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Abstract

This Master’s thesis uses moving horizon control strategies for deterministic critical resource
allocation problems at the level of the firm. Corporate policies, optimal with respect to the
allocation of critical resources, maximize a specified objective functional. :

A new formal approach to so-called nonsingular corporate decision making, that aims at
finding optimal corporate resource allocation policies over an infinite time-horizon, is pre-
sented. For this, constrained predictive control, based on periodic forecasts over a finite
time-horizon, is used as a theoretical tool. The methodology is well-adapted to the typically
periodic resource allocation decisions, in that it uses moving horizon predictions derived
from a model of the firm and its environment. In the nominal case conditions can be given
such that the moving horizon optimal cost approximates the infinite horizon theoretically
optimal cost, and yields a stabilizing behavior of the system converging towards an optimal
equilibrium state.

New results are obtained for dealing with discounted indefinite objective functionals that
appear frequently in economic applications. The main theoretical result is that under certain
conditions an optimal equilibrium state can be found without solving Bellman’s equation
or using the Pontryagin Maximum Principle. The critical resource allocation problem can
then be formulated equivalently using a positive semi-definite cost functional that is com-
puted explicitly. As an illustration, a simple nonlinear model of a firm in a diffusive market
environment is treated in detail. '

The methodology is critically reviewed with respect to its praétical relevance and potential.
An industry example is considered to clarify the main points of the discussion.

Thesis Supervisor: Alexandre Megretski
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All human knowledge thus begins with intuitions,
proceeds then to concepts, and ends with ideas.
— IMMANUEL KANT

Chapter 1

Introduc;tion

1.1 Control in Corporate Policy

What is the potential for control in corporate policy? This question will appear throughout
this thesis. Control, is here understood to be a methodology for defining inputs to a system
~ in such a way that it exhibits a certain desired behavior. If a firm is understood as a system,
whose evolution can be influenced at least partly by the choice of certain decision variables,
then control theory may provide an appropriate framework for thinking about finding good
strategies for the selection of inputs to a corporate system, such as to come close to some
specified objective. In other words, given a model of the firm that quantifies assumptions
about its inner workings and relationships with the external environment, control theory
may yield systematic and insightful ways of finding an optimal corporate policy, with respect
to a chosen objective function.

A difficulty that arises when combining mathematical control theory and real-world man-
agement concepts, used by corporate leaders, is that terms on the mathematical side often
have a much more precise meaning than related concepts on the management side (cf. Ta-
ble 1.1 on page 20). On the other hand, there are at times no direct mathematical analoga
to concepts that appear to be very well defined in the management environment. In short,
it is important when establishing a link between control theory and corporate policy, to
identify the key concepts on both sides, and formulate a clear relationship between them,
~ so that derivations make sense from either point of view. Assuming that such a clear cor-
respondence can be established, the above question discussed throughout this work can be
framed more precisely as follows:

Question 1 Can a procedure be defined and conditions given under which control can be
used efficiently for corporate policy?

Thereby we define corporate policy as a set of strategic decisions that are central for the
intended evolution of a firm, as defined by the appropriate legal and statutory constructs.

It seems clear that it will be impossible to find such a general procedure and conditions that
guarantee a potentially efficient use of control for all situations of corporate policy. Since in
general decision makers are not rational, strategic choices ill-defined, external events uncer-
"tain, and the objectives unclear, mathematical concepts are in most cases too limited to deal
fully with Question 1 as formulated above. Moreover, top decision makers in a corporation

9
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are often concerned with ‘singularities’ (in a mathematical sense), i.e., their decisions cause
a ‘fundamental change’ that can hardly be accommodated by modeling assumptions. Such
‘singular’ decisions include mergers and acquisitions, the introduction of a new product
line, or a corporate restructuring program. — It is not this type of decision making that
is addressed here, and control theory is likely to be of no particular use for such high-level
strategic thinking.

The focus of this work is on corporate policy in a restrictive sense comprising the allo-
- cation of resources and choice of strategic variables that are critical to the evolution of

* the firm!" and ‘non-singular’ in a-sense. A corporation geérerally comprlses different orga.-"‘- e

" nizational entities, such as ‘divisions’ or ‘functions’ that compete for the allocation of its
resources. Resources include funds as well as nonmonetary contributions such as produc-
tion capacity and central firm-wide services such as training or human resources. Since the
available resources are generally limited, their allocation cannot take place independently

for the different entities and tradeoffs have to be considered. .

The Decision Making Process. Typically, decisions on the allocation of resources and
the choice of strategic variables such as the price for a product of the firm, are taken in
periodic stages after review of regular internal reports and other data concerning the envi-
ronment of the firm. Such information describes the past development of the firm with re-
spect to its environment, and may allow predictions of events over a finite planning horizon.
This horizon, generally extends further into the future as time progresses while decisions are
continuously implemented to the best of the knowledge at the last decision stage. The next -
decision stage then uses a planning horizon of a similar length but extending further into
the future than the last planning horizon. In terms of control theory, such a strategy can be
described as moving horizon as the planning horizon over which an objective is maximized,
moves into the future (cf. Figure 1-1). The resource allocation and strategic variable values
decided upon at the last decision stage — covering parts of a planning horizon that extended
.beyond the current decision stage — are discarded and re-determined over a new planning
horizon by taking additional information into account that has become available since the
last decision stage. L
" It is important to note that such periodic decision making, that is common to the vast
majority of corporate entities, may yield under certain circumstances an inherently unsta-
ble resource allocation strategy, even though at each stage a seemingly optimal decision
is taken. Indeed ‘unstable’ behavior may result from nonlinearities in the system model,
constraints imposed on inputs and states, or a too short planning horizon. The induced un-
desired instabilities are often-characterized by. inefficient cycles, for instance in production
capacity. ‘Such cyclical strategies are in most cases costly for the firm, since they usually
involve investments in adjusting capacity and human resources. This type of dysfunctional
- corporatespolicy:is: -frequently.observed:in: diffusive market- ‘environments‘and has been stud-
" ied at the behavioral level (cf: [PS93]). It will be discussed further in Section 1.3, together
“with the advantages of the predictive control methodology.

What is the scope of the decision making process -considered? Assuming that.the use

.= 1NGte that for‘convenier¢e the words corporat uised intercharigeably from' this point
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Figure 1-1: Nonsingular Corporate Policy with Moving Planning Horizon.

of control theory is limited to nonsingular corporate policy, i.e., corporate policy that does
not change the current operations of a firm, Question 1 can be re-stated in terms of a crit-
ical resource allocation problem. To this end, a critical resource of a firm is defined as any
decision variable that can be influenced and is considered critical to achieve a particular
corporate objective. Under this definition some critical resources such as the price for a

- product, may be chosen without direct cost considerations by the firm, while for resources

in the traditional sense such as production capacity, cost has to be considered immediately.
However, in general most critical resources (even price) are limited in the ’sense that they
cannot be chosen arbitrarily.

Question 2 Can a procedure be defined and conditions given under which control can be
used efficiently in critical resource allocation problems, i.e., nonsingular corporate policy?

~ Prerequisite for the use of control is a model of the system it should be applied to. Hence,

for its use in nonsingular corporate policy a quantitative understanding of the ongoing oper-

~ ations is required. This model has to be well defined mathematically and relate quantifiable

input, state, and output to each other. The state of a system thereby completely describes
its current status and can be possibly changed by its inputs. A report about the system
would generally make statements about its observable states and outputs. Some states may
not be attained by any control input and therefore be not reachable.? In order to find a
control input that is most suited for the goals of the firm, an objective functional has to be
specified of which a formal definition will be given in Chapter 2.

Question 2 is still not very precise, as it leaves open the choice of the particular control

methodology, of which, depending on the situation, they may be many. In particular, the
control methodology should be adapted to the natural corporate decision making process

2An analysis of such'system properties might reveal that it is impossible to attain certain goals starting
from a given initial configuration (cf. Chapter 2).
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for ongoing operations, as described briefly above. Moreover, it will depend on the nature
- of the considered model (linear/nonlinear, time-variant/invariant), as well as the objective
functional (quadratic/non-quadratic, definite/indefinite). These distinctions will become
clear later, when formal definitions are advanced. — Since economic systems such as firms
are notoriously fraught with uncertainty and hard to identify, it is important to know how
the control strategy will behave towards slight changes in the modeling assumptions, or a
different choice of parameters. We therefore demand that the control methodology yield
robust results with respect to uncertainty and modeling assumptions. For nonlinear sys-
tems such-as.the ones typically encountered-when'modeling economic entities such as firms,

theoretical robustness results-are hard to obtain; atid may depend quite significantly on the -

particular model considered. In addition to this type of robustness towards unstructured
uncertainty, a firm naturally operates in a dynamic market environment, where competi-
tion can be seen as structured uncertainty, since it its actions generally depend on its own

behavior. In general; knowledge about a worst-case performance with respect to potential
. actions of competitors. is desirable. However, these, issues, involving the use.of dynamic . -

game theory, are beyond the scope of this work. The developments here are given for the
non-stochastic® case in a monopolistic dynamic market environment.

Thesis Outline. In the following section different approaches for planning under un-
certainty, together with their respective strengths and weaknesses, are reviewed. Then the
predictive control methodology, based on a model and moving horizon predictions is in-
troduced and put into context with the reviewed approaches. The main questions that
will be addressed in this thesis are formulated here. Chapter 2 introduces the theory of
predictive control for both linear and nonlinear system models. The focus will be here
on presenting general versions of the available theory. Chapter 3 adapts the developed
theory to corporate decision making and presents a nonlinear example with very few de-
cision variables to illustrate the methodology and alert the reader to its potential pitfalls
and difficulties. Chapter 4 applies the concept to a practical industry example, namely
the Boston Central Artery/Tunnel Project’s internal allocation of resources for information
technology. Chapter 5 finally discusses the applicability of constrained predictive control
for corporate decision makers, draws conclusions and suggests topics for further research.

1.2 Nonsingular Corporate Policy: Critical Resource Allocation

In the folldwing we will discuss a number of formal or semi-formal approaches available for
‘nonsingular’ corporate policy as introduced in the last chapter. Most of these approaches

- are partly related to.the predictive control methodology that will be presented in more detail

_in the next section.and:formally:developed: in:GChapter:-2: *This‘review of the-literature is
- non-exhaustive and limited to references that the author found helpful in understanding
. the main concepts of the presented approaches.

3For linear systems and a quadratic Ob]ectlv fu tochastlc disturbances on the state and/or output

”Prmcxple cf.’ [AWQO]

hising:the.Certainty Equlvalencei
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1.2.1 Traditional Capital Budgeting and Resource Allocation

The traditional view of resource allocation resides on microeconomic theory of the firm.
The firm is here essentially treated as a ‘black box’ producing outputs, given appropriate
inputs. Its behavior is characterized by a so-called production function Fp : u — y that
describes the dependence of the outputs (y1,...,¥p) =: y € RP of the firm on the allocated
resources (u1,-..,uUn) =: u € R™. Firms can usually vary the proportions in which they
combine different resources, and the efficient frontier denotes the hyperplane (possibly only
a point) of input combinations that maximizes a scalar objective function II(y,u). All re-
source combinations on this frontier are considered equally desirable with respect to the
objective function II.

The analysis in this traditional view of resource allocation is usually static (without ex-
plicit dependence on time) and limited to states around short and long-run equilibria.
Given a production function, and an associated objective function, the traditional resource
allocation problem becomes: For a constrained amount of resources, i.e.,

Uimin < Ui < Ujmax, 1€ {17 e 1-m}a

determine an admissible (in the sense that it satisfies the above constraints) allocation u*
of resources such that
II(Fp(u),u) — max.

Such constrained maximization problems can be generally solved using Lagrange multipli-
ers and do in most cases not pose substantial analytical or computational difficulties. —
Perhaps due to its simplicity, the production function approach is fairly well-established.
It has been used frequently for steady-state analyses at the level of the firm, an industry,
or a national economy. Moreover, statistical methods are available for fitting coefficients of
‘standard’ production function representations* to real-world data.

