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Abstract

Heat transfer coefficient correlations for tall bubble columns are unable to

predict heat transfer in shallow bubble columns, which have unique geometry

and fluid dynamics. In this work, the heat transfer coefficient is measured on

the surface of a horizontal cylinder immersed in a shallow air-water bubble

column. Superficial velocity, liquid depth, and cylinder height and horizontal

position with respect to the sparger orifices are varied. The heat transfer

coefficient is found to increase with height until reaching a critical height, and

a dimensionless, semi-theoretical correlation is developed that incorporates

superficial velocity, liquid properties, and height. Additionally, the more

minor effects of flow regime, column region, and bubble impact are discussed

with the aim of informing design. Notably, the heat transfer coefficient can

be as high in the region of bubble coalescence as in the bulk of the column,

but only if the probe is placed so that bubbles impact the cylinder. The

correlation and discussion provide a framework for modeling and designing

∗Address all correspondence to lienhard@mit.edu

Preprint submitted to International Journal of Heat and Mass Transfer August 6, 2014



shallow, coil-cooled bubble columns.

Keywords: multiphase flow, turbulent transport, bubble column, sieve

tray, dehumidification, heat transfer coefficient

Nomenclature

A Probe copper area [m2]

Ac Probe cross-sectional area [m2]

CH Cylinder height coefficient (Eq. 8) [-]

D Diameter [m]

H Vertical position of probe center [m]

L Length [m]

P Perimeter [m]

R Electrical resistance [Ω]

T Temperature [◦C]

V Column volume [m3]

∆P Pressure drop [Pa]

∆V Voltage [V]

Ė Power, input or dissipated [W]

Q̇ Heat transfer rate [W]
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V̇ Volume flow rate [m3/s]

cp Specific heat at constant pressure [J/kg-K]

d Column liquid depth [m]

g Gravitational acceleration [m/s2]

h Average heat transfer coefficient [W/m2-K]

k Thermal conductivity [W/m-K]

m Fin parameter [m−1]

ug Superficial gas velocity [m/s]

vb Bubble rise velocity [m/s]

Named Ratios

FrD Froude number = u2g/(gD) [-]

NuL Nusselt number (of arb. length L) = hL/k [-]

Pr Prandtl number = µcp/k [-]

ReD Reynolds number = ugD/ν [-]

St Stanton number = h/ρcpug [-]

Greek

ε Specific power dissipation [W/kg]

η Kolmogorov length scale [m]
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µ Liquid dynamic viscosity [Pa-s]

ν Liquid kinematic viscosity [m2/s]

φ Liquid volume fraction [-]

ρ Liquid density [kg/m3]

τ Kolmogorov time scale [s]

Subscripts

∞ Column liquid

ave Average

C Column

cr Critical

end Probe end caps

p Probe

1. Introduction

Shallow bubble columns have more intricate fluid dynamics than tall

columns as a result of the short distance between the gas sparger and the

free surface. Heat transfer to tubing within shallow bubble columns merits

further study because of the usefulness of coil-cooled shallow bubble columns

in humidification-dehumidification (HDH) desalination [1]. Most bubble col-

umn reactors are orders of magnitude taller than those used for dehumidi-

fication [2, 3], and therefore the reactor modeling and design literature has
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generally focused on the developed (i.e., height-independent) flow region in

the middle of the column and neglected to address the entry region near the

sparger and the region of bubble coalescence at the free surface. In contrast,

a shallow bubble column may have no region of developed flow. Heat transfer

coefficients on internal heat exchange elements in sieve tray columns, which

are similar in depth to shallow bubble columns, have not been studied be-

cause sieve trays have historically been used without such elements. In this

work, we investigate heat transfer to cylindrical heat exchange elements in

shallow bubble columns.

The results presented herein have applications in the design of shallow

bubble column heat and mass exchangers such as bubble column dehumid-

ifiers. The use of sieve tray columns (without coils) for humidification or

dehumidification was proposed by Barrett and Dunn in 1974 [4], but more

recently, shallow, coil-cooled bubble columns in a multi-tray configuration

have proven useful in dehumidification for HDH desalination [1, 5]. In a

bubble column dehumidifier, warm, moist air is bubbled through a volume

of cool water. The concentration gradient from the warm bubble center to

the cool bubble surface drives condensation on the surface of the bubble.

