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Abstract

The Garvin–Alterman–Loewenthal solution refers to the problem of a line blast load suddenly applied in the
interior of an elastic half-space. It is expected that the long-time asymptotic limit of this solution should
be equal to the solution of a related static problem. This expectation is justified here. First, the solution of
the static problem is constructed. Then, the asymptotic limit of the transient problem is found, correcting
previously published results.

1. Introduction

At time t = 0, there is an underground explosion, generating elastic waves. Determining the subsequent
wave motion can be modelled as a variant of Lamb’s problem. Garvin (1956) [3] considered a plane-strain
version in an elastic half-plane with a discontinuous change in pressure at a point S inside the half-plane.
This problem can be solved by the Cagniard–de Hoop technique. Garvin [3] gave the resulting displacement
components on the flat traction-free boundary of the half-plane; see Kausel (Section 5.5, 2006) [5] for an
exposition. There have been numerous studies of related problems; see, for example, Borejko (1987) [2],
Tsai and Ma 1991 [8], Wang and Achenbach (1996) [9], Georgiadis et al. (1999) [4] and Sánchez-Sesma and
Iturrarán-Viveros (2006) [6].

Thirteen years after Garvin’s paper was published, Alterman and Loewenthal (1969) [1] gave formulas for
the displacement components at any arbitrary point inside the half-plane. Their solution has been reviewed
and clarified recently by Sánchez-Sesma et al. (2013) [7]. It is valuable because it is exact and so it can be
used for benchmarking purposes.

The Garvin problem is an initial value problem: how does the solution behave for long times? Physically,
we expect the solution to approach that of a related static problem. That problem is an elastic half-plane
containing a singularity at the point S. If r and α are polar coordinates at S (see Fig. 1), the displacement
vector should be directed away from S and it should be singular as r−1. We construct this solution in
Section 2.

Next, we determine the long-time asymptotic limit of the Garvin–Alterman–Loewenthal solution, starting
with the formulas given by Sánchez-Sesma et al. (2013) [7]. It turns out that this is not straightforward:
indeed, the long-time results given by Sánchez-Sesma et al. (Section 3.4, 2013) [7] are incorrect (but not the
dynamic solution itself). In Section 3, we confirm that the long-time limit is the static solution described
above. The fact that these two solutions agree perfectly implies not only that they corroborate each other,
but provides also a strong indication that the dynamic solution may be free from errors, because the static
and dynamic solutions were obtained independently.
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Figure 1: Full space subjected to one source at the origin

2. Static solution using integral transforms

Consider a two-dimensional elastic half-plane subjected in its interior to a dilatative line source. We start
the derivation of the static solution to the problem at hand by considering a full space containing both the
actual source and an image source placed symmetrically with respect to the position in the plane that will
ultimately form the free surface. Then from the known analytical solution to this problem, we can infer the
stresses that act at the interface between the upper and lower half-planes forming the full space. If we then
separate the upper and lower half-planes and apply external tractions equal to the known internal stresses
at the now free surface, equilibrium will be preserved so that the lower half-plane with the actual source
and the tractions at the free surface will elicit exactly the same displacement field as the full space with
the two sources. Applying next tractions at the surface which are equal in magnitude but opposite in sign
to those inferred in the previous step, we cause that surface to be stress free. Hence, it suffices to find the
displacement field elicited by those surface tractions and subtract these from the full space solution. The
latter are obtained by means of integral transform techniques.

2.1. Full space containing two sources

With reference to Kausel (2006, p. 44, Eq. (3.51)) [5], the displacement field elicited by a line of pressure
(dilatative source) acting at the origin of coordinates in a full space is

u = ur r̂ =
1

2πµr
r̂, (1)

where µ is the shear modulus and r̂ is a unit vector along the direction with angle of inclination α with
respect to the horizontal direction x (see Fig. 1).