Traditional capital budgeting is limited by its inability to incorporate uncertainty and dy-
namic behavior in a straightforward way. The only modeling components in this approach
are the expressions of the production and objective functions, so that generally only aggre-
' gate statements may be obtained. In addition the methodology is often not appropriate to
describe sequential interactions between firms or between market and firm in a monopolis-
" tic competition. The approach can be made pseudo-dynamic by applying it repeatedly to
different scenarios, but this will generally not yield satisfying dynamic results as no explicit
model for the system evolution as a consequence of previous decisions is present.

Traditional capital budgeting theory on the other hand focuses on the concepts of max-
imizing shareholder value. An essential component of the capital budgeting process is the
choice among different investment project alternatives, that are typically ranked according

m
40One of the most prominent representations is the Cobb-Douglas production function: Fp(u) =C H ut.

i=1

. Using linear regression for the expression InFp(u) =InC + Z a; Inu;, the positive coefficients C and o;
i=1 ) -
can be readily. estimated.
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to their Net Present Value (NPV),

N

CFy N

_ —rk

NPV = §:1+w _k§:efcpk,
=0

where the first and the second expression for the NPV are identical for r = In(1 +r'). Al-
though the first form is the one that is used almost exclusively in the management literature
to represent discounted cash flows (CF/(1 + 7)), we prefer the second form here for con-
“sistency with the continuous-time discounted cost functionals that will be introduced later.
" The positive constant r is the discount ‘rate and’ describés 3 requlred tate of return for the

project under evaluation. It usually equals the rate of return of the next best project with

equal risk. The NPV of a project is a reliable indicator of its value, in the absence of un-

certainty. Including disturbances, one has to consider the expectancy of the NPV, together

with the variance of the return on the project. Under a more general setting the project can

. then be seen simply as an.asset that is. worth to.invest:in or not.given its return.r, its risk
o (i.e., standard-deviation of the return), and its correlation with the ‘market portfolio”

the collection of all assets available on a financial market. The required rate of return for

a project can then be determined under relatively strong simplifying assumptions by the

Capital Asset Pricing Model,

E{r} =r; + E{B(rm — )},

where (3 describes the covariance of the asset with the market portfolio, 7 a risk-free
- rate of return (given e.g. by government bond rates), and E{B(rm — rf)} an expected ’
risk premium over the market return r,. We will not further develop the substantial
theory associated with this approach, and only note that most statements are derived in
a stationary, non-dynamic setting, and generally do not consider a dynamic model of the
inner workings of a firm.. Instead, the market is seen as a collection of numerous actors
whose behavior can be described in terms of stochastic objects. — In addition, we remark
that this type of analysis, which is essentially based on statistical moments such as the
mean or variance, is extremely hard to conduct for nonlinear dynamlcal phenomena, as
- the. underlymg probability distributions do not: behave nicely from a mathematical point of
view. Thus, for nonlinear phenomena, simulation may be the only possible way to estimate
the required statistical moments.

1.2.2 Dynamic Optimization

Given an inter-temporal scenario, i.e., a cofporate systeiﬁ and objective function(al)® that
depend explicitly on time, the type of questions that can be addressed become different
‘to the ones in.the above static resource allocation problems: Does the system possess a

~steady-state, that: isoptimal:in‘thessense that ‘once*it -has' beeri'réached, the value of the

‘-"_Sectlon 121

objective function cannot be improved? What is an optimal trajectory that leads to such an
optimum state, if it exists? Is the optimal policy stable, and if yes, under what conditions?

~ S5For dynamical systems, we:will refer to'an ob Jectlve functional rather than objective function, since the )
;'f'ma.xxmlzatlon (or mlmmlzatlo‘n} is carrled' ou""' .bl'np’ut “fiinctions Yather ‘than’ hufibers’as in
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A dynamic optimization approach generally requires a model of the firm that describes
the evolution of its ‘states’ z(t), i.e., characteristic dependent variables, as a function of the
input u(t) and time ¢ :
#(t) = f(t,z,u) (1.1)
with initial condition
T (0) = Zp.

The goal is then to find a time and state-dependent resource allocation policy

u(t) = p(t,z),

such that an objective functional II(u) is maximized over a finite or infinite time horizon
T. More specifically, the problem is to find u such that

T
T(u) = /0 h(t, 7, u) dt —> max, (1.2)

subject to constraints
: u € Q(z).

Exact definitions of all the sets and functions involved-in this general problem description
are given in Chapter 2. The positive time horizon T in (1.2) can be finite or infinite.

The above formulation of the dynamic optimization problem is very general and appro-
priate for a model-based search for optimal policies at the level of the firm. For not too
irregular problems, necessary and sufficient conditions for an optimal control-state trajec-
tory are available and can be used for an attempt to find an explicit solution to the dynamic
optimization problem. However, due to nonlinearities in the system and the presence of con-
straints, an analytical treatment is in most cases impossible, so that computer simulation
remains the only way to obtain an idea about the nature of the optimal resource allocation
for particular initial conditions. A sensitivity analysis can then be performed to find out
the dependence of the optimal strategy on the initial conditions. However, this simulation-
based study of the system generally does not yield well-founded conclusions, and may be
simply impossible to conduct for infinite horizon problems without asymptotically stable
steady-state. We note however that there are quite sophisticated approaches in this area
using functional approximations such as neural networks.

The predictive control methodology presented later is based significantly on dynamic opti-
mization, as at each decision stage a finite horizon optimal control problem has to be solved
on-line to find a control that is to be selected at the next instant. Dynamic optimization per
se however does not consider stability® of the optimal solutions obtained. This will be an
essential part of the formal presentation of the predictive control methodology in Chapter 2.

51t is clear that for a finite horizon optimization problem the optimal policy will generally be stable in
~ the sense that it is bounded. Stability considerations become of importance as soon as the time horizon is
not fixed anymore, and can be considered infinite for all practical purposes.
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1.2.3  Decision Analysis

A decision-analytical approach is similar to the dynamic optimization introduced above in

that the value of an objective function is to be maximized subject to constraints given by
input and state limitations as well as the system’s evolution. However, the decision analysis
is typically conducted in discrete-time. Uncertainty in the form of a random disturbance
wy, is explicitly considered in the state equation

Tir1 = fi(zr, uk, wi), A (1.3)
zo = a, (1.4)

and is éha.ra.cterized by probability distributions P( - | zg,uk). The goal, analogous to the
problem presented in Section 1.2.2, is then to maximize the expected value of an objective
functional TI(u), or equivalently — in accordance with the usual conventions in optimal

~ control theory — to minimize the expected value of a cost functional J(u) = —II(u), i.e.,
N-1 '
J(a,u) := {Z hi( a:k,uk,wk)} — min, (1.5)
k=0 ..

subject to (1.3)-(1.4), and :
ug € Q(zk)- (1.6)

The Dynamic Programming Principle, developed to its full potential by Richard Bellman in
the 1950s [Bel57], provides a simple algorithm for finding a solution to the above problem,
by considering successively ‘tail subproblems’ of the form,

N-1
h — min,
{UE{Z k(mk,wmwk)} min

k=i

the optimal policies for which -are also optimal for the last time-stretch of the complete

. problem. More. spec1ﬁcally, a dynamlc -progra.mmmg algorlthm for .problem (1.5) can be .
~ formulated as follows: - :

Vn(zn) =0,
Vi(zp) = min  E{gx (k> uk, wk) + Vit (Fr(h, uk, we)) } (1.7)
ug€Q(zk) w
~ for all stages k € {0,..., N — 1}, whereby Vi(z) is the optimal cost-to-go from state zx at

time k.

This algonthm descrlbes formally exactly what is the basis of Decision Analysis, namely
the finding' of ‘optimal pohcles based’on‘an"N-stage’ ‘décision’ ‘tree, in which each branch can
be reached from an earlier branch with a certain transition probability. The problem is
then to find for a given initial state the path with highest expected payoff, or equivalently,
the minimum expected cost, given that disturbances may occur along the way. With such
disturbances the resulting policy is-in effect a feedback policy, since the disturbance has an -
influence on the actual state that is being reached from a particular state (even though one

- . might: have" mtende istate);:s0.that-at’ the next:time step-the'policy has -* -
“to consxder this £ e T
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Figure 1-2: State Feedback Policy under Uncertainty.

1.3 The Predictive Control Methodology

The model-based predictive control methodology will now be presented in more detail and
related to the approaches presented in the previous section. As already mentioned earlier,
predictive control employs a moving horizon, in the sense that at each stage one finds an
optimal limited lookahead” policy based on a system model and then implements only the
first of the computed control moves, only to repeat this optimization at the next stage. In
mathematical terms, the optimal policy at time 7 > 0 is obtained by solving

i+M-1
’P(z’,a) : ji = E{ Z hk(zk,uk,wk)} — min, ’ (18)

=i
subject to (1.3)-(1.4), (1.6), considering the endpoint constraint
Ti+M = .’L'e-, (19)

with positive horizon length M and a set of admissible states X; that will be defined properly
in Chapter 2. By obtaining solutions for the above problem at each time ¢, one implicitly
determines a moving horizon policy # by the collection of first steps of the computed policies

{BL, - Bk )y Le,

Tover a finite prediction horizon
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so that ug = jix(zx), k> 0 defines an infinite-horizon state-feedback law (cf. Figure 1-1).

In the case of a linear time-invariant system,
Tp+1 = Azk + Bug + wi

and quadratic cost,
hi(zk, ug, wi) = TRk + upQuy,

with positive definite matrices R and Q of appropriate dimensions, the methodology is well-
known under the name of Model Predictive Control (MPC) and Has been used extenswely
in practice, particularly for relatively slow varying dynamical systems such as those encoun-
tered in chemical process control. As a special case of general moving horizon predictive
control, MPC requires at each time step the on-line solution of a finite horizon quadratic
programming problem. Only the first of the computed optimal control moves is usually
implemented and. at the next time-step the procedure is.repeated.. Main advantage of the
MPC methodology over other control approaches such as linear-quadratic Gaussian (LQG)
control, is that input constraints can be handled in a quite elegant manner. For chemical
processes, the quadratic objective function is appropriate to penalize state deviations from
a ‘reference trajectory’ as well as to keep control action small. Considering state deviations
z — I from a reference trajectory Z in the cost (1.3) with Q = pI, and R = I, the cost that
is to be minimized at time ¢ becomes

+M-1
Ji= 3" ek — Zelld + lluell3) - (1.10)
k=i )

A typical MPC configuration is depicted in Figure 1-3.

The quadratic cost functional (1.3) is in many cases not appropriate for managerial resource
allocation decisions. Also, reference trajectories are usually not available for the states of
'a corporate system, so that. MPC in its traditional form is ‘not_very helpful.in finding .
~ an optimal corporate pohcy Mofeover, ¢orporate systems are often nonlinear, so that a

formulation of the moving horizon control methodology more general than MPC is needed

(cf. Section 1.3.2). :

1.3.1 »Interface' b»etWeen Decision Tool and »Corpor':ite' Rz'eality"

The mterestlng feature of the predictive control methodology is that it is ada.pted to the
* corporate. decision’ makmg ‘process;based on"penodlc ‘revisions ‘as 'described in Section 1.1.
~ Moreover, at each stage, standard techniques from dynamic optimization can be applied to
determine the next control move.

In order to be useful as a tool for decision making the dynamic model of the firm and -
the objective functional have to be closely linked to the real concerns of decision makers.
"We will-discuss:the-choice of:an.appropriate- obgectlve functional-in~more- detail in-Sec-
tlon 3 3. Here we' only‘remark thatfor miany’ apphcatlons it is useful to consider expected
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Figure 1-3: Typical MPC Configuration.

discounted profits,
i+M-1

Ci=—B{ ) e Fh(zk,ur,wi)},
w ‘
k=1
where h(zg,u;) according to our convention to consider minimization rather than maxi-
mization problems, describes a momentary cost. Thus, in the absence of uncertainty the
problem P(i,a) becomes

i+M-1
Pli,e) J; = Z e "®h(zy, ux) — min, (1.11)

k=1

subject to (1.3)-(1.4), (1.6), and possibly with endpoint constraint (1.9). An important
difference to the linear-quadratic case discussed before is that the cost kernel A in (1.11) is
not necessarily bounded from below, i.e., h may be sign-indefinite.2 This is not desirable
for optimization and we will introduce in Chapter 2 a method that is useful in certain cases
to transform the problem (1.11) into an equivalent form with positive semi-definite cost
functional.