The heat leaving the bubbles is then transferred to a cooling coil with a

small surface area. Condensation in the presence of high concentrations of

noncondensible gases leads to low heat transfer coefficients. However, the

key advantage of the bubble column dehumidifier lies in moving the resistive

condensation process off an expensive solid surface and onto the surfaces of

bubbles.

Bubble columns for dehumidification must be shallow in order to min-
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imize the hydrostatic pressure drop and thus the blowing power necessary

for dehumidification. In modeling bubble column dehumidification, Tow and

Lienhard [3, 6, 7] find the literature lacking studies of heat transfer in shallow

bubble columns.

Many geometric parameters affect heat transfer in tall bubble columns

with internal heat exchange elements (internals) [8]. Several studies measure

the heat transfer coefficient on internals such as cylinders [9, 10, 11, 12, 13]

and tube bundles [14] in tall columns. Little is known, however, about the

effect of geometry on the heat transfer coefficient in shallow bubble columns

with internals. Tow and Lienhard [15] found that cylinder diameter does not

significantly affect the heat transfer coefficient outside cylinders in a shallow

columns. The influence of additional geometric parameters relevant to shal-

low columns has not been studied extensively. The heat transfer coefficient

has been shown to vary with radial [13] and vertical [16, 13] position in a tall

column, and with vertical position in a short column [15]. Narayan et al. [1]

proposed that horizontal position of internals with respect to the gas sparger

orifices could affect heat transfer coefficients. The heat transfer coefficient in

the coalescing region at the top of the column has been shown by Prakash

et al. [17] to be significantly lower than in the bulk in an air-water-yeast

system, but this has not been studied in an air-water system. Finally, to

our knowledge, the effect of liquid depth on heat transfer coefficient or flow

regime has not been studied.

In this paper, the heat transfer coefficient for a horizontal cylinder in a

shallow (<10 cm deep) air-water bubble column is measured over a range of

gas superficial velocities. Liquid depth, cylinder height, and cylinder hori-
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zontal position relative to the sparger orifices are varied in order to determine

the effect of height, column region, flow regime and bubble impact (bubbles

directly hitting the coil) on the heat transfer coefficient. Of the variables

considered, probe height proves to have the most profound effect on heat

transfer coefficient. Therefore, a semi-theoretical correlation for the heat

transfer coefficient in shallow bubble columns is developed in the form of

a height correction factor applied to Deckwer’s [18] theory for tall bubble

columns. Finally, the minor effects of column region, flow regime and bubble

impact that are excluded from the correlation are discussed qualitatively to

inform shallow bubble column design.

1.1. Theoretical Background

Many correlations predict the heat transfer coefficient in bubble columns,

but there is significant disagreement between them in terms of heat trans-

fer coefficient magnitude, superficial velocity dependence, and included geo-

metric variables. Several reviews of bubble column heat transfer coefficient

correlations are available [2, 8, 12, 19, 20, 21], and the spread in the pre-

dictions is demonstrated by a comparison of ten correlations by Hikita et

al. [22]. Most correlations are semi-theoretical with forms that depend on

the assumed mode of heat transfer. Many correlations assume heat is trans-

ported by microscale eddies produced by the dissipation of bubbles’ flow

work. Others consider fluid elements with a different length scale, such as

the bubble diameter or distance between bubbles. Other disparities may be

due to differences in measurement methods and, particularly in the case of

correlations for internals, geometry.

We have found no correlation developed for tall columns that satisfacto-
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rily predicts the heat transfer coefficient in a shallow column, but we have

demonstrated agreement with several correlations with respect to the de-

pendence on superficial velocity [15]. One of these correlations is Deckwer’s

[18], which is straightforward and widely-used. This semi-theoretical correla-

tion is based on the dissipation of bubbles’ flow work by small (Kolmogorov

scale) eddies which interact periodically with the heat transfer surface. Tur-

bulence is assumed to be isotropic and uniform throughout the column. The

thermal interactions between eddies and the solid surface are modeled as

conduction through a semi-infinite slab with a characteristic time equal to

the Kolmogorov time scale, τ =
√
ν/ugg. The application of an empirical

constant leads to the correlation, Eq. 1 [18]:

St = 0.1(ReDFrDPr2)−1/4 (1)

