
MIT Open Access Articles

Global and regional emissions estimates of 1,1-
difluoroethane (HFC-152a, CH[subscript 3]CHF[subscript 

2]) from in situ and air archive observations

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Simmonds, P. G., M. Rigby, A. J. Manning, M. F. Lunt, S. O'Doherty, A. McCulloch, P. 
J. Fraser, et al. “Global and Regional Emissions Estimates of 1,1-Difluoroethane (HFC-152a, 
CH[subscript 3]CHF[subscript 2] ) from in Situ and Air Archive Observations.” Atmos. Chem. 
Phys. 16, no. 1 (January 18, 2016): 365–382.

As Published: http://dx.doi.org/10.5194/acp-16-365-2016

Publisher: Copernicus GmbH

Persistent URL: http://hdl.handle.net/1721.1/102634

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/102634
http://creativecommons.org/licenses/by/3.0/


Atmos. Chem. Phys., 16, 365–382, 2016

www.atmos-chem-phys.net/16/365/2016/

doi:10.5194/acp-16-365-2016

© Author(s) 2016. CC Attribution 3.0 License.

Global and regional emissions estimates of 1,1-difluoroethane

(HFC-152a, CH3CHF2) from in situ and air archive observations

P. G. Simmonds1, M. Rigby1, A. J. Manning2, M. F. Lunt1, S. O’Doherty1, A. McCulloch1, P. J. Fraser4, S. Henne5,

M. K. Vollmer5, J. Mühle3, R. F. Weiss3, P. K. Salameh3, D. Young1, S. Reimann5, A. Wenger1, T. Arnold2,

C. M. Harth3, P. B. Krummel4, L. P. Steele4, B. L. Dunse4, B. R. Miller14, C. R. Lunder6, O. Hermansen6,

N. Schmidbauer6, T. Saito7, Y. Yokouchi7, S. Park8, S. Li9, B. Yao10, L. X. Zhou10, J. Arduini11, M. Maione11,

R. H. J. Wang12, D. Ivy13, and R. G. Prinn13

1Atmospheric Chemistry Research Group, University of Bristol, Bristol, BS8 1TS, UK
2Met Office Hadley Centre, Exeter, EX1 3PB, UK
3Scripps Institution of Oceanography (SIO), University of California San Diego, La Jolla, CA 92093, USA
4CSIRO Oceans and Atmosphere, Aspendale, VIC 3195, Australia
5Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and

Technology (Empa), Dubendorf, 8600, Switzerland
6Norwegian Institute for Air Research (NILU), 2027 Kjeller, Norway
7Centre for Environmental Measurement and Analysis, National Institute for Environmental Studies, Onogawa, Tsukuba,

305-8506, Japan
8Department of Oceanography, College of Natural Sciences, Kyungpook National University,

Daegu, 702-701, Republic of Korea
9Kyungpook Institute of Oceanography, College of Natural Sciences, Kyungpook National University,

Daegu, 702-701, Republic of Korea
10Chinese Academy of Meteorological Sciences (CAMS), Beijing, 10081, China
11Department of Basic Sciences and Foundations, University of Urbino, 61029 Urbino, Italy
12School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
13Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
14Global Monitoring Division, ESRL, NOAA, Boulder, Colorado, USA

Correspondence to: P. G. Simmonds (petergsimmonds@aol.com)

Received: 12 July 2015 – Published in Atmos. Chem. Phys. Discuss.: 7 August 2015

Revised: 23 November 2015 – Accepted: 1 December 2015 – Published: 18 January 2016