Next, consider a full space subjected to two sources which are vertically aligned and are separated by
a vertical distance 2z0. For convenience, we change the positive direction z to point down into the lower
half-plane (Fig. 2). The mid-plane between the two sources will ultimately represent the free surface of a
half-space, and z0 > 0 will be the depth of the source. Placing the origin of coordinates at the intersection
of the mid-plane with the line connecting the sources, then from Eq. (1), the response at some arbitrary
point is

u =
1

2πµ

(
r̂1
r1

+
r̂2
r2

)
, (2)
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Figure 2: Full space subjected to two sources

where r̂1 and r̂2 are unit vectors pointing away from the source and its image, respectively,

r1 =
√
x2 + (z − z0)2 is the source-receiver distance and

r2 =
√
x2 + (z + z0)2 is the image source-receiver distance.

We also introduce polar coordinates, writing

x = r1 sin θ1 = r2 sin θ2, z − z0 = r1 cos θ1, z + z0 = r2 cos θ2, (3)

so that Eq. (2) becomes

ux =
1

2πµ

(
sin θ1
r1

+
sin θ2
r2

)
, uz =

1

2πµ

(
cos θ1
r1

+
cos θ2
r2

)
. (4)

We use Hooke’s law and calculate the stresses, τxz and σz, at the mid-plane (“free surface”, z = 0),
where r1 = r2 = r =

√
x2 + z20 . We find that τxz = 0 (as expected, by symmetry) and

σz(x, 0) =
2(x2 − z20)

π(x2 + z20)2
= pz(x), (5)

say, where σz is positive when tensile. Clearly, we can now remove the upper half-space containing the image
source and preserve equilibrium in the newly formed free surface by application of an external traction equal
in magnitude to and with the same spatial distribution as σz. This traction is upwards when positive (i.e.,
tensile).

2.2. Fourier transform solution

To solve the problem of the source acting on a lower half-plane with a free surface condition, it suffices
to start from the full space solution for the two sources already described and add the displacement field
caused by a downward (i.e., compressive) external traction pz applied on the lower half-plane which is equal
and opposite to the stress defined by Eq. (5). Doing this cancels exactly the internal stresses at the interface
between the lower and upper half-planes.
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The Fourier transform of pz(x) is

Pz(k) =

∫ ∞
−∞

pz(x) eikx dx = −2|k| e−|k|z0 , z0 > 0. (6)

From Kausel (2006) [5], modified to account for a z-axis pointing down, the static stress-displacement
relationship in the transform domain for a lower half-space and a downward traction applied at the free
surface is (

∆Ux
−i∆Uz

)
z=0

=
1− ν
kµ

(
sgn k a2

a2 sgn k

)(
0
−iPz

)
, a2 =

1− 2ν

2(1− ν)
, (7)

where ν is Poisson’s ratio, ∆Ux and ∆Uz are the Fourier transforms of ∆ux and ∆uz, respectively, and ∆ux
and ∆uz are the displacements which need to be added to the full space solution so as to model a half-space;
∆uz points down when positive. On the other hand, for a harmonically distributed source acting on the
surface, the transfer matrix needed to extend in the transform domain the displacements from the surface
to some arbitrary depth z > 0 can be shown to be given by

T =

(
1− |k|zb −kzb
kzb 1− |k|zb

)
e−|k|z, b =

1− a2

1 + a2
, z > 0,

so (
∆Ux
−i∆Uz

)
=

1− ν
kµ

(
1− |k|zb −kzb
kzb 1− |k|zb

)(
sgn k a2

a2 sgn k

)(
0
−iPz

)
e−|k|z

=
1− ν
kµ

(
sgn k − (1− a2)kz a2 − (1− a2)|k|z
a2 + (1− a2)|k|z sgn k + (1− a2)kz

)(
0
−iPz

)
e−|k|z.

Hence, using Eq. (6), (
∆Ux
∆Uz

)
=

2(1− ν)

µ

(
i[a2sgn k − (1− a2)kz]
−[1 + (1− a2)|k|z]

)
e−|k|(z+z0). (8)

The incremental displacements, ∆ux and ∆uz, are then obtained by carrying out an inverse Fourier transform
of Eq. (8).

2.3. Vertical displacement
We begin by inverting the exponential term,

1

2π

∫ ∞
−∞

e−|k|(z+z0)e−ikx dk =
1

π

∫ ∞
0

e−k(z+z0) cos kx dk =
z + z0

π[x2 + (z + z0)2]
=
z + z0
πr22

=
cos θ2
πr2

.