To rewrite Eq. 1 in a simpler form, we consider a bubble column with

volume V , liquid density ρ, and liquid fraction φ. Assuming high density ratio

between liquid and gas, the total energy dissipation rate Ė is the product of

specific dissipation rate ε and liquid mass:

Ė = εV ρφ. (2)

The power input is determined by the volume flow rate of bubbles and the

hydrostatic pressure drop through the column. Bubbles flow in at volume

flow rate V̇ against the pressure drop ∆P = ρφgd, where d is the liquid

depth. The column cross-sectional area is V/d. The power input is then:

Ė = V̇∆P = ug(V/d)ρφgd = ugV ρφg, (3)

where ug is the superficial gas velocity.
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In steady state, the power input is equal to the power dissipated. Setting

Eqs. 2 and 3 equal, we find (as did Deckwer [18]):

ε = ugg. (4)

The Kolmogorov length scale η = (ν3/ε)1/4 in a bubble column is therefore

given by Eq. 5:

η =
( ν3
ugg

)1/4
. (5)

Using Eq. 5, Deckwer’s correlation can then be rearranged [3] as Eq. 6,

a Nusselt number correlation based on the Kolmogorov length for a bubble

column:

Nuη = 0.1Pr1/2. (6)

The present authors believe that this representation better illustrates that

heat transfer is accomplished by transient thermal interactions with mi-

croscale eddies. Although the dependence on Pr1/2 may seem unusual, it

is not unique to this correlation. For example, Hughes and Duffey [23] pro-

pose a theoretical correlation for direct contact condensation in a turbulent

flow (in which η is defined generally as η = [ν3/ε]1/4) that can be stated in

the same form:

Nuη =
2√
π

Pr1/2. (7)

In both cases the form of the correlation results from modeling heat trans-

fer with Higbie’s surface renewal theory [24] and evaluating the interaction

period as the Kolmogorov time scale. However, Deckwer’s correlation ac-

knowledges with an application-specific empirical constant that η is more of

a scaling than an exact length.
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Deckwer’s correlation was shown by Deckwer et al. [25] to successfully

predict heat transfer coefficients in hydrocarbon liquids with Prandtl num-

bers as high as 225 (Paraffin at 143◦C), and reported by Shah et al. [26] to

be valid within 6<Pr<985.

Joshi et al. [27] propose another correlation (Eq. 8) for the heat transfer

coefficient in a tall column based on an analogy with stirred tanks.

NuDC
= 0.48

(
ρD

4/3
C g1/3[ug − (1− φ)vb]

µ

)2/3

Pr1/3
(
µ

µp

)1/3

(8)

Unlike Deckwer’s correlation, the heat transfer coefficient of Eq. 8 varies

with column diameter and includes a correction to account for the viscosity

variation between the heated surface (µp) and the bulk (µ). Despite this,

Shah et al. [26] find in their review that both correlations work equally well

and conclude that these approaches “can be regarded as limiting cases of a

more general model.”

We have previously shown that the heat transfer coefficient in a shallow

column depends on the distance, H, from the sparger plate [15], and we wish

to quantify this effect with a correlation that utilizes the vast amount of

existing knowledge about heat transfer in tall bubble columns. Of the two

correlations mentioned, Deckwer’s is more straightforward. Therefore, we

propose a modification to Deckwer’s correlation of the following form:

Nuη = CHPr1/2, (9)

where CH is an unknown function of height. A correlation of this form makes

it possible to account for the deviation from uniform turbulence near the solid

sparger. In Sec. 3.3, experimental measurements are used to evaluate CH for

the shallow column used in this work.
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RTV Thermocouple Copper tube Acetal

HoleCartridge heaterThermal paste

Figure 1: Schematic diagram of the heat transfer coefficient probe construction

2. Experimental Methods

The heat transfer coefficient outside a horizontal cylinder in a shallow

bubble column is measured using a cylindrical heat transfer coefficient probe.

A cylindrical probe is used to represent coils of large turn radius compared to

the outer diameter of the tube, for which the effects of coil curvature would

be negligible. Gas superficial velocity, probe diameter, liquid height, probe

height, and horizontal cylinder position with respect to the sparger holes are

varied. Additionally, the flow regime is observed for a range of liquid depths

and gas velocities.

