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Materials designed to undergo a phase transition at a prescribed temperature have been advanced as 

elements for controlling thermal flux.  Such phase change materials can be used as components of 

reversible thermal diodes, or materials that favor heat flux in a preferred direction; however, a 

thorough mathematical analysis of such diodes is thus far absent from the literature.  Herein, it is 

shown mathematically that the interface of a phase change material with a phase invariant one can 

function as a simple thermal diode.  Design equations are derived for such phase change diodes, 

solving for the limits where the transition temperature falls within or outside of the temperature 

gradient across the device.  Criteria are derived analytically for the choice of thermal conductivity of 

the invariant phase to maximize the rectification ratio.  Finally, the model is applied to several 

experimental systems in the literature, providing bounds on observed performance.  This model should 

aid in the development of materials capable of controlling heat flux. 

1. Introduction 
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A thermal rectifier, the thermal analog to the electrical diode, is a device characterized by a preferential 

direction for heat flow.[1] The degree of thermal rectification is typically quantified under steady state 

conditions. It is equal to the ratio of the magnitudes of forward heat flux and reverse heat flux under 

forward and reverse temperature bias conditions of identical magnitudes, respectively.  

We can consider a 1-D system in contact with a hot temperature boundary condition, 𝑇𝑇𝐻𝐻, on one side 

and a cold temperature boundary condition, 𝑇𝑇𝐶𝐶, on the opposing side. This temperature bias will 

provide a steady state heat flux, 𝑞𝑞+, in the direction from 𝑇𝑇𝐻𝐻 to 𝑇𝑇𝐶𝐶. A reversal of the temperature bias, 

while maintaining its magnitude, yields the steady state heat flux, 𝑞𝑞−, in the opposite direction. In the 

case of a thermal rectifying device, the magnitudes of these two heat fluxes will be unequal, and their 

ratio is termed the rectification ratio, 𝑄𝑄. 

An asymmetrical thermal conductance was first recognized experimentally at the interface of copper 

and copper oxide in 1936 by Starr et al.[2] The phenomenon of thermal rectification has paved the way 

for the field of phononics[1] via the development of thermal transistors,[3-6] thermal logic circuits,[7] and 

thermal memory.[8] Furthermore, thermal diodes have a vast array of applications in the fields of nano-

scale and micro-scale heat management.[9,10]  Various strategies have been implemented for 

experimentally demonstrating a thermal rectifier. Researchers have applied electronic principles, such 

as semiconductor technology, towards thermal diode design.[2,11-12] In addition, the incorporation of 

geometric asymmetries into nano-structured, micro-structured, and bulk devices has yielded promising 

results.[13-17] The manipulation of contact areas between interfaces, due to thermal warping, has also 

proven successful as a thermal diode design.[10]  

A promising method for developing a device with thermal rectification is to introduce a non-linear 

element, such as a material with a temperature-dependent thermal conductivity, into the system. 

Furthermore, in order to break the symmetry imposed by the boundary conditions, an additional 
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element, linear or non-linear, should be interfaced with the non-linear element, introducing a space 

dependency for thermal conductivity. Mathematically, this corresponds to transforming the system’s 

steady state energy balance from a non-linear autonomous differential equation to a non-linear non-

autonomous differential equation. For example, a device composed of a material with a temperature-

dependent thermal conductivity (non-linear element) interfaced with a material with a temperature-

independent thermal conductivity (linear element) would satisfy these constraints. Ideally, it is 

envisioned that the two interfaced materials would have opposing trends in thermal conductivity as a 

function of temperature. Experimental observations of thermal rectification due to interfaces between 

materials of different thermal conductivity temperature dependencies date to the 1970s.[18-20] Current 

examples of thermal rectifiers that incorporate this design have been demonstrated experimentally by 

Takeuchi et al. and Kobayashi et al., achieving rectification ratios up to 1.43.[15, 21-22]   

Several strides have been made towards the numerical and analytical modeling of these non-linear 

systems at steady state. M. Peyrard analyzed such a system with basic continuum laws of heat 

conduction.[23] He proposed modelling the steady state thermal diode system with a non-linear non-

autonomous differential equation. The system’s rectification ratio can then be calculated through self-

consistent iteration, provided data for the materials’ thermal conductivities as a function of temperature 

are available. It should be noted that Kobayashi et al. used this numerical approach to calculate the 

theoretically predicted rectification ratios of their system, which agreed well with their experimental 

values.[15, 21] Hu et al. simulated such a thermal diode system by performing Hamiltonian mechanics 

calculations of coupled 𝜑𝜑4 and Frenkel-Kontorova lattices, in order to simulate the opposing trends of 

thermal conductivity with respect to temperature.[24] On a similar note, researchers have also modeled 

coupled segments with different thermal conductivity temperature dependencies with two-dimensional 

asymmetrical Ising models.[25] C. Dames developed an analytical model for this two-segment system 

by approximating the thermal conductivities with power law expressions and solving the resulting 
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differential equations with perturbation analysis. The analysis agreed well with experimental results in 

literature and provided more insight towards the design of such devices.[26] 

Employing phase change materials to obtain a variation in physical properties with respect to 

temperature is an emerging avenue for designing thermal diodes.[27-30] Recently, a thermal diode was 

developed with a two-segment design consisting of nitinol and graphite. Nitinol, a nickel titanium 

alloy, undergoes a change in thermal conductivity as the material transitions between the austenite and 

martensite crystal structures. Researchers have reported experimental thermal rectification ratios up to 

1.47 for such a device.[27] A concept for a phase-change radiative thermal diode has also been 

proposed.[28] A two-segment device consisting of poly(N-isopropylacrylamide) (PNIPAM), a phase-

changing polymer, and polydimethylsiloxane (PDMS) has also been demonstrated to show thermal 

rectification. Below the lower-critical-solution-temperature (LCST) of the PNIPAM polymer, water is 

immobilized throughout the polymer. However, above the LCST the water exits the polymer, which 

changes its configuration and reduces its size. In this case, the thermal conductivity of the PNIPAM 

does not necessarily alter. Rather, the effective thermal conductivity of the composite system changes, 

yielding thermal rectification when interfaced with PDMS, which has a temperature-independent 

thermal conductivity. A simple model based on a smooth step change in effective thermal resistance 

with respect to temperature for the PNIPAM was proposed by the researchers to model the system. 

This model was analyzed numerically, and it yielded thermal rectification estimates close to the 

experimental values obtained.[29]  

The intent of this paper is to further the understanding of thermal rectifying devices that are based on 

changes in thermal conductivity due to phase transitions. A simple, analytical model based on 

continuum laws of heat conduction at steady state will be proposed for understanding the relevant 

thermal resistances for device optimization. Furthermore, this model will be applied to experimental 

data existing in the literature and compared to numerical calculations based on the method outlined by 
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M. Peyrard.[23] Finally, this model will be used to elucidate optimal design strategies for other potential 

phase change thermal diodes based on data present in the literature. 

