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Abstract

The complex mechanical behaviour of granular materials is commonly studied by considering the evolving
particle contact network. An often overlooked feature is the influence of micro-scale geometric configuration
of pores on the macroscopic response. This paper presents a series of tools to quantify the shape, volume
distribution and orientation characteristics of the pore space. The proposed approach is validated using
data from physical and numerical experiments with monodisperse assemblies of spheres. Individual pores are
represented by polyhedral pore unit cells obtained by combining the Delaunay tessellation with an algorithm
for merging Delaunay cells based on the concept of maximal inscribed sphere, after Al-Raoush et al. (2003).
A pore shape parameter is proposed that relates pore volume and surface area, and is analytically related to
the void ratio and the number of edges forming the polyhedral pore unit cell. The pore volume distribution
is shown to be uniquely described by the analytical k-gamma distribution proposed by Aste and Di Matteo
(2008). A pore orientation tensor is introduced to define the principal orientation of individual pore units.
This is subsequently used to define a global orientation tensor that reveals an isotropic pore network for the
reference monodisperse assemblies. The global orientation tensor is analytically expressed in terms of the
parameters defining the pore volume distribution. The pore characteristics described in this paper provide
the basis for describing the evolution of the pore space during deformation and its relationship to mechanical
properties.

Keywords:
granular material, voids and inclusions, pore characteristics

1. Introduction

Granular materials exhibit complex macroscopic response due to the various length scales and corres-
ponding particle-continuum duality (Wood, 2004). The evolution of the particle contact network is often
considered to describe the complex mechanical response of granular materials. Numerous studies have
presented extensive characterisation of micro-scale features of the contact network, including the presence

∗Corresponding author. Tel: +61 2 9385 5035 Fax: +61 2 9385 6139
Email addresses: a.sufian@student.unsw.edu.au (Adnan Sufian), a.russell@unsw.edu.au (Adrian R. Russell),

ajwhittl@mit.edu (Andrew J. Whittle), mos110@physics.anu.edu.au (Mohammad Sadaatfar)

Preprint submitted to Elsevier 2nd February 2015



of strong force chains aligned with the direction of major principal stress and supported against buckling by
a network of weaker contacts, as well as evolving anisotropy of the contact network.

However, the influence of geometric pore characteristics on the macroscopic response of granular assem-
blies has received limited attention. In granular soils, the pore space is a complex interconnected network
and is of significance in describing physical processes ranging from fluid flow to internal erosion and deform-
ation. Durán et al. (2010) stated that deformation of pores and tangential displacement at contacts are
the primary contributors to strain in granular assemblies. Shire et al. (2013) specifically considered pore
constrictions to explore anisotropy in numerical simulation of elemental shear tests (in triaxial compression,
plane strain and triaxial extension modes), where the orientation of pore constrictions was related to the
force chain network.

Therefore characterising micro-scale features of the pore space is an essential step in gaining a more
complete understanding of the deformation response in granular materials. Only a few studies have presented
quantitative characterisations of pore features. Reboul et al. (2008) presented a statistical description of
pore volumes and inscribed sphere volumes, by implementing the modified Delaunay tessellation introduced
by Al-Raoush et al. (2003). Kang et al. (2013) extended the application of the modified Delaunay tessellation
by considering the evolution of pore sizes in the numerical simulation of a direct shear test.

The first theoretical framework to understand volume distribution in granular media was proposed by
Edwards and Oakeshott (1989). This framework is based on the application of classical statistical mechanics
to granular systems, whereby volume plays the role of the thermodynamic quantity energy. Aste and Di
Matteo (2008) utilised this framework to demonstrate that a unique distribution of Voronoi cell volumes
can be described analytically by a modified gamma distribution function.

The concept of pore shape is somewhat obscure given the continuity of the pore space within granular
media. In the current context, pore shape refers to the geometry of individual pores. Even for assemblies of
spheres, the shapes of unit pores are highly irregular. Prior studies have described pore shape qualitatively
(Graton and Fraser, 1935, Nolan and Kavanagh, 1994) or approximated the unit pore with simple geometric
objects. Ordonez-Miranda and Alvarado-Gil (2012) described pores as spheroids with a defined aspect ratio,
while Li and Li (2009) defined pore shape as the ratio of the half-radii of an ellipse approximation of unit
pores in the 2D void cell system.

Further, assessing the orientation characteristics of the pore space is of importance in describing an-
isotropy in granular systems. The evolving contact network is typically expressed through orientation
distribution functions given by spherical harmonics expansion (Chang and Yin, 2010, Radjai et al., 2012),
or through the application of a fabric tensor (Oda and Iwashita, 1999). However, there has been limited
application of these concepts to describe the orientation of pores. Konishi and Naruse (1988) presented a
2D void tensor allowing for the determination of the principal orientation of individual pores, which can
subsequently be implemented in a mean void tensor to describe a collection of pores. A 3D fabric tensor is
implemented in (Shire et al., 2013) to quantify stress-induced anisotropy by considering the orientation of
pore constrictions.