Below we have summarized some of the terminology in management with respect to
critical resource allocation, together with their respective counterpart in control theory.

8In other words, there may be no finite constant that when added to & would a priori prevent it from
changing sign.

= ———— g < eec Cmm ey re R
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Firm : —  System

Planning Horizon — Prediction Horizon

Implementation Horizon — Control Horizon

Development —  System Evolution, Trajectory

Item — State Variable

Resource, Decision Variable — Input Variable, Control

Objective/Value — Objective Functional = —(Cost Functional)
Resource Allocation — Control

Best Strategy - - - - - - "+ — Optimal Control ~~ "~

Resource Constraints — Control/Input Constraints

Status/State — State

Status Report — Observation

Requirements : : : — State Constraints

External Factors — Boundary Conditions/Unmodeled Dynamics .
Uncertainty — Noise, Disturbance

Decision Maker —  Controller

Decision Making under Uncertainty — Robust Control

Table 1.1: Management Terminology and Correspondences in Control Theory.

Clearly these terms are not equivalent, but are here used in a similar manner for both con-
texts. They will be used in parallel for developments in this Master’s thesis.

1.3.2 A Moving Horizon Approach

Based on the remarks leading to the formulation of the moving horizon optimal control
‘problem with discounted cost (1. 11), we w1ll now formula.te more spec1ﬁc questlons that
will be investigated in this thesis:: . * G wan :

Question 3 Can a procedure be defined and conditions given that allow an application of
~ the moving horizon control methodology to approzimate an optimal infinite horizon resource
allocation? In particular, can statements be made about the robustness of this procedure
wzth respect to the choice of the planmng horzzonQ

A qulte general answer to the ﬁrst part of thls questlon ie., condltlons under which
ﬂ'={l"k}k o**ﬂ—{#k}k—o»: as M — oo,

where mis the optxmal pohcy for the correspondmg infinite horizon optimal control problem

(o<} .
P(i,a) : Ji = Z e~"*h(zy,ur) — min, (1.12)
k=i .

“has been provided by Keerthi and.Gilbert- [KG88] “Their result assumes-however-a p051t1ve :
seml-deﬁmte cost-functional’ and ‘the ex1stence ‘of 'an optlmal equ1hbr1um state z¢€, i.e., a

— o R R —— e .~ - T ¥4 T V=% 7 7 U ——— < " Cmr s — . ~ -



1.4. Notes and Sources 21

state that once it has been reached cannot be improved upon. In addition, no constructive
statement about the necessary length of the planning horizon M to come within a specified
‘neighborhood’ of the optimal infinite horizon cost V (7, a) has been made. We will examine
part of Question 3 for an example of practical relevance in Chapter 2.

Regarding the underlying optimal control problem of finding the best resource allocation
strategy for a given dynamical system, the following question is of considerable practical
relevance:

Question 4 Are there conditions under which there exists an optimal state for a corporate
critical resource allocation problem? Can this state be reached under a stabilizing optimal
corporate policy?

A formal development of constrained moving horizon predictive control is given in the
next chapter. Basic concepts of corporate strategy in relation to nonsingular corporate
policy will be introduced later in Chapter 3, when the relation between control theory and
managerial practice will be established. Modeling approaches and a practical application
will be discussed at that point.

1.4 Notes and Sources

Resource Allocation and Optimization. For an overview of the traditional approaches
to resource allocation and capital budgeting, see [EL88] and [Bie88], [BM91] respectively.
Dynamic optimization in management has been considered by [KS91] and [CH87]. For a
introductory treatment of decision trees and ‘dynamic strategic planning’ based on decision
analysis, see [dN90]. A more advanced book on dynamic programming and optimal control
is [Ber95], which provides many practical examples.

MPC. The theoretical discussion of MPC (although the principle was known and used
in practice before) has been initiated largely by Clarke’s Generalized Predictive Control
[CMT87], which was later extended by Soeterboek as well as De Vries and Verbruggen pro-
viding a more general (quadratic) criterion function [Soe92] for the multivariable case [VV93].
For an overview, see [Mor93]. Although these approaches had nice practical applications
with a relatively easy input/output constraint handling, stability could not be guaranteed.
- Rossiter and Kouvaritakis introduced first ideas for stable model predictive controllers un-
der constraints in the SISO and MIMO? case [RK93b], [RK93a]. Parallel to these results
in an input/output setting, formulations in state-space have been proposed by Morari and
Zheng [Mor93], [ZM94], and a constrained multivariable stable MPC implementation in the
state space was given by Heise and Maciejowski [HM94]. A unified treatment of the different
stabilizing approaches to MPC can be found in [Web95]. Robustness results for constrained
MPC, in particular with respect to plant model uncertainty, have been provided recently
using linear matrix inequalities [KBM96].

Constrained Predictive Control.. Moving horizon approximations to constrained in-
finite horizon optimal control problems in a general nonlinear setting have been investi-
gated in discrete time by Keerthi and Gilbert [KG86b], [KG88]. Based on their results,

9S1S0: Single Input — Single Output; MIMO: Multiple Input — Multiple Output.
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continuous-time nonlinear moving horizon controllers with quadratic cost have been intro-
- duced by Mayne and Michalska [MM90], who also provided some robustness results [MM93].
The use of moving horizon control as a potential tool for managers is new. To the author’s
knowledge, no moving horizon predictive controllers for discounted indefinite cost function-
als have been considered so far in the literature.
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I have had my results for a long time, but I
do not yet know how I am to arrive at them.
— CARL FRIEDRICH GAUSS

Chapter 2

Constrained Predictive Control

Predictive control makes explicit use of a model to forecast the evolution of a dynamical
system, and determine, based on these forecasts and the minimization of a cost functional,
inputs to the system. This control methodology is predictive in the sense that in the
presence of uncertainty, the forecasts are based on an estimator (or predictor) that at-
tempts to minimize the error of the forecasts in some given metric. Here though, we will
focus mainly on using a methodology analogous to predictive control for the nominal case,
i.e., in the absence of explicit uncertainty. In this case, the above predictions degener-
ate to a simulation, since the evolution of the system is perfectly described by its model
when disturbances are not present. We will however still term this approach predictive, as
it establishes baseline results for more sophisticated developments that take into account
structured or unstructured uncertainty.! Nevertheless, even though uncertainty is excluded
from the main discussions, some statements about the robustness towards disturbances and
modeling errors may be derived, e.g., by using Lyapunov stability theory.

This chapter introduces the theory on constrained predictive controllers relevant for its
potential use as a tool for resource allocation decisions in nonsingular corporate policy.
First, some fundamental definitions and theorems on dynamical systems and their stability
properties will be given for both the continuous-time and the discrete-time case. In fact,

- since corporate policy can generally be considered as not very time-critical from a com-

putational viewpoint — data updates occur typically weekly or daily — a discrete-time

~ analysis seems fully sufficient. However, some developments and analyses can be conducted

elegantly for continuous-time systems, where the underlying concepts often appear more
natural, due to smoothness assumptions on the functions involved. Thus, both approaches
will be presented in a complementary manner and used each where convenient. Second, we
will introduce the basic constrained infinite horizon (IH) and moving horizon (MH) optimal
control problems (OCPs), that describe the objective maximization problem and its real-
world formulation. Third, conditions for MH approximations of the solution to the IH OCP
are given, which is fundamental for the usefulness of the predictive control methodology.
— The chapter concludes with two lemmas by the author, that have been developed for

dealing with managerial resource allocation problems, characterized by a discounted indefi-

nite objective functional. In addition we will provide some robustness considerations of the
quality of the approximation with respect to the length of the time-horizon. An application

In the well-known case of a linear system and quadratic cost functional (cf. MPC in Section 1.3), such
baseline discussions are in many instances sufficient, for a Certainty Equivalence Principle holds, cf. [AWQO].

23
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of the predictive control methodology to marketing expenditure and price selection in a
- diffusive market environment, will be given at that point.

2.1 Basic Concepts

In this section we will review important concepts in control theory for both the continuous-
time and discrete-time case that will be used later to summarize results on predictive con-
trollers.

Definition 1 (Systém) A systern & is d relation between signals 5;, 1 <'i < r, of the form
¥ = {(s1,52,...,5,)}. A signal s is thereby a real-valued mathematical function s : T — R,
t — s(t), defined over a time-set T € {Z,R}. The system X specifies the set of admissible
signal r-tuple.

Typically, the first 7 components of an element.of.a system.X .are.called. input, while the
last p = r — m components denote its output.? In the remainder of this work, we will only
consider systems with inputs (u1,...,um) =: v and outputs (y1,...,yp) =: y, that can be
represented in one of the following state space forms: :

) = fta(t),ult)), (2.1)
y(t)' = g(tax(t)au(t))v (22)

if T = IR, corresponding to an ordinary differential equation (ODE) description, appropriate
for continuous-time systems; or,

' Tg+1 = fk(xk7u’k)7 (23)
ye = gk(Tk,ur), (2.4)

if T = Z, corresponding to a finite difference equation (FDE) representation, appropriate
for discrete-time systems.

'The functions f-: T x X XU = X, g T x X x U —"Y are called system function
and output function respectlvely X C R” denotes the state space, ) C RP the output space,
and U C R™ the control space.

- REMARK In this Master’s thesis it is sufficient to consider systems where g = z, i.e., where
the output is equal to the state variables, since ‘we are here only concerned with models
where the states are accessible and relevant to the decision maker. This assumption simpli-
fies the necessary analysis, seems however appropriate for many management applications,
‘where 1t 1s sa.t1sﬁed natura.lly by. the problem formulatlon S

VI

B principle;.a system need:have neithe

nputs nor outputs. | ¢ ¢ .
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2.1.1 Continuous-Time

Given a measurable control input u : [tg, 1] — U, a function z : [ty, 1] — R™ is called a solu-
tion to the ODE (2.1) with initial condition z(tg) = zo, if f(-,z(-),u(-)) is locally integrable
(i.e., measurable and essentially bounded) on the system trajectory {(z(t), u(t)) |t € [to, 1]},
and ' .
o) =3+ [ 1(6,2(6),u(6)) db 25)
0
V ¢ € [to,t1]. A mazimal solution of (2.1) is a solution that cannot be extended beyond
a time toc € T U {00}, the so-called escape time. For convenience, when referring to a
system’s evolution for all ‘future’ times ¢ > ¢y for some given £y < f, & maximal solution
of the system equation (2.1) on [tg,?x) is meant. Sufficient conditions for existence and
uniqueness of such a solution on a finite time interval are provided by the following theorem.

Theorem 1 (Global Existence and Uniqueness for Continuous-Time Systems)
Suppose for a given input u : [to,t1] = U, that f(t,z) = f(t,z,u(t)) is piecewise continuous
in t and satisfies the following global Lipschitz condition,

“f(ta 1:) _v:-f(ti y)” < L“‘T - y”:
Ifttoo)l < M,

Vz,y€ X, Vt € [to,t1], and some constants L, M > 0. Then, the state equation (2.1) with
the initial condition z(tg) = zo has a unique solution over [ty,t1] for the given input u.

Proof. See [Kha92], p. 81.

REMARK

1. For any admissible? control u(t), the function f(¢,z) := f(t,z,u(t)) in Theorem 1
describes a new system with no control inputs,

& = f(t,z). (2.6)

Such systems without explicit dependence on the input u are called autonomous. In
the following we consider mainly such systems without explicit dependence on u, since
they arise naturally, once the input has been chosen or in the case of state feedback,
when u = p(t, ).

