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Abstract 
 

Piezoelectric vibration energy harvesters (PVEHs) for microelectromechanical systems (MEMS) 

have received considerable attention as an enabling technology for self-powered wireless sensor 

networks. MEMS-PVEHs are particularly attractive because of the potential to deliver power 

indefinitely and their ability to be integrated concurrently with microfabrication of sensor nodes. 

A key challenge has been insufficient power and voltage generation for practical applications. 

Along with research efforts on improved materials, efficient electronics, and fabrication of 

devices, modeling is an indispensable element in predicting and designing PVEHs. Here, an 

improved electromechanically-coupled model is developed including the ability to analyze proof 

mass effects and different electrode configurations. Although essential in microscale devices to 

move device resonances towards optimal frequency points for harvesting, proof masses have not 

been treated rigorously in extant work. An improved treatment of a rigid proof mass with rotation, 

and an exact treatment (two-beam model) of a flexible proof mass, are presented and 

experimentally verified using a macroscale, symmetric, bimorph, cantilevered PVEH device 

operating in {3-1} mode with a rigid proof mass, and a micron-scale Si cantilever with a flexible 

proof mass, respectively. Focused ion beam milling is used to create different flexible proof 

masses, and atomic force microscopy is used to study the mechanical behavior of micron-scale, 

single-crystal Si cantilevers. It is found that the two-beam model is necessary for the majority of 
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the proof mass cases considered, especially when considering key power-generation 

characteristics such as strain developed in the piezoelectric layers. The effects of piezoelectric 

material properties on device performance are studied via model-based sensitivity analyses to 

gain insight into the design and selection of optimal piezoelectric materials for power and 

voltage generation. Notably, and non-intuitively, optimum power either at resonance or anti-

resonance is independent of the piezoelectric coupling constant of the piezoelectric material, 

obviating the oft-cited rationale for materials research to increase piezoelectric coupling 

coefficients. For example, in an exemplary PVEH optimization, maximum power and voltage are 

obtained at relatively low values (30~40 % of bulk PZT, near AlN and ZnO film values) of 

piezoelectric coupling coefficients. The improved model is used as a multi-variable design tool 

for designing a novel piezoelectric/ultrananocrystalline diamond (UNCD) heterostructure 

MEMS-PVEH device. This thesis contributes to the development of MEMS- PVEHs by offering 

new insights at both the materials and system levels, including optimization findings using 

different objective functions, such as efficiency. Future work includes application of the model-

derived piezoelectric materials design guidelines to aid in the design of optimal MEMS-PVEH 

systems, fabrication of designed UNCD/piezoelectric-based MEMS-PVEHs, and analytical and 

experimental studies of both structural and piezoelectric fatigue phenomena for enhanced 

reliability of PVEHs. 

 

Thesis Supervisor: Brian L. Wardle 

Title: Associate Professor of Aeronautics and Astronautics 
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a  width of interdigitated electrode (IDTE) 

A  area 

Ael  area of electrodes in IDTE modeling  

Ap  area of a piezoelectric layer cross-section in IDTE modeling  

subscript, ar anti-resonance  

Bf  modal forcing matrix with elements Bf,ij  

Bf  scalar forcing function 

b  width of structure 

C  damping matrix with elements Cij 

C  scalar damping constant 

Cm   mechanical damping constant 

Ce   electrical damping constant 

c
E
 piezoelectric material elastic stiffness matrix at constant electric field (E = 0) 

with elements 
E

ijc  

c  length of the electrode in Si-based resonators 

Cp  capacitance coefficient matrix with elements Cp,ij 

Cp  scalar capacitive coefficient 

D  electric displacement vector with elements Di 

d  piezoelectric constant matrix with elements dij 

E  electric field vector with elements Ej 
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E  scalar electrical field, or Young‟s modulus 

EI   effective bending stiffness 

e  piezoelectric constant matrix with elements eij 

FB   base excitation force 

FEP   dimensionless forcing term for electrical output power 

FMP   dimensionless forcing term for mechanical input power 

Fspring   spring force in electrostatic resonator analysis 

Felectrostatic electrostatic force in electrostatic resonator analysis 

Fnet   net force in electrostatic resonator analysis 

fr  resonant frequency in [Hz] 

far  anti-resonant frequency in [Hz] 

f(x,t)  external force 

subscript, f thin films 

g  gap size or, unit of gravitational acceleration, 9.8 m/s
2
 

g0  initial gap size 

gpi  gap size at pull-in 

h  height or thickness in vibration direction 

hPM  proof mass height 

I(x)  cross-sectional area moment of inertia 

I0  moment of inertia at the beam junction to the proof mass 

Iout  current 

K  modal stiffness matrix with elements Kij 

K or k  stiffness or spring constant 

L  beam length or active (piezoelectric) beam length 

LPM  proof mass length 

LT  total length of the beam/plate 

LE  length of electrode in IDTE 

Le  effective length in concentrated proof mass analysis 

Lp   the length of piezoelectric layer not under the IDTEs 

M  modal mass matrix with elements Mij 
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M  scalar mass 

MB  mass of base accelerating the cantilever in efficiency (η) analysis 

MEH  energy harvester total mass 

M0  mass of overhang in rigid proof mass modeling  

(= mass of proof mass + mass of the beam under the proof mass in Figure 3.2) 

MPM  mass of proof mass 

MT  total mass of beam/plate and proof mass 

m  mass per length 

subscript, opt (power) optimum 

P  piezoelectric poling vector or polarization with elements Pi 

Pin  mechanical input power 

Pop  operating power density 

Pout  electrical output power 

Pst  static power density 

p  spacing between the center of IDTEs (or called pitch)  

subscript, p piezoelectric layer 

Q  charge or quality factor 

q  charge 

Rl  electrical load resistance 

r(t)  general mechanical coordinate 

subscript, r resonance 

S  strain vector with elements Sj 

S0  static moment at the beam junction to the proof mass 

Sp  the moment of area, Ap, in IDTE modeling 

T  stress vector with elements Ti 

Tk  kinetic energy 

subscript, s structural layer 

tp  thickness of the piezoelectric layer 

t  thickness of each layer, or time 

superscript, t transpose of matrix 
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U  internal potential energy 

u  mechanical relative displacement vector with elements ui 

V  volume 

Vop  operating volume 

Vst  static volume 

v  voltage vector with elements vi 

v  scalar voltage 

vapp  applied voltage 

vpi  pull-in voltage 

W  external work 

We  electrical energy or work 

w or w(x, t) beam deflection 

wB  absolute base displacement 

wtip  beam tip displacement 

xa  general beam structure axial coordinate 

xt  general beam structure transverse coordinate 

W  external work 

We  electrical energy 

z distance measured from neutral axis in beam/plate or, relative displacement in 

electrostatic resonator analysis 

zN  distance between the centroid of area, Ap, and the neutral axis of the combined 

beam in IDTE modeling 

zNA  neutral axis distance 

α dimensionless time constant 

δij Kronecker delta 

η  power efficiency 

ε  piezoelectric material permittivity matrix with elements εij 

φ scalar electrical potential 

r   mechanical mode shape 

ρ density 
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Θ  coupling coefficient matrix with elements θij 

ζm  mechanical damping ratio 

ζe  electrical damping ratio 

2
  system coupling factor 

λN  convenient modal analysis constant 

  Poisson‟s ratio 

Ω  normalized frequency ratio 

  input driving frequency in [rad/s] 

1  first mode resonant frequency in [rad/s] 

N  N
th

 mode resonant frequency in [rad/s] 

r  resonant frequency in [rad/s] 

ar  anti-resonant frequency in [rad/s] 

superscript, * effective piezoelectric constants for beam or plate in {3-1} or {3-3} mode of 

operation (see Appendix A) 
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Chapter 1 

 

 Introduction 
 

 

In recent years, harvesting ambient energy from the environment has been a growing 

interest area and major focus of many research groups [1]. Many ambient power sources such as 

thermal gradients, mechanical vibrations, fluid flow, solar, human-driven sources [2, 3] etc. have 

been actively investigated in order to realize alternative power supplies. Ambient sources are 

potential candidates to replace existing power sources such as batteries that have a limited energy 

storage capacity and lifetime for some applications [4]. In particular, mechanical vibration 

energy harvesting has drawn much attention as substantial advances have been achieved in 

integrated circuit technology, particularly in low power digital signal processors, reducing power 

requirements for wireless sensor nodes [5, 6]. Energy harvesting from external mechanical 

excitation is made through conversion of nearly ubiquitous, ambient mechanical vibration energy 

using one of three transduction mechanisms: electrostatic, electromagnetic, or piezoelectric 

effects [1, 7]. Although each transduction mechanism and corresponding application has 

advantages in different areas, energy conversion using piezoelectricity is regarded as one of the 

most promising technologies for MEMS devices. Piezoelectric materials [8] produce an electrical 

charge or voltage when subjected to a mechanical stress or strain, or vice versa. Vibrational 

energy is directly converted to voltage with no need for complex geometries or additional 

components. This is in contrast with electrostatic devices where an input voltage is required. 

Perhaps most importantly, piezoelectric vibration energy harvesters (PVEHs) can generate high 
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output voltages with enhanced efficiency [7]. In this chapter, an overview of various energy 

harvesting technologies for mobile and wireless electronics is presented, followed by an 

introduction of piezoelectric mechanical vibration energy harvesting in order to set the context 

for the research work in this thesis.  

 

1.1  Energy Harvesting for Mobile and Wireless Electronics 

 

Energy harvesting, power harvesting, or energy scavenging is the process of acquiring the 

energy surrounding a system and converting it into usable electrical energy. One driving force 

behind the search for new energy harvesting devices is the desire to power sensor networks and 

mobile devices without batteries. Many electronics have heavily relied on the use of 

electrochemical batteries for providing electrical energy to the device. Batteries, however, lag 

today‟s rapid development of wireless and mobile applications due to their finite lifespan and 

limited energy storage capacity, generating issues of replacement and disposal. In addition to 

these inherent limitations, batteries have shown relatively stagnant growth in technology over the 

past decade, while the performance of computing systems has grown steadily [9]. For portable 

electronics, replacing the battery is problematic. In the case of wireless sensors, these devices 

can be placed in very remote locations such as structural sensors on a bridge or global 

positioning system (GPS) tracking devices on animals in the wild. Simple replacement of the 

battery can become a very expensive task or even impossible. For embedded sensors for 

structural health monitoring of vehicles or aircraft bodies, in particular, it is not feasible to 

replace batteries. The concept of energy harvesting works towards developing self-powered 

devices that do not require replaceable power supplies. From external sources such as light, 

thermal gradients, wind, water flow, mechanical vibration, and human/animal activities, ambient 

energy in the surrounding medium can be obtained and used to replace or charge batteries. This 

captured energy can then be used to prolong the life of the power supply or in the ideal case 

provide endless energy for portable and/or wearable electronics (e.g., cellular phones, mobile 

computers, radio communication equipment, etc.) and wireless sensor networks. Recent 

advances in wireless technology and low-power electronics as MEMS systems enable 

achievement of rapidly decreasing size, cost, and power consumption of sensors and electronics, 
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resulting in a surge of research in energy harvesting for practical real-world applications.  

The history of energy harvesting dates back to the windmill and the waterwheel. Today, 

more power-generating options are available for harnessing ambient environmental energy, 

including solar energy, thermal energy, vibration-based devices, human power and so on derived 

from vehicles, structures, industrial equipment, environment, and the human body (Refer to 

Table 1 in [10]). Following is a brief review of solar cells, thermoelectric, vibration-based energy 

harvesting, bio-energy harvesting and other harvesting methods that have been investigated in 

the extant literature.  

 

1.1.1  Solar Cells 

 

Solar cells are one of the most commonly considered strategies of „energy harvesting‟ that 

harnesses ambient light. These systems consist of solar arrays and signal processing circuitry. 

Power from solar cells results from the photovoltaic effect, which is the direct conversion of 

incident light into electricity. In direct sunlight, solar cells provide excellent power density of 

15,000 W/cm
3
 which is about two orders of magnitudes higher than other sources [10, 11]. In 

addition, ease of integration, modularity, lack of emission or noise, lack of moving parts, and use 

of a readily available source are advantageous aspects of solar power systems [1]. However, 

solar cells are limited in dim office lighting, or areas with no light. On cloudy days, power 

density is only around 150 W/cm
3
 [11]. Thus, in embedded applications, in particular, solar 

cells would not be suitable because there may be no light present, or the cells can be obscured by 

contamination [7]. In addition to the issue of variation in light intensity, bulky electronics 

required for the additional signal processing circuitry, relatively large surface area required for 

arrays of cells, low conversion efficiencies, and high cost are the major challenges in the 

implementation of solar technology. Most commercially manufactured solar cells are based on 

relatively inexpensive crystalline silicon modules or flexible amorphous silicon panels with 

energy efficiency of 10-20 %. Higher efficiencies have been achieved using novel fabrication 

techniques using III-V compounds (GaAs, InP, and GaSb) but these are costly and contain either 

toxic or rare elements [1]. Detailed performance characteristics of both commercial and novel 

solar-power systems are summarized in tables and found in Reference [1]. Established products 
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that harvest light as an energy source range from solar homes producing kilowatts on a bright 

day to solar chargers for cell phones reported to produce up to 2 W of power in direct sunlight. 

Researchers continually strive to refine solar cell materials and technologies to increase 

efficiency [9]. 

 

1.1.2  Thermoelectric Generators  

Generation of electricity via thermal gradients is another form of energy harvesting for 

powering portable devices. Thermoelectric generators are devices which convert heat 

(temperature differences) directly into electrical energy, using a phenomenon called the "Seebeck 

effect" (or "thermoelectric effect") [12-15]. A thermoelectric device creates a voltage when there 

is a different temperature. Conversely when a voltage is applied to it, it creates a temperature 

difference (known as the Peltier effect) [12]. This effect can be used to generate electricity, to 

measure temperature, or to heat or cool objects. Power scavenged from thermal gradients is 

substantial enough to be of interest if the necessary thermal gradients are available. A typical 

thermoelectric module consists of p- and n-doped semiconductors of Bi2Te3, sandwiched 

between two metallized ceramic plates [13]. Thermoelectric converters are solid-state devices 

and have no moving parts, allowing long hours of steady-state operation without a need to 

replenish materials. It is also advantageous that heating and cooling can be reversed [13]. One 

downside to thermoelectric energy conversion is low efficiency, currently less than 10 %. In 

addition to low efficiency, difficulty in finding large temperature gradients (> 10 
o
C) in small 

volumes (< 1cm
3
) restricts realization of power-generating thermoelectric devices for MEMS 

applications [14]. Commercial realization of thermoelectric generators has also been delayed due 

to materials problems associated with thermocouple modules. These modules are fabricated from 

intermetallic compounds such as Bi2Te3, Pb-Te, and Si-Ge, which have intrinsically low melting 

and/or decomposition temperatures, low energy conversion efficiency and toxic content, and are 

presently scarce [1]. Ideal thermoelectric materials have a high Seebeck coefficient, high 

electrical conductivity, and low thermal conductivity. Thus, in order to increase efficiency, 

development of materials is essential that are able to operate in higher temperature gradients, and 

that can conduct electricity well without also conducting heat. In this regard, most research has 

http://en.wikipedia.org/wiki/Seebeck_effect
http://en.wikipedia.org/wiki/Seebeck_effect
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focused on optimization of thermoelectric materials and module geometry. Early thermoelectric 

microgenerators produced only a few nW, but more recently, this approach has been combined 

with micro-combustion chambers to improve output power to ~1 W/thermocouple [7]. From 

industrial equipment, structures, and even the human body, we can capture mWs of energy with 

voltage generation of 100-200 V/K. Practical examples are the wearable thermoelectric 

products developed over the last years such as the Seiko Thermic wristwatch [9] that uses 10 

thermoelectric modules to generate sufficient energy (orders of W) to run its mechanical clock 

movement from the small thermal gradient provided by body heat over ambient temperature. 

Radioisotope thermoelectric generators are used to provide electric power for spacecraft and 

automotive thermoelectric generators are proposed to convert waste heat, such as in automobile 

engine combustion, into electricity [15].  

1.1.3  Vibration-based Generators 

 

Vibrations are the most pervasive source in the environment and enable many applications 

such as sensors embedded in advanced structures where solar or other ambient energy does not 

exist. Suitable vibrations can be found in numerous applications including common household 

goods (refrigerators, washing machines, microwave ovens etc.), industrial plant equipment, 

moving structures such as automobiles and aircraft and infrastructure such as buildings and 

bridges. There are three main transduction mechanisms that can be used to extract mechanical 

energy and convert it into electricity: piezoelectric, electromagnetic, and electrostatic 

mechanisms. Each approach has its own advantages and disadvantages and these are described in 

more detail in Section 1.2, together with an in-depth discussion on piezoelectric vibration energy 

harvesting, which is the main interest and focus of this thesis.  

 

1.1.4  Bio-Energy Harvesting 

 

There is ample power to scavenge from biological systems. As the human body is a 

tremendous storehouse of energy, the use of power harvesting devices to capture the energy lost 

during everyday human life is a captivating idea and has been one of the main topics facilitating 

http://en.wikipedia.org/wiki/Radioisotope_thermoelectric_generator
http://en.wikipedia.org/wiki/Automotive_thermoelectric_generator
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the rapid growth of the power harvesting field. Starner [16] has presented an overview of the 

amount of power expended for various human activities such as power from body heat, breathing, 

blood pressure, keyboard typing, arm motion, and walking [16, 17]. Inventions based on human- 

powered devices range from wind-up magnetic generator-powered flashlights, to wind-up cell 

phone chargers and radios, to self-powered piezoelectric radio buttons, self-powered radio 

transmitters, and self-powered wireless push button remote controls for television [9]. 

Generating electricity during human walking has attracted the attention of many researchers. 

Humans typically exert up to 130 percent of their weight across their shoes at heel strike and toe-

off, and standard jogging sneakers‟ cushioned soles can compress by up to a centimeter during a 

normal walk. For a 154-pound person, this indicates that about 7 W of power could be available 

per foot at 1-Hz stride from heel strike alone [9]. Piezoelectric elements such as PZT and PVDF 

have been integrated beneath a standard running sneaker‟s removable insole to scavenge energy 

during human walking [1, 7, 9, 18-21]. Research has also been carried out to investigate the 

possibility and practicality of implantable and wearable power supplies from both human and 

animal activity. Reviews on human-powered generation with special focus on piezoelectric 

energy harvesting systems are available [1, 7, 21]. Besides the human body, we can find 

abundant possibilities to scavenge energy in nature. Voltree Power has developed bio-energy 

harvesters that can power remote sensors and mesh networks that can monitor forest fires and 

weather in the forest by converting living plant metabolic energy to usable electricity [22].  

 

1.1.5  Other Energy Harvesting Technologies 

 

Other opportunities to harness energy from the environment lie in ambient fluid flows. 

Ocean waves are converted into useful electricity and can be used to power oceanographic 

monitoring sensors for autonomous operation [9]. The concept of so-called energy harvesting 

eels has been proposed and implemented into devices using thin flexible piezoelectric 

membranes for energy harvesting in the ocean [23, 24]. Windmills [25, 26] and micro-wind 

turbines [1] are devices to harvest energy from wind currents readily available in the 

environment. Radio waves are now commonplace energy sources used in passive Radio 

Frequency Identification (RFID) tags to power remote devices. 
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In [11], Roundy et al. classified power sources into two categories: fixed-energy sources 

and fixed power sources. The latter are power scavenging sources as reviewed here in the above 

and their lifetime is potentially infinite. In contrast, fixed energy sources such as batteries, 

hydrocarbon fuel, or fuel cells contain a fixed amount of energy, and therefore the average power 

generation is a function of lifetime (see Figure 1.1). Priya also compared various potential power 

sources for the sensor networks in [10]. Readers also can find a detailed review on power 

supplies for MEMS devices in [1]. In that paper, the authors summarize fundamentals, recent 

advances, applications and future trends of both non-regenerative power supplies (e.g., batteries, 

microcombustors, turbine and heat engines, and microfuel cells) and regenerative power supplies 

(solar cells, thermoelectric power, vibration energy harvesting systems). A plot that shows power 

density and voltage of various power supplies mentioned above is reproduced from [1] for 

comparison in Figure 1.2. 

 

 

Figure 1.1 Comparison of static power density and lifetime from vibration, solar, and various 

battery chemistries [11].  
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Figure 1.2 Plot of static power density versus voltage for common regenerative and 

lithium/lithium-ion power supply strategies [1]. 

 

Note that the concept of harvesting renewable, otherwise wasted energy from the 

environment, can also be an attractive solution to environmental problems as it is based on a 

clean source of electricity. We can mitigate the environmental impact caused by issues related to 

the disposal of batteries by harnessing these renewable sources. Also, it can bring tremendous 

economic impact into society as the input energy sources for energy harvesters are free.  

 

1.2  Mechanical Vibration Energy Harvesting 

 

Energy harvesting is the enabling technology for numerous distributed devices such as 

wireless sensor nodes, having application in diverse areas such vehicle health monitoring, smart 

cities/infrastructure, condition-based monitoring of manufacturing equipment, and threat 

detection. Among diverse sources, mechanical vibrations are the most pervasive form of ambient 

energy and such vibrations are the only ambient energy to harvest in many cases such as wireless 

sensors for embedded structural monitoring, negating possible alternative sources such as solar. 

The main techniques of harvesting energy from ambient vibrations have been shown to be 
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capable of generating output power levels in the range of W to mW [1], depending on the 

source and transduction mechanism. Although such energy levels would have been considered as 

„unusable‟ a few years ago, advances in modern-day VLSI circuit designs permit low-power 

operation and utilization of energy harvesting devices as a power solution. Current laboratory-

based wireless sensors have reported operating power requirements of 100s-1000s of Ws with 

projections into the 10s of Ws [27], leading to the conclusion that vibrations can provide useful 

amounts of net power for small, low-drain devices such as distributed sensors. Devices of small 

volume would be desirable in applications like embedded sensors [28], spurring the development 

of MEMS-scale energy harvesting devices. 

Vibrations that occur in common household and office environments are classified as „low-

level‟ vibrations, compared to more energetic vibrations that can be found, for example, in large 

industrial equipment. Low-level vibrations are of main interest and targeted in device design 

because of a wide range of potential applications that can be powered by harvesting vibrations at 

this level. Roundy et al. [11] investigated the nature of various sources of vibrations available 

and summarized it as reproduced in Table 1.1 that includes the peak acceleration (m/s
2
) and peak 

frequency (Hz) values of a number of low-level vibrating structures. du Toit et al. [29, 30] also 

performed a quantitative comparison of ambient vibration sources, particularly for MEMS 

piezoelectric vibration energy harvesters in both vacuum and atmospheric conditions, suggesting 

that significant power is present in the range from 100-300 Hz for a number of ambient sources. 

du Toit presented the graphical demonstration of the power spectral density (PSD) in frequency 

domain ranging from 0 to 1 kHz for several sources of ambient vibration [30]. Among them, a 

plot of PSD vs. frequency for a microwave top and side is reproduced in Figure 1.3. The 

information about the potential vibration sources is very important in both design and operation 

of vibration energy harvesters. As most vibration-based generators are spring-mass-damper 

systems, they generate maximum power at resonance when the natural frequency of the system 

matches the frequency of the input vibration. Thus, it is essential to design devices with 

appropriate geometric configuration and materials properties that are matched to the targeted 

available PSD. 
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Table 1.1 Acceleration magnitude and frequency of peak for various sources [11]. 

Vibration Source Acceleration [m/s
2
] Frequency at the peak [Hz] 

Car engine compartment 12 200 

Base of 3-axis machine tool 10 70 

Blender casing 6.4 121 

Clothes dryer 3.5 121 

Person nervously tapping their 

wheel 

3 1 

Car instrument panel 3 13 

Door frame just after door closes 3 125 

Small microwave oven 2.5 121 

HVAC vents in office building 0.2-1.5 60 

Windows next to a busy road 0.7 100 

CD on notebook computer 0.6 75 

Second story floor of busy office 0.2 100 

 

 

 

Figure 1.3 Power spectral density (PSD) vs. frequency of a microwave oven (a) top and (b) side 

[30]. 
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1.2.1  Electromagnetic and Electrostatic Vibration Energy Harvesting  

 

Vibration energy harvesting requires a transduction mechanism to generate electrical 

energy and several approaches exist to convert vibrations to electrical power including 

electromagnetic, electrostatic, and piezoelectric conversion. In the following, basic operating 

principles, advantages and disadvantages of electromagnetic and electrostatic vibration energy 

harvesters are briefly reviewed before moving on to the main topic in this thesis, piezoelectric 

energy harvesting.  

Electromagnetic induction, first discovered by Faraday in 1831, is the generation of 

electric current in a conductive coil within a magnetic field from the relative motion between a 

coil and the magnetic field. The amount of electricity generated is a function of strength of the 

magnetic field, the velocity of the relative motion, and the number of turns of the coil. 

Electromagnetic energy harvesters basically consist of permanent magnets (e.g., NdFeB magnet), 

a coil, and a resonating cantilever beam. It is generally preferable that the magnets are attached 

to the cantilever structure as they can act as inertial masses [1, 7]. Electromagnetic converters 

offer a well-established technique of electrical power generation and the effect has been used for 

many years in a variety of electrical generators [6, 7, 9, 31]. Primary disadvantages of 

electromagnetic energy harvesters are their low output voltages, typically well below 1 V in 

magnitude, and the difficulties in reducing down to the micron-scale. While high-performance 

bulk magnets and multi-turn, macro-scale coils are readily available [7, 9], it is quite difficult to 

realize MEMS-scale electromagnetic harvesters due to the relatively poor properties of planar 

magnets in thin film structures, the limitations on the number of turns achievable with planar 

coils and the restricted amplitude of vibration. Problems associated with the assembly and 

alignment of sub-millimeter scale electromagnetic systems are also significant.  

The basic concept of electrostatic energy harvesters is a variable capacitor that consists of 

a charged capacitor with moving plates. The relative movement between electrically isolated 

charged capacitor plates requires work against the electrostatic force between the plates, thus 

providing the harvester energy. Electrostatic generators are generally classified into three types: 

in-plane overlap varying, in-plane gap closing, and out-of-plane gap closing. Details on these can 

be found [7, 11]. Electrostatic energy harvesters are attractive in that their fabrication process is 
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well-established in silicon micromachining (compatible with CMOS), thereby enabling 

miniaturization of devices. MEMS-scale electrostatic energy harvesters can benefit from being 

able to increase energy density with applied voltage by decreasing capacitor spacing. However, it 

should be noted that reduction in capacitor surface area for miniaturization decreases energy 

density. Unfortunately, electrostatic generators require an initial polarizing voltage or charge to 

start unless they utilize an electret layer [32]. The output impedance of the electrostatic 

harvesting devices is often very high and this makes them less suitable as a power supply. The 

output voltage produced by the devices is relatively high ( > 100 V) but often results in a limited 

current-supplying capability. Accordingly, they are intended to support extremely low-power 

applications. At MEMS-scale implementations, there is also the risk of capacitor electrodes 

shorting and of „stiction‟ [7]. 

 

1.2.2  Piezoelectric Vibration Energy Harvesting 

 

Piezoelectric materials produce electrical charge or voltage across them when a 

mechanical stress or strain is applied, or vice versa [8]. When subjected to mechanical strain, 

piezoelectric materials become electrically polarized and the degree of polarization is 

proportional to the applied strain. Conversely, these materials deform when exposed to an 

electrical field. This functionality enables the use of piezoelectric materials to convert 

mechanical energy into electrical energy. As previously reviewed, several methods exist for 

obtaining electrical energy from vibration sources including the use of electromagnetic induction, 

electrostatic conversion, and piezoelectric materials. Of these three vibration-based devices, 

PVEH devices have received the most attention because piezoelectric devices convert applied 

strain energy from vibration into usable electrical energy directly. There is no requirement for 

having complex geometries and numerous additional components and thus, PVEHs are the 

simplest type of generator to fabricate. Another major advantage is that piezoelectric generators 

are well suited for application not only to macroscopic but also micro-scale devices since several 

processes exist for depositing piezoelectric films (thin and thick) [9]. Piezoelectric based 

harvesters are also capable of delivering relatively high output voltage (but only at low electrical 

current), providing the needed voltage level (0.3-4 Volts) to charge a secondary battery or run a 
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sensor directly. This is in contrast with electromagnetic generators that may require transformers 

to meet applications with required voltage higher than ~2 V [1, 7, 21].  

 

1.2.2.1   Piezoelectric Effect 

 

Piezoelectric materials consist of ferroelectric materials, such as Pb(Zr,Ti)O3, BaTiO3, and 

LiNbO3, and non-ferroelectric materials, such as AlN and ZnO [33, 34]. One of the defining 

traits of a piezoelectric material is that the molecular structure is oriented such that the material 

exhibits a local charge separation, known as an electric dipole. Throughout the material 

composition, the electric dipoles are oriented randomly, and for ferroelectrics, the dipoles can be 

oriented such as when the material is heated slightly below the Curie temperature and/or a very 

strong field is applied, the electric dipoles reorient themselves relative to the electric field; this 

process is termed poling. Once the material is cooled, the dipoles maintain their orientation and 

the material is then said to be poled. After the poling process is completed, the material will 

exhibit a relatively high piezoelectric effect. Thus, poled ferroelectrics are very effective and 

attractive piezoelectrics. Energy conversion using piezoelectric materials is possible because 

mechanical strain in a piezoelectric material induces deformation of electric dipoles, forming 

electrical charges that can be removed from the material and used to power various devices. Such 

mechanical and electrical behavior of piezoelectric materials can be described using linear 

piezoelectric constitutive equations that contain relevant material property constants, one type of 

which expression is as follows: 
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Sj and Ti are the mechanical strain and stress, while Ej and Di are the electric field and the 

electrical displacement. 
E

ijc represents the elastic stiffness coefficient and εij is the permittivity 

values. When there is a superscript like S in 
S

ii , it is such that the permittivity is evaluated at a 
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constant strain. Piezoelectric coefficient, eij, is the measure of piezoelectric coupling of the given 

active materials. Piezoelectric materials typically exhibit anisotropic characteristics, thus, the 

properties of the material differ depending upon the direction of forces and orientation of the 

polarization and electrodes. Subscripts in the equations above denote such directions. For a more 

complete description of the constants the reader is referred to the IEEE standards [35]. These 

constitutive equations are the basis to derive the governing equations of electromechanical 

modeling for PVEH systems, which will be used throughout this thesis. Since the piezoelectric 

materials are required to be strained directly, the performance, lifetime and transduction 

efficiency are dependent upon the materials properties. A rigorous model-based analysis and 

important findings on the relation of material properties and PVEH device performance are 

presented in Chapter 6. 

 

1.2.2.2   Piezoelectric Materials 

 

There is a wide range of piezoelectric materials available for different application 

environments [1, 33, 34, 36, 37]: single crystals, polycrystalline ceramics, polymers, composites, 

relaxor-type ferroelectrics, etc. Single crystal materials including quartz, lithium niobate 

(LiNbO3) and lithium tantalate (LiTaO3) are important functional materials in surface acoustic 

wave (SAW) devices and high-frequency filter applications [36]. However, little has been 

investigated on their use in energy harvesting. They have relatively high electromechanical 

coupling coefficients but small dielectric constant, generating less electricity than the ceramic 

material, PZT [38]. These materials are only available in bulk single crystals. 

Polycrystalline ceramics are the most extensively explored as piezoelectric energy 

harvesting materials along with polymers [1, 33, 34]. Piezoelectric ceramic materials include 

ferroelectric materials with perovskite crystal structures such as barium titanate (BaTiO3), lead 

titanate (PbTiO3, PCT), lead zirconate titanate (PbZrxTi1-xO3, PZT) and non-ferroelectric 

materials with wurtzite crystal structures such as ZnO and AlN. Among all, lead zirconate 

titanate (PZT), a solid solution of ferroelectric PbTiO3 and antiferroelectric PbZrO3, is the most 

common type of piezoelectric used in energy harvesting applications due to its high piezoelectric 

coupling. The dielectric and piezoelectric constants of PZT depend strongly on materials 
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composition and doping. In terms of composition, PZT films at the morphotropic phase 

boundary (MPB) with a Zr/Ti ratio of 52/48 have been shown to exhibit a maximum in the 

piezoelectric response and are typically used in MEMS device applications. Doping effects on 

PZT material properties of various dopant elements such as Nb, Ta, and Mn have been many 

researchers‟ focus. Bulk poled PZT as a piezoelectric ceramic material is used widely in sensor, 

actuator, and transducer applications. PZT thin films are very competitive for power generation 

due to their higher piezoelectric coefficients than bulk PZT, and suitable for MEMS applications 

[37, 39]. Although PZT thin films have served successfully in numerous devices thanks to the 

advances of integration techniques, the growth of high-quality PZT thin films still needs some 

effort [33].  

There has also been considerable interest in non-ferroelectric piezoelectric semiconductors 

such ZnO and AlN as harvesting materials. Their compatibility with conventional processing 

technologies for integrated circuit technology offer advantages to their development for MEMS-

PVEHs. Thin films that are epitaxially grown on a substrate are the typical form because these 

materials are not ferroelectric and thus cannot be poled like perovskite materials. Although their 

piezoelectric coefficients are considerably lower than those of ferroelectric ceramics such as PZT, 

their semiconducting characteristics and potential application in bio-chemical sensors with 

improved sensitivity and selectivity (e.g., ZnO nanorods) have brought a great deal of research  

into these materials [36]. In 2000, Wang and Song [40] at Georgia Institute of Technology 

demonstrated piezoelectric nanogenerators based on zinc oxide nanowire arrays, which can 

convert nanoscale mechanical energy into electrical energy with an efficiency of 17-30 %, 

attracting considerable attention in this area of research. Later, using semiconducting properties 

of ZnO, the same group developed a nanowire structured hybrid cell that can scavenge solar and 

mechanical vibration energies simultaneously [41]. Recently, Imec created an energy harvesting 

wireless sensor by employing AlN that can generate 85 W of power, a record-setting amount 

for MEMS energy harvesters before packaging, but 10 W of power after packaging to protect 

the device due to air-damping effects. This energy harvester was connected and operated to a 

power wireless temperature sensor that requires 10 W~1.5 mW upon optimization at the target 

vibration frequency, 353 Hz and at 0.64 g, making one step forward to commercialization of 

AlN-based energy harvesters [42].  
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There has been a growing interest in polymer piezoelectric materials [43] and 

poly(vinylidene fluoride) (PVDF) is the representative flexible piezoelectric material to serve in 

a number of energy harvesting prototype devices reported, such as “energy harvesting eels” 

described in the previous section [37]. Unlike brittle piezoelectric ceramic materials, polymer 

piezoelectric materials such as PVDF (PVF2), or PVDF-TrFE offer considerable flexibility and 

thus can sustain large amounts of strain. In the development of polymer-based energy harvesters, 

durable and strong electrode layers are required to operate piezoelectric devices over time. To 

date, study on electrode materials for PVDF has been performed using not only inorganic 

materials such as platinum (Pt) and indium tin oxides (ITO), but also poly(3,4-ethylenedioxy-

thiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) electrodes in the form of coating onto PVDF.  

Composite materials that typically consist of piezoelectric ceramic materials and polymers, 

mostly PZT rod and fibers embedded in a polymer matrix, have also been used for energy 

harvesting [10]. Sodano et al. performed several studies to compare harvesting ability and 

efficiency of macro-fiber composite (MFC) and quick-pack (QP) actuators with commercially 

available PZT ceramics [21, 44, 45].  

Despite their extremely high electromechanical coupling coefficients, little research has 

been undertaken on energy harvesting devices based on relaxor-type ferroelectrics, suggesting 

more room for PVEH devices with enhanced performance [1, 36, 46]. There are (Mg1/3Nb2/3)O3 

(PMN), Pb(Zn1/3Nb2/3)O3 (PZN), and binary forms of these systems coupled with PbTiO3, PMN-

PT and PZN-PT, respectively. Last but not least, it should be noted that material properties of 

thin films differ from those of bulk even for the same materials and thus, they should be 

evaluated differently [33, 34, 39]. Comprehensive reviews on piezoelectric materials‟ history and 

properties in bulk form and progress to date in piezoelectric thin film materials and devices are 

available in numerous books [8, 48-51] and articles [33, 34, 36, 39].  

 

1.2.2.3  Configurations of Piezoelectric Energy Harvesting Devices and 

Systems 

 

A single PVEH device typically consists of piezoelectric layers, structural layers, electrode 

layers, and a proof mass. The most common geometric configuration is cantilever beams or 
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plates because it is geometrically compatible with MEMS fabrication processes and has proven 

to be easy to implement and effective for harvesting energy from ambient vibrations [37]. A 

cantilever is a compliant structure that can not only provide low resonant frequencies, reduced 

further by the addition of a mass on the end of the beam/plate, but also produce high strain, and 

thus more power generation, in comparison with other structural configurations [7]. There have 

been other efforts to enhance power performance of PVEH devices by modifying geometric 

configurations [1, 37]. Trapezoidal shapes by tapering or initially curved cantilevers were studied 

in order to improve conventional cantilever designs and to better suit other harvesting 

applications. Besides, triangular or clamped circular plates, known as „cymbal‟, transducers have 

been of interest. S-, or T-shaped or modified membrane configurations are chosen to explore a 

wide range of vibrations using their nonlinear characteristics [1, 7]. Depending on the number of 

piezoelectric element layers, the structure can be categorized as unimorph, bimorph, or multi-

layered (stack) configurations [1]. A unimorph configuration comprises one piezoelectric layer 

sandwiched between two electrodes along with structural layers. Two piezoelectric layers are 

involved in bimorph configurations and these two layers are interconnected electrically either in 

series or in parallel. There are two practical modes of transduction according to the direction of 

electrical field and applied strain: {3-1} and {3-3} modes of operation [52]. Conventionally, the 

poling direction is always in the “3” direction and thus this coincides with the direction of 

electric field induced upon applied mechanical strain. In {3-1} mode, the voltage (and therefore, 

electric field) act perpendicular to the “3” direction as the mechanical strain is applied in the “1” 

direction. In “3-3” mode, both strain and voltage occur in the same direction, “3”. Choice of 

electrode configuration is dependent upon the mode of operation. Standard capacitor type 

electrodes are employed for {3-1} modes of operation while interdigitated electrodes (IDTEs) 

are commonly used to implement {3-3} modes of operation, each of which is illustrated in 

Figures 1.4 and 1.5, respectively for cantilevered PVEH systems [1, 21, 53, 54]. Chapter 8 

covers detailed modeling of these two different modes of operation and corresponding electrode 

configurations with associated schematics. Individual or arrays of energy harvester devices are 

wired to the appropriate electrical circuit to extract the electrical properties such as voltage and 

power. The input power source comes from base-excited mechanical vibrations. A general 

architecture of piezoelectric energy harvesting is illustrated in Figure 1.6.  
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Figure 1.4 Unimorph cantilevered piezoelectric energy harvester device in {3-1} mode of 

operation with standard electrode configuration. Note asymmetric layers and the need for a 

“structural” layer. 

