on

a particular type of data, such as interests or social security numbers. They provide

only a basic access-control level, which means that once access to the data is autho-

rized, privacy may be compromised. openPDS differs from previous approaches in its

alignment with current political and legal thinking, its focus on large-scale metadata,

and its SafeAnswers privacy-preserving mechanism.

On Privacy

There is little doubt that web searches, GPS locations, and phone call logs contain

sensitive private information about an individual. In 2012, 72 percent of Europeans

were already concerned about the use of their personal data [11]. The recent reve-

lations are unlikely to have helped [110, 102]. Addressing users' legitimate privacy
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concerns will soon be a prerequisite to any metadata usage.

Protecting the privacy of metadata is known to be a hard problem. The risks

associated with high-dimensional metadata are often subtle and hard to predict and

anonymizing them is known to be very hard. Over the last years, numerous works

have exposed the risks of re-identification or de-anonymization of apparently anony-

mous datasets of metadata. An anonymous medical database was combined with a

voters' list to extract the health record of the governor of Massachusetts [194] while

the Kinsey Institute database was showed to be re-identifiable using demograph-

ics [184]. Twenty million web queries from around 650,000 AOL users were found to

be potentially re-identifiable thanks to people's vanity searches [61] while the Netflix

challenge dataset was de-anonymized using users' ratings on IMDB (The Internet

Movie Database) [155]. Finally, mobility datasets of millions of users were found to

be potentially re-identifiable using only four approximate spatio-temporal points [79].

Geospatial metadata, the second most recorded information by smartphone ap-

plications [199, 1], is probably the best example of the risks and rewards associated

with metadata [190]. On the one hand, a recent report of the Electronic Frontier

Foundation [59] worries about potentially sensitive information that can be derived

from geospatial metadata. For example, geo-spatial metadata behavior collected from

mobile phones has been shown to be very useful in predicting users' personalities [82].

On the other hand, the number of users of location-aware services, such as Yelp or

Foursquare, are rising quickly as these services demonstrate their benefits to users.

Numerous ways of anonymizing personal data beyond the simple removal of ex-

plicit identifiers have been proposed. Similar to the original k-anonymity model [194],

they aim minimize privacy risks while keeping data utility as high as possible. All

anonymization models have however several major limitations.

Generic anonymization models have been designed for relatively low-resolution

data and cannot be easily extended to high-dimensional data such as GPS location or

accelerometer readings. Through generalization and suppression, k-anonymity makes

every record in a given table indistinguishable from at least k - 1 other records,

thereby making it impossible to identify an individual in that table. Variations and
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alternatives include f-diversity [140], which address attacks based on lack of diversity

in the sensitive data and t-closeness [64, 133] which aims at maintaining the distribu-

tion of the sensitive data. The reader is referred to the surveys [35, 100] for further

details. In metadata, any information that is unique to an individual can be used

to re-identify him. Unicity (E) has been used to quantify the re-identifiability of a

dataset [79]. Most rich metadata datasets are expected to have a high 8. This means

that, even if they are computationally tractable, generic privacy models are likely to

result in most data having to be suppressed or generalized to the top-most values in

order to satisfy the privacy requirement [34]. This curse of dimensionality led to the

development of models dedicated to the anonymization of mobility data.

Mobility-focused anonymization models protect individual's mobility traces but

only for very specific data applications or against specific re-identification attacks.

The anonymization models in [53, 101, 216, 144, 173] protect the current location

of the user, allowing him to anonymously perform accurate location-based searches.

They however prevent any uses of historical metadata or side information, making

them impractical for research and smart services using historical data. Other mod-

els [151, 198] allow for the anonymization of short successions of geospatial locations

with no associated timestamps or [214] protect an individual's mobility data against

re-identification at certain given times. These models however focus on anonymizing

mobility data with a certain purpose or specific type of data in mind (i.e., current

location, trajectory without timestamps or mobility data in given times). This makes

these models impracticable for most data-science applications in academia and orga-

nizations.