2.1. Heat Transfer Coefficient Probe Design

The heat transfer coefficient probe, which consists of a cartridge heater

inside a copper tube instrumented with several thermocouples (Fig. 1), dis-

sipates a known power over a known area and measures the surface tem-

perature. A separate thermocouple measures the bubble column bulk tem-

perature, T∞. The probe ends are sealed and insulated with acetal caps

(kacetal = 0.33 W/m-K [28]). As described by Tow and Lienhard [15], the

average heat transfer coefficient can be calculated using Eq. 10,
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h =
Q̇p − 2Q̇end

A(Tp,ave − T∞)
, (10)

where A is the surface area of the probe’s copper tube, T∞ is the column

bulk temperature, the power dissipated is:

Q̇p =
∆V 2

R
, (11)

and where the minimal (∼1%) heat loss at each end is approximately:

Q̇end ≈
√
hPpkacetalAc(Tend,ave − T∞). (12)

Tend,ave is the average reading of the two thermocouples closest to the end

caps. The infinitely-long fin approximation of Eq. 12 can be applied to the

end caps because the fin is much longer than its extinction length (m−1end), as

shown by Eq. 13:

(mL)end =

√
hPp

kacetalAc
Lend ≈ 18 to 120� 1. (13)

The effect of the diameter of cylindrical internals has been investigated

by several authors, but there is disagreement among them [8, 29, 10, 30].

Among the three probes tested by Tow and Lienhard [15] (4.76, 9.53, and

15.88 mm in diameter), no significant effect of probe diameter on heat transfer

coefficient was observed. Therefore, all measurements in the present study

are made with a single probe, 9.53 mm (3/8”) in diameter.

The construction of the probe is detailed in [15] and [31] and summarized

here. The probe has a 62.2 mm-long heated copper test section and 25.4

mm-long press-fit acetal end caps. Four thermocouples are distributed in

a spiral, covering the probe evenly in both axial and radial directions; the
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four readings are averaged to represent the average surface temperature. The

thermocouples are 36-gauge K-type with fiberglass insulation. The thermo-

couple attachment method is detailed in [31].

Tow and Lienhard [15] validated the probe against the correlation of

Churchill and Chu [32] for natural convection from a horizontal cylinder, and

found that the 9.53 mm probe used here measured heat transfer coefficients

within 8% of the predicted value. The probe is designed to have a 95%

confidence interval of ±12.4% of the heat transfer coefficient measurement

[31]. This uncertainty accounts for the 1.1◦C uncertainty on each individual

thermocouple (except for the thermocouple measuring the bath temperature,

which was calibrated to reduce its uncertainty). Additional uncertainty of

around 3% [31] arises from calculating the average temperature of the probe

surface with only four measurements. The uncertainty in the measurement

could not be lowered by operating at a larger temperature difference because

a low temperature difference is required between the probe and the water to

minimize the formation of air bubbles on the probe surface.

2.2. Experimental Apparatus

The heat transfer coefficient probes fit into an experimental fixture in

which the gas velocity, liquid depth, sparger design, and cylinder diameter,

height, and horizontal position relative to the sparger orifices can be easily

varied. Figure 2 shows the experimental setup.

The bubble column is contained by a rectangular polycarbonate tank, 157

mm wide and 284 mm long, that can be filled to a maximum depth of 110

mm above the sparger plate. The tank width can be considered to be large

based on observations about tall bubble columns: at this hydraulic diameter

13



DAQ

2

1

3

5

6

4

7

8

9

Figure 2: Experimental apparatus: 1. Pressurized dry air inlet; 2. Rotameter (4-40 cfm);

3. Rotameter (0.4-4 cfm); 4. Tank; 5. Orifice plate sparger; 6. Heat transfer coefficient

probe; 7. Thermocouple; 8. Variable autotransformer; 9. Data acquisition unit.

40 mm 

3 mm 

Figure 3: Sparger plate used in experimental column

(202 mm), the gas holdup is independent of column diameter [2] and the heat

transfer coefficient is within 10% of the large-diameter value [8]. The sparger

plate, depicted in Fig. 3, has sixteen 3 mm orifices spaced 40 mm apart in a

triangular grid.