2. Problem Statement 

Consider the junction of two 1-D materials A and B, of lengths 𝐿𝐿𝐴𝐴 and 𝐿𝐿𝐵𝐵, respectively, and with 

material B possessing a first-order phase transition at temperature 𝑇𝑇∗ from phase B1 at a temperature 

below 𝑇𝑇∗ to phase B2 at a temperature above 𝑇𝑇∗. For simplicity, we refer to A as the invariant material, 

having no phase transition for all 𝑇𝑇. The temperature-dependent thermal conductivity of material A is 

𝑘𝑘𝐴𝐴(𝑇𝑇) while B has thermal conductivity 𝑘𝑘𝐵𝐵,1(𝑇𝑇) for phase 1 and 𝑘𝑘𝐵𝐵,2(𝑇𝑇) for phase 2. We analyze the 

case where this material is temperature-controlled, such that the external boundary of A is maintained 

isothermally at T2 while the external boundary of B is at T1, and the heat flux in the system reaches a 

stationary state.  Figure 1a depicts the physical schematic of the junction of materials A and B.  We 

first assume that 𝑇𝑇1 < 𝑇𝑇∗ < 𝑇𝑇2, and in the case of Figure 1a, this implies that phase B1 is the low 

temperature phase, transitioning to phase B2 upon heating the system above 𝑇𝑇∗.  We therefore 

anticipate a phase boundary at a distance δ from the external B interface as shown in Figure 1a, which 

varies with 𝑇𝑇1 and 𝑇𝑇2, the lengths of each material, 𝐿𝐿𝐴𝐴 and 𝐿𝐿𝐵𝐵, and the thermal properties of the 

composite system.   

Fourier’s Law for material A and for each phase of material B at steady state is as follows: 

                                                           𝜕𝜕
𝜕𝜕𝜕𝜕

 � 𝑘𝑘𝐴𝐴(𝑇𝑇) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 0     (1) 

                                                         𝜕𝜕
𝜕𝜕𝜕𝜕

 � 𝑘𝑘𝐵𝐵,1(𝑇𝑇) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 0                                                     (2) 

                                                         𝜕𝜕
𝜕𝜕𝜕𝜕

 � 𝑘𝑘𝐵𝐵,2(𝑇𝑇) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 0                                                     (3) 

The heat flux through the 1-D system must be invariant at steady state, such that: 
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                                            𝑘𝑘𝐴𝐴(𝑇𝑇) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘𝐵𝐵,1(𝑇𝑇) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘𝐵𝐵,2(𝑇𝑇) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑞𝑞                                         (4) 

With 𝑥𝑥 = 0 taken as the external B interface, the boundary conditions become: 

                                                               𝑇𝑇(𝑥𝑥 = 0) = 𝑇𝑇1                                                        (5) 

                                                              𝑇𝑇(𝑥𝑥 = 𝛿𝛿) = 𝑇𝑇∗                                                         (6) 

                                                              𝑇𝑇(𝑥𝑥 = 𝐿𝐿𝐵𝐵) = 𝑇𝑇𝑖𝑖                                                        (7) 

                                                         𝑇𝑇(𝑥𝑥 = 𝐿𝐿𝐴𝐴 + 𝐿𝐿𝐵𝐵) = 𝑇𝑇2                                                    (8) 

where 𝑇𝑇𝑖𝑖 is the interfacial temperature between materials A and B. Equal thermal flux boundary 

conditions existing at the interface between the two phases of material B and the interface between 

materials A and B are also applied. 

In order to quantify the magnitude of thermal rectification, the reversal of the temperature boundary 

conditions shown in Figure 1a needs to be considered. A reversal of these temperature boundary 

conditions yields Figure 1b. The ratio of the magnitudes of the thermal fluxes between the two systems 

described in Figure 1 yields the thermal rectification ratio for this system. Mathematically predicting 

the magnitude of thermal rectification can be approached analytically or numerically, as presented 

below.  

2.1. Case I: Constant Thermal Conductivities and {δ: 0 < δ < LB} 

The type of diode of primary consideration in this work is one enabled by the change of phase of B.  

Such a phase change diode can operate if 𝑇𝑇1 < 𝑇𝑇∗ < 𝑇𝑇2. For Case I, we further restrict the analysis to 

conditions such that {δ: 0 < δ < LB}. We consider the case of constant thermal conductivity for 

simplicity, noting that it applies in general for a diode operating about the temperature 𝑇𝑇∗ with a 
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relatively small-applied temperature gradient. Non-constant thermal conductivities can be treated in a 

manner described below in Case III.     

In this case, the linear temperature profiles for domains A, B1, and B2 for the system illustrated in 

Figure 1a are: 

                                                 𝑇𝑇𝐴𝐴(𝑥𝑥) = �𝜕𝜕2−𝜕𝜕𝑖𝑖
𝐿𝐿𝐴𝐴

� (𝑥𝑥 − 𝐿𝐿𝐵𝐵) + 𝑇𝑇𝑖𝑖                                                     (9) 

                                                    𝑇𝑇𝐵𝐵,1(𝑥𝑥) = �𝜕𝜕
∗−𝜕𝜕1
𝛿𝛿
� 𝑥𝑥 + 𝑇𝑇1                                                          (10) 

                                                𝑇𝑇𝐵𝐵,2(𝑥𝑥) = �𝜕𝜕𝑖𝑖−𝜕𝜕
∗

𝐿𝐿𝐵𝐵−𝛿𝛿
� (𝑥𝑥 − 𝛿𝛿) + 𝑇𝑇∗                                                   (11) 

The interfacial temperature 𝑇𝑇𝑖𝑖 is a function of thermophysical properties and applied temperatures: 

                                           𝑇𝑇𝑖𝑖 = −�𝑘𝑘𝐵𝐵,2(𝜕𝜕2−𝜕𝜕∗)+𝑘𝑘𝐵𝐵,1(𝜕𝜕∗−𝜕𝜕1)
𝑘𝑘𝐴𝐴𝐿𝐿𝐵𝐵+𝑘𝑘𝐵𝐵,2𝐿𝐿𝐴𝐴

� 𝐿𝐿𝐴𝐴 + 𝑇𝑇2                                             (12) 

while the phase boundary in B appears at: 

                                           δ1−2 = 𝑘𝑘𝐵𝐵,1
𝑘𝑘𝐴𝐴

(𝜕𝜕∗−𝜕𝜕1)(𝑘𝑘𝐴𝐴𝐿𝐿𝐵𝐵+𝑘𝑘𝐵𝐵,2𝐿𝐿𝐴𝐴)
𝑘𝑘𝐵𝐵,2(𝜕𝜕2−𝜕𝜕∗)+𝑘𝑘𝐵𝐵,1(𝜕𝜕∗−𝜕𝜕1)

                                                       (13) 

where the subscript 1-2 indicates the direction of the imposed temperature gradient, as evidenced by 

the locations of 𝑇𝑇1 and 𝑇𝑇2. 