Finally, all anonymization models, generic or mobility-focused, assume a setting in

which the whole database is anonymized and published once. This makes it impracti-

cal, as (1) the same database is likely to be used to address different research questions

(which might need specific pieces of information) and (2) smartphone applications or

researchers might need access to the very latest pieces of information. Modifying

existing anonymization models to support multiple releases has been shown to be

non-trivial [181]. Indeed, anonymizing each publication on its own is not sufficient,
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since a violation of privacy may emerge as a result of joining information from dif-

ferent publications. Anonymizing the whole database once and successively releasing

the relevant part of the anonymized data is not a solution either, since newer data

may become available. Several dedicated models were recently suggested to address

the multiple publications setting [203, 62, 212, 181]. While very interesting, these

models are based on extensions of the original one publication models and are thus

very limited in the number and type of publications that they can handle.

SafeAnswers, a new paradigm

The goal of SafeAnswers is to turn an algorithmically hard anonymization and application-

specific problem into a more tractable security one by answering questions instead of

releasing copies of anonymized metadata.

Under the openPDS/SafeAnswers mechanism, a piece of code would be installed

inside the user's PDS. The installed code would use the sensitive raw metadata (such

as raw accelerometers readings or GPS coordinates) to compute the relevant piece

of information within the safe environment of the PDS. In practice, researchers and

applications submit code (the question) to be run against the metadata, and only

the result (the answer) is sent back to them. openPDS/SafeAnswers is similar to

differential privacy [91, 150], both being online privacy-preserving systems. Differen-

tial Privacy is however designed for a centralized setting where a database contains

metadata about numerous individuals and answers are aggregate across these indi-

viduals. SafeAnswers is unique, as it focuses on protecting the privacy of a single

individual whose data are stored in one place by reducing the dimensionality of the

metadata before it leaves the safe environment. This individual-centric setting makes

it practical for mobile applications or data-science researchers. It however introduces

new privacy challenges [see Analysis].

Combined with openPDS, this simple idea allows individuals to fully use their

data without having to share the raw data. SafeAnswers also allows users to safely

grant and revoke data access, to share data anonymously without needing a trusted

third-party, and to monitor and audit data uses [Fig. 3-1 and 3-2].
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SafeAnswers settings
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Figure 3-1: Mockups of the proposed SafeAnswers settings presented to
the user for approval. This screen shows the question answered, examples
of the possible responses, and the sensors used to compute the response

3.4.2 Results

The openPDS framework

The Dataflow

Looking at Fig. 3-3, consider a usecase in which a user uses a personalized music

service such as PersonalizedMusic. Every time PersonalizedMusic needs to decide

which song to play next on the user's mobile phone or desktop, it sends a request to

the user's PDS. The actual computation of what song to play next is done by the Per-

sonalizedMusic SafeAnswers module (SA module) inside the PDS front-end. As part

of this processing, the PersonalizedMusic SA module accesses the back-end database

in order to retrieve the required metadata. The PersonalizedMusic SA module would

only access the raw metadata that it was authorized to when it was installed and all

the processing would take place in a software sandbox. Upon completing its process-
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Figure 3-2: Mockups of the proposed interface showing the number of
requests sent by a given app per day.

ing, the PersonalizedMusic SA module would return the name of the next song to

play back to the front-end who will validate it and send it back to PersonalizedMusic.

The Database

Metadata are currently stored in a CouchDB database. CouchDB is a NoSQL

store that stores data as a key to document mapping, where documents are JSON

objects. CouchDB also provides a large range of existing functionality that lends itself

well to the type of analysis needed to compute answers or reduce the dimensionality

of the metadata. It has built-in support for MapReduce through CouchDB-Views,

as well as data validation. All SafeAnswers modules share one unified database, and

each SA module has a corresponding key prefix.