Abstract. High frequency, in situ observations from 11

globally distributed sites for the period 1994–2014 and

archived air measurements dating from 1978 onward have

been used to determine the global growth rate of 1,1-

difluoroethane (HFC-152a, CH3CHF2). These observations

have been combined with a range of atmospheric trans-

port models to derive global emission estimates in a top-

down approach. HFC-152a is a greenhouse gas with a

short atmospheric lifetime of about 1.5 years. Since it does

not contain chlorine or bromine, HFC-152a makes no di-

rect contribution to the destruction of stratospheric ozone

and is therefore used as a substitute for the ozone de-

pleting chlorofluorocarbons (CFCs) and hydrochlorofluo-

rocarbons (HCFCs). The concentration of HFC-152a has

grown substantially since the first direct measurements in

1994, reaching a maximum annual global growth rate of

0.84± 0.05 ppt yr−1 in 2006, implying a substantial increase

in emissions up to 2006. However, since 2007, the an-

nual rate of growth has slowed to 0.38± 0.04 ppt yr−1 in

2010 with a further decline to an annual average rate of

growth in 2013–2014 of −0.06± 0.05 ppt yr−1. The an-

nual average Northern Hemisphere (NH) mole fraction in

1994 was 1.2 ppt rising to an annual average mole frac-

tion of 10.1 ppt in 2014. Average annual mole fractions
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in the Southern Hemisphere (SH) in 1998 and 2014 were

0.84 and 4.5 ppt, respectively. We estimate global emissions

of HFC-152a have risen from 7.3± 5.6 Gg yr−1 in 1994

to a maximum of 54.4± 17.1 Gg yr−1 in 2011, declining

to 52.5± 20.1 Gg yr−1 in 2014 or 7.2± 2.8 Tg-CO2 eq yr−1.

Analysis of mole fraction enhancements above regional

background atmospheric levels suggests substantial emis-

sions from North America, Asia, and Europe. Global HFC

emissions (so called “bottom up” emissions) reported by the

United Nations Framework Convention on Climate Change

(UNFCCC) are based on cumulative national emission data

reported to the UNFCCC, which in turn are based on na-

tional consumption data. There appears to be a significant

underestimate (> 20 Gg) of “bottom-up” reported emissions

of HFC-152a, possibly arising from largely underestimated

USA emissions and undeclared Asian emissions.

1 Introduction

HFC-152a (CH3CHF2) is primarily sold as an aerosol and

foam-blowing agent (Greally et al., 2007) and as a compo-

nent of some refrigerant blends (Ashford et al., 2004). Emis-

sions to the atmosphere show both temporal and regional

variability depending on the specific application in which

HFC-152a is used. Incorporation of HFC-152a into aerosol

propellants results in prompt release, whereas when used as

a single-component non-encapsulated blowing agent, release

occurs over a period of about 2 years (McCulloch et al.,

2009). Refrigerant use of HFC-152a results in release over

longer periods, possibly up to 20 years. Reported emissions

of HFC-152a are likely to be incomplete as a consequence

of a limited number of producers and confidentiality consid-

erations. Emissions of HFC-152a for some countries are ag-

gregated with other hydrofluorocarbons (HFCs) in a category

reported to the UNFCCC as “unspecified mix”. For example,

emissions reported by the USA to the UNFCCC for HFC-

152a, 227ea, 245ca and 43-10mee are shown in the database

as “commercially confidential”, and they constitute the ag-

gregated “unspecified” emissions. HFC-152a emissions from

the USA are estimated to be the primary contributor to the to-

tal for this gas from Annex 1 countries (Lunt et al., 2015).

Previous papers (Manning and Weiss, 2007; Millet et al.,

2009; Stohl et al., 2009; Barletta et al., 2011; Miller et al.,

2012; Simmonds et al., 2015) have reported major differ-

ences between USA HFC-152a emission estimates derived

from atmospheric measurements (top down) and emissions

calculated from US reports to the UNFCCC (bottom up). The

apparent under-reporting of USA emissions to the UNFCCC

ranges from 20–60 Gg based on annual average estimates.

HFC-152a has the smallest 100-year global warming po-

tential (GWP100, 138) of all the major HFCs (Forster et al.,

2007; Myhre et al., 2013), with a short atmospheric lifetime

of 1.5 years, due to efficient reaction with tropospheric hy-

droxyl (OH) radicals (SPARC Report No. 6, 2013). Unlike

hydrocarbons, HFC-152a does not participate in the reaction

to form ozone in the troposphere. These desirable properties

have made HFC-152a especially attractive as a replacement,

not only for CFCs (chlorofluorocarbons) and HCFCs (hy-

drochlorofluorocarbons), but also increasingly for HFC-134a

in technical aerosol applications and mobile air-conditioners

(IPCC/TEAP, 2011).