2. In the continuous-time case it will be always assumed that the system function satisfies
the conditions in Theorem 1, which is sufficient for the developments in this Master’s
thesis. Hence, all continuous-time state space representations that will be introduced
later on, are guaranteed to possess a unique solution over some nontrivial time interval.

To characterize important properties of the systems that will be examined later, several
fundamental definitions are now provided. These definitions will be given for the continuous-
time case. Formulations of analogous discrete-time concepts can be obtained in most cases
by simply replacing derivatives by finite differences, and adjusting the notation accordingly
(cf. Section 2.1.2).

3In general we mean by an admissible control one that satisfies additional constraints such as u € Q(z),
cf. Section 2.1.2.
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Definition 2 (Dynamic Equilibrium) A dynamical system of the form (2.1) is said to
be in (dynamic) equilibrium at z° from time to on, if for some input u®(t):

0 = f(t,z°% u(t)), (2.7)

Vt > to. For a given equilibrium point x¢ at time to, we will refer to an input u(t) satisfy-
ing (2.7) as corresponding equilibrium control u®(t).

Let E(t) denote the set of all equilibrium points at time ¢. It is clear that E(t) C E(t + 1),
- for all 7 > 0. The usual time-invariant deﬁmtmn for equ111bnum pomts is a spec1al case of
Deﬁmtlon 2 for systems of the form

z = f(z,u). (2.8)

Tuples (z°,u®) satisfying a condition analogous to (2.9),

0 = f(z%,u°), R (2.9)

Vt > to, composed of an equilibrium point z¢ € E and a corresponding (constant) equi-

librium control u¢, are called state-control equilibrium tuple. Let us now consider stability

properties of a feedback systém, i.e., a system where the input v is a function of the state
4

z: u = p(z).

Definition 3 (Feedback Stability) An equilibrium state z® of the time-invariant sys-
tem (2.8) with u = u(z) is '

(i) stable, if for each € > 0 there ezists 6 = 6(e) > 0 such that
I1Z — 2| < § = | T/ (z) — 2%l < e,

VYt > 0, where ’.I’tf(:f:) is the so-called differential flow,® i.e., the solution of the initial
value problem

i=Flan(@), =0 =7
(1i) asymptotically stable, if it is stable and there is 6 > 0 such that

|1z - 2°|l < § = lim T/ (z) = z°.

" (iii) "globally asymptotically stable’, if Vi'e X: "

lim Tf(-’f) z.
N t—>00__‘_ o

Vou

(iv) unstable, if it is not stable.

4Stab1hty properties for static equlhbna can be obtained by substituting a constant feedback law, i.e.,
u(z) = u® = const.
5The notion of flow for dyna.mlca.l systems depends essentially on a semi-order property of the time-set T
“and is ava.nlable in discrete time as.well. (cf.. Section 2.1. :2).-Such a ﬂow possesses a cha.ractenstxc semi-group

property, since: (1’;’1 o. Té) ()= thl+tz (a:), Ve X th,tz P
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REMARK For time-varying autonomous systems (cf. remark after Theorem 1), a point z°
will be called uniformly stable, uniformly asymptotically stable, etc., if the above conditions
hold for z = z(tp) without dependence on the initial time ¢;. Exact definitions of uni-
form stability for time-varying discrete-time systems will be given in the next section (cf.
Definition 9).

To analyze equilibrium points with respect to the above stability properties, it is useful
to consider functions describing essential aspects of the system behavior. Some useful
theorems based on functions of the Lyapunov type are given below. These statements play
a crucial role when establishing stability results for moving horizon predictive controllers in
Section 2.3.

Definition 4 (Lyapunov Function) Consider the autonomous system
z = f(t,z) ' (2.10)

on an open set X C X. A function V : (to,t1) X X — R is called Lyapunov function, if
V(t,z(t)) is monotonically decreasing for t € (a,b) C (to,t1) whenever z(-) is a solution
of (2.10) on (a,b) such that the trajectory {z(t)|t € (a,b)} C X.

REMARK

1. Lyapunov functions as defined above are particularly useful on an invariant subset of
the state space, i.6., a set X C X such that th(:z:) € X,Vze X, Vt > 0. In this
case the corresponding Lyapunov function (if it exists) will be negative semi-definite
for an entire state trajectory {z(t)|t > to} starting at z(tp) € X.

2. For continuous system functions f and COntinuously~diﬁ'erentia.ble functions V/, proving
that V is a Lyapunov function on an invariant set X can be accomplished by showing
that

| V(t,5(t) = VoV + ViV - £(8,3(8) 0, (2.11)
V't > to, whenever z(tg) € X and z(t) = Tf_to (z(t0))-

In order to characterize stability properties, e.g., through Lyapunov stability criteria given
below, it is convenient to consider a special class of scalar functions, the so-called class X
functions.

Definition 5 (Class K) A continuous function ¢ : [0,R) — Ry, p — ¢(p), is said to
belong to class K, if it is strictly monotonically increasing on [0, R) and ¢(0) = 0. In the
case that R = oo and ¢(p) — o0 as p — 0o, it is said to belong to class K.
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Theorem 2 (Lyapunov Stability Criteria) Let z° € X be aﬂ. eqm‘librium point of the
'respectwe dynamical systems' considered below and a ball B,( ={z € X||lz — z¢|| < p}
around x° with some radius p > 0 be given.

(i) Assume V : B,(z¢) — R is a continuously differentiable function, and f in the time-
invariant autonomous system equation

& = f(z), (2.12)

. G continuous. functzon such that TR L S
Vv,V - f(:z:) <0, (2.13)

Vz € B,(z¢). Then, if ¢ is an isolated local minimum of V, it is stable. Moreover,
if the inequality (2.13) is strict Vz' € B, \ {z°}, then z° is an asymptotically stable
equilibrium point. .. :

(ii) If V : [tg, 00) X B,(z¢) — R is a Lyapunov function for the autonomous system (2.10)
such that

er(llz — 2°) < V(t,2) < oa(llz — 2|, (2.14)
V(t,z(t) = ViV + ViV - f(t,2(t) < —ps(llz — z¢)), (2.15)

Vt >0, Vz € B,, where @;(-) are class K functions defined on [0, p), then the point
z¢ 1is uniformly asymptotically stable.

(i4i) If the conditions in (ii) hold for p = oo, i.e., By = X and 1,2 are class Ko, then
the point z¢ is globally asymptotically stable.

Proof. *(i): [Per96], pp. 131-132; (ii), (iii): [Kha92], pp. 169-172.

Other fundamental control theoretic concepts besides stability, needed here, are the notions
of controllability and- observability. A system is controllable if it can: be steered from any
‘state to any other state in finite time. A system is observable, if when its output is recorded
over some finite time interval, its initial state can be determined. We will now give more
~ precise definitions of these notions. - ‘

Definition 6 (Controllability) The system (2.1) is (pointwise) controllable, if for any
- initial condition z(ty).= To € X there is an. admissible control.u(t) that steers the system
to a given state ; € X in ﬁmte tzme, i.e., Vxo,z1 € & there ezist 0 < 7 < oo and
u : [to,to + T) = U such that

: xT'}f-(:BQ):‘:f}’.n A :

RS A O

Iv:'where f(t :L') = f(t z, uo(t))

REMARK A system is said to be reachable, if all its states can be reached from a pa.rt1cula,r
state (say, the ongm) in finite time, i.e., if it is controllable from the origin.5

€A controllable syétehi.’is':réaéhable’ i“'rduvl.dﬁy sta.-te.'uf o

i o By = rge e 4 < mm s — ET———— ] = * %" " e geesemp
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Definition 7 (Observability) The system (2.1) is (pointwise) observable, if knowledge of
its input u(t) and output y(t) over some time interval (to,to+7), of finite length 0 < 7 < 00
suffices to determine its initial state z(to).

REMARK In the developments that follow we will need particulary the controllability and
reachability property, as we will be interested in systems that can be steered from any state
to a particular ‘optimal’ state. — The observability property will play a lesser role here,
since we restrict ourselves to managerial systems where the states are in most cases readily
available and can therefore be considered as output (cf. remark after Definition 1). In this
case of state feedback, the observability property is trivially satisfied.

2.1.2 Discrete-Time

The discrete-time notions introduced here complement the above treatment of continuous-
time systems, in the sense that state and control constraints are now incorporated
explicitly. In addition, the stability definitions and corresponding theorems will be formu-
lated for time-varying systems. The reader will appreciate the analogies between discrete-
time and continuous-time approach and either will be used when appropriate for the analysis
of examples in later sections. '

Consider the discrete-time system (2.3) for k > 1€ T = Z:

Tk+1 = fe(Tk, ur), - , - (2.16)
with initial condition '
' T; = a, (2.17)
such that '
(i,a) € E:={(t,a)|i € T,a € X;}. (2.18)

As in continuous time, the collection of maps fi : X X Uy — A+ is called system function, .
whereby X} and U, are subsets of the state space X C R® and the control space U C R™
~ respectively. Z denotes the set of all admissible initial conditions. Note also that the
evolution of system (2.16) is constrained to states zj in the state constraint sets & and
control inputs uy in the control constraint sets Q(zg) C Uy such that in a more convenient
notation '

(zk, uk) € Zx(zk) = Ak X Q(zk), (2.19)

Yk > 1.

Given an initial time i € 7 let a policy (or control law) for system (2.16) consist of a
'sequence of functions

1= {pk i (2.20)
_ where u}'c s X — L{k‘, p.}'c(a:k) > ug. Such a policy is called admissible, if '

ph(z) € Dz, o (2.21)
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Yz, € Xk, Yk > 1. Applymg an admissible policy 7 to the system (2.16), one obtains an
- autonomous feedback system,

Tir1 = fr(zx), (2.22)

with fe(zk) = fi(zk, pi(zk)), completely analogous to (2.6) in continuous time. This
deterministic state feedback system is illustrated in Figure 2-1, where for convenience f has
been written again f.

Uk i'k

Tpy1 = fk(f"'ka ug) *-

ug = pg(TE)

Figure 2-1: State Feedback.

Definition 8 (Equilibrium) A state z¢ € X is called an equilibrium of the autonomous
system
| Tr+1 = fr(zk), (2.23)

if there erists i € T such that (i,z°) € E and
TfGz®) =2 (2.29)

Vk >0.

REMARK This definition of an equilibrium for autonomous time-varying discrete-time sys-
- tems corresponds essentially to:Definition 2in contmuous tlme, of which'it is a mere refor-
mulation.

In the next section we w111 see that in general it. is the.goal to. find policies that are optimal
_in'the sense that they minimize a part1cular cost functional. In effect, the policy u(z)
describes the input for the system for each possible state state at time k. The system with
such an implemented state feedback policy becomes autonomous. The following theorem
states some sufficient conditions for equilibria of such autonomous feedback systems.
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Definition 9 (Uniform Stability for Time-Varying Systems) An equilibrium state z¢
of the autonomous system (2.23) is

(i) uniformly stable (US), if for each € > 0 there ezists § = d(e) > 0 such thm;
la —z¢|| < § = ||T/ (4,0) — 2| <,
V(i,a) €E, Yk > 0.
(11) uniformly asymptotically stable (UAS), if it is US and there is 6 > 0 such that
la—z°|| < 6 = kllngoT,{(z',a) = z°,
V(i,a) € E.
(iii) globally uniformly asymptotically stable (GUAS), if it is US and
klingo TG q) =5
V(i,a) E‘E.
(iv) exponentially stable (ES), if there ezist constants 0,C>0 such that
IT{ (@) - 2°]| < Ce~7* |
V(i,a) €E, Yk > 1.

The definition for Lyapunov functions V' (k, zx) in discrete time is completely analogous to
the continuous-time version (cf. [Wil70], p. 172), when replacing t by k and the monotonicity
condition (2.11) by o

AVik,zx) =V(k+1,2541) — V(k,zx) < 0. _ (2.25)

Sufficient conditions for the stability of an equilibrium point z°¢ are given by the following
~ theorem (as formulated in [KG88]).