The Front-End

The front-end ensures that no unauthorized operations are carried out on the

underlying metadata. SA modules are restricted to reading from the data sources
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Figure 3-3: openPDS system's architecture. LBSinc web or mobile app sent
a request to the user's openPDS. The request is passed on to the LBSinc
SA module, which requests access to the database in order to retrieve the
metadata needed to compute the answer. The SA module computes the
answer, which is then validated by the PDS Front-End and send back to
the web or the mobile app

they have explicitly listed as dependencies. CouchDB can also enforce access based on

metadata types, time of access, time of collection, etc. The access control mechanism

is implemented based on Django users and a permissioning system, where each app

is registered as a user. We are working to decouple the access control mechanism and
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the PDS using oAuthl.0 protocol [116]. This will allow an authentication server to

hand out tokens associated with a specific service and set of metadata. In addition,

SA modules are executed in a sandboxed environment, and all communications are

encrypted using 256 bits SSL connections. In some implementations, PDSs can be

managed from a web interface.

SafeAnswers is one key innovation of the openPDS framework. SafeAnswers allows

for computations on user metadata to be performed within the safe environment of

the PDS. Only safe answers, the exact information needed to provide the service,

leave the PDS. SA modules are intimately tied to the notion of Design Documents in

CouchDB. A CouchDB design document is intended to be a document that describes

an application to be built on top of an underlying CouchDB instance. Each access of

the SA module to the database has to be authorized and each SA module executes

inside a sandbox. We are now working to add additional fields to the CouchDB design

document specification to allow additional functionality, like SA module dependencies

and permissions. These descriptions will be written in the SA module manifest to be

programmatically enforced and to be presented to the user before installation.

In large-scale deployments, we expect that, instead of developing a SA module

from scratch for each app, there will be common libraries that can be leveraged by

SA modules or directly through a standard API. For example, there could be a library

that supports functionality, like returning the current city a user is in [153], his radius

of gyration in the past 7 days [108] or whether he is currently running. In the future,

we also hope to further develop the SafeAnswers system to support sessions. This

would allow for some of the most advanced data-science uses.

Field-studies and user feedback

Our two initial deployments offer a first qualitative evaluation of the system. The

first field study is monitoring the daily behavior of individuals with diagnosed men-

tal problems (PTSD, depression) and controls subjects for a month through their

smartphones [168]. Data is used to reproduce the diagnoses of mental health condi-

tions, focusing on changes in speech and social behavior. Recorded activities include

psycho-motor activity, occupational activity, social interaction, and sleep behavior.
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Fig. 3-4 presents "focus-group" results about the reaction of individuals to the

openPDS framework (N = 21, 6 females and 15 males, median age category is 29 to

34 old). We consider the deployment to be a success, as 81% of individuals say they

would use it in their personal life and, on a 1 to 5 scale (1: "Not at all comfortable" and

5: "Extremely comfortable"), are comfortable with the data collection (mean: 4, sem:

0.27). From a privacy perspective, we can see that the ability to delete data matters to

participants (mean: 4.10, sem: 0.27). We can qualitatively see that users are generally

comfortable sharing individual data with their primary care provider and mental

health specialist. However, they seem to be less comfortable sharing such data with

friends and potentially their family members. We can also see that anonymity matters

to participants (mean:4 sem:0.30) and that they are significantly more comfortable

sharing anonymous, rather than individual, data (p-value < 0.005 with a one-tailed,

paired, non-parametric Kolmogorov-Smirnov test on 4 specific sharing questions, and

mean:4 sem:0.25 when asked on the importance of anonymizing shared data). All

these emphasize the relevance of the openPDS/SafeAnswers framework.

3

Comfort Sharing Comfort Sharing Comfort Sharing Comfort Sharing Comfort Sharing
Individual Data with PCP Individual Data with Individual Data w ith Individual Data with Individual Dalawith

Mental Health Specialist Immediate Family Friends Similar Individuals

Figure 3-4: Individuals' reaction to data sharing. The error bars are boot-
strapped 95% high-density intervals. We can qualitatively see that users
are generally comfortable sharing individual data with their primary care
provider and mental health specialist. They however seem to be less com-
fortable sharing such data with friends and potentially family members.