Ryall et al. (2001) using observations from Mace Head,

Ireland reported the distribution of European HFC-152a

emissions, concentrated in Germany, and estimated an av-

erage European total emission of 0.48 Gg yr−1 for 1995–

1998. Reimann et al. (2004) used a 3-year data set (2000–

2002) of HFC-152a observations at the Swiss Alpine sta-

tion Jungfraujoch and trajectory modeling, also noting a pre-

dominantly German source for European HFC-152a emis-

sions. This group measured an atmospheric growth rate of

0.3 ppt yr−1 (ppt – parts per trillion, 10−12, mol mol−1 or

pmol mol−1) from 2000 to 2002 and a December 2002 mole

fraction at the Jungfraujoch station of 3.2 ppt, from which

they estimated a European emission strength of 0.8 Gg yr−1

for 2000–2002.

In the Southern Hemisphere HFC-152a monthly means,

annual means and trends have been reported from obser-

vations at Cape Grim, Tasmania, for 1998–2004 (Sturrock

et al., 2001; Fraser et al., 2014a; Krummel et al., 2014).

The HFC-152a annual means have grown from 0.8 ppt

(0.1 ppt yr−1) in 1998 to 1.8 ppt (0.4 ppt yr−1) in 2004.

More recent estimates of SE Australian HFC-152a emissions

(2005–2012) have been calculated by interspecies correlation

and model inversions and by extrapolation based on popula-

tion (Fraser et al., 2014a).

Here we further expand the HFC-152a record up to the

end of 2014 using in situ observations from 11 globally

distributed monitoring stations (9 Advanced Global Atmo-

spheric Gases Experiment (AGAGE) stations and 2 affili-

ated stations), together with atmospheric transport models

to independently estimate HFC-152a emissions on regional

and global scales. We then compare these with HFC-152a

emission estimates compiled from national reports to the

United Nations Framework Convention on Climate Change

(UNFCCC) and Emissions Database for Global Atmospheric

Research (EC-JRC/PBL EDGAR v4.2; http://edgar.jrc.ec.

europa.eu/), using the same techniques reported for other

greenhouse gases (O’Doherty et al., 2009, 2014; Miller et

al., 2010; Vollmer et al., 2011; Krummel et al., 2014; Rigby

et al., 2014).

2 Experimental methods

2.1 Instrumentation and calibration

High frequency, in situ measurements of HFC-152a were

made by gas chromatography-mass spectrometry (GC-

Agilent 6890) coupled with quadrupole mass selective detec-
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tion (MSD-Agilent 5973/5975). Measurements commenced

at Mace Head, Ireland in 1994 and Cape Grim, Tasmania

in 1998, using a custom-built automated pre-concentration

system (adsorption desorption system – ADS) to selectively

and quantitatively retain halogenated compounds from 2 L

air samples. Based on a Peltier–cooled pre-concentration mi-

crotrap cooled to −50 ◦C during the adsorption phase, the

ADS provided on-site calibrated air samples every 4 h, i.e.,

six per day (Simmonds et al., 1995). In 2004, the ADS-

GC-MS was replaced with a more advanced custom-built

pre-concentration system (Medusa) with enhanced cooling

to ∼−180 ◦C and the relatively mild adsorbent HayeSep D

(Miller et al., 2008; Arnold et al., 2012). Agilent 5973 MSDs

(mass selective detector) were also upgraded to the Agilent

5975 MSDs over the course of the Medusa observations.

Analysis of each 2 L sample of ambient air was alternated

with analysis of a 2 L reference gas (designated as a working

standard) to correct for short-term instrumental drift, result-

ing in 12 (Medusa) individually calibrated air measurements

per day. Working standards were prepared for each station

by compressing ambient air into 34 L electropolished stain-

less steel canisters (Essex Industries, Inc., Missouri) using

modified oil-free compressors (SA-6, RIX, California). Ex-

ceptions to this were the Cape Grim and Zeppelin stations,

where the working standards were filled using a cryogenic

filling technique. Research-grade helium, which was used as

a carrier gas in the Medusa systems, was further purified by

passage through a heated “getter” type purifier (Valco In-

struments, Houston, TX). The carrier gas was analyzed for

blanks on a regular basis and blank levels of HFC-152a were

below the limit of detection at all field stations.