 

 

 

 

 

Figure 1.5 Interdigitated electrode (IDTE) configuration in cantilevered piezoelectric energy 

harvesting {3-3} mode devices: (a) top-view and (b) side-view. 
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Figure 1.6 Schematic of a cantilevered piezoelectric energy harvesting system with simple 

electrical resistance loading, Rl.  

 

 

1.2.2.4   Recent Advances and Future Trends 

 

In 1967, a small, tip-loaded piezoelectric cantilever for powering bioelectric implants was 

proposed in the US patent [55] and shown to produce 150 W when mechanically coupled to 80 

Hz heartbeats. It is, however, the late 90‟s that active investigation on piezoelectric energy 

harvesting began in earnest. Due to the ever-increasing desire to produce portable and wireless 

electronics with extended lifespan, the use of piezoelectric materials to capitalize on ubiquitous 

ambient vibrations is one method that has seen dramatic growth both in research and use. 

Nonetheless, generation of sufficient amounts of power still remains a primary issue in practical 

applications. Accordingly, a majority of the latest research has focused on improving the 

efficiency of piezoelectric power harvesting devices through various ways: i) modification of 

device configurations such as bending modes and device geometries, ii) design and development 

of piezoelectric materials with enhanced properties, and iii) alteration of electrical circuits for 

power harvesting and storage. Recent advances PVEH devices are well summarized and 

available in several publications, some of which are briefly introduced in the following in 

chronological order. In 2004, Sodano et al. [21] reviewed the research that had been performed 



46 

 

in the field of piezoelectric vibration energy harvesting until 2003 with special focus on the 

development of power storage and circuitry, implantable and wearable power supplies based on 

piezoelectric energy harvesting reported by then, and also the damping effect on power 

harvesting. Beeby et al. [7] categorized the reported devices into impact coupled, human 

powered, cantilever-based and other PVEHs in their review in 2006 on vibration energy 

harvesting for wireless-self powered microsystems. As a follow-up of Sodano et al.‟s paper, 

Anton et al. [37] published a review paper in 2007 that summarized the published harvesting 

devices and techniques using piezoelectric materials between 2003 and 2006. They discussed the 

reported devices according to the methods of improving power efficiency (e.g., through 

piezoelectric configurations, through circuitry and method of power storage) and area of 

application (e.g., implantable and wearable power supplies, harvesting ambient fluid flows, 

power harvesting in MEMS systems, and self-powered sensors). Cook-Chennault et al. [1] 

performed an extensive review on power supply systems for MEMS portable devices, where 

readers can find a useful list of proof-of-concept devices and fabrication techniques for 

piezoelectric energy harvesting under the categories of windmills, shoe inserts, implantable 

devices, wave energy, and pulse generators. Besides, readers can benefit from general reviews on 

the previous research on piezoelectric energy harvesting [9, 10, 28, 46].  

One last note is on vibration energy harvesters operating in a wide range of frequencies. At 

resonance (and anti-resonance), vibration-based energy harvesting devices can produce 

maximum output power [29]. However, it is not easy to make the resonant frequency of the 

devices align with the frequencies available from the vibrations in the surroundings. Thus, other 

methods to extract more power from a given vibration source is designing vibration-based energy 

harvesting devices and systems that can be either tuned or operated over a wide range of 

frequencies instead of being operated only at resonances. Either intermittent or continuous tuning 

of the devices necessitates periodic change in dimensions or stiffness of the systems, or 

adjustment of capacitive loads in electrical circuits. In order to operate the devices at various 

frequencies, widening the bandwidth of device frequencies is a passive solution and this can be 

achieved by using arrays of energy harvesting devices or employing nonlinear or bi-stable 

structures. In addition to the efforts designing circuits that can optimize power flow from the 

piezoelectric energy harvesters and minimize circuit losses, development of strategies to increase 
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the operating frequency range is a key interest in current research of piezoelectric energy 

harvesting [57].  
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Chapter 2 

 

 Prior Work on Piezoelectric Vibration 

Energy Harvesters 

 

 

2.1  Review of Existing Work 

 

In order to harvest mechanical vibration energy utilizing the piezoelectric effect, researchers 

have developed devices for various applications including windmills, shoe inserts, implantable 

devices, etc. [1]. Especially, for applications in microsystems, several studies have focused on 

developing MEMS piezoelectric vibration energy harvesters (PVEHs) using established 

piezoelectric film processing [53, 54, 58-60] as described in Chapter 1. Along with research on 

fabrication of devices, researchers have also put considerable amount of effort in developing 

analytical models for PVEHs to study the dynamic characteristics of these structures. Several 

models have been proposed and applied not only to predict and analyze the devices but also to 

optimize the design for future applications.  

Early modeling attempts include Smits and Chio‟s study [61] on the electromechanical 

characteristics of piezoelectric benders under various electrical and mechanical boundary 

conditions, which is based on internal energy conservation. However, no expression for voltage 

generation is provided in their model. Hwang et al. analyzed the static responses of a 
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piezoelectric bimorph beam based on finite element method but didn‟t perform model-

experiment comparison study [62]. Umeda et al.[63] used mechanical lumped models of a mass, 

a spring, and a damper to derive equivalent circuit model that is capable of calculating the 

amount of electrical energy converted from impact energy. A simple, general model for the 

conversion of the kinetic energy of a vibrating mass to electrical power was proposed by 

Williams and Yates in 1996 [31]. This model is based on an assumed linear harmonic oscillator 

(mass-damper-spring) system without specifying conversion mechanisms and thus a number of 

researchers have adopted this model [1, 7, 10], particularly when there is a need to compare 

different vibration-based energy harvesting mechanisms. In this model, the effect of 

electromechanical coupling is represented by a viscous damping coefficient in the mechanical 

domain equation. This approach gives initial insight in performance from vibration conversion 

and is quite reasonable for a certain type of electromagnetic energy harvesters as Williams and 

Yates showed in their device evaluation [31]. Yet, it is not capable of incorporating the specific 

effect of piezoelectric coupling in the mechanical domain, which is more sophisticated than just 

viscous damping [64].  

Roundy et al. formulated an equivalent electrical circuit model for PVEHs operated under 

low-g vibration conditions where they describe the mechanical components of the mechanical 

elements to represent the system purely in the electrical domain [65]. This is a convenient 

modeling approach since lumped parameters are easily expressed in the mechanical equilibrium 

and electrical loop equations, which can be directly coupled through the piezoelectric 

constitutive relations. While this analysis could highlight a key effect of the piezoelectric 

materials‟ electromechanical coupling behavior, it lacks mechanical dynamics of the structure 

such as the dynamic mode shape and the accurate strain distribution along the cantilevers. 

Furthermore, their assumption that the operating frequency is constant at the natural frequency of 

the structure results in neglecting a second higher frequency (optimal power) operating point, 

known as anti-resonance [29]. Lu et al. [66], Chen et al. [67], and Lin et al. [68] have also 

presented analytical modeling to evaluate the performance of piezoelectric power generators for 

MEMS applications, particularly in terms of power and conversion efficiencies, where they 

oversimplified the piezoelectric coupling in the beam equations as viscous damping and didn‟t 

consider the resonances phenomenon.  
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As an alternative modeling approach, Euler-Bernoulli beam theory [69] has also been 

applied to study the dynamics of PVEHs in combination with either force equilibrium analysis 

[70] or via energy methods [71]. Using the conventional combination of the variational principle 

(also known as the Hamilton‟s principle) and the Euler-Bernoulli beam assumptions, Sodano et 

al. [72] developed an analytical model for a cantilevered PVEH, which allows prediction of the 

electromechanical responses in higher vibration modes but misses some key points (e.g., 

resonance and anti-resonance operating points of interest). As an improved modeling approach, a 

coupled electromechanical model, based on a structural modal analysis for a base-excited 

cantilever, was developed by du Toit et al [73, 74]. In these studies, useful closed-form analytic 

expressions for key device performance characteristics were presented using the energy method 

approach focusing on a single vibrational mode [29, 30], from which both electrical and 

mechanical performance could be predicted and optimized across electrical loading conditions 

and frequencies. This power-optimized electromechanically coupled model was experimentally 

verified using a macroscopic, symmetric bimorph, piezoelectric {3-1} device. The verified 

model, in a convenient normalized form that allows clear interpretation of the device 

performance, may also be used for proper experimental design as in the current work. Other 

investigations of similar PVEH configurations are given by [75, 76]. Erturk and Inman [77, 78] 

derived a distributed parameter electromechanical model for cantilevered PVEHs, based on 

Euler-Bernoulli theory. In their analysis, base motion is not restricted to harmonic oscillation 

widely used and is described using not only transverse displacement but also small rotation. 

Experimental verification of this model is available in [76] where the model was applied to 

bimorph cantilever configurations both with series and parallel connections of piezoelectric 

layers. Their analysis provides similar results to du Toit et al.‟s modeling approach but omits the 

normalization and many key trends (e.g., resonance and anti-resonance operating points of 

interest). Ajitsaria et al. [75] also presented a bimorph cantilever model which combines Euler-

Bernoulli beam theory and Timoshenko beam equations. The issue here is that they combined the 

static piezoelectric actuation equations where radius of curvature and a static tip force exist with 

the dynamic Euler-Bernoulli beam equations where the radius of curvature clearly varies 

spatially along the beam.  

In many analyses, cantilever beam and plate configurations were chosen not only because 
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they are geometrically compatible with MEMS fabrication processes, but also because such a 

compliant structure can produce high strain, and thus more power generation, in comparison with 

other structural configurations.  

Various modeling approaches have appeared in the literature and are briefly described as 

above. Some of them might be misleading due to weak mathematical assumptions involved or 

oversimplifications. The work in this thesis mainly follows the electromechanically coupled 

modal model for cantilevered PVEHs presented by du Toit et al. [29, 30, 73, 74] to develop more 

accurate analytical model for PVEH devices with a proof mass. It entails correction of key 

parameters in the governing equations, a more detailed damping ratio analysis, and 

implementation of the model on specific test-device configurations (e.g., unimorph and bimorph, 

modes of operation with different electrode configurations).  

 

 

2.2  Modeling of Cantilevered Piezoelectric Vibration Energy 

Harvesters 

 

In this section, a coupled electromechanical modal model [30, 74] is briefly reviewed before 

a detailed derivation to incorporate the proof mass is undertaken in Chapter 3. The derivation is 

based on Euler-Bernoulli theory and an energy method approach. Then, key mechanical and 

electrical device characteristics are extracted. While modeling begins with treatment of the 

general multi-degree-of-freedom system, the closed-form analytic solution in a single mode 

model is of focus that has been shown to be adequate to predict device performance in past work 

[29, 30, 73, 74]. The model is implemented for the case of various energy harvesters built and 

tested for model verification [30, 74]. Each energy harvester is composed of piezoelectric 

elements, structural layers, and electrodes and the device is wired to the appropriate electrical 

circuit to extract voltage and power. The input power source comes from base-excited 

mechanical vibrations (see Figures 1.6 and 2.1). 
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Figure 2.1 Schematic of a base-excited cantilevered PVEH. Here, v is the voltage developed 

across electrical resistance, Rl. wtip and Bw represent tip displacement and base acceleration, 

respectively while LT indicates the total length of the cantilever. xt denotes the transverse 

beam/plate coordinate while xa is the axial beam/plate coordinate. 

 

2.2.1  Beams and Plates with Piezoelectric Elements 

 

There are two methods to obtain the model for a cantilever beam/plate with piezoelectric 

elements: an energy method approach and a force equilibrium analysis [70]. Our study is based 

on the energy method approach, following the energy formulation for actuators by Hagood et al. 

[71] and developed by du Toit et al. [74] for energy harvesting. According to the energy 

conservation law, an electromechanical system can be modeled in terms of the sum of kinetic 

energy ( kT ), internal potential energy (U ), electrical energy ( eW ) and external work (W ) as 

follows: 
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Individual energy terms and external work term are defined as: 
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Vp and Vs are volumes of piezoelectric element section and of the structural (inactive) section of 

the beam, respectively. Likewise, ρp and ρs denote densities of each section. Dots indicate the 

time derivatives and u(x, t) is the relative displacement matrix, and u  represents the velocity. It 

should be noted that the relative displacement of the structure, u(x, t) can be written as the sum 

of nr individual modes shapes, ψri(x), multiplied by a generalized mechanical coordinate, ri (t), 

using the Raleigh-Ritz approach [69, 71]. The mode shape is a function only of the axial position 

because only the transverse displacement (xt direction) is considered in bending of a beam/plate. 

Thus, u(x, t) can be expressed as w(xa, t), which is the beam displacement relative to the base of 

the beam/plate, where xa is the axial beam/plate coordinate. The relative displacement above is 

given in equation (2.6):  
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where )( ar xψ  represents the row matrix, [ψr1 (xa), ψr2 (xa),…] of mode shapes.  

Equations (2.3) and (2.4) represent the internal potential and electrical energies in terms of 

the S, T, E, and D matrices. The S, T, E, and D matrices are defined as applied strain, developed 

stress, applied electric field, and developed electric displacement, respectively and the 
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superscript, t, here indicates the transpose of the matrix. According to 3-D linear elastic (small-

strain) constitutive relations, these matrices are related through electrical parameters such as the 

permittivity of the piezoelectric element, ε, the piezoelectric constant relating charge density and 

strain, e, and the mechanical parameter, c
E
, the stiffness matrix. These physical parameters are 

obtained differently depending on whether the structure is a beam or a plate (see discussion in 

[29, 73]). Equation (2.7) is the representative expression for three-dimensional linear elastic 

constitutive relations where a range of small-signal piezoelectric motion is assumed:  
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Superscripts E, S indicate parameters at constant electric field and constant strain. The three-

dimensional linear elastic constitutive relations in equation (2.7) can be easily reduced for simple 

beam theory and {3-1} and {3-3} modes of operation [29, 30]. For {3-1} mode of operations, for 

instance, equation (2.7) is reduced to: 
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where analytical expressions of material property constants depending on beam or plate 

configurations can be found in Appendix A in detail. Appendix A includes the reductions not only 

for simple beam/plate theory but also for {3-3} mode of operation. 

Strain is expressed with respect to mechanical mode shapes. The Euler-Bernoulli beam 

theory allows the axial strain, S1, in the beam to be written in terms of the beam neutral axis 

displacement and the distance from the neutral axis (xt: transverse direction, see Figure 2.1), as 

given by equation (2.8):  
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Primes represent spatial derivatives throughout this thesis. Lastly, in order to define the external 

work term in equation (2.5), nf discretely applied external point forces, fk (t) at positions xk, and 

nq charges, qj, extracted at discrete electrodes with positions xj are introduced. In this same 

equation for the external work term, the quantity φj = φ(xj, t) is the scalar electrical potential for 

each of the nq electrode pairs. For {3-1} mode devices, there is only one electrode pair on either 

surface of the piezoelectric element, while for a {3-3} mode test device, there may be a large 

number of electrode pairs distributed over one surface of the piezoelectric layer. This scalar 

electrical potential term, φj = φ(xj, t) can be expressed via a potential distribution, ψvj(x), and the 

generalized electrical voltage coordinate, vj(t) as in equation (2.9): 
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It is important to differentiate the electrical mode shape vector, ψv (x) from the mechanical mode 

shape vector, ψr (x). The form of electrical mode shapes varies according to the specifics of test-

devices, and will be detailed in later sections. 

When one substitutes equations (2.6) to (2.9) into equations (2.2) to (2.5), the energy and 

external work expressions in equations (2.2) to (2.5) can be rewritten in terms of mechanical or 

electrical mode shapes and material parameters. These rewritten equations (2.2) to (2.5) are then 

inserted back into the energy conservation equation (2.1). Finally, rearrangement of equation 

(2.1) allows us to obtain two governing equations of motion as below:   

 

Bf w BΘvKrrCrM                           (2.10) 

                         

0 qvCrΘ p

t
                              (2.11)                                  

 

As defined in equation (2.6), r denotes the generalized relative displacement vector. As shown in 

equation (2.6), in order to convert it to actual displacements, it is necessary to multiply it with the 

mechanical mode shapes. Exact modal analysis will be followed in the next section. v is the 

developed voltage across the piezoelectric element and q is the charge. Base acceleration, Bw , is 
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the input to the cantilevered system (see Figure 2.1). Several effective terms, including the mass 

(M), the stiffness (K), coupling (Θ), and capacitive matrices (Cp), are defined below. The forcing 

vector, Bf, accounts for inertial loading on the beam/plate structure due to the base excitations:  
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Mechanical mode shapes, electrical mode shapes, and their derivatives mainly comprise these 

terms. Details on conventions of materials properties used here can be found elsewhere [8, 30, 

74]. It should be noted that mechanical damping is included by adding a viscous damping term, 

C. As it is assumed that the damping has little dependence on the device natural frequency, 

damping is typically measured at the device natural frequency, which will be covered in detail in 

Section 3.4. In the general multi-degree-of-freedom (MDOF) governing equations obtained 

above, the mechanical domain represented by the actuation equation (2.10) is 

electromechanically coupled to the electrical domain expressed by the sensing equation (2.11) 

via the coupling term (Θ). As the electromechanical coupling stems from the piezoelectric 

element, the coupling term (Θ) is directly related to the piezoelectric constants (e) as shown in 

equation (2.14). Evaluation of the above coefficients from equations (2.12) to (2.16) for practical 

applications will be presented in later sections, using a single beam mode (ψr1). 
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2.2.2  Electromechanical Model for Single Beam Mode and Power 

Optimization 

 

Expressions for a single beam/plate mode can be obtained if one approximates the infinite 

degree-of-freedom mechanical system as a single-degree-of-freedom (SDOF) system, where the 

multi-degree-of-freedom (MDOF) governing equations of motion are reduced to scalar forms. In 

order to apply the coupled model presented, it is more practical to have scalar equations, which 

allow simple optimization in terms of maximum power extraction. Single-mode solutions have 

been shown to be in excellent agreement with results for devices without a proof mass [74]. In a 

single beam mode for base-excited PVEH structures, scalar expressions in equations (2.17) and 

(2.18) replace previously presented multi-degree-of-freedom (MDOF) equations (2.10) and 

(2.11): 

 

Bf wBvKrrCrM                            (2.17) 
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                            (2.18)
 

 

Note that the sensing equation (2.18) is modified from equation (2.11) by time differentiation, 

and by using Ohm‟s law, 
dt

dq
Rv l , for a purely resistive electrical load, Rl. Each coefficient in 

the single-mode governing equations above can be expressed as below:  
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The dV above implies integration over the entire assembly both dVs and dVp. The location of the 

neutral axis, (xt)NA, is found in the usual way for elastic modulus-weighted beams [69]. In 

equation (2.20), cs represents the stiffness of structural layers in the axial beam direction and 

*11

Ec  denotes the effective piezoelectric material elastic stiffness for beam or plate in {3-1} 

mode of operation (see Appendix A). Note that *11

Ec , *31e , and *33

S  are written in equations 

(2.20) to (2.22) and these expressions can be used for a {3-1} mode PVEH device while *33

Ec , 

*33e , and *33

S  should be used for modeling of {3-3} mode PVEH (see Section 8.1 and 

Appendix A). In the above, ψr and ψv will from now on refer to the first mode, ψr1 and ψv1. As 

electrical mode shape, ψv, highly depends on device specifics including electrical connections 

between piezoelectric layers and mode operations, coupling term, θ, and capacitance term, Cp, 

will also vary depending on test-device setups. Geometric configurations of energy harvesters, 

such as uni-morph or bi-morph structures as well as inter-element connection also affect the 

effective representations for coupling and capacitive terms. Therefore, suitable equations for 

coupling and capacitance that correspond to our test-device specifics will be given in the next 

section.  

From the governing equations (2.17) and (2.18), convenient closed form solutions of the 

relative displacement, voltage developed and power extracted can be obtained, by assuming 

harmonic oscillation, 
tierr 

0 , 
tievv 

0 , and ti

BB eww  in these equations. The magnitude 

of the power is calculated as lout RvP /2 . These solutions for the mechanical and electrical 

performance of the PVEHs are [74]: 
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In the above expressions, 1 denotes the first resonant frequency of a cantilever structure and 

dimensionless factors are defined such that α = ω1RlCp for dimensionless time constant, 

pKC

2
2 

   for system coupling, and 
1


  for the dimensionless frequency ratio. Also, 

mechanical damping ratio, ζm appears and it is related to the damping constant, C via 

.
2 1


M

C
m   Mechanical response is calculated using the generalized mechanical displacement, 

r, which should be multiplied by the normalized mode shape to yield relative displacements, w, 

that is, w = ψr(x)r. Note that all these equations for system response are non-dimensionalized 

with an inertia force represented either by Bf wB   or 
2)( Bf wB  . It is quite beneficial to be able to 

use solutions that are properly normalized as one can avoid complications generated from the 

calculations of complex numbers [76] in order to obtain the results. Also, the way the 

denominator appears in all three expressions is also noteworthy. As presented previously by du 

Toit et al [29, 30, 73, 74], two optimal frequency ratios for equal maximum power generation are 

gained at resonance and anti-resonance ( 1r  and 21 ar , respectively). The natural 

frequency will correspond to either the resonance or anti-resonance frequency, depending on the 

electrical loading for a piezoelectric structure. These two frequency ratios are obtained from the 

analysis of the system at short-circuit condition (Rl, α→0) and open- circuit condition (Rl, α →∞). 

As natural frequencies are generally defined by the ratio of stiffness to mass of the system as in 
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MKeff / , the origin of these two natural frequencies for an electromechanically coupled 

system can be explained from the perspective of stiffness, Keff. If one sets Ω = 0 in equation 

(2.24), two different effective static stiffnesses, Keff, are obtained by short-circuit condition 

(α→0) and open-circuit condition (α →∞), which are K and K(1+2
), respectively. These 

stiffnesses stem directly from the piezoelectric constitutive relations that always specify the 

electrical or stress boundary condition at which the piezoelectric constant is measured [31]. Since 

the terms inside the denominator of equations (2.24)-(2.26) are succinctly arranged focusing on 

these two optimal frequency ratio expressions, it is readily possible to analyze the system 

responses at optimal points for maximum power extraction from the equations (2.24)-(2.26). In 

order to derive the maximum power value, it is necessary to optimize the power equation (2.26) 

with respect to load resistance (Rl), which yields a power-optimal electrical load in terms of 

dimensionless time constant, αopt: 
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Substitution of suitable frequency ratios at both resonance ( 1r ) and anti-resonance 

( 21 ar ) into equation (2.27) yields two optimal electrical loadings, αopt, r at resonance 

and αopt,ar  at anti-resonance:  
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Note that both optimal electrical loading conditions are dependent on mechanical damping as 

well as system coupling, and are roughly reciprocals of one another in 2
opt . Once these values 

are substituted back into the power equation (2.26), optimal power expressions at resonance and 
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anti-resonance are gained. In general, mechanical damping ratio, ζm, is at least an order of 

magnitude smaller than square of system coupling, κ
2
, which allows us to approximate equations 

(2.28) and (2.29) to give simpler expressions for power as well. Using the approximation, 

2ζm/κ
2≪ 1, equations (2.28) and (2.29) may be simplified to produce optimized power both at 

resonance and anti-resonance as follows: 
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As pointed out previously by du Toit et al [29], the values of optimal power generated at 

resonance and anti-resonance have equal magnitude within the given assumptions. It has been 

shown that for extremely high values of damping (perhaps when the harvester is used as a 

damper) not seen in typical macro-scale harvesting devices, and certainly not in MEMS devices 

that have high quality factors, that the approximation above does not hold [76]. 

 

2.3  Issues and Unsolved Problems in Current Understanding of 

Piezoelectric Energy Harvesters 

 

The ultimate goal in research of PVEHs is to realize a powering device that can provide 

sufficient power for practical applications such that operation of wireless electronics in a self-

powered manner is possible. A great deal of the latest research has focused on improving the 

efficiency of PVEH devices through exploration of various piezoelectric materials, device 

configurations, and optimization of circuit designs, as summarized in Section 1.2. Thus, it is 

quite essential to identify and understand the relevant variables and factors that influence the 

output performance of such harvesting devices in finding innovative ways to develop devices 
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with enhanced performance. A number of factors have been detailed in the literature based on 

modeling studies, giving a starting point for device designs. In various modeling approaches 

proposed, the basic objective of modeling PVEHs is to estimate the amount of voltage developed 

across electrical resistances in PVEH devices during vibrating operation and then calculate 

power.  

The simplest way to model the piezoelectric harvesting system is to consider the 

harvesting structure as a mass-spring-damper system and couple it with a simple electrical circuit 

[31]. Although simple closed-form expressions from this lumped-parameter modeling provide 

general insight into the problem, it is not capable of fully capturing the piezoelectric coupling 

effect on system behavior. While many review papers [1, 7, 10] introduce either general kinetic 

conversion model or electrical equivalent model as representative analysis method for 

piezoelectric energy harvesting systems, both analyses permit prediction of system responses 

only at resonance and lack structural dynamics and design and optimization capabilities.  

Extensive theoretical analysis of cantilevered PVEHs is possible based on Euler-Bernoulli 

theory in conjunction with constitutive piezoelectric relations, as du Toit et al. presented [73, 74]. 

This modeling approach can not only predict power harvesting performance, but also capture 

important aspects of the harvesting systems such as the dynamic mode shape and strain 

distribution along the cantilever. However, such studies [72-74, 77, 78] have not given much 

attention to accurate treatment of proof mass effects on PVEH performance, while it is very 

common to attach or integrate a proof mass at the end of the MEMS-scale cantilevers to obtain 

the target frequency of interest. As discussed in the following chapters of this thesis, it is 

observed that even a small change in proof mass geometry results in a substantial change in 

device performance. This suggests the importance of appropriate treatment of proof mass 

configuration in device design. Particularly, long, thin, distributed proof masses that are quite 

common in MEMS-scale devices due to the constraints of thin film processing necessitate more 

rigorous analysis for such configuration along with experimental verification of such new-

developed models.  

Besides investigation on the proof mass effects, there are a number of unsolved but 

important problems that can be answered through proper utilization of models. The first example 

can be model-derived piezoelectric materials design studies (Chapter 6). To date, analytical 
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modeling serves in predicting and analyzing the characteristics of PVEHs mainly at the system 

levels. This enables development of more power -efficient devices through system optimization 

both at the design level and fabrication. In terms of piezoelectric materials, the primary focus of 

materials scientists has been on the achievement of materials with the highest piezoelectric 

coupling coefficients in order to extract more power from a given structure. In that regard, 

tremendous effort has been put to obtain lead zirconate titanate (PZT) with composition (Zr:Ti = 

53:47) near the morphotropic phase boundary [33, 39]. However, the aforementioned depends 

simply on intuitive consideration and little study has been performed to reveal the detailed 

relation of piezoelectric materials properties to harvesting device performance. 

In addition, a full set of key performance metrics for comparing different PVEH devices 

have not been clearly defined and standardized, presenting a need for better figures of merit of 

device performance (Chapter 7). In a majority of analyses, calculation of output electrical power 

extracted from piezoelectric vibration harvesting has been of primary interest and not much 

attention has been paid to analytical description of mechanical input power. In order to evaluate 

harvesting efficiency, defined as the ratio of electrical output power to mechanical input power, it 

is required to quantify the mechanical input power that the harvesting system can absorb from 

surrounding vibrations in terms of key system parameters as in the analytical expression for 

electrical power output. This will help identifying and optimizing system parameters that can be 

manipulated to gain more mechanical power from given vibration sources and convert it into 

electrical power with greater efficiency.  

Another way of utilizing a model is to develop a multi-variable design tool for 

performance optimized PVEHs (Chapters 8 and 9) as attempted by Mracek [79]. Hence, design 

optimization studies based on a verified analytical electromechanical model are suggested, where 

the final goal is to propose an optimized design for MEMS harvesting devices that is suitable for 

specific applications of interest.  

     All these issues and unsolved problems in the current PVEH research have provided the 

main impetus to the research work in this thesis. 
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2.4  Overview of This Thesis 

 

     The primary goal of this thesis is to make steps forward to realizing pervasive use of 

wireless, battery-less small electronics powered by MEMS-PVEHs. With this purpose in mind, 

this thesis contributes new knowledge for better understanding of PVEHs both at materials- and 

systems-levels. Furthermore, it provides thorough, systematic model-based design guidelines for 

both optimum piezoelectric material and energy harvesting devices along with the demonstration 

of a design for a MEMS-PVEH with novel structural layers.  

     This thesis consists of eleven chapters, starting with Chapter 1 where general concepts of 

energy harvesting and overview of piezoelectric energy harvesting research are introduced. 

Chapter 2 follows with a review of existing modeling work for PVEHs while raising concerns 

and problems that have not been dealt with yet to date. Some of the analysis is extended from the 

analytical modeling previously developed by du Toit et al. [74] and reviewed in detail in Section 

2.2. 

Chapter 3 contains three levels of modeling of proof mass effects on piezoelectric energy 

harvesting performance in order to highlight the significance of appropriate treatment of the 

proof mass in device design. Those include a simple approximation for concentrated proof mass 

(Section 3.1), improved treatment of rigid proof mass with rotation (Section 3.2), and exact 

treatment of a flexible proof mass using a two-beam method (Section 3.3).  

Chapter 4 and Chapter 5 include experimental verification of the model developed in 

Chapter 3. Detailed discussion of both mechanical and electrical performance of macroscopic 

PVEH devices is made in addition to test device specific model implementation and model-

experiment comparison study (Chapter 4). Chapter 5 includes experiment-model correlation of 

mechanical behavior of distributed flexible proof mass of micron-scale cantilevers and its 

implications for performance of piezoelectric energy harvesting.  

Chapter 6 contains an assessment of which, and how relevant, different piezoelectric 

material properties affect the PVEH device performance, followed by the discussion on how one 

can apply this knowledge to material and device design for better performance.   

     Chapter 7 contains standardized key performance metrics for PVEHs and offers ways to 

utilize the developed model for estimation of materials and system properties in two different 
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ways: bottom-up and top-down approaches. This helps construction of test methods for full 

characterization of PVEH performance for a given system, as presented in Chapter 8. Chapter 7 

also contains analytical expressions and explains system behavior of device performance such as 

voltage and power when they are optimized under various operating conditions including input 

operating frequencies and mechanical damping.  

     Chapter 8 begins with model implementation and its comparison with experimental test 

results of MEMS-PVEH devices fabricated by collaborators. Particular attention is given to 

modeling of a unimorph PVEH with interdigitated electrode (IDTE) configurations. A multi-

variable design tool for performance-optimized PVEHs is proposed with a case study (Section 

8.3).  

     In Chapter 9, the tool developed in Chapter 8 is also applied to novel structural layer 

materials (heterostructure piezoelectric/ultrananocrystalline diamond thin films). This work 

yields a power-optimized device design for MEMS-PVEHs that will be fabricated and 

characterized at Argonne National Laboratory.  

Chapter 10 contains other possible uses of the developed analytical model. Those include 

modeling of piezoelectric actuator systems (Section 10.1) and design of low-strain fatigue-

resistant MEMS resonators (Section 10.2).  

In Chapter 11, the author summarizes the conclusions of this thesis with emphasis on the 

impact of each part of this work to the research community, followed by a list of ongoing and 

future work.  
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Chapter 3 

 

 Modeling of Proof Mass Effects on Vibration 

Energy Harvester Performance 

 

 

In MEMS applications, as the device dimensions scale down, the natural frequencies of 

these devices increase and can approach the GHz range. In order to use MEMS-scale energy 

harvester devices for practical applications, it is desirable to adjust the natural frequencies to 

lower levels where more significant energy is found in typical spectra [29]. A beam end mass, so 

called a proof mass, is integral to tune device resonances towards target frequency points in order 

to use these devices for practical applications in resonant operation. The role of the proof mass 

becomes significant particularly in realizing MEMS-PVEHs since it enables not only harvesting 

of low-level vibrations by serving to decrease the resonant frequency of a device, but also 

generation of increased power by raising the average level of stress and strain in the piezoelectric 

layer along the beam length that is converted to electrical energy. While it is common to attach or 

integrate a proof mass at the end of MEMS-scale cantilevers to obtain the target frequency of 

interest [53, 54], insufficient attention has been paid to a rigorous analytical treatment of a proof 

mass. In this chapter, an electromechanically coupled model for a cantilevered PVEH with a 

proof mass is presented. 

The most common way to calculate the resonant frequency of a cantilever with a proof 

mass that is found in the literature is to simply approximate a concentrated proof mass at an 
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arbitrary point on the beam and to consider the effective mass of the system [75, 80-82]. Such a 

concentrated mass (or center-of-mass) model is not capable of capturing the structural dynamics 

that result from geometric properties of a distributed proof mass. Following a brief review on this 

concentrated proof mass modeling approach in Section 3.1, a more sophisticated approach is 

presented in Section 3.2. There, a proof mass is considered rigid and contains rotational terms, 

based on the assumption that the stiffness of a proof mass is much higher than that of the 

cantilever beam itself, so that the proof mass contributes to the entire system with regard to mass 

increase. This analysis eliminates the necessity of choosing an arbitrary point for a center-of-

mass calculation and thus provides a more accurate prediction for both resonant frequencies and 

device performance. A model for a flexible, distributed proof mass of MEMS-scale cantilevers 

follows in Section 3.3. Long, thin, distributed proof masses are quite common in MEMS devices 

due to the constraints of thin-film processing (e.g., deposition height of proof mass, resolution of 

lithography, etc.). Thus, a flexible proof mass analysis is useful when the proof mass makes 

contributions not only to the mass but also to the bending stiffness of the system. Both the rigid 

proof mass and flexible proof mass models are based on a detailed modal analysis.  

 

3.1  Simple Approximation for Concentrated Proof Mass 

 

Many researchers apply a point-mass assumption or concentrated mass assumption when 

they need to estimate natural frequency of a given structure for design purposes of devices 

operated at resonance. It is a convenient way to calculate resonant frequencies relatively easily 

but even this concentrated proof mass assumption is sometimes misapplied, presenting a need for 

refinement. 

In this scheme, a proof mass is assumed to be concentrated at a certain point (mostly 

located at the half of proof mass length), which means neither geometric dimension nor 

structural dynamics of a proof mass added to the cantilever contributes to the proof mass 

modeling. The basic concept of the concentrated proof mass assumption along with relevant 

dimensions is shown in Figure 3.1. Total length, LT is the sum of active beam length, L, and the 

proof mass length, LPM. It is convenient to introduce a parameter, “effective length”, Le (= L + 

1/2LPM), which is a distance from the anchor of the cantilever to the point where mass is assumed 
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to concentrate. Concentrated mass of a proof mass added at the tip is denoted as MPM while m is 

used for beam mass per length and thus the total mass, MT = mLT + MPM. 

 

 

Figure 3.1 Conceptual schematic of a concentrated-mass assumption in a cantilevered system. 

 

     The cantilevered structure with given dimensions and mass parameters as indicated in 

Figure 3.1 can be modeled in terms of the sum of kinetic energy and potential energy and then 

integrated into the energy methods approach as before (see Chapter 2). Although mechanical 

elements of cantilevered system are considered here for simplicity of analysis, the same results 

will hold even when piezoelectric or electrical elements of PVEH devices are included in the 

analysis. In Section 2.2, displacement along the beam axis of the cantilever under base excitation 

is written in terms of the mechanical mode shape (ψr) and relative displacement, as repeated 

here:  

 

)()( trxw r                              (3.1) 

 

Total displacement, wT, is the displacement with respect to the ground (fixed frame) and can thus 

be obtained from the sum of base displacement, wB, and displacement w(xa): 

 

BT www                               (3.2) 

 

Using these displacement parameters, kinetic energy (Tk) and potential energy (U) can be written 

as in equations (3.3) and (3.4): 
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Substitution of equations (3.3) and (3.4) above into Lagrange‟s equations gives actuation 

governing equation (3.5) that includes mechanical key parameters of the vibrating cantilever 

with a concentrated proof mass:  
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Then, the first resonant frequency of a cantilever with a concentrated proof mass can be 

calculated using the relation, 
M

K
1 . Although only mechanical elements are considered in 

the above derivation, the same results will hold even when cantilevered system includes 

piezoelectric elements, and thus electrical coupling. The same expressions derived in Section 2.2 

for piezoelectric cantilevered system with a concentrated proof mass can be used for capacitance 
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(Cp), coupling (θ), and mechanical damping constant (C), enabling the performance prediction of 

PVEH devices with the concentrated proof mass approach. This simple approximation for a 

concentrated proof mass allows relatively easy calculation of resonant frequencies. However, it 

has a limitation in predicting accurate structural dynamics that offers useful information of 

electromechanically coupled energy harvesters. Mechanical mode shape defines key parameters 

for not only mechanical but also electrical behavior of piezoelectric cantilevered systems. When 

the proof mass is assumed to be concentrated at one point, the entire cantilever system can be 

regarded as a cantilever without a proof mass from a dimensional perspective, as illustrated in 

Figure 3.1. Hence, in structural modal analysis, the same mechanical mode shapes will be 

obtained as those of a free-clamped cantilever without a proof mass when one uses the simple 

concentrated proof mass analysis. This would result in failure to capture accurately the effect of 

detailed proof mass properties (e.g., dimensions and materials) on structural modal analysis and 

subsequently, on device performance, such as strain and power. Improved approaches to 

encompass the effect of proof mass on PVEH device performance are presented in the next two 

sections.  