The magnitude of the steady flux through this system is then: 

                                         |𝑞𝑞1−2| = 𝑘𝑘𝐴𝐴 �
𝑘𝑘𝐵𝐵,2(𝜕𝜕2−𝜕𝜕∗)+𝑘𝑘𝐵𝐵,1(𝜕𝜕∗−𝜕𝜕1)

𝑘𝑘𝐴𝐴𝐿𝐿𝐵𝐵+𝑘𝑘𝐵𝐵,2𝐿𝐿𝐴𝐴
�                                                   (14) 

where the subscript 1-2 indicates the direction of the imposed temperature gradient, as evidenced by 

the locations of 𝑇𝑇1 and 𝑇𝑇2. 
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If we consider the flux in the opposing direction, should 𝑇𝑇1 be applied instead to the 𝑥𝑥 = 𝐿𝐿𝐴𝐴 + 𝐿𝐿𝐵𝐵 

boundary, and 𝑇𝑇2 applied to 𝑥𝑥 = 0 boundary, we note that the ordering of the phases necessarily 

changes to that of Figure 1b.  Specifically, phase 𝐵𝐵2, and not phase 𝐵𝐵1, becomes the external boundary 

for the B domain.  From symmetry, we can set 𝑇𝑇1 → 𝑇𝑇2 and 𝑘𝑘𝐵𝐵,1 → 𝑘𝑘𝐵𝐵,2 to find the opposing flux 

under this condition: 

                                        |𝑞𝑞2−1| = 𝑘𝑘𝐴𝐴 �
𝑘𝑘𝐵𝐵,1(𝜕𝜕∗−𝜕𝜕1)+𝑘𝑘𝐵𝐵,2(𝜕𝜕2−𝜕𝜕∗)

𝑘𝑘𝐴𝐴𝐿𝐿𝐵𝐵+𝑘𝑘𝐵𝐵,1𝐿𝐿𝐴𝐴
�                                                         (15) 

Interestingly, the rectification ratio becomes: 

                                              𝑄𝑄 = |𝑞𝑞1−2|
|𝑞𝑞2−1| = 𝑘𝑘𝐴𝐴𝐿𝐿𝐵𝐵+𝑘𝑘𝐵𝐵,1𝐿𝐿𝐴𝐴

𝑘𝑘𝐴𝐴𝐿𝐿𝐵𝐵+𝑘𝑘𝐵𝐵,2𝐿𝐿𝐴𝐴
                                                                      (16) 

The model proposed above is valid under the following circumstances: 

                                           0 < 𝛿𝛿1−2 < 𝐿𝐿𝐵𝐵   𝑎𝑎𝑎𝑎𝑎𝑎   0 < 𝛿𝛿2−1 < 𝐿𝐿𝐵𝐵                                                    (17) 

Application of these inequalities yields constraints for the validity of the model:   

                                                     𝑘𝑘𝐴𝐴
𝑘𝑘𝐵𝐵,2

> 𝐿𝐿𝐴𝐴
𝐿𝐿𝐵𝐵

(𝜕𝜕∗−𝜕𝜕2)
(𝜕𝜕1−𝜕𝜕∗)

      (from 𝛿𝛿2−1)                                                     (18)                              

                                                     𝑘𝑘𝐴𝐴
𝑘𝑘𝐵𝐵,1

> 𝐿𝐿𝐴𝐴
𝐿𝐿𝐵𝐵

(𝜕𝜕∗−𝜕𝜕1)
(𝜕𝜕2−𝜕𝜕∗)

       (from 𝛿𝛿1−2)                                                     (19) 

Therefore, when the thermophysical properties and applied temperature gradient satisfy Equation (18) 

and (19), Equation (16) can be used to predict the thermal rectification ratio for the system. For 

systems in which the applied temperature gradient and thermophysical properties yield 𝛿𝛿 ≥ 𝐿𝐿𝐵𝐵, 

indicating the absence of a phase boundary, a different model needs to be considered. The parameter 𝛿𝛿 

was originally defined as the distance from the external B interface at which a phase boundary occurs. 

Physically, a phase boundary cannot exist at 𝛿𝛿 ≥ 𝐿𝐿𝐵𝐵 because this is in the domain of material A. This 
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constraint should then be physically interpreted as the position in the composite material at which the 

temperature is 𝑇𝑇∗. 

2.2. Case II: Constant Thermal Conductivities and {δ: δ ≥ LB} 

Under certain conditions, the phase change material will exist as a single phase under both sets of 

temperature boundary conditions (1-2 and 2-1). In other words, for certain systems and boundary 

conditions, there will be no phase change boundaries within the phase transition material. Figure 2 

qualitatively illustrates the thermal conductivity distributions of such a system for a general set of 

temperature boundary conditions. This system can be analyzed as a combination of linear systems, 

which have a change in thermal conductivity of the phase change material upon reversal of the 

temperature bias. A steady state solution for this linear system can be obtained by applying the 

appropriate temperature boundary conditions at the ends of the two-segment system and equal 

temperature and equal thermal flux constraints at the interface. Equation (20) and (21) are the 

temperature profiles for the phase change material and the invariant material, respectively, under the 

temperature bias shown in Figure 2a.  

                                                            𝑇𝑇𝐵𝐵(𝑥𝑥) = (𝜕𝜕𝑖𝑖−𝜕𝜕1)
𝐿𝐿𝐵𝐵

𝑥𝑥 + 𝑇𝑇1                                                         (20)                                   

                                                  𝑇𝑇𝐴𝐴(𝑥𝑥) = (𝜕𝜕2−𝜕𝜕𝑖𝑖)
𝐿𝐿𝐴𝐴

(𝑥𝑥 − 𝐿𝐿𝐵𝐵) + 𝑇𝑇𝑖𝑖                                                          (21) 

Again, the interfacial temperature 𝑇𝑇𝑖𝑖 is a function of thermophysical properties and applied 

temperatures: 

                                                               𝑇𝑇𝑖𝑖 = 𝑘𝑘𝐴𝐴𝐿𝐿𝐵𝐵𝜕𝜕2+𝑘𝑘𝐵𝐵,1𝐿𝐿𝐴𝐴𝜕𝜕1
𝑘𝑘𝐵𝐵,1𝐿𝐿𝐴𝐴+𝑘𝑘𝐴𝐴𝐿𝐿𝐵𝐵

                                                            (22) 

The magnitude of the steady state flux though the system is then: 
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                                                            |𝑞𝑞1−2| = 𝑘𝑘𝐴𝐴𝑘𝑘𝐵𝐵,1(𝜕𝜕2−𝜕𝜕1)
𝑘𝑘𝐴𝐴𝐿𝐿𝐵𝐵+𝑘𝑘𝐵𝐵,1𝐿𝐿𝐴𝐴

                                                             (23) 

where the subscript 1-2 indicates the direction of the imposed temperature gradient, as evidenced by 

the locations of 𝑇𝑇1 and 𝑇𝑇2. 