Table 1 lists the geographical location and the time when

routine ambient measurements of HFC-152a began at each

monitoring station. Stations with the longest observational

records that deployed both ADS and Medusa GC-MS in-

struments include Mace Head (MHD), Jungfraujoch (JFJ),

Ny-Ålesund (ZEP) and Cape Grim (CGO). Medusa GC-

MS instruments were installed at five other AGAGE sta-

tions Trinidad Head (THD), Gosan (GSN), Ragged Point,

(RPB), Shangdianzi (SDZ), and Cape Matatula (SMO) be-

tween 2003 and 2010. In addition two AGAGE affiliated sta-

tions Monte Cimone (CMN) and Hateruma (HAT), which

use comparable GC-MS instruments, but a different pre-

concentration design for sample enrichment, commenced

HFC-152a measurements in 2001 and 2004, respectively. Im-

portantly, all 11 stations listed in Table 1 report HFC-152a

measurements relative to the Scripps Institution of Oceanog-

raphy (SIO-05) calibration scale (as dry gas mole fractions

in pmol mol−1).

The estimated accuracy of the calibration scale for HFC-

152a is 4 %: a more detailed discussion of the measure-

ment technique and calibration procedure is reported else-

where (Miller et al., 2008; O’Doherty et al., 2009; Mühle

et al., 2010). HFC-152a was determined using the MS in se-

lected ion monitoring mode (SIM) with a target ion CH3CF+2

(m/z 65) and qualifier ion CH3CF+ (m/z 46). To ensure that

potential interferences from co-eluting species did not com-

promise the analysis, the ratio of the target to qualifier ion

was continuously monitored. Measurement precision was

calculated as the daily standard deviation (1σ ) of the ratios of

each standard response to the average of the closest-in-time

preceding and subsequent standard responses. Typical daily

precisions vary from station to station with a range of 0.1–

0.4 ppt. Individual station precisions were used to estimate

the precision of each in situ measurement.

2.2 Northern and Southern Hemisphere archived air

samples

In order to extend the HFC-152a data record back before

the commencement of high-frequency measurements, analy-

ses of Northern Hemisphere (NH) and Southern Hemisphere

(SH) archived air samples dating back to 1978, were carried

out using three similar Medusa GC-MS instruments at the

Scripps Institution of Oceanography (SIO), La Jolla, Califor-

nia, the Commonwealth Scientific and Industrial Research

Organisation (CSIRO), Aspendale, Australia and the Cape

Grim Baseline Air Pollution Station, Tasmania. The SH sam-

ples are part of the Cape Grim air archive (CGAA) described

in Langenfelds et al. (1996), and Krummel et al. (2007). The

NH samples analyzed for this paper were filled during back-

ground conditions mostly at Trinidad Head, but also at La

Jolla, California; Cape Meares, Oregon; Ny Ålesund, Sval-

bad and Point Barrow, Alaska (some samples are courtesy

of the National Oceanic and Atmospheric Administration

(NOAA).

In addition, eight SH samples were measured at SIO

and compared with SH samples of similar age measured

at CSIRO (February 1995, July 1995, November 1995,

June 1998, July 2004, February 2006, August 2008, and

December 2010, 1x = 0.01–0.07 ppt 1t = 1–33 days) and

three NH samples were measured at CSIRO and com-

pared with NH samples of the same age measured at SIO

(May 1989 and April 1999, 1x = 0.02–0.06 ppt, 1t = 1–

11 days). The good agreement between SIO and CSIRO

archived air stored in different types of tanks (stainless steel

tanks, Essex Industries, Inc and Silcosteel treated tanks,

Restek Corporation) serves both as proof of the good con-

sistency of the individual Medusa GC-MS instruments and

the integrity of the tanks used. Samples were analyzed in

replicate typically 3–6 times each and several NH tanks were

re-measured over a number of years.