A second study, the mobile territorial lab, in partnership with Telecom Italia,

Telefonica, and the Fondazione Bruno Kessler, is now underway. It is composed of 70
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young parents living in Trento and its premises. The aim here is to create a long-term

living lab to study user behavior and to perform user studies. Participants' behavior

is recorded using an extended version of the open-sensing framework FunF [13]. All

collected metadata are stored on users' PDSs.

3.4.3 Discussion

Performance

openPDS may introduce a performance overhead caused by its distributed nature,

the added security and privacy mechanisms and the group computation mechanism

[see Analysis].

First, the distributed nature of openPDS requires services to access the user's

PDS when an answer has to be computed. In cases where computing the answer is

fast, the latency it imposes might make an openPDS-based solution impracticable.

Solutions such as precomputing some values and locally caching them might help.

However, in cases where computing the answer inside the PDS dominates the total

execution time, this might not significantly impact the user experience. In fact, this

might actually introduce a performance boost, since it parallelizes the computations

that are being performed at a per-PDS level.

Second, the added security and privacy mechanisms described below may also

result in performance overhead. This overhead needs to be taken into account when

choosing the appropriate mechanism. For example, the on-the-fly nature of open-

PDS/SafeAnswers may lead to inference of sensitive data if the results of several

queries are joined together. On the one hand, using techniques such as the one

suggested by [181] may be very efficient in preventing such inference, but they are

relatively expensive in computation time. On the other hand, adding noise to query

results may not be equally efficient, but would result in a much faster computation

time. Advanced techniques might thus be crucial when dealing with credit card or

location data, but noise addition might be sufficient to protect less sensitive data such

as accelerometer readings.
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For many years, group computation has been of theoretical interest only. Great

improvements and actual field-studies in domains such as electronic voting, actioning,

and data mining have recently made group computation-also called Secure Multiparty

Computation, or SMC-of practical interest [161]. Similar to network latency, the

overhead of SMC might become reasonable if computing the answer dominates the

total computation time. SMC has furthermore recently been generalized into belief

propagation algorithms [126]. This means that every node of the computation does

not have to communicate with every other anymore, thereby reducing the overhead.

Usage Experience

In this section we describe two short scenarios for a user and a developer switching

to an openPDS/SafeAnswers system for mobile applications.

End-User Suppose Alice wants to install and use a smartphone app like LBSinc,

a location-based check-in application, without using a PDS. Alice downloads the app

onto her phone, authorizes LBSinc to access her phone's network communication and

GPS coordinates, and creates a user account with LBSinc. The LBSinc app starts

collecting metadata about her and stores it all in its back-end servers. Under this

model it is difficult for Alice to access the metadata LBSinc uses to makes inferences

about her, or to remove the metadata she does not want LBSinc to access or use.

Alternatively, Alice could decide to download a PDS-aware version of LBSinc. She

installs it just like she would install any other smartphone app and authorizes it to

access only her phone's network communication. When used for the first time, the

smartphone app prompts her to enter her PDS URI. Alice then sees exactly what

metadata the LBSinc SA module will have access to and examples of the answers [see

Fig. 2], the relevant summarized information that will be send back to LBSinc. If

she accepts, the LBSinc SA module is installed onto her PDS and she can start using

it.

App Developer Suppose a developer now wants to implement MyMusic, a smart-

phone app that plays music to Alice based on her preferences and current activity.

Under the current model, he would first have to develop a smartphone app to col-
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lect the metadata on Alice's phone, record it, and periodically send it to a server.

He would then develop a server with an internal database to store the raw activity

data he collects, a secured API for this database to receive the metadata, and a way

to anonymize the metadata or at least separate the user account information from

the metadata. He could then start developing an algorithm to decide which song

or type of music to play. The initial picture he would have, of users would be very

rough, as he would have no prior metadata to work with. Finally, he would have to

wait to collect a sufficient amount of metadata before being able to provide adequate

recommendations.