Differentiating this formula with respect to z gives

1

2π

∫ ∞
−∞

(−|k|)e−|k|(z+z0)e−ikx dk =
1

π

∂

∂z

(
z + z0
r22

)
=

1

π

(
1

r22
− 2(z + z0)2

r42

)
= −cos 2θ2

πr22
.

It follows that
1

2π

∫ ∞
−∞
|k|z(1− a2)e−|k|(z+z0)e−ikx dk =

z

πr22
(1− a2) cos 2θ2.

Hence, inverting Eq. (8) gives

∆uz = −2(1− ν)

µ

1

2π

∫ ∞
−∞

[1 + |k|z(1− a2)]e−|k|(z+z0)e−ikx dk

= −2(1− ν)

µ

[
cos θ2
πr2

+
z

πr22
(1− a2) cos 2θ2

]
=
−1

πµr2

[
2(1− ν) cos θ2 +

z

r2
cos 2θ2

]
.

The total vertical displacement is then obtained by adding uz from Eq. (4):

uz =
1

2πµ

{
cos θ1
r1

− 1

r2

[
(3− 4ν) cos θ2 +

2z

r2
cos 2θ2

]}
. (9)

This displacement is positive when pointing down.
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2.4. Horizontal displacement

From Eq. (8),

∆ux =
2(1− ν)

µ

1

2π

∫ ∞
−∞

i[a2sgn k − kz(1− a2)]e−|k|(z+z0)e−ikx dk

=
2(1− ν)

πµ

∫ ∞
0

[a2 − kz(1− a2)]e−k(z+z0) sin kx dk.

But ∫ ∞
0

e−k(z+z0) sin kxdk =
x

r22
=

sin θ2
r2

,

and the derivative of this formula with respect to z gives∫ ∞
0

ke−k(z+z0) sin kxdk =
sin 2θ2
r22

.

Hence

∆ux =
2(1− ν)

πµ

{
a2

sin θ2
r2
− (1− a2)z

sin 2θ2
r22

}
.

Adding ux from Eq. (4) gives the total horizontal displacement,

ux =
1

2πµ

{
sin θ1
r1

+
1

r2

[
(3− 4ν) sin θ2 −

2z

r2
sin 2θ2

]}
. (10)

This displacement is positive from left to right.

3. Long-time asymptotics

3.1. Preliminaries

We recall some formulas for the Garvin–Alterman–Loewenthal solution for an impulsive blast line load,
as given by Sánchez-Sesma et al. (2013) [7]. They are given in terms of a dimensionless time, τ = tβ/r2,
where t is time and β is the shear wave speed. From [7, Eq. (19)]: for sufficiently large τ (so that all the
Heaviside functions therein take the value 1),

πµux =
τ sin θ1

2r1
√
τ2 − τ2P

− τ sin θ2

2r2
√
τ2 − τ2PP

− 4

r2
Im

{
q3αα
Rαα

√
q2αα + 1

∂qαα
∂τ

}
+

2

r2
Im

{
qαβ
Rαβ

(1 + 2q2αβ)
√
q2αβ + 1

∂qαβ
∂τ

}
, (11)

πµuz =
τ cos θ1

2r1
√
τ2 − τ2P

+
τ cos θ2

2r2
√
τ2 − τ2PP

− 1

r2
Re

{
(1 + 2q2αα)2

Rαα

∂qαα
∂τ

}
+

2

r2
Re

{
q2αβ
Rαβ

(1 + 2q2αβ)
∂qαβ
∂τ

}
(12)

where τPP = β/α, τP = τPP r1/r2 and α is the compressional wave speed. The quantity qαα solves [7,
Eq. (11a)]; this equation is Eq. (16) below. Similarly, qαβ solves [7, Eq. (11b)]; this is Eq. (17) below. The
Rayleigh functions, Rαα and Rαβ , are defined by [7, Eq. (18)]; thus, Rαα = R(qαα) and Rαβ = R(qαβ) with

R(Q) = (2Q2 + 1)2 − 4Q2
√
Q2 + 1

√
Q2 + a2; (13)

as before, a = β/α is given by Eq. (7) in terms of Poisson’s ratio. Henceforth, we write Q for qαα or qαβ , as
they satisfy similar equations.
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3.2. Analysis

We are interested in large (dimensionless) time τ . It is convenient to introduce T = τeiθ2 so that we are
interested in large |T |. Leading-order estimates show that Q ∼ T , and so we start with

Q = T

(
1 +

A

T 2
+
B

T 4
+ · · ·

)
, (14)

where the coefficients A and B are to be found. A quick inspection of Eqs. (11) and (12) suggests that we
will need B in order to estimate the Rayleigh functions correctly: however, it turns out that the value of B
will not be needed.