2.3 Selection of baseline data

Baseline in situ monthly mean HFC-152a mole fractions

were calculated by excluding values enhanced by local and

regional pollution influences, as identified by the iterative

AGAGE pollution identification algorithm, (see Appendix

in O’Doherty et al., 2001). Briefly, baseline measurements

www.atmos-chem-phys.net/16/365/2016/ Atmos. Chem. Phys., 16, 365–382, 2016
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Table 1. Overview of the 11 measurement stations used in this study, their coordinates and periods for which data are available.

Station Latitude Longitude ADS data* Medusa data**

Ny-Ålesund, Norwaya 78.9◦ N 11.9◦ E 2001–2010 September 2010–present

Mace Head, Irelanda 53.3◦ N 9.9◦W 1994–2004 June 2003–present

Jungfraujoch, Switzerlanda 46.5◦ N 8.0◦ E 2000–2008 May 2008–present

Monte Cimone, Italyb 44.2◦ N 10.7◦ E June 2001–presentb

Trinidad Head, Californiaa 41.0◦ N 124.1◦W March 2005–present

Shangdianzi, Chinaa,c 40.4◦ N 117.7◦ E May 2010–August 2012

Gosan, Jeju Island, Koreaa 33.2◦ N 126.2◦ E November 2007–present

Hateruma, Japanb 21.1◦ N 123.8◦ E May 2004–presentb

Ragged Point, Barbadosa 13.2◦ N 59.4◦W May 2005–present

Cape Matatula, Samoaa 14.2◦ S 170.6◦W May 2006–present

Cape Grim, Tasmaniaa 40.7◦ S 144.7◦ E 1998–2004 Jan 2004–present

a AGAGE stations; b Affiliated stations use a different pre-concentration system (non-Medusa) than the AGAGE stations, but

comparable GC-MS analytical instruments (see Yokouchi et al., 2006; Maione et al., 2014). c Shangdianzi was only

operational for a short period and is not included in the modeling studies. * Period of HFC-152a data record using

ADS-GC-MS. ** Period of HFC-152a data record using Medusa-GC-MS.

are assumed to have a Gaussian distribution around the lo-

cal baseline value, and an iterative process is used to fil-

ter out the points that do not conform to this distribution.

A second-order polynomial is fitted to the subset of daily

minima in any 121-day period to provide a first estimate of

the baseline and seasonal cycle. After subtracting this poly-

nomial from all the observations a standard deviation and

median are calculated for the residual values over the 121-

day period. Values exceeding 3 standard deviations above the

baseline are thus identified as non-baseline (polluted) and re-

moved from further consideration. The process is repeated

iteratively to identify and remove additional non-baseline

values until the new and previous calculated median values

agree within 0.1 %. For the core AGAGE stations, in situ

baseline data and archive air data, extending the record to pe-

riods prior to the in situ measurement period, are then com-

bined for each hemisphere, and outliers are rejected by an

iterative filter.

3 Modeling studies

We pursued several approaches to determine emissions at

global, continental and regional scales. The methodologies

have been published elsewhere and are summarized below.

The global, continental and some regional estimates incorpo-

rate a priori estimates of emissions, which were subsequently

adjusted using the observations.

There are several sources of information on production

and emissions of HFC-152a; none of which, on their own,

provides a complete database of global emissions. The more

geographically comprehensive source of information is

provided by the parties to the UNFCCC, but only includes

Annex 1 countries (developed countries). The 2014 database

covers years 1990 to 2012 and are reported in Table 2(II)

s1 in the common reporting format (CRF) available at

http://unfccc.int/national_reports/annexighginventories/

nationalinventoriessubmissions/items/8108.php. An alterna-

tive inventory estimate was also obtained from the Emissions

Database for Global Atmospheric Research (EDGAR v4.2;

http://edgar.jrc.ec.europa.eu/), a database that estimates

global emission inventories of anthropogenic greenhouse

gases (GHGs) on a country, region and grid basis up to 2008.

