This copy may not be further
reproduced or distributed in any way
without specific authorization in each

instance, procured through the
Director of Libraries, Massachusetts
Institute of Technoloqy.

I-M% Mzs
||| = '.: ”E llz2

et * =
lizs fles e

MICROCOPY RESOLUTION TEST CHART
AL BUREAU OF STANDARDS - 1963

241

High-Performance Application-Specific Networking
by
Deborah Anne Wallach

S.B., Massachusetts Institute of Technology (1990)
S.M., Massachusetts Institute of Technology (1992)

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
January 1997

(© Massachusetts Institute of Technology 1997. All rights reserved.

Department of Electrical Engineering and Computer Science
31 January 1997

M. Frans Kaashoek
Associate Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

G HUET TS s

OF THEOw e

. MAR 0 6 1997
 ARCHIES

High-Performance Application-Specific Networking
by
Deborah Anne Wallach

Submitted to the Department of Electrical Engineering and Computer Science on
31 January 1997 in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

Experience with parallel and distributed systems has shown that different application domains require
different communication models in order to perform efficiently and be programmed conveniently [37,
57, 60]. Unfortunately, programmers traditionally have had to choose between inflexible but efficient in-
kernel protocols and flexible but inefficient user-level protocols. This thesis presents application-specific
safe handlers (ASHs), a new technique that provides a protected, efficient, and flexible communication
interface.

ASHs make user-level protocols more efficient and usable by enabling application-specific com-
munication protocols to be dynamically yet safely downloaded into the kernel and tightly integrated
with the communication system. ASHs eliminate kernel crossings and scheduling delays for common,
time-critical events by decoupling network processing from application execution; they also provide the
capability for eliminating extraneous data copying and integrating necessary data copying with other data
manipulations.

This thesis presents the design of ASHs and their implementation in Aegis, an exokernel-based
operating system. It also presents the design and implementation of fast, asynchronous upcalls, an
alternative approach to achieving many of the ASH benefits.

Experiments show that ASHs and upcalls can deliver efficient yet flexible communication to applica-
tions. Microbenchmarks and end-to-end experiments demonstrate that ASHs outperform upcalls in the
cases where the overhead to make them safe is not too high, or where there is a low percentage of success-
ful handler invocations. User-level protocols which use either ASHs or upcalls are shown to outperform
user-level protocols which use neither when there is more than one active process simultaneously using
the system.

Finally, the thesis presents an analytical model which predicts how the performance would change for
different operating systems, architectural models, and application characteristics. We predict that ASHs
and upcalls are likely to have even better performance over a wider range of application characteristics
in traditional operating systems.

Thesis Supervisor: M. Frans Kaashoek
Title: Associate Professor of Computer Science and Engineering

Acknowledgments

My research career was greatly affected by Frans Kaashoek, not only my advisor but a friend
as well. He coaxed me out of parallel computation into a whole new area (systems research),
a move good both professionally and emotionally. I have very much enjoyed the process of
becoming a researcher with his guidance.

I also thank the rest of my committee, Dave Clark and Bill Weihl, for providing encourage-
ment and useful feedback throughout my research, both aiding my dissertation, and allowing
me to have a timely defense. John Guttag, although he was not part of my committee, was
extraordinarily helpful with my job application process, and always found time for me in his
busy schedule.

I thank the DEC Systems Research Center for lending us four AN2 Network Interface cards
and an AN2 switch, and for giving us device drivers for these cards. I am especially grateful
to Mike Burrows, for providing useful and speedy assistance while I was porting the device
drivers to Aegis, and Hal Murray, for helping me get the switch running. Thanks are also due
to Dorothy Curtis, of MIT, for keeping the DECstations running.

Dawson Engler admirably put up with the stress of simultaneously being my officemate,
research partner, and friend, even if he did think that my workouts were missing a few key
exercises. His implementation of Aegis provided a platform on which I could do my research;
additionally the Dynamic Integrated Layer Processing compiler was solely written by him.
Many of the ASH ideas were developed in collaboration with Dawson, and this dissertation
greatly benefited from both discussions and work with him.

I also thank the rest of the PDOS group for providing a fun yet challenging place to work.
It was eminently clear that if I could survive a presentation of my work to the group, I was
more than set for any other audience. Greg Ganger always had time to answer my questions,
and provided helpful advice about improving my research. Although I understood very few
of his compiler nightmares, Max Poletto was always ready with a new one to discuss, and has
certainly completely redeemed himself in the plant kingdom by now. Eddie Kohler wrote the
sandboxer used in this thesis, helped with improving the writing,quality of papers written on the
content of this thesis, and also was the best source of non-techiiical discussion around. Dave
Maziéres could always be counted on as a source of entertainment. Anthony Joseph answered
many many computer-related questions for me, especially, but not exclusively related to crusty
DECstation knowledge. Last but not least, I am grateful to Thomas Pinckney and Héctor M.
Bricefio for implementing large parts of the support software for interacting with Aegis, and for
providing for providing assistance with it at all times of the night.

I thank my long distance friends, Carrie Brownhill, Ike Chuang, Brian Murphy, and espe-
cially David Kramer, for keeping me sane and giving me an excuse to come in to work. No
matter what the season, I could always count on at least one of them to let me know what
gorgeous weather I was missing in California.

Finally, I thank Fred Chong, without whose care and support I would have found graduate
school a very lonely place.

Some of the text of this thesis was taken from previous papers written by the author and
has appeared elsewhere. Specifically, large parts of Chapters 2, 3, 4, and 6 are from [64]. In
addition, parts of Chapter 6 appeared in [30, 65].

This research was supported in part by ARPA contract N00014-94-1-0985, by a NSF
National Young Investigator Award to Prof. Frans Kaashoek, by an Intel Graduate Fellowship
Award, and by Digital Equipment Corporation.

Contents

1 Introduction

1.1 MOBVAION .« &+« v v v vt e
1.1.1 Kemel-level vs. user-level communication
1.1.2 Problem v v i e
1.13 Solution . . . v v v vt e e e e e e e e e e e e e e e e e e
1.2 Contributionsandresults oo e e
1.3 Overviewofthethesis o i i i it i e e

2 Related Work

2.1 Computationalmodel
22 Safecodeimportationt e e
23 ASHDbEnefits v v v v o e e e e e e e e e e e e e e e e e e e
231 Message veCtoring oo e e e e e
232 Controlinitiation. o e
2.3.3 ILPand protocol compositiono
24 Scheduling e e
3 ASH Programming Model
3.1 Messagedemultiplexingo oo
32 Typesof ASHs i
321 StaticASHs i e e
322 ASHswithdynamicILP
3.2.3 ASHs with dynamic protocol composition
3.3 Aborts: terminating ASHso oo
33.1 Voluntaryaborts
332 Involuntaryaborts
34 SUMMAIY . . .« . v v vttt e i e
4 Safe Execution
40 ASHS . . . o o it e e e e e e e e e e e e e e e
4.1.1 Theoperatingsystemmodel

4.2 Upcalls. e 44
43 Summary e e e e e e 44
Implementation Specifics 45
5.1 Overview L e e e e e e e e 45
5.2 Aegis. . .. e 45
5.3 Network and operating system interfaces 46
53.1 Ethemetinterface 46
532 AN2interface 47
54 ASHs. e e e 48
541 ASHinterface 49
542 ASHimplementation 49
5.5 Sandboxerinterface 50
56 Upcalls. e 51
56.1 Upcallinterface 51
5.6.2 Upcallimplementation. 51
57 DynamicILPinterface 52
5.8 Complexityofthesystem 52
59 Summary. e e 53
Experiments 55
6.1 Experimentalenvironment 56
6.1.1 Testbed 56
6.1.2 Methodology, 56
613 Imterrupts 56
6.1.4 Raw performance of basesystem 57
6.1.5 Userlevel intemetprotocols 58
6.2 Sandboxingoverhead 60
6.3 Exploiting ASHs and upcalls: microbenchmarks 61
6.3.1 Highthroughput 62
6.3.2 Low-latency datatransfer 64
633 Controltransfer 65
6.4 Exploiting ASHs and upcalls: applications 66
641 TCP e e 67
6.4.2 Parallel applicationsusingCRL 69
643 AWebserver 77
6.5 Summaryanddiscussion., 80

7 Analysis 83

7.0 ASSUMPLONS . . .« v v v ot i e e e e 83
72 Model e e e e e e e e 85
7.2.1 Parameterdescriptiono 85

722 Modeldescription 88

7.3 INpUtPArAMELerS . . . « v o o v e b e e e e e e e e e e 91
73.1 Ultrix-like parameterso oL 92

7.32 Workload parameterso e e 93

74 Verification v v v v o i e e e e e e e e e e e e e e e 93
75 StAY . . o e e e e e e e e e 95
7.6 SUMMATY . . « o v v v o v e v vt e e e e e e e e 98
8 Conclusion . 103
8.1 SUMMAIY v ot ittt ettt e et 103
82 Future Work o ¢ i i i e e e e e e e e e e e e e 104

10

List of Figures

1-1 A problem with user-level communication 18
1-2 Alternative mechanisms to support user-level communication 20
3-1 Anexample ASH i 31
3-2 Compose and compile checksum and byteswappipes. 33
3-3 Simple checksum pipe example e e e e e e e e 34
3-4 Example ASH using the dynamic protocol composition extensions. 37
5-1 Overviewof systemo vttt it i 46
5-2 Virtualized notificationringo 47
6-1 Throughput for a user-level applicationonthe AN2. 58
6-2 Scheduling behavior under Aegisand Ultrix 67
6-3 Performance of the Traveling Salesman Problem 71
6-4 Performance of the Water application 73
6-5 Performance of the Barnes-Hut application 75
6-6 Performance of the Web server, request page size8bytes 78
6-7 Performance of the Web server, request page size 2048 bytes 79
7-1 MoOdelOVEIVIEW . . o v v v e e e e e e e e e e e e e e 85
7-2 Modelof ASHabortingt 87
7-3 Comparison of model to experiment 94
7-4 Model of Exokernel, handler run time of 20 microseconds 96
7-5 Model of Ultrix, handler run time of 20 microseconds 96
7-6 Model of Exokernel, handler run time of 50 microseconds 97
7-7 Model of Ultrix, handler run time of 50 microseconds 97
7-8 Model of Exokernel, handler run time of 125 microseconds 99
7-9 Model of Ultrix, handler run time of 125 microseconds 99
7-10 Model of Exokernel, handler run time of 200 microseconds 100
7-11 Model of Ultrix, handler run time of 200 microseconds 100

11

12

List of Tables

6-1
6-2
6-3

6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12

7-1
7-2
7-3
7-4
7-5

7-7

System call interface availableto ASHs. 49
Raw latency for user-level and in-kernel applications on Aegis 57
Latency and throughput for UDP and TCP over ANZ and Ethernet 59
Dynamic instruction count (excluding data copying) for three implementations

of remote writetoberuninthekemel. 60
Throughput for copies of 4096 bytesof data 63
Throughput of integrated and non-integrated memory operations 64
Raw roundtrip times for remote increment 64
TCP performance COMParison« o v v v v oo v oo oo v v e 68
TSP success StatiStiCS . . « « v v v v vt e h e e e e e e e e e e e e e 72
Water success StatistiCs v < v v v e v e e e e e e e e e e e e 74
Bames-Hut success Statistics v v o v e o it oo 76
Parameters for Web serverexperiment 77
Abort statistics forthe Webserver oL 80
Process state COdES v v v v bt e e e e e e e e e e e e 84
Machine- and OS-dependent parameters 86
Application- and workload-dependent parameters 86
Derived model variables e 87
Exokernel and Ultrix-like hardware and OS parameters 91
Model verification« v v bt e e e e e e e e e 94
Applicationparameters a e 95

13

14

Chapter 1

Introduction

Raw processing power and raw networking performance are increasing with time. Although
the performance available today may be enough to satisfy the needs of applications written
a few years ago, the applications being written today are, commensurately with increases in
hardware performance, more complex and demanding in their requirements. For example,
the last few years have seen a proliferation of distributed shared memory systems [30, 32,
35), real-time video and voice applications [63], parallel applications [14, 47], and tightly-
coupled distributed systems [2, 60, 56]. Unfortunately, although raw CPU and networking
hardware speeds have increased, this increase is not reaching applications: networking software
and memory subsystem performance already limit applications and will only do so more in
the future [13, 16, 56]. This thesis addresses the important problem of delivering hardware-
level network performance to applications by introducing application-specific safe message
handlers (ASHs), which are user-written handlers that are safely and efficiently executed in the
kernel in response to a message arrival. ASHs direct message transfers (thereby eliminating
copies), incorporate manipulations such as checksumming and data conversions directly into the
message transfer engine (thereby eliminating duplicate message traversals), and send messages
(thereby reducing send-respense latency). Measurements of a prototype implementation of
ASHs demonstrate substantial performance benefits over a high-performance implementation
without ASHs. ASHs are also compared in this thesis to fast, asynchronous upcalls, an
alternative approach to achieving many of the ASH benefits; microbenchmarks and end-to-end
experiments demonstrate that ASHs outperform upcalls in the cases where the overhead to make
them safe is not too high, or where there is a low percentage of successful handler invocations.

ASHs are written by application programmers, downloaded into the kernel, and invoked
after a message is demultiplexed (i.e., after it has been determined for whom the message is
destined). An important property of ASHs is that they represent bounded, safe computations.
ASHs are made safe by controlling their operations and bounding their runtime. Because an

15

ASH isa“tamed” piece of code, it can be directly imported into the kernel of an operating system
without compromising safety. This ability gives applications a simple mechanism with which
to incorporate domain-specific knowledge into message-handling routines. ASHs provide three
key abilities:

Direct, dynamic message vectoring An ASH can dynamically control where messages are
copied in memory, and can therefore eliminate intermediate copies. Because most systems
do not allow application-directed message transfers, messages are copied into at least one
intermediate buffer before being placed in their final destination (e.g., an application data
structure).

Message initiation ASHs can send messages. This ability allows an ASH to perform low-
latency message replies. The latency of a system determines its performance and scalability;
low latency is especially important for tightly-coupled distributed systems. For example, one
important determinant of parallel program scalability is the latency of communication. In the
context of a client/server system, the faster the server can process messages, the less load it has
(and, therefore, the more clients it can support) and the faster the response time observed by
clients.

Control initiation ASHs can perform general computation. This ability allows them to
perform control operations at message reception, implementing such computational actions
as traditional active messages [61] or remote lock acquisition in a distributed shared memory
system. Even recently, low-overhead control transfer had been considered to be infeasible to
implement [56].

We have also integrated support for dynamic integrated layer processing into the ASH
system. Current systems often have a number of protocol layers between the application and the
network, with each layer often requiring that the entire message be “touched” (e.g., to compute
a checksum). Therefore, the negotiation of protocol layers can require multiple costly memory
traversals, stressing a weak link in high-performance networking: the memory subsystems of
the endpoint nodes. As argued by Clark and Tennenhouse [13], an integrated approach, where
these application-specific operations are combined into a single memory traversal, can greatly
improve the latency and throughput of a system.

The ASH system integrates data manipulations such as checksumming or conversions into
the data transfer engine itself, automatically and dynamically performing integrated layering
processing (ILP). Even though ASHs improve flexibility by using layers integrated at runtime,
dynamic ILP is as efficient as statically-written hard-wired ILP implementations.

In this thesis we also introduce a model for predicting the performance advantages achievable
by using ASHs as well as two competing strategies for delivering messages to applications
(upcalls and unaugmented user-level communication). The model takes as input a variety of
hardware and operating system-dependent parameters, and then can be used to predict which

16

strategy to use for a given application, once given the application-dependent parameters: how
long the handler will run for, what the penalty is to make that handler code safe, and how often
the handler will succeed.

1.1 Motivation

Applications require flexibility in their communication options. For example, different ap-
plications need different communication models. Some applications require reliable, ordered
communication: they never want to receive any out of order packets, nor do they wish to miss
a packet. On the other hand, other applications, such as ones which present streams of voice
data to users, have mostly real-time constraints. It is relatively easy to mask a missing packet (a
human will usually not be able to detect a missing packet out of an audio stream), but a delay is
a disaster (it is very easy for a human to detect a pause in an audio stream). Another application
domain is parallel applications running on top of networks of workstations using a software
distributed shared memory (DSM) or other communication models for communication. It has
been shown that the performance of such parallel applications greatly depends on the cache
coherence protocols used by the DSM implementation. Other applications have even wider
requirements for flexibility. Web servers all depend on TCP, a standard connection-oriented,
reliable, Internet protocol. A Web server can improve its performance by using an optimized
version of TCP, but can achieve an even greater level of performance by using a version of TCP
that is actually integrated fully with the server. For example, combining the disk buffer cache
with the TCP retransmission pool results in greater system performance, because data does not
have to be stored in multiple locations [31].

1.1.1 Kernel-level vs. user-level communication

There are currently two communication options available to applications running in a distributed
system environment: in-kemnel protocols and user-level protocols. In-kemel protocols, such as a
version of TCP built into the operating system, are the traditional way to provide communication
protocols, and appear in nearly every operating system today. They may be highly efficient
for particular uses (e.g., TCP has been optimized for throughput on many systems), but are
inflexible (applications cannot modify or specialize them), and therefore cannot meet the needs
of every application. Furthermore, because the set of protocols inside of an operating system
is changed only when the operating system is changed, they can be upgraded to meet the needs
of new applications only highly infrequently. Again, the web provides us an example of an
application with this problem: a web client and server. They communicate using TCP, an
extremely common protocol, but use it in a new way: every HTTP request/response pair sets up
a new TCP connection (and then closes it when it is done). Because TCP was optimized under
the assumption that connections last a long time, the speed of opening and closing connections
has not been optimized. In addition, because TCP is located in the operating system on most
systems, nearly no one can get a faster version of TCP without upgrading or patching their

17

Web
Server

Message \ /
Network —-E—> Operating

system

Figure 1-1. In this figure, the gmake application is running when a message for the web server
arrives. In order to handle the message, a traditional operating system will (at best) suspend
the gmake application and switch in the web server, which is a fairly expensive operation. At
worse, the operating system will not even preempt the gmake, but will instead wait for it to
finish running.

operating system, an act that many are loathe to do.

User-level communication was proposed in order to solve these problems [41]. The idea is
that all communication code is placed outside the operating system, and each application can
have its own communication protocols which it can optimize to its own needs. The role of the
operating system is just to provide protection between the applications, as opposed to providing
heavyweight communication abstractions to the applications.

1.1.2 Problem

User-level communication is an excellent way for applications to achieve flexibility in commu-
nication. It does, however, suffer from two problems: the use of user-level communication,
as it stands today, limits both the functionality and the performance available to applications.
Functionality is impaired because communication code running at the user level is not integrated
with the operating system. For example, some software DSM systems are integrated with vir-
tual memory[10, 32, 35]. Because virtual memory is normally implemented in the operating
system, it can be awkward and slow for user-level code to query or modify it.

The performance of systems built with user-level communication can suffer in two ways.
The first is that applications may see high latency for roundtrip communication if they are not
scheduled when a message arrives. An example of this is shown in Figure 1-1. This is a serious
problem for user-level communication systems. For example, the roundtrip time for a short
message (up to 40 bytes) in U-Net increases from 65 microseconds to 125 microseconds if the
applications performing the communication are not scheduled when the message arrives [60];
in Hamlyn the time increases from 28 microseconds to 78 microseconds [9]. Both U-Net and
Hamlyn are implemented on operating systems which will suspend the currently running appli-
cation and immediately reschedule the application an arriving message is for, if the application
is suspended waiting for the message. Other operating systems are even less responsive, and

18

will not preempt a running application in response to an incoming message 51, 33].

The performance of systems using user-level communication may also suffer for technology-
specific reasons. Certain network interfaces (e.g., many Ethernet cards) deliver messages only
to a limited region of memory. It is very important that the messages not stay there too long, or
these limited regions will run out of space, and new messages will be dropped. This constraint
requires that messages are copied out of the locations that they arrive at, and placed somewhere
else. In order to avoid excessive copies, one would ideally like to copy these messages to
the final location that the application wants them. However, since the application may not be
running when the message arrives, the operating system must perform this copy in order to
ensure that the network interface does not run out of room; the operating system, however, does
not have application-specific knowledge of where best to place these messages. In contrast,
if there were an in-kemel protocol handling the message, then the in-kerel protocol would
always be available to immediately direct the message to be copied to a desired location. On
the other hand, the in-kernel protocol may not be able to ensure that this locaticn is desirable
for the application, so another copy may be necessary.

1.1.3 Solution

We would like to provide the performance of the in-kemel protocols with the flexibility of the
user-level protocols. In order to accomplish this goal, the key question to consider is what
types of operations should be supported in response to a message. To achieve the maximum
flexibility, an application should be able to perform a variety of steps in response to a message.
The first is to control where a message is copied, if it does need to be copied. If the message
is being copied, the application should be able to specify other operations to perform as well
during the copy (for example, as long as it is reading through the message, it should be able to
do a checksum or byteswap, etc, on the message data if desired). An application should also be
able to perform some computation in response to a message, for example a parallel reduction
operation might need to combine some of the message data with a local value in order to produce
a new result. Finally, an application should be able to respond to an incoming message with a
message of its own; this ability allows the system to provide low-latency roundtrip messaging.

Supporting all of these types of operations provides a powerful programming model for
applications to control their communication needs. It is possible to provide this support, albeit
at differing amounts of efficiency, using three communication mechanisms: ASHs, fast upcalls,
and unaugmented user-level communication, as shown in Figure 1-2. Many of the benefits
attributable to ASHs can also be achieved using upcalls, but as will be shown in this thesis,
each is appropriate for different situations (depending on the hardware, operating system, and
application characteristics).

An ASH, as previously described, is user code (also referred to as a handler), downloaded
into the kernel and run in response to a message. The version of upcalls that we refer to is
a handler run in response to a message in user-space (i.e., not downloaded into the kernel).
This version of upcalls that we provide is asynchronous: the upcall may be to an application
that is not running. Implementations of fast synchronous upcalls (i.e., exceptions) are common

19

ASH Upcall User-level
' (polling or interrupt)

OS oS

|

Figure 1-2. This figure shows the three communication mechanisms that we contrast in this
thesis. The leftmost one is ASHs, in which application code is made safe and then downloaded
into the operating system and rur in response to a message. The middle diagram shows upcalls,
in which application code is run at user-level in response to a message. The right diagram shows
normal user-level communication, where the application may be currently running and pelling
for a message, in which case it can immediately receive the message, or suspended waiting for
a message, in which case it must be rescheduled before it can handle the message.

and easy to add to an operating system; implementations of fast asynchronous ones are neither
common nor trivial to implement [36]. Although a fast upcail requires a switch to user space
to run the handler, a full process switch is unnecessary; this is what provides us with the speed.
In contrast, normal user-level communication involves a full process switch to the application,
if it is not running when a message for it arrives.