- Theorem 3 (Asymptotic Stability) Let z¢ be an equilibrium point of the autonomous
system (2.23) and B,(z°) := {z € X |||z — z¢|| < p} be a ball centered at z°® with some
radius p > 0. Suppose that there are functions V : E = R and @1, 2,02 € Ko, a constant
0 > 0 and a positive integer L > 0 such that the following conditions are satisfied:

e1(lla - z°) < V(i,0) < @a(lla - z°]), (2.26)
ealla —2°|l) < V(i,a) = V(i + L, T{ (i, a)), (2.27)
0<V(i,a) — V(i +1,T/(3,0)),  (2.28)

v (4,a) € E for which a € By(z®). Then
(i) the equilibrium point z° is UAS.
(i) if p = oo, z° is GUAS.
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Proof. (Outline) The proof for this theorem has not been provided in [KG88]. However,
it follows immediately from a discrete-time version of the Lyapunov stability criteria given
in Theorem 2, after noting that conditions (2.27)—(2.28) imply

0 < V(i+1,T{(,0)) — V(i + 2, T (i, a)),
0 < V(i +2,Td(,a)) — V(i + 3,T{ (i,0)),
0 < V(@E+L-1,T_ (i,a) - V(i+L,T](a))

~ Subtraction of these inequalities from (2.27) yields,
V(t+1,7{ (i,0)) = V(i,a) < ~s(lla — 2°I),

the direct discrete-time analogon to condition (2.15) in Theorem 2, so that the result follows
immediately from there by discretization. . _ S : -0

The notions of controllability and observability carry over directly (by change of notation
only) to discrete-time systems. To prove the stability of feedback systems obtained by the so-
lution of OCPs that will be introduced in the next section, Keerthi and Gilbert [KG88] intro-
duced properties C and O that generalize the corresponding strong requirements of uniform
complete controllability and observability for linear systems that are well-known [Kai80] and
will not be discussed here. Property C allows to determine an upper bound on the size of
the state-control tuple when steering the system to a given (z°,u®), while property O gives
a lower bound on the size of the output-control tuple as a function the size of the initial
state deviation from a given state z°.

Definition 10 (Property C) The system (2.16) has property C, if there exists No > 0,
and a K function @, such that: V (i,a) € E there ezists a sequence {(zx, ur)}r>i such that

i+Ne—1
Y Emw) - @ Selle-al),  (229)

k=i .

and (zk,u;) = (z°%u®) Yk > i+ N,.

- Definition 11 (Property O) The system (2.8)-(2.4) has property O, if there is N, >0,
and @ Koo function ¢, such that: V (i,a) € E there ezists a sequence {(zx, uk, Yr) }x>i such

that
' i+No—1 .

SN ) — (625w, w0 > ol — 291, (2.30)
k=i )

“*REMARK

1. The above properties C and O are defined with respect to a (constant) equilibrium
state-control tuple, whose existence is assumed.

2. Property O is trivially satisfied for systems with state feedback, i.e., when
9k(Th,uk) = Tk, for all k. - '
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2.2 Finite and Infinite Horizon Optimal Control

The input u to the general system (2.1) can often be selected so as to optimize the behavior
of the system over time t € [0,T] with respect to a certain cost functional, that serves as
criterion of the relative preference between different control inputs for a given initial state
of the system. Goal is then to find a policy 7 = {u*(2,-)}+¢o,r) and thus a feedback law
u*(t) = p*(t,z) that minimizes the cost functional. Below we summarize two fundamental
results for this class of problems and give a brief overview of numerical methods for efficiently
solving such OCPs. This will lay ground for Section 2.3, where we will discuss moving
horizon approximations of infinite horizon OCPs, and present several potentially useful
results for management applications.

2.2.1 Fundamental Theorems

Let us consider here the basic problem of finding an optimal policy u*(t) = p*(¢,z) that
minimizes a cost functional

T
J(w) = (=(T)) + / h(9, 2(8), u(9)) db, (2.31)
0
where h : T x X x U — R is called the instantaneous cost (or cost kernel) and ! : X SR
the terminal cost. For continuous-time systems the finite horizon OCP can be written as
follows:

T .
l(z(T)) +/ h(0,z(6),u(8)) dd — min - (2.32)
0
subject to ' ' »
T = f(t,:L‘,’U,), ) - (233)
u € Q) | (2.34)
z(0) : given, z(T) : possibly fixed. (2.35)

The corresponding infinite horizon formulation is obtained for { = 0 and T — oo in (2.32),
and will be discussed below under additional assumptions. To simplify the analytical treat-
ment and the presentation of the results, we will impose quite strong regularity assumptions,

and in most cases the reader may expect to find in the literature theorems with similar
- statements under weaker hypotheses. In particular we require here that the cost kernel A
be continuous, and the terminal cost function ! as well as the system function f be continu-
ously differentiable. Furthermore, the constraint set Q(z) is assumed to be biconvez,” that
is Q(z) is convex for any z, and V1,70 € X :

uy € Q(z1),u2 € Qzg) = Juy + (1 — Fuz € Q(Iz1 + (1 — Pzy) VI € (0,1).

‘We furthermore assume that the OCP (2.32) subject to (2.33)—(2.35) possesses a solution,
in the sense that there exists an admissible state-control trajectory {(z*,u*)|t € [0,T]}
that satisfies the constraints and minimizes the above cost. A sufficient condition for such
a trajectory to be optimal is given by the following theorem.

7An example for such a biconvex set is Q(z) = {u € U |w(z,u) > 0}, where w : X x U — R is a concave
function in z and u.
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Theorem 4 (Hamilton-Jacoby-Bellman (HJB) Equation) Assume that the function
V(t,z) is continuously differentiable in t and = and is a solution to the HJB equation®

_vtV(tv .’1:) = le—[g(n){h(tawru) + Vz‘V(t7 -T) ' f(txza u)}: (236)

V(T,z) = l(z), (2.37)

Vz € X, Vt € [0,T]. Suppose also that u* = p*(t,z) attains the minimum in (2.36)
vVt € [0, T], Vz € X. Then under the assumptzons of Theorem 1, V(t,z) is the unique

V(t,g) = / h(6,5*(6), 4 (6)) db (2.38)

is the optimal cost-to-go, where z* (t) = T/ (z) when the optimal control u* is applied.

Proof. See [Ber95], pp. 93-94.

REMARK

" 1. In most interesting cases analytical solutions to the partial differential equation (2.36)
cannot be obtained. Even numerically, the HJB equation is not easy to solve, so that
its use is often reduced to a mere verification tool.

2. Continuous differentiability of the value function V' is a strong requirement that for
many applications is not satisfied. Nevertheless, the HJB equation remains of use, if
more general notions of derivatives (such as subdifferentials) are used, which is subject
of so-called Nonsmooth Analysis initiated by Frank H. Clarke [Cla83], [Cla89], which
is however beyond the scope of this Master’s thesis.

-~ under considerably weaker conditions, and are generally subsumed under Pontryagin’s Max-

imum Principle (PMP) For this introduce the Hamiltonian function H : TX X xUXR" — R,

H(t,z,u p) h(t,z,u) +p - f(t,z,u). (2.39)

Theorem 5 (Pontryagin Maximum Principle) Let {(z*(¢),u"(¢))|t € [0,T]} be an op-
timal state-control trajectory for the. OCP (2. 32), with. z* (0) -:1:(0), given. In addition, let

p(t) be the: solution of the adjoint equation

p() = —VaH(t, 2" (), (9),0(1)),  p(T) =0, - (2:40)

8For convenience and to minimize the reader’s distraction, we will write here and in what follows “min”
instead of the-more precise:“inf™ in: the mmumza.tlon of cost functlonals At tlme&the actual ‘minimum may
- notrexist and ‘we willPmean' by “min™ ‘the infimum in these cases. -

»Necessary conditions that haye to be satisfied by an-optimal state-control trajectory hold -
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with the transversality condition

o(T) = Vi(z*(T)). (2.41)
Then,
w’(t) = arg min H(t, z*(), u,p(t)), (2.42)
Vi e [0,t].

Proof. See [PBGM62], pp. 99-108.

REMARK In practice, using the necessary condition (2.42), one can express u* as a function
of z* and p and obtain a 2n-dimensional two-point boundary problem, with split boundary
conditions

z*(0) = z(0), p(T) = Vi(z*(T)).

Such problems are typically very hard to solve analytically. Numerical ‘shooting’ algorithms
do exist for obtaining candidates for solutions. However, it is generally not easily possible
to find globally optimal solutions (cf. also Section 2.2.2). — If z(T) = (z1(T),...,z.(T))’
is fixed only for some components i € I C {1,...,n}, then only the adjoint boundary
conditions Al(z* (T))
z

p;(T) = T

for j € {1,...,n}\ I hold.

Infinite Horizon OCPs. The infinite horizon version of problem (2.32) is as expected:

/ * 16, 2(6), u(6)) 46 —> min, (2.43)
0
subject to |
z = f(t,:c,'u,), (244)
u € Qz), _ (2.45)
z(0) : given. (2.46)

A rigorous treatment of optimality conditions for the above problem is quite involved, and
poses a number of technical difficulties. A sufficient condition such as the HJB equation in
the finite horizon case is in many instances not available. In fact, due to the integration
over an infinite time-interval, the cost may become unbounded and/or stability issues have
to be discussed.’

‘A formulation of the PMP for the infinite horizon OCP can be found in [CH87], together
with a discussion of weaker forms of optimality, appropriate for diverging cost. We will here
only motivate the Bellman inequality that results from the following observations: Assume

°For reasonable problem formulations the optimal TH cost should stay bounded.
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that for any admissible state z in the above problem, an optimal cost-to-go,

V(t,3) = /t " (8, 2*(6),u*(8))df = min / ” (6, 2%(8), u(6)) do

u€N(z*) Jo

does exist. Then, by varying the time slightly from ¢ to ¢ + ¢ with § > 0, we observe that

t+8
V(t,z(t)) = V(E+6,z(t+0)) < / h(8,z"(6),u(6)) d6
t
- Where'mf‘ is the state trajectory*induced by the control u and as-§ —>0+ one obtains
- (ViV(t,2) + ViV (¢,2) - f(t,z,u)) < h(t,z,u),
which comparing it with (2.36) corresponds to an ‘HJB inequality’:
0 < A(t,z,u) + ViVt z)+ Vi V(tiz) - f (G zyu). 0 (2.47)

Taking the minimum with respect to all admissible contrbls, together with some additional
analytical considerations, would result in the HJB equation (2.36), that here as before, need
not have a solution.

In the special case of a time-invariant system and cost, the well-known Bellman inequality
results:

0 < h(zu) + VeV (,3) - flz,u), (2.48)
yiélding the Bellman equation,
0= min {h(z,u) + V;V (¢, z)- f(z,u)}. (2.49)
ueﬂ(:c)

“with some additional considerations in a more rigorous development.

Let us now introduce the concept of an ‘optimal equilibrium state’ of an IH OCP of the
type (2.43). The existence of such a state (or more precisely:- admissible state-control tuple).
- is essential for the stability results in Section 2.3. '

Definition 12 (Optimal Equilibrium State) Consider the IH OCP defined by (2.43),
subject to (2.44)-(2.46). If there ezists an equilibrium state-control tuple (:L' u®) and a
“continuously. dzﬁerentzable function ) 7' xX =R such that s

(z 1{ )= - arg u)ggg at ){h(t, T, U) + Vﬂb(t,w) + Vz¢(t, ) - f(t,z,u)} (2.50)

Vit > 0, then (z® ue) is called optzmal ( equzlzbrzum) state control tuple
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REMARK

1. The OCP will not be changed through 1, since!?
[ (6.0) + 250(6,2(60) ) 8 = $(o0,5(00) = 900,00 + [ 10, 3,0) o
0 0

2. If one knows the optimal cost-to-go V (¢,z) for the system, 9(t,z) = V(t,z) + const.
satisfies the requirements of Definition 12. If z° is a known optimal equilibrium, one
can set at least ¥(¢,2¢) = V (¢, 2¢) + const.