This paper presents quantitative tools to describe shape, volume distribution and orientation character-
istics of the pore space in granular assemblies. The modified Delaunay tessellation proposed by Al-Raoush
et al. (2003) is implemented to provide a physically intuitive definition of unit pores. Pore shape is defined
after Russell (2014) and can be related to the local void ratio and number of edges forming the polyhedral
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Table 1: Datasets used for validation of pore characterisation

Dataset E-D Dataset N-GL Dataset N-RLP
Assembly NREV εREV Assembly NREV εREV Assembly NREV εREV

p1v 2353 0.6606 m1g 5116 0.8137 m1l 5111 0.564
p2v 2066 0.6528 m2g 5101 0.784 m2l 5116 0.564
p3v 2184 0.6683 m3g 5102 0.7406 m3l 5113 0.583
p4v 2347 0.6667 m4g 5101 0.698 m4l 5101 0.6563
p5v 2277 0.6838 m5g 5108 0.6833 m5l 5107 0.7887
p6v 2632 0.6787 m6g 5110 0.6689 m6l 5098 0.6979
p7v 1933 0.6709 m7g 5111 0.5782 m7l 5110 0.7338
p8v 1729 0.6556 m8g 5108 0.5756 m8l 5099 0.613
p9v 1821 0.6708 m9g 5093 0.5723 m9l 5103 0.7609
p10v 1936 0.6762 m10g 5099 0.5699 m10l 5129 0.6328
p11v 2028 0.6845 m11l 5101 0.81
p12v 2174 0.6801 m12l 5101 0.677

m13l 5095 0.6043
m14l 5099 0.8159
m15l 5099 0.8175

unit pore. This paper also investigates the applicability of the analytical k-gamma distribution function
proposed by Aste and Di Matteo (2008) to describe the pore volume distribution. Further, a novel pore
orientation tensor is proposed, which is applicable at the micro-scale to define the orientation of individual
pores and also at the macro-scale to explore anisotropy of the granular assembly.

The proposed approach to characterise pore shape, volume distribution and orientation is validated using
data from physical and numerical experiments of monodisperse assemblies of spheres. The E-D dataset has
been obtained from physical experiments and comprise disordered assemblies of hard, spherical, acrylic beads
(with slight polydispersity of approximately 3%), formed by pouring the beads into a container, where the
position of the particles have been determined through X-ray computed tomography (refer to Aste et al.,
2005). The N-RLP and N-GL datasets have been developed by numerical simulations. These datasets were
developed to investigate the random loose packing (N-RLP) and granular line (N-GL) boundary of the phase
diagram for jammed matter in (Song et al., 2008)1.

Each dataset comprises several assemblies and Table 1 summarises the number of particles in a Represent-
ative Element Volume, NREV , and the corresponding void ratio, εREV . Void ratio (ε) is defined as the ratio
of pore volume to solid volume, and is related to the packing density (ρ) by the expression ρ = 1/ (1 + ε). All
assemblies considered in this study fall within the amorphous regime for packing of monodisperse spheres.
It is assumed that all assemblies comprise rigid particles (with the assumption of small contact deformation)
and the static assemblies are at mechanical equilibrium under self-weight.

2. Tessellation of Pore Space

Even in assemblies of monodisperse spheres the pore space is geometrically complex and almost entirely
interconnected. Hence, a space tessellation is employed to define a unit cell. Several methods (Bagi, 1996,

1N-RLP and N-GL datasets available online at http://lisgi1.engr.ccny.cuny.edu/~makse/soft_data.html
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Hihinashvili and Blumenfeld, 2010, Li and Li, 2009, Satake, 1997) have been proposed to tessellate the pore
space. This study initially employs a Delaunay triangulation to partition the pore space into tetrahedral
Delaunay cells. A pore unit is then defined as the unit cell formed by merging Delaunay cells, as detailed
below.

The Delaunay tessellation has been frequently utilised in delineating the pore space (Durán et al., 2010,
Gao et al., 2012, Kang et al., 2013, Reboul et al., 2008, 2010, Vincens et al., 2014, Yang et al., 2006) and
results in tetrahedral cells, where the four vertices correspond to particle centres. However, the Delaunay
tessellation can exhibit issues in regards to triangulation close to sample boundaries, resulting in the form-
ation of degenerate simplexes (Durán et al., 2010, Reboul et al., 2008, Yang et al., 2006). In order to avoid
boundary irregularities, a Representative Element Volume (REV) comprising a central region with dimen-
sions of 80% of the original sample size is selected. A sub-sampling procedure is employed that only considers
completely internal tetrahedrons and avoids creating planarity on the REV boundaries. This ensured that
no tetrahedral units were discounted from the analyses. However, all datasets included a degenerate simplex
involving four near coplanar particles forming a flat tetrahedron. These cases were found to merge with
adjacent Delaunay cells to form larger pore units.