2.3. Experimental Protocol

First, tap water is degassed by boiling and cooling. The probe is polished

to remove oxidation and installed in the desired position. In the case of

bubble impact, the probe is placed over the central row of sparger orifices,

and otherwise it is placed between rows. The column is filled with degassed

water to the desired depth during air sparging at 1 cm/s. A wide ruler is
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positioned a few millimeters from the front wall of the tank to damp the

liquid depth fluctuations in the vicinity of the depth measurement without

causing significant capillary rise. The heater and DAQ are turned on, and the

heater voltage is measured. Ice and/or hot degassed water are added until the

column reaches 20◦C. The system is allowed a few minutes to reach a quasi-

steady state in which there is a constant temperature difference between the

probe surface and column liquid.

To make each measurement, the air flow rate is set and the system is

given about one minute to return to a quasi-steady state. Air bubbles that

accumulate on the warm probe due to the outgassing of air from the water

(which, despite initial degassing efforts, tends to reabsorb air during bub-

bling) are brushed off with a curved pipe cleaner. Because of this bubble-

removal procedure, these measurements apply to heat transfer coefficients

in cooling, which is the direction of heat transfer in dehumidification and

many chemical processing applications, including Fischer-Tropsch synthesis

[33]. Finally, approximately sixty measurements of each temperature are

taken with the DAQ at half-second intervals. The average temperature of

each thermocouple is recorded for use in computing the heat transfer coef-

ficient. This procedure is repeated for a number of air flow rates for each

column-probe configuration.

Throughout the experiment, bulk liquid temperature is maintained as

close as possible to 20◦C. The film temperature (the average temperature of

the bulk liquid and probe surface) was 23.8◦C ± 1.0◦C, indicating that the

liquid properties (particularly viscosity) can be considered constant across

all measurements.
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3. Correlation Development

Superficial velocity, liquid depth, probe height, and horizontal probe po-

sition with respect to the sparger holes were varied to determine the effects

of geometry on the heat transfer coefficient. Of the variables tested, probe

height has the most dramatic effect on heat transfer coefficient, and therefore

only height is incorporated into the correction to Deckwer’s correlation [18].

The effects of liquid depth and horizontal probe position, which determine

the flow regime, column region, and incidence of bubble impact, are discussed

further in Sec. 4. In this section, the experimental results for cylinder height

are presented, a dimensionless height ratio is justified, and a correlation is

developed.

3.1. Effect of Probe Height

To understand the effect of cylinder height, it is first necessary to un-

derstand the regions of fluid flow in the column. As in tall bubble columns

and sieve trays, the flow pattern in shallow columns varies in the vertical

direction. For the range of superficial velocities tested here, the top 2 cm

or so of fluid has a high void fraction. As described by Joshi and Shah [34]

for tall bubble columns, this region is where bubbles pile up, coalesce, and

join the continuous gas phase above the column. Therefore, this region will

be referred to as the “coalescing” region. Below the coalescing region, the

void fraction is high. Despite the height-dependent flow that would be con-

sidered to be “developing” in a tall column, everything below the coalescing

region will be referred to herein as the “bulk.” In this work, “coalescing”

measurements were always made with the probe even with the top surface
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of the liquid so that the top of the probe was just kept wet, and “bulk”

measurements were made at least 2 cm beneath the surface.

In shallow bubble columns, the heat transfer coefficient depends on the

height at which the cylinder is placed. Far from the sparger plate, the flow of

heat-carrying eddies is unaffected by the plate and the heat transfer coeffi-

cient is roughly independent of height. However, below the critical modified

Reynolds number, the presence of the solid plate hinders the heat transport.

The effect of cylinder height on heat transfer coefficient is shown in Figs. 4

and 5 for the bulk and coalescing regions, respectively. In each figure, the

liquid depth and cylinder height (the vertical position of the probe center

with respect to the sparger) are varied together. In the coalescing region

measurements, the liquid is just deep enough to keep the probe wet. In the

bulk region measurement, the free surface is maintained 2 cm above the top

of the probe.

The heat transfer coefficient increases monotonically with height until

reaching a maximum1 at 4.5 cm in both regions. Similar heat transfer co-

efficients are measured at a height of 8.5 cm. The significant drop in heat

transfer coefficient as the probe height is reduced from 4.5 to 0.5 cm is un-

surprising because the bottom wall (the sparger) acts as a momentum sink,

decreasing the turbulent dissipation rate in its vicinity. Prakash et al. [17]

similarly observe that the heat transfer coefficient in a tall bubble column

decreases in the vicinity of the column wall.