1.2 Contributions and results

The goal of this thesis is to explore how to provide a timely, efficient response to incoming
messages. The mechanism that we propose is a handler, an application-specific piece of code
that can be run in response to the message. The contributions of this thesis are the techniques
required to support handlers and an evaluation of these techniques:

o ASHs We present the design and implementation of ASHs, a technique for delivering
hardware-level network performance to applications by downloading application-specific
code into the operating system. As described earlier in this chapter, ASHs allow direct,
dynamic message vectoring, message initiation, and control initiation.

o Fastupcalls We also present the design and implementation of fast, asynchronous upcalls,
an alternative approach to implementing handlers. Our design of upcalls is based on the
ASH design, and can therefore achieve many of the benefits available to ASHs.

20

o Dynamic ILP' This thesis also presents dynamic integrated layer processing (DILP).
Through the use of DILP, data manipulations such as checksumming or conversions can
be automatically integrated into the data transfer engine itself. DILP can be used with
either ASHs or fast upcalls.

¢ Sandboxing kernel-level code? This thesis also provides a detailed description of the
techniques necessary to run application code in the kernel safely even when the application
programmer is not constrained to write in a pointer-safe language. Although the concept
of sandboxing is not new [62], we introduce the concept of avoiding exceptions, discuss
a variety of techniques for bounding execution time, and limit the available operating
system interface in order to restrict the amount of OS changes that need to be made to
support application code running in the kernel.

¢ Experimental evaluation The thesis experimentally evaluates three different strategies to
provide flexible communication to applications: unaugmented user-level communication,
fast upcalls, and ASHs using both microbenchmarks and end-to-end applications. It
also demonstrates that ASHs and upcalls can provide many of the benefits of in-kernel
communication without the loss of flexibility such a model usually requires. For example,
the coherence protocol of a software distributed shared memory system can be changed
without changing the kernel itself.

o Analytical model Finally, we develop and present an analytical model of these three
different strategies which allows us to examine the tradeoffs as the architectural model,
operating system, and application characteristics change.

As this thesis shows, both upcalls and ASHs can enable user-level communication to achieve
high performance even in situations where it was previously unable to do so, by ensuring that
incoming messages can be responded to both efficiently (in terms of system resources) and
quickly (so as to maximize application performance). There are tradeoffs between the use of
these two techniques, however. ASHs require less overhead to initiate (the application code can
start running faster) and are more tightly coupled to the operating system; depending on the
architecture, they may incur a fair bit of sandboxing overhead to make safe. Upcalls are slower
to initiate (since they must cross a protection boundary), but incur no sandboxing overhead.
Additionally, fast upcalls may be more difficult to implement efficiently in a traditional operating
system, because they require a domain crossing, and may therefore interact with a larger portion
of already-existing code than do ASHs. The most significant result of this thesis, however, is
that it shows that avoiding scheduling, whether through the use of ASHs or upcalls, provides a
timely response to messages.

'This work was done with Dawson Engler.
The implementation of the sandboxer was done by Eddie Kohler.

21

1.3 Overview of the thesis

The remainder of the thesis is structured as follows. Chapter 2 delves more deeply into the
work related to this thesis. Chapter 3 explains the programming model for ASHs. Chapter 4
describes the techniques we use to ensure that ASHs and upcalls are safe and considers what
requirements this places on the operating system. Chapter 5 specifies the interfaces used by
the different software subsystems described in the thesis and describes Aegis, the operating
system we used as our platform. In Chapter 6 we present the experimental results of the
thesis, after first describing the full experimental environment and methodology, using both
microbenchmarks and full applications. Chapter 7 presents the analytical model we developed,
and uses parameters measured from two platforms to explore the tradeoffs among the various
communication models discussed in the thesis. Finally, Chapter 8 concludes the thesis, offering
suggestions for areas of future work.

22

Chapter 2

Related Work

The work related to this thesis falls into four classes. The first class is the modei of structuring a
system to be message-driven; we use handlers to provide this model. Making application code
safe is becoming a popular focus in the operating system community; these efforts are related
to our work on safely downloading ASH:s into the operating system. The benefits provided by
executing code in response to a handler (message vectoring, control initiation, and ILP) have
been explored, partially, by researchers in other contexts. Finally, the issue of handlers and how
they affect the scheduling of the system as a whole is also important to consider.

2.1 Computational model

ASH:s can been viewed as a restricted form of Clark’s upcalls [11]. Upcalls were proposed by
Clark as an alternative way of structuring systems. Instead of having asynchronous communi-
cation between layers in a system, where one layer processes the message then later the next
one does, etc., he suggested using synchronous communication, or procedure catls, with the
lower layers invoking the higher ones directly. ASHs (and fast upcalls as we have proposed
them in this thesis) keep the same philosophy of responding to a message by invoking higher
layers from the lower ones directly.

There are a number of ways to implement Clark’s upcall philosophy. His implementation
of them was for a system with a single address space, and used a high level language which
required garbage collection, cleariy a different design point than we are aiming at. Modem
operating systems implement upcalls (or exceptions), but only synchronously (i.e, only to a
running process). Liedtke’s p-kernel implements extremely fast, asynchronous upcalls by
performing address space switches instead of full context switches [36]; it is this type of upcall
that we compare ASHs to in this thesis.

Because ASHs are intended primarily for simple, small-latency operations, the time they run
in can be bounded, since the operating system can reason about their behavior (as well as check
for safety). ASHs must be limited in expressiveness to allow the operating system to do this
reasoning effectively. Upcalls do not suffer this limitation. Therefore, in cases where a richer

23

set of computations is required, the operating system could perform an upcall to the application
at message processing time, instead of calling an ASH (or the ASH could initiate this upcall
itself). While this model is more expressive than ASHs, it has a higher computational cost: an
address space switch is required, as well as a number of kernel/user protection crossings. We
believe that both of the models can be useful in systems. Those that can tolerate more latency
can use the flexibility of the upcall; those that cannot will be confined to ASHs.

2.2 Safe code importation

There are a number of clear antecedents to our work on making ASHs safe: Deutsch’s seminal
paper [15] and Wahbe et al.’s modern revisitation of safe code importation [62] influenced our
ideas strongly, as did Mogul’s original packet filter paper [41]. In some sense this work can
be viewed as a natural extension of the same philosophical foundation that inspired the packet
filter: we have provided a framework that allows applications outside of the operating system
to install new functionality without kernel modifications.

The SPIN project [5] is concurrently investigating the use of downloading code into the
kernel. SPIN’s Plexus network system runs user code fragments in the interrupt handler [25] or
as a kernel thread. Plexus guarantees safety by requiring that these code fragments are written
in a type-safe language. Modula-3. Plexus simplifies protocol composition, but unlike ASHs,
does not provide direct support for dynamic ILP. Preliminary Plexus numbers for in-kernel
UDP on Ethemet and ATM look promising but are slower than our user-level implementation
of ULP. No numbers are reported yet for TCP.

With the advent of HotJava and Java [26], code importation in the form of mobile code
has received a lot of press. Recently Tennenhouse and Wetherall have proposed to use mobile
code to build Active Networks [53]; in an active network, protocols are replaced by programs,
which are safely executed on routers on message arrival. Small and Seltzer compare a number
of approaches to safely executing untrusted code [50].

The Vino project is also investigating means for safely importing code into the kernel [48].
They consider five classes of misbehaving application kernel extensions, and introduce a trans-
actional model to prevent these types of misbehavior. Our framework also prevents these classes
of misbehavior, but instead of using a heavyweight transactional model, we carefully restrict the
interface. Additionally, the Vino sandboxer generates very inefficient code when large amounts
of data manipulation must be done because each reference is sandboxed; dynamic ILP lets us
avoid this overhead for data manipulations.

Finally, Necula and Lee are investigating Proof Carrying Code, a method where code carries
with it a proof that it is safe [43]. The operating system can then check the proof at download
time, and therefore there is no need for runtime checks (except as an aid to generating a proof).
So far they have only been able to automate proof generation for very small examples, and
have included programmer-written loop invariants for each loop (to make the proof generator

simpler), but we regard their work as a very promising direction to making ASHs run faster
(i.e., by reducing the sandboxing overhead).

24

2.3 ASH benefits

The particular abilities that ASHs provide have been provided in part by other networking
systems, though not all together.

2.3.1 Message vectoring

Message vectoring has been a popular focus of the networking community {17, 18, 20, 60, 46).
The main difference between our work and previous work is that ASHs can perform application-
specific computation at message arrival. By using application-state and domain knowledge these
handlers can perform operations difficult in the context of static protocol specifications.

Application Device Channels (ADCs) [18] are a different approach to eliminating protection
domain boundaries from the common communication path. In this approach, much of the
network device driver is linked with the application, and many messages can be handled
without OS intervention. If the receive queue of an ADC is empty when a new message arrives,
the interrupt handler wiil signal a thread of the driver. We would expect this approach to be
slower than ASHs when the application is not running, because the entire application/driver
process must be scheduled to handle the message.

The most similar work to the ASH system is Edwards et al. [20], who import simple
scripts using the Unix ioctl system call to copy messages to their destination. The main
differences are the expressiveness of the two implementations. Their system supplies only
rudimentary operations (e.g., copy and allocate), limiting the flexibility with which applications
can manipulate data transfer. For example, applications cannot synthesize checksumming or
encryption functionality. Furthermore, their interface precludes the ability to transfer control
or to reply to messages. Nevertheless, their simple interface is easy to implement and *uane; it
remains to be seen if the expressiveness we provide is superior to it for real applications on real
systems.

2.3.2 Control initiation

In the parallel community the concept of active messages [61] has gained great popularity, since
it dramatically decreases latency by executing the required code directly in the message handler.
Active messages on parallel machines do not worry about issues of software protection.
Several user-level AM implementations for networks of workstations have recently become
available [38, 60]. U-Net, originally designed for ATM networks, does provide protection, but
only at a cost of higher latency: messages are not executed until the corresponding process
happens to be scheduled by the kernel [60]. HPAM is designed for HP workstations connected
via an FDDI layer. It makes the optimistic assumption that incoming messages are intended
for the currently running process; messages intended for other processes are copied muitiple
times. The described implementation of HPAM does not provide real protection: they make
the assumption that no malicious user will modify the HPAM code or data stmctures. Our

25

methodology can be viewed as an extension of active messages to a general purpose environment
in a way that still guarantees small latencies while also providing strong protection guarantees.

2.3.3 ILP and protocol composition

There have been many instances of ad hoc ILP, for example, in many networking kernels [12].
There is also quite a bit of work on protocol composition [6, 27, 28, 58, 59].

The first system to provide an automatic modular mechanism for ILP is Abbott and Peter-
son [1]. They describe an ILP system that composes macros into intcgrated loops at compile
time, eliminating multiple data traversals. Each macro is written with initialization and fi-
nalization code and a main body that takes in word-sized input and emits word-sized output.
They provide a thorough exploration of the issues in ILP: most of their analysis can be applied
directly to our system. There are two main differences between our system and what they
describe: their system is intended for static composition, whereas our system allows dynamic
composition, and they make no provisions for application extensions to the system, whereas
our system allows untrusted code to participate in ILP in a safe and efficient manner. In one
sense this last difference is a practical limitation: static composition makes dynamic extensions
to the ILP engine infeasible. Given the richness of possibie data manipulations, however, disal-
lowing application-specific operations can carry a significant cost. For example, even a single
re-traversal of the data can halve available bandwidth. Proebsting and Watterson describe a new
algorithm for static ILP using filter fusion [45].

Static composition requires that all desired compositions be known and performed at com-
piiation time. There are two main drawbacks to such an approach. The first is the exponential
code growth inherent in it. For example, to perform data conversion between two hosts a
static system must have pre-composed all possible conversion methods (i.e., between big- and
little-endian, external and intemnal ASCII, Cray floating point and SPARC, etc.). Additionally
adding all possible checksum, encryption, and compression operations will only increase code
size. Dynamic composition allows these operations to be combined as need be, scaling memory
consumption linearly in proportion to actual use. The second, more subtle problem of static
composition is that the system is a closed one: the operating system can neither extend the ILP
processing it performs nor have it extended by applications. In contrast, the ASH system allows
new manipulation functions to be dynamically incorporated into the system.

2.4 Scheduling

An improperly designed operating system can suffer from receive livelock when faced with a
constant stream of network interrupts, as described in Mogul and Ramakrishnan [40]. Correctly
adding ASHs to an operating system which has no receive livelock will not reintroduce the
problem. To avoid livelock, the operating system must keep track of how many ASHs have
been recently executed on a per process basis, and refuse to execute any more for processes
receiving more than their share of messages, instead falling back to the normal mechanism.

26

A similar approach to fairly and stably dealing with high communication loads is described
in Druschel and Banga [19]. The two key techniques described in their paper are lazy protocol
processing at the receiver’s priority, and early demultiplexing, are both used in the Aegis
operating system that our work was performed on. ASHs are fundamentally an eager, not a
lazy technique; using them when the system is under a light to medium load and then disabling
them when the system is under a high load would result in a system having the benefits both of
ASHs and of fairness and stability under high load conditions.

Issues about schedulability and when and how a message handler should abort have been
recently explored in Optimistic Active Messages [65]. The tradeoffs discussed there are appli-
cable here.

Patrick Sobalvarro has explored demand-based coscheduling, where processes that are
communicating with one another on different machines are scheduled simultaneously [51]. This
strategy greatly increases the likelihood that an application will be running when a message
arrives for it if the application is communicating often with the other applications it is interested
in being coscheduled with. This idea should be very useful for particular types of applications,
such as parallel applications, but not for ones with less predictable communication patterns
(such as a web server). Additionally, ASHs are still beneficial in some cases as compared to
applications already running at message arrival.

27

28

Chapter 3

ASH Programming Model

ASHs and upcalls both use the model of a handler, a fragment of application code specially
designated to be run in response to an incoming message. This chapter discusses how the system
determines which handlers to run, the different types of handlers, and what it means when a
handler cannot handle a message: in other words, the programmer-visible interface available
for handlers. This chapter discusses these issues in terms of ASHs; the same interface can be
provided for fast upcalls, however. The next chapter considers an ASH-specific problem: how
to take an ASH and make it safe so that it may not harm other applications or the operating
system.

3.1 Message demultiplexing

In any user-level communication system, there must be some way for the operating system
to determine which application a message is for. There are a variety of standard techniques
available to perform this demultiplexing. One such technique is packet filters [41], in which
applications specify patterns describing the packets that they are interested in (e.g., all IP
packets sent to port 80) and an in-kemnel packet filter engine examines each incoming message,
determining the matching application and delivering the message to it. Packet filters can be
implemented efficiently [22].

Another technique sometimes used by user-level communication systems implemented on
top of ATM networks is to use the virtual circuit index of the incoming message as an application
identifier [60].

Any technique used by user-level communication to demultiplex messages may also be
used by user-level communication augmented with ASHs or upcalls. In addition to specifying
the demultiplexor, the application must also specify the handler code to be associated with
the demultiplexor; then when a message arrives that matches the demultiplexor, the associated
handler can be run.

29

3.2 Types of ASHs

Once a message is demultiplexed to a particular application, the message must be delivered to
it. There are a variety of actions that can be required in a networking system: message vec-
toring (e.g., copying a message into its intended slot in a matrix), message manipulations (e.g.,
checksums), message initiation (e.g., message reply), and control initiation (e.g., computation).
An application-specific safe message handler (ASH) can perform all of these operations.

ASHs are user-written routines that are dcwnloaded into the kemnel to efficiently handle
messages. From the kernel’s point of view, an ASH is simply code, invoked upon message
arrival, that either consumes the message it is given or returns it to the kemnel to be handled
normally. From a programmer’s perspective, an ASH is a routine written in a high-level
language and potentially augmented with pipes for dynamic ILP, or it is a series of routines
representing protocol layers which will be composed together.

Operationally, ASH construction and integration has three steps. First, client routines are
written using a combination of specialized library functions and any high-level language that
adheres to C-style calling conventions and runtime requirements. These routines, in the form
of machine code, are then handed to the ASH system. The ASH system post-processes this
object code, ensuring that the user handler is safe through a combination of static and runtime
checks, and downloads it into the operating system, handing back an identifier to the user for
later reference. The user can then use the identifier to associate the ASH with a user-specified
demultiplexor. When the demultiplexor accepts a packet for an appl.cation, the ASH will be
invoked. The ASH can then control where to copy the message, integrate data manipulations
into this copy, and/or send messages.

Many of the benefits of ASHs can be obtained with a relatively small amount of support
software. The simplest form of ASHs is static ASHs, e.g, ASHs with no dynamic code
generation support. Without this support, they cannot take advantage of dynamic ILP or
dynamic protocol composition. With just the addition of pipes, as explained below, thev can
use dynamic ILP. The further addition of protocol composition greatly eases the task of writing
ASHs, allowing protocol fragments to be dynamically and modularly built and composed, at the
cost of requiring a fair amount of support software. This thesis explores the use of ASHs in the
first two cases: for applications which do not require much data manipulation, tiny, extremely
fast hand-written static ASHs are most appropriate; ASHs using dynamic ILP, on the other
hand, are more useful for latency-critical applications which perform a lot of data manipulation.
We describe each of these types of ASHs in turn.

3.2.1 Static ASHs

All types of ASHs are generally written in a stylized form consisting of three parts, as
shown in Figure 3-1. The initial part consists of protocol and application code that examines
the incoming message to determine if the ASH can be run and where the data carried by the
incoming message should be placed. The second part is the data manipulation part; the data is
manipulated as it is copied from the message buffer (or left in place, if desired). Static ASHs

30

if (!header_predicted())
abort();

Initial code

if (tcp_header->cksum 1=
do_cksum_n_copy()) (
// cleanup '
abort();
}

Data motion

update_state();
send_if data_or_ack();
return OK;

Figure 3-1. This figure shows the stylized form that all types of ASHs are generally written in,
and uses an ASH built for the TCP protocol as an example to illustrate the form. The initial
part of the ASH tests whether or not the arriving message is one that TCP expects (i.e., whether
or not its header is the one that TCP predicted). If it is not, the ASH will not handie it and
will instead choose to abort and pass the message up to the main application code. If it is, the
ASH will continue to the data manipulation portion. In the case of TCP, the ASH performs a
checksum and a copy of the data to application data structures. If the checksum fails, then the
message is useless; the ASH will choose to abort and will discard the message. Assuming the
first two stages complete successfully, the ASH can then modify any state that it needs to and
send out any appropriate responses, if any.

31

are responsible for hand-orchestrating any data manipulations they require. If there are several
actions to be taken here, such as a checksum and a copy, the other forms of ASHs can use
integrated layer processing at this point. The third and final part again consists of protocol and
application code, of two types: abort and commir. Which of these is run depends on the initial
code and possibly the result of the data manipulation step.

If the first two parts complete successfully, the commit code is called. The commit code
performs any operations indicated by the incoming message, including, if appropriate, initiating
a message or performing computation. If the ASH detects that something went wrong, on the
other hand (for example, a needed lock could not be acquired), it calls its abort code to fix
up any state that has been modified. We refer to this as a voluntary abort: the ASH writer is
responsible both for detecting the problem and for fixing up any changes the ASH has made at
that point.

3.2.2 ASHs with dynamic ILP

Simple static ASHs can be extended to use the dynamic ILP support provided by the ASH sys-
tem. In addition to simple data copying, many systems perform multiple traversals of message
data as every layer of the networking software performs its operations (e.g., checksumming,
encryption, conversion). At an operational level, these multiple data manipulations are as bad
as multiple copies. To remove this overhead, Clark and ‘Tennenhouse [13] propose integrated
layer processing (ILP), where the manipulations of each layer are compressed into a single
operation.

To the best of our knowledge, all systems based on ILP are static, in that all integration
must be hard coded into the networking system. This organization has a direct impact on
efficiency: since untrusted software cannot augment these operations, any integration that was
not anticipated by the network architects is penalized. Given the richness of possible opera-
tions, such mismatches happen quite easily. Furthermore, many systems compose protocols at
runtime [6, 27, 28, 58, 59], making static ILP infeasible. There are additional disadvantages
to static ILP: static code size is quite large, since it grows with the number of possible layers
instead of actually used layers, and augmenting the system with new protocols is a heavyweight
operation that requires, at least, that the system be recompiled to incorporate new operations.
Therefore, we designed the ASH system to support dynamic ILP.

ILP can be dynamically provided through the use of pipes, which were first proposed by
Abbott and Peterson [1] for use in static composition. A pipe is a computation written to act on
streaming data, taking several bytes of data as input and producing several bytes of output while
performing only a tiny computation (such as a byteswap, or an accumulation for a checksurmn).
The ASH pipe compiler dynamically integrates several pipes into a tightly integrated message
transfer engine which is encoded in a specialized data copying loop.

To allow modular coupling, each pipe has an input and output gauge associated with it (e.g.,
8 bits, 32 bits, etc.). This allows pipes to be coupled in a distributed fashion; the ASH system
performs conversions between the required sizes. For example, a checksum function may take
in and generate 16-bit words, while an encryption pipe may require 32-bit words. To allow a

32

// Initialize a pipe list for two pipes (checksum and byteswap)
pl = pipel(2);

// Create checksum pipe

checksum_pipe_id = mk_cksum_pipe(pl, &pipe_cksum);
// Create byteswap pipe

byteswap.pipe-id = mk_byteswap_pipe(pl);

// Compile the two pipes, returning a handle to the integrated function
ilp = compile_pl(pl, PIPE_ZWRITE);

Figure 3-2. This code fragment composes to pipes into a pipe list, and then compiles that list.
The pipe creation functions take a pipe list as input; the checksum pipe creator function also re-
quires as input an accumulation register it can use to calculate the checksum into (pipe-cksum
in this case). The compile function takes a pipe list and a flag indication whether or not the pipe
list will require different source and destination locations for the message.

16-bit checksum pipe’s output to be streamed through a 32-bit encryption pipe, it is aggregated
into a single register.

Figure 3-2 presents an example composition of the checksum pipe of Figure 3-3 with a
pipe to swap bytes from big to little endian. There are two important points in this figure.
First, the composition is completely dynamic: any pipe can be composed with any other at
runtime. Second, it is modular: the ASH system converts between gauge sizes and prevents
name conflicts by binding the context inside the pipe itself.

The pipes for ASHs are written in VCODE [21], which is a set of C macros that provide a
low-level extension language for dynamic code generation. VCODE is designed to be simple
to implement and efficient both in terms of the cost of code generation and in terms of the
computational performance of its generated code.

The VCODE interface is that of an extended RISC machine: instructions are low-ievel
register-to-register operations. A sample pipe to compute the Intemet checksum [7/] is provided
in Figure 3-3. Each pipe is allocated in the context of a pipe list (p1 in the figure) and given
a pipe identifier that is used to name it. Additionally, pipes are associated with a number of
attributes controlling the input and output size (a pipe’s “gauge”), whether the pipe is allowed to
transform its input, and whether the pipe is commutative (i.e., whether it can perform operations
on message data out of order). These attributes govern how a given pipe is composed with other
pipes (e.g., whether it can be reordered, and the expected input and output sizes) and how it can
be used.