 

3.2  Improved Treatment of Rigid Proof Mass with Rotation 

 

The proof mass is considered rigid and contains rotational terms (due to offset center of 

gravity and attachment point, see Figure 3.2), instead of a lumped mass or concentrated point 

mass at a certain point. Effective terms in the governing equations (2.10) and (2.11) are generally 

expressed in terms of mechanical mode shapes and thus, it is enough to say that the extent of 

prediction capability of the model depends significantly on the mode shapes. Altering the mode 

shape via the addition of a proof mass will strongly affect all the effective constants in equations 

(2.10) and (2.11). While modal analysis and natural frequency calculations of clamped-free 

cantilevered structures appear in the literature (e.g., [83]), vibration analysis of simple beams 

with the addition of a proof mass is less common. In this section, it will be shown how much the 

material and geometric properties of a proof mass and the location where it is placed in the 

system affect the modal analysis and therefore, the performance of the entire harvesting system. 
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Figure 3.2 Schematic of base-excited cantilevered beam/plate with a proof mass at the tip. 

 

First of all, it is assumed that the stiffness of the proof mass is much larger than that of the 

beam/plate itself so that proof mass contributes to the entire system with regard to the mass 

increase, and makes the beam/plate effectively rigid in the outer portion from L to LPM. (Work in 

Section 3.3 deals with non-rigid mass case when a proof mass also makes contributions to the 

bending stiffness of the system.) In order to treat more general cases, it is not assumed that the 

proof mass center of gravity corresponds to the point of loading on the beam/plate. Also, for 

simplicity, the proof mass is assumed to be uniform in the axial direction with mass per length, 

equal to mPM, like the beam/plate where the cross-section is considered to be uniform with mass 

per length, equal to m (see Figure 3.2). It should be emphasized that in this scheme, the part of 

the beam/plate under the area of proof mass is considered part of the total proof mass for this 

beam/plate system for calculation ease. Now, we begin with the introduction of mass of overhang, 

M0, static moment, S0, at the junction x=L, and moment of inertia at the junction, I0, to account 

for the properties of the total proof mass. We can express these terms as follows:  

 

PMPM mLMM 0                              (3.9) 

 

2
00

PML
MS                                (3.10) 
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PMPM                  (3.11) 

 

where subscript PM indicates the part of a proof mass, and h, L, b and ρ denote height, length, 

width and density of the beam/plate and the proof mass, respectively in order. It is significant to 

note that the moment of inertia (I0) at the junction (xa=L) between the beam/plate and the proof 

mass, incorporates the rotational inertia of the proof mass.  

As adopted from [84, 85], the governing equations in terms of mechanical displacement or 

mode shape can be determined, using Euler-Bernoulli beam theory, as given by equation (3.12). 

The Nth mode of the mechanical mode shape is represented by ψN (xa), which can be expressed 

via equation (3.13) where constants (c, d, e, and f) will be solved using the boundary conditions:  

 

02  NN

IV

N mEI                             (3.12) 

 

aNaNaNaNN xfxexdxc  cossincoshsinh              (3.13) 

 

EI  is the effective bending stiffness, which is obtained considering the neutral axis and the 

properties of the beam multi-layers, while ωN represents the mode resonance frequencies. It is 

convenient to define the parameter, 
EI

m N
N

2
4 
  . Boundary conditions at the fixed end and at the 

junction point (xa = L) where the beam/plate and the proof mass are connected are given by: 

 

At 0ax , 0N                                   (3.14) 

 

0N                                   (3.15) 

 

At Lxa  , NNNNN SIEI  0

2

0

2                    (3.16) 

 

NNNNN SMEI   0

2

0

2
                (3.17) 
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where   ax


/ . Equations (3.14) and (3.15) simply represent a clamped cantilever, whereas 

equation (3.16) represents bending moment and equation (3.17) represents shear force at the 

junction between the beam/plate and the proof mass. Upon introducing ψN from equation (3.13) 

into these boundary conditions, one obtains four equations which can be reduced to the 22 the 

matrix equation (3.18) along with the expressions of matrix elements, equations (3.19)-(3.22):  

 

0
2221

1211


















d

c

AA

AA
                          (3.18) 

 

)sinsinh()coscosh()sin(sinh 0

2

0

3

11 NNNNNNNN SIA      (3.19) 

)coscosh()sinsinh()cos(cosh 0

2

0

3

12 NNNNNNNN SIA     (3.20) 

)cos(cosh)sin(sinh)cos(cosh 0

2

021 NNNNNNNN SMA       (3.21) 

)sin(sinh)cos(cosh)sin(sinh 0

2

022 NNNNNNNN SMA        (3.22) 

 

For convenience, all terms above are nondimensionalized such that LNN   , 
mL

M
M PM0 , 

2

0
0

mL

S
S  , and 

3

0
0

mL

I
I  . We solve for N  which makes the determinant 0

2221

1211


AA

AA
 and 

thus obtain successive values of N , from which the resonance frequencies associated with each 

Nth mode, ωN can be calculated through the relation, 444

LNN   . The first resonance frequency, 

ω1, for example, is given by equations (3.23) and (3.24), in units of [rad/s] and [Hz], 

respectively: 

 

4

2
11 )(
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EI
    [rad/s]                       (3.23) 
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
f    [Hz]                         (3.24) 

 

It should be noted that ω1 is also related to mass and stiffness through MK /1  . Then, the 

general bending mode shape of a clamped-free (simple cantilever) beam/plate with a proof mass 

is: 

    

)]sin(sinh)cos[(cosh
11

12
aNaNaNaNN xx

A

A
xxd              (3.25) 

 

This is a rewritten form of equation (3.13) only in terms of a single arbitrary scaling constant, 

(here, d is used.), and it is noted that 
L

x
x a

NaN   . Once the parameter, N or N is known 

from the zero determinant, both mode shape and the resonance frequency for the Nth mode are 

determined. For practical use, we normalize the mode shape to 2)( LN at the junction, which 

gives )]sin(sinh)cos/[(cosh2
11

12
aNaNaNaN xx

A

A
xxd   . The actual beam/plate tip 

deflection at PMLLx  , is then given by rLLw NPMtip )](2[   , rather than simply 

rwtip 2  as used in the no proof mass case in Chapter 2. 

Addition of a proof mass will cause the effective mass of the structure, previously given by 

equation (2.12), to have a different form as shown in equation (3.26), which is obtained from the 

Lagrange‟s equations of motion [71, 83]: 
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(3.26)  

 

The last three terms in equation (3.26) incorporate the properties of the proof mass. Although the 

first two terms are present as in equation (2.12) when a proof mass is not considered, the 

resulting values of these terms will be quite different when a proof mass is added to the 
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cantilevered structure. This is because the mode shapes vary due to material and geometric 

properties of the proof mass and thus affect the first two terms in equation (3.26), which are 

expressed in terms of these mode shapes. Likewise, as other terms in the governing equations of 

motions in Section 2.2, such as effective stiffness (K), coupling (Θ), and capacitive matrices (Cp), 

depend on the mode shapes, the variation of the mode shape will alternate the values for these 

effective terms when there is a proof mass. Previously, the forcing function, Bf, has been defined 

to account for the inertial loading of the device due to base excitation. Since not only a 

beam/plate but also a proof mass at the tip contributes to the inertial loading of the device, the 

forcing vector must be modified so that the displacement and the rotation of the tip mass are 

taken into account. The last two additional terms modify the forcing vector: 

 

t

r

t

r

t

rf ψψψB ))(())(())(( 0

0

0 LSLMdxxm

L

aa
                 (3.27) 

 

The matrices M, K, Θ, and Cp in equations (2.10) to (2.15), and (3.26) represent square 

matrices, while Bf in equations (2.16) and (3.27) represents a column matrix. Additionally, the 

mass and stiffness matrices, M and K, are diagonal matrices because of the orthogonality 

conditions that exist between any two modes, ψi and ψj. Since each mode satisfies the differential 

equation (3.16) and the boundary conditions equations (3.14) to (3.17), one can readily show the 

orthogonality conditions to result in:  

 

iiijij MM                               (3.28) 

 

2
iiiijij MK                              (3.29) 

 

where δij represents the Kronecker delta. The fact that the mass and stiffness matrices, M and K, 

are diagonal is important in that it allows each vibration mode, ri, in the governing equation 

(2.10) to be uncoupled structurally from one another (orthogonal vibration modes) in the 

governing system of equations (2.10) and (2.11). This allows for easier computation of the 

governing equations in the multi-degree-of-freedom (MDOF) treatment of the system.  
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Modified coefficients above, M and Bf, can be expressed in the single mode governing 

equations as below while the same expressions for other coefficients in the governing equations 

can be employed as described in Section 2.2:  
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An improved treatment of the proof mass is considered here resulting in modification of 

calculated terms in the prior normalized governing equations that are described in Section 2.2. It 

is shown that while the addition of the proof mass modifies numerous terms in the governing 

equations, the normalized results (e.g., equations (2.24) to (2.26)) still hold. 

 

3.3  Exact Treatment of Flexible Proof Mass Using Two-beam 

Method 

 

In this section, the author develops a more rigorous model that considers a flexible proof 

mass for a cantilevered harvester, where the proof mass also makes contributions to the bending 

stiffness of the system. Long, thin, distributed proof masses are quite common in MEMS devices 

due to the constraints of thin-film processing (e.g., deposition height of proof mass, resolution of 

lithography, etc.). A cantilevered device with a proof mass is modeled as two joined beams with 

different uniform cross-sections rather than a beam with the simple addition of a proof mass, as 

illustrated in Figure 3.3. Notations L and LPM represent here the length of the beam without proof 

mass (beam 1) and the length of a proof mass (beam 2), respectively, whereas LT is again the 

total length of the device. The axial beam coordinate is denoted as xa while xt indicates the 

transverse coordinate along which direction bending of a cantilever occurs. A sinusoidal base-

excitation induces mechanical vibration of a cantilever beam with a proof mass, where ẅB 
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represents base acceleration. Beam displacement, w, can be defined as displacement relative to 

the base of the cantilever. Although an under-hanging proof mass is drawn here consistent with 

the actual experiment (see Chapter 5) in Figure 3.3, it should be noted that both analytical and 

experimental results are the same for either an over-hanging or under-hanging proof mass. It is 

assumed here that the neutral axis location of the two beams is made to be continuous near the 

junction of the two beams, xa = L. 

 

 

Figure 3.3 Schematic of a cantilever with a long, flexible proof mass. Notations „beam 1‟ and 

„beam 2‟ are used to demonstrate the concept of „two-beam method‟.  

 

For the vibration analysis, the N
th

 mode of the mechanical mode shape of each beam is 

expressed as 1,N  for beam 1 and 2,N  for beam 2 with an arbitrary set of constants, c, d, e, f 

and c , d , e , f ,respectively, as shown in equations (3.32) and (3.33):  

 

aNaNaNaNN xfxexdxc 1,1,1,1,1, cossincoshsinh              (3.32) 

 

aNaNaNaNN xfxexdxc 2,2,2,2,2, cossincoshsinh             (3.33) 

 

Euler-Bernoulli beam theory enables determination of the mechanical mode shape following the 
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relations in equations (3.34) and (3.35). EI  is the effective bending stiffness, which is obtained 

considering the neutral axis and the properties of the beam multi-layers, while m is mass per 

length for each beam. EI and m can also represents a plate in bending [52]. ωN represents the N
th

 

mode resonance frequencies in units of [rad/s].  
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Boundary conditions at the fixed end, free end, and the junction between beam 1 and beam 2 are 

established, considering the clamping (equation (3.36)), bending moment and shear force at the 

tip (equation (3.37)), and continuity condition for displacement, slope, bending moment and 

shear force at the junction, Lxa   
(equations (3.38) and (3.39)):  

 

At 0ax , 01, N  and 01, 
N                               (3.36) 

 

At Ta Lx  , 0)( 2,2 
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NEI                      (3.37) 

 

At Lxa  , 2,1, NN   and 2,1, NN                             (3.38) 

 

At Lxa  , 2,21,1 )()( NN EIEI  
 and 2,21,1 )()( NN EIEI          (3.39)                      
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reduced to an 88 matrix as written in equation (3.40), where 
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, are defined for simplicity. For convenience, all terms above are 

nondimensionalized such that TNN L1,  . We solve for N  which makes the determinant 

0A  as before and thus obtain successive values of N , from which both mode shape and 

the resonance frequency for the N
th

 mode are readily obtainable through the relation, 
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(3.40) 

 

The first resonance frequency, for example, is given by equations (3.41) and (3.42) in units of 

[rad/s] and [Hz], respectively: 

 

4

1

12
11

)(
)(

TLm

EI
    [rad/s]                      (3.41) 

 

11
2

1



f   [Hz]                           (3.42) 

 

The general bending mode shape of a clamped-free (simple cantilever) beam/plate with a proof 
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mass at the tip will be given as follows: 

 

 NNNNrN fedc cossincossinh1,               (3.43) 

 

 NNNNrN fedc cossincossinh2,          (3.44) 

 

Parameter, ξ is introduced such that  N

T

a
NaN

L

x
x  . For practical use, we normalize the 

mode shape to 2)( TN L at the tip as is common practice in beam dynamics [69]. Based on 

this modal analysis, we can predict mechanical performance of a cantilever such as resonant 

frequencies, mechanical mode shape, and strain distribution along the beam depending on 

various sizes of flexible proof masses once we input material property constants and geometric 

dimensions. 

The flexible proof mass analysis presented in this section enables thorough investigation of 

the mechanical behavior of micro-scale single crystal silicon cantilevers with a distributed, 

flexible proof mass and furthermore, establishment of the effect of proof mass on the 

performance of MEMS-PVEHs. When analyzing a cantilevered piezoelectric energy harvesting 

device with a flexible, long proof mass, mechanical mode shapes obtained from the two-beam 

method can be used directly in the key parameter equations (2.12)-(2.31) and (3.26)-(3.34). As a 

result, prediction of key performance metrics such as mechanical displacement, voltage and 

power is possible.  

 

3.4  Summary of Key Effects of Proof Mass Modeling Treatments 

 

Extended analytical models for a cantilevered PVEH focusing on the addition of a proof 

mass are presented throughout this chapter. Significance of appropriate treatment of proof mass 

in PVEH device design for enhanced power generation is highlighted by modeling detailed proof 

mass effects on PVEH performance at three different levels of accuracy: simple approximation 

for concentrated proof mass, improved treatment of rigid proof mass with rotation, and exact 
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treatment of a flexible proof mass using a two-beam method.  

Damping ratio, ζm, is one of key parameters that can significantly affect device performance. 

In the following, a generalized treatment for the determination of mechanical damping ratios 

based on simple measurement of actual tip and base displacements originated in du Toit et al. [30, 

74] is presented. When the governing equations of motion are derived, mechanical damping is 

incorporated through addition of a viscous damping term, C, which is related to mechanical 

damping ratio, ζm, via MC m 12   in the case of a single mode. Mechanical damping is 

assumed to encompass all non-electrical damping that influences the system response. Accurate 

characterization of mechanical damping is essential for device performance prediction. As an 

alternative to the log-decrement method (described for energy harvesters in detail in [30]), 

another measurement scheme can be developed to obtain ζm through convenient dynamic tests of 

the harvester. Previously, du Toit et al [29, 30, 73, 74] presented a generalized treatment for the 

determination of mechanical damping ratios based on simple measurement of tip and base 

displacements. While the derivation procedure for the expression of mechanical damping ratio is 

reasonable there, some of the detailed terms should be corrected such that these expressions can 

be applied to the system regardless of whether there is a proof mass or not. The relative 

displacement is expressed as a function of dimensionless time constant, α, as in equation (2.24). 

At short-circuit (α = 0) where electrical damping is zero, and at resonance (Ω = 1), equation 

(2.24) can be rewritten: 

 

mBf KwB
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11
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
                            (3.45) 

 

With an input harmonic base excitation given by BB ww 2
1 , where wB is amplitude of base 

excitation and ω1 denotes the first resonant frequency of the vibration. In addition to the base 

acceleration, rw tiptip   and 2
1MK   can be substituted into equation (3.45) to derive an 

expression for the mechanical damping ratio, ζm, given easily measurable displacement 

amplitudes: 
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Absolute tip displacement, wtip, and absolute base displacement, wB, should be experimentally 

measured at resonance and short-circuit conditions by aligning the input frequency with the 

resonant frequency of the device and letting the electrical resistance, Rl be zero. Other values 

such as forcing function, Bf, and effective mass, M, in the equation can be obtained from model 

implementation for specific devices. When a proof mass is attached at the end, the mechanical 

mode shape at the tip, ψr,tip is equal to ψr(L+LPM) instead of simply ψr(L) = 2, as mentioned 

earlier, following equation (3.25). For the energy harvester system without a proof mass, where 

LPM  is zero, the mechanical mode shape at the tip reduces to 2 through ψr(L) = 2: 
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Equation (3.47) coincides with the form that was developed in prior work by du Toit et al [74] 

for the case of no proof mass, where the experimental results agreed well with simulated results. 

Note that in both cases, the mechanical damping has dependence on effective mass, M, and 

forcing function, Bf, that are represented in terms of mechanical mode shape and its derivatives, 

as shown previously. As the mechanical mode shape varies according to change in proof mass 

properties, these terms change accordingly and thus, it is also necessary to evaluate the 

mechanical damping ratio that is appropriate to each proof mass (i.e., device). As damping is 

typically measured at the device natural frequency, which is fixed, the damping dependence on 

frequency is not considered here. However, if the damping ratios are not the same at the 

resonance and anti-resonance frequencies, the dependence of the mechanical damping ratios on 

frequencies should be examined. The scheme to obtain the mechanical damping ratio from 

modeling and experiments presented here is used in Chapter 4, where it is found that analysis of 

damping ratios contributes to accurate prediction of device performance.  

In Chapter 4, the rigid proof mass model developed in Section 3.2 is experimentally 

verified through a detailed set of experiments (with various proof mass geometries). Chapter 5 
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follows with the results from newly designed experiments that are performed not only for 

experimental verification of the flexible proof mass modeling but also for comparison of three 

different-level modeling approaches of proof mass effects that have been described in this 

chapter. The mechanical behavior of a flexible, distributed proof mass in terms of its resonant 

frequency and mode shapes as a function of proof mass size is considered, followed by model-

experiment correlation based on AFM and FIB lithography of Si microcantilevers. Modeling is 

an indispensable element in predicting and analyzing the characteristics of PVEHs. Therefore, 

the exact analysis presented here for PVEHs with a proof mass is an essential step in realizing 

MEMS devices for future applications. 
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Chapter 4 

 

 Experiment-Model Correlation          

for Macro-scale PVEHs with a Proof Mass 

 

 

Analytical models for a cantilevered PVEH focusing on the addition of a proof mass are 

presented in Chapter 3. In this chapter, the analytical model of rigid proof mass with rotation 

developed in Section 3.2 is experimentally verified using a macroscale, symmetric, bimorph, 

cantilevered PZT bimorph device operating in {3-1}-mode with and without a proof mass. The 

proof mass in the experiments are large and effectively rigid in bending relative to the PVEH 

cantilever. Experimental tests undertaken on the energy harvesting device with different 

geometry proof masses demonstrate that the properties of the proof mass affect the resulting 

performance of the energy harvester device beyond simply reducing the natural frequency. It is 

also shown that the rigid proof mass model accurately captures all aspects of the measured 

response, including the location of peak-power operating points at resonance and anti-resonance, 

and trends such as the dependence of maximal power harvested versus frequency. As a summary, 

the last section concludes with a demonstration of energy harvesting system behavior under 

various operating conditions (e.g., driving input frequencies, electrical resistance, and damping), 

based on the analytical model developed for PVEH devices in Chapters 2-4. Experiments were 

performed by Mathias Hoegen [118], and the author undertook the model implementation and 

model-experiment comparison study.  
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4.1  Model Implementation for Cantilevered Bimorph  Piezoelectric 

Energy Harvesters 

 

A symmetric, bimorph cantilevered PZT „bender‟ is chosen and tested with various sizes of 

proof mass as well as without a proof mass. The harvester is a cantilevered plate consisting of 

two piezoelectric layers (bimorph), one structural layer, and electrodes (see Figure 4.1). The test 

device is operated in {3-1} mode of operation with series connection between active elements, 

which requires two piezoelectric elements to be oppositely poled. In order to implement the 

electromechanically-coupled model based on an improved modal analysis of rigid proof mass 

that can accommodate the specific test device configurations and interconnection of the 

piezoelectric elements, it is necessary to evaluate the relevant coefficients. In this section, we 

obtain appropriate scalar equations for the experimental device with a single mechanical mode.  

 

 

 

Figure 4.1 Illustration of symmetric, bimorph energy harvester with a tip proof mass. The 

active elements are electrically connected in series. 

 

Since there are two piezoelectric elements, each layer can be denoted with subscripts 1 and 

2, to treat the two active layers in the bimorph configuration. Considering these two layers for 

the bimorph configuration, we use equations (2.10) and (2.11) to write equations (4.1) and (4.2) 
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as: 
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Equations (4.2) are summed to obtain a form similar to the scalar equation (2.18), and effective 

constants derived: 

 

)()()( 21221121 qqvCvCr pp                       (4.3) 

 

For the symmetric bimorph configuration, θ1 = θ2, Cp1 = Cp2, vvv
2

1
21  ,  and  q1 = q2.  

Next, the coefficients for one of the piezoelectric elements (here 1 is chosen) need to be 

considered so that they can be applied in the governing equations. For bimorph cantilevered 

energy harvesters, there are two ways to interconnect the piezoelectric elements: parallel or 

series connection. As the test device in this work is connected in series, the poling directions of 

each piezoelectric layer should be opposite. Please refer to [30, 74, 83] for detailed information 

of the effect of poling direction and corresponding electrical connection. The in-series 

connection, as illustrated in Figure 4.1, has the device connected to the electrical load by shorting 

the two center electrodes (e2 and e3), and connecting the top (e1) and bottom electrodes (e4) 

across the electrical load. Based on this, relations of voltage and charge are achieved such that v1 

+ v2 = v, and q1 = q2, giving:  
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Based on the comparison between the above expressions (4.4) and (4.5) and the governing 

equations (2.17) and (2.18) for the general single mechanical mode harvester, it is recognized 

that the coupling term, θ, and the capacitance term, Cp in the general expression can be rewritten 

using coupling and capacitance values for one piezoelectric layer through θ = θ1, and 1
2

1
pp CC   

for the energy harvester with bimorph configuration that is electrically connected in series. This 

result is intuitive in that two piezoelectric layers are regarded as simple capacitors and that the 

effective capacitance of two identical simple capacitors wired in series is half of the capacitance 

of one capacitor.  

As a next step, it is necessary to examine the appropriate expression for electrical potential 

that corresponds to the symmetric, bimorph configuration in {3-1} mode of operation in order to 

evaluate coupling and capacitance more specifically. In this work, electric potential distribution 

is taken to give a constant electric field through the thickness of the piezoelectric element. The 

potential varies from 0 at the top electrode to +1 of at the bottom electrode in Figure 4.1. The 

electric potential for the bimorph structure in {3-1} mode operation is then expressed employing 

the thicknesses of the piezoelectric layer (tp) and structural layer (ts) as given by: 
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If the device is of unimorph configuration or in {3-3} mode of operation, electric potential will 

vary according to each case (see Section 8.1). Now it is possible to determine the final 

expression for coupling term, θ, and the capacitance term, Cp, by substituting the electric 

potential expression shown in equation (4.6) into equations (2.21) and (2.22). The resulting 

expressions are: 
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Concerning the calculation of capacitance, the entire beam/plate length, L+LPM, is employed 

because of the test device structure. Thus, the model is implemented for the test device, that is, a 

symmetric, bimorph configuration in {3-1} mode of operation, connected electrically in series. 

Based on this, mechanical and electrical performance of the system is simulated and compared 

with the experimental results, as presented in Section 4.4.   

 

4.2  Experimental Procedures for Device Characterization of     

Macro-scale Energy Harvesters 

 

4.2.1  Experimental Setup and Device Performance Measurements 

 

A macroscale, cantilevered plate is used as a test device. The schematic of a bimorph 

device with addition of a proof mass at the end of the device along with electrical connection is 

shown in Figure 4.1. A brass-reinforced bending actuator (Piezo Systems Inc., T226-A4-503X) is 

composed of seven layers: two piezoelectric (active) layers, each of which is sandwiched by two 

electrode layers (four layers of electrodes in total) and one structural (inactive) layer made of 

brass. Two piezoelectric layers (PZT-5A) are poled in opposite directions so that opposite strains 

in each layer generate electric fields in the same directions. For the bimorph configuration, there 

are two ways to interconnect active layers: series and parallel connections.  Series connection is 

chosen to match the poling direction in use. Further details on poling direction and relevant 

coordinate systems are described in [29, 30, 73]. The {3-1} operation mode is employed where 

the strain develops in the direction perpendicular to the electric field. Proof masses are added at 

the free end of the PVEH using superglue and insulating tape. In order to mount the PVEH 

device on an electrostatic shaker for input base excitation, a simple aluminum clamp is adopted, 

which is shown in Figure 4.2. 
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Absolute tip displacement as well as the base displacement in transverse direction is 

measured to obtain the relative mechanical displacement using a laser Doppler vibrometer 

(Polytec PSV 300-H). As illustrated in Figure 4.1, a simple circuit that consists of purely 

resistive electrical load in conjunction with a bimorph device electrically connected in series is 

established to achieve electrical responses of the device. A purely resistive electrical load is 

helpful not only to simplify the calculation but also to measure the power generated. The 

measured voltage is root-mean-square voltage, vrms, and is converted to vmax by multiplying 

by 2 . Power is evaluated from the measured voltage and applied electrical resistance, Rl, 

through the relation, lRvP /2
maxmax  . Voltage and power calculated from equations (2.25) and 

(2.26) correspond to experimental vmax and Pmax, respectively. To determine the operating points, 

it is important to assess both resonant and anti-resonant frequencies, which is accomplished by 

sweeping a range of frequencies using a laser vibrometer either at short-circuit conditions or at 

open-circuit conditions. The resonant frequency is defined as the natural frequency when the 

device is in the short-circuit condition while the anti-resonant frequency is the natural frequency 

in open-circuit condition. Anti-resonant frequency, in particular, is an important measure of 

electromechanical coupling and thus, from the information of anti-resonance frequency, it is 

possible to assess the extent of electromechanical coupling in the system. Once resonant and 

anti-resonant frequencies are found, both mechanical and electrical tests are performed at 

resonances, near resonances, and away from resonances with varying electrical loading 

conditions. The results are graphically presented in the next section in comparison with 

simulated results from analytical modeling.   

 

4.2.2  Test-device Dimensions and Material Properties 
 

Geometric parameters of the devices and material properties used in model 

implementation are listed in Table 4.1. Depending on availability, values are adopted from 

publications, measured, or calculated. It is necessary to differentiate energy harvester length, LEH, 

from actual cantilevered energy harvester length, LT, which describes the length of the energy 

harvester plate excluding the length occupied by the clamping device. As the thickness of the 

nickel electrode is about 1 μm, it is regarded as negligible considering the entire macroscale 
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device thickness of 0.675 mm. Regarding material properties, several values such as density, 

elastic stiffness, piezoelectric constant, and the absolute permittivity at constant stress of 

piezoelectric layer (PZT-5A) are taken from available literature. The density of the structural 

layer and proof masses are calculated from the known values of mass and volume. The elastic 

stiffness of the structural layer is found to be 100 GPa (inferred from device resonant frequency, 

as it was not directly measured). While piezoelectric strain constant, d31, is available as -190  

10
-12

 [C/m], the stress constant, 
*

31e , is computed using its relation with the coupling coefficient, 

θ. Refer to [30] for more detailed description of measurement methods for each property. For 

plate structures, the absolute permittivity at constant strain, 
*

33

S , is related to the absolute 

permittivity at constant stress, T

33 , through 
*

31313333 2* edTS   (see Appendix A), and thus, the 

absolute permittivity at constant strain is evaluated based on the known information of T

33 . 

Masses, lengths, thicknesses of two different sizes of proof masses are presented in Table 4.2 

together with input base accelerations at which the energy harvester device with a proof mass is 

excited. 

     In general, all the parameters needed to implement the model presented in Chapter 2, 

equations (2.24)-(2.26), can be calculated from basic physical and electrical data, except for the 

mechanical damping ratio, ζm. This ζm can only be obtained from experiments on the particular 

device tested.  
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Figure 4.2 Connection between the electrostatic shaker (as the part that moves the system), the 

clamping device, and the energy harvester device with Proof Mass I. Energy harvester device is 

electrically wired through electrical leads in order to obtain electrical data as shown in the left 

image. 
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Table 4.1 Geometric and material properties of the tested macroscale bimorph energy harvesters.  

 Value Comment 

Device dimensions 

Energy harvester length LEH / [mm] 63.7 Measured 

Cantilevered energy harvester length LT / [mm] 53.0 Measured 

Energy harvester width b / [mm] 31.7 Measured 

Energy harvester thickness t / [mm] 0.675 Measured 

Energy harvester mass MEH / [g] 10.5 Measured 

Piezoelectric layer thickness tp / [mm] 0.275 Measured 

Structural layer thickness ts / [mm] 0.126 Measured 

Material properties used 

Piezoelectric layer density ρp / [kg/m
3
] 7750 Ref.[86]  

Structural layer density ρs / [kg/m
3
] 7630 Calculated 

Proof mass density ρ0 / [kg/m
3
] 7751 Calculated 

Piezoelectric layer stiffness *11

Ec  /[Gpa] 61 Ref.[86] 

Structural layer stiffness *sc  / [Gpa] 100 Calculated 

Absolute permittivity T

33 / [F/m] 1800ε0 Ref.[87]  

Absolute permittivity *33

S / [F/m]  

Vacuum permittivity ε0 / [F/m] 

1551ε0 

8.854 x 10
-12

 

Calculated 

Ref.[88] 

Strain constant d31 / 10
-12

 [C/m] -190 Ref.[87] 

Strain constant *31e  / [C/m] -14.2 Calculated 

Note on *: asterisk (*) is used to indicate material property constants specified for a plate 

structure when needed (refer to Appendix A). 
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Table 4.2 Geometric dimensions of device proof masses and input base accelerations. 

 Mass, 

MPM  

[g] 

Active plate 

length, L 

[mm] 

Proof mass 

length, LPM 

[mm] 

LT 

(=L+LPM) 

[mm] 

Proof mass 

thickness, 

hPM [mm] 

Base 

acceleration 

[m/s
2
] 

No Proof Mass 0 53.0 0 53.0 0 2.5 

Proof Mass I 16.7 42.7 10.4 53.1 6.61 0.5 

Proof Mass II 34.7 31.6 21.6 53.2 6.66 0.2 

 

 

4.3  Experiment-Model Correlation and Discussion of Proof Mass 

Effects on Harvesting Performance 

 

4.3.1  Model Implementation 

 

Model simulations in Section 3.3 are run on the macroscale PVEH without a proof mass 

(No PM), with Proof Mass I (PM I), and with Proof Mass II (PM II), followed by experimental 

performance tests for the purpose of model verification. It is beneficial to test the device without 

a proof mass as the experimental results can be compared with prior work by du Toit et al [74], 

where the same type of device was tested without a proof mass.  

Key effective parameters such as mass, stiffness, capacitance etc. that appear in the 

governing equations for model implementation are listed in Table 4.3. Overall, all effective 

parameters in the governing equations (2.17) and (2.18) vary depending on whether a proof mass 

is added or not as well as geometric specifics of the proof mass. Consistent with expectations, the 

effective mass, M, increases as the size and the mass of a proof mass increases and that effective 

stiffness, K increases as the active beam/plate length is reduced the longer the proof mass 

becomes. Other parameters such as coupling, θ, capacitance, Cp, and system coupling, κ
2
, are 

found not to change significantly with proof masses as they are affected by coupling constant and 

electrical mode shapes, not mechanical or geometric factors and thus have a weak dependence on 

a proof mass.  
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Mechanical damping ratio is also obtained following the procedure stated in Section 3.4 

previously, where mechanical responses measured at short-circuit condition are required along 

with theoretical values of effective mass, M, forcing function, Bf , and mechanical mode shape at 

the tip of the device, ψr,tip. It should be noted that the mechanical mode shape at the tip, ψr,tip, as 

well as effective mass, M, and forcing function, Bf, increase significantly as proof mass becomes 

larger and heavier. It is important to note that the mechanical damping ratios are derived from the 

equation of mechanical displacement at short-circuit conditions and resonance and thus must be 

computed using the data measured at short-circuit condition and resonance. As it is also possible 

to evaluate the mechanical damping ratio utilizing the equations and measured data at open-

circuit conditions and anti-resonance as well, they are also computed to confirm that damping 

has little dependence on frequency in that range. Although detailed damping analysis at open-

circuit condition and anti-resonance is not presented here, the key result from comparison is that 

there is little difference in the values of mechanical damping ratios analyzed either at short-

circuit and resonance, or at open-circuit and anti-resonance. Determination of damping is critical 

and the scheme suggested and utilized in this work is effective, as small changes in values of 

mechanical damping ratios cause large changes in device response, especially at the resonances. 

This implies the importance of considering the geometric and material properties of a proof mass 

when a device incorporates a proof mass in order to get exact treatment of device dynamics (e.g., 

damping ratio analysis) instead of using a point-mass assumption.  

Key resulting performance equations are used to gain mechanical tip displacement 

histories as well as electrical responses as a function of electrical loading, Rl, which are plotted 

together with experimental results in Figures 4.4 through 4.12.   

 

Table 4.3 Key device parameters for model implementation. 

 M  

[kg] 

K 

[N/m] 

Θ  

[N/V] 

Cp  

[F] 

Bf κ
2
 ψr,tip ζm 

No PM 0.00878 4150 0.00469 4.12 x10
-8

 0.00687 0.126 2.00 0.0182 

PM I 0.114 7760 0.00665 4.20 x 10
-8

 0.0496 0.137 2.77 0.0154 

PM II 0.414 19900 0.00961 4.21 x 10
-8

 0.126 0.111 4.30 0.0146 
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4.3.2  Mechanical Mode Shapes for the Proof Masses 

 

Mechanical mode shape, ψr, plays a major role in describing the structural dynamics of the 

beam/plate harvester. In this investigation, the first vibration mode would generally give the 

greatest power, and the subsequent experiment targets the first vibration mode as the frequency 

of interest for these energy harvesters, i.e., the input energy at higher modes will be less than at 

the first mode as it is a design choice. Importantly, axial strain, (see equation (2.8)) is written in 

terms of the second derivative of mechanical mode shapes.  

 

 

 

Figure 4.3  Variation of mechanical mode shapes and second derivatives (strain is proportional 

to the second derivative) in the axial direction from the clamp (x=0) to the proof mass junction 

(x=1). Here, x represents an axial position of normalized length of the device plate.  

 

In Figure 4.3, the effect of proof mass on the mechanical mode shape and the second 

derivatives of mode shapes are presented. The horizontal axis represent x, an axial position of 

normalized length of the device plate, where the 1.0 indicates the junction point between the 

device plate and the proof mass. Figure 4.3 (a) clearly shows that the mechanical mode shape is 

normalized to 2 consistently for all cases at the junction where the proof mass begins. The plot in 

Figure 4.3 (a) reveals that the mechanical mode shapes change slightly, depending on whether 

there is a proof mass or not (No PM vs. PM I or II), as well as on the size of the proof masses. 
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When the second derivatives of mechanical mode shapes are compared with one another, the 

difference along the plate length is more apparent. Considering Figure 4.3 (b), in addition to 

managing resonant frequency, adding a proof mass has an additional positive effect: average 

strain is increased due to non-zero strain at the proof mass (device end).  

 

4.3.3  Performance of Piezoelectric Vibration Energy Harvesters 

 

4.3.3.1  Resonant and Anti-resonant Frequencies 

 

The models in Chapters 2 and 3 allow one to predict resonant and anti-resonant 

frequencies, which are compared with experimental results. As shown in Table 4.2, the 

dimensions of PM I and PM II are distinct particularly in that PM II is longer in the axial 

direction, therefore having more distributed mass over the energy harvester than PM I. As they 

have similar thickness, this geometric sequence is quite beneficial to investigate the influence of 

mass distribution as well as the geometric variation.      

Table 4.4 summarizes resonant frequencies and anti-resonant frequencies obtained from 

simulation and measurement for all proof mass cases. Overall, measured values and simulated 

values of both resonant frequencies (f1,r) and anti-resonant frequencies (f1,ar) are in good 

agreement for all cases. Considering the fact that an accuracy of down to 0.125 Hz is possible to 

obtain experimentally, the difference between the measured frequencies and calculated ones 

correspond quite accurately. An important point is that the resonant frequency is greatly reduced 

when a proof mass is introduced. For example, the natural frequency at short-circuit condition of 

the device without a proof mass is measured as 109.5 Hz, which is decreased by more than half 

to 41.63 Hz by adding PM I at the end of the device. Although the proof mass length of PM II is 

roughly twice longer than that of PM I, the resonant frequency of PM II (34.75 Hz) is not lower 

by half than that of PM I (41.63 Hz). The same trends are seen in not only resonance frequencies 

but also anti-resonance frequencies, both empirically and theoretically. The results shown in 

Table 4.4 suggest that the model is capable of predicting both resonance and anti-resonance 

frequencies both with and without a proof mass.  
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Table 4.4 Summary of frequencies, dimensionless time constants and electrical load at short-

circuit and open-circuit conditions.  

Case Measured 

f1,r  

[Hz] 

Calculated 

f1,r  

[Hz] 

Measured 

f1,ar  

[Hz] 

Calculated 

f1,ar  

[Hz] 

Calculated 

αr,opt    αar,opt 

Calculated 

Rr,opt     Rar,opt 

[kΩ] 

No PM 109.5 109.45 115.25 116.15 0.278 3.21 9.62 111.5 

PM I 41.63 41.44 44.5 44.16 0.222 3.98 20.3 364.0 

PM II 34.75 34.85 37.0 36.73 0.255 3.55 27.6 384.6 

 

 

4.3.3.2  Model-Experiment Comparison of Overall Energy Harvester 

Response 

 

Mechanical and electrical device responses are compared here. For each case (No PM,  

PM I, and PM II) depending on proof masses, mechanical tip displacement is measured at 

various discrete electrical resistances ranging from 0 kΩ to 100 kΩ with varying operating 

frequencies. Operating frequencies are selected to be two frequencies below resonance, at 

resonant and anti-resonant frequency, and two frequencies above anti-resonance for comparison, 

so that both off-resonant operation and resonant operation are systematically analyzed. For the 

PM II case, considering the narrow range of frequencies, one below resonance and one above 

anti-resonance are chosen as off-resonant operating frequencies instead of two points for each. At 

the same conditions, electrical performance is obtained by measuring the voltage generated 

across the electrical resistive loads and calculating the extracted power using measured voltage. 