If operating within the openPDS/SafeAnswers framework, the metadata that the

developer needs are likely to have already been collected either by a metadata col-

lection app [5] or by another application or service. The developer would then spend

most of his time writing an SA module that would decide which song or type of music

to play and test it on development copies of PDSs. The PDS front-end would take

care of creating the API and of securing the connection for him. The developer's algo-

rithm would be able to access a potentially large set of metadata, including historical

metadata.

3.4.4 Analysis

The openPDS framework suggests several mechanisms for enhancing the privacy and

security of personal metadata: SafeAnswers, access control, sandboxes, and network

encryption. In this section, we discuss several cases where these might fall short and

discuss potential counter-measures.

Protecting aggregated answers of groups

A practical example would be a service, such as CouponInc, which wants to execute

a simple query to know how many of its users are around a certain shop to send them

a special coupon. CouponInc might want to issue a query like "How many users are

in this geographical area at the current time?" or "How active are these users during
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lunch time?"

In a distributed setting, such computation falls under the well-studied field of

secure multi-party computation (SMC) [105], where the querying agent never sees

any individual user's metadata but can access information aggregated across users.

User privacy is preserved, as each PDS only sends cryptographically masked messages

to other nodes in the network.

Service

1. query

Service

2. peer-to-peer computation

Servce

3. query response

Figure 3-5: Group Computation Overview. (1) A querying agent (like Coupon-
Inc) passes a function that its wants a collaborative answer for, along with a list
of URI to PDSs. (2) PDSs all trade messages in order to compute a collaborative
answer. (3) The answer is reported back to the querying agent

Such a cryptographic technique fits elegantly into the PDS model of computation

[Fig. 3-5]. Rather than anonymizing and computing over-complex data items, like
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GPS coordinates, the SA modules could compute features locally to each user's PDS,

reducing the dimensionality of the metadata. After the local computation is done,

the inferred facts-e.g. whether or not a given user is in a given geographical area-can

be aggregated in a privacy-preserving way. This means that even the low-dimension

answer cannot be associated with a particular user.

Attacks in the case of well-behaved apps

Even in the absence of attackers, apps that behave as they are supposed to might

pose a risk to users' privacy. We notice two major challenges: (1) How can an

openPDS/SafeAnswers determine the required level of aggregation given that it only

has access to the metadata of a single user? (2) Well-behaved apps could inadvertently

collect data whose combinations may allow others to infer sensitive information.

A potential solution to the first challenge might be found in [79]. The authors

studied fifteen months of human mobility data for one and a half million individuals,

and found that one formula determines the uniqueness of an individual's mobility

traces, given the traces' resolution (i.e., level of aggregation) and the amount of

background knowledge available to the adversary. If extended to other types of data,

such an equation could be used by SafeAnswers to determine the required level of

aggregation needed when answering a query.

The fields of Privacy Preserving Data Publishing and Mining aim to address a

problem similar to the second challenge: how to anonymize the current publication of

a database so that the combination of all past and current anonymized publications

respect privacy. These works suggest several interesting assumptions and techniques

that could be adopted by the openPDS/SafeAnswers framework. For example, the

authors of [181] show that the problem of accurately calculating the level of privacy

imposed by a set of three or more publications is NP-hard. The authors then suggest a

relaxed method for calculating the privacy level in polynomial time. Their method is

based on joining the set of publications into a single table, which can then be checked

against some privacy requirement. They also suggest a supplementing algorithm for

anonymizing the current publication so that the required privacy level is obtained.
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Their methods might be used by SafeAnswers in order to determine whether the

current set of queries and potential future queries might compromise privacy.

Work in statistical databases might also help address the second challenge [210].

A statistical database aims to allow the execution of statistical queries without com-

promising the confidentiality of any individual represented in the database. Two

approaches used in this field could be useful for SafeAnswers: (1) A query restric-

tion rejects each query that could compromise a user's privacy and provides accurate

answers to legitimate queries. The computation of what is a legitimate query is usu-

ally based on the size of the query's results or the extent of overlap between queries.