Since pipe operations are written in terms of portable assembly language instructions, pipes
are charged with allocating those registers they need and choosing the appropriate register
class. The two available register classes are temporary and persistent. Temporary registers are

33

/I Specify a pipe to compute the Internet checksum and retumn its identifier.
// This specification is subsequently converted into safe machine code.
// Code assumes that messages are always a multiple of four bytes long.
int mk_cksum_pipe(struct pipel *pl, reg_type xcksum_reg) {

reg.type reg;

int pipe_id;

/l This 32—bit checksum is commutative and does not alter its input.
pipe_lambda(pl, &pipe_id, P.GAUGE32,
P_COMMUTATIVE | P.NO_MOD);
/I Allocate an accumulate register (preserved across
/1 pipe applications)
reg = p-getreg(pl, pipe-id, P_-VAR);
// Get 32 bits of input from the pipe
p-input32(p_inputr);
// Add input value to checksum accumulator
p-cksum32(reg, p-inputr),
/] Pass 32 bits of output to next pipe
p-output32(p_inputr);
pipe-end();
*cksum_reg = reg;
return pipe._id;

}

Figure 3-3. This function generates the specification of a pipe to be used in the computation of
the Internet checksum, and returns the identifier of the specification. pipe_lambda indicates
the start of the pipe description, and pipe_end the end of it. The pipe will need to be added to
a pipe list and compiled before it can be used. When invoked, the pipe will consume a 32-bit
word of data, add the value of that data to the running checksum total along with any overflow,
and then output the unchanged input.

34

scratch registers that are not saved across pipe invocations. Persistent registers are saved across
pipe invocations; they are used, for example, as accumulators during checksum computations
(cksum.reg in Figure 3-3). The values of persistent registers can be imported and exported
from the main protocol code. Export is used to initialize a register before use, and import
to obtain a register’s value (e.g., to determine if a checksum succeeded). The special register
p-inputr is reserved to indicate the pipe’s input.

Since current compilers do not optimize networking idioms well, we have extended the
VCODE system to include common networking operations. Current compilers lack clear id-
iomatic ways of expressing common networking operations such as checksumming, byteswap-
ping, memory copies, and unaligned memory accesses from within even a low-level language
such as C. To remedy this situation, the VCODE extensions offer primitives for expressing com-
mon networking operations. If desired, clients of the ASH system can extend VCODE with
further primitives with little performance impact.

Figure 3-3 exploits the extension added to VCODE for computing the Internet checksum.
On machines such as the SPARC and the Intel x86, this pipe is compiled by VCODE to use
the provided add-with-carry instructions to efficiently compute the checksum a word at a
time. In the given example, the pipe consumes a 32-bit word of data (using the p_input32
instruction), adds its value to the running checksum total along with any overflow (using the
p-cksum32 instruction), and then outputs the unchanged input. The ASH that calls this
function is responsible for setting up the initial state of the accumulator register, then later
reading it in, and folding it to 16 bits.

3.2.3 ASHs with dynamic protocol composition

In addition to dynamic ILP, ASH programmers can use the dynamic protocol composition
extensions provided by the ASH system [24]. Whereas dynamic ILP provides modularity in
terms of pipes (only one checksum routine has to be written, and can be composed with any
other routine), dynamic protocol composition provides modularity in terms of layers (only one
IP routine has to be written, and can be composed with UDP or TCP).

ASHs written in this style consist of a collection of routines for sending and receiving
messages that are dynamically organized into a stack. The layers in the stack are either protocol
layer routines (e.g., UDP) or application specific layers (e.g., a WWW server). Each layer is
written in C, heavily augmented with library primitives for message manipulation. Although
each layer sees a message as a stream, receiving part of a message as input and producing one
as output, the layers are each structured similarly to static ASHs. A layer has an initial body
that is run when a message is being constructed or consumed and a final body that is run after all
bodies on a given path have executed. The main data processing occurs in between the initial
and final parts and uses pipes for all data manipulations.

Each layer is provided with a set of message primitives to initiate and consume messages,
add headers to and strip headers off of messages, and reserve header space for information not
known until an entire message is processed. For example, a UDP receive layer would typically
take in a whole UDP message, consume the header, and produce the body of the message as

35

output passed up to the next layer. Because layers consume parts of messages, not all of the
data makes it up to the top of the stack, and different ILP data manipulation loops are generated
for different parts of the message.

The receive part of each layer is comprised of three procedures: a body procedure that does
the initial processing and invokes data manipulation operations, and two handlers for the final
body—abort (called if a lower level aborts) and commit (called if all lower levels succeed). The
body procedure can consume the message or, if necessary, defer processing until the message is
certified by the low levels. The body procedure can fail, synchronously returning an error code
to the level that invoked it; this level is then responsible for handling the failure (potentially by
returning an error in turn to the level that invoked it). After the message is processed, either
abort or commit is invoked. During the body processing phase, the ASH system tracks which
handlers to call by recording the protocol layers invoked. Every time a layer is activated its
handlers are (logically) enqueued on a list. When the final phase is initiated, these handlers are
called, in FIFO order. A commit handler is called unless: (1) a lower-level protocol failed, or (2)
a lower-level commit handler failed, in which case the abort is propagated upwards (by invoking
the abort handlers of bodies affected by the failure). Higher level protocol body failures are
synchronously propagated down; a level receiving notification of a failure above can choose to
abort (propagating the failure down further) or buffer the data for later and succeed (stopping
the chain of failure propagation). The send part of a layer (if any) is similarly structured to the
receive path, only without-an abort handler.

Figure 3-4 shows the main body for a very simple ASH that implements naive remote
writes [56]. The ASH extracts the message destination address and length from the message
(using the consume library call). It then copies the payload to the destination address, also
using the consume call. The message is not passed up further. Note that this layer could be the
lowest layer of a protoco! stack, or could sit higher, on top of a UDP layer, for example. This
naive handler, appropriate for use only on highly reliable networks, treats aborts as catastrophes.

An example of a system which could employ dynamic protocol composition is a server,
which would use integrated ASHs for both sending and receiving. The receive ASH integrates
3 layers: (1) processing the AALS trailer; (2) the computations of IP and TCP checksums;
and (3) an application-specific operation that checks whether the data requested is in the server
cache. These three operations are independently written as tiree separate layers and then
dynamically composed. When a message arrives, it is demultiplexed, the integrated ASH is
run, and if the data is in the cache, it is directly sent back to the client by the ASH. The
send path is also specified as a series of layers. This organization allows simple application-
specific operations to be easily and safely integrated in the messaging system, allowing for high
performance and a high degree of flexibility.

This thesis addresses only the design of ASHs with dynamic protocol composition, and not
the implementation. Although an initial prototype has been completed, it is too preliminary to
evaluate the feasibility of dynamic protocol composition. Providing programmers with a means
to write modular yet efficient code is an important problem, but is orthogonal to the main issues
of the thesis.

36

// Simplified ASH to copy packets from the network buffer
/1 to their given destination address.
void simple_remote_write_handler(void xash_data, int nbytes) {
int len; char *dst;
1/l Load destination address (first word)
if (consume(&dst, sizeof(char), NULL_PIPE))
// Short message
return ASH_ABORT;
// Load length (second word)
if (!consume(&len, sizeof(int), NULL PIPE))
// Short message
return ASH_ABORT;
// Incomplete packet
if (nbytes < len+sizeof(int)+sizeof(char *))
return ASH_ABORT;
// Copy len bytes from (messagc buffer 4+ 8) to (dst).
if (consume(dst, len, NULL_PIPE))
/I Short or corrupt packet
return ASH_ABORT;
/] Success.
return ASH_SUCCESS;

}

Figure 3-4. Example ASH using the dynamic protocol composition extensions.

3.3 Aborts: terminating ASHs

ASHs were designed to handle cnly the common case. They must therefore be able to terminate
specially in the uncommon case, when they cannot handle the message. Other than a norinal
return, ASHs can terminate in two ways: voluntarily, at their request, or inveluntarily, at the
system’s demand.

3.3.1 Voluntary aborts

Voluntary aborts were described earlier in this chapter. If an ASH decides it cannot handle a
message (for example because handling the message would cause it to run too long), it can
choose to abort. The ASH itself is responsible for undoing any changes it has made in order
to keep the application state consistent. We chose this particular model in order to keep the
overhead of running ASHs small (i.e., this way the system does not need to keep track of every
action an ASH makes). All types of ASHs can choose to abort voluntarily. If an ASH does not
indicate to the system that it has handled the message at the time of termination, the message
will be delivered to the user process at the next opportunity.

3.3.2 Involuntary aborts

An ASH is obviously only allowed to perform certain actions, because it is code running in
an operating system. If it should attempt actions disallowed by the ASH interface, however,
and these actions could not be detected statically, the system must take some action. Because
these actions indicate it to be incorrect code, the system has a choice of options it may employ.
Certain incorrect behaviors can be easily prevented without detection, and in fact detecting
them is more expensive that preventing them, as will be discussed further in Section 4.1.2.
We therefore choose to allow an ASH which attempts such an action to continue running,
but prevent the incorrect action. On the other hand, some incorrect behaviors are just as
simple to detect as to prevent. If an ASH attempts one of these behaviors, we reserve the
right to terminate it immediately at that point, using an involuntary abort. Again, because this
represents the behavior of an incorrect ASH, we are not worried about the subsequent execution
of the application. A programmer who writes correct code will never have an ASH terminate
involuntarily.

3.4 Summary

The preceding sections described the design of a system to allow application programs to
handle messages rapidly and efficiently. The design is based around the concept of a handler:
a fragment of application code specially designated to be run in response to an incoming
message. There are a variety of different programming interfaces to handlers that can be offered
to programmers; three were discussed in this chapter. The next chapter describes how to take

38

these application-specific handlers and make them safe, so that they cannot harm the operating
system, or other applications.

39

40

Chapter 4

Safe Execution

There are a number of interesting issues associated with running application code immediately
in response to a message, either through the ASH or upcall mechanism. The first is to provide
safety: how to ensure that the handler does not harm other applications or the operating system.
A related issue is how to ensure that the handler does not run too long. In this chapter, we
discuss these two issues first for ASHs and then for upcalls.

This chapter presents a variety of software and hardware techniques that go beyond the
ones originally proposed by Deutsch and Grant [15] and Wahbe et al. [62]). Because they do
not specifically address the issue of downloading code into the operating system, they have not
explored the issues of avoiding ASH exceptions and bounding ASH and upcall execution time;
similarly, they do not discuss constraining the operating system interface.

4.1 ASHs

All varieties of ASHs require a certain amount of system support, both to run correctly and to
prevent them from damaging the operating system or other applications. This sectior describes
the support: first the requirements we place on the operating system and then our strategies for
executing ASHs safely.

4.1.1 The operating system model

The most important task required from the operating system is to provide address translation.
The primary reason for this requirement is that virtual memory greatly eases the task of writing
ASHs. Forexample, it allows the handlers to execute in the addressing context of their associated
application, and thus directly manipulate user-leve data structures. If address translations were
embedded within the handler, such manipulations would be more difficult.

In the MIPS architecture on which we have developed the ASH system, supporting address
translation is fairly simple: before initiating an ASH, the context identifier and pointer to the

41

page table of its associated application must be installed. As described below, when an ASH
referenices a non-resident page, or an illegal memory address, it is aborted.

For efficiency reasons, we could allow addresses to be pre-bound when the ASHs are
imported into the kernel. Pre-binding address translations removes the possibility of virtual
memory exceptions, but complicates the programming model. Additionally, to ensure correct-
ness, the operating system must track what pages can be accessed from the ASH: if any of
these pages are deallocated or have their protection changed, then the corresponding mem-
ory operations must be retranslated or the ASH must be disabled. We do not explore this
methodology.

Secondary functions that the operating system should provide (but are orthogonal to our
discussion) include memory allocation, page-protection modification, and creation of virtual
memory mappings. To increase the likelihood that memory will be resident when messages
arrive, there should be a mechanism by which applications can provide hints to the operating
system as to which pages should remain in main memory. Applications may also want to be
able to influence the scheduling policies.

We do not assume that the operating system can field ASH-induced exceptions (such as
arithmetic overflow), that ASHs necessarily have access to floating point hardware, or that
hardware timing mechanisms are available. As discussed in Section 4.1.2, we have designed
safety provisions to remove the necessity for these functions.

In our current system, we require that the application pin all pages that the ASH may
reference. A reference to an absent page causes the ASH to be terminated. We plan to provide
the ability to suspend ASH handlers and later restart them (still in the kernel) at some point in
the future. This addition will require that the OS be able to save all of an ASH’s state, including
its live registers and the message that it was processing.

4.1.2 Safe execution

We use various techniques to detect malicious or buggy ASH operations (such as divide by zero
or excessive execution), and either prevent them or terminate the ASH with an involuntary abort
if they occur. Because such operations indicate incorrect code, our concem is only to prevent
damage to the operating system or to other processes, and thus the application that installed
the ASH may no longer operate correctly after an involuntary abort (i.e., if the ASH had made
some modifications to application data structures before being terminated).

For safety, the ASH systern must guard acainst exceptions, wild memory references and
jumps, and excessive execution time by ASHs. There are various ways to guarantee safety, de-
pending on the hardware platform being used. For example, the implementation of static ASHs
for the Intel x86 uses hardware support for segmentation and privilege rings to guard ASHs;
in this implementation almost no software checks are needed.! The MIPS implementation, in
contrast, must use software techniques. We describe these software techniques here in detail.

'David Mazidres from MIT designed and implemented the x86 version.

42

Exceptions are prevented using runtime and static checks (as is done in existing packet-
filters [41, 67]). Wild memory references and jumps are prevented using a combination of
address-space fire-walls and sandboxing [62]. The ASH system for the MIPS can bound
execution time using a framework inspired by Deutsch [15]). We examine each technique in

further detail below.

Preventing exceptions Exceptions are prevented either through runtime or download-time
checks. Runtime checks are used to prevent divide-by-zero errors; unaligned exceptions are
prevented by forcing pointers to be aligned to the requirements of the base machine?. Arithmetic
overflow exceptions can be prevented by converting all signed arithmetic instructions to unsigned
ones (which do not raise overflow exceptions) or code using them may be disallowed (as is
currently done, because in no code that we have sandboxed has there been any signed arithmetic
instructions generated by the C compiler’). At download time, we prevent the usage of
floating-point instructions. Many of these checks could be removed in a more sophisticated
implementation that had operating system support for handler exceptions. With such support,
we could optimistically assume exceptions would not happen: if any did occur, the kemnel would
then catch them and abort the ASH.

Address translation exceptions are handled by the operating system. In the case of a TLB
refill, the operating system replaces the required mapping and resumes execution. In the case
of accesses to non-resident pages or illegal addresses, the ASH is aborted.

Controlling memory references Addressing protection is implemented through a combina-
tion of hardware and software techniques. Wild writes to user-level addresses are prevented
using the memory-mapping hardware. As discussed above, when an ASH isinitiated, its context
identifier and page table pointer are installed; additionally, it is run on a user-level stack.

On the MIPS architecture, code executing in kernel mode can read and write physical
memory directly. To prevent this, we force all loads and stores to have user-level addresses,
using the code inspection (sandboxing) techniques of Wahbe et al. [62].

Making sandboxed data copies efficient requires complex analysis of the user-supplied
code. The ASH system therefore provides the capability of accessing message data through
specialized trusted function calls, implemented in the kernel. These calls allow access checks to
be aggregated at initiation time. Experiments show that these checks add little to the base cost
of data transfer operations. Also, message data may be efficiently moved using the dynamic
ILP support.

Wild jumps are also prevented by code inspection. All indirect jumps are checked at runtime.
If they are to somewhere within the current ASH they proceed unchanged; if they are to code
named by the pre-sandboxed address then they are translated and allowed to proceed; if they

This particular check is not yet implernented, but is straightforward to add.
3This means we are precluding the use of Fortran for writing ASHs, since Fortran compilers generally use signed
arithmetic instructions, but we do not consider this to be a great loss

43

are to operating system calls explicitly allowed by the system (such as the network send system
call) they are called directly; if they are to anywhere else the ASH is aborted immediately.

Bounding execution time Because we want to allow four-kilobyte messages to be copied,
decrypted, and checksummed, the instruction budget of the ASHs we describe in this thesis is
rather large (tens of thousands of instructions). For ASHs which contain no loops (or loops
bounded only by the message size), we can simply overestimate the effects of straight-line code
to create overly pessimistic, but simple to implement estimations of execution time.

For ASHs which contain loops, software checks at all backwards jump locations need to be
inserted. On machines with appropriate hardware, cycle counters can aid in generating efficient
execution time accounting code. Systems with timers can be exploited to remove all software
checks. Our prototype uses the third approach, aborting any ASH which attempts to use two
clock ticks worth of time or more. Setting up and clearing these timers takes approximately
one microsecond each on our system. ASHs are never aborted during system calls (the abort is
delayed until the ASH exits the system call).

4.2 Upcalls

Upcalls require less system support than ASHs do. Like ASHs, upcalls need address translation.
This translation is supported identically to that of ASHs for our MIPS implementation: the
context identifier and pointer to the page table of its associated application must be installed.
Upcalls are not aborted at references to non-resident pages; illegal page references cause the
same operating system-generated signal that a normal user-level page reference would. We
cannot provide the ability for upcalls to access physical addresses (unlike ASHs, where we
could but we have chosen not to), because code running outside of kernel mode on the MIPS
that references physical addresses causes an exception.

Because upcalls execute code in user space, most forms of malicious and buggy operations
can be detected by normal operating system and hardware mechanisms. The main safety issue
for upcalls is thus ensuring they do not execute for too long of a period of time. Since the
handler run by an upcall is not pre-approved, we cannot insert checks into the code to ensure
that there are no loops, nor can we place software checks at backwards jumps. Instead, we must
use a hardware timer in order to seize control back from an upcall that runs too long.

4.3 Summary

This chapter addressed the issue of how to take application code and safely run it in response
to a message. We presented both the general design and the MIPS-specific implementation of a
system to systematically ensure that both ASHs and upcalls are safe, in the si nse that they cannot
harm other applications or the operating system. The next chapter presents the implementation
specifics of the entire system: networking, the operating system, and the mechanism to provide
fast message handling.

44

Chapter 5

Implementation Specifics

We have implemented a system for ASHs in Aegis, an exokemnel operating system [23]. This
chapter describes the implementation and testbed environment used in our experiments.

5.1 Overview

As shown in Figure 5-1, Aegis is the operating system we are using as our platform. Aegis
provides a low-level interface to the network; it demultiplexes packets to applications, but all
other communication code is the responsibility of the application, not the operating system.
Figure 5-1 shows applications receiving messages after demultiplexing in three ways. The
Web server is using unaugmented user-level communication to receive the message, and will
therefore reczive the message only when it is scheduled. Bames-Hut will receive incoming
messages as upcalls, unless the upcall handler chooses to pass them up to the application.
Finally, FTP will receive incoming messages as ASHs, running in the kernel. The rest of
this chapter discusses the various subsystems necessary to support these three communication
models.

5.2 Aegis

Aegis is an exokernel operating system for MIPS-based DECstations. The idea of an exoker-
nel [23] operating system is to allow applications to manage the physical resources of a machine
as much as is possible. The abstractions and policies normally expected in an operating sys-
tem (e.g., virtual memory or interprocess communication) are consigned to user-level library
operating systems, which execute outside the kemnel. In this way, the kemel is only responsible
for protecting resources, not managing them, allowing applications to specialize, customize, or
extend policies and abstractions however they choose.

Although our implementation is for an exokemel, ASHs are largely independent of the
specific operating system and operating system architecture. They should apply equally well
to monolithic and microkemel systems. Similarly, they apply equally well to in-kernel (e.g.,

45

Aegis
Operating
System

m

Network

Figure 5-1. This figure illustrates the different subsystems necessary to support ASHs, upcalls,
and user-level communication.

TCP/Vegas), server (e.g., Mach network server), or user-level (e.g., U-Net) implementations of
networking, although we expect to see the most performance gains on older, more traditional
operating systems archiiectures.

In fact, because Aegis was designed for flexibility and performance from its inception, it is
not the ideal platform. As reported in [23], it has extremely fast kernel crossing times (about
a factor of 10 faster than Ultrix), and context switches are quite inexpensive (about a factor
of 5 faster than Ultrix). As we will see in Chapter 7, this fast performance meuns that an
exokernel operating system benefits less from ASHs than we would expect a traditional one to.
Furthermore, because many of the operating system abstractions one would normally expect
to be in-kernel are in user space under Aegis, operations that would normally be system calls
for user-level communication and function calls for ASHs instead have to be sandboxed and
included into the ASH itself (since they are now user-level code).

5.3 Network and operating system interfaces

Aegis provides protected access to two network devices: a 10 Mbits/s Ethernet and a 155
Mbits/s AN2 (Digital’s ATM network).

5.3.1 Ethernet interface

The Ethernet device is securely exported by a packet filter engine [41]. The Aegis imple-
mentation of the packet filter engine, DPF [22], uses dynamic code generation. DPF exploits
dynamic code generation in two ways: by using it to eliminate interpretation overhead by
compiling packet filters to executable code when they are installed into the kemel, and by using

46

User
application
pointer

Kernel
pointer

Figure 5-2. The kemel shares a virtualized notification ring for incoming messages with each
application. In this figure, the user process is behind in processing messages, so its pointer
points further back in the ring than the kernel one does (assuming a clockwise ordering). The
kernel’s pointer points to the next available slot to place a message notification in. When the
user process is all caught up, it can poll on the next empty location in the ring in order to
determine if a message has arrived.

filter constants to aggressively optimize this executable code. DPF is an order of magnitude
faster than the highest performance packet filter engines (MPF [67] and PATHFINDERK [4]) in
the literature.

5.3.2 AN2 interface

Similarly to other systems [18, 47, 60], the AN2 device is securely exported by using the ATM
connection identifier to demultiplex packets. Before communicating, processes bind to a virtual
circuit identifier (VCI). Two kinds of connections are available on our system: receiving from
a single host and receiving from multiple hosts. As the many-to-one option is not available on
ATM, it is synthesized by the device driver and OS for applications (i.e., input from multiple
VCIs is combined into a single notification ring).

As shown in Figure 5-2, the kernel and user share a virtualized notification ring in memory
per virtual circuit. By examining the ring, an application can determine that a message arrived
and where the message was placed. Applications may poll the next empty location in the ring
or depend on an interrupt to receive notification of an incoming message. Unfortunately, there
is no mechanism to provide asynchronous notification to running processes currently existing
in Aegis; instead, the “interrupt quene” is checked every time a process is re-scheduled (every
15625 microseconds).

At connection setup time, the application chooses the size of this virtualized notification ring
(allocated out of its own memory) and notifies the kernel of its size and location. Applications
are also responsible for supplying a section of their memory for messages to be DMA’ed to.
This memory is fragmented into buffers for the use of the device; when a message arrives it

47

is placed into the next set of buffers for that VCI which has been registered on the NI. The
device driver then selects a new set of buffers from the application-supplied pool to replace
those buffers with (there are 15 such buffer sets simultaneously available to receive messages
in). The application is responsible for replenishing the message buffer stack with buffers, cither
by consuming the message and returning those buffers to the kernel, or supplying new ones.
We have chosen a buffer size of 1024 bytes as a compromise between being able to receive
large messages and not to waste buffer space for tiny ones. The vendor-supplied parameters set
in the device driver (which we use as well) limit messages to five times the size of this buffer,
which for our implementation is 5120 bytes (actually, S088 bytes, because all messages must
be a multiple of 48 bytes, the ATM cell size). These buffers are guaranteed never to be swapped
out in our current implementation.