3.3. Rayleigh functions

From Eq. (14), we obtain

Q2 ∼ T 2

(
1 +

2A

T 2
+
A2 + 2B

T 4

)
,

Q2 + c2 ∼ T 2

(
1 +

2A+ c2

T 2
+
A2 + 2B

T 4

)
,

√
Q2 + c2 ∼ T

(
1 +

2A+ c2

2T 2
+

8B − 4Ac2 − c4

8T 4

)
,

using
√

1 + x ∼ 1 + 1
2x−

1
8x

2; the constant c2 will be selected later.
We estimate the terms in Eq. (13). Thus,

2Q2 + 1 ∼ 2T 2

(
1 +

4A+ 1

2T 2
+
A2 + 2B

T 4

)
,

(2Q2 + 1)2 ∼ 4T 4

(
1 +

4A+ 1

T 2
+

(4A+ 1)2 + 8(A2 + 2B)

4T 4

)
,

√
Q2 + 1

√
Q2 + a2 ∼ T 2

(
1 +

4A+ a2 + 1

2T 2
+

8A2 + 16B − (a2 − 1)2

8T 4

)
,

4Q2
√
Q2 + 1

√
Q2 + a2 ∼ 4T 4

(
1 +

8A+ a2 + 1

2T 2
+

8A(a2 + 1) + 16(3A2 + 2B)− (a2 − 1)2

8T 4

)
.

Hence some calculation gives

R ∼ 2T 2

(
1− a2 +

8A(1− a2) + 2 + (a2 − 1)2

4T 2

)
. (15)

Surprisingly, the terms in B cancel. For later calculations, we require

1

R
∼ 1

2T 2(1− a2)

(
1− 8A(1− a2) + 2 + (a2 − 1)2

4T 2(1− a2)

)
.

3.4. Calculation of A

We find A by substituting into the governing equation for Q. (This is simpler than substituting into an
explicit but complicated formula for Q. The same method could be used to find B.)

With Q = qαα, [7, Eq. (11a)] gives

τ = T e−iθ2 = cos θ2
√
Q2 + a2 − iQ sin θ2 (16)

∼ T cos θ2

(
1 +

2A+ a2

2T 2

)
− iT sin θ2

(
1 +

A

T 2

)
= T e−iθ2 +

1

2T

{
(2A+ a2) cos θ2 − 2iA sin θ2

}
.
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As the coefficient of T−1 must vanish, (2A+ a2) cos θ2 − 2iA sin θ2 = 0, we obtain

A = −1

2
a2eiθ2 cos θ2 = Aαα

say. Thus

qαα ∼ T
(

1− a2eiθ2

2T 2
cos θ2

)
= τeiθ2 − a2

2τ
cos θ2.

This agrees with the exact formula for qαα, [7, Eq. (15)].
Similarly, with Q = qαβ , [7, Eq. (11b)] gives

T e−iθ2 = H
√
Q2 + a2 + Z

√
Q2 + 1− iXQ (17)

∼ TH
(

1 +
2A+ a2

2T 2

)
+ TZ

(
1 +

2A+ 1

2T 2

)
− iTX

(
1 +

A

T 2

)
,

where H = z0/r2, X = x/r2 and Z = z/r2. As H + Z − iX = e−iθ2 (see Eq. (3)), the terms in T 1 balance.
The terms in T−1 give

H(2A+ a2) + Z(2A+ 1)− 2iXA = 0

whence

A = −1

2
eiθ2(a2H + Z) = Aαβ ,

say. An estimate for qαβ follows readily.