3. From Definition 12, it is not clear how to find a function 1, which is apparently a
solution to the HJB inequality (2.47). For the special case of a time-invariant system
and discounted cost (cf. remark below), Lemma 1 in Section 2.4 will provide some
sufficient conditions for an equilibrium state-control tuple (z¢, u¢) to be optimal.

REMARK For our developments in Section 2.3.2, we will note here that the case of a
time-invariant system (2.8) and discounted cost kernel (with discount factor r > 0),

e~ " h(z,u),

the problem can still be considered as time-invariant. For this consider the value function
V(t,z) that is here assumed to exist, and note that for any admissible z :1

V(t,z) = min / e "0 h(z"(0),u(6)) df
u€Q(z®) Jt
© .
— ¢ min / e~ h(z (¢ + 0), u(t + 0)) d - (251)
ueQz*) Jo
o0
= e ™ min / e "h(z%(0),u(d)) db, (2.52)
‘ ueQ(zv) Jo- ) .
and thus
V(t,z) = e "V (0, ). : (2.53)

- With this, the HIB equation becomes (after substituting V' (z) for V' (0, z)):

V(@) = min (hzu) + YV (@) flz ) (2.54)

which we will refer to as Bellman’s equation for discounted cost.

1Here and later we will assume that < is ‘bounded at infinity’, i.e., that Jim YP(t,z(t)) < oo for any
oo

" admissible state trajectory.

' The time-invariance of the system function is used from (2.51) to (2.52).
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2.2.2 Numerical Methods

Since for moving horizon controllers a finite horizon optimal control problem has to be
solved on-line at every decision stage, we will give a brief overview about computational
methods (based on [Sch96]) and in particular briefly describe the algorithm used by the
software package employed. A simple classification of algorithms for solving OCPs is de-
picted in Figure 2-2. There are direct and indirect methods. — Indirect methods usually
use necessary conditions of optimality such as the PMP (Theorem 5), which involves the
solution of two-point boundary problems, using e.g. so-called shooting algorithms [RS72].

" Numerical Methods for OCPs

]

Direct Indirect
Conceptual Consistent Approzimation
Galerkin Approzimation Iterative Integration

Figure 2-2: Numerical Methods for Solving.OCPs. - .

~Main drawback of these methods is that they may provide local solutions instead of global

ones and need close initial guesses. Hence, they often exhibit a low degree of robustness
with respect to the initial guess. Moreover, since the conditions employed by the algorithms
are generally not sufficient for optimality, one: may obtain solutions that are not minimizers:
of the OCP. — Direct methods try to minimize the objective functional directly. Within
the class of direct methods, conceptual algorithms are based on finite dimensional opti-
mization and functional approximation. (e.g., Euler’s method for piecewise constant control
representatlon, cf. references-in [Sch96], p- 9) Tn this Master s thesis, we will use a numer-
ical software pa,cka.ge12 based on successive approximation via iterative integration, where
a succession of finite dimensional, discrete-time OCPs are solved that are more and more

accurate representations of the original continuous-time OCP.

- 12RIQOTS: Recurswe Integration Optimal Trajectiry. Solver.by:" A Schwa.rtz [Sch96], a toolbox for Matlab.
‘Matlab-is a registered trademark" of The Mathworks; Inc :
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2.3 Moving Horizon Control Approximations

General conditions for stability of MH controllers and their approximating behavior towards
IH optimal controllers have been given by Keerthi and Gilbert [KG88] and the first part of
this section will essentially summarize their results. These discrete-time developments have
been later formulated for nonlinear continuous-time systems with quadratic cost functionals
by Mayne and Michalska [MM90]. The discrete-time results hold for quite a general class
of time-varying nonlinear systems with positive semi-definite cost functional. In order to
guarantee stability of an optimal MH policy, the existence of an optimal state-control tuple
(z®,u®) of the underlying IH optimization problem (cf. Definition 13) is required.

Critical resource allocation problems such as the one presented in Section 2.6, frequently
involve cost functionals that do not satisfy the standard assumptions immediately. In fact,
a natural formulation of the cost functional often yields a sign-indefinite cost kernel that
is not bounded from below a priori,!3 and the existence of an optimal state-control tuple
is not obvious in many cases. Thus, more general results are needed to deal with typical
control problems in nonsingular corporate policy making.

In Section 2.4 we will present a useful lemma for reducing problems with indefinite dis-
counted cost in continuous-time to a formulation with positive semi-definite cost, analogous
to the ones considered by Keerthi and Gilbert in discrete-time. Unfortunately an analogous
formulation of the lemma in discrete-time requires stricter assumptions that diminishes the
practical relevance of this statement. Thus, we have chosen to translate the discrete-time re-
sults to the continuous-time case for time-invariant systems and discounted cost functionals
under the (strong) assumption that an optimal cost-to-go solving Bellman’s equation (2.49)
exists. — It is interesting to note at this point that to use the lemma the special structure
of the problem is sufficient, and one does not need to solve Bellman’s equation, nor is a use
" of the PMP for TH OCPs required.

2.3.1 Keerthi and Gilbert’s Results

Consider the constrained discrete-time system (2.3) for k > i€ T =Z,:

Trt1 = fe(Tr, uk), (2.55)

with initial condition
T; = a, (2.56)

and definition of f, for £ > 7 > 0 as in Section 2.1.2.

o Define the constrained infinite horizon OCP P(i,a) in the following way:

00
P(i, a) : J; = Z hk(xk, 'u,k) — min, (2.57)
k=1

13This means that there is no finite constant K such that V (t,z,u) € T x X x U : h(z,u) > K, without
taking the system equation into account.
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subject to (2.55)—(2.56) and
(zk, uk) € Z(zk) = X X () (2.58)
The set of admissible states for P(,a) is

X; :={a € X;| 3 admissible {(zk, ux)}rs; : P(4,a) yields J; < oo}. (2.59)

o The corresponding constrained moving horizon OCP P(i,a) can then be formulated

as follows: ..., .. .. S e e e e - . :
GV v A REEES g R 1+M—1 : - ERR . - H B
Pli,a): Jiz= Y he(zk,ux) — min, (2.60)
k=1

subject to (2 55) (2 56) (2.58), and the endpoint constraint
o T+ M = a:",,,v (2.61)
with positive horizon length M and the set of admissible states

X; := {a € X;|3 admissible {(a:k,uk)}}c";el for P(i,a)}. (2.62)

We will call V (i, a) the optimal cost-to-go for the IH problem P(i, a), and V (i, a) the optimal
cost-to-go for the MH problem. The optimal MH policy {/if }x> is thereby given by

} {~1+M ~i+14+M A2+ M },

Ak Ak ~ %
{#i,ﬂi+1,ﬂi+27 N Z2ER Y - T S

where ,&. +M s the optimal finite horizon policy at time 7, over pfediction horizon M. The
optimal MH policy is nothing else than a concatenation of the first steps of the different
optimal finite horizon policies.

Definition 13 (Optimal State-Control Tuple) Let (i,a) € E and consider the IH OCP
P(i,a). If there ezists an equilibrium state-control tuple (z¢,u®) and a continuous function
Y:T x X = R such that : :

(ze)ue) = arg (z,uliléiznk(:z:){hk(z’U) + ¢(k + ].,fk(.’L', ’U.)) - '(,b(k, .’L‘)},

Vk> i, then (z°,u®) is called an optimal (equilibrium) state-control tuple for P(3, a).

REMARK The function 9 in the above definition does not chaﬁgé the optimization problem
P(i, a), since for any (i,a) € E :

Y U)o+ 1 ez w) — 96,2} = 5 — 9, a),
k=1

and minimization over J; — (i, a) instead of J; yields the same result.

- Assume that the system (2 55) possesses an equlhbnum state-control tuple (z¢,u®) such
“that Vk>0 . Lot e L e
" ' (:L‘ 'u,e) € Zk(:z: ) fk(:z: L ) =1z ‘hk(a: ,'u. €} =0. (2.63)
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In addition, consider the following assumptions:!*

(A1) There is an (admissible) optimal equilibrium state-control tuple (z¢,u®).

(A2) Z is closed, and the functions fi : X xU = X, g : X x X = Y are continuous and
hr : X x U — R is lower semi-continuous V& > 0.

(A3) There are K functions ¢; and g3 such that

(A3.1) (A3.2)
e1(ll(z,u) — (z%,u®)) < he(z,u) < e2(ll(z,u) — (25,w9)]), (2.64)

V(z,u) € X xU, Vk > 0.

REMARK Assumption (A3.1) is automatically satisfied if h is continuous V% and hy > h
for some continuous function h : X x { — R To see that, consider

o1(p) = max {p, max{h(z,v) | |(z, u)]| < p}},

so that condition (A3.1) is clearly satisfied.

Theorem 6 (Existence of Solutions) Consider the problems P(i,a) and P(i,a) for a
in X; and X; respectively, and suppose that the system (2.55) has property C with control
horizon N,. Furthermore, suppose that assumptions (A1), (A2), and (A3.1) hold true.
Then :

(i) (z°,u®) € int{X;} and the IH problem P(i,a) has a solution.
(i1) if M > Ng, it is (2%, u®) € int{X;} and the MH problem P(i,a) has a solution.
Proof. See [KG88], pp. 280-281; [KG86a).

Theorem 7 (Stability of Optimal Feedback Law) Assume that the system (2.55) has
property C and satisfies (A1)-(A3). Let Fie(zk) = fe(zk, pr(zx)), where uj = pp(ze)
describes an optimal feedback law for P(i,a), and define Fy with 4 = j;(zx) for P(i,a)
accordingly. Then for all (i,a) € E :
(i) klim TF(i,a) = z°. The state x = z° is the only equilibrium of the system Ty = F(z)
—0Q '
and is UAS.

(i) klim Tf (1,a) = z°. The state z = z° is the only equilibrium of the system =3 = F(zy)
—00
and is UAS.

(i11) in the unconstrained case, i.e., when Zp = R* x R™, the equilibrium state z° in
statements (i)-(ii) is GUAS.

Proof. See [KG88], pp. 282-284.

!4Keerthi and Gilbert assumed in their paper [KG88] that the optimal state-control tuple is at the origin.
This is however unrealistic for typical management applications, so that we will treat the general case for
nonzero (z°,u°) in order to avoid involved changes of variables later.
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Theorem 8 (Moving Horizon Approximation) If the hypotheses of Theorem 7 are
satisfied, then for any (i,a) € = and € > 0 there ezist L = L(i,a,€) > 0 such that

M>L = (aEX,— and V(i,a)SV(i,a)+e).

In addition, there exzist p > 0, and given € > 0 there is a positive integer L = L(e) > N,
such that

~

V(@i,a) <V(i,a) +¢

vM21L, VaEBP(a:)

Proof See [KG88], Pp- 285—286

REMARK From the above theorems it is not clear how to choose the length of the time
horizon (as a function of the initial state) such as to make ensure that the MH optimal cost

_stays within an e-neighborhood of the optimal IH cost.. For a.practical.application of the -

MH control methodology such statements are essential however, and we will make an effort
to determine appropriate bounds for the necessary length of the prediction horizon when
discussing robustness issues in Sections 2.5 and 2.6.