If we consider the flux in the opposing direction, should 𝑇𝑇1 be applied instead to the 𝑥𝑥 = 𝐿𝐿𝐴𝐴 + 𝐿𝐿𝐵𝐵 

boundary, and 𝑇𝑇2 applied to 𝑥𝑥 = 0 boundary, we note that the ordering of the phases necessarily 

changes to that of Figure 2b.  From symmetry, we can set 𝑇𝑇1 → 𝑇𝑇2 and 𝑘𝑘𝐵𝐵,1 → 𝑘𝑘𝐵𝐵,2 to find the 

opposing flux: 

                                                                   |𝑞𝑞2−1| = 𝑘𝑘𝐴𝐴𝑘𝑘𝐵𝐵,2(𝜕𝜕2−𝜕𝜕1)
𝑘𝑘𝐴𝐴𝐿𝐿𝐵𝐵+𝑘𝑘𝐵𝐵,2𝐿𝐿𝐴𝐴

                                                         (24) 

The rectification ratio is then given by Equation (25), which is a result supported by recent analytical 

work performed by Zhang et al.[30] 

                                                              𝑄𝑄 = |𝑞𝑞1−2|
|𝑞𝑞2−1| = 𝑘𝑘𝐵𝐵,1(𝑘𝑘𝐵𝐵,2𝐿𝐿𝐴𝐴+𝑘𝑘𝐴𝐴𝐿𝐿𝐵𝐵)

𝑘𝑘𝐵𝐵,2(𝑘𝑘𝐵𝐵,1𝐿𝐿𝐴𝐴+𝑘𝑘𝐴𝐴𝐿𝐿𝐵𝐵)
                                                (25) 

Again, Equation (25) can only be applied to determine the thermal rectification of the system if 𝛿𝛿 ≥ 𝐿𝐿𝐵𝐵 

for both sets of boundary conditions. In other words, the following inequalities must be satisfied in 

order to apply this model: 

                                                        𝑘𝑘𝐴𝐴
𝑘𝑘𝐵𝐵,2

≤ 𝐿𝐿𝐴𝐴
𝐿𝐿𝐵𝐵

(𝜕𝜕∗−𝜕𝜕2)
(𝜕𝜕1−𝜕𝜕∗)

       (from 𝛿𝛿2−1)                                                 (26)                                     

                                                       𝑘𝑘𝐴𝐴
𝑘𝑘𝐵𝐵,1

≤ 𝐿𝐿𝐴𝐴
𝐿𝐿𝐵𝐵

(𝜕𝜕∗−𝜕𝜕1)
(𝜕𝜕2−𝜕𝜕∗)

         (from 𝛿𝛿1−2)                                                 (27) 

It can be envisioned that certain thermophysical properties and temperature boundary conditions will 

exist for a device such that for one set of boundary conditions the temperature profile will be 

appropriately modeled by Equation (9-13), while the reverse boundary conditions will be appropriately 
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modeled with Equation (20-22). Under these circumstances, neither Equation (16) nor Equation (25) is 

valid to predict the thermal rectification ratio for the system. The thermal rectification ratio for these 

systems can be calculated by mixing the models proposed in Case I and Case II.  

For   𝑘𝑘𝐴𝐴
𝑘𝑘𝐵𝐵,2

≤ 𝐿𝐿𝐴𝐴
𝐿𝐿𝐵𝐵

(𝜕𝜕∗−𝜕𝜕2)
(𝜕𝜕1−𝜕𝜕∗)

    and 𝑘𝑘𝐴𝐴
𝑘𝑘𝐵𝐵,1

> 𝐿𝐿𝐴𝐴
𝐿𝐿𝐵𝐵

(𝜕𝜕∗−𝜕𝜕1)
(𝜕𝜕2−𝜕𝜕∗)

 

                                                  𝑄𝑄 = 𝑘𝑘𝐵𝐵,1(𝜕𝜕∗−𝜕𝜕1)+𝑘𝑘𝐵𝐵,2(𝜕𝜕2−𝜕𝜕∗)
𝑘𝑘𝐵𝐵,2(𝜕𝜕2−𝜕𝜕1)

                                                                  (28)                                              

For    𝑘𝑘𝐴𝐴
𝑘𝑘𝐵𝐵,2

> 𝐿𝐿𝐴𝐴
𝐿𝐿𝐵𝐵

(𝜕𝜕∗−𝜕𝜕2)
(𝜕𝜕1−𝜕𝜕∗)

     and          𝑘𝑘𝐴𝐴
𝑘𝑘𝐵𝐵,1

≤ 𝐿𝐿𝐴𝐴
𝐿𝐿𝐵𝐵

(𝜕𝜕∗−𝜕𝜕1)
(𝜕𝜕2−𝜕𝜕∗)

       

                                                𝑄𝑄 = 𝑘𝑘𝐵𝐵,1(𝜕𝜕∗−𝜕𝜕1)+𝑘𝑘𝐵𝐵,2(𝜕𝜕2−𝜕𝜕∗)
𝑘𝑘𝐵𝐵,1(𝜕𝜕2−𝜕𝜕1)

                                                                   (29)            

Table 1 summarizes the results for the estimation of the thermal rectification ratio as a function of the 

thermophysical system properties and the applied temperature gradient.       