While the Delaunay tessellation is a useful method to delineate the pore space, Al-Raoush et al. (2003)
identifies two key drawbacks; 1) the pore space is artificially sub-divided into too many elements, and 2)
Delaunay cells contain four faces. These restrictions result in the loss of physical description of a unit pore,
and do not allow for any generality in the interconnection between pores. In order to alleviate these issues,
Al-Raoush et al. (2003) introduced the concept of merging Delaunay cells to form pore units, which are
polyhedral cells and can have convex and concave geometries. Following Al-Raoush et al. (2003), merging
is based on the identification of the maximal inscribed sphere contained within the pore space for each
Delaunay cell. The inscribed sphere is tangent to the corresponding four particles forming the Delaunay cell
and is readily determined analytically. However, a local optimisation is required where the inscribed sphere
is not completely located within the pore space. The local optimisation procedure is outlined in Appendix
A.

(a) (b)

Figure 1: (a) Delaunay cells are merged if inscribed spheres overlap by any amount. (b) Delaunay cells are merged if the
centre of the inscribed sphere is located within the reference inscribed sphere.

Two Delaunay cells are merged if the corresponding inscribed spheres overlap and this process is iterated
for all Delaunay cells. However, the choice of the overlap criteria remains somewhat arbitrary. Two potential
criteria are suggested in Al-Raoush et al. (2003) and Gao et al. (2012), which are illustrated in Figure 1. This
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study employs the criterion shown in Figure 1a. While the choice of the overlap criteria will influence micro-
scale features, it was found that this choice does not greatly influence the broader macroscopic characteristics
discussed in this paper. It should be noted that an inscribed sphere can overlap multiple other inscribed
spheres and this results in the formation of large pore units.

(a) (b)

Figure 2: (a) Variation in number of pore unit, NPU , normalised by the number of particles within the REV, NREV . (b)
Variation in percentage of unmerged pore units, Nunm (%), that is tetrahedral pore units.

The polyhedral pore unit tessellation provides a better characterisation compared to the Delaunay tes-
sellation. Figure 2a shows an increasing number of pore units with increasing density (that is, decreasing
void ratio) for the datasets in Table 1. In dense assemblies, there is less probability in encountering large
pore units containing many Delaunay cells. In fact, pore units in dense assemblies are more likely to be
composed of only a few Delaunay cells, and this leads to an increase in the number of pore units with density.
This is also reflected in the percentage of unmerged pore units, Nunm (%), in Figure 2b. This indicates that
the percentage of tetrahedral pore units (that is, the smallest geometrically achievable pore unit) increases
with density. Therefore, the pore unit tessellation characterises pores in a physically intuitive manner. This
result is most clearly seen from the distribution of the number of Delaunay cells forming a pore unit (Figure
3). The behaviour is approximately exponential and agrees with the intuitive notion that there exist many
small pores and fewer larger pores in a mechanically stable system.

3. Geometric Characteristics and Pore Shape

Tessellation of the pore space allows for the determination of geometric properties of individual Delaunay
cells and pore units. There are three fundamental geometric properties of interest: volume of solids (Vs),
volume of pores (Vp) and surface area of pores (Sp). All other geometric properties referred to in this paper
are derived from these fundamental properties.

The volume of a tetrahedral Delaunay cell (Vcell) is readily calculated from the position vectors of the
particles centres forming the Delaunay cell. The calculation of Sp takes into consideration the fact that
surface area of pores and solids are the same, and is simply the sum of the surface areas of the parts of
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Figure 3: Distribution of the number of Delaunay cells forming a pore unit for a typical assembly.

the four particles contained within the tetrahedron (Figure 4). Each particle occupies a sector within the
tetrahedron, whereby the sector is defined by the three vectors radiating from the centre of the particle. The
surface area of this sector forms a spherical triangle, as shown in Figure 4b. The area of a spherical triangle
corresponding to the ith particle in the Delaunay cell is given by Sp,i = r2

p,i (A+B + C − π), where rp,i is
the radius of the ith particle and A, B, C are the angles of the spherical triangle. A, B, C are calculated
by considering the dihedral angles a, b, c in Figure 4b and applying spherical trigonometry. The total pore
surface area is then simply Sp =

∑4
i=1 Sp,i. Further, each particle sector forms a pyramid with base given

by the spherical triangle and hence the volume of each sector is given by Vs,i = 1
3Sp,irp,i and the total

solid volume of the Delaunay cell is Vs =
∑4
i=1 Vs,i. The total pore volume in a Delaunay cell is simply

Vp = Vcell − Vs.
The calculation of Vs, Vp and Sp for pore units is straightforward, as these properties are determined by

simply summating the respective geometric property for each Delaunay cell forming the merged pore unit.
This is an advantage of initially employing a Delaunay tessellation to the pore space.

Using the geometric properties calculated above, Russell (2014) introduced a novel pore shape parameter
(F ) to characterise the geometry of individual pore units. Suppose a pore unit has volume, Vp = Λpd

3
p, where

Λp is a dimensionless pore volume parameter and dp is the characteristic pore size. Similarly, a pore unit
has a surface area defined by Sp = Γpd

2
p, where Γp is a dimensionless pore surface area parameter. The

dimensionless shape parameter is then defined by Equation 1.

F =
Λp
Γp

(1)

Russell (2014) suggests that for systems of equal sized spheres, the dimensionless shape parameter can be
related to void ratio (ε) by Equation 2.