2.3.2 Continuous-Time Considerations

We will now derive semi-formally analogous results to the discrete-time case for discounted
time-invariant continuous-time IH OCPs that typically occur in the context of critical re-
source allocation problems.-

Let us consider the ITH OCP (2.43), subject to (2.8), (2.45)-(2.46), for a time-invariant
system and discounted cost kernel (2.66), as introduced in the remark on page 37. Assume
that an optimal cost-to-go,

V(t,z) =e"V(0,z) =: e "V (z), (2.65)

exists that solves Bellman s equatlon (2 49). Suppose also. that the system possesses.the

' followmg properties C and O with respect to the positive semi-definite cost kernel

e "t h(z,u). (2.66)

To define properties C and O, we will assume that there exists an admissible (constant)
optimal equilibrium state-control tuple (z¢,u¢), for which:

h(z¢,u®) = 0.
Definition 14 (Property C) The system (2.8) has property C with respect to (2.66), if

- there ezists Ty->"0 and a K25 function . Such that: Yz € X there ezists a state-control

trajectory {(z%(t),u(t)) |0 < t < T.} such that z*(0) = Z and

Te
e ha o), u0) do < pullE 1), e

“and (z%(t), u(t)) = (<%, ue)7 Vt 2T,
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Definition 15 (Property O for State Feedback) The system (2.8) has property O with
respect to (2.66), if there exists T, > 0, and a K function @, such that: any admissible
state-control trajectory {(z%(t),u(t))|0 <t < T,} satisfies

To
[ e tha0),u(@)) b > pe(lz - 2. (2.68)

REMARK Properties C and O (cf. Definitions 10 and 11) relate to properties Cand O
" introduced here as they, together with the boundedness assumptions (A3.1) and (A3.2)
on hy, imply similar properties in discrete-time. In fact, properties C and O have been
introduced with respect to h as a shortcut to such conclusions and thus to simplify the
continuous-time developments. The reader may expect that the results below will also hold
under assumptions analogous to the discrete-time case that may then be easier to verify.

For the above IH OCP, let Vr(t,z) be the optimal cost-to-go of the correspondmg finite
horizon OCP, where 1nstead of (2.43) one considers

T
/ e "h(z,u) d — min, , (2.69)
0
subject to the additional endpoint constraint
z(T) = z°. (2.70)
Furthermore, let V (¢, z) be the optimal MH cost-to-go, i.e.,

. (k+1)r |
V(o)=Y min / T (2% (8), u(8)) db, (2.71)

k>[t/7] u€Q(z*) J max{t,kr}

where 0 < 7 < T is the control horizon, over which the optimal finite horizon policy
(computed at ‘decision stage’ k7) is implemented. Expression (2.71) means that at time
.~ t > 0, the optimal IH policy is pieced together by solving a finite horizon OCP at each
instant k7 over the intervall®

I = [k k7 +T), (2.72)

Vk > |t/T], subject to the initial and endpoint constraints

z(t)=Z : given, (2.73)
z((kr)7) = z((kn)F), (2.74)
z(kr+T) = z° (2.75)

Properties C and O imply that for 7 > T := max{T,,To} + 7 :

o(llz — 2°ll) < V(t,2) < V(t,2) < Vr(t,2) < pellle — 2°|), (2.76)

'3cf. Figure 1-1 on page 11
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Vz € X. Thereby is Vi (¢,z) for t € [kr, (k+1)7] the optimal cost of the finite horizon OCP
/ e "h(z,u) d — min, (2.77)
I

subject to (2.73)-(2.75). It follows from (2.65) and (2.76) that
V(t,g) = —re "V (z) < —ropo(|lz - z°))),

- so that with Theorem 2 the optimal equilibrium- point z° is globally asymptotically stable

. under the IH optimal control law u* = p*(%); i.e., for any initial state z(0) =: Z one has

: Fi=\ _ e
Jlim T;"(z) = %,

where F(z) := f(z,p*(z)) denotes the IH optimal feedback system function. -

We will now show the asymptotic stability of 'th'ei MH,dptima,l controller. Since the problem
can be considered as time-invariant (cf. remark on page 37), it is enough to consider the
problem over the time interval [0, T.

For a given initial state Z, take a particular admissible state-control trajectory {(Z(¢), @(t)) |
0 <t < T} such that property C is satisfied. In particular one has then

z(t) = z°,

Yt € [T, T], where we have assumed as above that T > T. Using property O, we can write

T
¢o(llz —2°) < Vr(0,2) < /0 e_”’h_(i(f)),ﬁ(ﬁ)) df < oc(l|z — z°|1),

and
T
eollls = o*l) < Ve(r,2) <7 [ e h@(6), 5O B S pella matl), o (278)
H ) . 0. ‘
Thus for (2 ‘Il
- o]z — =)
7>In (—_——)
wo(liz — z#|)
we obtain

Vr(r,5) < Vr(0,3).

If in addition there is a positive constant K = K(Z) such that

R N (e )
o<t (SEEE) <x@

Vze ,B“i”(:z:e), then for 7 > K :

2(0) =% = z(r) € {z||z]l < z}U {z°}. (2.79)
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Moreover, by extending both the prediction horizon T' and the control horizon 7, the distance
|lz(T) — z¢|| can be made arbitrarily small, since!®

Vr(t,z) — V(t,z), asT — oo.

Thus the sequence {V(k'r, i)}k>0 is monotonically decreasing. Since the set Bjz(z°) is

bounded and by (2.79) invariant, any trajectory starting in Bjz(z°) must have at least
one accumulation point there.!” However, because of (2.70) and (2.79) there can be no
other accumulation point than z® and thus the MH optimal state trajectory converges
asymptotically towards the optimal equilibrium state z¢ for sufficiently large T and 7.

2.4 AA New Result for Discounted Indefinite Cost

Optimal control problems with discounted cost play an important role in finding value-
maximizing strategies for an economic system such as a firm. A theoretical treatment of
OCPs for managerial systems often considers an infinite horizon formulation of the cost
functional, since as operations continue indefinitely, appropriate terminal conditions are
not available. — In practice, even though the overall problem is IH, decisions are taken
periodically, to the best of current knowledge over a generally finite prediction horizon. In
the previous section we have provided conditions under which the optimal IH policy can
be approximated by an optimal control law, based on periodic predictions over a moving
horizon of finite length. As emphasized, these results hinge on the fact that the cost kernel
is positive semi-definite and attains its only minimum at an optimal state-control tuple. In
economic problems such hypotheses are often not satisfied as the cost kernel may not be
bounded from below (cf. example in Section 2.6). In this case, additional work is required
to find a suitable ‘potential’ function % (cf. Definition 12 on page 36) such that

dy

h+dt

>0,

and zero for an equilibrium state-control tuple (z¢,u®). This is generally not an easy task,
since 1 has to satisfy the HJB inequality (2.47). — Once an appropriate 3 has been found
* and several other assumptions are satisfied, stability of the moving horizon policy in dis-
crete time!® is achieved by imposing at each stage a terminal condition that would steer the
~ system to an optimal equilibrium state at the end of the finite horizon, if the optimal finite
horizon control at that stage would be implemented over the whole length of the horizon.

In summary, the question of reducing a given IH OCP with discounted cost and indefinite
cost kernel to an equivalent problem with the cost kernel minimal at an optimal equilibrium
state is of great importance for statements about stability and convergence of an MH policy,
typically employed by practical decision makers.

_ '8This is clear from the fact that Vr is monotonically decreasing in T for T > T. (by property C) and
bounded from tightly below by V.

17If for a trajectory S := {z(t)|t > 0} there is a sequence {z(tx)}r>0 C S with limg_,co tx = 00 such that
limg— oo Z(tx) = y, then y is called an accumulation point of S.

18Stability in continuous-time does not hold by analogy. In fact, it is very hard to formulate suﬂicwnt
conditions that are not too limiting for our purposes and imply the existence of an optimal cost. In [MM90],
a restriction to quadratic cost functionals was imposed.
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Let us now consider the problem of finding an optimal state-control tuple in continuous
time. We will present a sufficient condition for such a problem reduction together with
candidates for optimal equilibrium states, that is particularly useful for problems that only
penalize a single control variable. A discrete-time version of this result will be provided
afterwards.

Continuous Time. Consider the time-invariant system

1 = fl(%@l)?’"j["_”'? e - (280)
&2 = falz,uz), - (2.81)

where f1 : X x R™ — R™,| fo: X x R™ — R™ are continuous functions satisfying the
conditions of Theorem 1, n1,m1,ny, My positive integers and X := X; x Xo C R"*72 js a

closed nonempty set of admissible. sta.tesm;:::-[«gl-r] ,fort > Quive
v w5 2 | _
Consider also the IH OCP (2.43) with discounted cost functional,
oo E .
/ e " h(zup) dt — min, (2.82)
0

subject to (2.80)-(2.81), and

(u1,u2) € Q(z1) X Qa(z2) CR™ x R™, - (2.83)
where h : X x R™ — R is a piecewise continuous function (the cost kernel).

The following assumptions are required for our result:

(B1) For any given admissible  and vy := 3, the control up in (2.81) is uniquely deter-
mined, i.e., there is a function ¢ : X x R*2 — R™2 such that

2= f‘2 :(er(ma:v?))-*a welrl
Ve X, Vv € R*2,
- (B2) The mapping ¢: Xa x R*? - R,

T2

(23,v2) = é?éi)lgl{h([ o1 ] ,C([ f;z] ,02))} =t $(@2,v2)

exists,' and is of the form

7 B(ane) = @)+ Vi) (2:84)

Yzo € X3, Vuy € R?2, whereby q,% : X2 — R are piecewise continuous functions
such that for a given constant r > 0 the function

q(z2) + r(z2)

RN

" ¥i’e., the minimum'in the expression for ¢ exists and is finite V (z2,v2) € Xz X R™
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is bounded from below on X5, where v is assumed to be piecewise continuously dif-
o

ferentiable. Let z° = [ 71 ] be determined by

Z2
z§ = arg min {q(z2) + r¢(z2)}, (2.85)
T2€X>
ot = argiptn(| 5 (| & o (2.86)
(B3) There exists a constant (equilibrium) control (u$,u3) € Q1(z9) x Qa2(z3) satisfying
0 = fi(z° ), ' (2.87)
uyg = ((z°0). (2.88)

Lemma 1 Consider the OCP (2.82), subject to (2.80);(2.83), and assume that the con-
ditions (B1)—(B3) are satisfied. Then, (z°,u°) is an optimal (equilibrium) state-control
tuple.

Proof. For any z € X, vy € R™ we define

A(J")U?) = h(.’I:, C(ma U2)) - ¢($27U2)'

It is clear that under assumptions (B1)-(B2) the function A : X x R"? — R is well-defined
and positive semi-definite, since for any (z,v2) the RHS of the last equation,

T2 z2

boclaon) — amig (8 & (| & | 20
: §1€X) '
In addition A = 0, whenever (z,v3) is an element of a hyperplane P C X x R" defined by

P h(:L‘,C(.’L‘,'Ug)) =¢(1:2,’b‘2).

Using representation (2.84) for ¢(z2,vs), the cost functional (2.82) can be written in the
form ' ‘

/Ooo e " h(z,v0)dt = /Ooo [e"” (q(mz) + rip(z2) + Alz, vz)) + % (e—rtT/J(:L'z))] dt,

= _q,b(0)+/00o e "t (q(w2)+?”¢($2)+A($,vz)) dt,

> = -9(0), (2.89)

where
m = min {g(z2) + r¢(z2)}.
To€X2

The lower bound (2.89) for the cost is attained for any initial equilibrium states z(0) =: Z
such that

Ty = arg zg%iﬁz{Q(Iz) + ﬂ/{(xz)},

and  (Z,0)€P.
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The state Z is an equilibrium if and only if

0 = fi(@ @),

0 = fao%,u)
This is the case if admissible controls (%, 43) € 1(Z2) % 2(Z2) can be chosen accordingly,
which completes the proof. |

- REMARK This lemma is in general useful only if np = 1, since then for a given ¢(z2,v2),

affine in vy, the function ¥(z3) in (2:84) can always be-determined."In the case rip™>'1 this-

is still possible, if there is a function ¥ : X3 — R" such that

d(z2,v2) = g(z2) + ¥(z2) - V2,

and

ov; _ 9%,

oz, Bz,
Vi,7 € {1,...,n2}, on an open and simply connected domain X5 C X, of dimension ng,
since then the vector-field ¥ = (Uy,...,¥,,) is irrotational there. In this case a scalar

potential 4 : X3 — R™ can be computed as follows:

1/)(-7"2 / lIl 611 1§n2):

where Zp € X is an arbitrary, fixed reference point.20

Lemma 2 Under the assumptions of Lemma 1, the OCP (2.82) subject to (2.80)-(2.81),
is equivalent to

w ~
f e "h(z, ve) dt — min, (2.90)
0
subject to
‘ ; d:l = fl(xla 'LL]:), (2 91)
Ty = V2, '

~and '

u1 € Ql(y)’ C(.’L‘,’U2) € 92(172), (292)

Ve X1 xXo, V>0, whereby

Az, v2) = (g(z2) + rip(az) —m) + (h(2,¢(3,02)) = $(a2,v2)) 2 0. (2.93)

Proof. See remark below.