All experimental results are graphically demonstrated in Figures 4.4 through 4.12 using dots 

while predicted results from modeling are represented by lines on the same plots. In addition to 

the data points from 0-100 kΩ, the measured points at open-circuit (where electrical loading, Rl, 

goes to infinity) are included at each input frequency in the plots of mechanical tip displacements 

(Figures 4.4, 4.7, and 4.10) and voltages (Figures 4.6, 4.8, and 4.11) versus electrical resistance, 

Rl. Empty squares in red color are used to distinguish these points from other measured points. 

As power goes to zero under open- or short-circuit conditions, these points are not considered in 
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power-resistance plots.    

Tip displacements are shown in Figures 4.4, 4.7, and 4.10, and compare the experimentally 

obtained tip displacements, wtip, with predicted tip displacement from modeling for No PM, PM I 

and PM II, respectively. On the whole, the simulation is in good agreement with experimental 

results at various electrical loadings and multiple operating frequencies. Particularly, at off-

resonant operations, for example, at 75 Hz or 160 Hz in Figure 4.4 (a) and (f), respectively, the 

model accurately predicts the magnitudes and trends of mechanical tip displacement. It is also 

shown that further away from resonance or anti-resonances, the model becomes closer to the 

experimental results. Regardless of whether there is an attachment of a proof mass or not, similar 

trends in tip displacement histories result. At frequencies below resonance, tip displacements 

decrease slightly as the electrical loading increases (e.g., Figure 4.4 (a), (b), Figure 4.7 (a), (b) 

and Figure 4.10 (a)). As the operating frequency gets closer to resonance, the extent of decrease 

becomes larger although it does not decrease proportionally to resistance. For frequencies at the 

point of anti-resonance and above anti-resonance, the trends of tip displacements are different in 

that they increase with increasing resistance. It should be noted that the maximum tip 

displacements are obtained at resonance for the short-circuit condition (Rl = 0), and at anti-

resonance for the open-circuit condition (Rl → ∞). These displacements are approximately equal, 

and represent the two points where no energy is harvested.  

Voltages generated are plotted against resistance from 0 kΩ to 100 kΩ at various operating 

frequencies. Overall, experimental voltages agree well with the simulations for all cases as 

shown in Figures 4.5, 4.8, and 4.11, respectively. In a similar fashion to the mechanical relative 

tip displacements, when further away from resonances or anti-resonances, the more precise the 

predicted values are when compared with experimental results. In general, the voltage increases 

along with increase of resistance for both on- and off-resonance operation. The maximum 

voltages are obtained at anti-resonance, not at resonances. For example, within the resistance 

range of experimental measurements used here (0 kΩ -100 kΩ), the highest voltage of 6.9 V 

appears at anti-resonance among all other operating frequencies in case of a device without a 

proof mass (Figure 4.5 (d)). However, the data point of 11.1 V measured at the open-circuit 

condition (Rl →∞) suggests that the voltage would keep increasing as the electrical resistance 

increases until it reaches this value, if the measurements were taken at an extended range of 
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electrical load beyond 100 kΩ. This trend appears prominently at anti-resonance for all cases 

(Figures 4.5 (d), 4.8 (d), and 4.11 (c)). Unfortunately, the range of electrical resistance for 

experimental measurements was limited here to 0-100 kΩ, but the experimental trends are 

indicated by the open-circuit data points. On the other hand, at resonances (Figures 4.5 (c), 4.8 

(c), and 4.11 (b)), it is observed that the voltages measured at 100 kΩ are already close to the 

values measured at open-circuit condition (Rl →∞), which is quite in contrast to the trends at 

anti-resonances where a large numerical difference is present between resistance data at 100 kΩ 

and infinity.  

In Section 2.2, optimal electrical loading conditions for maximum power at both resonance 

and anti-resonance are derived and given in equations (2.28) and (2.29). Optimal electrical 

resistances as well as corresponding dimensionless time constant, αopt at resonance and anti-

resonance for all three proof mass cases are computed and listed in Table 4.4. As shown in Table 

4.4, optimal electrical loading conditions at resonances are within the range of 0-100 kΩ, while 

optimal electrical resistances appear well above 100 kΩ at anti-resonances. For example, 384.6 

kΩ and 364.0 kΩ are calculated for PM I and PM II, respectively, as optimal electrical 

resistances where maximum power can be obtained. This is related to the different behavior at 

open-circuit condition between resonance and anti-resonance. If the voltage were measured near 

the optimal points, like 400 kΩ, for instance, at anti-resonance, the measured points at these 

points would approach the values measured at Rl →∞. The empirical results of device responses 

at open-circuit conditions (Rl →∞) help predict the tendency of voltage behavior against 

electrical loading that are beyond the range of measurement undertaken in this work. Also, this 

tendency corresponds well with the trends of simulated results. Not only voltages but also tip 

displacements measured at open-circuit conditions (Rl →∞) do exhibit the similar behavior in 

that the values at open-circuit conditions (Rl →∞) represent the device responses at extended 

electrical loading conditions as in Figures 4.4, 4.5, 4.7, 4.8, 4.10, and 4.11.  

One other point to notice in these voltage-resistance figures is the large difference in 

voltage between resonance and anti-resonance. This change is reflected in the voltage equation 

(2.25) yielding: 
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where var and vr represent the voltages at anti-resonance and resonance, respectively. In fact, 

from equation (2.25), the largest voltage in the system for a constant base acceleration, Bw , is 

obtained at open-circuit conditions (Rl→∞). This corresponds with the maximum tip 

displacement for open-circuit conditions mentioned earlier, and together they serve to identify 

the anti-resonance frequency, ωar. Also from equations (2.24)-(2.26), a check can be made on the 

electrical coupling parameter, κ
2
, by comparing the resonance and anti-resonance frequencies, ωr 

and ωr, using the relation,  
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Power extracted from a test PVEH is acquired using the relation, lRvP /2
maxmax   and are 

presented in Figures 4.6, 4.9, and 4.12 together with the simulated lines obtained from modeling. 

The unit of power here is micro-Watts. Again, the model captures accurately the trend of power 

across varying electrical loading conditions at various input frequencies. In a prior work by du 

Toit et al [29, 30, 73, 74], it was theoretically shown that there are two optimum operating points 

in terms of power maximization and that those two points correspond to resonance and anti-

resonance, giving equal values of maximum power when 2ζm/κ
2
 ≪ 1. The optimal points of 

electrical loadings for maximum power at resonance (Rr,opt) and anti-resonance (Rar,opt) are 

calculated using equations (2.28) and (2.29), respectively, with the results summarized in Table 

4.4.  

As the optimal electrical resistances particularly at anti-resonances exceeds the 

experimental performance test range (100 kΩ), simulated powers are re-plotted against a more 

extended range of electrical resistances from 0 kΩ to 400 kΩ at resonances and at anti-resonance 

for all cases of No PM, PM I and PM II, and presented in Figure 4.13. For example, for the case 

of PM I, the maximum power, 166.9 μW, takes place at around 20.3 kΩ at resonant operation 
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whereas the power is maximized as 164.5 μW at about 364 kΩ at anti-resonance. For No PM 

case, 335.2 μW at 9.62 kΩ is obtained at resonance while 327.5 μW is computed at its optimal 

resistance of 111.5 kΩ at anti-resonant operation. Power in PM II case is maximal at 60.5 μW at 

resonance, and 59.3 μW is obtained at anti-resonance at their optimal electrical resistances of 

27.6 kΩ and 384.6 kΩ, respectively. It is quite significant that almost equal maximum power can 

be achieved at distinct electrical loading conditions, depending on whether a device is operated 

at resonance or anti-resonance. This also implies the frequency shift according to electrical 

loading, which is consistent with the discussion by du Toit et al [74], using power-frequency 

ratio plots at various electrical resistances. The slight numerical difference between the 

maximum power at resonance and anti-resonance suggests that system coupling, κ
2
, is not large 

enough compared to the mechanical damping ratio, ζm, to satisfy the approximation that 

2ζm/κ
2≪1. As already shown in voltage-resistance plots, the maximum voltage appears at anti-

resonance rather than resonance. Therefore, anti-resonant operation is advantageous when high 

voltage is required with high electrical resistance while resonant operation is beneficial for the 

applications that require high current. This explains why not only resonant frequency but also 

anti-resonant frequency should be considered for optimal design.  

There are two aspects that should be mentioned regarding the operation at resonances. First 

of all, the advantages of resonant (or anti-resonant) operation for energy harvesting are clearly 

observable when the resonant operation is compared with the off-resonant operation. Both 

mechanical and electrical performance of the system is greatly amplified at resonance compared 

to the off-resonant operation. Small deviations from resonance or anti-resonance condition will 

cause the device to perform with much diminished effectiveness. In terms of voltage, the 

maximum value is seen to be achievable at anti-resonance conditions. Thus, depending on the 

application, it should be determined whether the system will be operated at resonance or anti-

resonance (i.e., if high current or voltage is desired, respectively). Also, adjusting the input 

conditions such that they are as close to the resonance or anti-resonance is another substantial 

point when considering the device operations. Secondly, although predicted and measured 

performance results are well correlated both mechanically and electrically at off-resonant 

operations, it is observed that a consistent discrepancy exists at the resonances and anti-

resonances between the simulation and the measurement. When prediction deviates from 
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experimental measurement for voltage, the extent of discrepancy for power is more pronounced 

because the power is obtained through using the value of voltage squared, as shown in the power 

plots of Figures 4.6, 4.9, and 4.12. The deviation that occurs at resonance and anti-resonance is 

attributed to the nonlinearity in piezoelectric coupling that is not incorporated in the modeling. 

The model here is based on a linear constitutive relation of piezoelectricity. However, the 

piezoelectric constants are known to be nonlinear even at moderate levels of strain (e.g., 100 μ-

strain). Accordingly, a moderate discrepancy takes place at resonant and anti-resonant conditions 

due to the nonlinearity and this is consistent with modeling of the nonlinearity by others [89-92]. 

Although there are small quantitative differences between measurement and simulation at the 

resonances, the general trends of the tip displacement, voltage, and power at resonance as well as 

at away from resonance are predicted accurately.  

Lastly, the relation between the electrical damping ratio, ζe and mechanical damping ratio, 

ζm can be analyzed using tip displacement vs. electrical loading result. As stated earlier, the 

electrical damping ratio is known to be equal to mechanical damping ratio when the power is 

maximized at optimal electrical loadings. As electrical resistance is zero at short-circuit condition, 

no electrical damping exists at this point. However, when electrical resistance is introduced, 

more and more electrical damping affects the device responses. This is observed in the 

measurement results of tip displacement against electrical loading especially at resonance. For 

PM I case, the maximum power in measurement occurs at 20 kΩ at resonant operation (41.625 

Hz) as in Figure 4.9 (c). If we compare the tip displacement at 20 kΩ, where the maximum 

power takes place, with the tip displacement at short-circuit conditions (Rl = 0 kΩ), the former 

comes as 138.3 μm, which is about a half of the latter, 280.3 μm. It can be easily derived from 

equation (2.24) that the tip displacement at resonance is inversely proportional to mechanical 

damping ratio, ζm at short-circuit conditions (Rl = 0 kΩ). Since the electrical damping ratio 

becomes equal to the mechanical damping ratio at the point where the power reaches maximum, 

the total damping at the point of maximum power will be twice the total damping at short-circuit 

condition where only mechanical damping is involved. This coincides with the observation on 

the decrease in experimentally measured tip displacements by about a half when the value at 

short-circuit condition is compared with the data measured at the point where power is maximum.  

The electromechanically coupled energy harvester model predicts quite accurately both 
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mechanical and electrical device responses overall, especially at off-resonant operations both 

below and above resonance or anti-resonance. The model has a capability of not only capturing 

the general trend of system response but also estimating quite precisely values of magnitude for 

resonance frequencies, mechanical performances, and electrical device responses. The governing 

equations of the system (equations (4.4) and (4.5)) are almost identical to those used by Erturk et 

al [76], but use of mass-normalized modes and complex quantities obscure the meaning of the 

resulting calculations; although the proof mass was not rigorously treated, the behavior in that 

work does indicate (undiscussed) resonant and anti-resonant behavior. 
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Figure 4.4 No Proof Mass (No PM): predicted vs. measured response: tip displacement plotted 

against the electrical load at various input frequencies. Base acceleration is held constant at 2.5 

m/s
2
. Empty squares in red color indicate the tip displacements measured at open-circuit 

condition (Rl→∞). 
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Figure 4.5 No Proof Mass (No PM): predicted vs. measured response: voltage developed, 

plotted against the electrical load at various input frequencies. Base acceleration is held constant 

at 2.5 m/s
2
. Empty squares in red color indicate the voltages measured at open-circuit condition 

(Rl→∞). 
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Figure 4.6 No Proof Mass (No PM): predicted vs. measured response: extracted power plotted 

against the electrical load at various input frequencies. Base acceleration is held constant at 2.5 

m/s
2
. 
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Figure 4.7 Proof Mass I (PM I): predicted vs. measured response: tip displacement plotted 

against the electrical load at various input frequencies. Base acceleration is held constant at 0.5 

m/s
2
. Empty squares in red color indicate the tip displacements measured at open-circuit 

condition (Rl→∞). 
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Figure 4.8 Proof Mass I (PM I): predicted vs. measured response: voltage developed, plotted 

against the electrical load at various input frequencies. Base acceleration is held constant at 0.5 

m/s
2
. Empty squares in red color indicate the voltages measured at open-circuit condition 

(Rl→∞). 
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Figure 4.9 Proof Mass I (PM I): predicted vs. measured response: extracted power plotted 

against the electrical load at various input frequencies. Base acceleration is held constant at 0.5 

m/s
2
. 

 



111 

 

 

 

 

 

 

Figure 4.10 Proof Mass II (PM II): predicted vs. measured response: tip displacement plotted 

against the electrical load at various input frequencies. Base acceleration is held constant at 0.2 

m/s
2
. Empty squares in red color indicate the tip displacements measured at open-circuit 

condition (Rl→∞). 
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Figure 4.11 Proof Mass II (PM II): predicted vs. measured response: voltage developed, plotted 

against the electrical load at various input frequencies. Base acceleration is held constant at 0.2 

m/s
2
. Empty squares in red color indicate the voltages measured at open-circuit condition 

(Rl→∞). 
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Figure 4.12 Proof Mass II (PM II): predicted vs. measured response: extracted power plotted 

against the electrical load at various input frequencies. Base acceleration is held constant at 0.2 

m/s
2
. 
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Figure 4.13  Dual-power optimization at resonance and anti-resonance for each proof mass 

case.  
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4.3.3.3   System Behavior under Various Operating Conditions 
 

     Performance of PVEH devices is dependent upon several operating parameters including 

operating frequencies, electrical impedance (resistance used throughout here), and damping 

conditions. The trends and magnitudes of mechanical displacement, developed voltage and 

output power across varying electrical resistances at various operating frequency conditions are 

observed both experimentally and analytically for macroscopic, bimorph PVEH devices in series 

connection with and without a proof mass in this chapter. In Chapter 6, output power of the same 

device is plotted against operating frequencies at various electrical resistances to study the 

system-level optimization. All these works lead to the following key conclusions: 1) there are 

dual optimal points for maximum power generation at resonance and anti-resonance, and 2) 

electrical resistances can be used to tune the optima for power. So far, output power is plotted 

against either electrical resistance or input operating frequencies in two-dimensional spaces. As a 

summary for the power behavior under various operating conditions, output power is plotted in 

three-dimensional space in Figure 4.14 while varying electrical resistance and input operating 

frequencies (here, normalized frequency, Ω is used) simultaneously for the macroscopic device 

with proof mass I (PM I) that is used in this chapter. The peak (Ω = 1 at Rl  0 and 

21  at Rl ) represents the optimum for power, and the largest frequency shift from 

resonance to anti-resonance occurs when electrical resistance increases, which are clearly shown 

in Figure 4.14. It is also interesting to see how flat the peak power is between resonance and anti-

resonance frequencies, suggesting that the electrical resistance gives us a tailorable bandwidth 

for vibration energy harvesting.  

     To see the damping effect briefly on the power behavior, particularly at resonance, 

multiple plots of output power of the same device (PM I case) versus electrical resistance at 

various quality factors (Q) are given in Figure 4.15. Mechanical damping ratio, ζm, is frequently 

used throughout this thesis but quality factor is also a commonly used notation as a measure of 

the damping condition. These two parameters are related via 
m

Q
2

1
 . Observation of the plots 

in Figure 4.15 indicate that as the quality factor gets higher (i.e., less damping is involved), the 

power peaks tends to have a narrower bandwidth with increased magnitude of power. While the 
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measured power values are in good agreement with the simulated power for the test-specific 

(macroscopic energy harvester device) quality factor of 32.4, quality factors higher than 10,000 

are typically expected in MEMS-scale PVEH devices.  
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Figure 4.14 3-D plot (2 views) of output power against normalized frequency and electrical 

resistance. The model simulation is run on the experimentally verified macroscopic energy 

harvester with PM I. 
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Figure 4.15 Power versus electrical resistance at various damping conditions. The model 

simulation is run on the experimentally verified macroscopic energy harvester with PM I.  
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Chapter 5 

 

 Experiment-Model Correlation for MEMS-

scale Cantilevers with a Flexible Proof Mass 

 

 

A thorough investigation of the mechanical behavior of micro-scale single crystal silicon 

cantilever with a distributed, flexible proof mass is presented in this chapter. This includes not 

only the experimental verification of the model developed for a flexible proof mass in Section 

3.3 based on the two-beam method, but also the study of the implication of proof mass effects on 

the performance of PVEHs particularly at MEMS-scale. A set of new experiments are designed 

that include fabrication of novel MEMS-scale proof masses with various lengths using focused 

ion beam milling (FIB), and testing of MEMS-scale cantilevers using atomic force microscopy 

(AFM).  

The basic operating principles of AFM served as inspiration for using a cantilever probe 

from AFM for the study of mechanical performance of MEMS cantilevers. As illustrated in 

Figure 5.1, AFM consists of three main parts: i) AFM head that includes piezoactuator (high 

frequency actuator and Z-axis positioner), holder for cantilever probes, and laser beam bouncing 

detection unit (laser and split photo diode), ii) sample stage for sample holding and x-y 

positioning of the sample, and iii) controller box. The primary function of AFM is to map the 

surface topography of target samples by monitoring the cantilever deflection induced by the Van 

der Waals force between a probe tip and the sample. Before topography acquisition in non-
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contact mode where the cantilever probe is oscillating near its resonance frequency, preliminary 

characterization of cantilever probes is required, which includes the measurement of mechanical 

characteristics such as resonant frequencies, deflections, and quality factors of the AFM 

cantilever probe. Careful examination of these processes reveals that the characterization of 

cantilever probes in AFM has components very similar to the analysis of base-excited 

cantilevered PVEH structures. First of all, cantilevers at micron-scale provide the size and 

geometric shape of interest for the analysis of MEMS-scale cantilevered PVEH devices. 

Secondly, the piezoactuator can serve as mechanical shaker to vibrate the cantilevered structures 

at or near resonance. Lastly, the preliminary probe characterization process can be used to 

characterize the mechanical behavior of micron-scale cantilevered structures vibrated 

particularly at or near resonances by providing the experimental data for resonance frequency, 

deflection along the beam, and quality factors, as explained earlier. The deflection is measured 

using a laser spot reflected from the top surface of the cantilever into an array of photodiodes. 

While laser beam spot is fixed on one point of the cantilever in typical experiments using AFM, 

it is also possible to vary the position of the laser beam spot, allowing acquisition of mechanical 

responses at different locations along the cantilever length [93].  

Consideration of all these factors discussed above gave a novel idea to utilize AFM probe 

cantilevers as “the sample” to test, instead of using it as a tool for the topography measurement 

of materials samples, in order to verify the model for a flexible proof mass as well as to 

investigate the mechanical behavior of micro-scale cantilevers with a distributed, flexible proof 

mass. Furthermore, this AFM-based test method is a newly designed experiment especially in the 

research area of energy harvesting and thus, the application of the recipes used in this experiment 

may open up other possibilities of using AFM in diverse fields of research.  
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Figure 5.1 Schematic of AFM equipped with a cantilever (with a proof mass). 
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5.1  Fabrication of Proof Masses Using Focused Ion Beam 

 

An AFM probe typically consists of a micro-scale cantilever with a sharp tip at its end that 

is used to scan the specimen surface. For the purposes here, however, a tip-less cantilever is more 

suitable as modification of its structure is easier to have proof masses of various lengths using 

FIB. Figure 5.2 contains SEM images of the as-purchased tip-less single-crystal silicon 

cantilever probe (Nanosensor, TL-FM 20) before any FIB processing. FIB is a time-efficient tool 

for custom-shaped geometries. FIB (Zeiss NVision 40 at the Electron Microscopy Center, 

Argonne National Laboratory) was used to micro-machine the cantilever probe to have various 

sizes of proof masses by sequential subtraction of material (single-crystal Si). This FIB 

instrument provides a well-focused Ga-ion beam with a high probe current necessary for the 

efficient removal of relatively large volumes of material (for FIB-SEM). In this instrument, the 

ion gun is oriented at an angle of 54° from the electron gun. Thus, a sample (cantilever probe) 

should be tilted to this angle from the electron gun and toward the ion gun under normal FIB-

SEM working conditions. However, the sample should be tilted by 36° from the electron gun and 

90° from the ion gun in edge-on milling where we use the relatively low energy component of 

the ion beam to etch (see Figure 5.3). Edge-on milling for accurate dimension control [94] was 

carried out at 30 kV with a probe current of 13 nA for initial trimming of a tip-less cantilever and 

700 pA for sequential subtraction to vary the length of proof mass. SEM images were collected 

at each stage to provide detailed dimensions of each cantilever with distributed proof mass. 

 

 

Figure 5.2 SEM images of the as-purchased tip-less single-crystal silicon cantilever probe 

(Source: http://www.asylumresearch.com/Probe/TL-FM,Nanosensors). 
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Figure 5.3 Schematic of dual-beam FIB apparatus and sample configuration for edge-on milling. 

 

In Figure 5.4, we illustrate a cantilever with a relatively thin, distributed proof mass of 

different lengths (dashed and solid lines) together with SEM images of one proof mass case (LPM 

= 28.5 m) from different perspectives. Starting from a uniform beam where total length of the 

beam, LT, is 220.7 m and the total thickness is 3.07 m, we milled out sequentially 20, 20, 40, 

40, 40, 30, and 30 ms in length from the clamped end, yielding a set of cantilevers with proof 

mass lengths of 200, 181.3, 140.3, 99.7, 59.2, 28.5 m, and lastly a cantilever with no proof 

mass (1.94 m in average thickness of the beam). The width of the cantilever was measured to 

be 20.7 m on average. There are two aspects noteworthy in the SEM images of Figure 5.4. First, 

a step-like trace remained visible for each segment that was milled away as it is hard to control 

the milling thickness and orientation of the sample perfectly to match with the previous segment. 

Therefore, when we implement our model to calculate resonant frequency, the average beam 

thickness of 1.13 m was used as the thickness of the proof mass, thus giving a total thickness of 

3.07 m for the beam plus proof mass. Second, it is quite notable that no bending was observed 

even after the full milling process, implying that little residual stress is induced even when 
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significantly etched by Ga ions. More SEM images are available in Appendix D.  

 

 

 

Figure 5.4 3-D schematic and SEM images of a single-crystal silicon cantilever with a flexible, 

distributed, thin proof mass fabricated by FIB lithography. Inset shows 2-D schematic of base-

excited cantilevered beam with a proof mass at the tip with model parameters. 

 

5.2  Characterization of MEMS-scale Cantilevers Using Atomic 

Force Microscopy 

 

The micro-machined Si cantilever probe with a proof mass was mounted in an AFM 

(MFP-3-D, Asylum Research) to characterize its mechanical behavior, most importantly the 

resonant frequencies depending on the lengths of proof mass. Following is the experimental 5-

step sequence devised for this work, based upon the typical AFM probe characterization process: 
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1) Laser beam positioning and dimension measurement 

 

Performance parameters were measured at six different positions with equi-distances (~20 m) 

along the beam length, which allows acquisition of each parameter as a function of xa (where xa 

is the distance from the fixed end of the cantilever). The interval between the positions of 

measurement was determined considering the size of the laser beam spot (~40 m in diameter) 

and the cantilever. The laser beam spot was positioned onto the point of interest on the cantilever 

using the real-time images of the beam spot and cantilevers captured by CCD camera. The same 

images were also used to estimate the geometric dimensions, particularly the distance between 

the fixed end of cantilever and the laser spot (the point of measurement). Dimensions obtained 

here are compared with the dimensions estimated from SEM images for accuracy.  

 

2) Quantification of photo-diode signal in units of nano-meters 

 

In AFM characterization, amplitude (deflection) of the vibrating cantilever probe is measured 

using a photo-diode signal and thus the data is obtained in units of [V], which needs to be 

converted into a length unit. For this, so called “inverse optical lever sensitivity (OLS)” should 

be measured, which is defined as the inverse of the output voltage from the photo diode when the 

cantilever is bent by the movement of the piezoactuator by 1nm. Inverse OLS in units of [V/nm] 

is obtained from the force-distance curve by assessing the ratio of the distance [nm] that the 

given probe tip moves to the output voltage [V] of the photo-diode signal. Contact mode is used 

where the cantilever probe tip is in touch with the sample surface and thus, a standard stainless 

steel substrate was chosen and used as a sample in this case due to its rigidity and low stiction 

characteristics.   

 

3) Measurement of stiffness, K [N/m] 

 

After the measurement of inverse OLS, the mode is switched to AC mode and thermal 

measurements are undertaken. Thermal analysis is the measurement of mechanical behavior of a 

cantilever probe when agitated only by thermal energy at room temperature without any external 
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application of other driving forces. From this analysis, we obtain stiffness, K [N/m] and thermal 

quality factor.  

 

4) Measurement of resonant frequency, deflection, and quality factor 

 

The function “auto-tuning” in AFM (MFP-3-D, Asylum Research) permits measurement of 

vibration amplitude as a function of input driving frequency under the condition of constant 

photo-diode signal at resonance. This provides information on mechanical characteristics such as 

resonant frequency of a given cantilever probe [Hz], amplitude at the laser beam targeted 

position [V], and mechanical quality factor. Then, the same measurement is repeated but at 

constant drive amplitude to analyze the mechanical behavior of the cantilever at constant 

excitation.  

 

5) Data analysis and model-experiment comparison 

 

Below is the list of key performance parameters from the experimental procedure described 

above. 

 

• Resonant frequency, f1, as a function of proof mass size (LPM/LT where LPM and LT are the 

lengths of proof mass and the total beam, respectively.) 

• Stiffness, K, as a function of position, xa, along the beam length  

• Quality factor, Q, both as a function of proof mass size and of position along the beam 

length 

• Mechanical deflection along the beam length at various base excitations 

 

Future work will incorporate the size effect of proof mass on mechanical damping and deflection 

in MEMS-scale cantilevered systems both theoretically and experimentally, based on the data 

acquired from the set of experiments described above. 
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5.3  Mechanical Behavior of Micron-scale Cantilevers With a Proof 

Mass 

 

Measured first-mode resonant frequencies are compared with simulated results from three 

different modeling approaches on the single-crystal silicon cantilever probe with proof masses of 

various lengths. The three different modeling approaches include simple concentrated proof mass 

approximation, improved treatment of rigid proof mass with rotation, and exact treatment of 

flexible proof mass using the two-beam method (see Section 3.3). The results are shown in 

Figure 5.5 where resonant frequencies are plotted against normalized length of proof mass (i.e., 

ratios of length of proof masses (LPM) to the total length of the system (LT)). From a perspective 

of FIB fabrication, the proof mass size becomes smaller as more milling is carried out. Density 

and elastic modulus are required as modeling inputs. 2,329 kg/m
3
 is used as the density of single-

crystal Si [69]. Elastic modulus of single-crystal silicon in [001] direction is estimated by using 

the 1
st
 resonant frequency that is experimentally obtained at both end points where we can apply 

a well-established beam theory of bending vibration of a free-end cantilever without a proof 

mass. 88.6 kHz is obtained at the right ending point (LPM = 220.7 m) while 49.6 kHz is 

recorded at the left ending point (LPM = 0.0 m), each providing elastic modulus of 176.0 GPa 

and 138.4 GPa, respectively, which are in the range of the reported values for single-crystal Si of 

this orientation, 125 GPa-179 GPa [95]. The reason for the change in elastic properties between 

these ending points can be explained by the effect of Ga ions during FIB lithography. Therefore, 

we take 138.4 GPa for the elastic modulus of the beam (beam 1) where Ga ions cause the 

material property to change, while we use 176.0 GPa for the second beam (proof mass region) 

which is unaffected by FIB milling.  

There are two important aspects that should be noted in Figure 5.5. First of all, comparison 

of three different modeling results from each model with the experimentally measured values 

suggest that each model has good predictive capability of resonant frequencies up to the point 

when the size of proof mass occupies about 60% of the total cantilever length, despite the 

significant approximations in those models, which is beneficial for simplicity of engineering 

design perspective. However, a discrepancy between the modeling results and the measured 
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values becomes prominent once the proof mass gets longer and more distributed than 60% of the 

total length. For instance, the resonant frequency predicted by the flexible proof mass analysis is 

in much better agreement with the measured frequency (1% difference vs. 26% by concentrated 

proof mass analysis, and 17% by rigid proof mass analysis when normalized proof mass length is 

0.82). From the perspective of predicting dynamics (e.g., estimation of resonant frequencies), 

Figure 5.5 would seem to indicate that a refined 'two-beam' dynamic model as presented here is 

of little value except when very long and thin proof masses are considered [11, 96]. However, 

this is not true because prominent difference occurs when it comes to prediction of strains (and 

therefore energy harvested in the case of, e.g., a PVEH) depending on the choice of model as 

discussed next. 

 

 

 

Figure 5.5 Resonant frequency vs. normalized proof mass length (simulated vs. experiments). 
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Secondly, observation on the extent of resonant frequency reduction with increasing proof 

mass size provides an important insight into the design and fabrication of proof mass 

configuration for MEMS-scale PVEHs. From the right-hand side of Figure 5.5, it is shown that 

when we subtract a portion of 20% of a total beam length, then the cantilever would have a proof 

mass of 80% of total beam length, decreasing the resonant frequency of the system by 46.2 %. In 

contrast, if we add a proof mass of 20% size of the total beam length, the resonant frequency can 

be reduced by 13.9%, as presented in the left-hand side of Figure 5.5. Conventionally, addition of 

a proof mass that occupies a portion of a cantilever is thought of when a proof mass is required. 

Here, we can see that another way to effectively adjust resonant frequency is to etch out a small 

portion of a beam layer, which results in a long and distributed proof mass, particularly at this 

MEMS-scale.  

In Figure 5.6, mechanical mode shapes that are obtained from three different proof mass 

analyses are drawn against xa, axial position of normalized length of the entire cantilever, where 

0.0 and 1.0 indicate the clamped (fixed end) and the very end of the beam (or end of proof mass), 

respectively, at various lengths of proof masses. Mechanical mode shape, ψr, plays a major role 

in describing not only the structural dynamics of the cantilever system but also the device 

performance of PVEHs [52]. The longer a proof mass becomes, the greater the difference in 

mechanical mode shapes predicted by the different modeling approaches. The difference among 

modeling methods becomes even more distinct in the prediction of beam curvature (2
nd

 

derivative of mechanical mode shapes) which is directly related to axial strain, when the length 

of the proof mass increases [52]. Discontinuities in Figure 5.7 indicate the junction between 

proof mass and active beam. Accurate estimate of strain is very significant not only because it 

helps control fatigue and therefore design against structural failure during vibrating operation, 

but moreover, more power can be extracted by PVEHs at larger strains as power scales with 

strain squared [52]. Comparison of the absolute magnitudes of strain in Figures 5.7 (a), (b), and 

(c) suggests that the longer and more distributed proof mass induces more strain, implying 

increased power generation of PVEHs. The flexible proof mass analysis using the two-beam 

method accounts for the strain distribution in detail over the entire cantilever including the proof 

mass region. In contrast, neither the concentrated proof mass nor the rigid proof mass analysis 

can capture the elastic nature of the proof mass and, accordingly, the strain distribution under the 
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proof mass area. It is also seen in Figure 5.7 that when normalized proof mass length is 0.82, the 

predicted maximum strain at the clamped end of a cantilever can differ by up to 40% depending 

on the analytical approach for proof mass, underscoring the importance of appropriate treatment 

of flexible proof mass in MEMS-scale systems.  

One last thing to note is that no experimental data on strain is available here, only 

measured deflection data along the beam length using AFM can be used to perform model-

comparison analysis on mode shapes. As mentioned earlier in this chapter, future work will 

address the size effect of proof mass on the deflection, and thus mode shapes, in more detail.  

 

 

Figure 5.6 Normalized mechanical mode shape along the beam length (x) for various sizes of 

proof mass. 

 

 

Figure 5.7 Curvature of normalized mode shape along the beam length (x) for various sizes of 

proof mass.  
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5.4  Implications for Performance of Piezoelectric Energy 

Harvesters 

 

The mechanical behavior of a cantilever with a flexible, distributed proof mass is 

rigorously modeled in terms of its resonant frequency and mode shapes as a function of proof 

mass size, based on the „two-beam‟ method developed in Section 3.3. For the experimental 

verification of this flexible proof mass model, newly designed experiments are performed based 

on AFM and FIB lithography. Comparison of three different analytical modeling results for the 

proof mass with measured data leads to a conclusion that flexible proof mass analysis based on a 

„two-beam‟ method has the most accurate predictive capability over the range of proof mass 

sizes in terms of both resonant frequencies and modal analysis. Although the experimental work 

shown in this chapter highlights the proof mass effects only on the mechanical characteristics of 

MEMS-scale cantilevered structures, marked differences in the prediction of strain distribution 

resulting from different modeling approaches suggests a considerable significance in selecting 

appropriate modeling approaches for studying and designing PVEH devices. 
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Chapter 6 

 

 Model-derived Piezoelectric Materials Design 

in Energy Harvesting 

 

 

The biggest challenge in utilizing PVEHs has been their insufficient power generation for 

practical applications, which necessitates creative and disruptive materials and structure design at 

various scales. To date, research in piezoelectric energy harvesting has focused on the 

development of more power efficient devices through the system optimization both in design 

level and fabrication. In this chapter, special emphasis is placed on the design and selection of 

optimal piezoelectric materials in terms of power generation. Using a macroscopically verified 

analytical electromechanical coupled beam model (see Chapters 2-5), sensitivity of device 

performance to material properties of the piezoelectric element such as elastic stiffness, dielectric 

constants, and piezoelectric coupling coefficients, is investigated. Notable is the observation that 

piezoelectric constant dominantly influences harvested power at off-resonance as widely noted, 

but that at the resonances an optimal value for a given device exists. This is intriguing because it 

is in contrast with the widely-held perception that higher piezoelectric coupling yields increased 

power generation. By showing how this optimization scheme can be applied to a PVEH, 

materials design and selection for power-optimized devices is presented along with physical 

interpretation of optimal piezoelectric coupling as it relates to tunable device parameters such as 

system impedance. 
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6.1  Piezoelectric Materials and Material Constants 
 

As to the matter of the design and selection of optimal piezoelectric materials in terms of 

more power generation, two key questions are of primary interest especially to materials 

scientists: 1) “what are the important material properties when we design PVEH devices?” and 2) 

“then, how do we design and select piezoelectric materials”? To answer the first question, it is 

useful to take a look at the constitutive equations of piezoelectric materials, which describe the 

relation between mechanical behavior (stress and strain) and electrical behavior (electrical 

displacement and electrical field). Equation (6.1) is one way to express the linear constitutive 

relations in tensor form. (Please note that there are multiple ways to write the constitutive 

relations with different associated material property constants depending on convenience; see 

IEEE standard [35].) 
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From the above, we consider three main relevant materials properties of piezoelectric materials: 

elastic stiffness at constant electric field (E), c
E
 in units of [GPa], piezoelectric constant, e in 

units of [C/m
2
] relating charge density and strain or stress and electric field [N/V·m] and 

dielectric constant at constant strain (S), ε
S
 in units of [F/m]. Superscript, t, indicates the 

transpose of the matrix. Piezoelectric materials typically exhibit anisotropic characteristics, thus, 

the properties of the material differ depending upon the direction of stress etc. and orientation of 

the polarization and electrodes. In equation (6.1), these material properties are written in tensor 

form that consists of a number of elements for each property constants. In the general anisotropic 

stiffness case, for example, one needs to know 21 independent constants for c
E
 [119]. Measuring 

and analyzing all of these parameters is not generally practical, especially for thin films in 

MEMS. Fortunately, the fact that poled ferroelectrics exhibit symmetries [97] allows a reduced 

form with fewer elements (e.g., equation (A.1)). These three-dimensional linear elastic 

constitutive relations can be easily simplified for {3-1} and {3-3} modes of operation, of which 
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detailed derivation procedure is available in Appendix A. Equation (6.2) represents the simplified 

expression for {3-1} mode of operation for a plate where the asterisk (*) is employed for 

distinction from the 3-D constant: 
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Hence, elastic stiffness, *11

Ec , piezoelectric constant, *31e , and permittivity, *33

S  are the key 

material properties of interest in this work to analyze the their effects on the output performance 

of PVEH devices, particularly based on a poled ferroelectric material such as lead zirconate 

titanate (PZT) [97]. While piezoelectric stress constant, *31e , is of the focus in this case, there 

are a series of piezoelectric constants to define the level of piezoelectric activity of a material. 