F =
1

6
ε2/3 (2)

This expression was derived by considering the unit cells presented in Graton and Fraser (1935). These
unit cells considered only monodisperse particles and defined the unit cell in such a way that there is exactly
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(a) (b)

Figure 4: (a) A tetrahedral unit cell with vertices defined by the particle centres. The geometry of the pore unit contained
within the unit cell is shown, with all particle sectors removed. (b) Particle sector formed at each vertex of a Delaunay cell.
The contribution to the surface area by a single particle is given by the spherical triangle with angles A, B, C.

one whole particle per cell. The expression in Equation 2 loses its generality for different definitions of a
unit cell. Therefore, a generalised expression is developed relating F to void ratio for any definition of a
pore unit cell for both monodisperse systems (Section 3.1) and polydisperse systems (Section 3.2).

3.1. Relationship for Monodisperse Particles

Consider the pore unit shown in Figure 4a. The pore volume is given by Vp = π
6 d

3
eq, where deq is the diameter

of the equivalent sphere with volume Vp. But pore volume is also defined as Vp = Λpd
3
p. By equating the

two expressions (and taking deq = dp), it can be shown that Λp = π
6 . This relation is still applicable for

polydisperse systems.
The surface area of particles, Ss, must be equal to the surface area of pores, Sp. The surface area of a

sphere is given by πd2
s. However, from Figure 4a, and depending on the method used to define a unit cell,

exactly one sphere may not be contained within the unit cell. Hence, the surface area of particles within
the unit cell is defined as Ss = Npπd

2
s, where Np is the equivalent number of spheres of diameter ds that are

included in the unit cell. As Ss = Sp and using the definition Sp = Γpd
2
p, an expression for Γp is derived.

Γp = Npπ

(
ds
deq

)2

(3)

Using the definition of void ratio, ε =
Vp
Vs
, it can be shown that:

(
deq
ds

)2

= (εNp)
2/3 (4)

Substituting Equation 4 into Equation 3 gives:
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Γp = πN1/3
p ε−2/3 (5)

Therefore from Equation 5, the dimensionless shape parameter, F , can be defined as:

F =
Λp
Γp

=
1

6
N−1/3
p ε2/3 (6)

which is independent of deq, dp and ds.

3.2. Relationship for Polydisperse Particles

The derivation can be extended to assemblies of polydisperse spheres. As above, Λp = π
6 . In polydisperse

assemblies, the surface area of particles is given by:

Ss =
∑
i

πNid
2
i (7)

where di is the diameter of the ith particle and Ni is the equivalent number of spheres of diameter di that
are included within the unit cell. Note that Equation 7 does not place a limit on the number of particles
forming a unit cell. This generality allows the expression to be used for either Delaunay cells or pore units.
By equating Ss = Sp, an expression for Γp is derived:

Γp =
π

d2
eq

∑
i

Nid
2
i (8)

Using the definition of void ratio, it can be shown that the equivalent sphere diameter is:

d2
eq = ε2/3

(∑
i

Nid
3
i

)2/3

(9)

By substituting Equation 9 into Equation 8, Γp for polydisperse assemblies is given by:

Γp =

π
∑
i

Nid
2
i

ε2/3
(∑

i

Nid3
i

)2/3
(10)

Therefore, the pore shape parameter in polydisperse assemblies is given by:

F =
ε2/3

6
·

(∑
i

Nid
3
i

)2/3

∑
i

Nid2
i

(11)
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It can be readily shown that Equation 11 simplifies to Equation 6 when di takes on the same value for
all i (that is, for monodisperse assemblies).

3.3. Analytical Relationship between Shape Parameter and Geometry of Pore Units

Equations 6 and 11 suggest that the shape of pore units can be related to other geometric features. In
this section, the pore shape parameter, F , is analytically related to void ratio, ε, and the number of edges
forming the polyhedral pore unit, Ne, for assemblies of monodisperse spheres. In the following derivation,
the pore unit is assumed to be a regular polyhedron and can be one of three platonic solids; tetrahedron
(Ne = 6), octahedron (Ne = 12) and icosahedron (Ne = 30). All three platonic solids satisfy the condition
that the Schläfli symbol, p = 3, that is, each face is composed of three edges. This is a reasonable assumption
since pore units are unlikely to be composed of more than three edges as this would require two adjacent
faces of merged Delaunay cells to be coplanar. In a highly disordered assembly this condition is unlikely to
occur.

For a regular polyhedron, Np is related to the solid angle, Ω, and the number of vertices of the polyhedron,
Nv:

Np =
NvΩ

4π
(12)

From the Schläfli relationships for platonic solids, it is known that:

Nv =
2Ne
q

(13)

where q is another Schläfli term defining the number of faces forming a vertex of the polyhedron. For
platonic solids, the solid angle is:

Ω = qθ − π(q − 2) (14)

Combining Equation 13 and Equation 14 gives an expression for NvΩ, where θ is the dihedral angle.