1The peak in heat transfer coefficient around a height of 4.5 cm observed in the ex-

perimental column is most likely due to the height-dependent bubble dynamics that have

been observed by several researchers [35, 34, 31] in the developing region near the sparger.
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Figure 4: Heat transfer coefficients in the bulk region with impact at a variety of heights

(data from Tow and Lienhard [15]). The fluid is depth maintained at 2 cm over the top

of the probe except (3 cm in the case of the 6.5 cm-high probe).

The data show a critical height (around 3 cm in this experiment) above

which the heat transfer coefficient is roughly constant and below which the

heat transfer coefficient varies with cylinder height above the sparger. A

more general critical height is discussed in Sec. 3.4.

3.2. Dimensionless Height Ratio

The critical height below which heat transfer is influenced by the presence

of the sparger plate can be understood through an analogy to fluid dynamics.

Above a certain depth, the liquid has bulk motion (swirling or sloshing,

discussed further in the appendix), but below a this depth, the proximity

of the sparger plate prevents bulk motion and only splashing is observed.
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Figure 5: Heat transfer coefficients in the coalescing region with impact at a variety of

probe heights

The transition from splashing to sloshing flow can be measured over a range

of superficial velocities by varying the liquid depth. As shown in Fig. 6,

the transition between flow regimes occurs at a height of 900η, where η is

the Kolmogorov length scale, Eq. 5. The constant d/η ratio marking the

transition to sloshing suggests that η could nondimensionalize the height as

it relates to heat transfer as well. Therefore, we adopt h/η as a dimensionless

height ratio.

The experiments used in the correlation of Sec. 3.3 span only a small

range of η (34-66 µm), and the cross-section of the column was not varied, so

it is possible that h/η is not the only relevant dimensionless height. Further

experimentation is necessary to hone in on a universal correlation.
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3.3. Correlation

Due to the strong variation in heat transfer coefficient with probe height

shown by Figs. 4 and 5, we develop a correlation incorporating probe height

as well as the superficial velocity and liquid properties captured by existing

tall column correlations. Experimental data from Figs. 4, 5, 9, and 10 along

with data from Tow and Lienhard [15, 31] using the same test column with

two additional probes (of diameters 4.76 and 15.88 mm and with 11-14%

measurement uncertainty in h) are utilized to find the coefficients of a semi-

theoretical correlation of the form proposed in Eq. 9. It is assumed that CH

is a function of the dimensionless height ratio, H/η, as argued in Sec. 3.2.

To find a correlation of the form: Nuη = CH(H/η)Pr1/2, we compare the

measured value of Nuη/Pr1/2 to H/η as shown in Fig. 7. The approach of

Nuη/Pr1/2 to a constant value can be described by an exponential function,

Eq. 14, with three unknown coefficients:
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CH = a+ b
[
1− exp

(−H
cη

)]
. (14)

Coefficients a, b, and c were varied until the average absolute error be-

tween the correlation and the 389 measurements was minimized to within

0.1%. The resulting correlation is given by Eqs. 15 and 16:

Nuη = CHPr1/2, (15)

where

CH = 0.02 + 0.18
[
1− exp

( −H
300η

)]
, (16)

and where η is the Kolmogorov length scale, Eq. 5. The correlation is com-

pared with the data in Fig. 8. The correlation and data agree with an average

absolute error of 10.8%, and 85% of the measurements fall within 20% of the

correlation.
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Figure 8: Agreement of Eq. 15 with shallow column experimental data from this work and

from Tow and Lienhard [15, 31]. Predictions from Deckwer’s correlation for tall columns

[18] are also shown for comparison.

Figure 8 also includes a comparison to Deckwer’s popular correlation

for tall columns [18] (Eq. 1), which shows that while Deckwer’s correlation

predicts shallow column heat transfer coefficients of the correct order or mag-

nitude, Eq. 15 improves the accuracy by capturing the important effect of

height.

Some spread still exists because Eq. 15 incorporates only the effect of

probe height, whereas the more minor effects of flow regime, column region,

and bubble impact are excluded from the correlation. The magnitudes of

these effects may be specific to the column and sparger design, but the trends

are likely to be more general. For this reason, the trends associated with these
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factors are discussed in Sec. 4.