One of the most frequently used piezoelectric constants is the piezoelectric stain constant, dij, 

defined as the strain developed per applied field in units of [m/V] or short-circuit charge density 

per applied stress in units of [C/N]. Another piezoelectric constant of common use is the voltage 

constant, gij, defined as electrical field generated per unit of mechanical stress, or the strain 

developed for an applied charge density in units of [V·m/N] or [m
2
/C]. Electromechanical 

coupling factor, kij, is also frequently used as an indicator of the effectiveness with which a 

piezoelectric material converts electrical energy into mechanical energy or vice versa. These 

piezoelectric constants have close relation with one another through such mechanical or 

electrical parameters as permittivity and compliance. For a more complete description of the 

constants, the reader is referred to the IEEE standards [35]. Piezoelectric and dielectric 

constants for common materials like lead zirconate titanate (PZT) in bulk and thin films, zinc 

oxide (ZnO), aluminum nitrides (AlN) and polyvinylidene fluoride (PVDF) are given in Table 

6.1 for comparison. Note that while larger values for these materials properties keep being 

reported, the values in Table 6.1 give a general sense of relative magnitudes.  

The next question is “what are the criteria to design and select piezoelectric materials for 

the realization of PVEH devices with optimal output performance?”. To date, researchers have 

spent considerable effort to fabricate piezoelectric materials that exhibit as high piezoelectric 
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coupling constants as possible to generate more power through PVEH devices. A good example 

of this is the intensive focus on the fabrication and integration of PZT at the morphotropic phase 

boundary (MPB) into PVEH devices because the highest achievable piezoelectric coupling 

coefficient of PZT is observed at this composition [33, 34]. However, conclusions from the 

model-based study undertaken in this chapter find that higher piezoelectric coupling does not 

necessarily lead to increased power generation from PVEH devices despite this widely-held 

“intuitive” perception. The following chapters include an analysis on material property effects on 

PVEH device performance based on the experimentally verified analytical model and 

furthermore, their implications into the device design of PVEHs, providing device design 

guidelines particularly from a perspective of materials selection. 

 

Table 6.1 Comparison of material properties of commonly used piezoelectric materials. 

Material 

Properties 

PZT 

Bulk 

[33] 

PZT 

(111) 45/55 

film [33] 

PZT 

(100) 53/47 

Film [33] 

ZnO  

[34] 

AlN  

[34] 

PVDF 

[98, 99] 

*31e  [C/m
2
] -14.7 -8.5 -12 -1.0 -1.05 -0.13 

033 /*  S
 300 ~ 1300 10.9 10.5 12 

 

 

6.2  Sensitivity Analysis of Device Performance to Material 

Properties 

 

The model developed for a base-excited piezoelectric cantilever system (Chapters 2 and 3) 

is adopted as a useful analysis tool as it proved to have conservative predictive capability 

through experimental verification ([74], Chapters 4 and 5). Modeling yields prediction of 

harvesting device responses as outputs when accepting such input parameters as materials 

properties, geometric configuration, and external operating conditions. Thus, it is possible to 

observe the trends of device output performances as a function of material properties on a device 

of given geometric configuration using the analytical model. The previous test device used in 



137 

 

Chapter 4 is considered, a macroscopic, bimorph PVEH device with proof mass I (PM I) because 

this is the device that the model is experimentally verified on. It should be noted that whether 

there is a proof mass or not is irrelevant in terms of this topic (i.e. relation of piezoelectric 

material properties and device performance) and the same results would hold for the no proof 

mass case. The same geometric dimensions and materials properties listed in Table 4.1 are 

employed. 

To see the sensitivity of output power to the relevant material properties, output power is 

plotted against piezoelectric coupling constants, *31e , and dielectric constant, *33

S , in Figures 

6.1 (a) and (b), respectively, under given constant external operating conditions. The external 

operating conditions here include not only input driving frequency that is determined from the 

vibration environment where device operation takes place, but also the electrical load (resistance, 

Rl), an adjustable parameter externally that we apply to the harvesting device through an electric 

circuit. In this case, electrical resistance is set to be constant at 20 kΩ and the device is assumed 

to operate at its theoretical resonance (Ω =1 or f1 = 41.4 Hz). Note that the range of each material 

property constant as indicated along the x-axis of both Figures 6.1 (a) and (b) covers sufficiently 

those of the existing piezoelectric materials that are commonly used and reported. Consistent 

with the material properties listed in Table 4.2, when piezoelectric constant, *31e , varies as in 

Figure 6.1, dielectric constant, *33

S , is fixed to be 1.373  10
-8

, while -14.2 C/m
2
 is used for a 

fixed value of *31e when dielectric constant, *33

S , becomes a variable as shown in Figure 6.1 

(b). 

The results in Figure 6.1 lead to two key conclusions. First, comparison of power behavior 

across varying piezoelectric constant, *31e , and dielectric constant, *33

S , implies that 

piezoelectric constant, *31e , dominantly affects the power output over dielectric constant, *33

S . 

In other words, when electrical resistance, Rl, is not tuned to optimum but fixed to a certain value, 

here 20 kΩ, the magnitude of output power is not as sensitive to the change in the values of 

dielectric constants as to the changes in piezoelectric constants. Second, as piezoelectric 

constants increase, the output power goes up and then down, showing that there exists an optimal 

point of piezoelectric constant for maximum power generation under the given condition (i.e. at 

resonance and a fixed electrical resistance, 20 kΩ). This local maximum takes place when 
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piezoelectric constant, *31e , corresponds to -14.7 C/m
2
 while generating 165.0 W of output 

power.  

 

 

 

Figure 6.1 Sensitivity of output power of a PVEH device to materials properties: (a) output 

power versus piezoelectric constant, *31e , and (b) output power versus dielectric constant, 

*33

S , at resonance and 20 kΩ for the device (PM I) of Chapter 4.  

 

     In Figure 6.2 (a), output power, Pout, is plotted against normalized frequency, Ω, at various 

values of piezoelectric constant, *31e , for further in-depth analysis on the effect of piezoelectric 

constant, *31e , on the output power performance. The external operating condition is the same 

as the previous such that operation occurs at resonance and electrical resistance, Rl, is kept at 20 

kΩ. Several distinctive aspects are noticeable in Figure 6.2 (a). At off-resonance (when the input 

driving frequency moves away from resonant frequency (Ω =1), either below (Ω < 1), or above 

(Ω >1)), power increases as piezoelectric constant, *31e , increases. In contrast to the “expected” 

behavior at off-resonance, output power at or near resonance exhibits a counter-intuitive trend. 

Since there is an optimal point that maximizes power harvesting from a given device, decreased 

power is achieved even when piezoelectric constant, *31e , increases at or near resonance. This 

is the opposite result to the general thought on the relation of piezoelectric coupling constants 

and power generation. For better demonstration of this trend, maximum output power at each 
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peak is plotted against distinct piezoelectric constants in Figure 6.2 (b) using the same symbol 

(blue ribbon) as in Figure 6.2 (a). In Figure 6.2 (b), maximum power appears when the 

piezoelectric constant is close to -15 C/m
2
, which corresponds to the result in Figure 6.1 (a). 

In addition to contrasting behavior at resonance and off-resonance, shift in resonant 

frequencies at peak power depending on piezoelectric constant, *31e , is noteworthy. In Figure 

6.2 (a), the normalized frequency (Ω) shifts upon the increase of piezoelectric constant, which is 

re-illustrated in Figure 6.2 (c). In the previous chapters, it is already mentioned several times that 

the resonant frequency (fr) is the natural frequency at short-circuit condition (Rl  0) while the 

anti-resonant frequency (far) is the natural frequency at open-circuit conditions (Rl  ). Thus, 

the peak-power frequency shifts from resonance toward anti-resonance when electrical resistance 

becomes larger [52, 74, and chapter 4]. The increasing trends of peak-power frequencies with 

higher piezoelectric constants that appear in Figures 6.2 (a) and (c) have a close similarity to the 

frequency shift from resonance to anti-resonance due to increasing electrical resistance. This 

suggests that it could be possible to interpret the effect of materials‟ piezoelectric coupling and 

externally applied electrical resistances on the output power performance of PVEH devices in the 

same scheme. The following section presents a physical interpretation (damping) of this 

optimum piezoelectric coupling behavior at resonance by deriving appropriate analytical 

expressions, which also account for the similar effect of electrical resistances and piezoelectric 

coupling on the power performance observed in Figures 6.2 (a) and (c).  

One more aspect to note in Figure 6.2 (a) is widening of peaks with higher piezoelectric 

coupling constants. As piezoelectric constant, *31e , increases, the broader the peak becomes. 

The similar kind of peak-widening phenomenon is observed when we plot amplitude versus 

normalized frequencies for typical resonant-operating devices represented by mass-spring-

damper system [69] and increase the mechanical damping ratio (or decrease the quality factor). 

In addition to the frequency shift at the peaks, the analytical expressions derived in the following 

section also help explain this peak-widening with increased piezoelectric coupling constants in 

relation to mechanical damping effects on the device operated at resonance. 
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Figure 6.2 Device performance trends with *31e : (a) Output power versus normalized 

frequency (Ω) at various piezoelectric constants, *31e , under given operating conditions (at 

resonance and at 20 kΩ), (b) maximum output power vs. piezoelectric constant, (c) peak-power 

frequency ratio vs. piezoelectric constant, *31e . 
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6.3  Damping Analysis and Its Relation to Piezoelectric Coupling in 

Energy Harvesting 

 

In sensitivity analysis, we‟ve seen that the magnitude and width of power at the peaks vary 

as electrical resistance and/or piezoelectric coupling constant, *31e , change, in addition to the 

peak-power frequency shift. Also, there is an optimum point of *31e  that generates the 

maximum power, leading to an important conclusion that larger piezoelectric coupling is not 

necessarily required for more power extraction. To interpret such interesting behaviors of output 

power at resonance depending on piezoelectric coupling constants, it is useful to introduce the 

concept of equivalent mechanical damping in a PVEH system and use its analogy to a pure 

mechanical system consisting of a mass-damper-spring system [30]. This is possible through the 

derivation and study of associated analytical expressions for “equivalent” mechanical damping 

terms from the governing equations previously developed for PVEH devices. In order to find an 

“effective” mechanical damping term, rearrangement of the two governing equations (2.17) and 

(2.18) for PVEHs is required such that the system can be described as a force-driven damped 

harmonic oscillation in a mechanical mass-spring-damper system. For convenience, these scalar 

governing equations are reproduced in equations (6.3) and (6.4), where Cm represents the 

mechanical damping term in the PVEH system: 

 

Bfm wBvKrrCrM                            (6.3) 
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In Chapter 2, these equations were solved using harmonic oscillations for r, v, and Bw  in both 

equations, and this resulted in the harmonic expressions given by equations (2.24)-(2.26). This 

solution contains the resonance and anti-resonance phenomena and the natural transition between 

the two phenomena. 

A simple approximate way to explore the effects at the resonant frequency, Ω =1, is to 
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retain the simple second-order system behavior of equations (6.3) and (6.4) in the time domain, 

but to modify its behavior by the voltage term, θv. Assumption of harmonic oscillation of 

generated voltage, v, allows us to have the voltage expression in terms of the frequency-time 

domain as well as to express the time-derivative of voltage in terms of driving frequency () and 

voltage. These are written in equations (6.5) and (6.6), respectively:  

 

tievv 
0                                 (6.5) 

 

vieviv ti    0
                              (6.6) 

 

where 0v  is voltage amplitude and   represents the input frequency as before. Substitution of 

equation (6.6) into the sensing equation (6.4) results in the voltage expression with respect to 

velocity ( r ) term:  
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Then, using the relation in equation (6.8), it is now possible to eliminate the voltage term in the 

governing equation (6.3), as shown in equations (6.9) and (6.10):  
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A general mathematical expression for forced harmonic oscillators with external force, F(t) 

[69], is: 

  

)(tFKxrCrM effective                             (6.11) 

 

where Ceffective represents the total or “effective” mechanical damping of a purely mechanical 

system with no electrical or piezoelectric element. Comparison of equations (6.10) and (6.11) 

suggests that equivalent “effective” mechanical damping constant, Ceffective, in a PVEH system 

consists of the pure mechanical damping constant (Cm) and equivalent electrical damping effect 

due to piezoelectric coupling (θ
2
) and electrical resistance (Rl), as expressed below in terms of 

electrical and mechanical damping ratios:  
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Equation (6.12) shows how electromechanical coupling in a PVEH system contributes to the 

mechanical damping to the system “effectively”. If we focus on the equivalent electrical 

damping constant, Ce, as in equation (6.13), piezoelectric coupling (θ
2
), capacitance (CP), driving 

frequency () and electrical resistance (Rl), comprise the equivalent electrical damping:  
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As previously, we know 
2

N

K
M


  and can define non-dimensional terms such as system 

coupling,
PKC

2
2 

  , time constant, PlN CR  (and frequency ratio,
N


 ). 
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Rearrangement of the expression in equation (6.13) enables us to derive an expression for 

electrical damping ratio in terms of non-dimensional terms as below: 
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As the expression above is in complex form, the magnitude of electrical damping ratio, ζe, should 

be evaluated through the relation *

eee   (where superscript * indicates conjugate complex 

number) in order to obtain a physically meaningful quantity. Then, the final expression for 

electrical damping ratio is written as in equation (6.15) below:  
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At resonance (Ω=1), this becomes: 
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Equation (6.16) is exactly consistent with the expression for equivalent electrical damping ratio, 

ζe, that du Toit et al. derived in [74]. This was obtained there using the complete solutions, 

equations (2.24)-(2.26), with the mechanical damping, ζm = 0, and expressing the resonance-peak 

at Ωr = 1 in terms of an equivalent electrical damping, ζe. A similar type expressions was also 

obtained at the anti-resonance peak, 21 ar . 

     Analytical expressions derived above are useful to interpret several intriguing behaviors of 

output power at resonance when piezoelectric constant, *31e , increases as discussed earlier, in 

terms of equivalent mechanical damping effect on the system due to piezoelectric and electrical 

parameters. First of all, the concept of equivalent mechanical damping effect due to piezoelectric 
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and electrical terms helps explain the existence of the optimum piezoelectric constant, *31e , for 

maximum power in terms of competitive mechanisms between more power generation and more 

damping. Examination of equation (6.12) reveals that the more the system is piezoelectrically 

coupled through θ, which is proportional to piezoelectric constant, *31e , the greater the effective 

mechanical damping. This implies that when we integrate piezoelectric materials with higher 

piezoelectric coupling into a PVEH system, it contributes to generating more power through 

piezoelectric coupling while it has an increasing equivalent damping effect on the system, thus 

decreasing the amount of generated power. Combining more damping of the system and more 

harvester power through higher piezoelectric coupling constant explains the appearance of the 

optimal point (see Figure 6.2). The same logic can be used to account for the reason why there 

exists an optimal electrical resistance with a peak that maximizes power at resonance in a similar 

way to piezoelectric coupling (see Figures 4.13 (a), (c), and (e)). As electrical resistance, Rl, 

increases, more damping is expected to occur from the relation in equation (6.12). While 

electrical resistance is an essential element to extract the harvested power from the system, it 

entails more damping effect to the system and as a result, there is an optimum point of electrical 

resistance for maximum power extraction as noted earlier in this thesis and by earlier work [74]. 

The similar effect that electrical resistance, Rl, and piezoelectric coupling exhibit on the output 

power performance particularly at resonance provides a reasonable explanation of the peak-

power frequency shift observed in both cases as well.   The analogy of PVEH system to a 

purely mechanical mass-spring damper system at resonance can also be applied to the 

interpretation of the peak-widening phenomenon at higher piezoelectric coupling. In a typical 

damped harmonic oscillation system, quality factor is known to determine the width of the peak 

when amplitude is plotted against driving frequencies (as in Figure 6.2 (a)) [69]. Quality factor, 

Q, is a commonly used parameter to parameterize damping and has a relation with damping ratio, 

ζ, through 
2

1
Q . This implies that the mechanical damping term expressed in equation (6.12) 

determines the peak-width of the resulting performance governed by equation (6.10), which 

represents the equivalent expression for the PVEH system to that of a common damped harmonic 

oscillation system. Thus, when more damping is involved through higher piezoelectric coupling, 

peaks are expected to broaden, as observed in Figure 6.2 (a).  
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     In summary, the governing equations for PVEH systems are rewritten in an analogous 

form to the typical resonant mechanical system comprised of mass, damper, and spring for the 

purpose of finding the relation of piezoelectric coupling in PVEH systems with damping effect 

on the system. This analysis scheme enables explanation of those output power behaviors 

observed in the previous section using a simple mathematical analogy: optimal power harvesting 

point, shift in peak-power frequency, and peak widening upon the increase of piezoelectric 

coupling. This proposes a possibility to optimize the PVEH devices based on different 

piezoelectric materials through tuning of externally adjustable condition, that is, electrical 

resistance in this case. Details on this topic are discussed in the following section, providing a 

device design rationale for power-optimized PVEH devices.  

 

6.4  Energy Harvesting Device Implications 

 

In Section 6.2, a sensitivity analysis on which material property constants affect the output 

performance of PVEH devices under constant external operating conditions was presented. 

Piezoelectric constant, *31e , is found to be the dominant property with an optimal value for 

maximum power when compared to the dielectric constant, *33

S , that does not significantly 

influence the magnitude of power generated at resonance with fixed electrical resistance. To 

consider voltage in addition to power, both are plotted against normalized frequency at various 

electrical resistances for the same macroscopic PVEH device with proof mass I (PM I) in Figures 

6.3 and 6.4. The solid lines in red color of these figures are of most importance as they represent 

possible maximum power and corresponding voltage at any given input frequency relative to 

resonance and anti-resonance by adjusting the electrical resistances to optimal values that give 

the maximum output power. When electrical load resistance defines the optima, power increases 

up to the maximum point at the peak when input frequency reaches the resonant frequency. Then, 

a decrease in power is observed down to the local minimum between resonance and anti-

resonance. The power increases again after this point and reaches another maximum at anti-

resonance with the same magnitude as the first maximum at resonance. It is quite noticeable that 

one can harness maximum output power with equal magnitude not only at the resonance but also 
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at the anti-resonance by changing electrical load resistances [74]. The fact that both peaks at 

resonance and anti-resonance are closely spaced gives us a potential advantage to design a device 

within a small range of target driving frequency, which could be used for both low and high 

voltage applications. For example, plots in Figures 6.3 and 6.4 yield resonant and anti-resonant 

frequencies of this device at 41.4 Hz and 44.2 Hz, respectively. The optimal electrical resistances 

that maximize power generation at these two closely-spaced frequencies correspond to 20.3 kΩ 

and 364.0 kΩ, respectively, having quite a gap between the values of electrical resistances. As 

power is equal to current times voltage (P = IV), if equal power can be generated at two 

distinctive electrical resistance conditions, this entails a current-voltage trade at these two 

operating points. While high voltage and low current are predicted at anti-resonance, low voltage 

and high current are expected at resonance, as shown in Figure 6.4. This is significant in 

engineering PVEH devices as one can choose the operating point, either resonance or anti-

resonance, depending on the application of specific desire while satisfying the maximum power 

generation at or near targeted input frequencies [29, 30]. Note that du Toit et al. performed the 

same analysis on optimal power and voltage for a 1-dimensional PVEH system and drew the 

same conclusions for PVEH device design considerations as discussed here [29, 30].  

Analytical expressions for optimal power and corresponding voltage (at resonance) when 

electrical resistance is tuned to optimum are derived in Section 2.2 and previously by du Toit et 

al. [30] and rewritten here in equations (6.17) and (6.18). Equation (6.19) describes the optimal 

resistance at resonance, Rl,opt,r : 
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Note that subscript, opt, refers to power optimization in the above expressions. A conspicuous 

finding here is that optimum power either at resonance or anti-resonance is independent of 

piezoelectric coupling constant of material, which is quite non-intuitive. This suggests that if 

electrical resistances vary to optimal values, the same magnitude of power is achievable 

regardless of the choice of piezoelectric materials for a given PVEH device. Then, what 

important implications does this intriguing result address especially on design and selection of 

piezoelectric materials to realize power-optimized PVEH devices? Although extraction of equal 

power is possible using any piezoelectric material if the resistance is tuned to keep power-

optimal, the voltage developed does have a dependence on piezoelectric coupling through the 

coupling term, θ, satisfying intuition to some extent, as shown in equation (6.18). So does the 

power-optimal resistance, Rl,opt,r , as it has the system coupling term, 2
 in its expression of 

equation (6.19). Both piezoelectric coupling term, θ, and system coupling term, 2
, are direct 

functions of piezoelectric constant, *31e , and thus both voltage and electrical resistance at 

optimal power condition are a function of piezoelectric coupling constant, *31e . While power is 

the primary objective to optimize in piezoelectric energy harvesting, the independence of power 

and dependence of voltage on the piezoelectric coupling constant, present output voltage as a 

secondary objective. This can be demonstrated by considering the effect of piezoelectric constant 

on the device performance of PVEH system relative to the real case. The same macroscopic 

bimorph PVEH device with PM I is considered as in Chapter 4. Taking all other parameters (i.e. 

both geometric and material) constant and varying the piezoelectric constant, *31e , then 

according to equation (6.17), equal power of 166.9 W is predicted regardless of the kind of 

piezoelectric material used from a given system (PVEH device with PM I) when the device is 

operated at resonance and its optimal electrical resistance that is estimated from equation (6.19) 

is employed. Then, the corresponding voltage can be plotted as a function piezoelectric constant, 

*31e , in Figure 6.5, where an optimum point develops. Among the given commonly used 

piezoelectric materials, lead zirconate titanate (PZT) thin film at the composition of 45/55 (Zr/Ti) 

in (111) orientation offers the closest value of *31e  (-8.5 C/m
2
) to the optimal piezoelectric 

constant at which maximum voltage is generated as indicated in Figure 6.5. This is a remarkable 

finding as even when voltage is considered as a secondary objective to optimize, the optimal 
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piezoelectric material that maximizes both voltage and power is not necessarily the piezoelectric 

material with the highest piezoelectric constant. The key point of considerable significance here 

is that it is not absolutely true that one always desires to choose a piezoelectric material with the 

highest piezoelectric coupling constant for maximum power generation. Tuning of electrical 

resistance enables extraction of equal power from a given system regardless of piezoelectric 

material selection. The design point for power does not depend on piezoelectric coupling at 

optimal operating conditions, contrary to intuition. Furthermore, the secondary variable of 

voltage is not maximized by increasing the piezoelectric coupling constant. Results in Figure 6.5 

suggest that the optimal piezoelectric constant for maximum voltage is modest, not of PZT thin 

film at morphotropic phase boundary (MPB) and much less than bulk or single crystal PZT. 

     Here is the summary of the piezoelectric material design guidelines for power-optimized 

PVEH devices that are learnt from model-based material property analysis in this chapter. First 

of all, if there is no restriction on external operating conditions, devices should be operated at 

resonance or anti-resonance by aligning input driving frequency with either resonant or anti-

resonant frequency. If high voltage and low current are desirable for the targeted application, 

anti-resonant operation is appropriate while low voltage and high current requires resonant 

operations. At equal power, consideration of voltage as a secondary objective gives the criteria to 

select piezoelectric material that exhibit optimal piezoelectric constant to maximize the voltage. 

Then, electrical resistance should be tuned to the power-optimized value using equation (6.19). 

There can be a case where restriction is posed on the external operating conditions such as 

electrical resistance. For example, if optimal electrical resistance is too large to apply to the 

system or implausible, application of a practically available value for electrical resistances is 

required. Then, under such given constant operating conditions (e.g., resonance and fixed 

electrical resistance), the knowledge from materials-level optimization enters. As piezoelectric 

constant, *31e , dominantly affects the output power over dielectric constant, ε33, with an 

optimum value particularly at resonance, it is wise to choose the piezoelectric material that 

possesses piezoelectric constant close to that optimal point. If a PVEH device is operated away 

from resonance and a non-optimized electrical resistance, then, the highest piezoelectric coupling 

constant will yield the most power consistent with intuition. These materials design and selection 

guidelines are an extremely useful product of the model-based analysis developed in this thesis. 
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Figure 6.3 Power output versus normalized frequency at various electrical resistances for 

macroscopic energy harvester with PM I. Base acceleration is held at 0.5 m/s
2
. Rl is the electrical 

load resistance, Rl,r and Rl,ar are the power optimized electrical loads at resonance and anti-

resonance, respectively. The solid line in red color is the optimized power (optimal electrical 

load, Rl,opt, at all frequencies). 
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Figure 6.4 Voltage versus normalized frequency at various electrical resistances for macroscopic 

energy harvester with PM I. Base acceleration is held at 0.5 m/s
2
. Rl is the electrical load 

resistance, Rl,r and Rl,ar  are the power-optimized electrical loads at resonance and anti-resonance, 

respectively. The solid line in red color is the optimized power (optimal electrical load, Rl,opt, at 

all frequencies). 
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Figure 6.5 Power-optimized voltage (solid line in red color) and electrical resistance (dotted line 

in blue color) at resonance versus piezoelectric constant, *31e , with indication of commonly 

used piezoelectric materials: *31e  = -1.0 for AlN and PVDF, -8.5 for PZT(111) [Zr/Ti =45/55] 

film, -12 for PZT(100) [Zr/Ti =53/47] film, and -14.7 for bulk-PZT. At all piezoelectric constants 

(i.e., regardless of the choice of piezoelectric materials), a given PVEH system is predicted to 

generate equal power, 167 W. 
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Chapter 7 

  

 Model-based Optimization Framework and 

Performance Quantification of Piezoelectric 

Energy Harvesting Devices 

 

 

This chapter introduces another use for the verified model – an enhanced method for 

analysis of PVEH device performance and design of optimal PVEHs. The contents consist of the 

following: first, standardization of key performance metrics in Section 7.1, which includes 

identification of key performance parameters (Section 7.1.1), definition and exploration of 

device efficiency (Section 7.1.2), and comparison of different optimal conditions for each 

performance parameter such as power, voltage, and efficiency (Section 7.1.3), and second, 

extraction of useful information on both materials and system properties of PVEH devices via 

two different model-based approaches, in Section 7.2.  

 

7.1  Standardization of Key Performance Metrics for Energy 

Harvesters 

 

Throughout the open literature, metrics for comparing different PVEH devices have not 
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been clearly defined. Standardization of comparison metrics is significant because it can provide 

needed figures of merit, enabling fair comparison of PVEH devices with different specifications 

(e.g., dimension, geometry, and input operating conditions) as well as full characterization of 

PVEH device performance. To date, description of the PVEH devices in the reported literature 

has focused on emphasizing their maximum power output without mentioning input power or 

dimensions. Or, when volume or area is considered to calculate power density (power per unit 

volume or area), those dimension parameters are of static devices, which results in exaggerated 

power production. While recent attempts to identify key parameters for PVEHs can be found in 

[79, 100, 101], they are either limited to resonant devices or based on oversimplifications. Thus, 

the main purpose of the following section is to suggest proper PVEH output performance metrics 

and show the usefulness of model in calculating them. 

 

7.1.1  Identification of Key Performance Parameters 

 

In the basic flow of modeling, key parameters for a PVEH system can be classified into 

two categories: input and output parameters. Following is the list of relevant input parameters for 

PVEH devices, which can be categorized either by device intrinsic properties or by extrinsic 

operating conditions: 

 

 Inputs 

 

1) Intrinsic properties of device constituents 

• Geometric dimensions (beam/plate & proof mass): length, width, thickness. 

• Material properties: density and structural elastic constants of each layer that 

constitutes the cantilever and proof mass. For a piezoelectric layer, piezoelectric 

and dielectric constants are required in addition to density and structural elastic 

constants. 

• Device configurations: geometry, modes of operation ({3-1} or {3-3}), inter-

element connection of piezoelectric layers (in case of bimorph, series or parallel 

connection). 
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2) Extrinsic operating conditions 

• Input vibrations from base excitation: base accelerations (wB) and operating 

frequencies (in or Ωin). 

• Mechanical damping ratio (ζm) or quality factor Q, (Q = 1/(2ζm)). 

 

Note that damping could do have some intrinsic contributions, as from material damping. Key 

output performance metrics for PVEH devices are listed in Table 7.1 together with their 

commonly used symbols and units. Analytical modeling can predict values for these 

performance parameters based upon the information of relevant input parameters described as 

above. Using models (e.g., governing equations (2.17) and (2.18)) and the solutions, it is possible 

to measure system parameters such as M, K, θ, Cp and then compute optimal points for objective 

performance objectives (see Section 7.1.3). This so called “model-parameter estimation” is 

discussed in more detail in Section 7.2, where descriptions of two different approaches, bottom-

up and top-down approaches, to measure materials and system properties of PVEH systems are 

available. 

Resonant frequency (fr) is the natural frequency of a given energy harvesting structure at 

short-circuit condition (Rl  0) while anti-resonant frequency (far) is the natural frequency of the 

same system at open-circuit conditions (Rl  ). Compared to the resonant frequency, which is 

determined purely by the mechanical properties of the system, the anti-resonant frequency is a 

function of piezoelectric parameters as well. As written in equation (7.1), anti-resonant 

frequency is a measure of system electromechanical coupling factor (2
).  

 

21  rar ff                                 (7.1) 

 

Previously, in Chapter 4, it is shown that electrical resistance applied to the piezoelectric system 

affects the natural frequency of the system and that a frequency shift occurs from resonant 

frequency toward anti-resonant frequency upon the increase of electrical resistances.  
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Table 7.1 Key metrics for energy harvesting device comparison. 

Performance parameter Symbol SI Units 

Resonant frequency r or fr [rad/s] or [Hz] 

Anti-resonant frequency ar or far [rad/s] or [Hz] 

Mechanical displacement w [m] 

Device output voltage vout [V] 

Current Iout [A] 

Device output power Pout [W] 

Operating power density Pop [W/cm
3
] 

Static power density Pst [W/cm
3
] 

Specific power Psp [W/kg] 

Input power Pin [W] 

Device efficiency  Pout/Pin 

 

The voltage expression in equation (2.25) allows calculation of not only the device output 

voltage (vout), but also the device output power through the relation Pout = vout
2
/Rl. Output voltage 

itself is an important performance metric for two reasons. First of all, one can determine the 

operating point of PVEHs depending on the voltage required for the targeted application while 

generating the same magnitude of power as discussed in Chapter 6 (see Figures 6.4 and 6.5). If 

the application requires high voltage/low current, the anti-resonant frequency operating point is 

more advantageous, whereas driving frequency should be tuned to the resonant frequency for 

low voltage/high current applications. Secondly, voltage becomes a valuable performance metric 

in piezoelectric materials design and selection. When a PVEH device is operated at the optimal 

points (resonance or anti-resonance) and optimal electrical loading conditions, it generates the 

same magnitude of power regardless of the piezoelectric constant values (see Section 6.4). As a 

result, output voltage becomes a definite criterion of materials design. 

The next discussion is on power. When the targeted application has no constraints on size 

or mass, device output power calculated or measured in Watt [W] or micro-Watt [W] is of 

interest to optimize. One can simply use equation (2.26) to compute the device output power. 



157 

 

However, if the application of interest is either weight-constrained or the operational space is 

limited, other performance metrics such as specific power or power density (power per volume) 

should enter into consideration. Specific power is defined as power per device mass with SI units 

of [W/kg] and this metric becomes a primary objective for weight-constrained applications. 

Power density is defined as power per volume and has SI units of [W/cm
3
]. While static power 

density (Pst = Pout / Vst) is given more commonly in the literature because of its simplicity, 

operating power density (Pop = Pout / Vop) should be the most telling metric. This is because the 

operating volume is the actual volume occupied by the device while in operation and thus 

required for device implementation into a structure or organism, as Mracek pointed out [79]. For 

a cantilever structure with a proof mass, as in Figures 3.2 or 4.1, the operating volume, Vop, is the 

space swept by the tip displacement of a structure while static volume, Vst, is simply the volume 

of a device when not in any motion. Analytical expressions of these volume parameters are 

available in equations (7.2) and (7.3) where the definition of symbols used is indicated in Figure 

3.2:  
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When each of these various power performance metrics is optimized as a primary objective, it 

results in different optimum device configurations. This will be discussed in Section 8.3.  

     One more significant performance metric is harvesting efficiency (), defined as the ratio 

of device output power (Pout) to mechanical input power (Pin). Harvesting efficiency is an 

essential standard to compare PVEH devices operating in different environments. Available 

input vibration sources vary in different environments (ranging from a few Hertz to a several 

thousand Hertz) and the amount of input mechanical power achievable from various input 

vibration sources varies accordingly. In the following Section 7.1.2, analytical expressions for 

mechanical input power and harvesting efficiency are thoroughly derived.  
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7.1.2  Definition and Exploration of Harvesting Efficiency 

 

     Harvesting efficiency () indicates how much a given PVEH device can convert input 

mechanical power (Pin), from a given vibration source, into output electrical power (Pout). This 

performance metric is a useful criterion that enables the performance of different devices to be 

compared. Previously, Richards et al. [102] derived a formula to evaluate the power conversion 

efficiency for a device that contains a piezoelectric component (see Figure 7.1). Roundy et al. 

[103] defined the term “effectiveness” to compare conversion efficiency of different transduction 

mechanisms (e.g., electrostatic, electromagnetic, and piezoelectric conversion) based on a simple 

and general vibration conversion model and equivalent circuit model. Although these models 

could provide some insight into the parameters that affect efficiency, such as quality factor and 

electromechanical coupling factor, these models only permit analysis of the devices at resonant-

operation.  

 

 

 

Figure 7.1 Schematic of a simple, 1-dimensional piezoelectric energy conversion device 

modeled by Richards et al. [102]. 

 

     Here, an analytical expression for harvesting efficiency () is derived for a cantilevered 

PVEH device. This is used to gain insight into the design of PVEH devices by identifying the 

factors that affect the device efficiency.  

Harvesting efficiency is defined based on power as:  
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where Pin comes from mechanical vibration due to base excitation while Pout is the generated 

electrical power through electrical impedance (here, resistance, Rl). The expression for electrical 

output power (Pout) in PVEH devices is already obtained in Chapter 2 and repeated here for 

convenience: 
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It is convenient to define a dimensionless forcing term, FEP, and rewrite the above expression as 

follows:  
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It is noteworthy that the term, Bf wB   or 
2)( Bf wB  , in equation (7.6) represents an inertia force 

exerted on a PVEH system due to the base excitations. 

The next step to derive the expression for harvesting efficiency is to define the mechanical 

input power, which is the power that the device absorbs from mechanical vibration 

parameterized by a base excitation force, FB, acting at the base, as shown in Figure 7.2. The 

system here now has three degrees of freedom, beam displacement, )()( trxw r , absolute 

base displacement, wB(t), and voltage, v(t), and it is excited by a force FB(t). After introducing the 

additional external work term BB wtFW  )(  from equation (2.5) into the energy expressions, 

the three basic equations for r, wB, and v become: 
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where total mass, MT is the sum of base mass, MB, and the beam mass, mL, and can be written as 

mLMM BT  (see Figure 7.2). Equation (7.8), with Bf wB   transferred to the right-hand side 

and equation (7.10) are the same as the earlier equations (2.17) and (2.18). These two equations 

can be solved as before for a given base motion, Bw , as the input, and equation (7.9) then gives 

the force, FB (t), associated with this base motion, Bw . Then from this force, FB (t), the input 

power can be determined. Note that the results will hold regardless of whether there is a proof 

mass or not although addition of a proof mass is not illustrated in Figure 7.2.   

 

 

 

Figure 7.2 Schematic of a base-excited cantilevered beam/plate with indication of parameters 

defined for efficiency. 

 

Making the assumption of harmonic motions allows development of general exponential 

expressions for base motion (wB), relative displacement (r), voltage (v), and input force (FB): 
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In the above, the r , v , and 
BF  are complex quantities, but the control variable 0BB ww   is 

set to be real. Here, base motion wB(t) is specified as input and the force FB(t) that is associated 

with it is calculated. Substitution of these expressions into the governing equations (7.8) and 

(7.10) and use of the prior definition of 2
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Equation (7.15) for the amplitude of displacement r , and the harmonic oscillation assumption 

for base motion and input force in equations (7.11) and (7.14), are inserted into the second 

governing equation (7.9) to give the expression for 
BF : 
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Returning to the time domain wB(t) and FB(t) by using equations (7.11), (7.14), and (7.19), one 

obtains: 
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where Re { } is used to indicate the real part in a complex number. Input power, Pin, is calculated 

through the relation  force  velocity  and thus can be written as in equation (7.24) here: 

 

         BBin wFP                                   (7.24) 

 

Then, the detailed expression for input power over one cycle can be presented as follows by 

substituting equations (7.22) and (7.23) into equation (7.24): 
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Note that the GR portion of FB(t) in equation (7.23) does not contribute to the power over one 

cycle in equation (7.24). It is also noteworthy that Pin is written in terms of a dimensionless 

forcing parameter, FMP, for a concise expression, as was Pout with FEP in equation (7.6). Now it is 

possible to obtain an analytical expression for harvesting efficiency:   
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In the above equation (7.25), mechanical input power for PVEHs is shown to have a 

similar analytical expression to electrical output power (see equation (7.6)). Although 

mechanical input power originates from pure mechanical vibration through the base motion, 

equations (7.25) and (7.26) suggest that even mechanical input power is not a function of pure 

mechanical terms anymore, but a function of mechanical, electrical and electromechanical 

parameters. This includes a very interesting implication that when mechanical vibration energy 

goes into the PVEH system, the amount of mechanical power available to the system depends 

not only on the vibration environment but also on device specifics such as piezoelectric coupling.  

In prior work by Richards et al. [102], efficiency achieved by a given piezoelectric device 

(see Figure 7.1) is evaluated as a function of the relative magnitude of the electromechanical 

coupling factor (k
2
 in their notation, and 2

 here) and quality factor only, thus not reflecting the 

effect of electrical resistance (Rl) on the harvesting efficiency. Furthermore, their evaluation of 

efficiency is possible only at resonance, not capturing the case when input driving frequency 

does not align with the resonant frequency of a given PVEH system.  