2.3. Case III: Non-Constant Thermal Conductivities 

The system illustrated in Figure 1 has constant thermal conductivities as a function of temperature for 

material A and the two phases of material B. This system can be modeled as a combination of linear 

conducting elements. However, if a temperature-dependent thermal conductivity is present for material 

A or either of the phases for material B, numerical computation is required. Additionally, one can 

exclude from consideration the operation of the device in Figure 1 under conditions such that material 

B exists only in phase B1 (𝑇𝑇1,𝑇𝑇2 < 𝑇𝑇∗) or exists only in phase B2 (𝑇𝑇1,𝑇𝑇2 > 𝑇𝑇∗), since thermal 

rectification does not occur.  However, if non-constant thermal conductivities are present, thermal 

rectification can exist in these limits. This is the basis for the thermal diodes demonstrated 

experimentally by Kobayashi et al. and Takeuchi et al.[21-22] These devices need to be modeled 

numerically, unless the temperature dependencies of the thermal conductivity can be approximated 
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with power laws – a case in which the system can be modeled analytically by the method developed by 

C. Dames.[26] The method for numerically modeling such systems is described below, as developed by 

M. Peyrard.[23] 

For a system at steady state, with a space-dependent, temperature-dependent, and isotropic thermal 

conductivity, the energy balance is as follows:   

                                       ∇ ∙ (𝑘𝑘(𝑇𝑇(𝒙𝒙),𝒙𝒙) ∇𝑇𝑇(𝑥𝑥)) = 0                                                (30) 

where 𝑘𝑘 refers to the thermal conductivity, 𝑇𝑇 refers to the temperature, and 𝒙𝒙 refers to the position 

vector of the system. For a 1-D system Equation (30) can be simplified: 

                                                          𝐽𝐽 = 𝑘𝑘(𝑇𝑇(𝑥𝑥),𝑥𝑥) 𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

                                                     (31) 

where 𝐽𝐽 is the thermal flux due to conduction. The numerical analysis proposed by M. Peyrard employs 

an alternative form of Equation (31) in order to solve for the thermal rectification and temperature 

profile of a system:[23] 

                                                 𝑇𝑇(𝑥𝑥) − 𝑇𝑇(0) = ∫ 𝐽𝐽
𝑘𝑘(𝜕𝜕(𝜕𝜕′),𝜕𝜕′)

𝑎𝑎𝑥𝑥′𝜕𝜕
0                                           (32) 

To numerically solve for the thermal rectification of a system using Equation (32), the thermal 

conductivity of the segments as a function of temperature must be known. An iterative, self-consistent 

approach is then taken to solve the equation. An initial guess for the temperature profile within the 

system is used in combination with the boundary conditions and the thermal conductivity data to solve 

for the conductive heat flux, 𝐽𝐽, of the system. Values for the temperature profile, 𝑇𝑇(𝑥𝑥), can then be 

generated and compared with the initial guess for the temperature profile. A non-linear optimization 

method can be used to minimize the difference between the calculated and guessed temperature 
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profiles. This was the strategy used by Kobayashi et al. to compare their experimental rectification 

ratios to their theoretical calculations.[21]  

2.4. Optimization of a Phase Change Thermal Diode: 

For device optimization, there are three independent parameters which can be varied for a given 

𝑘𝑘𝐵𝐵,1 & 𝑘𝑘𝐵𝐵,2: 

𝐿𝐿� =
𝐿𝐿𝐴𝐴
𝐿𝐿𝐵𝐵

 𝑎𝑎𝑎𝑎𝑎𝑎  𝑘𝑘𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇� =  
𝑇𝑇∗ − 𝑇𝑇1
𝑇𝑇2 − 𝑇𝑇1

 

In order to analyze the design of such a device, let us first assume a system with 𝑘𝑘𝐵𝐵,1 > 𝑘𝑘𝐵𝐵,2 and 

investigate the effect of the three independent parameters (𝐿𝐿� ,𝑘𝑘𝐴𝐴,𝑇𝑇�) on the system’s thermal 

rectification performance. Figure 3a shows a piecewise volcano plot for device design at fixed 𝐿𝐿� = 1 

and 𝑇𝑇� = 0.1 values, for a certain system with 𝑘𝑘𝐵𝐵,1 = 50  W m-1 K-1 and 𝑘𝑘𝐵𝐵,2 = 1 W m-1 K-1. It is 

apparent that a maximum in rectification is approached as the two outer regions (Case I and Case II) 

converge towards a mixed model region, which is characterized by a Case I model in one temperature 

bias and a Case II model in the other temperature bias. Furthermore, it is clear that the device will yield 

an optimum thermal rectification ratio when the design is such that the transition temperature occurs at 

the interface between the phase change material B and the invariant material A under both temperature 

biases. This occurs at an ideal temperature bias, where the region modeled with Case I and the region 

modeled with Case II converges, such that the mixed model region collapses, as can be seen in Figure 

3b. 

Mathematically, the convergence of the Case I and Case II regions occurs when  𝛿𝛿 = 𝐿𝐿𝐵𝐵 for both 

temperature biases. This is a stricter constraint than that for Case II, which was presented in Equation 

(26) and (27), because it indicates that the device is operating such that 𝑇𝑇𝑖𝑖 = 𝑇𝑇∗. On the other hand, 

Equation (26) and (27) for Case II, only require that material B exists in a single phase and that 𝑇𝑇∗ can 
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occur anywhere within material A. Applying this constraint to Equation (26) and (27) yields Equation 

(33), indicating that there is an ideal 𝑇𝑇�  for device performance for a given 𝑘𝑘𝐵𝐵,1 and 𝑘𝑘𝐵𝐵,2.   

                                                                𝑇𝑇�𝑖𝑖𝑑𝑑 = �𝑘𝑘𝐵𝐵,2

�𝑘𝑘𝐵𝐵,2+�𝑘𝑘𝐵𝐵,1
                                                                   (33) 

where 𝑇𝑇�𝑖𝑖𝑑𝑑 refers to the ideal 𝑇𝑇�  for device performance. 

Application of this ideal temperature bias, 𝑇𝑇�𝑖𝑖𝑑𝑑, to Equation (26) or (27) yields Equation (34), which 

provides the necessary relationship between 𝑘𝑘𝐴𝐴 and 𝐿𝐿� for optimum device performance. In addition, 

application of Equation (33) to Equation (28) yields Equation (35), which provides the maximum 

thermal rectification ratio that can be obtained by the system. Equation (34) and (35) is supported by 

recent analytical work performed by Zhang et al.[30] 

                                                          𝑘𝑘𝐴𝐴 = 𝐿𝐿��𝑘𝑘𝐵𝐵,1𝑘𝑘𝐵𝐵,2                                                                        (34) 

                                                       𝑄𝑄𝑚𝑚𝑚𝑚𝜕𝜕 = �𝑘𝑘𝐵𝐵,1𝑘𝑘𝐵𝐵,2+𝑘𝑘𝐵𝐵,2

�𝑘𝑘𝐵𝐵,1𝑘𝑘𝐵𝐵,2+𝑘𝑘𝐵𝐵,1
                                                                    (35) 

where 𝑄𝑄𝑚𝑚𝑚𝑚𝜕𝜕 refers to the maximum thermal rectification ratio that can be achieved by the system when 

operated at the ideal temperature bias, 𝑇𝑇�𝑖𝑖𝑑𝑑, with the system’s thermal resistances also satisfying 

Equation (34). 