3.5. Vertical displacement

The vertical displacement is given by Eq. (12). From Eq. (14), we have

∂Q

∂τ
∼ eiθ2

(
1− A

T 2

)
. (18)

Then, we find

(1 + 2Q2)2

R

∂Q

∂τ
∼ 2T 2eiθ2

1− a2

(
1 +

4A(1− a2) + 1− 2a2 − a4

4T 2(1− a2)

)
,

Q2

R
(1 + 2Q2)

∂Q

∂τ
∼ T 2eiθ2

1− a2

(
1 +

4A(1− a2)− a4 − 1

4T 2(1− a2)

)
.

Hence

− (1 + 2q2αα)2

Rαα

∂qαα
∂τ

+ 2
q2αβ
Rαβ

(1 + 2q2αβ)
∂qαβ
∂τ

∼ 2T 2eiθ2

1− a2

[(
1 +

4Aαβ(1− a2)− a4 − 1

4T 2(1− a2)

)
−
(

1 +
4Aαα(1− a2) + 1− 2a2 − a4

4T 2(1− a2)

)]
∼ eiθ2

1− a2
(2Aαβ − 2Aαα − 1) . (19)

Now
2Aαβ − 2Aαα = a2eiθ2 cos θ2 − eiθ2(a2H + Z). (20)

Then, from Eq. (12),

πµuz ∼
cos θ1
2r1

+
cos θ2
2r2

+
1

r2(1− a2)

[
− cos θ2 + (a2 cos θ2 − a2H − Z) cos 2θ2

]
=

cos θ1
2r1

− (1 + a2) cos θ2
2(1− a2)r2

− Z cos 2θ2
r2

7



using H + Z = cos θ2. Finally, using

a2 =
1− 2ν

2(1− ν)
, 1− a2 =

1

2(1− ν)
, 1 + a2 =

3− 4ν

2(1− ν)
, (21)

we find precise agreement with the known static result, Eq.(9), derived in Section 2.2.

3.6. Horizontal displacement

The horizontal displacement is given by Eq. (11). We find

Q3

R

√
Q2 + 1

∂Q

∂τ
∼ T 2eiθ2

2(1− a2)

(
1 +

4A(1− a2)− a4 − 1

4T 2(1− a2)

)
,

Q(2Q2 + 1)

R

√
Q2 + 1

∂Q

∂τ
∼ T 2eiθ2

1− a2

(
1 +

4A(1− a2) + 1− 2a2 − a4

4T 2(1− a2)

)
.

Hence

− 4
q3αα
Rαα

√
q2αα + 1

∂qαα
∂τ

+ 2
qαβ(2q2αβ + 1)

Rαβ

√
q2αβ + 1

∂qαβ
∂τ

∼ 2T 2eiθ2

1− a2

[(
1 +

4Aαβ(1− a2) + 1− 2a2 − a4

4T 2(1− a2)

)
−
(

1 +
4Aαα(1− a2)− a4 − 1

4T 2(1− a2)

)]
∼ eiθ2

1− a2
(2Aαβ − 2Aαα + 1) ,

which is almost the same as Eq. (19). Using Eq. (20), Eq. (11) gives

πµux ∼
sin θ1
2r1

− sin θ2
2r2

+
1

r2(1− a2)

[
sin θ2 + {a2 cos θ2 − a2H − Z} sin 2θ2

]
=

sin θ1
2r1

+
(1 + a2) sin θ2
2(1− a2)r2

− Z sin 2θ2
r2

.

Using Eq. (21), we find agreement with the static result, Eq. (10), found in Section 2.2.

4. Conclusion

This article has presented two independent solutions for the long-time asymptotic limit of the dynamic
problem of a line blast load suddenly applied within an elastic half-plane, the so-called generalized Garvin
problem. The need for these solutions arose after the writers detected an error in the limits given in an earlier
article by Sánchez-Sesma et al. (2013) [7], an error which resulted from a näıve asymptotic approximation.
However, as demonstrated herein, obtaining the correct limit is not entirely trivial. Thus, for verification
purposes, it was necessary to arrive at the same limits by two independent methods: perfect agreement was
found. The correct long-time limits are given by Eqs. (9) and (10).
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