As an example case study, values for the mechanical input power, electrical output power, 

and harvesting efficiency of a macroscopic, bimorph PVEH with no proof mass (No PM) that 

was used for experimental verification earlier in this thesis (Chapter 4) are computed at varying 

electrical resistances and at several input frequency conditions, which are plotted in Figures 7.3-
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7.5. In terms of input driving frequencies, both input and output power at resonance (109.5 Hz) 

and anti-resonance (115.25 Hz) are prominently amplified in comparison with power at off-

resonance (at 75 Hz and 160 Hz), as shown in Figures 7.3 and 7.4. In contrast to power, 

harvesting efficiency, , in Figure 7.5 shows similar trends within a similar range of magnitudes 

regardless of whether it is at resonance (anti-resonance) or off-resonance. Overall, when the 

normalized frequencies (= input frequency/resonant frequency) go up, efficiency decreases. This 

can be explained by a close examination of equation (7.27). Normalized frequency ratio, Ω, 

appears only in the denominator of equation (7.27). 

Another noticeable aspect in Figure 7.5 is that efficiency values at resonance and anti-

resonance have little difference over the entire range of electrical resistances. This underscores 

the significance of resonance and anti-resonance as optimal operating points as they can offer 

equal maximum power generation with similar efficiencies. When electrical resistance varies, 

optimum points are observed not only in output power at resonance and anti-resonance, but also 

for efficiency similarly. One key observation of engineering importance is that the optimal 

electrical resistance for maximum power differs from that for maximum efficiency. For example, 

in the case of a PVEH device with no proof mass (No PM), shown in the plots of Figures 7.4 and 

7.5, at resonance (109.5 Hz), the optimal resistance is 9.6 kΩ and generates a maximum power of 

335.2 W with an efficiency of 37%, while 34.7 kΩ of electrical resistance is required to achieve 

the maximum harvesting efficiency (63%) but results in less power output (223.8 W). 

Depending on the desired objective, which could be either power or efficiency (single-objective 

function), or both (multi-objective functions), one can determine the optimal electrical 

resistances that should be applied to the PVEH system by using the model as an analytical tool. 

In Section 7.1.3, analytical expressions of different optimal electrical resistance conditions that 

maximize output power (Pout) and efficiency () are presented. 

     Examination of the expression for harvesting efficiency in equation (7.27) also reveals that 

damping conditions affect the harvesting efficiency by the term of mechanical damping ratio (ζm). 

Referring to equation (7.27), harvesting efficiency is expected to increase when the mechanical 

damping ratio (ζm) becomes smaller (i.e. higher quality factor, Q). To see how harvesting 

efficiency behaves depending on damping graphically, plots of harvesting efficiency vs. varying 

electrical resistance (Rl) at various values of quality factor (Q) are drawn for the macroscopic 
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PVEH device with no proof mass (No PM) in Figure 7.6. The input driving frequency here is 

fixed at the device resonant frequency (109.5 Hz). Consistent with the expectation from the 

analytical expression, one can observe the increasing tendency of harvesting efficiency with 

increasing quality factor (thus, less damping) in the plots shown in Figure 7.6. Another aspect to 

note in Figure 7.6 is that efficiency tends to have little dependence on electrical resistance when 

the quality factor exceeds 1000. Thus, when a PVEH device is operated in the environment 

where quality factor exceeds a certain value (here, 1000), it would be more beneficial to find an 

optimal value of electrical resistance that can maximize other key performance such as power 

output, rather than focusing on the harvesting efficiency. 

 

7.1.3  Optimal Design for Different Key Performance Metrics 

 

     The model-derived design study for piezoelectric materials in Chapter 6 includes 

sensitivity analyses of device performance to material properties for materials-level optimization 

and system-level optimization for output power, producing detailed design guidelines focusing 

on optimal piezoelectric material selection. Throughout the analysis, the focus is on 

maximization of output power. The analytical expressions for maximum power and 

corresponding optimal dimensionless time constant, αopt, can be obtained by differentiation of 

output power equation (2.26) and setting it equal to zero with respect to dimensionless time 

constant, α. The resulting expression for the optimal dimensionless time constant, αopt for power 

shows its dependence on electromechanical coupling factor (2
), normalized frequency (Ω), and 

mechanical damping ratio (ζm), as written in equation (2.27).  

Expressions for the maximum harvesting efficiency, ηmax, can be achieved by optimizing 

equation (7.25) with respect to α as 0







, which results in: 

 




1
opt                                (7.28) 

 

In Figure 7.5, it is observed that optimal electrical resistance that yields maximum efficiency (i.e., 
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peak points of each plot) decreases upon increasing operating frequency and this can be 

explained analytically by equation (7.28). Substitution of equation (7.28) into equation (7.27), 

then, gives maximum harvesting efficiency, ηmax (or ηopt): 
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
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m

opt
                            (7.29) 

 

Examination of equation (7.29) reveals that optimal efficiency, ηopt, is inversely proportional to 

mechanical damping ratio, ζm, which exists only in the denominator of the expression. This 

explains on the increase of optimal efficiencies when quality factor increases in Figure 7.6 as 

quality factor, Q, has a reciprocal relation to mechanical damping ratio, ζm, via Q = 1/(2 ζm).  

It should be noted that optimum harvesting efficiency has dependence not only on the 

electromechanical coupling factor (2
) and mechanical damping ratio (ζm), but also on the 

normalized frequency (Ω). From a perspective of maximizing harvesting efficiency, resonance 

and anti-resonance are not necessarily the optimal operating points as observed in Figure 7.5, 

unlike the case of power optimization. Another distinction in the optimal α for maximum 

efficiency in equation (7.28) is that it has no dependence on piezoelectric coupling, unlike 

optimal α for maximum power in equation (2.27). Input frequency is the only parameter that 

determines the optimal electrical loading condition for maximum efficiency. At resonance (Ω =1), 

equation (7.29) becomes: 
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ropt                            (7.30) 

 

If the mechanical damping ratio is really low (or quality factor is really high) such that 4ζm ≪ κ
2
, 

the optimized efficiency at resonance in equation (7.30) approaches one. This implies that all the 

mechanical input power absorbed by a given PVEH device is converted to electrical power 

through the piezoelectric transduction mechanism at extremely low damping conditions and 

resonance. Thus, it would be more advantageous to tune electrical resistance to an optimal value 

that can maximize other key performance such as power output, rather than focusing on the 
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harvesting efficiency, as efficiency is close to its maximum value (100 %) at such conditions 

(4ζm ≪ κ
2
).  

     As described above with power and efficiency as example performance objectives, choice 

of the objective function determines optimal electrical or operating conditions. Electrical 

resistances that generate maximum power appear different from the point where we can 

maximize harvesting efficiency. Thus, it is required to consider appropriate analytical 

expressions for optimal points depending on the performance of primary interest for system-level 

optimization.  
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Figure 7.3 Mechanical input power vs. electrical resistance at various operating frequencies for a 

macroscopic, bimorph energy harvester in {3-1} mode of operation with no proof mass (No PM).  

 

 

Figure 7.4 Electrical output power vs. electrical resistance at various operating frequencies for a 

macroscopic, bimorph energy harvester in {3-1} mode of operation with no proof mass (No PM).  
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Figure 7.5 Harvesting efficiency vs. electrical resistance at various operating frequencies for a 

macroscopic, bimorph energy harvester in {3-1} mode of operation with no proof mass (No PM).  

 

 

 

Figure 7.6 Harvesting efficiency at resonance (109.5 Hz) vs. electrical resistance at various 

damping conditions for a macroscopic, bimorph energy harvester in {3-1} mode of operation 

with no proof mass (No PM). 
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7.2  Direct Estimation of Materials and System Properties 

 

Using the model, it is also possible to estimate materials and system properties. In the 

following, two different model-based approaches are introduced to assess materials and system 

properties: bottom-up and top-down approaches. 

 

7.2.1  Bottom-up Approach 

 

    In the basic flow of modeling, key parameters can be classified into two categories: input 

and output parameters. When input parameters are known either from measurement or literature, 

calculation and prediction of performance parameters are straightforward via the analytical 

expressions derived so far. This is referred to as the “bottom-up” approach because input 

parameters (“bottom”) are fed into the model to calculate the output parameters (“top”). The 

usefulness of this approach is the fact that we can predict maximum performance of a given 

device even before conducting the actual experiment for device fabrication or characterization. 

For example, equation (2.30) is derived through power optimization with respect to electrical 

resistance for the maximum power that a given PVEH device can generate.  

Another good example is the assessment of maximum voltage for a given PVEH system. 

From the plots of voltage versus electrical resistance at various operating frequencies, 

demonstrated in Chapter 4, it is observed that saturation of voltage toward a certain maximum 

value takes place as electrical resistance increases and that the maximum voltage appears at anti-

resonance and open-circuit condition (Rl ). Reduction of the voltage, equation (2.25), to 

these specific conditions yields equation (7.31), which is a function of input parameters:  
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Thus, it is possible to estimate the engineering limit of voltage that can be developed from a 

given PVEH device. This capability has the potential to have considerable impact on device 
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design. 

 

7.2.2  Top-down Approach 

 

The goal of the top-down approach is to deduce the input or system parameters based on 

measured data of output performance. This top-down method is required when evaluation of 

certain material properties is time- or cost-prohibitive or unavailable, but measurement of device 

performance is possible. In [29, 74], du Toit et al. present a procedure to calculate the elastic 

stiffness of a structural layer in a macro-scale PVEH using measured data of resonant frequency 

at short-circuit condition in combination with model-derived analytical expressions. They also 

inferred values for the piezoelectric constants of their device using voltage values measured at 

resonance and power-optimized electrical resistance. Such a top-down approach for the 

estimation of materials and system properties becomes significantly advantageous when it comes 

to MEMS-scale PVEH devices. In most studies, use of the materials properties measured in thin- 

film form as the input parameters for the prediction of device performance is quite common, 

based on the assumption that such materials properties remain the same after integration into 

devices. However, it is hard to regard that those material properties in thin-film stacks remain the 

same at the final device level due to the effect of thin-film fabrication processing such as etching. 

In addition, it is difficult to probe the material properties of each layer embedded in the device. 

Even measurement of material properties in thin-films poses a great challenge. Hence, a 

necessity for a method to accurately evaluate the properties of materials when they are integrated 

into certain device configurations arises, and the model-based top-down approach can be one 

such solution.  

First of all, equation (7.32) for the resonant frequency is derived in Chapter 3 and this can 

be used to deduce elastic modulus of a constituent material of a device. If geometric dimensions, 

density of materials, and elastic moduli of other materials than the material of interest are known 

and resonant frequency at short-circuit condition is measured, for instance, the unknown 

parameters in equation (7.32a) are the effective bending stiffness, EI , and normalized 

eigenvalue, 1 , which are a function of geometric dimensions and elastic moduli. Then, the 

elastic modulus of the material of interest can be inferred by solving for the unknown:  
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Another use of the top-down model as a standardized tool to predict material properties is 

to estimate the piezoelectric constant ( *31e ) by measuring the voltage at resonance with open-

circuit condition. The voltage expression in equation (2.25) can be reduced to equation (7.33) at 

resonance (Ωr = 1) and open-circuit condition (Rl ):  
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In Chapter 4, the expression for coupling term, θ, for a bimorph PVEH device in {3-1} mode of 

operation and series connection is given by equation (7.34):  
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Given the geometric dimensions and other input parameters, evaluation of the piezoelectric 

constant, *31e , becomes possible when measured data of voltage at resonance and open-circuit 

condition is available by using equations (7.33) and (7.34). Also, one can get another estimate of 

θ using equation (7.31) at anti-resonance where the voltage is much higher, but ζm and 2
 enter 

the picture as well. 

     The electromechanical coupling factor, 2
, is a useful system property as a measure of 

system coupling in PVEHs and this can be extracted from the measurement of resonant 

frequency and anti-resonant frequency through relation (7.35): 
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1)/( 22  rar                             (7.35) 

 

Anti-resonant frequency has an importance as it is an optimal point where maximum power can 

be generated at high voltage, whereas resonant frequency, which is another optimal point for 

maximum power generation, generates low voltage. Despite its significance for power, anti-

resonant frequency has not received sufficient attention and has been overlooked in device 

characterization. For a full characterization of a fabricated PVEH device, it is crucial to measure 

not only resonant frequency (system frequency at short-circuit condition) but also anti-resonant 

frequency (system frequency at open-circuit condition) so that both optimal operating points for 

maximum power generation can be identified. By doing so, the dimensionless system coupling 

parameter, 2
, can be estimated as well through equation (7.35). 

     One last example is to analyze mechanical damping ratio (ζm). In Section 3.4, the 

scheme is already presented to estimate the mechanical damping ratio from the measurement 

of absolute tip and base displacement, given that other input parameters such as material 

properties and device dimensions are known.  

This top-down method to predict materials and system properties from the measurement 

of device performance can find further useful applications, particularly in studying fatigue 

phenomenon of PVEH devices. Fatigue is an important issue related to the reliability of energy 

harvesting devices in operation. Two kinds of fatigue can occur during piezoelectric vibration 

energy harvesting: piezoelectric and mechanical degradation [129]. One example of top-down 

approaches presented in this chapter was estimation of the piezoelectric constant using the 

measured data of voltage. Based on the relation of the voltage and piezoelectric constant, if 

voltage is measured as a function of time during PVEH device operation, the piezoelectric 

constants can be expressed as a function of time as well, from which one can see piezoelectric 

degradation trend during vibration operation. The advantage of this method is it does not 

require the device to stop its operation or be separated from the system to measure the 

piezoelectric characteristics of the embedded piezoelectric layers. In addition, measurement of 

resonant frequency or mechanical displacement as a function of operating time can provide a 

measure of mechanical degradation of the device as it is directly related to the structural 

properties of the constituent materials in PVEH devices. Investigation of fatigue phenomena in 
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PVEH systems based on these top-down approaches will be addressed in future work as listed 

in Section 11.2.  
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Chapter 8 

 

 Design of Unimorph MEMS Piezoelectric 

Energy Harvesters in {3-1} and {3-3} Modes 

of Operation 

 

 

This chapter consists of three topics: analytical modeling for different electrode 

configurations in PVEH devices (Section 8.1), experimental characterization of MEMS-scale 

PVEHs and model-experiment comparison study (Section 8.2), and development of a multi-

variable tool for the optimization of MEMS-PVEH devices (Section 8.3). 

 

8.1  Analytical Modeling for Microfabricated Unimorph 

Piezoelectric Cantilever with Different Electrode Configurations 

 

Use of two different modes is common to operate PVEH devices: {3-1} mode of operation 

and {3-3} mode of operation. In {3-1} mode, the voltage (and therefore, electric field) acts in the 

“3” direction while the mechanical strain is applied in the “1” direction. In {3-3} mode, both 

strain and voltage occur in the same direction, “3”. Index “1” and “3” come from Cartesian 

coordinate directions. For simplicity of analysis in the {3-3} mode of operation, x1 coincides 
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with the beam thickness coordinate (xt) while x3 corresponds to general beam structure axial 

coordinate (xa) (see Figure 8.1). The definition of this coordinate system is closely related to the 

poling directions, of which details are found elsewhere [30]. Conventionally, the poling direction 

is always in the “3” direction and thus this coincides with the direction of electric field induced 

upon applied mechanical strain. Choice of electrode configuration is dependent upon the modes 

of operations. Standard capacitor type electrodes are employed for {3-1} modes of operation 

while interdigitated electrodes (IDTEs) are commonly used to implement {3-3} modes of 

operation (see Figures 1.4 and 1.5). {3-3} mode of operation is advantageous in that the voltage 

developed can be controlled. While the electrode spacing is determined by the thickness of the 

piezoelectric layer in {3-1} mode, the electrode spacing determines the voltage produced in {3-

3} mode configuration and can therefore be varied in design. In microsystems, there is a 

limitation in the thickness of piezoelectric layer that can be deposited due to the microfabrication 

processing, and thus, the voltage that can be obtained from {3-1} mode will be limited as well. 

However, once we have a series of PVEHs on a single die as a final system, it is possible to 

control the electrical output of the entire system by controlling the interconnections of individual 

devices [30]. Therefore, it implies that both modes of operations are potentially attractive for 

practical applications.  

While models for standard capacitor type electrodes – either approximated or detailed- are 

not hard to find in the open literature, only a few modeling approaches have been attempted on 

IDTE configurations in PVEH devices. Jeon et al. demonstrated a MEMS-scale, {3-3} mode, 

piezoelectric micro power generator with IDTEs in [51] where their calculation of output voltage 

and power is based only on a very simple approximation. Other prior modeling includes 

theoretical analysis by Mo et al. where they developed a model for unimorph piezoelectric 

benders with IDTEs and performed both numerical and parametric studies on energy, charge, and 

voltage developed [104]. Their model encompasses only static considerations and it does not 

consider electrode spacing. This presents a need to develop a dynamic model of the PVEH with 

IDTEs and refine the model to include electrode spacing. In this section, a model for a unimorph 

PVEH device in {3-3} mode of operation with IDTEs is developed and briefly compared with 

{3-1} mode with standard electrodes especially in terms of expressions for electrical parameters 

such as electrical potential, capacitance, and piezoelectric coupling. A model for a bimorph 
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piezoelectric cantilever in {3-1} mode of operation was already presented in Section 4.1. All 

these models incorporate dynamic motion of piezoelectric energy harvesting cantilever as well as 

parameters that define the electrode structures.  

 

 

 

Figure 8.1 {3-1} and {3-3} mode unimorph PVEH configurations: side-view elements of (top) a 

cantilevered PVEH in {3-1} mode of operation with standard electrodes, and (bottom) a 

cantilevered PVEH in {3-3} mode of operation with IDTEs. 

 

In {3-3} mode, the directions of the strain and the electric field are parallel to each other in 

the 3-direction. As demonstrated in Figures 1.5 and 8.1, IDTEs on top of a single layer of 

piezoelectric element are employed in {3-3} mode, eliminating the need for a bottom electrode, 

compared to {3-1} mode where top and bottom electrode layers are required. In the IDTE 

configuration, three dimensions are required: the thickness of the piezoelectric layer, tp, the width 

of the electrodes, a, and the spacing between the centers of the electrodes (or called pitch), p. 

These are shown in Figure 8.2. For the IDTE configuration, it is helpful to introduce several 

approximations for simplicity. First of all, a full {3-3} effect through coupling is assumed in the 

section of piezoelectric element between the electrodes. Additionally, it is assumed that the 

region of the piezoelectric element under the electrode is electrically inactive. Although the 

electric field is not completely axial through the thickness of the piezoelectric element, nor is the 

region entirely inactive in practice, these effects are expected to compensate for each other to 

some extent. The geometry of this approximate model is illustrated in Figure 8.2 (right). Then, as 
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in {3-1} mode, proper expressions for electrical potential that varies from +1 at the electrode 

(left-side) to 0 to the other electrode (right-side) gives a constant electric field between the 

electrodes.  

 

 

Figure 8.2 Side-view of piezoelectric layer in a unimorph, cantilevered PVEH in {3-3} mode of 

operation: {3-3} mode of operation (left) and approximate model (right) of electric field (E) 

between interdigitated electrodes. p is the pitch of the electrodes and a is the width of the 

electrodes. x1
*
 and x3

*
 are the element local coordinates. P denotes polarization. 

 

     For the energy, the internal mechanical potential, U, and electrical energy, We, can be 

placed together into a combined potential energy expressions, 
eWUU  , namely: 
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These quantities were all described and defined by equations (2.1) to (2.5) in Section 2.2. Upon 

introducing the previous matrix relation equation (2.7) (repeated here in equation (8.2) for 

convenience): 
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into the general expressions for U  in equation (8.1) above, one obtains: 
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This same potential energy expression for combined mechanical potential energy and electrical 

energy was given by Sodano et al. [72]. The three-dimensional linear elastic equation (8.2) can 

be readily reduced for simple beam theory and this {3-3} mode of operation, to: 
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, as shown in Appendix A. The reduction for plates as well is shown there.  

Development of analytical modeling for IDTEs begins with consideration of the 

piezoelectric layer over a single element between one pair of electrode fingers, where element 

length LE is defined as equal to pitch, p, i.e., LE = p, and the length of piezoelectric layer not 

under the electrodes, Lp, is defined as Lp= p-a, and tp is the thickness of the piezoelectric layer. 

Then, the combined internal potential energy ( EU ) over the single element, LE, can be written as: 
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All parameters above follow the same definitions used in Section 2.2 and Appendix A. 

Expressions for strain, S3, and electrical field, E3, in equations (8.6) and (8.7) allow us to rewrite 

equation (8.5) into (8.8):  

 

wzS 3  (where z is distance measured from neutral axis)       (8.6) 
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E 3   (where v is voltage developed)                  (8.7)                            
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In the above expressions, z is the vertical distance measured from the neutral axis of the 

combined structural and piezoelectric beam, and 2

3

2 / xww  . Also, Ap = btp, and Sp is the 

moment of the area, Ap, about the neutral axis. wavg is the average value of w at the center of 

element, LE. 

If we also rewrite the expressions for kinetic energy ( kT ) and external work (W ) in 

equations (2.2) and (2.5) over the single element, LE, in a similar way to internal potential energy 

(
EU ) in equation (8.8), and place them into Lagrange‟s equations, we find as before (equations 

(2.17) and (2.18)): 
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where again time differentiation has been done on equation (8.10) and Ohm‟s law, 
dt

dq
Rv l , 

has been introduced. Each key parameter in the equations (8.9) and (8.10) above is defined as in 

equations (8.11) to (8.15): 
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where Is, Ip, Sp, and Ap are geometric properties, r  is the mechanical mode shape at the center 

of the element (LE), and v represents the voltage on the electrodes. Mass per length is denoted as 

mp and ms where subscripts p and s represent piezoelectric layer and structural layer, respectively. 

For modeling of the entire cantilever with length, L=nLE, summation or integration of each 

parameter (M, K, θP, CP, and Bf ) in equations (8.11)-(8.15), over the entire length, L, is required.  

These integrated terms, in turn, can be substituted into the governing equations to predict device 

performances of the whole cantilever system such as mechanical displacement, voltage, and 

power using equations (2.24)-(2.26). The total beam M, K, and Bf terms now include the 

piezoelectric mass, mp, and stiffness, *33

Ec , which are readily combined with the basic structure 

terms, ms and cs, appearing in the basic integrals of equations (2.19), (2.20) and (2.23). The total 

beam piezoelectric terms, θp and Cp, are summed up as: 
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where n = L/LE, and the approximate numerical integration relation below was introduced into 

equation (8.16), namely: 
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In the above, 0
)0(

3


dx

d
 because of the cantilever boundary condition, and also ELx  3 . 

Note that piezoelectric constant for longitudinal piezoelectric effect, *33e , is used in equation 

(8.12) for modeling of {3-3} mode PVEH devices, whereas piezoelectric constant for transverse 

piezoelectric effect, *31e , is suitable for modeling of {3-1} mode PVEH devices (see Section 

4.1). Equations (8.16) and (8.17) describe the coupling term (θp) and capacitance (Cp) over the 

entire cantilever that are obtained from the summing equations (8.13) and (8.14) over the 

cantilever length, L. Direct substitution of these expressions into the governing equations for 

PVEH devices enables modeling of a unimorph cantilevered PVEH device in {3-3} mode of 

operation with IDTEs.  

When modeling PVEH devices in {3-1} mode of operation with the standard electrode 

configuration, the induced electric field is regarded as constant through the thickness of the 

piezoelectric layer. Since there is only one pair of electrodes in standard electrodes (top and 

bottom), there is no need to use integration or summation of each element in {3-1} mode PVEHs. 

If the piezoelectric layer between the electrodes is regarded as a simple capacitor, the device in 

{3-1} mode consists of only one capacitor over the entire length (L) while the device in {3-3} 

mode can be thought of as a collection of multiple small capacitors. In comparison with {3-3} 

mode of operation, corresponding expressions to describe the coupling term (θp) and capacitance 

(Cp) of a unimorph, {3-1} mode, PVEH device with standard electrode configuration are as 

follows in equations (8.19) and (8.20): 
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where ξ is non-dimensional length coordinate (= x1/L), and zN represents the distance between the 

centroid of area Ap and the neutral axis of the combined beam. These equations (8.19) and (8.20) 

give coupling and capacitance for the entire beam, not just over one element, and these equations 

for {3-1} mode are directly comparable to equations (8.16) and (8.17) for {3-3} mode, with no 

need to integrate when it is a uniform beam in cross-section. Again, it should be noted that the 

piezoelectric constant, *31e , is used in {3-1} mode while *33e  is used for {3-3} mode, as well 

as different physical lengths. For application to a bimorph, {3-1} mode PVEH device, see the 

discussion about θp and Cp in Chapter 4.  

In the following section, analytical models developed for different configurations 

described above are implemented to analyze fabricated MEMS-PVEH devices, and the simulated 

results are compared with measured data.  

 

8.2  Experimental Evaluation and Correlation with Modeling 

 

For applications in microsystems, several studies have focused on developing MEMS- 

PVEHs using established piezoelectric film processing [26, 59, 60, 105]. In macro-scale, a 

number of devices have been successfully developed, tested, and even available commercially 

(e.g., the test device plate used in Chapter 4 to make a cantilever with proof mass). While 

fabrication of MEMS-PVEH devices is an area of many research groups‟ interest, not many 

microscopic prototype devices have yet been documented. In terms of materials, lead zirconium 

titanate, PZT, receives the most focus and its corresponding multi-layer structure is typically 

deposited on a Si substrate. In general, SiO2 and/or SiNx are deposited first as a supporting layer 

to enhance the mechanical strength of the structure by compensating for the internal stress 

between the Si substrate and other layers. ZrO2 is often used as a diffusion barrier/buffer layer to 

prevent electrical charge diffusion from the piezoelectric layer (PZT). Pt and Ti comprise the 

electrode layers and Ti has the role of improving adhesion between PZT and Pt. For {3-1} mode, 

the bottom electrode Pt and interlayer Ti are deposited before the PZT layer, followed by a liftoff 

process for the top electrode. In comparison with {3-1} mode, there are only top IDTEs 

consisting of Pt/Ti that are deposited after the deposition of PZT layer in {3-3} mode. There is 
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one thing to note on materials selection for PVEH devices. Although poled ferroelectric materials 

such as PZT are preferred due to higher piezoelectric coupling constants than non-ferroelectric 

materials such as AlN and ZnO, those perovskite-type piezoceramics such as PZT require a 

poling process to create ceramic materials with strong piezoelectric coupling while non-

ferroelectric materials don‟t need this poling process. Furthermore, as discussed earlier in 

Chapter 6, materials with the highest piezoelectric coupling constants are not necessarily the 

optimal piezoelectric materials one can choose in terms of power maximization. Thus, use of 

non-ferroelectrics can be more beneficial than poled ferroelectrics depending on the application 

of interest for the realization of power-optimized PVEH devices, which is in contrast with the 

pervasive notion in current PVEH research.  

For this work, MEMS-scale unimorph PZT-based energy harvester cantilevers, both in {3-

1} mode and {3-3} mode using standard electrodes and IDTEs, have been fabricated and tested 

by collaborators. Fabrication of MEMS-scale cantilevered PVEH devices were undertaken by the 

groups at Auburn and Brown Universities. The research group at Auburn University, particularly, 

has already presented their work on fabrication and evaluation of MEMS devices in several 

publications [75, 105, 106]. One of their recent studies includes the micromachined PZT 

cantilever based on SOI (silicon on insulator) structure with integrated Si proof mass for low 

frequency vibration energy harvesting [106]. Compared to their previous PVEH devices based on 

a Si substrate, use of SOI makes possible more precise control of the device dimensions, 

especially in thickness, resulting in much less discrepancy between calculation (design) and 

measurement of resonant frequency. A schematic of a piezoelectric energy harvesting cantilever 

based on a SOI wafer is given in Figure 8.3. The detailed fabrication process is beyond the scope 

of this thesis and can be found in [106]. Both {3-1} mode and {3-3} mode PZT-based devices 

are poled under the same condition at 200 KV/cm AC and at room temperature. One thing to 

note here is that an under-hang Si proof mass as shown in Figures 8.3 and 8.4 is integrated 

through bulk etching of the Si wafer. Figure 8.4 contains images of fabricated prototype energy 

harvester devices in {3-1} and {3-3} modes of operation. These devices are designed to target 

low frequencies (60-200 Hz) and their geometric dimensions are provided in Tables 8.1 and 8.2. 
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Figure 8.3 A unimorph, MEMS-scale PVEH: (a) schematic of the side view of piezoelectric 

energy harvesting cantilever based on SOI wafer, (b) cantilever structure with indication of 

dimension parameters. Reprinted with permission from [105, 106]. 

 

 

Table 8.1 Dimension for a unimorph thin film PZT cantilever. 

Parameter LT L LPM b bPM hPM 

Dimension [mm] 7 4 3 2 2 0.5 

 

 

 

 

Figure 8.4 Fabricated, unimorph, MEMS-scale PVEH: (a) SEM image and (b) optical image of a 

MEMS-scale PZT cantilever in {3-1} mode with a proof mass, (c) optical image of a MEMS-

scale PZT cantilever with a proof mass in {3-3} mode with IDTEs. (a) Reprinted with 

permission from [106]. (b), (c) courtesy of Dr. Jung-Hyun Park. 
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Table 8.2 Layers in micro-scale, unimorph, PZT-based energy harvester devices in {3-1} and 

{3-3} modes of operation. 

 

 

 

{3-1} 

mode of 

operation 

Layer Thickness 

[m] 

 

 

 

{3-3} 

mode of 

operation 

Layer Thickness 

[m] 

Pt 0.12 Pt 0.2 (IDTE) 

PZT 1.0 PZT 1.0 

Pt/Ti 0.12/0.01 ZrO2 0.12 

SiO2 0.5 SiO2 0.5 

Si 20.0 Si 20.0 

SiO2 0.5 SiO2 0.5 

Total 21.75 m Total 22.12 m 

 

The properties of piezoelectric materials are critical to the quality and the reliability of the 

devices, especially in micro-electromechanical systems. While both mechanical and piezoelectric 

properties are well characterized in bulk piezoelectric ceramics, the material properties of thin 

films are not, unfortunately. This is due to the unique geometry and small displacements of thin 

films and thus requires different measurement methods from bulk cases when considering 

material properties of piezoelectric thin films [33, 34, 107]. In this work, as these material 

constants are primary inputs in analytical modeling, it can be said that the prediction capability 

of the modeling is highly dependent upon the extent of accuracy of the material properties of 

PZT thin films. The material properties of PZT thin films vary substantially depending on quite a 

number of factors such as composition, film orientation (texture), processing technique, 

thickness, etc. Therefore, evaluation of mechanical and dielectric constants as well as 

piezoelectric coefficients in PZT thin films of specific use is essential in order to predict the 

performance of PVEH devices. This study is also undertaken in collaboration with Prof. Dong-

Joo Kim‟s group at Auburn University and Prof. Angus‟ group at Brown University. 

First of all, PZT thin film is deposited on a substrate in a stack structure that is the same as 

the final PVEH devices. Although the specific order, or material, of these layers can vary for 

device improvement purposes, PZT thin films are typically fabricated on Pt (111) /Ti /SiO2/Si 

substrates. As we fabricate the final PVEH device on top of a SOI structure, then PZT thin films 
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are characterized with the same structural substrate (SOI wafer). As mentioned, since film 

orientation (texture), composition, fabrication technique, thickness all impact the piezoelectric 

coefficients of PZT thin films, it is necessary to define the specific conditions for the PZT thin 

film of interest. In this work, we focus on the following PZT thin films both for material 

evaluation and PVEH devices: 

 

 Composition: Zr0.52/ Ti0.48 (Pb(Zr0.52Ti0.48)O3), morphotropic phase boundary (MPB) 

 Processing technique: sol-gel (multiple) coating method 

 Thickness of PZT thin film: ~ 1μm 

 

Appropriate composition selection is required according to applications. When compared with 

other film compositions (e.g., 30/70 or 70/30), MPB (52/48) is known to exhibit high 

piezoelectric coefficients, low coercive voltage, and high dielectric constant, thus considered 

optimal for PVEH devices [108]. Crystalline texture (e.g., {111} preferred) and microstructure 

(e.g., columnar) are also factors that should be considered.  

Secondly, multiple tests were undertaken to check the characteristics of fabricated PZT 

thin films. To determine the crystalline texture and phase of the PZT thin films, X-ray diffraction 

is used (Figure 8.5 (a)). Polarization as a function of applied voltage (P-V hysteresis loops) is 

obtained and used to see if the PZT thin films retain sufficient ferroelectric properties after 

processing (Figure 8.5 (b)). Piezoelectric coefficients are of our major interest. In order to obtain 

the piezoelectric coefficients of PZT thin films, several evaluation techniques [33-35, 107-109] 

have been reported including normal loading method, impulse method, wafer flexure technique, 

interferometer method, and atomic force microscopy. (For bulk PZT, Berlincourt method and 

resonance method are widely utilized, which are not usually applicable for piezoelectric thin 

films.) In this work, the transverse mode piezoelectric coefficient of thin films, e31,f, is 

determined by 4-point bending measurement (aixACT aix 4PB, http://www.aixacct.com) while 

pneumatic loading method [130] is utilized for longitudinal coefficient, d33,f. The piezoelectric 

stress constant, e31,f, is found to be - 11.1 C/m
2 

while d31 f is -104.3 pm/V by 4-point bending 

method. As stated in previous chapters, explicit knowledge of mechanical properties, particularly 

elastic moduli, are also required to implement the simulation for PVEH devices. For example, 
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published values for elastic moduli of PZT thin film are known to range from 37 to 400 GPa 

[109], which tells us that the disparities among piezoelectric coefficient values reported in the 

literature could result from use of different elastic moduli in calculation. It was determined for 

simulation purpose to rely on published values of PZT thin films of which specifics are as close 

as to the PZT thin films that we use. Liu et al. [110] presented the effects of the substrate and 

crystalline orientations on the mechanical properties of sol-gel processed Pb(Zr0.52Ti0.48)O3 thin 

films on Si/SiO2 substrate, which is very similar to the PZT thin films here. From here, 140 GPa 

is adopted for model implementation. The dielectric constant is also required to implement the 

model. Dielectric data was collected using a HP 4292A impedance analyzer and the resulting 

dielectric constant as a function of dc biased voltage is shown in Figure 8.6, giving 1550ε0 for 

the dielectric constant, 
S

f33 .  

 

 

 

Figure 8.5 Characteristics of fabricated PZT thin films: (a) X-Ray Diffraction and (b) 

polarization-voltage hysteresis loop for polycrystalline PZT thin films. 
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Figure 8.6 Dielectric constant-voltage curves. 

 

Models are implemented on the fabricated unimorph MEMS-PVEH devices both in {3-1} 

and {3-3} modes of which geometric dimensions are available in Tables in 8.1 and 8.2. Material 

properties of each layer in both {3-1} and {3-3} mode devices are listed in Table 8.3. First of all, 

key effective parameters such as mass, stiffness, capacitance, and system coupling that appear in 

the governing equations (8.9) and (8.10) are computed, as listed in Table 8.4. It is noticeable that 

the key parameters of MEMS-scale PVEHs are much smaller order than those for macroscopic 

bimorph PVEHs in Table 4.3, due to their distinct difference in scale. Comparison of the 

calculated results for {3-1} mode and {3-3} mode devices in Table 8.4 suggests that electrical 

and electromechanical terms differ depending on the type of electrode configurations, as 

expected. Those terms related to geometric dimensions and mechanical properties such as mass 

(M), stiffness (K), and forcing function (Bf) have similar values as these two devices are 

fabricated with similar dimensions (see Tables 8.1 and 8.2).  
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Table 8.3 Material properties of layers in MEMS unimorph energy harvester device [30, 79]. 

Layer material Density
a
  

[kg/m
3
] 

Modulus
a
  

[GPa] 

Poisson‟s ratio
a
 

 

Plate modulus
c
 

[GPa] 

Pt 21440 170.0 0.39 200.5 

Ti 4510 110.0 0.34 124.4 

PZT (thin film) 7750 140.0 - 140.0 

ZrO2 6000 244.0 0.27 263.2 

SiO2 2300 69.0 0.15 70.6 

Si 2329 129.5 0.28 140.5 

a
 Measured 

b
 Literature values  

c
 Computed as E/(1-2

) 

 

Table 8.4 Key device parameters for model implementation on MEMS unimorph energy 

harvester devices in {3-1} and {3-3} modes (see Tables 8.1-8.3). 

 M [kg] K [N/m] θp [N/V] Cp [F] Bf κ
2
 

{3-1} mode 8.35 x 10
-5

 48.5 -1.98 x 10
-4

 1.60x 10
-6

 2.44 x 10
-5

 0.00995 

{3-3} mode 8.32 x 10
-5

 44.4 -3.07 x 10
-6

  2.15x 10
-11

 2.44 x 10
-5

 0.00509 

 

     Model simulation permits prediction of both resonant and anti-resonant frequencies of 

MEMS-scale unimorph PVEH devices in both modes of operation. For the unimorph, {3-1} 

mode device, 121.3 Hz is calculated as resonant frequency while 121.6 Hz is estimated as anti-

resonant frequency. For the unimorph, {3-3} mode device with similar dimensions, 116.2 Hz and 

116.8 Hz are obtained as resonant and anti-resonant frequencies, respectively. Several aspects are 

noteworthy here. First of all, the difference in resonant and anti-resonant frequencies between 

{3-1} and {3-3} devices with similar dimensions arises because of the different constituent 

layers such as ZrO2 in {3-3} mode device and different electrode configurations. Particularly, in 

{3-3} mode devices with IDTE configuration, contributions of the electrode layers to the mass 

and stiffness of the entire system affect the resonant frequencies. As electrode layers don‟t cover 

the entire area of the cantilever, the ratio of the area covered by the fingered electrodes in IDTEs 
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to the entire area is useful to estimate the partial contribution of these electrode layers to the 

mass and stiffness of the system, and thus resonant frequencies. The mass and stiffness of IDTE 

layer materials (Pt, here) are thus multiplied by the area ratio (0.31, here) and then used to 

calculate the resonant frequency of the entire systems.  