For the model system described in Figure 3, the application of Equation (33) and (35) indicates that 𝑇𝑇�𝑖𝑖𝑑𝑑 

and 𝑄𝑄𝑚𝑚𝑚𝑚𝜕𝜕 are 0.12 and 7.1, respectively. This thermal rectification will be achieved at the given 𝑇𝑇�𝑖𝑖𝑑𝑑 

provided that the thermal resistances within the system satisfy Equation (34). Figure 4 shows the 

evolution of a contour plot for the thermal rectification ratio as 𝑇𝑇�  is varied for this particular system. It 

is apparent that as 𝑇𝑇�𝑖𝑖𝑑𝑑 is approached from above and below, the mixed model region collapses and the 
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optimal rectification ratio enhances dramatically. In addition, the linear relationship between 𝑘𝑘𝐴𝐴 and 𝐿𝐿� 

is shown in the contour plots.  

3. Application to Experimental Phase Change Materials 

A thermal diode based on the junction between the crystalline phase change material nitinol (B) and 

the invariant material graphite (A) was developed by Garcia et al.[27] For this system 𝑘𝑘𝐵𝐵,1 and 𝑘𝑘𝐵𝐵,2 

would be defined by the crystal lattice structures of martensite (7.8 W m-1 K-1) and austenite (17.3 W 

m-1 K-1), respectively, for the nitinol phase change material (B). In addition, 𝐿𝐿� = 1 and 𝑇𝑇∗ = 330 𝐾𝐾, 

based on the reference data provided by Garcia et al. The invariant material (A), graphite, is assumed 

to have a temperature invariant thermal conductivity of 72.5 W m-1 K-1, also based on reference data 

provided by the researchers. For their thermal rectification measurements, the researchers maintained 

𝑇𝑇1 = 290 𝐾𝐾 and varied 𝑇𝑇2 up to 450 𝐾𝐾. Based on the provided temperature boundary condition values, 

𝑇𝑇�  ranges can be calculated and the applicable models for certain temperature boundary conditions can 

be determined. Figure 5a shows a comparison of the experimental thermal rectification results from 

Garcia et al. with numerically and analytically derived thermal rectification ratios for the system. The 

numerically derived thermal rectification ratios were obtained according to the strategy outlined for 

Equation (32), using the thermal conductivity data provided by Garcia et al. for nitinol and graphite as 

functions of temperature. The thermal conductivity data provided by the researchers were fitted to a 

smooth function in order to numerically calculate the expected thermal rectification ratios. It should be 

noted that the temperature range for the experimental thermal conductivity values for nitinol reported 

by Garcia et al. is 280 𝐾𝐾 < 𝑇𝑇 < 380 𝐾𝐾. Therefore, when 𝑇𝑇2 = 390 𝐾𝐾 and ∆𝑇𝑇 = 100 𝐾𝐾, the range of 

known thermal conductivity values for nitinol has been exceeded. In order to compare experimental 

data with the numerical and analytical models, it was assumed that above 𝑇𝑇 = 380 𝐾𝐾 the thermal 

conductivity plateaued at the value for austenite.  The analytical models applied to the system refer to 

15 
 



the Case I and Case II models, which were appropriately applied according to Table 1, depending on 

the applied temperature bias and the thermophysical properties of the system. The developed analytical 

models should only be applied to the experimental data with temperature biases enclosing the phase 

transition temperature. For that reason, analytically derived data points are not present as the 

temperature bias decreases in Figure 5a. It is apparent that the numerical and analytical calculations for 

the expected thermal rectification values are in agreement. In addition, the experimental thermal 

rectification values are in agreement with the models until ∆𝑇𝑇 = 100 𝐾𝐾 is reached. However, at 

temperature biases ∆𝑇𝑇 > 100 𝐾𝐾 – the range where we have extrapolated the thermal conductivity 

values for nitinol – the numerical and analytical models are no longer in agreement with the 

experimental thermal rectification values. We attribute this disagreement to the lack of experimental 

data for the thermal conductivity of the nitinol material above 𝑇𝑇 = 380 𝐾𝐾.  

A thermal diode based on a phase change polymer has been experimentally and conceptually discussed 

by Pallecchi et al.[29] The thermal diode consists of a PNIPAM-PDMS two-segment system, in which 

PNIPAM acts as the phase change material (B) and PDMS acts as an invariant material (A). 

Experimental thermal rectification values are not explicitly reported by Pallecchi et al. However, 

values for thermal fluxes under a variety of forward and reverse temperature biases are reported, refer 

to Figure 6a, which can be used to calculate experimental values for the thermal rectification of their 

system, as shown in Figure 6b. As previously mentioned, for application of the developed analytical 

models, it is necessary for the temperature biases to enclose the phase transition temperature. This 

accounts for the range of the experimental data provided in Figure 6a. The heat flux data for the 

forward and reverse temperature biases were fitted with linear regressions in order to calculate the 

experimental thermal rectification ratio as a function of the magnitude of the temperature bias, as 

shown in Figure 6b. Based on the thermal resistances and system dimensions provided by the 

researchers, the relevant values for modeling this system are: 𝑘𝑘𝐵𝐵,1 = 0.101 W m-1 K-1, 𝑘𝑘𝐵𝐵,2 = 0.396 W 
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m-1 K-1, 𝑘𝑘𝐴𝐴 = 0.101 W m-1 K-1, and 𝐿𝐿� = 1. Using these system parameters, the device constructed by 

Pallecchi et al. can be modeled with the analytical equations that have been presented, as shown in 

Figure 6b. The experimental results provided by Pallecchi et al. validate the developed analytical 

models, as indicated by the convergence of the experimental thermal rectification ratios (black) to the 

maximum predicted by the analytical model (green). Furthermore, the agreement between the 

experimental data and the analytical model indicates the utility of this straightforward, algebraic model 

towards accurately predicting thermal rectification performance and towards the effective design of 

such thermal diodes. 