NvΩ = 2Ne

[
θ − π

(
q − 2

q

)]
(15)

q is determined by considering the following identity:

q =
2Nep

2p+Nep− 2Ne
(16)

For the case p = 3, Equation 16 simplifies to q = 6Ne
6+Ne

, and a simplified expression for q−2
q can be

determined:

q − 2

q
=

2

3

(
Ne − 3

Ne

)
(17)

The dihedral angle for platonic solids is given by the solution to sin
(
θ
2

)
= cos

(
π
q

)
/ sin

(
π
p

)
:

9



θ = 2 sin−1

2 cos
(
π(6+Ne)

6Ne

)
√

3

 (18)

Substituting Equation 17 and Equation 18 into Equation 15 provides an expression for Np as a function
of Ne, as shown in Equation 19.

Np =
NvΩ

4π
=
Ne
2π

2 sin−1

2 cos
(
π(6+Ne)

6Ne

)
√

3

− 2π

3

(
Ne − 3

Ne

) (19)

And F can be expressed as a function of Ne and ε:

F =

(
1

6

)Ne2π

2 sin−1

2 cos
(
π(6+Ne)

6Ne

)
√

3

− 2π

3

(
Ne − 3

Ne

)
− 1

3

ε
2
3 (20)

Figure 5 compares the analytical expression for F with the numerically derived values for a typical
assembly. It is not surprising that the analytical solution for Ne = 6 and Ne = 12 describe the numerical
data accurately, as the derivation is based on the tetrahedral and octahedral geometries. The analytical
solution is interpolated for all other values of Ne and is a lower bound to the numerical data. Also, the
numerical data for Ne ≥ 12 form a relatively thick band, due to the presence of convex and concave
polyhedrons with the same Ne values. As the derivation strictly considers regular convex polyhedrons, this
explains why the analytical solution provides a lower bound approximation. Further, deviations from the
analytical solution occur at high void ratios, as the assumption of regular polyhedral geometry becomes
less accurate due to the highly irregular nature of large pores. Even so, Figure 5 demonstrates that the
analytical solution in Equation 20 provides a very good fit for the vast majority of data.

4. Pore Volume Distribution

Characterising the pore volume distribution in granular assemblies is essential in quantifying the highly
complex geometric configuration of pores. In this study, the distribution of pore unit volumes is described
by the analytical k-gamma distribution function proposed by Aste and Di Matteo (2008).

f (Vp − Vp,min : k, χ) =
(Vp − Vp,min)

k−1

Γ (k)χk
e−

Vp−Vp,min
χ (21)

Equation 21 is a modified gamma distribution function in the variable Vp−Vp,min, with parameters k and
χ, where Vp,min is the theoretical minimum pore volume (for rigid particles). For Delaunay cells, Vp,min = 0

to account for the presence of flat tetrahedrons as discussed in Section 2. However, observations from the
numerical analysis confirm that these degenerate Delaunay cells merge with adjacent tetrahedrons to form
larger pore units. Consequently, the minimum pore volume for pore units is defined as the pore volume in
a regular tetrahedron, where all edges contain contact points. This is given by Equation 22, where ds is the
particle diameter in a monodisperse assembly.
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Figure 5: Comparison of the analytical expression in Equation 20 and the numerical data extracted from the p1v assembly of
the E-D dataset.

Vp,min =

(
1

6
√

2
−

arccos
(

23
27

)
6

)
d3
s ≈ 0.02597d3

s (22)

The parameter k can be determined analytically with consideration of fluctuations in pore volume
(
σ2
)
:

k =
(〈Vp〉 − Vp,min)

2

σ2
(23)

where 〈Vp〉 is the mean pore volume and σ2 =
〈

(Vp − Vp,min)
2
〉
− 〈Vp − Vp,min〉2. The parameter χ can

also be defined analytically by:

χ =
〈Vp〉 − Vp,min

k
(24)

While Aste and Di Matteo (2008) and Aste et al. (2007) validated the k-gamma distribution function by
considering Voronoi cell volumes, Figure 6 demonstrates that the analytical k-gamma distribution function
accurately reflects the distribution of pore unit volumes. However, there is a small discrepancy at very
small pore volumes, Vp − Vp,min ≈ 0, which was also noted in (Klatt and Torquato, 2014). The lack of an
inflection point in the analytical solution shown in Figure 6 suggests that the most probable configuration
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Figure 6: Distribution of pore unit volumes for the p1v assembly in the E-D dataset, where pore volume is normalised by d3s.
The numerical data is compared against the analytical expression in Equation 21, where the parameter k is given by Equation
23 and the parameter χ is given by Equation 24.

occurs when Vp − Vp,min = 0, but this is not supported by the numerical analysis. While granular systems
have a tendency to approach the densest possible local configuration (that is, the configuration of minimum
potential energy), the phenomenon of geometric frustration (Francois et al., 2013) prevents the majority of
pore units attaining the theoretical minimum pore volume in disordered assemblies of monodisperse spheres.
This is also reflected in the observation of polytetrahedral structures in (Anikeenko and Medvedev, 2007),
where it was demonstrated that there is a preference for the formation of irregular polytetrahedra comprising
clusters of quasi-regular tetrahedrons that do not necessarily have the theoretical minimum pore volume.
Hence, there is a lower limit above which the analytical expression in Equation 21 can provide an accurate
approximation of the pore volume distribution.