Another aspect to note here is the low value of system coupling, κ
2
. In contrast with 

system couplings for macroscopic PVEH devices shown in Chapter 4 (Table 4.3) with values 

around 0.1, the system coupling for the MEMS-scale PVEH devices considered here are in the 

range of 0.005~0.009 as shown in Table 8.4. The low value of system coupling, κ
2
, here results in 

the small difference between the resonant frequencies and anti-resonance frequencies (e.g., 121.3 

Hz and 121.6 Hz, respectively for {3-1} mode device) of these MEMS-scale systems treated 

here, as anti-resonant frequencies of PVEH devices differ from their resonant frequencies 

depending on the magnitude of system coupling (κ
2
). The low κ

2
 here is likely due to lack of any 

systematic design for optimal PVEH devices – the design of these devices was driven mostly by 

what can be fabricated in the lab. When model-based design for optimal devices is implemented 

(see Section 8.3), it is possible to achieve MEMS-PVEH devices with much higher values of 

system coupling κ
2
. In Section 8.3, for example, it is shown that optimal device dimensions for 

operating power density (e.g. beam length, L = 0.10 mm & proof mass length, LPM = 0.68 mm) 

gives 0.06 for system coupling, κ
2
, given the same materials properties and structures as those in 

Table 8.3. This highlights a considerable significance of model-derived optimal device design in 

order to realize PVEH devices with optimal materials and system parameters. Thus, future work 

will include further optimal device design studies to determine dimensions such as layer 

thickness, beam length, and proof mass length to enable fabrication of optimized PVEH devices. 

At Auburn University, “resonant frequencies” were experimentally measured on these 

devices by finding the frequency points where highest voltage appears from the voltage vs. 

frequency plots at certain electrical resistances (11 kΩ and 4 MΩ). 128.3 Hz is obtained 

experimentally for the {3-1} mode device while 118.1 Hz is measured for the {3-3} device, 

which shows 5.8% and 1.6% difference from theoretically predicted values. However, the 

frequencies at which the peak voltages occur at certain electrical loading conditions do not 

necessarily correspond with either resonant or anti-resonant frequencies (refer to Figure 6.4). As 

part of a full characterization of energy harvester performance, measurement of natural 
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frequency of a system both at short circuit condition (resonance) and open-circuit condition 

(anti-resonance) is recommended using the appropriate equipment such as a laser vibrometer. 

     Electrical device responses, voltage and power, of the fabricated MEMS-scale device in 

{3-1} mode of operation were measured at the experimental “resonance” condition while 

keeping the base acceleration constant at 0.25 g (g =9.8 m/s
2
). In Figure 8.7, measured electrical 

performance is plotted against electrical resistances ranging from 0 kΩ to 100 kΩ (dots) along 

with the simulated results (lines) for voltage and power at various damping conditions. In 

contrast with the experiments on macroscopic system presented in Chapter 4, it was not possible 

to estimate the mechanical damping ratios for these MEMS-scale systems according to the 

scheme presented in Section 3.1 due to the lack of measured data for mechanical performance. 

Thus, here, several reasonable values were chosen for mechanical damping ratio or quality factor 

to best fit the experimental electrical results. Model-informed experiments should be performed 

in the future. Model-experiment comparison shows that trends of electrical behavior are well 

predicted regardless of quality factors. In terms of magnitudes, simulated voltage and power 

match well with the experimental results when the quality factor (Q) is close to 250. Predicted 

power results reveal that the values of maximum power at the peaks and peak positions vary 

depending on the magnitudes of quality factor, implying the significance of operating 

environment, especially, damping conditions of the MEMS-scale system. Maximum power and 

corresponding optimal electrical resistances are of significance. According to the analytical 

modeling results, maximum power of 3.1 W can be generated at Q =250 when electrical 

resistance of 5.1 kΩ is applied at resonance (Ωr = 1) and 13.2 kΩ is applied at anti-resonance 

condition (Ωar = 21  ). Experimentally, power of 3.0 W was extracted at around 11 kΩ and 

experimental resonant frequency (128.3 Hz), as shown in Figure 8.7 (b).  

In Figure 8.8, simulated results of electrical performance for the unimorph, {3-3} mode 

device are also graphically demonstrated at a damping condition of Q =250. For {3-3} mode 

case, measured data are not available due to lacking test parameters and challenges in poling of 

devices with IDTEs [128]. It should be mentioned that fewer input parameters, particularly, thin 

film PZT material properties were available for {3-3} mode device than {3-1} mode device for 

simulation. Therefore, considering the fact that material properties in thin films are typically 

smaller than in bulk, material constants for PZT-5A in bulk used in Chapter 4 were considered to 
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undertake a rough estimation for the {3-3} mode, unimorph, MEMS-PVEH. Simulation results 

reveal that generating maximum power of 3.5 W is possible from the {3-3} mode unimorph 

energy harvester device when operated either at 23.8 MΩ and resonance (Ωr = 1) or 170 MΩ and 

anti-resonance (Ωar = 1). Comparison of PVEHs of similar size but operating in different modes 

({3-1} and {3-3}), is possible using the results shown in Figures 8.7 and 8.8. While both mode 

devices are expected to produce similar maximum power of around 3.0 ~3.1 W, much higher 

voltage (~14 V) and required electrical resistance (~20 MΩ) are observed for the {3-3} mode 

device when compared to the {3-1} mode device where maximum voltage is around 0.4 V and 

optimal electrical resistance is 13 kΩ. 

 

 

 

Figure 8.7 Model-experiment comparisons for a MEMS-scale unimorph energy harvesting PZT 

cantilever with a proof mass in {3-1} mode: (a) voltage versus electrical resistance and (b) power 

versus electrical resistance at resonances and various damping conditions. Q indicates the quality 

factor.  

 

In summary, the developed model for PVEH devices exhibits conservative predictive 

capability not only on macroscopic devices but also on MEMS-scale PVEHs. PVEH device in 

{3-3} mode operation needs further study and details of future work are addressed in Chapter 11.   
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Figure 8.8 MEMS-scale unimorph energy harvesting PZT cantilever with a proof mass in {3-3} 

mode with IDTEs: predicted (a) voltage versus electrical resistance and (b) power versus 

electrical resistance at resonances and Q =250. No measured data available. 

 

8.3  Design of MEMS Piezoelectric Energy Vibration Energy  

Harvesters for Different Objectives 

 

Throughout this thesis, a rigorous analytical model for PVEH devices has been developed 

and experimentally verified on both macro- and micro-scale devices. Chapters 6 and 7 include 

demonstration of several ways to utilize the model, particularly in materials design and 

performance standardization for the realization of optimal PVEH devices. Device design 

optimization study is another useful application of the model. In this section, a multi-variable 

design tool is developed and implemented with special focus on the optimization of MEMS-

PVEH devices for embeddable structural health monitoring (SHM) sensor applications. 

 

8.3.1  Design Constraints for Aerostructural Sensor Applications 

 

Advances in the technology of microelectronics have made possible the miniaturization of 

sensor components and thus realization of distributed, embedded or implanted devices using 

these sensor nodes. Among all the sensor applications where PVEHs can be useful, of particular 
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interest in this work is wireless structural health monitoring (SHM). According to Boller [111], 

approximately 70 % of the damage discovered on aircraft components after inspection is due to 

fatigue cracking. However, predicting these cracks accurately is quite difficult, resulting in an 

increase of inspection costs due to the complexity, weight and expense of wire cables to connect 

damage sensor nodes. Thus, development of a self-powered SHM sensor node that can be 

integrated into the airframe would pave the way for significant savings throughout an aircraft‟s 

life as well as increased safety. In order to build wireless self-powered sensor nodes for aircraft 

health management, micro-scale PVEH devices should be pursued. Therefore, using a verified 

analytical modal model, the author focuses on the optimal design of the most common 

cantilevered-type of PVEHs.  

An optimization scheme begins with consideration of the vibration environment of aircraft 

to obtain the design point. As our interest lies in the SHM of aircraft primary structures, in order 

to find an operating frequency and acceleration, it is necessary to investigate the vibration 

environment of aircraft. Using the data found in the Military Standard 810F, Annex C, Method 

514.5 [112], it is possible to calculate the vibration exposure on the aircraft‟s empennage, where 

the highest life-cycle cost occurs, and thus obtain an operating frequency point of 1000 Hz at 

3.89 m/s
2
 (nearly 0.5g‟s). Thus, 1 kHz is selected as the input excitation frequency at a given 

acceleration of 3.89 m/s
2
 for this work. While it is the upper bound of vibration level that a 

component on the aircraft must be able to withstand, given that only aerodynamic vibration, not 

including engine vibration, is considered here, this vibration level of 3.89 m/s
2
 at 1 kHz can be 

regarded as conservative for the purposes of predicting device output.  

 

8.3.2  Multi-variable Design Optimization for Various Performance Metrics 

 

After quantifying the targeted vibration environment (e.g., aircraft), design optimization 

extends to the investigation of geometric configurations, modes of operation, and fabrication 

constraints of PVEH devices. In terms of geometric configuration, a cantilevered PVEH is 

chosen due to its compliant structure that can produce large strain and thus high power as well as 

its compatibility with MEMS fabrication processes. Depending on the number of piezoelectric 

layers, devices can be defined either as unimorph (one piezoelectric layer) or bimorph (two 
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piezoelectric layers) devices. As stated earlier in this chapter, the biggest difference between {3-

1} and {3-3} modes of operation takes place in terms of voltage control. In the case of {3-1} 

mode of operation, the magnitude of voltage generated is determined by the thickness of 

piezoelectric layers. In contrast with this, the voltage can be adjusted by controlling the spacing 

between the IDTEs for {3-3} mode of operation. In microsystems of our interest, since it is 

challenging to deposit thick (>1 μm) layers of piezoelectric material (e.g., PZT) with consistent 

reproducibility, unimorph IDTE PVEH devices with {3-3} mode of operation are found to be 

most suitable. Also, a proof mass is added at the tip of the cantilevered energy harvester structure 

in order to adjust the natural frequency to the operating point of interest [52]. 

 Several significant factors in micro-fabrication (such as mask image resolution, obtainable 

layer thicknesses, inter-layer adhesion, and residual stress management) are also taken into 

account in order to propose an optimized design approach. For the micro-scale unimorph, {3-3} 

mode PVEH device with a proof mass and IDTEs, (see Figure 1.5), the device is typically 

comprised of one piezoelectric layer (PZT), a structural layer consisting of silicon nitride (SiNx), 

silicon dioxide (SiO2), and zirconia (ZrO2) layers, the IDTEs composed of titanium (Ti) and 

platinum (Pt), and the proof mass. The thickness of each layer is often limited by the 

manufacturing processes in microsystems and thus should be considered in the design process. 

For example, it has been known that depositing a thick layer of PZT exceeding 1 μm usually 

causes serious film cracking. Platinum is chosen as a proof mass material because of its high 

density and the height of the platinum proof mass is restricted to 3 μm by the current e-beam 

deposition techniques. The obtainable resolution of mask image is another factor to limit the size 

and the spacing of the electrodes. Taking all these factors into account, including fabrication 

experience, numerical values are determined for thicknesses of all layers as in Table 8.5. The 

beam width is set to be 1mm, considering the feasible size of the entire system for embeddable 

sensor nodes. It should be noted that as these values for thicknesses can vary within the 

constraint factors in microfabrication processes, and the optimum for the device can be improved 

further by expanding the optimization to include layer thicknesses. 

For {3-3} mode device, IDTE patterns shown in Figures 1.5 and 8.2 are used and 

consideration of the constraints in lithography and poling condition yield a pitch, p, of 16 m 

and a “finger” width, a, of 4 m [113]. The electrodes were assumed to cover 50 % of the top 
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surface of the device for stiffness calculations.  

 

Table 8.5 Example device dimensions for a unimorph, {3-3} mode energy harvester, given 

microfabrication constraints. 

Material Pt Ti PZT ZrO2 SiO2 SiNx 

Thickness [μm] 0.20 0.02 0.5 0.05 0.10 0.40 

 

 If all material properties of use are known either by measurement or from the open 

literature, the remaining variables for the unimorph, {3-3} mode, energy harvester device are 

active beam length (L) and proof mass length (LPM). Thus, the objective will be a function of two 

variables. Depending on the particular applications of interest, objective functions can be set 

differently. For instance, pure power output (units in [μW]) can be obtained as a function of two 

variables (L and LPM) and optimization results can be graphically demonstrated as presented in 

the following section. It should be noted that optimal resistance is used at every design point. 

Since the total package size and mass are important for final design of energy harvester system, 

the volume and the mass should be taken into account. For this, power should be normalized by 

operating volume, static volume, or mass, resulting in operating power density, static power 

density, or specific power density, respectively. Once the objective functions or combinations are 

selected according to specific application of the devices, a plot can be obtained that provides a 

visual optimal design as well as sensitivity of the results, as examined via example in the next 

section. 

 

8.3.3  Optimization Results for an Example Prototype MEMS Harvesting 

Device 

 

Following the optimization schemes presented up to now, an example design for a 

unimorph, {3-3} mode, PVEH device with a proof mass at the tip is achieved. In terms of 

modeling for proof mass effects, improved treatment of rigid proof mass with rotation in Section 

3.2 is used. For the given example device design, three-dimensional plots of operating power 

density (power normalized by operating volume), Pop, and output power, Pout, as a function of 
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active beam length (L) and proof mass length (LPM) are graphically demonstrated in Figures 8.9 

(a) and (b), respectively. Emphasis should be put on the fact that optimal resistance is used at 

every design point of device performance. Comparison between the optimization results for 

output power and for operating power density reveals that optimal design of the device varies 

depending on which objective function is considered. While the given PVEH device structure is 

advantageous in terms of operating power density and expected to generate up to ~70 W/cm
3
, 

the predicted power output is quite small for practical applications, implying further optimization 

should be performed for other parameters such as thickness of each layer to provide more 

optimal geometry and design of PVEH devices. The reason why different points are obtained in 

terms of maximum power extraction for the case of operating power density can be explained 

using tip displacements. Large tip displacement occurs at resonance and this increases the 

operating volume, the entire space where the device vibrates. Therefore, the optimum point is 

found at the point where the benefit of high power and the penalty of large tip displacements at 

resonance are traded. Although the static power density and the specific power density are not 

presented here, different optimal device dimensions, especially the lengths, will be obtained for 

the same device depending on the chosen objective function. In Figure 8.10, the operating power 

density is plotted as a function of proof mass length (LPM) when the active beam length (L) is 

fixed at 100 m. The system coupling factor, 2
, for this given device with these dimensions is 

around 0.06, which is one magnitude larger than that of both Si-based MEMS-PVEHs analyzed 

in Section 8.2. There are two optimal points exhibiting maximum Pop of similar magnitude as 

observed in Figure 8.10. These two points exactly correspond to resonant and anti-resonant 

operating points, which is consistent with the modeling results as mentioned before. In this case, 

the value for operating power density is 70 W/cm
3
 with optimal proof mass length of 680 m at 

resonance when the beam length is 100 m, requiring a long, distributed proof mass. One thing 

to note here is that sharp peaks in Figure 8.9 are attributed to the collection of discrete data 

points during simulation and do not represent the real phenomenon. Smooth curve shown in 

Figure 8.10 is the expected result of multi-variable optimization.  

In this work, an optimization technique is presented that allows one to design MEMS 

piezoelectric mechanical energy harvesters targeting the operating frequency and acceleration of 

aircraft vibration for structural health monitoring (SHM) applications. This optimization scheme 



199 

 

is based on the electromechanically coupled modal model of cantilevered structured energy 

harvesters, which has been experimentally verified in earlier chapters. Geometric configurations 

including a proof mass, modes of operations, as well as factors in microfabrication are 

considered. Design of a unimorph, {3-3} mode, PVEH device with a proof mass with detailed 

dimensions is discussed. Depending on the application of interest, four different objective 

functions such as power output, operating power density, static power density, and specific 

power density, can be obtained as a plot in 3-dimensional space with two variables of active 

beam length and proof mass length. When objective functions vary, the resulting device 

dimension will come out differently through the optimization procedures. A single example 

device design is shown in this work, and following the optimization scheme presented here, this 

optimization technique can be expanded to various device configurations depending on the 

specific applications of interest.  
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Figure 8.9 3-D plots of two-variable optimal design exercise for {3-3} SHM MEMS-PVEHs: (a) 

operating power density optimal designs and (b) power output optimal designs, both as a 

function of active beam length (L) and proof mass (LPM). Both are at Q = 100 (ζm = 0.005). Sharp 

peaks in the above plots are due to the collection of discrete data points during simulation and do 

not represent the real phenomenon.   
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Figure 8.10 1-D plot of operating power density as a function of proof mass length (LPM) when 

the active beam length (L) is fixed at 100 m and Pop is optimized.  
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Chapter 9 

 

 Device Design Study: MEMS Piezoelectric 

Energy Harvesters with Novel Structural 

Layer Materials 

 

 

The modeling and optimization schemes developed so far are useful in designing MEMS-

PVEHs with novel structural layer materials. This chapter focuses on model-based device and 

processing design of power-optimized PZT/ultrananocrystalline diamond (UNCD) PVEH 

cantilevers. 

 

9.1  Introduction & Motivation 

 

For the realization of PVEHs, Si-based MEMS devices have been extensively explored 

due to the fact that they can be fabricated using well-established processes developed for the 

fabrication of microelectronic devices. However, the development of Si-based MEMS-PVEH 

devices has been impeded due to the challenges in precise dimension control as well as residual 

stress developed during fabrication [54]. Ultrananocrystalline diamond (UNCD), developed at 

Argonne National Laboratory (ANL), exhibits superior mechanical (e.g., hardness, flexural 
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strength) and tribological (e.g., coefficient of friction, stiction, wear) properties combined with a 

much smoother surface morphology (4–7 nm rms roughness as shown in Figure 9.1 (a)) [114-

117]. Another advantageous aspect of UNCD is the lowest diamond deposition temperature 

(400 °C), compared with single crystal diamond, microcrystalline diamond, nanocrystalline 

diamond (NCD), and diamond-like films [117]. These properties of UNCD enable the production 

of reliable MEMS devices, especially for many critical technologies, such as MEMS resonators, 

which require high Young‟s modulus, or MEMS optical switches, which require extensive 

surface contact among the MEMS components.  

Replacement of Si with UNCD offers a way to circumvent the challenges in Si-based 

PVEHs. Successful integration of high-quality Pb(Zr,Ti)O3 (PZT) thin films on UNCD in a 

cantilever structure has been demonstrated at ANL, supporting the feasibility of MEMS-PVEHs 

based on UNCD [114-117]. PZT/UNCD cantilevers (see Figure 9.1 (b)) were fabricated and 

actuated at 3 V and up to 1 billion cycles without failure, demonstrating the robustness of the 

PZT/UNCD system as a platform for high performance MEMS devices [117]. The breakthrough 

came from the idea of using TiAl layer as the diffusion barrier of oxygen that would otherwise 

decompose the UNCD layer when depositing the PZT film at high temperature and oxygen-rich 

environment.  

 

 

 

Figure 9.1 PZT/UNCD characteristics for MEMS-PVEHs: (a) TEM image of nano-size grains in 

UNCD, and (b) SEM image of PZT/UNCD cantilever [117].  

 

Electromechanically coupled models developed in this thesis enable calculation of 
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maximum power with corresponding operating conditions, which is inversely proportional to 

“effective” stiffness of the system as shown in equations (2.30) and (2.31). Strong mechanical 

properties and achievable thin layers of the UNCD structural layer decreases the effective 

stiffness, resulting in higher power generation at lower system resonant frequencies, which is a 

key factor in realizing practical MEMS-PVEHs. Calculation results presented in Section 9.2 

show that about 37 times higher power can be extracted from UNCD-based PVEH compared to 

the Si-based case at resonance and corresponding optimal electrical conditions, given the same 

material properties of PZT thin film layer, geometric dimensions of a cantilever (except for the 

thickness of each layer) and a proof mass, and input operating conditions. All these experimental 

and theoretical results strongly suggest that UNCD-based PVEHs can replace Si-based systems 

due to higher maximum output power of the UNCD-based PVEH and absence of fabrication 

issues related to Si-based processing.  

 

9.2  Modeling and Prototype Design of Power-optimized 

PZT/Ultrananocrystalline Diamond (UNCD) Energy Harvesting 

Cantilevers 

 

A research project has been set up to fabricate optimally-designed UNCD-based 

cantilevered PVEHs with a proof mass, based on the collaboration with researchers at ANL. The 

overall project focuses on the development of a {3-1} mode PVEH device (i.e., d31 mode of 

operation) in a cantilever configuration consisting of a Pt/PZT/Pt/TiAl/UNCD multi-layer. The 

project is divided into four parts as outlined below. 

 

i) A power-optimized device is designed using the multi-variable tool based upon the 

model developed in this thesis, and also considering micro-fabrication constraints from 

previous fabrication experience.  

 

ii) Fabrication of hybrid PZT/UNCD-MEMS-PVEH films is performed with varying 

thickness of PZT (70 nm ~ 1 μm) and UNCD (0.5 ~ 1 µm) layers, followed by material 
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property evaluation.  

 

iii) Once the cantilever is defined and a proof mass is integrated, the PVEHs will be wired 

for performance characterization including atomic force microscopy (AFM) at ANL.  

 

iv) Comparison of the experimental results on device output to simulation results will 

provide significant insights into the size and geometry that are optimum for realization 

of efficient/reliable hybrid PZT/UNCD MEMS-PVEHs with useful power generation 

for sensors.  

 

Among the tasks described above, part 1 and some of part 2 are covered in this thesis, in Sections 

9.2 and 9.3, respectively.  

     As a preliminary work, a cantilevered PVEH device based on PZT/UNCD is modeled and 

compared with the Si-based PVEH device in terms of device performance such as resonant 

frequency and optimal power. Previously in Chapter 8, fabrication and characterization studies of 

Si-based, unimorph, MEMS-PVEH devices in {3-1} and {3-3} modes of operation were 

presented, validating the predictive capability of the model for MEMS-scale PVEHs. For 

comparison, the geometric dimensions including beam length, beam width, proof mass length, 

and PZT layer thickness of PZT/UNCD-based devices are set to be the same as the previous Si-

based devices shown in Figures 8.5 and 8.6. Detailed dimensions are available in Tables 8.1-8.3. 

Silicon is assumed to be the proof mass material for both PZT/UNCD-based PVEH devices and 

Si-based PVEH devices. The piezoelectric layer, PZT, is set to have 1 m in thickness. Relevant 

material properties such as density and modulus are listed in Table 9.1 as well as in Table 8.3. In 

the modeling, the same input operating conditions are applied to both Si- and UNCD-based 

energy harvester devices: mechanical damping ratio, ζm = 0.002 (Q =250) and base acceleration 

is 1g (g=9.81 m/s
2
). Previously in Figure 8.7, it is found that simulated voltage and power for 

MEMS Si-based PVEH devices are in good agreement with measured data when quality factor is 

close to 250. Base acceleration, 1g is chosen in order to consider general ambient vibration 

conditions, as described in Section 1.2 (refer to Table 1.1). These operating conditions can vary 

depending on the specific application of interest. 
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Table 9.1 Material properties of layers in UNCD/PZT-based MEMS energy harvester device  

[30, 79, 124, 125]. 

Layer material Density,   

[kg/m
3
] 

Modulus, E  

[GPa] 

Poisson‟s ratio 

 

Plate modulus 

[GPa] 

Pt 21440 170.0 0.39 200.5 

PZT (thin film) 7750 140.0 - 140.0 

TiAl* 3603 93.0 0.34 140.0 

UNCD 3520 980.0 0.2 1225 

* As the relevant properties of TiAl are not fully known, averaged values of Ti and Al material 

properties are employed.  

 

Constituent layers that comprise UNCD-based and Si-based PVEHs in the left and right 

columns, respectively, are given in Table 9.2. For the Si-based PVEH device, layer materials and 

associated thicknesses are adopted from the specifications of the actual devices fabricated by the 

group at Auburn University (see Section 8.2). For the UNCD-based piezoelectric cantilevers, 

material layers and their thicknesses are determined from the experimental data published by 

Auciello et al. at ANL [117] and also based on personal discussion with researchers at ANL.  

Resonant and anti-resonant frequencies and optimal power at such resonances of both 

UNCD- and Si-based PVEH devices are simulated from modeling and summarized in Table 9.3. 

Here, as described earlier, the same material properties of PZT thin film layers, geometric 

dimensions of the cantilever and proof mass, and input operating conditions are used for both 

UNCD- and Si-based PVEH devices but with different constituent structural layers with their 

optimal thicknesses from fabrication perspectives. If all the counterpart layers in UNCD- and Si- 

based devices are assumed to have the same thicknesses (e.g., UNCD and Si have the same 

thickness, 20.0 m), maximum power either at resonance or anti-resonance that can be generated 

by UNCD-based PVEH devices would be smaller than Si-based PVEH devices due to the higher 

stiffness of UNCD according to equations (2.30) and (2.31). However, UNCD-based PVEHs 

benefit from the fact that it is possible to integrate PZT onto UNCD film with much thinner 

layers than Si, resulting in much lower effective (bending) stiffness of the system, and thus more 

power generation at much lower resonant frequencies, as shown in Table 9.3. Given the same 
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cantilever dimensions but with thinner layer deposition of the structural layer, PZT/UNCD based 

PVEH devices exhibit resonant frequencies around 3.1 Hz, a very low resonant frequency for a 

MEMS device. Considering the fact that heartbeat has a frequency of 1.6 Hz [126] and UNCD is 

a proven bio-compatible substrate [127] with its chemical inertness, UNCD-based PVEHs have 

considerable potential for bio-applications. Above all, maximum power that can be obtained with 

the prototype UNCD-based PVEH is expected to exceed 2 mW at its optimal conditions, as 

shown in Table 9.3 and this value meets the current power requirement of small electronics [6, 9]. 

The difference between optimal power values at resonance and anti-resonance occurs due to the 

fact that system coupling factor, 2
, calculated here is not large enough to satisfy the 

approximation condition, 2ζm/2
 ≪ 1 (see equations (2.30) and (2.31)). Note that higher system 

coupling can be obtained than the values shown in Table 9.3 when dimensions are optimized 

though model-based design (see Section 8.3) in future work. As both input mechanical power, Pin, 

and harvesting efficiency, η, have dependence on system coupling factor, 2
, these differ in 

UNCD- and Si-based PVEHs (see Section 7.1.2). Efficiency of 49% is predicted for the UNCD-

based PVEH both at resonance and anti-resonance while lower efficiency of 36% is expected for 

the Si-based PVEH at resonance and anti-resonance, as shown in Table 9.3.  

 

Table 9.2 Layers and each thickness of PZT/UNCD based energy harvester and Si-based energy 

harvester in {3-1} mode of operation. 

 

 

 

PZT/UNCD 

based energy 

harvester 

Layer Thickness 

[m] 

 

 

 

PZT/Si 

based energy 

harvester 

Layer Thickness 

[m] 

Pt 0.10 Pt 0.12 

PZT 1.0 PZT 1.0 

Pt 0.10 Pt/Ti 0.12/0.01 

TiAl 0.15 SiO2 0.5 

UNCD 0.5 Si 20.0 

(W)
a
 (0.5~0.10) SiO2 0.5 

total 2.35~2.85 total 22.3 

a
 Tungsten (W) layer is often needed as a seeding layer to deposit UNCD.  
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Table 9.3 Predicted results of device performance for the PZT/UNCD and Si-based energy 

harvesters. 

Device performance UNCD-based PVEH PZT/Si-based PVEH 

Resonant frequency 3.1 Hz 121.3 Hz 

Anti-resonant frequency 3.1 Hz 121.6 Hz 

Optimal power & corresponding 

voltage at resonance 

2,074 W & 11.7 V  

at 65.9 kΩ 

56.4 W & 0.5 V 

at 5.1 kΩ 

Optimal power & corresponding 

voltage at anti-resonance 

2,051 W & 55.9 V 

at 1.5 MΩ 

27.8 W & 0.8V 

at 13.2 kΩ 

System coupling factor, 2
 0.019 0.005 

2ζm/2
 0.2 0.8 

Efficiency, η [%] 49 % 36 % 

 

 

9.3  Processing Design of Piezoelectric MEMS Energy Harvesters 

based on Piezoelectric/Ultrananocrystalline Diamond Thin Film 

Heterostructures 

 

The model enables one to design power-optimized PZT/UNCD-based MEMS-PVEH 

devices, considering targeted application environment and microfabrication factors. This can 

provide various sets of optimal dimensions for a cantilever and a proof mass depending on 

objective function and target application, which will be reflected during the mask fabrication for 

lithography. Fabrication process will begin with the growth of UNCD films on Si substrates 

(5~10 wafers) using the extensive database existing at the Center for Nanoscale Materials 

(CNM) at ANL, to produce UNCD layers with optimum performance for the proposed MEMS-

PVEHs. Then, TiAl or TaAl layers, oxygen diffusion barriers for efficient integration of oxide 

PZT films with carbon-based UNCD layers, without etching the UNCD layer, will be deposited 

using the magnetron sputter-deposition system. In order to have a capacitor-type device, growth 

of Pt or SrRuO3 (SRO) bottom and top electrode layers sandwiching the PZT layer will be 
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performed using the magnetron system. A PZT layer (70 nm ~ 1μm thick) will be integrated on 

top of the bottom electrode/TiAl or TaAl/UNCD layers, providing an electroded piezoelectric 

structure (Pt or SRO/PZT/Pt or SRO). Several processing techniques have been explored to 

deposit PZT thin films of good quality: sol-gel processing, metal-organic chemical vapor 

deposition (MOCVD), and sputter deposition. A proof mass will be added to the structure either 

by depositing an additional layer on the top electrode and patterned by optical lithography or 

using part of the silicon substrate via a backside reactive ion etching process. After optimizing 

the deposition processes for Pt/PZT/Pt/TiAl/UNCD layers, the film stacks will be etched, using 

optical lithography and reactive ion etching (RIE), to define the shape of the cantilevers and form 

the metal pads that connect to the top and bottom electrode layers. We will release the cantilevers 

with or without proof mass using deep RIE process. Etching processes will be developed to 

create a dry etch process to selectively etch layers against other layers. Additionally, wet etches 

will be required for the removal of layers and resists. Dry plasma etching processes will be 

performed to remove resists as well. After these steps are performed, there will be several 

iterations to further optimize the film stacks, the MEMS-PVEH geometry and dimensions, 

layouts and the processing steps to fabricate the MEMS-PVEHs. Output behavior of fabricated 

MEMS-PVEHs based on UNCD will be evaluated using the test setups based on atomic force 

microscopy (AFM) and/or laser vibrometry. Full characterization of the MEMS-PVEH devices 

will be conducted with help of the model from this thesis (see Chapter 7). Extensive analysis on 

the correlation of experimental data and modeling results will help to improve both model and 

fabrication parameters for better PVEH performance.  

Overall, this chapter shows how the developed model and model-based design process can 

be integrated into the current research project and make contributions by bridging the existing 

state-of-the-art technology (e.g., UNCD thin film growth and PZT/UNCD integration with good 

quality) and targeted applications (e.g., PVEHs, here). Such a systematic approach based on 

modeling, fabrication and characterization will accelerate the development of MEMS-PVEHs 

based on PZT/UNCD thin film heterostructures for practical applications such as bio-sensors.  
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Chapter 10 

 

 Application of Electromechanical Modeling 

to Other Systems 

 

So far, the focus of this thesis has been put on model development, experimental 

verification of the developed model, and various useful applications of the model for PVEH 

systems. In this chapter, a broader application of the developed electromechanical model to other 

systems such as piezoelectric actuators (Section 10.1) and MEMS resonators based on 

electrostatically-driven actuation (Section 10.2) is presented.  

 

10.1  Modeling of Piezoelectric Actuator System  

 

     When subject to mechanical strain, electrical field is induced in piezoelectric materials, 

offering a basis for PVEHs. The reverse effect also exists that piezoelectric materials deform 

when an electrical field is applied across them. These aspects of piezoelectric materials make 

them attractive and well suited as actuators. PVEHs and piezoelectric actuators are both 

electromechanically coupled systems through the piezoelectric effect. Their difference lies in the 

input source: PVEHs are mechanically excited to generate electricity whereas controlled voltage 

is applied as input to drive piezoelectric actuators mechanically. Two governing equations were 

derived for PVEHs in Chapter 2 and scalar versions of those equations are repeated in equations 
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(10.1) and (10.2) for convenience. Equation (10.1) is an actuator equation that represents the 

mechanical domain of the PVEH system. In contrast, equation (10.2) is a sensor equation that 

represents the electrical domain of the same system. The actuator equation is typically used to 

analyze structural dynamics of the piezoelectric system while the sensor equation is used to find 

the voltage appearing due to the piezoelectric when the structure is deformed. These two 

equations are coupled through the electromechanical coupling term, θ: 

 

Bf wBvKrrCrM                          (10.1) 

 

0
1

 v
R

vCr
l

P                           (10.2) 

 

     The input source of PVEHs is mechanical excitation at the base and this is expressed by 

the absolute base displacement, wB(t), or base acceleration, Bw , as shown in the right-hand side 

of equation (10.1). The output device responses include absolute mechanical displacement (w) 

and electrical performance such as voltage (v) and power (Pout), and their analytical expressions 

were obtained by solving the two above governing equations, as written in equations (2.24)-

(2.26).  

The governing equation derived for PVEHs also enables derivation of the equation of 

motion for a piezoelectric actuator driven by a voltage source. For piezoelectric actuators, 

controlled voltage, v = v(t), is input and the base displacement is zero (wB = 0) because no 

mechanical input exists. Thus, the governing equation of motion for voltage-driven piezoelectric 

actuators can be written as follows: 

 

vKrrCrM                            (10.3) 

 

When compared with equation (10.1) for PVEHs where mechanical input is expressed in the 

right-hand side of the equation as Bf wB  , the input voltage at the electrodes of piezoelectric 

actuators is described by the term v  in the right-hand side of equation (10.3). Voltage, v, is a 

function of time as v = v(t) and consists of both direct-current (DC) voltage (vdc = v0) and 
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alternative-current (AC) voltage (vac) in equation (10.4):  

 

v = vdc + vac = v0 + ve
iωt

                           (10.4) 

 

The output device response of a piezoelectric actuator system is mechanical displacement and 

this can be obtained by the analytical expressions of relative displacement, r, or absolute 

displacement, w. It should be noted that the DC voltage determines static zero position (rstatic) 

while AC voltage gives the oscillating displacement (rdynamic) as in a PVEH system. The detailed 

resulting expression for the relative displacement, r, is the summation of rstatic and rdynamic as 

written in equation (10.5):  

 

r = rstatic + rdynamic                            (10.5)  

 

where 0v
K

rstatic


 , dynamicr  is as in as equation (2.24). It is quite beneficial that all the key 

parameters such as mass (M), stiffness (K), and electromechanical coupling (θ) in the governing 

equation in (10.3) for piezoelectric actuators, particularly cantilevered systems, can be easily 

calculated using the same expressions derived for PVEHs in earlier chapters. Furthermore, the 

detailed proof mass analyses (Chapters 3, 4, and 5) that were performed on the energy harvester 

system is also applicable to the actuator system.  

 

10.2  Design of High-Frequency Si-based MEMS Resonators 

 

This section contains a description of design and fabrication of high-frequency (> MHz) 

Si-based MEMS resonators useful in electronic devices for clocking operations. Such a 

technology could replace current quartz-based bulk resonators with an on-chip MEMS element 

to go alongside other circuitry and functions. There is commercial activity towards this end, 

notably technology being commercialized by a company called SiTime and others. There still 

exist potential challenges in fatigue for silicon beams during resonating operation. Thus, in this 

work, cantilevered silicon resonators driven by electrostatic actuation are modeled, and 
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consideration of the simulation results and fabrication factors results in the design of optimized 

low-strain fatigue-resistant MEMS resonators.  

A closed-form design of capacitively-driven (low-voltage, very advantageous) Si 

resonators with very low strain levels, and methods of MEMS fabrication, are described next.  

It may be possible to use solely complementary metal-semiconductor-oxide (CMOS) processing, 

but this has not been explored. Furthermore, a proof mass analysis allows simple (from a 

fabrication perspective) tuning of natural frequency, as well as allows design of high-strain Si 

test devices to explore fatigue properties of the Si-based resonators as future work. As MEMS 

resonators here are based on micro-scale beams, electrostatic actuation, and mechanical vibration, 

this work is another application of an electromechanically coupled beam model developed earlier 

in this thesis but without a piezoelectric element. 

 

10.2.1  Device Design Considerations 

 

Single crystal silicon (SCS) is chosen for the MEMS resonator material. Quartz is 

currently the most widely used resonator material. However, their relatively bulky size limits the 

possibilities for reduction in circuit volume and requires high manufacturing cost. Silicon-based 

MEMS resonators are attractive alternatives to replace quartz-based resonators for several 

reasons. Silicon not only has potential for reduced size, cost and power consumption but also is 

advantageous in terms of integration with circuitry on the same wafer. In modeling, 129.5 GPa is 

adopted for the Young‟s modulus of SCS with crystal orientation [100] while 2320 kg/m
3
 is used 

as the density of SCS, Si, from [58].  

SCS-based resonators optimized for mega-hertz (MHz) operating frequencies are the main 

target application. Conservative analysis demonstrates that a 25 MHz-device is achievable and 

10 MHz-device is very easy to obtain. Thus, two different frequencies, 25 MHz as a desirable 

target and 10 MHz, are considered. It should be noted that higher-order coupled beam models 

can expand the design space significantly although this work focuses on the fundamental mode 

of beam vibrations only. The driving force to operate Si-based MEMS resonators considered here 

is the electrostatically-driven (or in-plane) mode using electrostatic actuation. Electrostatic 

parallel-plate actuators are a common way of actuating micromechanical systems [122]. More 
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details on parallel-plate electrostatic actuation are discussed in the following section. 

     In terms of geometry, both singly-clamped beams (cantilever) and doubly-clamped beams 

are of interest and these are illustrated in Figure 10.1 with defined dimension parameters. A 

cantilever beam structure is chosen for its simplicity in analysis and geometric compatibility with 

MEMS fabrication processes. Doubly-clamped beams are advantageous in terms of reaching 

higher natural frequencies [69]. Preliminary simulation results also demonstrate that given the 

same dimension, it is much easier to obtain high aspect ratio (b, h ≪ L) with doubly-clamped 

beams than with singly-clamped beams. L is the length of the beam while b, h are thickness and 

width of the beam, respectively, as indicated in Figure 10.1. (Note that the notations follow the 

conventions in vibration engineering. E.g., the dimension in the vibration direction is denoted as 

h.) In terms of pull-in voltage, i.e. the maximum voltage that can be applied to the system, 

doubly-clamped beams permit 8 times larger pull-in voltages than singly-clamped beams, thus 

providing a broader range of operation. From a perspective of stiffness, according to simple 

beam theory, doubly-clamped beams are expected to have 64 times higher stiffness than the 

singly-clamped beams (linear bending comparison only). As each structure has its own 

advantages, both singly- and doubly-clamped beams are considered.  