To infer “top-down” emissions we select observations

from the various observing sites listed in Table 1 and four

chemical transport models. These 11 sites are sensitive to

many areas of the world in which HFC-152a emissions are

reported; however, other areas of the globe that are not well

monitored by this network are also likely to have signifi-

cant emissions (such as South Asia, South Africa, and South

America).

3.1 Global emissions estimates using the AGAGE

two-dimensional 12-box model

To estimate global-average mole fractions and derive growth

rates, a two-dimensional model of atmospheric chemistry

and transport was employed. The AGAGE 12-box model

simulates trace gas transport in four equal mass latitudinal

sections (divisions at 30–90◦ N, 0–30◦ N, 30–0◦ S and 90–

30◦ S) and at three heights (vertical divisions at 200, 500 and

1000 hPa). The model was originally developed by Cunnold

et al. (1983) (nine-box version), with subsequent improve-

ments by Cunnold et al. (1994) and Rigby et al. (2013, 2014).

Emissions were estimated between 1989 and 2014 using a

Bayesian method in which an a priori constraint (EDGAR

v4.2) on the emissions growth rate was adjusted using the

baseline-filtered AGAGE observations (Rigby et al., 2011a,

2014). Global emissions were derived that included estimates

of the uncertainties due to the observations, the prior and the

lifetime of HFC-152a, as detailed in the supplementary mate-

rial in Rigby et al. (2014). Note that historically and here the

Atmos. Chem. Phys., 16, 365–382, 2016 www.atmos-chem-phys.net/16/365/2016/

http://unfccc.int/national_reports/annex ighg inventories/national inventories submissions/items/8108.php
http://unfccc.int/national_reports/annex ighg inventories/national inventories submissions/items/8108.php
http://edgar.jrc.ec.europa.eu/


P. G. Simmonds et al.: Global and regional emissions estimates of HFC-152a 369

Table 2. Estimates of global emissions of HFC-152a (Gg yr−1
± 1σ) based on AGAGE in situ measurements using the AGAGE 2-D 12-

box model. Emission inventories as reported in UNFCCC (United Nations Framework Convention on Climate Change) National Inventory

Reports (DoE, 2014; National Inventory Report 2012, submission), EDGAR (v4.2) database and recalculated from the UNFCCC data as

described in the text.

Year AGAGE UNFCCC as reported EDGAR (4.2) UNFCCC including “unspecified”

(Gg yr−1) (Gg yr−1) (Gg yr−1) contribution (Gg yr−1)

1994 7.3± 5.6

1995 7.9± 7.4 1.0 7.3 8.8

1996 9.1± 8.4 1.1 8.9 13.3

1997 11.3± 8.6 1.3 10.3 15.4

1998 12.5± 10.9 1.2 11.7 13.3

1999 14.4± 11.2 1.4 13.2 14.0

2000 16.6± 12.2 2.2 15.2 13.0

2001 18.4± 13.4 3.5 15.9 15.4

2002 22.5± 14.7 4.5 18.6 17.6

2003 26.3± 15.3 4.7 20.6 17.7

2004 29.2± 15.6 4.8 21.7 18.1

2005 35.8± 14.7 4.3 23.0 16.5

2006 43.3± 14.9 4.4 24.9 16.7

2007 48.1± 17.6 4.4 26.4 16.8

2008 48.9± 16.7 4.3 28.0 16.4

2009 48.0± 16.4 4.6 17.6

2010 53.4± 17.5 4.9 18.6

2011 54.4± 17.1 5.0 19.3

2012 53.2± 18.5 5.2 20.5

2013 52.5± 17.8

2014 52.5± 20.1

12-box model only uses observations from the core AGAGE

sites, Mace Head, Trinidad Head, Ragged Point, Cape Matat-

ula, and Cape Grim.