In keeping with the exokemel philosophy, Aegis exports only a low-level send primitive
(system call); it is the responsibility of the application to format the message for proper sending.
The application provides the VCI to send to, a structure containing pointers to the message
fragments to be sent, a message length, and an optional notification flag. The device driver
checks that the message format requirements are met and then sets up the transmit; it never copies
or buffers the message. The notification flag indicates that the message has been DMA’ed, and
that the application can therefore reuse those transmit buffers. The send primitive will return
an error if any of the tests for message conformability fail or if the device is too full of packets
to transmit (in which case the application is responsible for resubmitting the message later).

There are several requirements placed on messages to be sent, many of which stem from the
use of the DMA engine by the AN2 device. The message size must be padded to be a multiple of
48, with eight bytes free for trailer information. All of the message fragments must be four-byte
aligned (this is a requirement of the DMA engine). The message may only use a predefined
number of physical memory fragments (this number is set to seven in our implementation). If
a fragment supplied by the application spans a physical page boundary, the driver will break
it into multiple fragments for the DMA engine. The application is also responsible for setting
up the AALS trailer, excluding the checksum. The device automatically generates and tests the
checksum.

In a general-purpose environment, applications would not each be allocated a VCI, as they
are in our setup, because there are only a small number of VClIs to be shared between all of the
applications. Instead, as in other implementations (e.g., the AN2 device under Uitrix), most
would share a single VCI, and a different level of demultiplexing would be used to distinguish
between them. For a user-level communication system, the appropriate demultiplexing tool
would be a packet filter.

5.4 ASHs

We first describe the ASH interface, then the exact implementation of ASHs for the AN2
interface on Aegis.

48

| System call | Description

ae_gettick read current clock tick

ae_otto_send send a message

ae_otto_bump_n_free | return message receive buffers to AN2

ae_pid get current process id

ae_trusted_memcpy | perform a simple memory copy with bounds check
ae_rapply invoke a read-only dynamic ILP operation
ae_wapply invoke a read/write dynamic ILP operation

Table 5-1. System call interface available to ASHs.

5.4.1 ASH interface

In the current system, only static ASHs and ASHs with dynamic ILP are supported. A pro-
grammer writes an ASH in C code. The ASH will be invoked as a function which takes four
arguments: a pointer to the receive structure that describes the incoming message, the number
of bytes in the message, the virtual circuit that the message arrived on, and the slot within
the receive ring that the message occupies. The ASH is expected to return an integer value.
If the value returned equals one, the system assumes that the ASH has handled the message.
Otherwise, the message will be passed up to the user level as it would be if there had been no
ASH.

An ASH may only call three types of functions: dynamic ILP invocations (as will bhe
described in Section 5.7), approved system calls, and any C function that also satisfies these
" criteria. The list of approved system calls is in a system header file, and includes the calls
needed to send and receive messages. The full iist is in Table 5-1.

The programmer is responsible for locking any data structures necessary so that the ASH
and application do not conflict. An ASH obviously cannot wait on a lock, but must instead
abort if a lock is not available; this is the responsibility of the programmer to ensure.

54.2 ASH implementation

The current system only supports ASHs on the AN2 network interface. When a packet arrives,
the AN2 device driver tests whether or not that VCI has an ASH registered for it. If it does not, it
proceeds as normal. Otherwise, it invokes ASH wrapper code. The wrapper code switches the
system interrupt handlers (so that clock interrupts can be handled specially), and tests whether
or not the incoming message is associated with the currently running application. If it is, then
the correct context identifier for the application is already set; if it is not, the wrapper code
switches the context identifier to that of the correct application. Either way, the wrapper then
swaps the TLB fault handlers to one that will ensure that TLB faults will cause the ASH to
be aborted, enables clock interrupts (so the ASH will not run too long; interrupts are disabled
the rest of the time in Aegis), switches the current stack to an application-specified stack, and

49

invokes the ASH with the arguments described previously.

When the ASH returns to the ASH wrapper, the wrapper undoes the changes it made to
run the ASH (e.g., restoring the kernel stack, disabling clock interrupts, restoring the TLB fault
handlers and interrupt handlers, and switching the context identifier back). If the ASH returned
normally, the device driver checks how many message buffers are still being used and replaces
them. '

If no buffers were used (because the ASH consumed the message, or moved it to somewhere
else), the driver will let the NI reuse those buffers later rather than replacing them; this saves
multiple expensive writes across the TURBOchannel bus. If the ASH aborted voluntarily, the
system will not reuse those buffers at all, and it will deliver the message intact to the user-level
application just as if the ASH had not run.

The ASH may be involuntarily aborted a few ways. If it runs too long (if the system
sees two clock interrupts, indicating that the ASH ran for at least a full time slice), the clock
interrupt handler jumps to the ASH cleanup code, generated by the sandboxer, which cleans
up any callee-saved registers the ASH has used, and returns to the ASH wrapper code. Note
that interrupts are disabled during system calls that the ASH makes; this strategy ensures that
system calls will not be partially executed. If an ASH takes a TLB fault, the TLB fault handler
jumps to the abovementioned ASH cleanup code. Finally, if it attempts to jump to an illegal
PC, the jump is changed to a jump to the ASH cleanup code.

5.5 Sandboxer interface

In order to submitan ASH to the system, the programmer invokes the sandboxer. The sandboxer
takes as input a pointer to the ASH function, an optional list of support functions to sandbox
that the ASH does not refer to directly (the supports), and an optional list of functions the
invocation of which indicates that an ASH should terminate (the aborts). The supports are used
to indicate functions which the ASH calls indirectly; since there is no reference to them in the
ASH they would not end up otherwise sandboxed, and the ASH would not be able to call them.
The aborts are for programmer convenience. A typical way they are used is for assertions.
If an assertion fails when the ASH is somewhere in its call stack, the ASH can clean up and
gracefully terminate without having to signal an exception all the way back to the top level of
the handler.

The sandboxer reads in the ASH function, and sandboxes it. It returns an error to the
application if it can statically detect a problem (such as a disallowed instruction, or unapproved
system call). If the function is sandboxed successfully, the sandboxer downloads the ASH
into the operating system, indicating which portion of it is the cleanup code to invoke if the
OS terminates the ASH involuntarily. Currently each process only uses a single virtual circuit
identifier, so the ASH is automatically associated with that VCI at download time. This would
be trivial to fix.

To ensure safety, the sandboxer should either be running in the kernel, or else running as a
trusted process and signing the sandboxed code with a digital signature. Neither case is true in

50

our system, but again this would be simple to fix.

5.6 Upcalls

This section describes both the upcall interface and the implementation of upcalls that was
written for the AN2 interface on Aegis.

5.6.1 Upcall interface

The upcall interface is modeled after that of the synchronous interrupt interface in Aegis.
Upcalls must be enabled by the application, at which time the application registers a handler
to be called. The handler is invoked at upcall time with the virtual circuit of the messages and
the slot in the receive ring that the first message of the message batch is located in. The upcall
handler may then pull arrived messages out of the receive ring exactly as the normal user-level
polling code does. This arrangement allows the system to batch messages, minimizing the
number of kemnel crossings for a batch of near-simultaneously-arrived messages to a single
process.

Just as with ASHs, the programmer is responsible for locking any data structures necessary
so that the upcall and application do not conflict. An upcall also cannot wait on a lock, but must
instead abort if a lock is not available; this is the responsibility of the programmer to ensure.

5.6.2 Upcall implementation

The current system only supports upcalls on the AN2 network interface. When a packet arrives,
the device driver checks if there is an upcall registered on that VCI (ASHs are tested first, for
those applications which use both). If not, it proceeds as normal. if so, it enqueues the upcall on
a list. When the device driver is done executing (i.e., the hardware interrupt has been handled),
the upcalls queued up are executed. Before running any upcalls, the system swaps the system
interrupt handlers (again, so that clock interrupt can be handled specially), and sets up the status
register so that the user code can execute properly. It then goes through the list of queued
upcalls, context switching to a new process if necessary, then jumping to the interrupt handling
code (which runs at user level, and will invoke all of the upcalls queued for that process) and
executing a Return From Exception instruction (which changes the processor from kernel mode
to user mode).

When the upcall returns (using a system call), the next upcall is invoked. If no upcalls are
left on the list, the status register is restored to its previous status, the interrupt handlers are reset
to their old values, and the correct process is context switched to, if necessary (i.e., the one that
was running when the interrupt arrived). At this point, the code returns from the interrupt back
to where the processor was executing when the original message interrupt occurs.

If an upcall runs too long (i.e., two clock ticks), it is terminated. There is no provision to
clean up at this point; doing so would entail restoring callee-save registers at the minimum. As
these registers are not currently saved before invoking upcalls (nor are the floating point ones),

51

the time for upcall invocation should be slightly more expensive than is reflected in our results.
In the ASH case, the system depends on the sandboxer to save and restore those callee-saved
registers that are used; in the upcall case, there is no way to determine which registers the user
code might or might not have touched, and therefore all should be saved before initiating the
user code.

5.7 Dynamic ILP interface

As discussed in Section 3.2.2, an application specifies the data manipulation steps it wants
integrated in VCODE. It presents this list to the DILP system, which compiles the list down into
machine code representing the requested list of data manipulations, and returns an identifier
(i1p in Figure 3-2). When an ASH or upcall then wishes to perform those steps, it presents
this identifier, a pointer to source data, length, and possibly a pointer to destination data to
the DILP engine, which calls the generated specialized data copying and manipulation loop.
Different loops may be generated for different network interfaces; for example, our Ethernet
DMA engine stripes an N-byte contiguous packet into a 2N-byte buffer, alternating 16 bytes of
data and 16 bytes of padding, whereas the AN2 DMA engine copies the data contiguously.

Some network interfaces provide the capability of having part of the message read by the
processor, and then allowing the rest of the message to be written directly from the NI to where
the message directs. Although not part of our current implementation, ASHs and upcalls can
take advantage of this type of interface as well, in an especially clean manner if done through
the DILP interface (from the point of view of the application, nothing except for performance
should change). Only the back end of the DILP engine should have to change.

5.8 Complexity of the system

The support required to implement static ASHs for our platform is about 1000 lines of code
(mostly C, approximately 50 in assembly language) mostly added to the kernel plus 3300 lines
of C++ code for the sandboxer. The bulk of the code added to the kernel is to keep track of
the ASHs belonging to each application. The additional support required for upcalls is about
400 lines (about 200 in the kernel and the rest in the library operating system). The upcall code
leveraged the existing interrupt code a great deal (i.e., no new code had to be added to register
or enable interrupt handlers).

We believe that adding efficient upcalls to a standard operating system may be more difficult
than adding ASHs (because ASHs involve less operating system mechanism), but have not
actually performed this analysis. In fact, Liedtke, a researcher who has implemented upcalls
highly efficiently, believes that the only way to do so is to completely rewrite the operating
system from scratch [36].

The handler code written for ASHs and upcalls themselves tends to be simpler than general-
purpose applications, once a programmer figures out which are the important cases that should

52

be handled in an handler. On the other hand, adding handlers to an application may introduce
issues of asynchrony for the first time.

In order to implement dynamic integrated layer processing, we added 250 lines of interface
code plus the VCODE system. VCODE is an independent, released code package of about 3000
lines of code; its use is amortized over multiple OS functions in our environment (including
dynamic packet filters[22]). Given that VCODE is a stand-alone package, we find providing
DILP to be worthwhile, as DILP greatly simplifies writing efficient integrated loops.

5.9 Summary

This chapter described the specific subsystems that we used to provide efficient user-level
cormmunication, ASHs, and upcalls. The next chapter experimentally evaluates the performance
of these communication strategies for a series of microbenchmarks and end-to-end applications.

53

54

Chapter 6

Experiments

This chapter addresses a main hypothesis of this thesis: that the performance achievable
using user-level networking is good, but that handlers improve this performance. We perform
a number of experiments to address this hypothesis and others. In addition, this chapter
demonstrates several different ways that applications can exploit the flexibility provided by
user-level communication.

We first examine the base performance of our system, and compare it to other instances of
user-level communication, on other platforms, to show that our implementation of user-level
networking is efficient. With this in mind, we then investigate in detail the additional benefits
obtainable by using ASHs and upcalls. We show that the addition of ASHs to user-level
networking can provide better performance than user-level networking alone, even when there
is a only single active process per processor, because ASHs enable high throughput, low-latency
data transfer, and low-latency control transfer. We also show that when there are a number of
active processes, both ASHs and upcalls can provide better performance than is achievable
without them.

We then present a series of applications from three different domains: a basic internetwork-
ing protocol, three parallel applications ranning on top of software distributed shared memory,
and a client-server application. These applications together serve a number of goals. First, they
demonstrate that our system can support a set of real applications. Second, our TCP implemen-
tation demonstrates that dynamic ILP can be effectively used in an application, both to simplify
the work of the programmer and to achieve better performance. The parallel applications use
a communication model where they expect asynchronous notification of message arrival; both
ASH:s and upcalls can be used to provide this notification ability for operating systems (such as
the exokernel) which otherwise lack it. Our final application is a Web server. This application
vividly demonstrates what happens to system performance when there is a large number of
aborts.

55

6.1 Experimental environment

This section reports on the base performance of our system (i.e., without the use of ASHs
or upcalls). Like other systems {18, 20, 37, 60, 57], all the protocols are :mplemented in user
space. The main point to take from the results in this section is that our implementation performs
well and is competitive with the best systems reported in the literature. We will discuss in turn
the testbed, the raw performance of the network system, and the performance of our user-level
implementations of UDP and TCP.

6.1.1 Testbed

The measurements in this thesis are taken on a pair of 40-MHz DECstation 5000/240s, which
are rated at 42.9 MIPS and 27.3 SPECint92, and on a pair of 25-MHz DECstation 5000/125s,
which are rated at ~ 25 MIPS and 16.1 SPECint92. All measurements reported in this thesis
use the 240s; any measurements including more than two processors ase one or two of the
1235s, as appropriate. The 240 has separate direct-mapped write-through 64-KByte caches for
instructions and data. The I/O devices are accessed over a 25-MHz TURBOchannel bus. On the
125, the I/O devices are accessed over a 12.5-MHz TURBOchannel bus. The four DECstations
are connected with an AN2 switch [3].

6.1.2 Methodology

While collecting the numbers reported in this thesis, we had a fair number of problems with
cache conflicts (similar to problems reported by others [42]), because tlie DECstations have
direct-mapped caches. In order to minimize the effect these conflicts had on our experiments,
we automatically linked the kemnel object files in many different orders and picked a best-case
timing to report, for every application. We feel that this methodology provided a fair comparison
between the different experiments.

From a given run to run, the numbers reported in this thesis stayed fairly constant. We used
both the system elapsed time as measured by clock interrupt and a cycle counter located on the
AN?2 board to measure application run times; as long as a given application ran long enough,
these two numbers matched. Except as specially noted all of the exokernel numbers were taken
as follows. We ran multiple iterations of each experiment many times (so the application ran
long enough to measure) and divided by the number of iterations to calculate the run time. For
each experiment, we took ten such data points, and calculated 95% confidence intervals from
them. In all cases, the size of the confidence intervals was less than 3 microseconds, and they
are not reported here.

6.1.3 Interrupis

Because Aegis’ scheduler is round-robin, we had to simulate the time for an interrupt, i.e., for a
message arriving to cause the descheduling of the currently running process and the rescheduling

56

| Network | Latency |

in-kernel AN2 112
user-level AN2 182
Ethemet 309

Table 6-1. Raw latency (in microseconds per round trip) for user-level and in-kernel applications
on AN2 and Ethemet.

of the one the message was for. This was done by setting up a dummy process which does
nothing but poll for incoming messages to the application process. When it discovers a message,
it immediately yields to the application process. If the application process was polling for the
message, it then will receive it right away. This time should closely approximate that for taking
an interrupt on a real system.

6.1.4 Raw performance of base system

The raw performance of our base system, i.e., without the use of ASHs, is competitive with
other highly optimized systems employing similar hardware. Table 6-1 shows the roundtrip
latency achieved using the Ethernet and AN2 interfaces to send and receive from user space a
4-byte message between two DECstation 5000/240s.

For the AN2 interface, the table also compares the user-level version to the best in-kernel
version we were able to write. Since the hardware overhead for a round trip is approximately
96 microseconds [47], the kemel software is adding only 16 microseconds of overhead. The
user-level number, which includes the time to schedule the application, cross the kemel-user
boundary multiple times, and use the full system call interface we designed for the board, adds
another 70 microseconds, which brings the total software overhead to 86 microseconds, or about
3,440 cycles. For this measurement, the user-level application is sitting in a tight loop polling
for a message; the other processes on the system are basically idle.

Figure 6-1 is a graph of the bandwidth obtainable in our system by sending a large train
of packets of different sizes from user level. The maximum achievable per-link bandwidth is
about 16.8 MBytes/second (134 Mbits/second) [47]. At a 4-KByte packet size, we reach 16.11
MBytes/second.

These raw numbers are competitive with other high-performance implementations that also
export the network to user space. Scales et al. [47] measure about twice as much software
overhead (7,600 cycles or 34 microseconds) for a null packet send using their pvm_send and
pvm_receive interface using the same ATM board, with a substantially faster machine (a
225-MHz DEC 3000 Model 700 AlphaStation rated at 157 SPECint92). Our absolute numbers
are higher than U-Net (182 vs. 66 microseconds), since our experiments are taken on slower
machines (40-MHz vs. 66-MHz), the AN2 hardware latency is higher than the Fore latency (96
microseconds vs. 42 microseconds), and we have not attempted to rewrite the AN2 firmware
to achieve low latency, as was done for U-Net [60]. Direct comparisons with other high-
performance systems such as Osiris [18] and Afterburner [20] are difficult since they run on

57

— 120

~
2 :
§ L 100 E
5 L F
a T
g. FSO:
2 g
& 60 &
) 7
b
H Fa0 8
-& »
3 g
£ 20 &
= &
rp eyt ———v—} 0
0 1024 2048 3072 4096

Packet size (bytes)

Figure 6-1. Throughput for a user-level application on the AN2.

different networks and have special purpose network cards, but our implementation appears to
be competitive.

6.1.5 User-level internet protocois

On top of the raw interface we have implemenied several network protocols (ARP/RARP,
IP, UDP, TCP, HTTP, and NFS) as user-level libraries, which are then linked to applications.
The general structure is similar to other implementations of user-level protocols [20, 60]. The
UDP implementation is a straightforward implementation of the UDP protocol as specified in
RFC768. Similarly, the TCP implementation is a library-based implementation of RFC793.
We stress that the TCP implementation is not fully TCP compliant (it lacks support for fluent
intemetworking such as fast retransmit, fast recovery, and good buffering strategies). Neverthe-
less, both the UDP and TCP implementations communicate correctly and efficiently with other
UDP and TCP implementations in other operating systems.

Table 6-2 shows the latency and throughput for four different implementations of UDP
and TCP over the AN2 and the Ethemnet. On the AN2, the TCP implementation uses the
virtual circuit identifier and the ports in the protocol header to demultiplex the message to
the desired protocol control block; the UDP implementation currently uses only the virtual
circuit index. As observed by many others, user-level protocols provide opportunities for
optimization not necessarily available nor convenient for traditional in-kernel protocols. These
tables demonstrate the benefits achievable through the use of these optimizations. The AN2
in place, no checksum measurements demonstrate the best performance we have achieved for

58

UbP (TCP
Implementation Latency | Throughput || Latency | Throughput
AN2; in place, no checksum 221 11.69 333 5.76
AN?2; in place, with checksum 244 7.86 383 442
AN2; no checksum 225 8.57 333 5.02
AN2; with checksum 244 6.45 384 4.11
Ethemet; with checksum 309 1.02 443 1.03

Tuble 6-2. Latency and throughput for UDP and TCP over AN2 and Ethernet. The latency is
measured in microseconds, and the throughput in megabytes per second.

UDP and TCP implemented as user-level protocols. In this case, there are no additional copies
from the network interface to application data structures and the implementation relies on the
CRC computed by the AN2 board for checksumming. To simulate the lack of additional copies,
the code throws away the application data in the in place versions (this zero-copy can actually
be achieved; with our user-level AN2 interface the application can be informed where the data
has landed, and can use the data directly out of that buffer, as long as it replaces the buffer
with some other one). For the non-in place versions cf our measurements, the application
and the protocol library are separated by a traditional read and write interface, resulting in an
additional copy between the neiwork and application data structures. For internetworks, the
no checksum implementations are clearly inadequate because they do not offer an end-to-end
checksum. We thus also present measurements with end-to-end checksumming. In the with
checksum measurement, the protocol library copies the data from the network to the application
data structures and also computes the Internet checksum. This last implementation is closest to
what one might expect from a hard-coded in-kernel implementation.

The leftmost columns of Table 6-2 show the latency and throughput for different imple-
mentations of UDP over AN2 and Ethernet. Latency is measured by ping-ponging 4 bytes.
Throughput is measured by sending a train of 6 maximum-segment-size packets (1,500 bytes
for Ethernet and 3,072 bytes for AN2) and waiting for a small acknowledgment. Using larger
train sizes increases the throughput.

On the Ethernet, both UDP latency and throughput are (modulo processor speed differences)
about the same as the fastest implementation reported in the literature [54]. Using the AN2
interface, UDP latencies are about 43 microseconds higher than the raw user-level latencies. This
difference is because the UDP library allocates send buffers, and initializes IP and UDP fields.
Our implementation seems to have lower overhead than U-Net [60]; the U-Net implementation
adds 73 microseconds on a 66-MHz processor while our implementation adds 62 microseconds
on a 40-MHz processor (even though, unlike their numbers, our checksum and memory copy
are not integrated for this measurement). In contrast, UDP running over Ultrix on our platform
requires about 1500 microseconds per round trip. The bandwidth is mostly a function of the
train size used in the experiment. With a large enough train the UDP experiment achieves nearly

59

Generic untrusted | Application-specific | Application-specific
(ASH) (unsafe ASH)

| 68] 38 | 10 |

Table 6-3. Dynamic instruction count (excluding data copying) for three implementations of
remote write to be run in the kernel.

the full network bandwidth.

The rightmost columns of Table 6-2 show the latency and throughput for different imple-
mentations of TCP over AN2 and Ethernet. Latency is measured by ping-ponging 4 bytes
across a TCP connection. Throughput is measured by writing 10 MBytes in 8-KByte chunks
over the TCP cornection. For the AN2 the maximum segment size is 3,072 bytes and for the
Ethernet the maximum segment size is 1,500 bytes. For both networks the window size was
fixed at 8 KBytes. Larger window size increases the throughput. Except during connection set
up and tear down, all segments were processed by the TCP header-prediction code.

The difference between UDP and TCP latency is mostly accounted for by the fact that
the write call (i.e, sending) is synchronous (i.e., write waits for an acknowledgment before
returning); as a result the data that is piggybacked on the acknowledgment has to be buffered
until the client calls read (which leads to an additional copy in our current implementation).
In addition, the overhead of returning out of the write call and starting the read call cannot
be hidden. Finally, there is some amount of non-optimized protocol processing (checking the
vaiidity of the segment received and running header-prediction code). The sources of overhead,
together accounting for about 140 microseconds, seem also to account for most of the difference
in latency with U-Net, which adds a total of 20 microseconds (on a 66-MHz machine) over their
UDP implementation.