This correlation has not been tested in columns of differing cross-section

or with different liquids, and should be applied with caution. However, the

observed decline in heat transfer coefficient as the heat exchange element

approaches the sparger plate should be expected in a wide range of column

designs.

3.4. Critical Height

Above a critical height, the effect of the sparger plate on the heat transfer

coefficient is negligible and a simpler correlation, Nuη = 0.2Pr1/2, can be

used. Based on the form the height-dependent correction factor, Eq. 16, the

critical height (at which the heat transfer coefficient is 90% of its value very

far from the sparger) is Hcr = 660η.

Under conditions typical of this experiment (3 cm/s superficial velocity

and 23◦C water), the predicted critical height is 2.7 cm, which is consistent

with the transition to height-independent heat transfer coefficient between

the heights of 2.5 and 4.5 cm shown in Figs. 4 and 5.

4. Observations

Despite being excluded from the correlation, the minor effects of flow

regime, column region, and bubble impact are nonetheless useful to consider

when designing a shallow bubble column. The effects of these three variables

are discussed qualitatively in this section. Although the exact results are

specific to the test column, the trends are likely to be general.
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4.1. Flow Regime

The heat transfer coefficient depends weakly on the flow regime as shown

in Fig. 9. The flow regimes (splashing, sloshing, or swirling), described in

the appendix, vary with superficial velocity and liquid depth. The heat

transfer coefficient is slightly higher in swirling than in sloshing flow. The

highest and lowest heat transfer coefficients are measured in splashing, with

and without impact, respectively. However, because splashing requires a

shallow liquid (see appendix), it is impossible to place a probe in the bulk of

a splashing liquid without bringing it very close to the sparger. Therefore,

the measurements of the splashing regime are taken in the coalescing region,

which is discussed in Sec. 4.2, and consequently the splashing regime cannot

be compared directly to the other regimes in the bulk region. However, for a

fixed probe height (as in Fig. 9), changing the liquid depth does change the

flow regime and, to a lesser extent, the heat transfer coefficient. Because the

effect of flow regime on heat transfer is not very pronounced, the depth of

the column can be chosen based on other constraints such as blowing power.

4.2. Column Region and Bubble Impact

We find that the column region occupied by the internals matters some-

what, depending on the incidence of bubble impact. Therefore, column region

and bubble impact are discussed together in this section. The distinction be-

tween coalescing and bulk regions was discussed in Sec. 3.1.

When heat transfer in different regions of an air-water-yeast bubble col-

umn were measured, the heat transfer coefficient in the bulk was more than

twice that in the coalescing region [17]. The surface-active properties of

yeasts [36] (absent in this experiment) stabilize the air-water-yeast foam and
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Figure 9: Heat transfer coefficient variations with changes in flow regime. For these

measurements, the probe height was fixed at 2.5 cm and the liquid depth was varied (2.5,

5, and 10 cm for splashing, sloshing, and swirling, respectively).

reduce turbulence in that region. In contrast, the air-water foam in the

present experiment is not stabilized by surfactants, leading to a violent co-

alescing region. Figure 10 shows that, particularly in the case of impact,

the heat transfer coefficients in the coalescing region are comparable to those

in the bulk region. This can also be seen by comparison of Figs. 4 and

5, which show heat transfer coefficients in the bulk and coalescing regions,

respectively.

Bubble impact, proposed as a variable of interest by Narayan et al. [1],

was also tested because of observations by Tow and Lienhard [3] that align-

ing a cooling coil directly above sparger orifices led to a consistently (albeit

slightly) higher effectiveness in a shallow bubble column dehumidifier. The ef-
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Figure 10: The heat transfer coefficient in the bulk of the fluid and in the coalescing region,

with and without impact. In each case the probe height was 2.5 cm; the region was changed

by varying the liquid depth (2.5 and 10 cm for coalescing and bulk, respectively).

fect of bubble impact on heat transfer coefficient was measured in the present

work by varying the horizontal position of the probe with respect to the rows

of sparger orifices. In the case of impact, the probe was positioned over the

central two orifices in Fig. 3, and in the non-impact case it was positioned

between the central and front rows of orifices. Figure 10 shows that although

impact does not matter in the bulk, it clearly affects heat transfer in the

coalescing region.