The design strategy outlined in Equation (33-35) for attaining the maximum thermal rectification can 

be applied to the systems described by Garcia et al. and Pallecchi et al. Application of these equations 

yields the optimal temperature gradient and the maximum attainable thermal rectification ratio. For 

operation of the devices at the ideal temperature gradient, the performance of the system can be 

modeled as a function of the thermal conductivity of the invariant material (A), in order to determine 

the ideal material to couple to the phase change material. Therefore, we will consider the phase change 

materials (B) employed by Garcia et al. and Pallecchi et al., but we will design for a more appropriate 

phase-invariant material (A), other than graphite and PDMS, respectively. Figure 7 presents the results 

of these simulations. It should also be noted that the length scales for the devices proposed by Garcia et 

al. and Pallecchi et al. could have been adjusted according to Equation (34), instead of selecting 

another phase invariant material. Properly tuning the thermal conductivities or system length scales 

yields maximum thermal rectification ratios of 1.49 and 1.98 for the systems described by Garcia et al. 

and Pallecchi et al., respectively. For the thermal diode system developed by Garcia et al., this 

maximum thermal rectification ratio of 1.49 refers to the maximum thermal rectification ratio that can 

be attained within the window of operation constrained by the range of the experimental thermal 
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conductivity data – where the numerical and analytical models are in agreement with the experimental 

data. 

The ability to tune electrical and thermal conductivity with liquid-solid phase transitions in percolated 

composite materials has been recently reported in literature.[31] For a system of suspended graphite 

flakes in hexadecane, the room temperature liquid-solid phase transition results in a step-like change in 

thermal conductivity. Factors of 3.2 were reported for thermal conductivity amplification. In addition, 

the thermal conductivity showed stable, cycling behavior. For a 1 vol% suspension of graphite flakes 

in hexadecane, the relevant thermal properties are: 𝑘𝑘𝐵𝐵,1 = 1.2 W m-1 K-1 and 𝑘𝑘𝐵𝐵,2 = 0.4 W m-1 K-1. 

The ideal temperature gradient (𝑇𝑇�) for this system is 0.37 and the maximum achievable thermal 

rectification ratio is 1.73. Figure 7c provides insight towards the selection of the invariant material (A) 

to interface with the suspension such that optimal thermal rectification performance can be achieved. 

4. Conclusion 

In this work we have developed an analytical model based on continuum laws of heat conduction to 

describe thermal rectification in devices that incorporate phase transition materials. The analytical 

model can be used to understand the effects of the system’s thermal resistances, as well as the applied 

temperature gradients, on the device’s thermal rectification performance. For a given phase transition 

material (B), with a certain phase transition temperature (𝑇𝑇∗), as well as characteristic thermal 

conductivities for each phase (𝑘𝑘𝐵𝐵,1 𝑘𝑘𝐵𝐵,2), we outline a procedure for designing a thermal rectifying 

device with optimal performance using this analytical model. The procedure involves properly tuning 

the thermal resistances of the phase change material (B) and the phase invariant material (A), in 

addition to properly selecting a thermal bias for operation. 

The analytical model was applied to experimental data in literature for two thermal diodes, which 

incorporated phase change materials, developed by Garcia et al. and Pallecchi et al. The comparison 
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between the experimental data and the analytical predictions for the two thermal diode systems showed 

agreement. For the nitinol-graphite thermal diode system developed by Garcia et al., the analytical and 

numerical thermal rectification predictions were in agreement. Furthermore, the theoretical models, 

numerical and analytical, were in agreement with the experimental data reported by Garcia et al. until a 

temperature bias of ∆𝑇𝑇 = 100 𝐾𝐾 was reached. Temperature biases ∆𝑇𝑇 > 100 𝐾𝐾 exceeded the known 

range for the thermal conductivity of the nitinol material and account for the discrepancy between 

theory and experiment at larger temperature biases. Though thermal rectification ratios for the thermal 

diode system developed by Pallecchi et al. were not explicitly reported, the values were able to be 

calculated from reported thermal flux values as a function of temperature bias. The calculated, 

experimental thermal rectification ratios for the PNIPAM-PDMS thermal diode system from Pallecchi 

et al. were in strong agreement with the analytical model. The analytical model was also applied to 

optimize the design of the thermal diodes developed by Garcia et al. and Pallecchi et al. For the nitinol 

thermal diode system, in the range of known thermal conductivity, it was shown that the thermal 

rectification ratio could be significantly enhanced by choosing a phase invariant material to replace 

graphite. The same conclusion was demonstrated for the PNIPAM thermal diode system – choosing a 

phase invariant material to replace the PDMS could drastically increase the thermal rectification ratio. 

Lastly, the analytical model was applied to the optimal design of a thermal diode based on a known 

phase transition material, which undergoes a modulation of thermal conductivity during its phase 

transition. The composite material, exfoliated graphite in hexadecane, undergoes thermal conductivity 

modulation in response to effects on the percolation network for heat conduction due to crystallinity 

changes during the phase transition. The maximum thermal rectification for this system was predicted 

to be 1.73 by the analytical model. 
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Figure 1. A schematic illustrating thermal rectification in a device consisting of a phase change material (B), 

with each phase characterized by a different thermal conductivity (𝑘𝑘𝐵𝐵,1,𝑘𝑘𝐵𝐵,2), interfaced with a phase invariant 

material (A) with thermal conductivity 𝑘𝑘𝐴𝐴. a) A representation of the temperature profile (red line) throughout 

the system when the external boundary of material B is below the transition temperature (𝑇𝑇∗) and the external 

boundary of material A is above the transition temperature. The illustrated temperature profile is for the case 

where 𝑘𝑘𝐵𝐵,1,𝑘𝑘𝐵𝐵,2, & 𝑘𝑘𝐴𝐴 are constant with respect to temperature. b) A representation of the temperature profile 

(red line) throughout the system when the external boundary of material B is above the transition temperature 

and the external boundary of material A is below the transition temperature. The illustrated temperature profile 

is for the case where 𝑘𝑘𝐵𝐵,1,𝑘𝑘𝐵𝐵,2,𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘𝐴𝐴 are constant with respect to temperature. The spatial distribution of the 

phases within material B as the temperature boundary conditions are reversed should be noted. 
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Figure 2. A schematic qualitatively illustrating thermal rectification in a device consisting of a phase change 

material (B), with each phase characterized by a different thermal conductivity (𝑘𝑘𝐵𝐵,1,𝑘𝑘𝐵𝐵,2), interfaced with a 

phase invariant material (A) with thermal conductivity 𝑘𝑘𝐴𝐴. a) A representation of the temperature profile (red 

line) throughout the system when the external boundary of material B is below the transition temperature (𝑇𝑇∗) 

and the external boundary of material A is above the transition temperature. The illustrated temperature profile 

is for the case where 𝑘𝑘𝐵𝐵,1 & 𝑘𝑘𝐴𝐴 are constant with respect to temperature. b) A representation of the temperature 

profile (red line) throughout the system when the external boundary of material B is above the transition 

temperature and the external boundary of material A is below the transition temperature. The illustrated 

temperature profile is for the case where  𝑘𝑘𝐵𝐵,2, & 𝑘𝑘𝐴𝐴 are constant with respect to temperature. The distribution of 

the phases within material B as the temperature boundary conditions are reversed should be noted. Also, it can 

be noted that the transition temperature, 𝑇𝑇∗, occurs at a distance 𝑥𝑥 > 𝐿𝐿𝐵𝐵. 