- REMARK  The above assertion is in fact a direct consequence or just a restatement of the

‘ 20The detalls can be found.in standard textbooks on iAdvanced Calculus. (see“e.g. [Heu95}). For np =2 -
" the above result follows fromr Green’s Thedrem and for: nz "3 frém.Stoke’s Theorem
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proof to Lemma 1. It has been mainly formulated for its practical value and will be re-
ferred to later. In particular, we note that any optimal equilibria are the same for the two
OCPs and can be therefore also determined by (2.85)-(2.86), subject to (2.87) and (2.92)
for vo = 0.

Discrete Time. The above results carry (under somewhat stronger assumptions) over to
the discrete-time case. To show this consider the system

Thpr = fil@k,ug), (2.94)
zhp = falzk,ui), | (2.95)

where fi : X x R™ — R™ and f : X x K™ — R" are continuous functions, and

1
Ty = [ z’%’ ] € X := X1 x Xy with X and ni, m1,ng, my as above.

Introduce the time-invariant discounted IH OCP,

00 .
> e ™ h(zk, uy) — min, ~(2.96)
k=0
subject to (2.94)—(2.95), and
(up,ui) € Q(z}) x Q2(z7). (2.97)

The following assumptions (B1)-(B3) are analogous to the hypotheses (31)4(1-33) in contin-
uous time.

(B1) For any given admissible zx and .1, the control u in (2.95) is uniquely determined
Vk, i.e., there is a well-defined function ¢ : X x X3 — R™2 such that

uj = ((zk, Tsn);
Y (zk,7%,,) € X X X.

' (B2) The mapping ¢: X3 x X3 > R,
(1:%155%4.1) = gg}g{hk([ :f% ] ,§([ fﬁ ] v1’7%+1))} = ¢(-’vi,wi+1)

exists and is of the form

¢z}, 7o) = a(zi) + Plzipr) — P(2k) (2.98)

V(z%,73,,) € X2 X Xo, VE > 0, whereby ¢, ¢ : Xo — R are piecewise continuous
such that for a given constant r > 0 the function

g(ef) — (1 +€77) P(afs)
is bounded from below, i.e.,

. 2 : . 2
= min iy o — 1N
mq X, Q(§ )1 My, 5261)1(12 "l’(‘f )
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- 1
both exist and are finite. In addition, assume that there is a state z,p,; = [ :gpt :l

opt
that satisfies

Ty = arg Engi)gzq(fz) and z5, = arg gggzw(ez), (2.99)
1 {h[ ¢ ] <([ ¢ ] 0)} (2.100)
T = ar in . , . .
opt 8 EIln X1 x%pt x%pt

(133) There exists an (équilibriuni) control (uby;, u2,) € Qu1(zgy) X Qo(22,,) satisfying

0 = fl(zoptau};pt)a (2.101)

u%pt = ((zopt,0). (2.102)

Lemma 3 Consider the OCP (2.96), subject to (2.94)-(2.95), and assume that the con-
ditions (B1)—-(B3) are satisfied. Then, (Zopt,Uopt) s an optimal (equilibrium) state-control
tuple.

1

Proof. For any z = [ 22 ] € X, y € X define

A(z,y) = h(z,((z,y)) — $(z*,y)-
The function A : X x X5 — R is positive semi-definite, since V (z,y) € X x Xo:
Ma) = hade) - mipthl| 5 ¢ & | 2o
£€X, z z
| In addition A(z, y)v = 0, whenever (z,y) € P with PcX ><X2a h;rperplan'e defined by
P:  h(z,((z,y)) = 6(z*y).

As a consequence, we have for that any (zk,mﬁ +1) € X x Xo:

Ze "Rh(zk, ug) = Z Tk (q +¢‘($k+1) 1/J(:xi)v"‘A(xkvvxiﬂ))

k=0

bl

il
Ms

e { (a(ad) +(1 = e )$latis) + Alzr;ati))

a
Il
o

+ () — $(ad) }
= —'¢'($0) + Z e (q(z}) + (1 —€ 7-) ¢(-’3£+1) + A(a:k,:z:%+1)) :

v

i — ¢(:so)+ e - (2.103)

_e"'
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8
—

8I

The lower bound in (2.103) is achieved for any initial equilibrium state T = [

which

Z]GXfor

_9 . 2 : 2
I~ = arg min = arg min
- arg min g(¢°) g i (¢ )

and (%,z°) € P.
The state Z is an (admissible) equilibrium, if and only if

((z,2%) € Q(z%), and
3a! € Q(z') such that 3! = f,(z,3'),

which completes the proof. |

REMARK
1. For ¢(z2,22, ) = ¢/(z2) + ¢"(z},,) the functions ¥ and g are simply determined by
p=¢", q=¢+4¢"

2. Note that the assumed representation (2.98) for ¢ is quite restrictive. In particular,
it does generally not allow a simple discretization of (2.84), the form of ¢ in the
continuous-time case. This limits the utility of Lemma 3 considerably, so that we will
not formulate an (apparent) analogon to Lemma 2 here.

2.5 Robustness Issues

Most of the stability results in Section 2.3 were obtained without specific consideration of
how long the prediction horizon has to be so that the optimal moving horizon cost-to-go
is guaranteed to stay in a meighborhood of the optimal infinite horizon cost-to-go. Such
statements are important however for the practical applicability of the theory. In particular

this yields.guidelines for the decision maker of how to structure the decision making process,
- and over which prediction horizon a policy has to be devised so as to avoid the costly un-

stable and cyclical decision making, that is being observed frequently in practice, cf. [PS93].

We will limit our discussion to time-invariant systems and discounted cost in the continuous-
time case, that we have treated in Section 2.3.2. Generically speaking for IH OCPs with
discounted cost kernel lower bounds for time horizons are quite easy to obtain, since the
optimal cost-to-go functions decay exponentially (cf. (2.65) on page 42). Figure 2-3 illus-
trates this point.

Thus, knowing that the state is within some J-neighborhood of the optimal equilibrium
state z¢ implies bounds on the cost functional. On the other hand, knowledge about bounds
on the cost-functional such as relations (2.76) or (2.78), can be used to conclude that the
state has to be within a neighborhood of z¢ after a certain time 7. More specifically, if
there exist Koo functions ¢y, @2 such that for an optimal cost-to-go V(t,z) = e~V (z) :

#1(6) < V(t,2) < ¢2(6),
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VY § > 0, then for any fized § > 0 one can conclude that
V(t + 7, w) < (P1(6)1

and
lz(t + 1) — z°| <6,

for some large enough 7 (cf. Figure 2-3). In the case of the MH OCP with discounted cost
in Section 2.3.2 we found that

S L ‘Pc(”m_xe”) . N\ - .
Zzeé’..‘?;.’fm=>1“(%(llz—.ze||>> K@ (21049

is sufficient for a given initial state Z, if the prediction horizon T satisfies

T > max{T,, Ty} + . (2.105)

¢2(1x - x°|))

‘V(tax) t=0 -

RN
N\ —

e1(llx—x°|) t=1

" Figure 2-3: Time Horizon Robustness.
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2.6 A Nonlinear Example

The following nonlinear ODE state space model describes a firm in a diffusive market
environment that can chose its marketing expenditures c;u; and the price for its product us :

T, = -—ai1T1+ U1, (2.106)
1',‘2 = D(:L‘,UQ)—ﬂ:L’Q, (2.107)

where the demand D for the product is given by
D(z,u2) := (T2max — Tu2 — Z2)(a2z1 + 0322). | (2.108)
The ‘niarketing effect’ z; is modeled to follow the control
u; € Q1 = [0, 00), (2.109)

via a first-order lowpass with characteristic time 1/a; and to impact linearly on g, the
rate of change of the ‘products in use’. More specifically, z2(t) represents the installed base
at time ¢, which can never exceed the market potential T9max. The products are assumed
to have a finite ‘average’ life-time (1/03), so that for a vanishing demand the installed base
decays to zero exponentially at the rate 8 > 0. In addition, the demand cannot be negative
and the choice of the price is therefore confined to

ug € Qo(z2) = [0, (T2 max — Z2)/7)- (2.110)
The optimal control problem of maximizing at time ¢ > 0 discounted profits II;, or equiva-
lently minimizing discounted cost J; := —II; can therefore be written in the form
(o] .
Ji = / e (cl'u,l - uzD(:z:,uz)) df — min, (2.111)
¢

subject to (2.106)-(2.110), for all admissible initial states (z1(t), z2(t)) =: (Z1,Z2) given by
(:fl,f:z) € X1 x Xy := [0,00) X [0:$2max]- (2.112)

All the parameters o, ¢1, 7, 7, T2 max are given positive constants, whereby we will set vy =1
- henceforth. This choice of -y can be made without loss of generality, since the system equa-
tions (2.106)-(2.107) for v # 1 can be reduced to the case ¥ = 1 by considering 3 := z2/v
and Zamax := ZTamax/7y instead of za and T2max in equation (2.107).

Below, we will find the only optimal equilibrium state using Lemma 1. Then complete
controllability will be established in the whole part of the state space that can contain can-
didates for optimal equilibrium states. It will be shown that this subset C can be reached
from almost any other state in the state space and estimates for the time to steer the system
to an optimal state will be provided. Such estimates can be made independent of initial
and final state of a trajectory on any connected compact subset Y of C.

Optimal Equilibrium State. Detvermining an optimal equilibrium state — in the sense
-that once such a state has been reached, it cannot be improved upon — by using PMP or
Bellman’s equation is not an easy task. Instead we try to apply Lemma 1. From equa-
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tion (2.107) one obtains

Ty + Bz2
Uy = ————————— + Tomax — T2,
QoT1 + (3T2

V admissible (z1,z2) # 0. Defining vy := Z; we have that the function ¢ : ([e1,00) %
[62,$2max]) X R - R,

(5, 03) = ——22 + B2

e e — 3, 2.113
QT + a3T2 + T2max ~ 22 ) ( )

is well-defined for any fixed, small enough ‘e‘l, €2 > 0 such that €; + €2 > 0.

The cost J¢ in (2.111) can be re-written using (2.106) as follows:

Jy = / e~ (c1(&1 + 0121) — up D(z,us)) d
t

00 . d
= / [e—r0 (c1(r + a1)z1 — uaD(z,u2)) + €155 (e‘raffh)] do
= d6

[ee]
= / e "h(x,up) dO — cre T, (2.114) -
t

where in (2.114) we have introduced a cost kernel

h(z,u2) := é171 — uaD(z,u2), (2.115)

with & :=¢1(r + @) and z := [ 21 ]
2

Substituting the expression for us = ((z,vs) into the cost kernel h(z,us) yields

(v2 + Bz2)?

h =c
(z,((z,v2)) = G121 + pP————

= (T2max — T2)(v2 + B22),
which can be minimized with respect to-z, € Xi so asto obtain

min {h(z,((z,v2))} = ¢(z2,v2),

T1€X1

where

c asc . N
P(z2,v2) = 24/ ;—12(1)2 + fz3) — ;—2122 — (T2 max — Z2)(v2 + Bz2)
= (k122 + Bz3) + (k2 + T2)v2,

SIS F PRI

" and the constants ky; kp given'by
c c

kh = 2 _1,B—a3_];-ﬁ$2maxa
2 (0]
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