Note however that the denial of a query may, in itself, provide information to an

an attacker. (2) Perturbation gives approximate answers by adding noise to the an-

swers computed from the original metadata. Regardless of the specific perturbation

technique, the designer must attempt to produce statistics that accurately reflect the

underlying database. Such perturbed answers might however not be acceptable for

all uses.

Attacks in the case of malicious apps

While well-behaved apps might inadvertently collect sensitive information, apps that

are voluntarily not playing by the rules pose a serious threat to user's privacy. The

major risk we see here is how to protect the metadata against an app that deliberately

tries to infer sensitive information by over-querying a user's openPDS or by colluding

with other apps.

Technically, numerous techniques from anomaly detection may help SafeAnswers

detect suspicious behavior. For example, a service that suddenly changes its query

pattern; querying for location every minute while it used to ask user's location and

speed a few times in a row 3 times a day. The detection of anomalies, outliers, or rare

events, has recently gained a lot of attention in many security domains, ranging from

video surveillance and security systems to intrusion detection and fraudulent transac-

tions. Accordingly [66], most anomaly detection methods are based on the following

techniques: classification, nearest neighbor, clustering, statistical, information theo-
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retic, and spectral. Any of these techniques, or their combination, can potentially be

used by SafeAnswers.

Anomaly detection could also be combined with reputation systems to allow for a

group of openPDSs to exchange information about modules and services in real-time.

The P2P reputation systems literature considers different types of malicious behavior

that can be blocked with the help of reputation systems. These give us a foretaste of

potential risks. "Traitors" are services who initially behave properly but then start to

misbehave and inflict damage on the community. This technique is particularly effec-

tive when the service has become respectable and well installed. "Whitewashers" are

services who leave and rejoin the system with new identities in order to purge the bad

reputations they acquired under their previous identities. Finally, "Collusions" are a

group of malicious services acting together to cause damage. Such reputation systems

could be combined with other privacy mechanisms discussed here. For example, an

openPDS might decide to allow a service with a medium rating to execute restricted

or noisy queries but temporarily block a service whose rating suddenly dropped.

Various UI mechanisms can also be used to warn users of potentially malicious

apps before they are installed. For example, trust could be used to rate service

providers. Adapting the definition from [152], trust would reflects a user's or a PDS's

subjective view of a service, while reputation could be considered a collective measure

of trust reflecting a group view of that service. Work by [130] shows that the repu-

tation of the service provider matters more than the specific data being accessed and

hints at the potential usefulness of a reputation system to help users decide which

services to trust. Various principles for computing reputation and trust can be found

in [124]. Besides a simple summation or average of ratings, the authors mention dis-

crete models in which trust is a discrete value from a predefined set of values, fuzzy

models, bayesian systems, belief models, and flow models.

Attacks compromising the host

Finally, openPDS is vulnerable to the traditional security and privacy issues of any

hosted system. Attackers could compromise the authentication/control mechanisms
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or impersonate existing users to gain access to the database or to corrupt the sys-

tem. For instance, in the case of virtual machines hosting openPDSs, an attacker's

virtual machine can legitimately be located in the same physical machine as open-

PDSs virtual machines. This is, however, not specific to openPDS, and similar issues

exist with any hosted systems, such as SaaS, virtual machine and traditional servers.

Solutions include hypervisors [169] or data-at-rest encryption [182, 170] such as ho-

momorphic encryption schemes [103]. The main difference openPDS introduces is

having the data distributed across machines, systems, and implementations of open-

PDS. While a full analysis is beyond the scope of this paper, one might imagine that

a distributed and heterogeneous system might be harder to attack than some of the

traditional centralized ones especially if information is shared across machines [see

previous section].

3.4.5 Conclusion

Finally, as technologists and scientists, we are convinced that there is an amazing

potential in personal metadata, but also that benefits should be balanced with risks.