In summary, the base performance of our system for UDP and TCP is about the same or
is better than most high-performance user-level and in-kemel implementations [18, 20, 25, 37,
57], as long as the applications are scheduled when the messages arrive.

6.2 Sandboxing overhead

Before we examine any ASH results, it is instructive to understand what kind of sandboxing
overhead will be incurred by applications. We are interested in measuring both the gains
achievable by writing completely application-specific code and how the overhead of sandboxing
can cut into these gains.

Therefore, we compare the execution time for a generic untrusted remote write (such as
might be implemented in the kernel by hand) to that for a sandboxed application-specific remote
write (such as might be implemented by an application writer, and downloaded into a kernel).
We take this measurement in isolation, without the cost of communication, but with both ASHs

60

running in the kernel!. The remote write, modeled after that of Thekkath et al. [56], reads the
segment number, offset, and size from the message, uses address translation tables to determine
the correct place to write the data to, and then writes the data (assuming the request is valid).
The application-specific version not only assumes the message was sent by a trusted sender,
but also uses a different protocol for communication: the handler assumes it is given a pointer
to memory, instead of a segment descriptor and offset. This protocol would clearly not be
applicable for all applications, but those that could benefit by it (such as a distributed shared
memory system comprised of trusted threads) should not be forced into a more expensive model.

We measured the sandboxing factor for the trusted ASH to be 1.3-1.4 for 40-byte writes,
and 1.01-1.02 for 4096 bytes. We emphasize that these overheads are for a completely untuned
implementation of sandboxing. An examination of the generated code shows that a large
fraction of the added instructions are due to overly general exit code, which could relatively
easily be removed, thereby reducing the sandboxing overhead in this case to an unimportant
fraction of the runtime.

As Table 6-3 shows, when performing the same operation, ASHs are very close in per-
formance to hand-crafted routines. Furthermore, since ASHs can utilize application-specific
knowledge, they can be implemented more efficiently than inflexible kernel routines. For ex-
ample, because it can exploit application semantics (i.e., an organization of trusted peers in a
distributed shared memory system), even the sandboxed version of the specialized remote write
uses fewer instructions than the generic hand-crafted one.

6.3 Exploiting ASHs and upcalls: microbenchmarks

In this section, we examine the specific benefits that application-specific safe handlers and
upcalls enable: high throughput, low-latency data transfer, and low-latency control transfer. We
show that ASHs can achieve better performance that polling, even when there is a single active
process on the system, and furthermore that when there are multiple processes on the system,
both ASHs and upcalls provide higher performance than simple user-level networking.

We use a combination of user-level microbenchmarks and end-to-end microbenchmarks.
The user-level measurements gauge the individual effects of, for example, avoiding copies, while
the end-to-end measurements give insight into the end-to-end performance effects. The user-
level microbenchmarks measure throughput in megabytes per second for operations performed
on 4096 bytes of data. We assume that the message and its application-space destination are not
cached when the message arrives, and so perform cache flushes at every iteration. The network
send and receive buffers are modeled as simple buffers in memory.

The end-to-end measurements are taken on the system described in the previous section.
In order to separate ot the cost of sandboxing, we report experimental results both with and
without the cost of sandboxing overhead (although in both cases the ASH is prevented from
running too long by a timer). We report the sandboxing factor for many of the applications. We

'With the cost of communication included, the sandboxing overhead disappears in the noise.

61

define the sandboxing factcr to be the time the sandboxed handler takes, divided by the time the
unsafe handler takes. :

Just as applications are given the entire message to process, after ademultiplexing step based
on virtual circuit identifier, so are ASHs. No higher level demultiplexing is done; no higher-level
protocol (e.g., IP) is forced upon ASHs. Similarly, for the Ethemnet implementation reported
in [23], demultiplexing of a message to an ASH was done through DPF (see Section 6.1); again,
no more functionality is required in the kemel than is needed to demultiplex the messages to
the correct process in the first place. Note that ASHs are invoked directly from the AN2 device
driver, just after it performs a software cache flush of the message location, to ensure consistency
after the DMA.

It should be noted that the results of our experiments underestimate the benefits of running
ASHs in any other kernel because kernel crossings in Aegis have been highly optimized: Aegis
kemnel’s crossings are five times better than the best reported numbers in the literature and
are an order of magnitude better than a run-of-the-mill UNIX system like Ultrix [23]. For
example, on the DECstation 5000/240 the advantage of running an ASH in the Aegis exokernel
versus running an upcall in user space is approximately 35 microseconds; under Ultrix4.2 this
difference would be more like 95 microseconds (the approximate cost of an exception plus the
system call back into the kernel) [23].

6.3.1 High throughput

High data transfer rates are required by bulk data transfer operations. Unfortunately, while
network throughput and CPU performance have improved significantly in the last decade,
workstation memory subsystems have not. As a result, the crucial bottleneck in bulk data
transfer occurs during the movement of data from the network buffer to its final destination
in application space [13, 16]. To address this bottleneck, applications must be able to direct
message placement, and to exploit ILP during copying. We examine each below.

Avoiding message copies

Message copies cripple networking performance [1, 13, 56]. However, most network systems
make little provision for application-directed data transfer. This results in needless data copies
as incoming messages are copied from network buffers to intermediate buffers (e.g., BSD’s
mbufs [33]) and then copied to their eventual destination. To solve this problem, we allow a
handler to control where messages are placed in memory, eliminating all intermediate copies.
Our general computational model provides two additional benefits. First, these data transfers
do not have to be “dumb” data copies: handlers can employ a rich “scatter-gather” style, and
use dynamic, runtime information to determine where messages should be placed, rather than
having to pre-bind message placement. Second, in the context of a highly active gigabit per
second network, tardy data transfer can consume significant portions of memory for buffering:
the quick invocation of handlers allows the kernel buffering constraints to be much less.

62

single copy | double copy | double copy
(uncached)

| 20 | 14 | 11 |

Table 6-4. Throughput for copies of 4096 bytes of data: single copy, two consecutive copies
(data in cache), two consecutive copies with intervening cache flush. Throughput is measured
in megabytes per second.

Copying messages multiple times dramatically reduces the maximum throughput. We can
see this by measuring the time to: (1) copy data a single time, (2) copy data two times, where
the data is in the cache for the second copy, and (3) copy data twice, where the data is not in the
cache for the second copy. Table 6-4 demonstrates that a second copy degrades throughput by a
factor of 1.4 for cached data, and by a factor of two for uncached, as expected. We also observe
this effect in the Aegis UDP and TCP implementations: the throughput for the no checksum
version of UDP increases by a factor of 1.1-1.4 when the copy from the network buffers into
the application’s data structures is eliminated, as was shown in Table 6-2.

Our system’s data transfer mechanism enables applications to exploit the capabilities of the
network interface in avoiding data transfer. For interfaces such as the Ethemnet, the network
buffers available to the device to receive into are limited, and therefore a message must not stay
in them very long. In this case, at least one copy is always necessary. Through the use of a
handler, the application can ensure that the copy is to its own data structures, and that no further
copies are needed. The AN2 network interface card, on the other hand, can DMA messages
into any location in physical memory. An application which does not need to move message
data into its own data structures, but which can instead use it wherever it has landed, can take
advantage of this feature and avoid all copies. Applications which require that the data be
copied, on the other hand, can use handlers to do so; furthermore, through the use of dynamic
ILP, they can ensure that the copy is integrated with whatever other data manipulation may be
required.

Integrated layer processing

The performance advantage of ILP-based composition is shown in Table 6-5, which mea-
sures the benefit of integrating checksumming and byteswapping routines into the memory
transfer operation. This experiment compares two data manipulation strategies for two op-
erations: copy with checksum, and copy with checksum and byteswap. The first sirategy is
non-intagrated processing, or separate, representing the case where data arrives and is copied,
then checksummed, then possibly byteswapped. We show two varieties of this experiment. The
uncached case represents what happens if much time occurs in between the various data manip-
ulation operations, and the message gets flushed from the cache. The second data manipulation
strategy explored is integrated processing. The C integrated case represents hand-integrated
loops written in C. The final case is dynamic ILP, using just the checksum pipe of Figure 3-3

63

copy & | copy & checksum
Method checksum & byteswap
Separate 11 5.8
Separate / uncached 10 5.1
C integrated 16 83
DILP 17 8.2

Table 6-5. Throughput of integrated and non-integrated memory operations, measured in
megabytes per second.

| Processstate | Unsafe ASH | Sandboxed ASH | Upcall | User-level |

Currently running 147 152 191 182
(polling)

Suspended 147 151 193 247
(interrupts)

Table 6-6. Raw roundtrip times for remote increment (in microseconds) measured for a sand-
boxed ASH, an unsafe (not sandboxed) ASH, an upcall and normal user-level communication.
Two cases are considered: when the application process is running and polling for a message
when the message arrives, and when the application process is suspended waiting for a message
when the message arrives.

for copy & checksum and the composition of the checksum pipe and a byte swapping pipe,
composed as shown in Figure 3-2 for copy & checksum & byteswap.

Even when compared to the separate case which does not have a cache flush between the
data manipulation operations, integration provides a factor of 1.4 performance benefit, and is
clearly worthwhile. In the case where there is a flush, integration provides a factor of 1.6
performance improvement. The table also demonstrates that our emitted copying routines are
very close in efficiency to carefully hand-optimized integrated loops.

6.3.2 Low-latency data transfer

The need for low-latency data transfer pervades distributed systems. The use of ASHs allows
applications to quickly respond to messages without paying the higher cost of application
upcalls.

In Table 6-6 we measure the effects of ASHs and upcalls on raw roundtrip times for a simple
remote increment message. In response to the message, the application (either at user-level or
in an ASH or upcall handler) receives a message, performs an increment, then responds with
another message.

We consider two cases: when the message arrives at the processor the application process
is nearly always running (Currently running (polling)), and when the message arrives at the

64

processor the application process is nearly never running (Suspended (interrupis)). In the
first case, the application is scheduled, and is actively polling for the message at its time of
arrival. In the second case, the application is not scheduled, but is rescheduled as soon as the
message reaches user level. If the ASH or upcall completely handles the message, there is no
rescheduling of the application.

The use of the ASH saves a significant amount of time (30 microseconds) as compared to
the user-level versions, even when compared to the polling version. When the process is not
running, the difference is even more dramatic (39 microseconds), because the application does
not have to be rescheduled in order to run the ASH.

The upcall time is slower than both the ASH time and the user-level polling version time.
This is for two reasons: (1) because the upcall mechanism was designed to batch messages
together to avoid multiple kernel crossings, and (2) because the upcall version was not as
aggressively optimized for the special case of when the application process is running at
message arrival. As expected, however, when the application is not running, the upcall time
hardly increases at all, and becomes much better than the user-level time.

In addition to demonstrating the ability of ASHs to transfer small arnounts of data quickly,
this experiment also demonstrates the low cost of control transfer and message initiation in our
system. Although sandboxing the ASH added little time in absolute terms to the cost of the ping-
pong, 76 instructions were added to the dynarnic instruction base count of 90 for processing this
message. We expect this number to decrease somewhat as our prototype sandboxer improves.

6.3.3 Control transfer

Low-latency control transfer is also ciucial to the performance of tightly-coupled distributed
systems. Examples include remote lock acquisition, reference counting, voting, global barriers,
object location queries, and method invocations. The need for low-latency remote computation
is so overwhelming that the parallel community has spawned a new paradigm of programming
built around the concept of active messages [61]: an efficient, unprotected transfer of control
to the application in the interrupt handler.

A key benefit of both ASHs and upcalls is that because the runtime of downloaded code is
bounded, they can be run in situations when performing a full context switch to an unsched-
uled application is impractical. Handlers thus allow applications to decouple latency-critical
operations such as message reply from process scheduling. Past systems precluded protected,
low-latency control transfer, or heavily relied on user-level polling to achieve performance
(e.g., in U-Net using signals to indicate the arrival of a message instead of polling adds 60
microseconds to the 65-microsecond roundtrip latency [60]). The cost of control transfers is
sufficiently high that recently a dichotomy has been drawn between control and data transfer
in the interests of constructing systems to efficiently perform just data transfer [56]. Handlers
remove the restrictive cost of control transfer for those operations that can be expressed in terms
of handlers. We believe that the expressiveness of handlers as we have described them in this
thesis is sufficient for most operations subject to low-latency requirements.

As a simple experiment to illustrate the advantages of decoupling latency-critical operations

65

from scheduling a process, we compare executing code in an in-kemel ASH versus in a user-
level process while increasing the number of user processes on the client. We consider two
user-level cases. In the first, the scheduler is oblivious to message arrival and thus a process
with a message waiting for it will not see the message until its turn to run. This case was
measured on Aegis, and the processes were scheduled in a round-robin fashion. The second
case is with a scheduler that does reschedule a process with a message waiting for it; this set of
measurements was taken under Ultrix.

As shown in Figure 6-2, as the number of active processes under an oblivious scheduling
policy increases, the latency for the roundtrip remote increment increases, because the scheduler
is not integrated with the communication system, and does not know to increase the priority
of a process that has a message waiting for it. The slope of this line is approximately equal to
the time for a single roundtrip message. This effect occurs because multiple messages are sent
between the two processes when they are both scheduled; as soon as one becomes descheduled,
no more messages will be sent until they are both scheduled again simultaneously. When there
is exactly one other active process on the client, half of the client’s time is spent processing
messages and half running the other process; because all of the server’s time is allocated to the
server, this results in the average roundtrip time increasing by two.

When ASHs are used, on the other hand, the roundtrip time for the remote increment stays
much closer to constant, despite the increase in the number of processes. (When the number
of active processes is four, the ASH time peaks at 168 microseconds, consistently. As the time
drops back down to 152 microseconds at six active processes, we assume that this represents a
strange interaction between the two processors and not a fundamental problem.)

Ultrix uses a more sophisticated scheduler that raises the priority of a process immediately
after a network interrupt. As Figure 6-2 shows, this type of scheduler definitely reduces the
measured effect, but it is certainly still a problem.

Even when the destined process is running and polling the network, ASHs can still provide
benefit. As shown by the remote increment experiments of Table 6-6, the use of ASHs still
provided great benefit (a savings of 30 microseconds off the roundtrip time), eliminating the
system call overhead, the cost of the full context switch to the application, and several writes
to the AN2 board. The use of an upcall also eliminates the cost of the full context switch, but
does not allow the elimination of system call overhead (nor of the writes to the AN2 board, as
long as the upcalls are batched).

6.4 Exploiting ASHs and upcalls: applications

This section reports on the performance of several applications which use ASHs, upcalls,
and normal user-level communication. Specifically, it considers TCP performance, several
parallel applications using the CRL software DSM system, and a Web server. Together,
these applications allow us to evaluate the performance of ASHs and upcalls in a full system
environment.

Note that the user-level communication measurements in this section (except for the CRL

66

2000+

—a&—- Ultrix user-level
ExOS user-level
(round-robin)
—e— ExOS with ASHs

1500

Latency (usec)
1

500

i 2 3 4 5 6 71 8
Number of processes

Figure 6-2. As the number of processes on the system increases, the cost of waiting for a
process to be scheduled becomes increasingly higher; times are in microseconds per round trip.

ones) are taken for two cases: where the application is running and polling for the message
(polling) and where it suspended waiting for a message and is rescheduled upon message arrival
as described in Section 6.1.3 (interrupts). The ASH and upcall measurements are only taken
when the application is scheduled; as we have shown in Section 6.3, this should not have much
of an effect on the run time of the applications.

64.1 TCP

The TCP protocol was described in Section 6.1.5. Because TCP is important, well documented,
and widely used, we illustrate the benefits of ASHs using TCP. Also, as pointed out by Braun
and Diot [8], it is important to evaluate ILP in a complete protocol environment, and TCP can
benefit from the use of ILP.

Our TCP implementation lowers the cost of data transfer by placing the common-case
fast path in a handler which can be run either as an ASH or an upcall. This handler employs
dynamic ILP to combine the checksum and copy of message data. A handler can run when
the following constraints are satisfied: the packet is “expected” (the packet we receive is the
one we have predicted), the user-level TCP library is not currently using that Transmission
Control Block (to avoid concurrency problems between the library and the handler), and the
TCP library is not behind in processing, so that messages stay in order. If these constraints
are violated, the handler aborts and the message is handled by the user-level library. When the

67

Sandboxed | Unsafe | Upcall | User-level | User-level

Measurement ASH ASH (interrupt) | (polling)
[Latency | 394 | 348] 382 459 | 384 |
| Throughput | 432 453 4.27| 3.92 | 4.11 |
* | Throughput (small MSS) | 266 | 305| 278 | 2.32 | 2.56 |

Table 6-7. This table compares the latency (in microseconds) and throughput (in megabytes
per second) for TCP running on the AN2 for a variety of cases.

header prediction constraint is met, the handler nearly never needs to abort for the other reasons
(non-header-prediction-related aborts occurred less than 0.2% of the time in our latency and
throughput experiments).

As shown in Table 6-7, the use of sandboxed ASHs enables a 65 microsecond improvement
in latency over the case of normal user-level TCP when the applications in question are not
scheduled at the time of message arrival. When the applications are scheduled, and are doing
nothing but polling, sandboxed ASHs are about 10 microseconds slower. We expect that the
performance of our sandboxer can be improved (we measure the sandboxing factor for the
handler to be about 1.3). Nevertheless, the polling version is unrealistic; processes which are
part of a multiprogrammed workload yet poll cause poor performance for the system as a whole,
therefore we expect the 65 microseconds difference to be more typical. The upcall performance
is slightly better than that for the user-level application polling.

For this latency experiment, there is a limit on the performance that the handler versions can
achieve, because the way the experiment is set up, the application is responsible for performing
each write; the handler only takes care of the read (i.e., placing the data in the right place). This
effect occurs because this version of the TCP library implements ASHs completely transparently
to applications. An application writer who wished to take full advantage of the power available
to handlers while using TCP would have to be cognizant of the use of ASHs, and download an
ASH which built on the TCP one.

We show two throughput experiments. The first one uses the same parameters as the
one of Table 6-2, and shows that the use of dynamic ILP in sandboxed ASHs enables a
0.4 MBytes/second gain in throughput when the applications are not scheduled, and a 0.2
MByte/second gain in throughput when the applications are scheduled, providing performance
similar to that of the in place, with checksum experiment of Table 6-2. The upcall version also
benefits from DILP, achieving a .16 MBytes/second gain in throughput over the polling version.

For the second throughput experiment, we decreased the Maximum Segment Size (MSS)
that the TCP library used. The MSS controls the largest size chunks of data that a TCP
implementation sends; if an application requests a send of a larger amount of data, the library
transparently communicates multiple times until it has sent all of the data. Although alarger MSS
(up to the size of the maximum buffer size of the underlying network) is often better, especially
for local communication, the default non-local size is normally only 536 bytes [52]. We

68

therefore performed a throughput experiment with the MSS set to this size; this is advantageous
to handlers, for there is more work to be done which is application-independent and can
thus be handled by the library ASH transparently to the application. For this experiment, we
also decreased the size of the buffers being sent to 4096 bytes (from 8192); this decrease is
disadvantageous to handlers, because it decreases the amount of application-independent work
to be done. As shown by Table 6-7, when a smaller MSS is being used, even with smaller data
sizes being sent by the application, the benefits that handlers bring to applications are increased,
in this case by approximately a factor of two.

In summary, we have shown that although ASHs with no sandboxing overhead outperform
plain user-level TCP for all cases, as we would expect, with the cost of sandboxing added the
polling version of TCP outperforms the ASH ones in the latency case. The upcall case does
better, because it has no sandboxing overhead. Compared to the interrupts version, both ASHs
and upcalls do much better (ASHs are about 15% faster than the interrupts version, upcalls
about 17%). The use of dynamic ILP on large messages both enables the integration of TCP
data manipulation steps and reduces the amount of sandboxing that needs to be performed,
bringing the sandboxed ASH and upcall performance up over the user-level case. Finally, when
there is more work that can be done by handlers, the handler versions dn even better.

6.4.2 Parallel applications using CRL

Distribuied shared memory (DSM) is a programming model which provides applications with
a shared address space absiraction. The C Region Library [30] is an all-software distributed
shared memory system developed at MIT and in use by several groups outside of MIT. Because
it is entirely implemented in software, it is easy to port to new platforms, and was thus a good
choice for a DSM library for Aegis. The unit of coherence in CRL is called a region, the size
of which is selectable on a data structure by data structure basis. We study three applications
that use the CRL library: the Traveling Salesman Problem, Water, and Barnes-Hui.

In order to port CRL to Aegis, we wrote a very simple active message layer with similar
functionality to that provided by Thinking Machines’ CM-5 [34, 61] and layered this code
directly above the AN2 interface. Handlers are used to perform the protocol coherence actions.
The handlers are designed to fail only if interrupts are disabled (disabling interrupts is the usual
mechanism used to provide atomicity for CRL implementations). This means that the parallel
applications themselves did not use handlers, they merely benefited from them.

CRL is a purely interrupt-driven library. Although CRL polls while satisfying an application
request, it depends on interrupts to transfer control to it if the application is executing and a
message arrives. Unfortunately, there is no mechanism to provide asynchronous notification to
running processes currently existing in Aegis; instead, the “interrupt queue” is checked every
time a process is re-scheduled (every 15625 microseconds in our experiments). This puts the
purely user-level communication version of the CRL library at a huge disadvantage, becanse
ASHs and upcalls both can “interrupt” a running process, so the user-level communication
numbers shown here are just useful for reference points. Because the ASH and upcall handlers
can fail (when they cannot obtain a lock), they are backed up by the interrupt mechanism: a

69

handler that fails to execute as an ASH or as an upcall will be placed in the interrupt queue, and
offered to the application in an interrupt handler the next time the interrupt queue is checked
(assuming the appiication has not received the message through polling by then). The interrupt
mechanism itself is backed up by the application polling (i.e., if the library is in a critical section
when an interrupt arrives, it has disabled interrupts, and will only receive the message later when
it ends the critical section and polls for the message).

Also note that because CRL uses indirect jumps, we cannot run ASHs in the kemel with
sandboxing disabled (otherwise the handler would jump to the wrong code?), so only sandboxed
numbers are reported here. The experiments reported in this scction therefore cover three
versions of the CRL library: normal user-level (the applications are running when a message
arrives much of the time, but inay not be actively polling for a message), ASH, and upcall.

As mentioned at the beginning of this chapter, our four-processor setup consists of two
40-MHz machines and two 25-MHz ones. The one- and two-processor experiments reported
on here use the 40-MHz machines, but the three- and four-processor experiments also use the
25-MHz ones, so even if the applications were perfectly parallelizable and there was zero cost
to communication, we would not expect to see perfect speedup in this environment. Instead,
the time on three processors should be at best 1/2.625 the time of the time on one processor,
and on four 1/3.25 the time.