Aside from this minor discrepancy, uniqueness in the pore volume distribution is observed when plotted
in the variable Vp−Vp,min

〈Vp〉−Vp,min , as shown in Figure 7. The collapsed distribution shown in Figure 7b can be
fitted analytically by the parameter k = 0.6.

Aste and Di Matteo (2008) demonstrated that χ takes on physical meaning within the theoretical frame-
work of granular statistical mechanics (proposed by Edwards and Oakeshott (1989)) as an equivalent granular
temperature termed compactivity and reflects the macroscopic density of a static granular system (Hih-
inashvili and Blumenfeld, 2010). This is illustrated in Figure 8a which shows a linear relationship between χ
and the macroscopic void ratio. The compactivity χ decreases with decreasing void ratio, which agrees with
the intuitive notion that for denser systems, the number of accessible configurations reduces, that is, larger
pores are less probable in dense assemblies. The results also show a cut-off at the random close packing
limit (ε = 0.56), which may signal the commencement of partial crystallisation within the assembly.

Equation 24 indicates that the quantity χk can be thought of as the mean free pore volume, 〈Vp〉−Vp,min,
and reflects how far the granular system is from the densest possible configuration. However, it is important
to note that the configuration corresponding to 〈Vp〉−Vp,min = 0 is not attainable, as this would require all
pore units to be regular tetrahedrons and such a configuration cannot tile the pore space. Figure 8b shows
there is also a linear relationship between χk and void ratio within the amorphous region with the mean
free pore volume decreasing with decreasing void ratio.
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(a) (b)

Figure 7: (a) Cumulative distribution of normalised pore volume for all assemblies in Table 1. (b) Rescaled cumulative
distribution plotted in the variable (Vp − Vp,min) / (〈Vp〉 − Vp,min) showing distribution collapsing on to a single curve.

The parameter k exhibits somewhat random fluctuations in a narrow range between 0.54 and 0.65, as
illustrated in Figure 8c. According to Aste and Di Matteo (2008), k is an equivalent granular specific
heat defined by ∂〈Vp〉

∂χ . The linear relationship observed in Figure 8a suggests 4χ ∝ 4ε, and similarly, the
linear relationship shown in Figure 8b suggests 4〈Vp〉 ∝ 4ε. Hence, k is expected to be constant, where
the observed fluctuations in Figure 8c may result from deviations from the respective linear relationships.
Indeed, k was observed to fluctuate in a small region around k ≈ 12 for Voronoi cell volume distribution in
disordered assemblies (Aste and Di Matteo, 2008). This suggests that k is an indicator of the method of
tessellation employed in partitioning the pore space.

5. Orientation Characteristics

The anisotropy of the pore network can be characterised by considering the orientation of pore units. An
tensor (P) is introduced to define the principal orientation of individual pore units. Following the definition
of the fabric tensor (Oda and Iwashita, 1999), P is defined as:

P =
1

N

N∑
m=1

nm ⊗ nm =

 P11 P12 P13

P21 P22 P23

P31 P32 P33

 (25)

where N is the number of vectors. In order to describe orientation of pore units, nm is defined as the
vector normal to each triangular face of the polyhedral pore unit cell and is scaled by the square root of the
area of the corresponding triangular face (am):

nm =
√
amn̂m (26)

where n̂m is the unit normal vector to the triangular face. nm is therefore the projection of the surface
area of each face to the corresponding coordinate axes. Components of the orientation tensor are given by:
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(a) (b)

(c)

Figure 8: Variation in the parameters defining pore volume distribution for all assemblies in Table 1.

Pij =
1

N

N∑
m=1

amn̂mi n̂
m
j (27)

P is a symmetric tensor and it can be readily shown that tr (P) = 〈am〉, that is, tr (P) is the average
surface area per triangular face. Further, the non-diagonal terms reflect the skew or distortion of the surface
area of a pore unit within a particular plane. Hence, it is easy to see that when the principal axes coincide
with the coordinate system, P will only contain diagonal terms, as there will be no skew in the surface area.
Hence, it is convenient to decompose the orientation tensor into isotropic and anisotropic components:

P = κI + κF (28)

where κ is a scalar quantity, I is the isotropic tensor given by the identity matrix and F is the anisotropic
orientation tensor.
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Taking the matrix inner product of Equation 28 with I and setting κ (F : I) = 0, the result P : I = κ (I : I)
is obtained from which an expression for the scalar quantity κ can be explicitly defined:

κ =
tr(P)

3
=
〈am〉

3
(29)

Further, setting κ (F : I) = 0 places an additional constraint on the anisotropic orientation tensor; tr (F) =

0. F is also a symmetric tensor and reflects the change in surface area of the polyhedral cell required to
bring about isotropic orientation.

An eigen-decomposition of the orientation tensor results in an eigenvalue matrix (D) and an eigenvector
matrix (V), which can be interpreted to provide the principal axes of orientation of individual pore units.
The eigenvalues (λ) are determined from the solution to f (λ) = det (P− λI) = 0. This reveals an inter-
esting relationship that tr (D) = 〈am〉, which suggest that the eigenvalues reflect the average surface area
per triangular face projected in the principal directions. Consequently, the major, minor and intermediate
axes of orientation are defined by the minimum, maximum and intermediate eigenvalues in D, respect-
ively. Intuitively, the direction of maximum elongation corresponds to the minimum surface area projected
in that direction, while the direction of minimum elongation corresponds to the maximum surface area.
This approach to determining principal axes has been validated by comparison with a bounding ellipsoid
approximation of pore units.