Table 1. A chart summarizing the results for the estimation of the thermal rectification ratio for a given system 

consisting of a junction between an invariant material with constant thermal conductivity and a phase change 

material with constant thermal conductivities for each phase. 𝐴𝐴 > 𝐵𝐵 & 𝐶𝐶 > 𝐷𝐷 refers to a strictly Case I system. 

𝐴𝐴 ≤ 𝐵𝐵 & 𝐶𝐶 ≤ 𝐷𝐷 refers to a strictly Case II system. The other two possibilities refer to a mixing of Case I and 

Case II. 
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Figure 3. Plots illustrating the effects of the thermal conductivity of the invariant material (A) and the applied 

temperature bias towards the optimization of the thermal rectification performance for an assumed phase change 

material (B). a) A plot allowing optimal design of the thermal rectification ratio, 𝑄𝑄, as a function of the thermal 

conductivity of the invariant material (A), 𝑘𝑘𝐴𝐴, for a fixed 𝐿𝐿� = 1 & 𝑇𝑇� = 0.1. 𝑘𝑘𝐵𝐵,1 = 50 W m-1 K-1 & 𝑘𝑘𝐵𝐵,2 = 1 W 

m-1 K-1 are also fixed as properties of the phase change material that is assumed. The plot is a piecewise 

function, where the relevant models used to derive specific regions are indicated by brackets. b) A contour plot 

demonstrating the convergence of Case I and Case II and the collapse of the mixed model region, yielding an 
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optimal thermal rectification performance, as an ideal temperature bias is approached. 𝑄𝑄 is plotted as a function 

of the thermal conductivity of the invariant material (A), 𝑘𝑘𝐴𝐴, and  the applied temperature bias, 𝑇𝑇�  at fixed 𝐿𝐿� = 1. 

Again, 𝑘𝑘𝐵𝐵,1 = 50 W m-1 K-1 & 𝑘𝑘𝐵𝐵,2 = 1 W m-1 K-1 are also fixed as properties of the phase change material that 

is assumed.  

 

Figure 4. For a model system with  𝑘𝑘𝐵𝐵,1 = 50 W m-1 K-1 & 𝑘𝑘𝐵𝐵,2 = 1 W m-1 K-1, the evolution of a contour plot 

for the thermal rectification ratio, 𝑄𝑄, as a function of 𝐿𝐿�  and 𝑘𝑘𝐴𝐴 (W m-1 K-1), as 𝑇𝑇�  is varied around 𝑇𝑇�𝑖𝑖𝑑𝑑 is shown. a) 

Contour plot for 𝑇𝑇� = 0.01. b) Contour plot for 𝑇𝑇� = 0.10. c) Contour plot for 𝑇𝑇� = 𝑇𝑇�𝑖𝑖𝑑𝑑 = 0.12. d) Contour plot 

for 𝑇𝑇� = 0.9. 
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Figure 5. Comparison of the experimental thermal rectification ratios obtained by Garcia et al. for their nitinol 

phase change-based thermal diode to analytically and numerically predicted thermal rectification ratios for the 

system.[27]. The analytically calculated ratios were determined using the Case I and Case II models proposed 

above, while the numerically calculated ratios were determined using the strategy developed by M. Peyrard as in 

Equation (32).[23] a) Experimental (blue), analytical (red), and numerical (green) comparison for thermal 

rectification ratios as a function of temperature bias. b) A smooth function (red) fitted to the experimental 

thermal conductivity data (blue) from Garcia et al. for nitinol as a function of temperature.  

 

Figure 6. A comparison of the experimental thermal rectification data from Pallecchi et al. with the analytical 

thermal rectification predictions from the Case I and Case II models.[29] a) A plot of the heat flow, 𝑞𝑞, measured 

by Pallecchi et al. for their phase change-based thermal diode under a range of forward (orange) and reverse 

(blue) temperature biases, ∆𝑇𝑇.[29] The data for each temperature bias were fitted with a linear regression. b)  A 
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plot of the experimental and analytically predicted thermal rectification ratios, 𝑄𝑄, as a function of the applied 

temperature bias, ∆𝑇𝑇, for the phase change-based thermal diode developed by Pallecchi et al.[29] The 

experimental thermal rectification data (black), obtained from a ratio of the linear fits in a), is compared with the 

analytically predicted thermal rectification data (green). This diode incorporated a PNIPAM polymer as the 

phase change material (B) and a PDMS polymer as the phase invariant material (A). The relevant 

thermophysical parameters reported by the researchers, and used to model the system, are reported within the 

figure. The analytical thermal rectification values were generated according to the strategy outlined in Table 1, 

and they show significant agreement with the experimental values.  

 

Figure 7. Optimization design plots for two phase change-based thermal diodes discussed in literature and an 

additional phase change material with thermal conductivity modulation that has yet to be incorporated into a 

thermal diode. a) Design plot for the nitinol-based thermal diode developed by Garcia et al.[27] The thermal 

rectification ratio, 𝑄𝑄, as a function of the thermal conductivity, 𝑘𝑘𝐴𝐴, of the invariant material (A) is plotted for 

𝑇𝑇� = 𝑇𝑇�𝑖𝑖𝑑𝑑 = 0.60 and 𝐿𝐿� = 1. b) Design plot for the PNIPAM-based thermal diode developed by Pallecchi et al.[29] 

The thermal rectification ratio, 𝑄𝑄, as a function of the thermal conductivity, 𝑘𝑘𝐴𝐴, of the invariant material (A) is 
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plotted for 𝑇𝑇� = 𝑇𝑇�𝑖𝑖𝑑𝑑 = 0.66 and 𝐿𝐿� = 1. c) Design plot for a thermal diode based on liquid-solid phase transitions 

in a suspension of graphite flakes in hexadecane.[31] The thermal rectification ratio, 𝑄𝑄, as a function of the 

thermal conductivity, 𝑘𝑘𝐴𝐴, of the invariant material (A) is plotted for 𝑇𝑇� = 𝑇𝑇�𝑖𝑖𝑑𝑑 = 0.37 and 𝐿𝐿� = 1. 

Table of Contents: 

Phase change materials can be used to construct thermal diodes.  It is shown mathematically that 

the interface of such materials with a phase invariant material can function as a thermal diode.  Criteria 

are derived analytically for the choice of thermal conductivity of the invariant phase to maximize the 

thermal rectification, and the model is applied to experimental systems in the literature.   
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