Traveling Salesman Problem

A Traveling salesman problem (TSP) algorithm finds the shortest Hamiltonian tour of a set
of cities. Our implementation »ses a master/slave style program based on a branch-and-bound
algorithm. The master (server) generates partial routes and stores them in a shared job queuc.
Each slave (client) repeatedly performs the following steps: it reads the next partial route from
the job queue and then generates all full routes from the partial route by using the “‘closest-city-
next” heuristic. All slaves keep track of the shortest route that has been found, using a shared
region, which is used to prune the search tree.

We show the results for a 12 city problem, in which the master creates 990 jobs of partial
length four. For this application we measure the entire search time, running the application 10
times and averaging them?,

Figure 6-3 shows the performance of TSP on different versions of the CRL library as the
number of processors increases. TSP on a single node does not communicate at all; as expected,
all three versions of the library provide near-identical performance. TSP on two nodes also
does not communicate, once the master node generates all of the jobs, because there is only a
single slave processor to which all copies of the data migrate.

On three and four nodes, there is communication. The performance for ASHs and upcalls

?Because the handler has been relocated from user space to the kernel, it has no way of knowing where the
relocated code has been moved to.

*Note that one anomalous data point (two-processor upcall) was thrown out because it was twice as large as the
other data points.

70

154

= User-level
car; Upcall
ASH

Execution time (sec)

2 3
Number of processors
Figure 6-3. This figure shows the performance for the Traveling Salesman Problem using

different versions of the CRL library as the number of processors increases. The time is
measured in seconds.

is nearly identical. As explained earlier, without ASHs and upcalls CRL is impractical on the
current implementation of Aegis. Tote that TSP achieves a speedup of about 1.5 on three
processors (the best we could expect is 1.625) and 2 on four processors (as opposed to 2.25).
The confidence intervals are large for the user-level CRL library version because exactly when
a message arrives can have a huge impact on the performance.

Table 6-8 shows a detailed breakdown of the success and abort statistics for the handlers
and interrupts used by TSP. As expected, ASHs and upcalls have similar success rates. This
rate is almost certainly good enough to make the overhead of initiating the handlers in order to
test whether or not they will succeed worthwhile.

Water

Water is an n-body molecular dynamics application that “evaluates forces and potentials in
a system of water molecules in the liquid state,” as reported in the SPLASH parallel application
suite description [49]. The version of the application that we used is adapted from the “n-
squared” version from the SPLASH-2 benchmark suite [66], and is identical to that reported on
in [29]. As described in [29], there is a region for each molecule and three small regions used
to calculate running sums updated every iteration by each processor. The problem size that we
use is 512 molecules.

As suggested in the benchmark notes, the application was run for three iterations, and the
times for the second and third iteration were averaged. We then averaged 10 such runs to

71

Procs | Type Handlers Interrupts

total | succ | % succ | failed | failed | succ
2 User-level || - - - - 21 8
2 Upcall | 59 31 52% 28 6 0
2 ASH [59 31 53% 28 0 0
3 User-level - - - - 252 | 1326
3 Upcall 2480 | 1810 73% 670 72 2
3 ASH 2280 | 1655 72% 625 66 2
4 User-level - - - - 824 | 1910
4 Upcall 3129 | 2154 69% 975 148 7
4 ASH 3138 | 2142 68% 996 164 7

Table 6-8. This table shows the abort and success statistics for the TSP application on the
three versions of the CRL library averaged over the 10 runs. The first data super-column
contains statistics on the number of handler invocations. total refers to the number of handler
invocations made, which should be equal to the number of messages which arrived (summed
over all processors). succ is the number of ASHs or upcalls that succeeded; the percentage
is in the next column. The number that failed follows. Nearly all of the failures were due to
“interrupts” being disabled when the message arrived. The second data super-column contains
statistics on the number of interrupts run. Note that a failure may represent multiple messages
being blocked from running (it is incremented with every interrupt invocation), but the succ
column counts every message that was handled in an interrupt handler (not as an ASH nor

upcall).

72

=m User-level
cay Upcall
e ASH

Time per iteration (sec)

Number of processors

Figure 6-4. This figure shows the performance for the Water application using different versions
of the CRL library as the number of processors increases. The time is measured in seconds.

calculate the data presented here.

There is much more communication relative to the amount of computation in the Water
application than there is in the Traveling Salesman Problem application. Additionally, the Water
application is structured so that the application is often waiting in the CRL library (and therefore
polling); in fact, unlike Barnes-Hut and TSP, this application will run correctly with no form of
interrupts enabled even if no polling calls are manually added to the application. This explains
why the performance of Water for the normal user-level communication version of the CRL
library achieves the level of performance that it does. Since there is no communication during
the one-processer experiment, all versions should take the same amount of time, however the
ASH version is slightly slower. This may be a cache conflict type of problem, as was mentioned
in Section 6.1.2.

As the number of processors increases, the ASH version does better than the user-level
version. The upcall version does best, however. None of the versions achieves good speedup;
the overhead for communication on our hardware is too large to support this level of granularity.

Table 6-9 shows a detailed breakdown of the success and abort statistics for the handlers
and interrupts used by Water. The success rate is lower than that for TSP. The fact that the
failures are nearly all due to interrupts being off suggest that an additional mechanism would
be useful: applications should be able to turn on and off ASHs (and upcalls) in a way that the
operating system can test for before invoking the handler (similarly to the way that applications
can turn on or off asynchronous notification in a normal operating system). This strategy
would greatly decrease the penalty for initiating handlers that will not be able to complete
due to application-dependent, as opposed to message-dependent reasons, and should therefore

73

Procs | Type Handlers Interrupts

total | succ | % succ | failed || failed | succ
2 User-level - - - - || 4157 | 1619
2 Upcall 20963 | 8283 39% | 12680 || 2980 8
2 ASH 20823 | 8461 40% | 12362 2905 1
3 User-level - - - - 9513 | 2577
3 Upcall 33949 | 14501 42% | 19449 || 6516 46
3 ASH 33786 | 13760 40% | 20026 || 6294 79
4 User-level - - - - || 14985 | 3036
4 Upcall 47296 | 19801 41% | 27495 || 10732 85
4 ASH 47577 | 20838 43% | 26739 || 10081 [111

Table 6-9. This table shows the abort and success statistics for the Water application on the
three versions of the CRL library averaged over the 10 runs. The first data super-column
contains statistics on the number of handler invocations. total refers to the number of handler
invocations made, which should be equal to the number of messages which arrived (summed
over all processors). succ is the number of ASHs or upcalls that succeeded; the percentage
is in the next column. The number that failed follows. Nearly all of the failures were due to
“interrupts” being disabled when the message arrived. The second data super-column contains
statistics on the number of interrupts run. Note that a failure may represent multiple messages
being blocked from running (it is incremented with every interrupt invocation), but the succ
column counts every message that was handled in an interrupt handler (not as an ASH nor

upcall).

74

amm User-level
1 Upcall
ASH

Time per iteration (sec)

Number of processors

Figure 6-5. This figure shows the performance for the Barnes-Hut application using different
versions of the CRL library as the number of processors increases. The time is measured in
seconds.

increase both application and system performance as a whole.

Barnes-Hut

Barnes-Hut is also taken from [29], and also originated as a SPLASH-2 application.
Bames-Hut “simulates the evolution of a system of bodies under the influence of gravita-
tional forces” {29] using hierarchical n-body techniques. As described in [29], there is aregion
for each of the octtree data structure elements present in the SPLASH-2 code: bodies, tree
cells, and tree leaves. The global sums, minima, and maxima use the CRL reduction primitives,
which are built directly on top of the active messaging system used to implement CRL on Aegis.
The problem size that we used is 1024 bodies.

The steady state behavior for this application is achieved only after the second iteration, so
the application was run for four iterations, and the times for the third and fourth iterations were
averaged. Ten sets of these averages were used to calculate the data presented here.

Barnes-Hut has an even smaller granularity of computation than Water. Furthermore, it
telies on interrupts to operate correctly, and will not complete if interrupts are disabled. The
performance of this application running on top of the user-level CRL version is thus abysmal;
adding more processors actually slows down the total running time in most cases because the
hardware overhead is so large. Both the ASH and the upcall version of the CRL libraries provide
better performance, with the ASH version having a slight edge in the two- and three-processor
case (in the four-processor case, the ASH version is slightly better, but the error bars overlap).

75

Procs | Type Handlers Interrupts

total | succ | % succ | failed || failed | suce
2 User-level - - - - || 8655 | 1502
2 Upcall 32224 | 13849 43% | 18375 || 4467 20
2 ASH 32221 | 14312 44% | 17909 || 3964 10
3 User-level - - - - || 17285 | 2629
3 Upcall 56671 | 26049 46% | 30622 || 9746 63
3 ASH 56778 | 26172 46% | 30606 || 9148 37
4 User-level - - - - || 27718 | 4413
4 Upcall 82811 | 37415 45% | 45396 || 15965 | 114
4 ASH 82965 | 37852 46% | 45113 [15195 96

Table 6-10. This table shows the abort and success statistics for the Barnes-Hut application on
the three versions of the CRL library averaged over the 10 runs. The first data super-column
contains statistics on the number of handler invocations. tozai refers to the number of handler
invocations made, which should be equal to the number of messages which arrived (summed
over all processors). succ is the number of ASHs or upcalls that succeeded; the percentage
is in the next column. The number that failed follows. Nearly all of the failures were due to
“interrupts” being disabled when the message arrived. The second data super-column contains
statistics on the number of interrupts run. Note that a failure may represent multiple messages
being blocked from running (it is incremented with every interrupt invocation), but the succ
column counts every message that was handled in an interrupt handler (not as an ASH nor

upcall).

76

[Number of requests per connection | Number of iterations |

1 1000

5 1000

10 1000
100 1000
10000 10

Table 6-11. This table shows the parameters used in the Web server experiment.

Table 6-10 shows a detailed breakdown of the success and abort statistics for the handlers
and interrupts used by Bammes-Hut. The success rate is slightly better than that for Water, but
still significantly worse than TCP.

Summary The CRL applications demonstrate that having efficient asynchronous notification
in a system is crucial. They also show that sandboxing did not have a significant negative effect
for these applications: the performance of ASHs and upcalls is very similar. If the sandboxing
overhead were lower, we would expect the performance for ASHs to increase. As mentioned
earlier, the ability for applications to turn on and off ASHs and upcalls in an operating-system-
visible way would increase the performance for both ASHs and upcalls, as time would not
be wasted initiating handlers that immediately (i.e., as soon as they examine application state)
abort. Our implementation placed only CRL library code in handlers. One could imagine
integrating the CRL code with the applications themselves, and placing the result in handlers;
we expect that this type of tight coupling would provide performance benefits, but at a cost to
the programmer (at the very least, it would require changes to the CRL interface).

6.4.3 A Web server

A Web server is an example of a widely used client-server application. The World Wide Web
is basically a repository of information distribited around computing sites all over the world.
Web servers store pages. Web clients can request pages from servers using a Uniform Resource
Locator (URL). The URL specifies which server has the data, and where on the server it is
located.

Web servers and clients communicate using the HTTP protocol, which runs on top of TCP.
Clients request data by opening a TCP connection to a server and requesting a URL; servers
read the request, and respond with the requested data. At this point, the connection is closed
(either by the client or the server). Each new request requires a new connection to be opened.
Because of the inefficiency of this system (since the same client often issues multiple requests
to the same server), proposals have been made to allow connections to stay open across multiple
requests [39). We examine both single-request and multiple-request connections here.

In our experimental setup, the client opens a connection and then repeatedly performs the

77

1500 § 3 I8 Polling
1 A= N Interrupt
BN= i Upcall
N <% ASH
1060 - S V4 Unsafe ASH

Time per request (usec)

LIS LIS

Number of requests per connection

Figure 6-6. This figure shows the performance of multiple versions of the Web server application
as the number of requests per connection increases. The time is measured in microseconds per
pagze requested. The page size for this experiment was eight bytes.

following steps: (1) it sends a request to the server (2) it checks if there is a response, and if so
reads it. It does this up to the number of requests per connection allowed for that particular data
point (as shown in Table 6-11). The client then reads data until it has received the responses to
all of its requests. This loop is repeated multiple times (exactly how many times varied with
the number of requests per connection, see Table 6-11). The time for this entire process was
measured, then divided to calculate the time per request. Each data point was measured in 10
separate runs, which were then averaged.

All of the requests are to the same page, and furthermore this page is always assumed to
be in the disk cache in our setup. This represents the best possible case (i.e., where network
performance and software overhead matter the most). We consider two page sizes in our
experiments: the first is eight bytes, which is smaller than any page would likely be, but
represents the case where the software overhead should matter the most, and the second is 2048
bytes, which was estimated to be approximately the median size for pages by Padmanabhan
and Mogul [44].

The handler used for both ASHs and upcalls in this set of experiments is built on top of the
one for TCP discussed in Section 6.4.1. It handles the low-level TCP protocol actions without
invoking Web-server-specific code (for example, the sending of acknowledgments) to certain
control messages. If there is data to be given to the Web server, the Web server portion of the
handler invoked. This code looks up the URL in a simulated disk cache (using the lookup code
taken from our real Web server), and if the page is there sends the response out immediately.

Figures 6-6 and 6-7 demonstrate similar results for both page sizes. As expected, the
difference between the different communication strategies is smaller for the 2048-byte pages.

78

PP
1
i

2000 -} mm Polling
1 = Interrupt
] = Upcall
1500 v ASH
] @ Unsafe ASH

Time per request (usec)

3

Number of requests per connection

Figure 6-7. This figure shows the performance of multiple versions of the Web server application
as the number of requests per connection increases. The time is measured in microseconds per
page requested. The page size for this experiment was 2048 bytes.

There are several interesting effects to note. First, when there is only a single request per
connection, both ASHs and upcalls are significantly slower than polling. This is because of the
high failure rate for them: 70-80% of them fail outright (since the handlers do not handle TCP
setup and teardown, because they are built on top of the TCP handler which only handles the
“header predicted” cases). For each one that fails, the time to initiate the ASH (upcall) and the
time to clean up after it are wasted; since the overhead for initiating an upcall is greater than
that for initiating an ASH, upcalls are penalized more when handlers fail quickly.

As the number of requests per connection increases, the percentage of successful handlers
increases, because the TCP header prediction code only rejects opening and closing messages.
There is thus a greater opportunity for handlers to succeed. Table 6-12 shows the percentage
of successful handlers as a function of connection size (this was measured for ASHs, but the
data should be nearly identical for upcallis). It shows the success rate both for the TCP handler
alone and for the server application (i.e.,, some messages contain no data for the server at all,
and can be entirely handled by TCP). It also shows the best possible success rate, assuming that
there were no lock conflicts between the application and the handlers. This is calculated by a
simple formula. A connection consists of 7 + 4 total messages arriving at the server, where 7 is
the number of requested documents, and 4 is the number of TCP setup and shutdown overhead
messages. Of these messages, at most 7 can reach the server, so the best server success rate is
r/(r + 4). It turns out that TCP can predict one of the 4 control messages, so the best success
rate considering just the TCP handler is (r + 1)/(r + 4). The reason that the actual success
percentage is lower for smaller numbers of requests per connection is that many of the handlers
fail due to lock collisions between the server application (and its TCP library) and the handler

79

Requests per || % Successful | Best possible || % Successful | Best possible
connection (application) | (application)

1 20-30% 40% 10-15% 20%

5 55-60% 67% 50-55% 56%

10 70-75% 78% 65-70% 71%

100 96-97% 97% 95-96% 96%

10000 100% 100% 100% 100%

Table 6-12. This table shows the success rate statistics for the Web server experiment. For each
number of requests per connection, it records the percentage of successful ASHs and upcalls
(out of all tried), the upper bound on the percentage, the percentage of successful ASHs and
upcalls that performed Web server action (as opposed to just TCP action), and the upper bound
on that percentage.

(and its TCP library portion).

At greater numbers of requests per connection, the polling, not sandboxed ASH, and upcall
versions all have similar times. The sandboxed ASH version is more expensive (although still
cheaper than the interrupt version), since the sandboxing overhead matters. It is interesting
to note that the sandboxing overhead is much larger for the smaller page size (the sandboxing
factor for the ASH handling eight-byte pages is 1.3 (i.e., the sandboxed handler takes 1.3 times
as long to run as the one that is not sandboxed), but only 1.1 for 2048-byte pages). This effect
occurs because in the 2048-byte case more time is spent in the handler processing message data
(calculating the TCP checksum) than in the 8-byte case. Since the checksum calculation is done
using the loop generated by our DILP engine (and not user code), the calculation does not need
to be sandboxed, therefore a large percentage of the total handler time represents code which is
not sandboxed.

6.5 Summary and discussion

This chapter demonstrated that although the performance of user-level networking alone on
the exokernel is good, through the selective use of ASHs and upcalls it can be made better.
The microbenchmarks demonstrate the isolated benefits of being able to run application code
in response to a message: high throughput, low-latency data transfer, and low-latency control
transfer. We also used them to address the issue of performance when there is more than
one active process using the machine, showing that ASHs and upcalls deliver performance
consistently better than user-level communication alone when there are multiple processes.
The applications that we presented give us insight into the ways handlers can be used in
different application domains. The TCP protocol demonstrates that dynamic ILP could be
both used and uszful; the combined checksum and copy definitely increased the throughput we
could deliver. The parallel applications running on top of CRL show that ASHs and upcalls

80

can successfully be used to deliver efficient asynchronous notification to running applications
even when the normal operating system does not provide this capability and also demonstrate
the flexibility available on our system. With no changes to the applications or the kernel, we
can replace the coherence protocol of CRL. They also suggest that an additional mechanism
for applications to be able to enable and disable handlers would be beneficial. Finally the Web
server application shows how the performance of the system degrades when the percentage of
aborts is too high: both ASHs and upcalls perform poorly, but ASHs perform better because
they are cheaper to initiate and abort. Disabling handlers from the application would be useful
for a Web server on a much coarser granularity than for the CRL applications: if the server
noticed that none of its connections were staying open for longer than one document, it would
want to disable the handlers.

For our particular implementation, the overhead of sandboxing significantly cuts into the
gains achieved by ASHs. Nevertheless, we are optimistic about the role of ASHs for several
reasons. First, as we have noted before, the costs of kernel crossings for our system are much
cheaper than in normal operating systems, so ASHs should matter more for other implemen-
tations. Second, our sandboxer implementation effort has been focused on correctness rather
than performance, and should be able to be improved. For example, normal procedure returns
are treated as general-purpose register-indirect jumps currently. For procedures called from a
single call site, the return can be replaced with a jump to the correct location. Finally, different
techniques can be used to ensure that ASHs are safe for different systems. For example, the Intel
x86 provides hardware support which obviates the need to check loads and stores at runtime.
Even on systems without special-purpose hardware, techniques such as proof-carrying code
(PCC) [43] may provide the ability to download complex kernel code with little to no extra
runtime overhead.

Additionally, we believe that adding efficient upcalls to a standard operating system may
be more difficult than adding ASHs (because ASHs involve less operating system mechanism),
but have not actually performed this experiment. Liedtke, a researcher who has written an
extremely high performance implementation of upcalls, believes that the only way to do soisto
completely rewrite the operating system from scratch [36]. Finally, we strongly believe that it
is easier to implement ASHs (or even upcalls) into an existing OS (e.g., NT) than it is to change
an existing OS into a super fast one (e.g., Aegis or L4).

81

Chapter 7

Analysis

In the last chapter, we saw that both ASHs and upcalls provide the abiiity to run code immediately
in response to a message. We also noticed that there are a number of tradeoffs between using
these different models of communication. For example, ASHs are more tightly coupled with the
operating system than are upcalls, and thus the overhead for system cails can be avoided when
invoking kernel functions from an ASH. ASHs also have a smaller overhead for initiation than
ASHs do, because upcalls have to cross a protection boundary (from in the kemel to outside
the kernel, and then back). On the other hand, ASHs incur some amount of overhead due to
making them safe, which does not occur for upcalls.

In order to gain a better understanding of when these tradeoffs matter, and furthermore to
expand our study to other architectural models and operating systems, we developed an analytical
model to show which communication technique performs best under what circumstances. For a
set of operating system and hardware parameters, we are interested in varying three parameters:
the length of the handler used by the application, the sandboxing overhead for that application,
and the probability that the handler will abort.

In this chapter, we develop this model. We then perform a study of two operating systems
running on a single architecture: Aegis and an Ultrix-like operating system running on the
hardware platform used for our experiments. We then look at the behavior of normal user-level
communication, upcalls, and ASHs for different application characteristics.

7.1 Assumptions

The model was designed to be fairly general. We do assume that a hardware interrupt is
generated by the processor in response to a message, and thus that the processor is in the
device driver of the operating system at the time we start our measurements. This is not true
of all devices. In particular, network interfaces which have been specifically designed for
user-level communication may not need to generate an interrupt at all upon message arrival
(e.g., Hamlyn [9]). For those types of systems, handleis are not useful if the application is
running during message arrival. On the other hand, if the application is not running, some sort

83

Process
state | Mnemonic Process status
code
rp spinning Running and actively Polling for a message
rb busy Running but Busy executing other application code
sw blocked Suspended and Waiting for a message
sb busy-suspended | Suspended and not waiting for a message (Busy)—_i

Table 7-1. The codes used to represent process state i1 the model.

of scheduling event should occur to enable timely responses; an ASH or upcall could be the
appropriate mect anism for this.

Another assumption that is made by the model is that messages do not need to be copied
out of the network interface immediately. If they do, then the penalty of not using handler
events should be increased (because the system should have tc move the message data out of
the NI itself, quite possibly to the wrong location, in order to keep the NI free). An example of
an interface that requires such quick action is Ethernet. Ignoring this effect makes ASHs and
upcalls look comparatively worse than they should be.

One thing that the model does not model explicitly is handlers that have sandboxed and not-
sandboxed parts: for example handlers that do some amount of general-purpose computation
and then a fair bit of data motion using loops generated by the DILP compiler. For simplicity,
we model this effect by picking a sandboxing factor which represents the combination of these
twn handler parts, but one could easily specify a model in which the handler run time was
split into a sandbe+ed and non-sandboxed parts, and in which the non-sandboxed run time was
parameterizable.

In Table 7-1 we consider the four possible states that a process could be in. The first is
spinning, for when an application is running and is actively polling for a message. This state
corresponds to the state called polling in the previous chapter. The second is when an application
is busy running but is not polling for a message. This state occurs for our parallel applications
running on top of CRL (as described in Section 6.4.2), when the application is actively executing
and expecting messages to be handled in the background. The third case is when an application
is suspended and is waiting for a message; we refer to this case as blocked. The assumption
here is that the operating system will increase the priority of this process and reschedule it when
a message arrives (this is not true for all operating systems, but those for which it is not can be
modeled by the fourth state). The final state is if an application is suspended and is nct waiting
for a message (busy-suspended); this would occur if an application in the second state became
suspended due to using up its time slice, or perhaps waiting on a non-network resource.