The formulation outlined above can be applied to define the major direction of orientation of all pore
units forming an assembly. The vector defining the major direction of orientation can be expressed in terms
of its azimuthal (φ) and elevation angle (β), or alternatively using the terminology of structural geology
as the dip direction and dip angle, respectively. A lower hemisphere equal-area stereographic projection
can be used to display the distribution of pore unit orientations. This analysis has been conducted for all
assemblies in the E-D, N-RLP and N-GL datasets (Table 1). Figure 9a shows a typical stereonet using a
probability density contour. The stereonet suggests radial symmetry in pore orientation distribution, which
is confirmed by the distribution of azimuthal angles shown in the rose diagram in Figure 9b.

The distribution of elevation angles (β) for all assemblies in Table 1 is shown in Figure 10. All assemblies
have similar distribution in elevation angle, and coupled with the radial symmetry shown in Figure 9 suggests
that all assemblies have the same pore orientation distribution. Diambra et al. (2007) provided an expression
for the cumulative distribution of orientation with an elevation angle within ±β from the horizontal under
axisymmetric conditions (Equation 30).

P (β) =
1

2ρ

β̂

−β

ρ (α) cos (α)dα (30)

ρ (α) is a generalised probability distribution function and reflects the concentration of pores with an
elevation angle α above the horizontal. ρ represents the average concentration defined by ρ = 1

Vp

´
ρ (α) dVp.

For isotropic distributions, ρ (α) = ρ, and hence P (β) = sin (β). This is compared to the numerical analysis
(Figure 10), and it is clear that the pore network is isotropically orientated for all assemblies.
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(a) (b)

PM =

 0.0246 0.0000 0.0002
0.0000 0.0249 0.0004
0.0002 0.0004 0.0248


(c)

Figure 9: (a) Density contour stereonet of pore unit orientation for the m1l assembly in the N-RLP dataset. (b) The corres-
ponding rose diagram for the m1l assembly reinforces the radial symmetry in the pore unit orientation distribution. (c) The
global orientation tensor, PM , for the m1l assembly showing isotropic distribution of pores.

5.1. Global Orientation Tensor

Following (Konishi and Naruse, 1988), the principal orientation of individual pore units can be used to
define a global orientation tensor

(
PM
)
, which determines the orientation characteristics for the set of pore

units. For PM , nm is defined as:

nm =
√
V mp − Vp,minn̂m (31)

where V mp is the normalised pore volume, Vp,min is the normalised theoretical minimum pore volume
and n̂m is the unit vector representing the major principal orientation of the pore unit (note that each pore
unit comprises two complementary vectors). Using this definition, the elements of the PM tensor are given
by:

PMij =
1

2N

2N∑
m=1

(
V mp − Vp,min

)
n̂mi n̂

m
j (32)

Therefore, it is apparent from Equation 32 that PM reflects the orientation distribution of pore volume
in the sample, that is, what volume of the pore space is orientated in a given direction. Figure 9c shows a
typical PM , which confirms the isotropic arrangement of pores, as the dominant terms of PM are the leading
diagonal elements, which are invariant to rotation of coordinate axis.
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Figure 10: Cumulative probability distribution of elevation angle (β) for all assemblies. The analytical solution for isotropic
orientation is also plotted.

Interestingly, analytical expressions for the elements of the PM tensor can be derived with assumptions
relevant to the datasets considered in this study. Note that the scaling factor in Equation 31 has been chosen
in order to apply the pore volume distribution function in Equation 21. Suppose the distribution of vectors
representing the major axis of orientation of pore units is defined by E (n), which satisfies

¸
Ω
E (n)dΩ = 1,

where Ω is the solid angle. If it is assumed that the volume of a pore unit is independent of its orientation,
then Equation 32 can be expressed as:

PMij =

ˆ

Vp

ṼpP
(
Ṽp

)
dṼp
ˆ

Ω

E (n) n̂in̂jdΩ (33)

where Ṽp = V mp −Vp,min. This assumption is valid for the assemblies considered in this study due to the
sample preparation process in both physical and numerical experiments. However, it is likely that there will
be a relation between orientation and pore volume during shearing. The first term of the double integral in
Equation 33 is the mean free pore volume, 〈Vp〉 − Vp,min, which from Equation 24 is given by χk. Further,
the isotropic arrangement demonstrated in Figure 9 and Figure 10 implies that E (n) = 1´

Ω
dΩ

= 1
4π . In

spherical coordinates, a unit vector is given by n̂ =

 n̂1

n̂2

n̂3

 =

 cos (φ) sin (β)

sin (φ) sin (β)

cos (φ)

 and the relationship

dΩ = sin (β)dβdφ holds. Therefore, Equation 33 can be alternatively expressed as:

PMij =
χk

4π

2πˆ

0

π̂

0

n̂in̂j sin (β)dβdφ (34)

Equation 34 can be easily solved and hence the analytical solution to PM is given by:

PM =
χk

3
I (35)

Figure 11 demonstrates that the analytical solution in Equation 35 accurately reflects the numerically
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determined global orientation tensor and confirms the isotropic orientation of the pore network.