This variation in impact-dependence makes it clear that the mode of

heat transfer in the coalescing regime is different. Due to the locally high

void fraction, the uniform turbulence assumption may not be valid in the

coalescing region. In addition, contact with liquid filaments and droplets
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created by the bursting of bubbles may enhance heat transfer in the impact

case.

The highest heat transfer coefficients occur in the coalescing region with

impact, and nearly as high were measurements in the bulk regardless of

impact. In the case of no impact, the coalescing region proves to perform

worse than the bulk. Clearly, the correlation is unable to predict the heat

transfer coefficient in the coalescing regime without impact. However, we now

know that good shallow column design will steer clear of this configuration.

Because high heat transfer coefficients extend into the coalescing region in

the presence of impact, blowing power can be reduced by setting the liquid

depth so that the coil is just covered.

5. Conclusions

Measurements of the heat transfer coefficient on a cylinder in a shallow

bubble column demonstrate how geometric parameters influence heat transfer

in shallow bubble columns:

• Heat transfer coefficients increase with cylinder height until reaching a

critical height

• Above the critical height, the highest heat transfer coefficients occur

when the cylinder is in the coalescing region and aligned over the

sparger holes

• Compared to the effect of cylinder height, the effects of flow regime,

column region, and bubble impact on heat transfer are minimal.
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Based on these observations, a semi-theoretical correlation (Eq. 15) is

developed that predicts the heat transfer coefficients on a cylinder in a shallow

bubble column as a function of cylinder height, superficial velocity, and liquid

properties. The more minor effects on heat transfer coefficient are discussed

to provide insight into effective shallow bubble column design.
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Appendix: Shallow Column Flow Regimes

A full discussion of shallow column flow regimes is given in [31], but

the following summary here is necessary to support the present analysis.

Generally, the character of the multiphase flow in a shallow bubble column

depends on the column geometry, superficial velocity, and fluid properties.

In the column used in this work with air and water, the dependence of the

flow regime on gas superficial velocity and column depth can be defined by

a regime map, Fig. 11. The map was constructed by testing a 10×10 grid

of depths and superficial velocities in the experimental column without the

probe installed. Figure 11 shows that the bubbling of air into water in the

test column can be divided into splashing, sloshing, and swirling flow regimes.

Unlike regime maps for multiphase flow in tall columns or long tubes, which

mainly describe the behavior of the gas phase, these shallow column flow

regimes describe the bulk motion of the liquid. The map was constructed

using a single column cross-section, so the regime transitions identified in

Fig. 11 do not necessarily apply to all shallow columns. However, it is clear

from this study that the typical tall-column regime map [26] cannot predict

the flow regimes that occur in shallow columns.
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Figure 11: Regime map for the experimental column geometry showing dependence on

liquid depth and superficial velocity
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When the liquid is very shallow (less than around 4 cm deep), only splash-

ing is observed. This regime is similar to the spray regime noted by Zuiderweg

[37] and the froth regime described by Syeda et al. [38] in sieve trays. Liquid

filaments, some of which break into drops, extend out of the liquid.

Sloshing, characterized by spontaneous and sustained back-and-forth mo-

tion of the liquid, was observed in columns of 4-6 cm depth. The phenomenon

of sloshing caused by gas injection has been previously noted in the blowing

of gas through molten stainless steel during argon-oxygen decarburization

[39]. In the experimental column, the dominant sloshing mode was across

the shorter length of the rectangular tank at approximately 2 Hz.

The swirl regime, which occurred when the liquid was deeper, encom-

passes swirling flow around several axes. The regime map, Fig. 11, shows

how the swirl type evolves as the liquid depth is increased. Swirl directions

are illustrated and photographed in [31]. Vertical-axis swirl was observed to

turn in either direction, which suggests that it was not due to an imbalance

in the sparger. Above a depth of 10 cm, the flow begins to switch spon-

taneously (and seemingly chaotically) between longitudinal, circumferential,

and both directions of vertical swirl. Circumferential-axis swirl is common in

tall columns [34], but vertical-axis swirl is not [40]. Longitudinal-axis swirl

is a natural variation of circumferential-axis swirl for a rectangular column.
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