34

Incoming
message

Interrupt handler &
device driver

} tas [+ 15c] Region
} Iy xS covered
by model

Figure 7-1. This figure shows the events that occur in response to a message which is handled
completely by an ASH, and illustrates which ones are covered by the model. The first step
that occurs after a message arrives is that the processor is interrupted, and the interrupt handler
and device driver are run. At a particular point in the device driver execution, ASHs may be
run; this is the point the model starts measuring from, and is the start of Step 2 in the diagram.
Step 2 involves setting up the ASH to run, and doing whatever is needed to switch to the right
application if it was not already running. Step 3 involves running the ASH itself, and finally
Step 4 covers the time to clean up after the ASH completion and, if necessary, switch back to
the application that was running before the ASH was invoked.

7.2 Model

We want to provide a basis to evaluate the differences between unaugmented user-level com-
munication, upcalls, and ASHs; we therefore build a model of each of these communication
strategies. We start by describing the parameters used by the model, then we describe the model
itself. Figure 7-1 gives an idea of how the parameters are used in the model by relating the
model par..meters to one set of avents that might occur in response to a message (a successful
ASH invocation); Figure 7-2 shows a different set of events (the ASH aborts, and then the
message is delivered to the suspended application process via an interrupt).

7.2.1 DParameter description

There are a large number of machine- and operating-system-dependent parameters used by
the model, as shown in Table 7-2. The first set of parameters shown in the table pertains to
ASHs, and represents the time to set up an ASH to run, the time to do an address space switch
(i.e., what needs to be done to avoid a full context switch) if the application that the message
belongs to was not the application that the message is for, the time to clean up after a successful
ASH and the time to clean up after a voluntary ASH abort. There is a similar set of parameters
for upcalls. For interrupts (which will have an effect on the application when it arrives even
if it is running), we have just the time to do the interrupt and switch to the interrupt handler

85

| Parameter | Applies to | Represents time to... |

Lo ASH set up an ASH to run (assuming process is scheduled)
Lo ASH “context switch” to run ASH (if necessary)
tua ASH clean up after voluntary ASH abort
tas ASH clean up after successful ASH completion
i upcall set up an upcall to run (assuming process is scheduled)
Ly upcall “context switch” to run upcall (if necessary)
tua upcall clean up after voluntary upcall abort
Lus upcall clean up after successful upcall cornpletion
ti interrupt | set up & switch to a process (assuming it is scheduled)
te interrupt | do a full context switch to a process
| lpi [poll [return to a running process which is polling |
[¢ | - | time quantum [

£

Table 7-2. The base machine- and OS-dependent parameters used in the model.

| Parameter | Applies to | Meaning |

th - time to run a handler (not sandboxed)
S ASH slowdown factor due to sandboxing
Va.a ASH probability that an ASH will abort
Pua upcall probability that an upcall will abort
f handler | fraction of the handler that will run if handler aborts
| np | - | number of other active processes]

Table 7-3. The application and workload-dependent parameters used in the model.

within the process and also the time for a full context switch to the process (if necessary). For
polling, there is just the time to return from the kemnel interrupt to the polling process. The
last parameter is the time quantum that processes are scheduled at: this parameter represents
how long a process will run for that is not preempted and does not voluntarily relinquish the
processor.

Table 7-3 lists the parameters that depend on the application and the workload of the
processor. These are the ones that we will be varying. These parameters are: the running time
of the handler before it is sandboxed (¢}), the slowdown factor due to sandboxing, as defined
in Chapter 6 (s), the probability that an ASH or upcall will abort (p, ,.p.4), the fraction of the
handler that will run before the ASH or upcall can determine that it will need to abort (f), and
the number of active processes running on the processor at the time of message arrival (other
than the one that the message is for).

The model calculates the values of several variables, as shown in Table 7-4. The first five are

86

Incoming
message

Interrupt handler &
device driver

Region

} tpat tac (t;ovcrcccli :
y mode

} Lii

QPOLHOOEO

\User code

Figure 7-2. This figure shows how the model represents the case where an ASH starts running
for a process that was suspended and waiting for a message, and then subsequently aborts. Steps
1 and 2 remain the same as in Figure 7-1. In Step 3, on the other hand, only part of the ASH is
run before the abort, and in Step 4, the abort clean up code is run instead of the success clean
up code. At this point, a full set up to run user interrupt code must occur, and the a full context
switch. The model stops counting the time after this point. Finally, user code can be run. Note
that in this case, the user code is at full status, not handler status.

[Parameter | Applies to | Meaning |

ta,ps ASH time to execute an ASH (assuming process is scheduled)

tu,ps upcall time to execute an upcall (assuming process is scheduled)

tips interrupt | time to execute an interrupt (assuming process is scheduled)
by ps poll time to execute a poll (assuming process is scheduled)

Lps | - | time to schedule a not-already-running process, on average |
ta,zz ASH time to execute an ASH (assuming process is in state z)
tu,zz upcall time to execute an upcall (assuming process is in state)
tixx interrupt | time to execute an interrupt (assuming process is in state z.x)
tpzz poll time to execute a poll (assuming process is in state zz)

Table 7-4. The variables derived by the model.

87

intermediate variables, chosen to simplify the calculation. t, ,, represents the time to execute
an ASH assuming that the associated application process was scheduled when the message
arrived. It only partly considers what happens if the ASH fails. ¢, ,,, is the identical calculation
for upcalls. ¢;), and t, ,, are the time to reach and then execute a handler when doing an
interrupt to a running process and a poll from a running process, respectively. f,; represents the
time to schedule a process that is not running, assuming that the scheduler is not giving it any
special priority (and is using round-robin scheduling).

The last four variables of Table 7-4 represent the outputs of the model. They are the time to
execute an ASH upcall, interrupt, and poll, respectively, depending on what state the process
was in when the message arrived.

7.2.2 Model description

We will build up to calculating the abovementioned output variables (there are actually sixteen
of them if every combination is considered, but only thirteen make sense, as will be described
below). We start by simplifying and combining the input parameters.

Since the model only considers voluntary aborts by ASHs and upcalls, the time to clean up
after a successful ASH (or upcall) should equal the time to clean up after one that aborts:

ta.a = tn.s

tu.a = tu.s

We assume that the probability of an ASH aborting voluntarily is the same as the probability
of an upcall aborting voluntarily.

Paa = Pu,a

We now calculate the time to run the four alternatives, under the assumption that the process
the message is for is currently running. If the handling method is polling, then the time required
is just the time to exit the kernel, return to the application, have the application notice the
message, and then run the handler:

tops = 1pi + th (7.1)

Similarly, if the handling method is interrupts, then the time required is just the time to exit
the kernel, return to the application, interrupt it, and then run the handler:

tips = tii+ g (7.2)

If the handling methcd is upcalls, then the time required is the time to initiate the upcall,
and then run the bandler, and then clean up afterwards. Since only part (the fraction f) of the
handler will run if the handler aborts, we have to subtract out the portion that will not run in
case of failure. 't is easy to see that if f is 1, the handler will be counted fully no matter what
the probability cf abort.

88

tups = bu,i +th * (1 =puax(1=fN+(1- Pua) * bus (7.3)

The calculation for ASHs is similar, only the time to execute the handler may be longer
because it is sandboxed:

ta,ps = ta,i+th *3*(1 _pa.a"‘(l —f))+(] "‘pa.a)*tu,s (7'4)

Finally, we calculate the time to schedule a process, assuming that the process is not
scheduled, that it is not explicitly waiting on a message (so that message arrival will not change
its scheduling priority) and that there is a round-robin scheduling scheme in use:

n
bps = -22*(tq+tc) (7.5)

With the above variables, we can now consider calculating the time spent by the processor
with each scheme. There are four interesting cases to consider, described in Table 7-1. The first
is spinning (rp), for when the process that the message is for is running and is actively polling
the network for a message. For this case, we do not calculate a time for interrupts.

The time taken for a polling process in this case is, by definition, the time we previously
calculated for a polling process when the process was scheduled.

tprp = tp,ps (7.6)

The time for an upcall in this case is equal to the time for an upcall to a scheduled process,
plus the probability of the upcall failing times the time needed if the upcall fails. Note that if
the upcall fails, the time taken after the failure is the same as that for the polling case. The
calculation for the ASH is identical.

turp = tups T Pua * (tua + tprp) (7.7)
ta,rp = ta,ps + Pa,a * (ta.a + tp,rp)

The second case is busy, or rb, for when the process is running, but is busy executing other
application code. We do not calculate a time for polling in this case, because it is too dependent
on the application polling characteristics.

The time taken for an interrupt-style process in this case is, by definition, the time we
previously calculated for an interrupt-style process when the process was scheduled.

Lir = 'i,ps (78)

The time for an upcall in this case is nearly identical to that for the previous case (Equa-

tion 7.7). The only difference is that if the upcall fails, the additional time will come from an
interrupt instead of a poll. Agzin, the ASH calculation is identical.

tu,rb = tu,pa + Pua * (tu,a + ti,rb) (79)

89

tarb = ta.p.s + Paya * (ta,a + ti,rb)

The third case is blocked, or sw. In this case, the process is suspended and waiting for the
message. For polling-style processes, the process was in the middle of the polling loop when it
was suspended. For interrupt-style processes, we assume that the process ran out of work, and
suspended itself in such a way that tiic scheduler will bump it to the top of the queue when a
message arrives.

Because the scheduler does not know that the polling process was in the middle of waiting
for a message, it will not reschedule the process until it is its turn again. This means that the
time for a polling process depends on the number of other active processes in the system:

tpsw = tps + lpps (7.10)

For interrupts, on the other hand, we assume that the scheduler will increase the priority so
upon message arrival, the process that the message is intended for will be scheduled immediately,
and the currently-running process will be switched out. As soon as this full context switch
occurs, the case reduces to the previous one (i.e., that of an already-scheduled process being
interrupted).

ti,sw =t + ti.p.s (7.1 l)

More overhead is incurred for an upcall in this case, as well. Although a full context
switch does not need to be performed before the upcall, at least part of one must, so that the
message can be handled. Furthermore, whether or not the upcall succeeds, the switch back
must be accounted for (for interrupts, we assume the process continues running after receiving
the message, so do not count the cost of the full context switch twice). Additionally, if this
upcall fails, the cost for a full context switching interrupt must be incurred'. Again, the ASH
calculation is nearly identical.

;

tu,sw =2x tu.c + tu.ps + Pua * (tu.a + ti,sw) (712)
ta,sw =2+% ta,c + tu,ps + Pa,a * “a,a + li.s:u)

The fourth case is busy-suspended, or sb. In this case, the process is again suspended. This
time, however, it is not explicitly waiting for a message, but instead executing other application
code (this would occur if the application got swapped out while it was busy (in state rb),
for example because it ran to the end of its time slice) . We again exclude the polling-style
applications from this case, for the same reason as for case rb.

The interrupt case is very similar to the polling case for the previous process state situation
(where the process was suspended and waiting for a message). Because the process is not
actively waiting for a message, the scheduler will not know to reschedule it, and thus the
process must wait its turn:

'Because the cost of waiting for a poll would be prohibitive, we do not bother calculating the time for an upcall
or ASH for polling-style processes in this case.

90

[Parameter | Aegis | Ultrix-like |

ta 54 |54

ta 4 4

Lo 1.7 1.7

Las 1.7 1.7

Ly, 26 26

L, 4 4

tu 49 149

tu,s 49 149

tii 22 30

t 245 |75
[¢, [209 |30 |
[¢, [15625] 15625 |

Table 7-5. The input parameters used to describe Exokernel and Ultrix-like behavior on the
DECstation 5000/240s used in our experiments to the model. All numbers are measured in

microseconds.

ti,sb = tps + ti,ps (7]3)

The upcall case, on the other hand, is nearly identical to the previously calculated one. The
only difference is that if the upcall fails, the process must wait until it is schcduled.

tu,sb =2% tuc + tu.ps + Pua * (tu,a + ti,sb) (7.14)
ta,sb = 2% ta,c + ta,ps + Paya * (ta.a + ti,sb)

7.3 Input parameters

This section describes the values of the hardware- and operating-system-dependent input
parameters of the model.

Exokernel parameters The exokernel (Aegis) parameters were measured directly on our
platform. All of the numbers were measured 1000 times, using the cycle counter on the AN2
board. After examination of a histogram of the values either the average (arithmetic mean)
or the minimum value was used; we will note specially which numbers were taken using the
minimum values. These values are not completely precise (for example, adding counters to the
kernel perturbed the run times of the experiment due to cache conflicts, and we were forced to
apply the methodology described in Section 6.1.2 here). We tried to make sure any errors would
penalize upcalls and ASHs, not user-level communication. Note that two successive reads of

91

the cycle counter always returns 2 microseconds, so we subtracted that from the times reported
here.

The ASH initiation and termination times were measured as follows. f,; was measured
from the point in the AN2 device driver where it checks whether or not there is an ASH to run
to the first line of the user code at the start of an ASH. The time for a voluntary abort in our
system is assumed to be the same as that for a normal termination (since they share a code path),
so we just measured the time for a normal termination to determine ¢, ;. This was measured
from the last user code in an ASH back to the device driver. Note that after this point the device
driver is not fimished, and furthermore that control must return to the running process, however
the message has been completely handled at this point. The upcall initiation and termination
times were measured in the same way. The “‘context switch” time for ASHs and upcalls was
assumed to be the same, because they use the same code. It was calculated by subtracting the
minimurn value of ¢, ; taken when there was no context switch needed from the minimum value
taken when there was a context switch needed.

The time to initiate a poll (¢,,;) was measured from the same point in the device driver to
the first line of user code located after a polling loop (the process was polling on an address in
local memory). We report the average value after throwing out seven of the 10C0 data points
collected (because those seven points, two orders of magnitude above the others, were clearly
erroneous).

The time to initiate application code not currently running (i.e., ¢; ;) was measured using our
simulated interrupt mechanism described in Section 6.1.3. The minimum value (the average was
much higher) was 30 microseconds. Subtracting out the time for the poll part (as that is the first
part of the simulated interrupt) gave us just over 9 microseconds for the yield/context switch
which constitutes the second part of our simulated interrupt. Because we have separately
measured that value as 8 microseconds previously (in a loop with two processes constantly
yielding to each other), we use 8 microseconds as our context switch time. We thus use 22
microseconds for the ¢; ;. It is reasonable for it to be somewhat larger than the poll time, because
even if the application is currently running, part of it should need to be saved to run an interrupt
handier.

We used the time quantum value that Aegis uses, approximately 15 milliseconds, which is
a standard time for several operating systems.

7.3.1 Ultrix-like parameters

In order to model a more Ultrix-like operating system running on the identical hardware, we
modify some of the Exokemnel parameters to create an aggressive, yet somewhat realistic,
competitor. We assume that the ASH and upcall times stay the same. This assumption may be
incorrect, it may take more overhead to implement ASHs and upcalls in a traditional operating
system than it would on an Exokemel. The polling and interrupt time would certainly increase.
We estimate those times to be equal to each other; the actual value we use is taken from
Thekkath and Levy’s measurement of the time to “Deliver Simple Exception to Null User
Handler” [55] and scaled for our hardware (it was measured on a DECstation 5000/200). It is

92

both an underestimate and an overestimate of what we believe the value to be: an underestimate
because it obviously does not count the time spent in the AN2 device driver that we include
in our measurements; an overestimate because it starts from the user application and therefore
includes an extra bounce into the kernel. We assume that these two factors cancel out. We
measured the context switch time under Ultrix (by comparing the roundtrip time to ping pong
a word of data over UDP using non-blocking reads (polling) and blocking reads (interrupts).
The measured difference was 87 microseconds (using blocking reads only on one side of the
measurement); we chose 75 microseconds to be as fair as possible to Ultrix.

7.3.2 Workload parameters

We fixed two of the workload parameters across all of our studies. First, we assumed that there
was only one other active process on the system (i.e., n, = 1). This only aifects two of the
calculations: polling when the process is suspended and blocked waiting for a message (blocked)
and interrupt when the process is suspended and is not waiting for a message (busy-suspended).

We arbitrarily set f, the fraction of the handler that will run if the handler aborts to 1/8.
Based on our application studies this is almost certainly an overestimate, that will hurt ASHs
more than upcalls, and both of these more than user-level communication.

7.4 Verification

The model is intended to provide a rough idea of where each strategy should be used.
We therefore attempt to provide a sanity check that the values coming out of the model are
reasonable, by comparing the medel to the experimental results seen in the remote increment
experiment of Table 6-6, as shown in Figure 7-3. In order to more closely model this application,
we change the model slightly: (1) we increase the sum of the interrupt time and the context
switch time (¢; ; + t.) from 30 microseconds to 45 microseconds to match the average time we
measured and (2) we decrease the time to terminate a successful ASH and upcall ({,; and ¢, 5 as
well as the address switch back) to zero, because they are overlapped with the transmission of the
message to the remote side. For this application, the handler length was about 20 microseconds,
and the sandboxing fz.:tor was 1.25. The probability of an ASH or upcall aborting was zero.

The left portion Table 7-6 shows the prediction of the model for these parameters. To
compare these values to the application performance, we look at the predicted and measured
differences between the communication models and the experimental data, in the right half
of Table 7-6. As you can see, the numbers are in the right ballpark, but do not completely
correspond. On the other hand, the trends correspond exactly: the relationship between any
two pairs of model predicted numbers and measured data is the same.

93

Figure 7-3. This figure shows the steps that occur to perform the remote increment experiment
used to verify the model, and shows which ones are modeled and which are not. To perform the
verification, Step 4 was taken out of the model calculation, and the time measured for the remote
increment was divided by two, and the measured message transmission time was subtracted

Half of
remote
increment
experiment
round trip
time

from the experimental data.

| Variable | Value |

Lo 40.88
tars 30.4
Turp 46.18
liow 65.4
a.sw 30.8
fuow 46.58

Table 7-6. The table on the left shows the predictions of the model for the remote increment
handler described in Chapter 6. The table on the right shows how the predictions of the

Incoming

Outgoing
message/
response

Interrupt handler &

device driver

Lis [+ 15¢]

}th *5

Region
covered
by model

Quantity Model Measured
prediction | data
torp — tarp | 10.48 15
tugp — tprp | 5.3 4.5
tisw — tasw | 34.6 48
tisw — tusw | 18.82 27
[tisw — tprp | 24.52 | 32.5 |

differences between the communication models correspond to the measured data.

94

| Application [t |s | Pha |

| Remote increment [20]125 1o |

| TCP latency |50 [14-15]0 |
Web server (8-byte pages) 125 | 1.3 -1
Web server (2048-byte pages) || 200 | 1.1 -1

Table 7-7. The application-dependent parameters that we measured for the experiments of
Chapter 6. t;, is the handler run time (measured in microseconds), s is the sandboxing factor,
and py, 4 is the probability that a handler will abort.

7.5 Study

Given the model and the parameters, we can now use the model to make approximate predictions
about the performance of applications. We will look at a range of handler lengths, representing
the lengths of applications studied in this thesis.

For each set of parameters, we show four graphs, one representing the results for each
process state (the process states were defined in Table 7-1). The x-axis of the graphs is the
probability that the handler will abort: a value of zero means that it will never abort and one
means that it will always abort. This parameter affects ASHs and upcalls. The y-axis of the
graphs is the sandboxing factor. A factor of one means that the sandboxed handler takes the
same amount of time to run as a non-sandboxed handler would; a factor of two means that the
sandboxed handler takes twice as much time as a non-sandboxed one (we have seen the factor
go as high as 1.6 in our experiments, but no higher). As shown in the legend, the gray level
encodes which strategy yields the minimum time for a given set of parameters. Table 7-7 shows
the values of the application-dependent parameters that we measured in Chapter 6.

We first look at a handler length of 20 microseconds. This corresponds to the length of
the remote increment (ping-pong) handler measured in Table 6-6. The sandboxing factor was
measured as 1.25 and the probability of abort for this experiment is 0. As seen in Figure 7-4,
the model corresponds to the experimental data, as we would expect: whatever the process is
doing at message arrival, using ASHs is the best strategy. Even with the highly conservative
estimation we are using, ASHs outperform polling and interrupts over a very wide range of the
space. As shown by Figure 7-5, the Ultrix-like parameters show ASHs to be useful over an
even wider area of the space (since the overhead for polling and interrupts is higher). Upcalls
are never faster for a handler this size, because the sandboxing overhead for ASHs is dominated
by the overhead to initiate the upcalls.

Figures 7-6 and 7-7 demonstrate the expected performance if the handler run time is 50
microseconds. This corresponds to the handler length for the TCP latency experiment (ping-
ponging four bytes). The sandboxing factor for this experiment was measured to be 1.4-1.5
(note that the more data sent per TCP packet, the lower the sandboxing factor) and the probability
of abort was again zero. As shown experimentally (Table 6-7), polling outperforms ASHs at

95

spinning

sandboxing
overhead

0.5
prob. abort

blocked

overhead
w

sandboxing

0.5
prob. abort

03
prob. abort

1

busy-suspended
2 N —

|
!
15

05
prob. abort

Interrupts
-+ Polling
[:l Upcall
BB ASH

Figure 7-4. This graph models the behavior of the Exokernel running on the DECstation
5000/240 platform for a handler run time of 20 microseconds.

spinning

sandboxing
overhead
frd .—Q o

0.5
prob. abort

blocked

overhead
]

: 0.5
prob. abort

sandboxing

S

busy

0.5
prob. abort

busy-suspended
2 7
B

05
prob. abort

B Interrupts
-+ Polling
[]Upeall
Bl AsH

Figure 7-5. This graph models the behavior of Ultrix running on the DECstation 5000/240
platform for a handler run time of 20 microseconds.

96

spinning busy

o

1.5

sandboxing
overhead

b 053 035
prob. abort prob. abort

blocked busy-suspended
— Je——————

S
&0 8 " [V'
£73 ‘
3215 15
53 |
50 ST
g Sl
i b— o3
prob. abort prob. abort

Figure 7-6. This graph models the behavior of the Exokernel running on the DECstation
5000/240 platform for a handler run time of 50 microseconds.

spinning busy

[

1))
£3
FERE 1.5
$%
335
s v o3
prob. abort prob. abort
blocked busy-suspende
2) 2e— ;
!
=O '
£ 3 |
g £ 1.5 1.5}
22
552
<
03 0.5
prob. abort prob. abort

Figure 7-7. This graph models the behavior of Ultrix running on the DECstation 5000/240
platform for a handler run time of 50 microseconds.

97

this amount of sandboxing overhead when the process is scheduled. When it is not scheduled,
the model predicts that the times should be similar; in fact, the interrupt version is a fair bit
more expensive than ASHs, so again we have underestimated the interrupt penalty, and again
we have slightly oversstimated the upcall time.

With a greater handler length, the sandboxing overhead matters more when compared to
the fixed initiation and termination costs. As we can see for the cases where the process is not
scheduled under Uitrix, upcalls begin to be useful. As the sandboxing factor increases (along
the y-axis), upcalls become: cheaper than ASHs. However, as the probability of abort increases,
the point where the crossover happens increases, because the overhead of initiating an upcall to
see whether or not it will succeed is greater than that of initiating an ASH.

Figures 7-8 and 7-9 demonstrate the expected performance for the Exokernel and Ultrix
if the handler run time is 125 microseconds. This corresponds to the web server application
serving eight-byte pages. The experimental data agrees that ASHs will not do best at this
handler length and with this sandboxing factor no matter what the probability of abort; the
performance of interrupts is again over-predicted. '

The main interesting point about these two graphs is that as the handler length increases,
the range of where ASHs are useful decreases.