Figure 11: Comparison of the analytical expression in Equation 35 and the numerically determined global orientation tensor.

The average of the diagonal elements in the numerically calculated PM , that is,
tr(PM )

3
, is compared against the analytical

value of χk
3
. Perfect correspondence is shown by the dashed line (with slope 1 : 1). Further, the minimum and maximum

diagonal elements in the numerically calculated PM are shown by the + symbol to reflect the error between the numerical and
analytical solution.

6. Conclusion

A set of parameters have been presented to quantify the micro-scale pore features in granular assemblies.
The proposed approach has been validated with the use of data from physical and numerical experiments
for monodisperse assemblies of spheres. Individual pore units were defined in a physically intuitive manner
using the modified Delaunay tessellation proposed by Al-Raoush et al. (2003), which also readily allowed
for the calculation of geometric properties of pore units.

Russell (2014) introduced a pore shape parameter (F ) that related the volume and surface area of pores.
Expressions were derived to relate F to void ratio for both monodisperse and polydisperse assemblies. For
monodisperse assemblies, the derivation was extended to analytically show that pore shape can be related
to void ratio and the number of edges forming the pore unit. This analytical solution agreed well with the
numerically interpreted properties for all datasets.

The pore volume distribution was found to be uniquely defined by the analytical k-gamma distribution
function, where χ corresponds to the compactivity and χk corresponds to the mean free pore volume. Both
show a linear relationship with void ratio. The parameter k exhibited small random fluctuations around a
constant value and is thought to provide an indication of the method of tessellation employed to partition
the pore space. Even though this study considered pore space geometry and implemented a tessellation
vastly different from Aste and Di Matteo (2008), the k-gamma distribution still remained applicable and
was able to accurately describe pore volume distribution.

The principal orientation of individual pore units is defined by the orientation tensor, P (Equation 27).
The distribution of the major principal orientation suggests that the pore network in all of the reference
assemblies (Table 1) are isotropically orientated. The global orientation tensor, PM (Equation 32), incorpor-
ated vectors defined by the major principal orientation of individual pore units scaled by the pore volume.
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For assemblies of monodisperse spherical particles, an analytical expression for the global orientation tensor
was derived in terms of the mean free pore volume (χk) and shown to agree well with values derived from
physical and numerical experiments.

While this study explored micro-scale features in static granular assemblies, the long term goal of this
research is to explore how these pore space features evolve under different load paths and whether the pore
space can provide a better understanding of the complex mechanical response of granular soils.
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AppendixA. Local Optimisation to Inscribed Sphere

An iterative local optimisation procedure is required when the analytically determined inscribed sphere
for a Delaunay cell (the initial solution) intersects adjacent particles, and is therefore not contained within
the pore space. This is particularly prevalent for polydisperse assemblies and was only required for the E-D
dataset in this paper. Particles intersected by the initial solution and those forming the Delaunay cell are
referred to as constraining particles (Figure A.1a). For computational efficiency, only constraining particles
located within two diametric shells from the reference Delaunay cell are considered in subsequent calculations.
A combinatorics approach is implemented to define all possible configurations of four constraining particles.
There are nC4 configurations, where n is the number of constraining particles and the inscribed sphere for
each combination is determined (Figure A.1b). Only inscribed spheres that do not intersect the constraining
particles are retained, where the largest retained inscribed sphere is the maximal inscribed sphere (Figure
A.1c). If additional iterations are required (as is the case in Figure A.1c), additional constraining particles
are considered and the combinatoric approach is implemented again to converge upon the maximal inscribed
sphere located completely within the pore space. While this process does not completely disassociate the
inscribed sphere from the Delaunay cell, it qualitatively produces the same results in Al-Raoush et al.
(2003). It should be noted that while Figure A.1 illustrates a convex configuration, solution to non-convex
configurations are non-trivial and require an additional tuning parameter that ensures that the inscribed
sphere for each combination is within the boundary formed by the constraining particle.
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(a) (b) (c) (d)

Figure A.1: A 2D local configuration of five polydisperse particles (comprising three Delaunay cells). (a) The inscribed sphere
(the initial solution) to the Delaunay cell formed by particles 2, 3, 4 is shown to intersect particle 1, and consequently local
optimisation must be undertaken. The constraining particles are 1, 2, 3, 4. (b) There are 4C3 = 4 combinations and the
inscribed sphere for each combination is illustrated. (c) Only two combinations have inscribed spheres that do not intersect
the constraining particles. These solutions are retained and the largest of the retained solution is highlighted. Note that
the highlighted inscribed sphere is still not completely within the pore space, as it intersects particle 5. Hence, a subsequent
iteration is required with constraining particles 1, 2, 3, 4, 5. (d) The retained solutions for the subsequent iteration is shown and
the maximal inscribed sphere contained completely within the pore space is highlighted. It is worth noting that the solution
to the remaining two Delaunay cells also converges to the same local maxima.
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