By reducing the dimensionality of the metadata on-the-fly and actively protecting

users, openPDS/SafeAnswers opens up a new way for individuals to regain control

over their privacy.

openPDS/SafeAnswers however still face a number of challenges. Each challenges

includes several potential directions for future research: (1) the automatic or semi-

automatic validation of the processing done by a PDS module; (2) the development of

SafeAnswers privacy-preserving techniques at an individual level for high-dimensional

and ever-evolving data (mobility data, accelerometer readings, etc.) based on existing

anomaly detection framework and potentially stored in highly-decentralized systems;

(3) the development or adaptation of privacy preserving data-mining algorithms to an

ecosystem consisting of distributed PDSs; and (4) Uls allowing the user to better un-

derstand the risks associated with large-scale metadata and to monitor and visualize

the metadata used by applications.
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Conclusion

The results of this thesis assert the need to, once again [206], deeply rethink our

approach to data protection in order to keep up with the evolution of technology.

Our ability to collect and process large amounts of data has greatly increased in

the last decade. An equivalent paradigm-shift in our ability to protect data is now

required to provide the level of privacy needed for the harmonious development of

our societies.

This requires us to acknowledge the limits of the traditional de-identification

model" and to refocus our policies on the original notion and intention of anonymity.

Technically, we show that privacy-through-security approaches have great potential

to help ensure anonymity and protect the privacy of individuals in the age of big

data.

This thesis first argues that the premise of data anonymization, that someone can

"hide in the crowd", is inadequate to protect the privacy of individuals in modern

high-dimensional datasets (data from mobile phones, the Internet of Things, public

transportation, wearables, etc). We introduced unicity and used it to show that only

a few points are needed to uniquely identify an individual with high likelihood in

both mobile phone [79] and credit card datasets [83]. We furthermore showed that

anonymization strategies, such as data generalization, are not sufficient to ensure

anonymity in high-dimensional datasets. Our work has been replicated on four differ-

ent mobile phone datasets: Two Italian [65] and one Latin American [172] datasets,

"We here use "de-identification model" to refer to the release of datasets that have been
anonymized (or de-identified) and undergone risk assessment
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and one dataset from an unnamed country [187]. All reached the same conclusion:

that mobile phone data are high-unicity.

This thesis goes on to show that the second pillar of de-identification, risk assess-

ment, is similarly crumbling. As datasets become richer, adequate risk assessment

will need to consider not only what is directly visible about an individual in the data,

but also what an algorithm could uncover from the data, now or in the future. For

example, using mobile phone data we showed that machine learning algorithms could

predict the personality traits of an individual up to 1.7 times better than random [82].

In the age of big data, assessing the risk of inference requires significant investments

in specialized training datasets and fast-evolving machine learning techniques [87].

Comprehensive risks assessments will become increasingly difficult to perform, ulti-

mately strongly limiting their relevance.

Taken together, the limits of anonymization [79, 83, 155, 45, 115, 196] and risk

of inference [82] in high-dimensional datasets strongly restrict the pertinence of the

de-identification model. The de-identification model, where control over the data is

effectively lost 4 is no longer a useful basis for policy 5

* As we have shown, the removal or absence of legally defined "Personally Iden-

tifiable Information (PII)" is not an effective anonymization method. It should

not be considered enough to make data "non-personal" [131] and release it free

of legal protections (the de-identification model).

* More advanced methods such as data generalization, sampling, suppression, or

noise addition can sometimes help limit the risk of re-identification [80]. These

methods are however still insufficient to classify data as "non-personal" and

release it free of legal protections (the de-identification model) 16. Even worse,
14Data Use and Non-Disclosure Agreements are notoriously difficult to enforce across jurisdictions

and are only practical when data is shared with a handful of trusted partners. Released data such
as the AOL search dataset and the NYC taxi cab dataset are still available online despite known,
well-documented vulnerabilities [37, 165]

15A view since shared by the President's Council of Advisors on Science and Technology who
concluded that "Anonymization remains somewhat useful as an added safeguard, but it is not robust
against near-term future re-identification methods. PCAST does not see it as being a useful basis
for policy." [159]

16Note that here we focus on individual-level data that have been anonymized using the advanced
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such refined methods might be counter-productive by giving a false sense of

safety that it would be very hard to re-identify the data.