Finally, Figures 7-10 and 7-11 demonstrate thc expected performance for the Exokernel
and Ultrix if the handler run time is 200 microseconds. This corresponds to the web server
application serving 2048-byte pages. All of the communication strategies both are predicted to
have similar performance and show similar performance, except for interrupts, which again has
worse-than-predicted performance.

Again, we can see the trend of the handler length increasing narrowing the range of ASH
usefulness. The Ultrix-like operating system, however, still predicts ASHs and upcalls to be
quite useful as long as the process is not scheduled.

7.6 Summary

In this chapter we developed a model to try and gain an understanding of the tradeoffs between
using different communication models for different hardware, operating systems, and applica-
tion workloads. Our model shows us several important trends. On non-Exokemel operating
systems, voth ASHs and upcalls are useful over a wide range of the parameter space. Because
the Exokernel was designed for flexibility and performance from the start, it benefits less than
other operating systems would from this functionality.

Sandboxing overhead can be a big factor in the choice between using ASHs and upcalls.
As described in Section 6.2, we expect the factor to decrease with a better implementation of
a sandboxer. Furthermore, other hardware may require a smaller sandboxing overhead (fur
example safety can be ensured inexpensively on the Intel x86 architecture through hardware
support).

As shown by the model, when designing handlers, it is extremely important to consider the
probability of abort for the application. Handlers which will abort often probably not worth

98

spinning busy

[ye]

[\o)

" ; B3 Interrupts
£5 0 s {ESH Polling
o 2 15 :
25 e [Upcall
g5 . B AsH
b 03 b 05
prob. abort prob. abort
blocked busy-suspended
2
£3 |
_’é ?‘: 1.5 15
2 >
50
w
05 b o5
prob. abort prob. abort

Figure 7-8. This graph models the behavior of the Exokemel running on the DECstation
5000/240 platform for a handler run time of 125 microseconds.

spinning busy
2 2
" Tz 2 R interrupts
£3 ., y {3 Polling
] f; ' []Upcall
58 : Bl ASH
o3 03
prob. abort prob. abort
blocked busy-suspended
2
[=]]
£73
8215 1.5
0 &=
59
g5 ©
w
05 b— 03
prob. abort prob. abort

Figure 7-9. This graph models the behavior of Ultrix running on the DECstation 5000/240
platform for a handler run time of 125 microseconds.

99

spinning busy

o o ; y B Interrupts
£% ., " s 3632 Polling
o .
S E [JUpcal
§ 0 ; Bl AsH
v s 0 05
prob. abort prob. abort
. blocked busy-suspended
4 2
80
c £ 15 1.5
S8
g0
w
05 b o3
prob. abort prob. abort

Figure 7-10. This graph models the behavior of the Exokemel running on the DECstation
5000/240 platform for a handler run time of 200 microseconds.

spinning busy
o0 (e - B Interrupts
g 3 g g @4 Polling
25 | Jupeal
58 B AsH

b os 05
prob. abort prob. abort
blocked busy-suspended
2
£3
x Q
SE LS 1.5
° 2
50
vy
03 b5
prob. abort prob. abort

Figure 7-11. This graph models the behavior of Ultrix running on the DECstation 5000/240
platform for a handler run time of 200 microseconds.

100

making into handlers, since the cost of initiating and terminating them when they fail can
be high. Handlers which are likely to succeed, however, appear to be useful in a variety of

situations.

101

102

Chapter 8

Conclusion

This chapter is the final chapter of the thesis. The first section summarizes the results and
conclusions of the thesis. The second section outlines directions for possible future work.

8.1 Summary

The goal of the work in this dissertation was to provide efficient communication performance
to applications. Other work (e.g., [31] and others) has shown that the flexibility of user-level
communication can provide enormous performance gains to applications. Our work focused
on enabling user-level communication to achieve high performance even in situations where
it was previously unable to do so, by ensuring that incoming messages can be responded to
both efficiently (in terms of system resources) and quickly (so as to maximize application
performance).

This thesis presented the design and implementation of ASHs, a technique for delivering
hardware-level network performance to applications by downloading application-specific code
into the operating system. ASHs allow direct, dynamic message vectoring, message initiation,
and control initiation, enabling a flexible response to incoming messages. We also presented
the design and implementation of fast, asynchronous upcalls, an alternative approach to imple-
menting handlers. Our design of upcalls is based on the ASH design, and can therefore achieve
many of the benefits available to ASHs, especially (but not exclusively) the avoidance of the
full context switch.

This thesis also provides a detailed description of the techniques necessary to run application
code in the kemnel safely even when the application programmer is not constrained to write in
a pointer-safe language. Although the concept of sandboxing is not new [62], we extended its
implementation by avoiding the exceptions ASHs could take, bounding their execution time,
and limiting the available operating system interface in order to restrict the amount of OS
changes that need to be made to support application code running in the kernel. We showed
that the overhead of sandboxing can reduce the benefit of using ASHs, but are encouraged by
the current research in the field, and expect that this cost can be greatly reduced.

103

This thesis also presented dynamic integrated layer proces-ing (DILP). Through the use of
DILP, data manipulations such as checksumming or conversions can be automatically integrated
into the data transfer engine itself. Furthermore, because the DILP instruction loop is generated
by the system for applications as opposed to by applications themselves, it results in a reduction
of the sandboxing overhead that ASHs incur. DILP can be used with either ASHs or fast upcalls.

The thesis experimentally evaluated three different strategies to provide flexible communi-
cation to applications: unaugmented user-level communication, fast upcalls, and ASHs, using
both microbenchmarks and end-to-end applications. We showed that ASHs and upcalls can
provide high throughput, low-latency data transfer, and low-latency control transfer. We also
demonstrated that ASHs and upcalls deliver performance consistently better than user-level
communication alone when there are multiple processes. On the Aegis exokernel, the perfor-
mance of ASHs and upcalls is similar, with ASHs out-performing upcalls for short handlers or
for higher percentages of aborts.

ASHs have a lower cost of initiation and termination than upcalls do, and are more tightly
coupled with the operating system. On the other hand, upcalls do not need to be sandboxed
in order to be made safe. This thesis developed an analytical model of these three different
strategies which allowed us to explore the tradeoffs as the architectura! model, operating
system, and application characteristics change. We saw that the benefits of ASHs and upcalls
are highly underestimated by their performance on the Aegis exokernel, because the exokernel
was designed with flexibility and performance in mind from the start. Furthermore, ASHs are
predicted to outperform upcalls, even with the current saudboxing overheads, whenever the
application cannot perfectly predict which handlers will have to abort.

We have described an extensible, efficient networking subsystem that provides two impor-
tant facilities: the ability to safely incorporate untrusted application-specific handlers into the
networking system, and the dynamic, modular composition of data manipulation steps into an
integrated, efficient data transfer engine. Taken in tandem, these two abilities enable a general-
purpose, modular and efficient method of simultaneously providing both high-throughput and
low-latency communication. Furthermore, since application code directs all operations, design-
ers can exploit application-specific knowledge and semantics to improve efficiency beyond that
attainable by fixed, hard-coded implementations.

8.2 Future work

There are a number of further directions that can be explored starting with this thesis as a basis.
Implementations of ASHs and upcalls on other platforms is one of the most basic extensions of
this work, and would be extremely useful. In particular, the implementation of ASHs and upcalls
on a more traditional operating system would expose any exokernel-dependent features we are
assuming (if any). It would also allow us to actually experimentally verify the performance
gains on a traditional operating system that we have currently only been able to model. Also
illuminating would be an implementation on a different hardware platform. We are in the
process of implementing ASHs on the x86 architecture, but it is as yet too early to conclude

104

anything about the performance benéfits.

Another direction which would be interesting is to improve the programming model available
to ASH and upcali programmers. Currently, all pages must be pinned, and there are restrictions
on the run time of handlers. If the kernel could suspend and restart a faulting or running-too-long
ASH, the programming model would be simpler; we expect this would be a worthwhile tradeoff
as long as it does not increase the initiation time of ASHs. Another potential improvement
would be to allow ASHs to directly modify kernel data structures through the use of the Proof
Carrying Code techniques of Necula and Lee [43], instead of using the system call interface.

A further exploration of dynamic protocol composition would be desirable. The problem
with having the ability to specialize protocols and abstractions is that a great number of them can
arise. If they can be written modularly and ther efficiently combined, the job of the programmer
is greatly simplified. A good implementation of dynamic protocol composition could thus be

very useful.

105

106

References

[1] M.B. Abbott and L.L. Peterson. Increasing network throughput by integrating protocol
layers. IEEE/ACM Transactions on Networking, 1(5):600-610, October 1993,

2] TE. Anderson, M.D. Dahlin, J.M. Neefe, D.A. Patterson, D.S. Roselli, and R.Y. Wang,.
Serverless network file systems. In Proceedings of the 15th Symposium on Operating
Systems Principles, pages 109-126, Copper Mountain Resoxt, CO, USA, December 1995.

{3] T.E. Anderson, S.S. Owicki, J.B. Saxe, and C.P. Thacker. High speed switch scheduling for
local area networks. ACM Transactions on Computer Systems, 11(4):319-352, November
1993.

[4) M.L. Bailey, B. Gopal, M.A. Pagels, L.L. Peterson, and P. Sarkar. PATHFINDER: A
pattern-based packet classifier. In Proceedings of the First Symposium on Operating
Systems Design and Implementation, pages 115-123, Monterey, CA, USA, November
1994.

[5] B.N. Bershad, S. Savage, P. Pardyak, E.G. Sirer, M. Fiuczynski, D. Becker, S. Eggers,
and C. Chambers. Extensibility, safety and performance in the SPIN operating system.
In Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles, pages
267-284, Copper Mountain Resort, CO, USA, December 1995.

[6] N.T. Bhatti and R.D. Schlichting. A system for constructing configurable high-level
protocols. In ACM SIGCOMM '95, pages 138-150, Cambridge, MA, USA, August 1995.

[7] R. Braden, D. Borman, and C. Partridge. Computing the Internet checksum. RFC 1071.

[8] T. Braun and C. Diot. Protocol implementation using integrated layer processing. In ACM
SIGCOMM: '95, pages 151-161, Cambridge, MA, USA, August 1995.

[9] G. Buzzard, D. Jacobson, M. Mackey, S. Marovich, and J. Wilkes. An implementation
of the Hamlyn sender-managed interface architecture. In Proceedings of the Second

Symposium on Operating Systems Design and Implementation, pages 245-259, Seattle,
WA, USA, October 1996.

[10] J.B. Carter. Efficient Disiributed Shared Memory Based On Multi-Protocol Release Con-
sistency. PhD thesis, Rice University, August 1993.

107

[11] D.D. Clark. The structuring of systems using upcalls. In Proceedings of the 10th Sympo-
sium on Operating Systems Principles, pages 171-180, Orcas Island, WA, USA, December
1985.

[12] D.D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An analysis of TCP processing
overhead. /EEE Communicatiors Magazine, 27(6):23-29, June 1989.

[13] D.D. Clark and D.L. Tennenhouse. Architectural considerations for a new generation
of protocols. In ACM Communication Architectures, Protocols, and Applications (SIG-
COMM) 1990, pages 200-208, Philadelphia, PA, USA, September 1990.

[14] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken,
and K. Yelick. Parallel programming in Split-C. In Supercomputing, pages 262-273,
Portland, OR, USA, November 1993.

[15] P. Deutsch and C.A. Grant. A flexible measurement tool for software systems. Information
Processing 71, 1971.

[16] P. Druschel, M.B. Abbott, M.A. Pagels, and L.L. Peterson. Network subsystem design.
IEEE Network, 7(4):8-17, July 1993.

[17] P. Druschel and L.L. Peterson. Fbufs: A high-bandwidth cross-domain transfer facility.
In Proceedings of the 14th Symposium on Operating Systems Principles, pages 175-189,
Asheville, NC, USA, December 1993.

[18] P. Druschel, L.L. Peterson, and B.S. Davie. Experiences with a high-speed network
adaptor: A software perspective. In ACM Communication Architectures, Protocols, and
Appiications (SIGCOMM) 1994, pages 2-13, London, UK, August 1994.

[19] Peter Druschel and Gaurav Banga. l.azy receiver processing (Irp): A network subsystem
architecture for server systems. In Proceedings of the Second Symposium on Operating
Systems Design and Implementation, pages 261-275, Seattle, WA, USA, October 1996.

[20] A. Edwards, G. Watson, J. Lumley, D. Banks, C. Clamvokis, and C. Dalton. User-space
protocols deliver high performance to applications on a low-cost Gb/s LAN. In ACM
Communication Architectures, Protocols, and Applications (SIGCOMM) 1994, pages 14—
24, London, UK, August 1994,

[21] D.R. Engler. VCODE: a retargetable, extensible, very fast dynamic code genera-
tion system. In Proceedings of the SIGPLAN '96 Conference on Programming Lan-
guage Design and Implementation, pages 160-170, Philadelphia, PA, USA, May 1996.
http://www.pdos.lcs.mit.edu/"engler/ vcode.html.

[22] D.R.Englerand M.F. Kaashoek. DPF: fast, flexible message demultiplexing using dynamic
code generation. In ACM Communication Architectures, Protocols, and Applications
(SIGCOMM ’96), pages 53-59, Stanford, CA, USA, August 1996.

108

[23] D.R. Engler, M.E. Kaashoek, and J. O’ Toole Jr. Exokernel: an operating system architec-
ture for application-specific resource management. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, pages 251266, Copper Mountain Resort,
Colorado, December 1995.

[24] D.K. Engler, D.A. Wallach, and M.F. Kaashoek. Design and implementation of a modular,
flexible, and fast system for dynamic protocol composition. Technical Memorandum
TM-552, Massachusetts Institute of Technology Laboratory for Computer Science, May
1996.

[25] M.E. Fiuczynski and B.N. Bershad. An extensible protocol architecture for application-
specific networking. In Proceedings of USENIX, pages 55-64, San Diego, CA, USA,
January 1996.

[26] J. Gosling. Java intermediate bytecodes. In ACM SIGPLAN Workshop on Intermediate
Representations (IR’95), pages 111-118, San Francisco, CA, USA, March 1995.

[27] R. Harper and P. Lee. Advanced languages for systems software: The Fox project in 1994.
Technical Report CMU-SC-94-104, Carncgie Mellon University, Pittsburgh, PA 15213,
January 1994.

(28] N.C. Hutchinson and L.L. Peterson. The x-kernel: an architecture for implementing
network protocols. IEEE Trans. on Soft. Eng., 17(1), January 1991.

[29] K.L. Johnson. High-Performance All-Software Distributed Shared Memory. PhD thesis,
Massachusetts Institute of Technology, December 1995.

(30] K.L. Johnson, M.F. Kaashoek, and D.A. Wallach. CRL: High-performance all-software
distributed shared memory. In Proceedings of the 15th Symposium on Operating Systems
Principles, pages 213-228, Copper Mountain Resort, CO, USA, December 1995.

[31]1 M.E. Kaashoek, D.R. Engler, G.R. Ganger, and D.A. Wallach. Server operating systems.
In Seventh SIGOPS European Workshop: Systems Support for Worldwide Applications,
pages 141-148, Connemara, Ireland, September 1996.

[32] P. Keleher, S. Dwarkadas, A.L.Cox, and W. Zwaenepoel. TreadMarks: Distributed shared
memory on standard workstations and operating systems. In Proceedings of the 1994
Winter USENIX Conference, pages 115-132, San Francisco, CA, USA, January 1994.

[33] S.J. Leffler, M.K. McKusick, M.J. Karels, and J.S. Quarterman. The design and imple-
mentation of the 4.3BSD UNIX operating system. Addison-Wesley, 1989.

[34] C.E. Leiserson, Z.S. Abuhamdeh, D.C. Douglas, C.R. Feynman, M.N. Ganmukhi, J.V.
Hill, WD. Hillis, B.C. Kuszmaul, M.A. St. Pierre, D.S. Wells, M.C. Wong, S. Yang,
and R. Zak. The network architecture of the Connection Machine CM-5. Early version
appeared in Proceedings of SPAA 92, November 9, 1992.

109

[35] K. Li. IVY: A shared virtual memory system for parallel computing. In International
- Conference on Parallel Computing, pages 94-101, University Park, PA, USA, August
1988.

[36] J. Liedtke. On p-kernel construction. In Proceedings of the 15th Symposium on Operating
Systems Principles, pages 237-250, Copper Mountain Resort, CO, USA, December 1995.

[37] C. Maeda and B.N. Bershad. Protoccl service decomposition for high-performance net-
working. In Proceedings of the Fourteenth ACM Symposiun on Operating Systems Prin-
ciples, pages 244-255, Asheville, NC, USA, 1993

[38] R.P. Martin. HPAM: An Active Message layer for a network of HP workstations. In
Proceedings of Hot Interconnects II, August 1994,

[39] J. Mogul. The case for persistent-connection HTTP. In Conference on Applications,
Technologies, Architectures and Protocols for Computer Communication (SIGCOMM
'95), pages 299-313, August 1995. A more comprehensive version of this paper is available
on line at Digitial Equipment Corporation Western Research Laboratory, Research Report
95/4 May, 1995.

[40] J.C. Mogul and K.K. Ramakrishnan. Eliminating receive livelock in an interrupt-driven
kernel. Technical Report 95/8, Digital Western Research Laboratory, December 1995,
This report is an expanded version of a paper in the Proceedings of the 1996 USENIX
Technical Conference.

[41] J.C. Mogul, R.F. Rashid, and M.J. Acceita. The packet filter: An efficient mechanism for
user-level network code. In Proceedings of the Eleventh ACM Symposium on Operating
Systems Principles, pages 39-51, Austin, TX, USA, November 1987.

[42] D. Mosberger, L.L. Peterson, P.G. Bridges, and S. O’Malley. Analysis of techniques to
improve protocol processing latency. Technical Report TR96-93, University of Arizona,
1996.

[43] G.C.NeculaandP. Lee. Safe kernel extensions without run-time checking. In Proceedings
of the Second Symposium on Operating Systems Design and Implementation, pages 229~
243, Seattle, WA, USA, October 1996.

[44] V. Padmanabhan and J Mogul. Improving HTTP latency. In Proceedings of the Second
International WWW Conference, Chicago, IL, USA, October 1994,

[45] T.A. Proebsting and S.A. Watterson. Filter fusion. In Proceedings of the 23th Annual
Symposium on Principles of Programming Languages, pages 119-130, St. Petersburg
Beach, FL, USA, January 1996.

[46] S.H.Rodrigues, T.E. Anderson, and D.E. Culler. High-performance local areacommunica-
tion with fast sockets. In Proceedings of the USENIX 1997 Annual Technical Conference,
pages 257-274, Anaheim, CA, USA, January 1997.

110

[47] D.J. Scales, M. Burrows, and C.A. Thekkath. Experience with parallel computing on the
AN2 network. In International Parallel Processing Symposium, pages 94-103, Honolulu,
HI, USA, April 1996.

(48] M.L Seltzer, Y. Endo, C. Small, and K.A. Smith. Dealing with disaster: Surviving
misbehaved kemel extensions. In Proceedings of the Second Symposium on Operating
Systems Design and Implementation, pages 213-227, Seattle, WA, USA, October 1996.

[49] 1.P. Singh, W. Weber, and A. Gupta. SPLASH: Stanford parallel applications for shared
memory. Computer Architecture News, 20(1):5-44, March 1992.

[50] C. Small and M. Seltzer. A comparison of OS extension technologies. In Proceedings of
USENIX, pages 41-54, San Diego, CA, USA, January 1996.

[51] PG. Sobalvarro. Demand-based Cosheduling of Parallel Jobs on Multiprogrammed Mul-
tiprocessors. PhD thesis, Massachusetts Institute of Technology, January 1997.

[52] R.W. Stevens. TCP/IP illustrated: the protocols, volume 1, chapter 18, page 237.
Addison-Wesley Pub. Co., 1994.

[53] D.L. Tennenhouse and D.J. Wetherall. Towards an active network architecture. In Proc.
Multimedia, Computing, and Networking 96, January 1996.

[54] C.A. Thekkath and H.M. Levy. Limits to low-latency communication on high-speed
networks. ACM Transactions on Computer Systems, 11(2):179-203, May 1993.

[55] C.A. Thekkath and H.M. Levy. Hardware and software support for efficient exception
handling. In Sixth International Conference on Architecture Support for Programming
Languages and Operating Systems, pages 110-119, San Francisco, CA, USA, October
1994,

[56] C.A. Thekkath, HM. Levy, and E.D. Lazowska. Separating data and control transfer
in distributed operating systems. In Sixth International Conference on Architecture Sup-
port for Programming Languages and Operating Systems, pages 2-11, San Francisco,
California, October 1994.

[57] C.A. Thekkath, T.D. Nguyen, E. Moy, and E. Lazowska. Implementing network proto-
cols at user level. In ACM Communication Architectures, Protocols, and Applications
(SIGCOMM) 1993, pages 64-73, San Francisco, CA, USA, Gctober 1993.

[58] C. Tschudin. Flexible protocol stacks. In Proc. SIGCOMM 1991, pages 197-204, Zurich,
Switzerland, September 1991.

[59] R. van Renesse, K.P. Birman, R. Friedman, M. Hayden, and D. Karr. A framework for
protocol composition in Horus. In Proceedings of Fourteenth ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, pages 138-150, Ottawa, Ontario,
Canada, August 1995.

111

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A user-level network interface
for parallel and distributed computing. In Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles, pages 40-53, Copper Mountain Resort, CO, USA, 1995,

T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active messages: a
mechanism for integrated communication and computation. In Proceedings of the 19th
International Symposium on Computer Architecture, pages 256-266, Gold Coast, Aus-
tralia, May 1992.

R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient software-based fault isolation.
In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, pages
203-216, Asheville, NC, USA, December 1993.

1. Wakeman, A. Ghosh, J. Crowcroft, V. Jacobson, and S. Floyd. Implementing real time
packet forwarding policies using Sireams. In Proceedings USENIX Winter 1995 Technical
Conference, pages 71-82, New Orleans, LA, USA, January 1995. "

D. A. Wallach, D. R. Engler, and M. F. Kaashoek. ASHs: Application-specific handlers
for high-performance messaging. In ACM Communication Architectures, Protocols, and
Applications (SIGCOMM ’96), Stanford, California, August 1996.

D.A. Wallach, W.C. Hsieh, K.L.. Johnson, M.F. Kaashoek, and W.E. Weihl. Optimistic
active messages: A mechanism for scheduling communication with computation. In

Proceedings of the 5th Symposium on Principles and Practice of Parallel Programming,
pages 217-226, Santa Barbara, CA, USA, July 1995.

S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2 programs:
Characterization and methodological considerations. In Proceedings of the 22nd Inter-
national Symposium on Computer Architecture, pages 24-36, Santa Margherita Ligure,
Italy, June 1995.

M. Yuhara, B. Bershad, C. Maeda, and E. Moss. Efficient packet demultiplexing for
multiple endpoints and large messages. In Proceedings of the Winter 1994 USENIX
Conference, pages 153-165, San Francisco, CA, USA, January 1994.

112