     The following are desirable conditions for geometric dimensions of considered beams:  

 

 L >> h, b 

 L > 10h (high-aspect ratio) 

 b > h (h ~ 1/2 b, or 2/3 b) 

 

Considering the limitation in the resolution of lithography, 1 μm or larger is a good value for the 

initial gap size, g0, between the electrodes and the beams. To satisfy the assumption of parallel-

plate capacitor and point-loading condition in the analysis presented in Section 10.2.2, the beam 

is required to be much longer (L: beam length) than the length of the electrode, c, such that L >> 

c. 

For the realization of practical applications, 5 V or less would be desirable as an applied 

voltage, vapp. In addition, vapp should satisfy the condition that vmin < v app < vpi where vmin is the 

minimum voltage required to initiate the beam vibration and vpi is the pull-in voltage at which 
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the beam would deviate from the stable range and might stick to the electrode. In order to 

prevent stiction or pull-in, beam deflection should not exceed the gap for pull-in condition at 

anytime during operation, which is 1/3 g0 (static) or 1/2 g0 (dynamic) where g0 is the initial gap 

size between the beam and the electrodes at rest. All the factors described above are considered 

in device design of optimal Si-based MEMS resonators and presented in Sections 10.2.2-10.2.4.  

 

 

 

Figure 10.1 Schematics of beam resonators driven by electrostatic actuation with indication of 

dimensions, drive and sense electrodes, and the vibration direction: (a) top-view of singly-

clamped beam, (b) side-view of singly-clamped beam, (c) top-view of doubly-clamped beam, 

and (d) side-view of doubly-clamped beam. 

 

10.2.2  Modeling of Electrostatically-driven Beam Resonators 

 

Modeling of beam resonators driven by parallel-plate electrostatic actuation benefits from 

the understanding of a one-dimensional damped, force oscillation model represented by a mass-

spring-damper, simple beam theory [69], and the principle of parallel-plate electrostatic actuation. 

The schematic of a basic electrostatic actuator illustrated in Figure 10.2 (a) is useful to 

understand the concept of a voltage-controlled parallel-plate capacitor with one movable plate. It 

is convenient to define the capacitor as having plate area, Ael, and a gap, g. When the plates are 
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charged, a charge +Q is generated on one plate and –Q on the other plate and because of the 

opposite charges on the two plates, there is a force of attraction between the plates (electrostatic 

force). Addition of a spring between the moveable plate and a fixed support creates an upward 

force on the moveable plate if the plate moves down from its rest position (i.e., z = 0 or g = g0 in 

Figure 10.2 (a)). The net force exerted on the moveable plate is thus the summation of 

electrostatic force and spring force, each in opposite directions. 

 

 

 

Figure 10.2 A parallel-plate electrostatic actuator: (a) schematic of the basic electrostatic 

actuator with the movable plate attached to a spring, and (b) electrical (electrostatic) force and 

spring forces for voltage controlled parallel-plate electrostatic actuators [121].  

 

The characteristic of the spring requires that the displacement of the end of the spring, z, 

be given by Hooke‟s law:  

 

kzFspring                               (10.6) 

 

where Fspring indicates spring force while k and z represent stiffness of the spring and 

displacement of the end of the spring, respectively. Electrostatic force, Felectrostatic, is determined 

by the voltage, which stretches the spring, thus determining the change in gap: 
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where g denotes the distance between the plates when moving and ε is the permittivity of the 

material between the gap, presumed to be air, thus, ε ~ ε0, the permittivity of free space. Then, at 

equilibrium, setting Fspring = Felectrostatic and introducing the relation, zgg  0 , into equation 

(10.6), enables determination of the change in gap: 
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It should be noted that the decrease in gap, g, is an increase in the length of the spring, z. Net 

force, Fnet, on the upper plate at voltage, vapp,  and gap, g, can be expressed as: 
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The voltage-controlled parallel-plate electrostatic actuator exhibits an important behavior 

called pull-in. In Figure 10.2 (b), both spring force and electrical (electrostatic) force are plotted 

across the normalized displacement, z/g0. As one increases the voltage, the gap decreases, with 

the amount of decrease growing as the gap gets smaller. At some critical voltage, the system 

becomes unstable, and the gap collapses to zero. This phenomenon is called pull-in or snap-down. 

At a point of equilibrium, Fnet = 0, such that the plots of spring force and electrical force intersect 

in Figure 10.2 (b) and equilibrium exists between the electrostatic force pulling plate down and 

the spring force pulling the spring up. In other words, pull-in voltage is the specific voltage at 

which the stability of the equilibrium is lost, thus determining the travel range of the moveable 

plate. It is thus important to pay attention to the pull-in condition (i.e., the gap distance and the 

voltage at pull-in) in device design so that the designed beam device can actuate without 

collapsing to the electrodes.  

In the design shown in Figure 10.1, the beams act as moveable plates while the electrodes 

play the role of the fixed plate when compared with the basic electrostatic actuator illustrated in 

Figure 10.2 (a). Here, it is assumed that the beam deflection has negligible curvature over the 
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area of the electrodes. In combination with simple beam theory and one-dimensional, damped, 

forced oscillation for the beam structures, the analytical expressions for the parallel-plate 

electrostatic actuator described above permit calculation of the displacement, z, at a given 

voltage and the gap size and the voltage at pull-in, gpi and vpi, respectively.  

     In static cases [121], displacement, z, can be obtained by solving the cubic equation (10.8) 

for the gap size, g, since ggz  0 , once the input voltage, Vvv dcapp 5 , is known. It can be 

easily shown that static pull-in occurs at 0
3

2
gg pi   and 

el

pi
A

kg
v

27

8 3

0 .  

     In the dynamic case [69, 122], it is convenient to regard the beam actuator as a classical 

mass-spring-damper system that undergoes damped, forced oscillation. Then, derivation of the 

following expression to represent the dynamics of the electrostaically-driven beam actuators is 

possible: 
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where the actuation voltage is dcacapp vtvtv  )()(  and M, C, and k represent mass, damping 

constant, and the stiffness of the beam, respectively. Solving for z in equation (10.10) at the 

given actuation voltage for a given mechanical system results in not only the displacement, z, but 

also the gap size, g. Fargas-Marques et al. derived the dynamic pull-in condition in [122] and the 

analytical expressions for the gap size, gdpi, and voltage at dynamic pull-in, vdpi, are adopted here: 
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Compared with the static case, dynamic pull-in allows longer travel range of the moveable 
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plate but smaller range for applied voltage. In the above, calculation of the stiffness for a given 

beam structure is required for modeling of the system. Based on the point-loading condition in 

simple beam theory [69], it is possible to analytically express the stiffnesses of a singly-clamped 

beam under tip-loading, and doubly-clamped beam at middle-loaded conditions:  
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where E, h, b, and L are Young‟s modulus (of Si, here), thickness of the beam, width of the beam, 

and length of the beam, respectively. Lastly, in order to find desirable geometric dimensions of 

the beams that have natural frequencies coinciding with targeted frequencies, it is necessary to 

know the relation between the properties of the beam and its resonant frequencies. From the 

governing equation for bending vibration of a beam in equation (10.15), one can derive the 

resonant frequency for free vibrations of the beam [69]:  
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where m is beam mass per length and w (x, t) is beam deflection as a function of position (x) and 

time (t). E represents Young‟s modulus and I(x) is cross-sectional area moment of inertia while 

f(x,t) indicates external force. The first mode resonant frequencies for a singly-clamped beam and 

a doubly-clamped beam are described in equations (10.16) and (10.17), respectively: 
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In order to validate the analytical expressions for the in-plane capacitive resonators 

presented above, experimental results reported by No et al. in the literature [123] are employed. 

Figure 10.3 contains the illustration of doubly-clamped beam resonators made of SCS in (a) and 

also the obtained experimental data of resonant frequency vs. voltage with the beam dimensions 

in (b). In their analysis, resonant frequency, f1, with a value of 505 kHz is obtained 

experimentally and the pull-in voltage is computed as 56 V for the fabricated doubly-clamped 

beam resonators driven by electrostatic actuation. Using the expression in equation (10.17), our 

own results provide the value of 555 kHz for the resonant frequency of the same structure and a 

calculated pull-in voltage of 64.8 V using equations (10.12), (10.14) and (10.17). Comparison of 

the values obtained in [123] and here suggests that they have a reasonable correspondence in 

terms of orders of magnitude, particularly for the resonant frequency and the pull-in condition.  

 

10.2.3  Results of Model-based Device Design for Si MEMS Resonators 

 

The first step in designing high frequency Si MEMS resonators is to determine the 

geometric dimensions, which not only correspond to the targeted frequencies, 10 and 25 MHz, 

but are also within a reasonable range in terms of fabrication. With this in mind, sets of length 

(L) and width (h) are drawn at given values of frequencies, 10 and 25 MHz, in the plot of Figure 

10.4 using equations (10.16) and (10.17). Then, the range which satisfies high-aspect ratio (h ≪ 

L) is identified as shown in Figure 10.4 using arrows. Within this range, the sets of dimensions 

for both singly- and doubly-clamped beam resonators (i.e. length, width, and thickness), are 

selected considering fabrication-wise favorable values (see Table 10.1). Considering the 

fabrication factors again, the initial gap size, which is the distance between the beam and the 

electrodes, is set to be 1μm and the length of the electrode, c, is set to be 1μm. Device design 

with reasonable dimensions based upon simulation results and fabrication-level constraints 

demonstrates that the development of high-performance silicon-based MEMS resonators is 
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possible.  

 

 

 

 

Figure 10.3 Schematic and measured data for a single-crystal silicon capacitive resonator from 

[123]: (a) doubly-clamped beam single crystal silicon resonator and (b) plot of the resonance 

frequency vs. polarization voltage for a 300μm long, 6.5μm wide beam resonator. 

 

 

 

 

Figure 10.4 Model-derived design space for (a) singly-clamped beam resonators and (b) doubly-

clamped beam resonators. Both are targeted to operate at 10 MHz and 25 MHz.  
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Table 10.1 Beam dimensions for the fabrication of high-frequency Si beam resonators. 

 Resonant 

frequency, f1 

h 

[m] 

L 

[m] 

b (= 2h) 

[m] 

Aspect ratio, 

L/h 

Singly-clamped 25 MHz 2.0 10 4.0 4.9 

Singly-clamped 10 MHz 2.0 15 4.0 7.5 

Doubly-clamped 25 MHz 2.0 24 4.0 12.0 

Doubly-clamped 10 MHz 2.0 38 4.0 18.9 

 

For the given dimensions of four different beam resonators in Table 10.1, prediction of key 

parameters such as stiffness, k, pull-in voltage, vpi, and maximum static deflection, zmax, is 

possible by using equations (10.6)~(10.14) and the calculated results are listed in Table 10.2. As 

discussed earlier, the input actuation voltage, vapp is set to be 5V as a desirable value in operation 

and this is much lower than the pull-in voltage listed in Table 10.2. Predicted maximum static 

deflection, zmax, is also much smaller than the deflection at pull-in, zpi, for the given device 

dimensions and thus, ensures conservative device design of Si beam resonators driven by 

electrostatic actuation.  Maximum dynamic deflections of a singly-clamped, 10 MHz device are 

also computed at various damping conditions by varying the value of quality factor, Q. As seen 

in Table 10.3, even for the dynamic case with very high Q values, maximum amplitudes do not 

exceed the pull-in limit, satisfying the design requirements. 

 

Table 10.2 Predicted key parameters from modeling of singly-clamped, 25 MHz (S. 25 MHz), 

singly-clamped, 10 MHz (S. 10 MHz), doubly-clamped, 25 MHz (D. 25 MHz), doubly-clamped, 

10 MHz (D. 10 MHz) beam resonators. 

 Stiffness, k 

[N/m] 

vpi (static)  

[V] 

Static deflection,  

zmax [Å] 

zpi (static)  

[m] 

S. 25 MHz 1090 3030 0.00404 0.5 

S. 10 MHz 309 1610 0.0143 0.5 

D. 25 MHz 4860 6380 0.000911 0.5 

D. 10 MHz 1230 3210 0.00360 0.5 
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     Expected values for maximum stresses and strains are calculated and indicated in Table 

10.4. Considering the typical values of 300MPa (0.3 GPa) or larger and 2000μ~4000μ-strain as 

applied stresses and strains for dynamic fatigue of SCS, the designed beam resonator devices 

here are predicted to have extremely low stress and strain according to the simulation results. 

Therefore, the design presented here will provide low-strain fatigue-resistant MEMS resonators. 

 

Table 10.3 Maximum dynamic deflection and dynamic pull-in conditions of a singly-clamped, 

10 MHz beam at various damping conditions. 

Quality factor, Q Damping ratio, ζm Maximum dynamic 

deflection, zmax [Å] 

zdpi (dynamic)  

[m] 

27.8 0.018 0.397 0.67 

100 0.005 1.43 0.67 

500 0.001 7.15 0.67 

1000 0.005 14.3 0.67 

 

Table 10.4 Maximum stress and strain at quality factor, Q = 1000. 

Device Maximum stress  

at the clamping [MPa] 

Maximum strain 

at the clamping [-strain] 

S. 25 MHz 1.91 14.7 

S. 10 MHz 6.77 52.1 

D. 25 MHz 3.45 26.6 

D. 10 MHz 13.6 104 

 

10.2.4  Proposed MEMS Fabrication Sequence for Si Resonators 

 

     The proposed fabrication scheme for the designed MEMS-scale SCS beam resonators is 

described below. Use of silicon-on-insulator (SOI) wafers as substrates is recommended for 

accurate dimension control and the fabrication scheme presented below is based on SOI wafers. 

The total number of masks required for the entire process is three. Figure 10.5 includes a 

graphical illustration of the process steps, which is associated with the description of the process 
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below. One thing to note here is that the description of the proposed fabrication scheme below is 

based on the facilities available at the Microsystems Technology Laboratories (MTL) at MIT but 

that the scheme itself can be implemented by replacing the listed facilities by the equivalent 

facilities available elsewhere and is therefore not optimized. 

 

1. Begin with clean out of box 4” SOI wafers. 

2. Lithography for deep reactive ion etching (DRIE) (Mask 1) 

A. Coat resist NR7 (TRL coater) 

B. Pre-bake 

C. Expose (EV1) 

D. Develop (TRL photo-wet) 

2. DRIE to define beam geometry (TRL STS1) 

3. Remove the residual photoresist  (TRL Asher) 

4. Clean the residual photoresist with piranha (TRL)  

5. Pt electrodes lithography for Lift-off (Mask 2) 

A. Coat resist AZ5214 (TRL coater) 

B. Expose (EV1) 

C. Pre-bake 

D. Second expose (EV1) 

E. Develop (TRL photo-wet) 

6. Pt (top) /Ti (bottom) deposition (TRL E-beamAu) 

7. Lift-off of photoresist with acetone soak  

8. Lithography for wet-etch (Mask 3)  

A. Coat resist AZ4620 (TRL coater) 

B. Pre-bake 

C. Expose (EV1) 

D. Develop (TRL photo-wet) 

9. Die-saw and package (ICL diesaw) 

10. Lift-off of photoresist with acetone soak 

11. Wet-Etch (dilute HF) to release cantilever beam 
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Figure 10.5 Fabrication process for silicon beam resonators – side view. 

 

In summary, throughout this chapter, a closed-form design of capacitively-driven Si 

resonators with very low strain levels consistent with MEMS fabrication is discussed. Together 

with the model developed for electrostatically-driven resonators, a detailed proof mass analysis 

presented in earlier chapters permits not only the tuning of natural frequency of these resonator 

devices but also design of fatigue test devices for high-strain singly-crystal silicon thin films as 

future work. The fabrication process proposed here is also applicable to the fabrication of high-

strain Si fatigue test devices that are based on parallel-plate electrostatic actuation.  
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Chapter 11 

 

 Conclusions and Recommendations 

 

 

Throughout this thesis, a verified electromechanically coupled model is developed, 

including incorporating the detailed proof mass effects and different electrode configurations, to 

predict the output performance of PVEHs. Then, the model is utilized to guide design of both 

optimum piezoelectric materials and energy harvesting devices, followed by a device design 

exercise for a MEMS-PVEH with novel structural layers. Overall, this thesis contributes not only 

to providing an optimal device design scheme for power improvement along with optimum 

operating conditions, but also to a better understanding of PVEH performance at both materials- 

and systems-levels. 

 

11.1  Contributions of This Work 

 

1. Significance of an appropriate treatment of the proof mass in PVEH device design for 

enhanced power generation is highlighted by modeling detailed proof mass effects on 

PVEH performance at three different levels of accuracy: simple approximation for 

concentrated proof mass, improved treatment of rigid proof mass with rotation, and 

exact treatment of flexible proof mass using a two-beam method. Even a small change in 

proof mass geometry results in a substantial change in device performance due not only 
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to the frequency shift, but also to the effect on the piezoelectric layer strain distribution 

along the device length. 

 

2. A developed model for a piezoelectric cantilever with and without a proof mass is 

experimentally verified by analyzing the experimental results from a detailed test matrix 

that captures both mechanical and electrical performance of macroscopic PVEH devices 

at various operating conditions, not only demonstrating the conservative predictive 

capability of the model, but also providing benchmark data to verify other modeling 

efforts.  

 

3. Mechanical behavior of a micro-scale single crystal silicon cantilever with a distributed, 

flexible proof mass is thoroughly investigated not only to verify the newly-developed 

flexible proof mass model, but also to study proof mass effects on the performance of 

MEMS-PVEHs. Newly designed experiments are performed at Argonne National 

Laboratory that include fabrication of novel MEMS-scale cantilevers with proof masses 

of various lengths using focused ion beam milling, and testing of these MEMS-scale 

cantilevers using atomic force microscopy.  

 

4. The effects of piezoelectric materials properties on PVEH device performance by model-

based sensitivity analysis are studied, which provides insight into design and selection of 

optimal piezoelectric materials in terms of power generation. An intriguing finding is 

that the piezoelectric constant dominates harvester power at off-resonance as widely 

noted, but that an optimal value (not maximizing piezoelectric coupling) exists for 

power at the resonances. Two important design considerations are suggested: i) higher 

piezoelectric coupling doesn‟t necessarily yield increased power and/or voltage, and ii) 

materials with relatively low piezoelectric coupling constants can generate the same 

maximum power by tuning electrical impedance. 

 

5. As another way to utilize the model, key performance metrics for PVEHs are 

standardized to provide needed figures of merit and to enable full characterization of 
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PVEH performance. Estimation of materials and useful system parameters using model-

based bottom-up and top-down approaches is introduced. This also enables analysis of 

PVEH system behavior under various operating conditions and prediction of engineering 

limits in device performance, which is essential for realizing power-optimized PVEH 

devices.   

 

6. Detailed analytical models for different electrode configurations in PVEHs are 

developed: standard capacitor type electrodes for {3-1} mode of operation and 

interdigitated electrodes (IDTEs) for {3-3} mode of operation. Expressions that describe 

the coupling term (θp) and capacitance (Cp) for both electrode configurations are 

presented in detail. Direct substitution of these expressions into the governing equations 

for PVEH devices enables modeling and comparison of cantilevered PVEH devices in 

{3-1} and {3-3} modes of operation. In particular, the refined model for the cantilevered 

PVEHs with IDTEs in this thesis allows one to consider the detailed effect of electrode 

dimensions (e.g., spacing) on device performance. 

 

7. The model is also implemented and compared with the experimental test results of a 

MEMS-PVEH device fabricated by collaborators in order to evaluate the validity of the 

model experimentally. Model-experiment comparison shows that trends of electrical 

behavior are well predicted regardless of quality factors. In terms of magnitudes, 

simulated voltage and power match well with the experimental results when the quality 

factor, Q, is close to 250 for the MEMS-PVEH in {3-1} mode. Predicted results of 

power at various damping conditions reveal that the values of maximum power and 

corresponding electrical resistances vary depending on the magnitudes of quality factor, 

implying the significance of quantifying the operating environment, especially, damping 

conditions of the MEMS-scale system.  

 

8. A multi-variable design tool for performance-optimized PVEHs is developed and 

implemented for prototype MEMS cantilevered devices with IDTEs that can be 

integrated in wireless structural health monitoring sensor applications for aircraft. 

Optimization results give very different optimum device configurations when the 
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objective function (output power, power per mass, power per static or operating volume, 

etc.) is changed. 

 

9. The model-based optimization studies are then applied to novel structural layer materials 

(heterostructure piezoelectric/ultrananocrystalline diamond, UNCD, thin films) to design 

MEMS-PVEHs that will be fabricated and characterized at Argonne National Laboratory 

(ANL).  

 

10. The models are modified and used to design low-strain fatigue-resistant MEMS 

resonators (e.g., device dimension, fabrication scheme, and detailed mask design) by 

expanding the electromechanically coupled modeling for high frequency Si-based 

electrostatically-driven MEMS resonators. 

 

11.2  Recommendations for Future Work 
 

1. Model-derived piezoelectric materials design guidelines described in Chapter 6 will be 

applied to fabricated MEMS-PVEHs with various piezoelectric materials including non-

ferroelectric materials such as ZnO, AlN, or ferroelectric polymers including 

poly(vinylidene fluoride) (PVDF) or poly(vinylidene-trifluoroethylene) (P(VDF-TrFE)).  

The non-intuitive and notable findings described in Chapter 6 that maximum power at 

optimal conditions are independent of piezoelectric coupling constant imply that 

piezoelectric materials having relatively low piezoelectric coupling constants can 

generate sufficient power, exhibiting a considerable potential use for practical 

applications. In particular, ferroelectric polymers benefit from low-cost fabrication, light 

weight, flexibility, and low-voltage operation, but have not been explored significantly 

due to their relatively low piezoelectric coupling constants. Based on the model-derived 

guidelines, use of ferroelectric polymers in PVEH devices with enhanced power is 

possible by finding the optimal electrical loading resistance that allows generation of 

optimal power for a given device.  

 

2. The effect of proof mass and beam geometry on damping will be analyzed, followed by 
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the study of damping effects on PVEH device performance. The analytical model 

developed in this thesis in combination with the experimental data of displacement that 

was already obtained during AFM characterization of MEMS-scale Si cantilevers (see 

Chapter 5) will provide the basis for this damping analysis.  

 

3. The experimental data of displacement measured during AFM characterization of 

MEMS-scale Si cantilevers will also be used to experimentally verify the mode shape 

models as an extended work of Chapter 5.  

 

4. In Chapter 8, analytical modeling for a {3-3} mode PVEH device is presented. This 

model incorporates not only the structural dynamics of the given cantilevered structure 

but also the characteristics of IDTE configurations. Due to insufficient experimental data, 

the model has not yet been experimentally verified especially in MEMS-scale systems. 

With continuous collaboration with Prof. Dong-Joo Kim‟s group at Auburn University, 

model-experiment comparison studies on {3-3} mode devices will be undertaken. Also, a 

parametric study will be performed to investigate the effect of IDTE geometric 

dimensions on power performance of PVEH devices. 

 

5. An ongoing work includes modeling and fabrication of MEMS-PVEHs based on 

heterostructure piezoelectric/UNCD thin films. UNCD-based PVEH devices are being 

fabricated at ANL and full materials and device characterization will be followed to 

optimize the device design for improved power generation.  

 

6. Model-informed experiments should be performed for both Si-based and UNCD-based 

MEMS-PVEHs for full characterization of PVEH performance. Enhanced figures of 

merit and the model-based optimization framework presented in Chapter 7 will provide a 

basis for optimal performance quantification along with multi-variable design 

optimization discussed in Chapter 8.   

 

7. Reliability is a significant issue to overcome for energy harvester devices as the power 

supply should operate for a long time (ideally infinitely). During the operation of PVEH 
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devices, it is necessary to consider two kinds of fatigue, namely mechanical fatigue and 

piezoelectric fatigue. Piezoelectric fatigue can be defined as the phenomenon where the 

piezoelectric coefficient decreases as a function of either mechanical stress/strain or 

electric field cycling. In energy harvesting, the induced voltage by mechanical vibration 

is much lower than the coercive field of the piezoelectric layer. Therefore, one can 

assume that once the piezoelectric layer is poled in the direction of interest, there is no 

significant polarization switching during the cycling. Therefore, in order to understand 

the decrease in piezoelectric coefficient without polarization switching and find a way to 

improve the reliability of PVEHs, it is necessary to investigate unipolar piezoelectric 

fatigue where applied electric field across the piezoelectric layer is much lower than its 

coercive electric field that can be obtained from piezoelectric hysteresis loop 

measurements. Thus, analytical modeling and experimental study of both structural and 

piezoelectric unipolar fatigue phenomenon will provide a basis to understand and 

improve reliability of PVEH devices. The top-down approach will facilitate investigation 

of fatigue phenomena since evaluation of piezoelectric and structural degradation as a 

function of time is possible using measured data of voltage and resonant frequency as a 

function of operation time, as described in Chapter 7.  

 

8. Fabrication of high-frequency Si-based MEMS resonators can be performed based on the 

optimal device design and fabrication process proposed in Chapter 10. Also, the model 

developed for electrostatically-driven resonators can be used to design fatigue test 

devices for high-strain single-crystal silicon thin films. 

 

9. In this thesis, untapered, cantilevered PVEHs with uniform cross-section with or without 

a proof mass are explored both analytically and experimentally. Future work can include 

a simple geometric modification that is easily implemented with MEMS fabrication 

techniques: tapering of the beam/plate cantilever. By making the width at the tip of the 

beam/plate section not equal to the width at the root, a more evenly distributed strain 

profile along the beam/plate is expected as compared to an un-tapered beam [79]. 

Development of a modified model for tapered, cantilevered PVEHs and fabrication of 
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such devices are recommended as future work.  
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Appendix A. Effective Piezoelectric Materials Constants for Beams, 

Plates and Thin Films in {3-1} and {3-3} Modes of Operation 

 

One can describe the piezoelectric effect mathematically using linear elastic constitutive 

equations [8,35]. Assumption of small deformations allows linear forms of the constitutive 

equations to be used. In Chapter 2, the representative expression for three-dimensional linear 

elastic constitutive relations where a range of small-signal piezoelectric motion is assumed is 

introduced in equation (2.7). As the matrices of the elastic compliance, dielectric susceptibility, 

piezoelectric, electrostrictive and pyroelectric coefficients of poled ferroelectric polycrystalline 

materials with randomly oriented grains have the same nonzero matrix elements as crystals that 

belong to point group 6mm [97], it is possible to simplify the three-dimensional linear elastic 

constitutive relations in equation (2.7) as follows: 
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In order to derive the expressions for “effective” piezoelectric materials constants for beam and 

plate configurations both in {3-1} and {3-3} modes of operations (see Figure A.1), it is 

convenient to take all shear stresses as zero relative to the others, which gives: 
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Figure A.1 Schematic of piezoelectric effect for beams and plates in (a) {3-1} mode of operation 

and (b) {3-3} mode of operation. 

 

For a beam in {3-1} mode of operations, T3 = 0, T2 = 0, and electric field only in the 3 

direction (E3) is in effect, as shown in Figure A.1 (a). Thus, equations (A.3) and (A.4) become: 

 

3311111 EdTsS                               (A.5) 
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3331313 ETdD T                              (A.6) 

 

If we rewrite equation (A.5) in terms of strain (S1) and electric field (E3) as in equation (A.7) and 

then substitute (A.7) into equation (A.6), equation (A.8) is obtained:  
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The three-dimensional linear elastic constitutive relations in equation (2.7) can be easily 

simplified for {3-1} mode of operation where equation (2.7) is significantly simplified as 

expressed in equation (A.9): 
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It should be noted that these constants, for which asterisk (*) is employed for distinction, are not 

equal to the fully 3-D constants. Comparison of equation (A.9) with equations (A.7) and (A.8) 

yields expressions for the physical parameters, *11

Ec , *31e , and *33

S  for a beam in {3-1} 

mode of operation as written below: 
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The same scheme can be applied to derive expressions of material property constants for a 

plate in {3-1} mode of operations. For a plate in {3-1} mode of operation, T3 = 0, and electric 

field only in the 3 direction (E3) exists. Thus, equations (A.3) and (A.4) become: 

 

3312121111 EdTsTsS                            (A.13) 

 

3312111122 EdTsTsS                            (A.14) 

 

3332131133 EdTsTsS                            (A.15) 

 

3332311313 ETdTdD T                           (A.16) 

 

Note that the terms on the right-hand side of equation (A.15) does not intersect with S3 in {3-1} 

mode of operation (see Figure A.1 (a)). One can obtain equations (A.17) to (A.19) by combining 

equations (A.13) and (A.14) and then, making rearrangements:  
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By noting the plate geometry and typical strain assumption, S2 = 0 as there is no strain in the 2 

direction and L2 ≫ h. Then, equation (A.19) can be rewritten as: 

 

33112111121121 )(2)()( EdccSccTT                     (A.20) 

 

Insertion of equation (A.20) into equation (A.16) gives: 
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The resulting expressions, then, can be written as follows: 
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which can be compared with equation (A.9) to find expressions for material property constants 

for a plate in {3-1} mode of operation:  
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For {3-3} mode of operation, simplified expressions of equation (2.7) is: 
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For a beam in {3-3} mode of operation, T1 = T2 = 0, with electric field only in the 3 direction 

(E3) (see Figure A.1 (b)). Using similar mathematical derivation procedures to {3-1} mode 

described earlier, one can obtain the expressions for the effective materials property constants for 

a beam in {3-3} mode of operation as follows:  
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Also, the condition that T1 = 0 and only E3 exists can be used for a plate in {3-3} mode of 

operation, which results in the analytical expressions for the effective materials property 

constants for a plate in {3-3} mode of operations:   
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To sum up, depending on whether the structure is a beam or a plate in {3-1} or {3-3} mode of 

operation, different expressions should be used to evaluate material property constants: equations 

(A.10) to (A.12) for a beam in {3-1} mode, equations (A.24) to (A.26) for a plate in {3-1} mode, 

equations (A.28) to (A.30) for a beam in {3-3} mode, and equations (A.31) to (A.33) for a plate 

in {3-3} mode. 

Piezoelectric thin films behave differently from bulk piezoelectric ceramics as they are 

fabricated using thin-film processing (microfabrication), which usually entails high residual 

stress, and different microstructure, when compared to bulk [33, 34, 107]. Their planar geometry 

and the clamping effect to the substrate, also tells us that the values of material properties 

measured in piezoelectric thin films and bulk will differ. Therefore, expressions for “effective” 

piezoelectric coefficients for thin films [109] are derived and expressed in terms of the 

coefficients for macroscopic systems. Here, the author presents only the resulting expressions for 

both transverse and longitudinal coefficients as below (equations (A.34) and (A.35)), while 

readers can refer to [109] for details on derivation: 
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Equation (A.34) not only exhibits the relation of effective constant, e31,f, for a thin film with real 

value, e31, but also shows that piezoelectric coefficient, d31, can be obtained when elastic 

parameters are given. It suggests that e31,f is more practical to apply since the elastic parameters 

are necessary for the calculation of d31. For longitudinal coefficient, d33,f, it should be noted that ν 

and Y denote Poisson‟s ratio and Young‟s modulus of the substrate, not of the piezoelectric thin 

film. As substrates are not always isotropic, values for Young‟s modulus should be chosen 

carefully depending on the orientation of substrate (e.g., Si substrate). As d31, s13, and s12 are 

usually negative and s11 is positive and larger than s12, one can expect that transverse coefficient, 

d31,f, will be overestimated while longitudinal coefficient, d33,f, will be underestimated in 
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comparison with real values. It should be emphasized that knowledge of elastic and dielectric 

properties of piezoelectric thin films is required to determine piezoelectric coefficients of thin 

film, as shown in the equations (A.34) and (A.35). Note that in modeling MEMS-scale PVEHs in 

Chapter 8, “effective” piezoelectric coefficients for thin films such as e31,f are used instead of 

materials constants for beams and plates such as *31e  due to limited availability of data. For 

more accurate prediction of MEMS-scale PVEH performance, evaluation of material constants in 

a beam or plate consisting of thin film stacks such as *,31 fe is required, which can be done via 

top-down approach described in Chapter 7 in future work. 
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Appendix B. Supplement for Chapter 5 

 

B.1 SEM Images of MEMS-scale Cantilever with Proof Masses of Different 

Lengths Fabricated Using FIB 

 

Table B.1 Under-, Front-, and Side-view SEM images of tip-less cantilever in the state of as-

received, after front trim and after side trim. 

 Under-view Front-view Side-view 

As-

received 

 

  

Front 

trim 
 

 

 

Side 

trim 

 

 

 

 
 

20 µm 

20 µm 

20 µm 

4 µm 

4 µm 
20 µm 

10 µm 



256 

 

Table B.2 Under- and side-view SEM images of MEMS-scale cantilever with proof masses of 

different lengths fabricated using FIB 

 Under-view Side-view 

1
st
 etch 

(20 µm) 

 

 

 

 
2

nd
 etch 

(40 µm) 

 

 

 

 
3

rd
 etch 

(80 µm) 

 

 

 

 

4
th

 etch 

(120 

µm) 

  

20 µm 

10 µm 

20 µm 

10 µm 

20 µm 

10 µm 

20 µm 

10 µm 

20 µm 

10 µm 

20 µm 

10 µm 

20 µm 20 µm 
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5

th
 etch 

(160 

µm) 

 

 

 

 

6
th

 etch 

(190 

µm) 

 

 

 

 

7
th

 etch 

(220 

µm) 

 

 

 

 

 

10 µm 

10 µm 

20 µm 

10 µm 

20 µm 

10 µm 

20 µm 

10 µm 

20 µm 

4 µm 

20 µm 

4 µm 

20 µm 

4 µm 
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B.2 Experimental Sequence and Detailed Manual for Characterization 

Using AFM (MFP-3D, Asylum Research) 

 

<AFM – Experimental Sequence> 

 

1. Dimension measurement after capturing the image 

a. Determine the position for laser beam spot on the top side of the cantilever: from 

the tip, numbering starts from #1, #2, #3, …, till # 10 with equi-distanaces (~20 

μm).  total 6 points 

b. Determine # of measurements at each point 

i. Measure 10 times as initial work.  

ii. Get standard deviations on the data above.  

iii. Determine # of measurement at each point  3 times 

c. Capture the image (AFM controls  others  video)  

 

2. Force-distance curve measurement 

a. Sensitivity test (force-distance curve)  Need to look up manual. (AC mode, 

inverse optical lever sensitivity)  Convert unit of amplitude from [V] into [nm]. 

3. Thermal measurement: Obtain stiffness K [N/m]. Note: save both in pxp. and csv. 

formats.  

4. Autotune experiment: 

a. amplitude 

b. resonant frequency 

c. quality factor 

d. phase 

5. Acquiring frequency spectrum of cantilever vibration under constant excitation  
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<Detailed Manual for AFM (MFP-3D, Asylum Research)> 

 

1. S/W open 

2. Laser on 

3. Unclick „use Argyle‟. 

4. When „ready‟ is on, close unnecessary windows. 

5. [User settings]  In [Mode Master]  click [simple]  enter [AC air topography].  

6. Camera on  positioning of laser spot (using a transparent slide) 

a. (Photo diode) Sum (A+B) signal should be maximized. 

b. (Photo diode) Deflection (A-B) signal should be as close as possible to zero. 

7. Capture the image ([tab] AFM controls  others  video) 

a. Click „save 2Mem‟ and „Save2 Disk‟. 

b. Click „capture‟ and „display‟. (the file is automatically saved w/ file name 

„Can#_Pos#.) 

8. Measure dimensions, dx  (length from clamping to the tip) and dx1 (to the laser spot) 

9. Measure sensitivity from the force-distance curve 

a. Set imaging mode: contact, Set point for deflection signal: 1V, Set integral gain: 

10.0 

b. Click „Engage‟ for approaching the tip to the sample surface  lower the head 

until the sound “beep” is heard & the sample (stainless) surface is clearly seen. 

c. Then, check if the deflection is zero, and also if Z voltage is close to 70 V.  

d. Force tab: drag the red colored bar on the left to the top. 

e. Set Force distance: 0.5 m, scan rate: 1 Hz, Trigger channel: Deflvolts, trigger 

point: 0.5 V (or 1 V) 

f. Check „relative‟ 

g. Click „Single force‟ for measurement. 

10. When the plot of force-distance curve pops up, go to [tab] calibration to remove the 

artifact. 

a. Set sensitivity: virtual deflection line  Then, close the pop-up window of plot. 
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11. Click „single force‟ again (No touch on the red bar)  slope corrected plot 

12. Measure the slope using „control+I‟ and setting the sensitivity as Defl invOLS. 

a. Record Amp invOLS [nm/V] & Deflection invOLS [nm/V].  

 

 

 

13. Do Thermal measurement (no driving force, no drive amplitude applied) 

a. Set Imaging mode: contact  AC mode 

b. Click „engage‟  (right away) „withdraw‟ (this gives a gap of 6 m between the 

sample and the cantilever) 

c. Click „Do thermal‟. When averaging count is over 80, click „stop thermal‟. 

d. Expand the region of interest.  „Fit Guess‟ and „Try Fit‟. 

e. Record frequency, K (stiffness), and thermal Q. 

f. Save (.pxp files) using „Save table copy‟. 

g. Edit -> Save (for csv. files) 

14.  Go to „Tune' tab in Master Panel 

a. Set low frequency limit as 50 kHz 

b. Set high frequency limit as 400 kHz 
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c. Set Target amplitude as 1V (this is the deflection of cantilevers when there is a 

change of 1V detected by photo diode.) 

d. Click „Append phase‟, „Both‟, „SHO fit‟, and „SHO phase‟. (SHO: single 

harmonic oscillation.)  Go to <Auto tune> tab  Click „Auto tune‟  Record 

the results. 

15.  After „Autotune‟, go to „Manual Tune‟ in order to measure deflection under constant 

driving amplitude. 

a. Set „constant‟ drive amplitude (500 mV and 1 V). 

b. Click „One Tune‟. 

c. When done, change „AC mode‟ to „contact mode‟ not to vibrate. 

16. Repeat steps 7 through 15 for all the data points (each beam spot counts as a data point) 

along the cantilever.   