* Similarly, estimated risks of re-identification are also not a useful basis for pol-

icy. Indeed, as we argued before "one can always [...] artificially lower the esti-

mated likelihood of reidentification through the use of arbitrary and debatable

assumptions" [81], even without any changes made to the actual dataset [46].

For instance, pre-release estimations of the risk of re-identification for the Her-

itage Health Prize dataset ranged from .0084% under liberal assumptions [96]

to 12.5% under more conservatives ones [154].

The inadequacy of the de-identification model been resisted by some who have

argued that it would result in a "tragedy of the data commons" [214] or that this is

some kind of "inevitable trade-off" [47]. Equating the recognition of the shortcom-

ings of the de-identification model with a decrease in data use, e.g. for research, is

misleading. Firstly, it assumes that the de-identification model is the only one avail-

able, effectively disregarding existing and applicable alternatives including modern

privacy-through-security approaches. Secondly, it ignores the fact that the scope of

the privacy laws in the United States and Europe is much broader than just the use

of data for research including, e.g. the selling of individual-level anonymized data.

Recognizing the limits of the de-identification model, three main solutions exist

from a policy perspective. First, we could consider all individual-level data (not

aggregated) to be personal. Their use and collection would be governed by existing

privacy laws. This, however, would give no incentive to take the important, but

insufficient step of removing names and other direct identifiers when collecting or

using data, often unnecessarily increasing risks to individual privacy.

The second option would be to create a third category of data: identifiable

data [179] for which "some non-remote possibility of future identification" exists.

Data could be identified if it contains direct identifiers (e.g. names - currently per-

sonal data), non-identifiable (currently not personal data), or identifiable. In the

methods mentioned above. This is not necessarily applicable to new-often much smaller scale-
extracted data e.g. behavioral indicators [77] or "answers"
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latter case, the authors propose that some, but not all, legal protections would apply.

Aggregated data can probably usually be considered non-identifiable data and the

potential of big data is in individual-level (often high dimensional) data. As with the

current de-identification approach, this assumes that a useful and defensible line can

be technically drawn between non-identifiable and identifiable individual-level data.

As we have discussed above, estimated risks of re-identification are not a useful basis

for policy.

The best option is probably to keep, from a policy standpoint, the conceptual

notion of anonymity while ensuring its promise through legal and privacy-through-

security means. The data owner guarantees that data will always only be used in

aggregate form (e.g. the results of statistical models), data will not be re-identified

nor reconciled across datasets (data merge), data will not be used to make decisions

about an individual, etc 17.

From a technical perspective, we argue that privacy-through-security model can

strongly help data owners ensure the promise of anonymity. Here, as opposed to the

de-identification model, raw data is never shared. Third parties are given a remote

access to the data, and data access and use are controlled to help ensure that the

data is used appropriately. Four main classes of privacy-through-security models

exist, depending on the sensitivity of the data and the stage of development of the

research question:

1. Remote data access [113]: direct identifiers are removed and data is protected

through access control, IP-restrictions, and active data monitoring.

2. Question-and-answers systems [78]: only answers computed from the raw data [77]

are shared with third parties.

3. Aggregated answers: answers are aggregated across individuals, e.g. using se-

cure multi-party computation [105], before being shared.

17Such more conceptual approach is similar to the proposed European privacy directive and the
US "use-based" strategy.
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4. Differential privacy [91]: answers are aggregated across individuals and sufficient

noise is added to give formal privacy guarantees.

We believe that anonymity provides a clear and easy to understand promise

for data privacy and a useful basis for policy. Once disconnected from the de-

identification model, anonymity can truly be ensured using legal and privacy-through-

security strategies that can adapt to technological evolutions.
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