3.2 Global and continental emissions estimates using a

combined Eulerian and Lagrangian model

We used the methodology outlined in Lunt et al. (2015) and

Rigby et al. (2011b) to derive emissions of HFC-152a from

continental regions. The high-resolution, regional UK Met

Office Numerical Atmospheric-dispersion Modelling Envi-

ronment (NAME), Manning et al. (2011) was used to simu-

late atmospheric HFC transport close to a subset of AGAGE

monitoring sites, which were strongly influenced by regional

HFC sources (domains shown by red boxes in Fig. 1). Si-

multaneously, the influence of changes to the global emis-

sions field on all measurement stations was simulated using

the global Model for OZone and Related Tracers, MOZART

(Emmons et al., 2010). We estimated annual emissions for

the period 2007–2012 and aggregated the derived emissions

fields into continental regions, separating countries that ei-

ther do (“Annex-1”), or do not (“non-Annex-1”) report de-

tailed, annual emissions to the UNFCCC. Emissions were es-

timated using a hierarchical Bayesian inverse method (Gane-

san et al., 2014; Lunt et al., 2015) and all high-frequency

observations from 10 of the 11 sites listed in Table 1, exclud-

ing Shangdianzi due to the short time series. The hierarchi-

cal Bayesian method includes uncertainty parameters (e.g.,

model “mismatch” errors and a priori uncertainties) in the es-

timation scheme, reducing the influence of subjective choices

on the outcome of the inversion.

3.3 High-resolution regional emissions estimates using

InTEM

A method for estimating emissions from observations and at-

mospheric transport modeling with NAME referred to as In-

TEM, “Inversion Technique for Emission Modelling” (Man-

ning et al., 2011), uses a simulated annealing method (Press

et al., 1992) to search for the emission distribution that pro-

duces a modeled times series that has the best statistical

match to the observations from certain AGAGE stations (e.g.,

Mace Head, Cape Grim). NAME was driven with output

from the operational analysis of the UK Met Office Numer-

ical Weather Prediction model, the Unified Model, at global

horizontal resolution of 17–40 km (year dependent). InTEM

estimates the spatial distribution of emissions across a de-

fined geographical area, and can either start from a ran-

dom emission distribution or be constrained by an inventory-

defined distribution. Emission totals from specific geograph-

ical areas are calculated by summing the derived emissions

from each grid (non-uniform) in that region.

www.atmos-chem-phys.net/16/365/2016/ Atmos. Chem. Phys., 16, 365–382, 2016
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Figure 1. Location of AGAGE and affiliated stations. Ny-Ålesund,

Zeppelin, Norway (ZEP); Mace Head, Ireland (MHD); Jungfrau-

joch, Switzerland (JFJ); Monte Cimone, Italy (CMN); Trinidad

Head, USA (THD); Shangdianzi, China (SDZ); Gosan, South Korea

(GSN); Hateruma, Japan (HAT); Ragged Point, Barbados (RPB);

Cape Matatula, American Samoa (SMO); and Cape Grim, Tasma-

nia (GCO). Red boxes indicate “local regions” where the NAME

model was used with increased resolution compared to the global

MOZART model, Annex 1 countries are shaded blue and non-

Annex 1 countries are shaded yellow. Note: 1 Shangdianzi (SDZ)

was not used in any of the modeling studies due to the relatively

short time series.

The uncertainty estimation used within InTEM is de-

scribed in detail elsewhere (Manning et al., 2011). Briefly,

the uncertainty space was explored by (a) solving the inver-

sion multiple times with a range of baseline mole fractions

within the baseline uncertainty estimated during the baseline

fitting process and (b) by altering the 3-year inversion time

window by 1 month throughout the data period thereby solv-

ing over a particular 1-year period many times using differ-

ent observations. In total for each annual estimate, up to 111

inversions were performed; the median and 5th and 95th per-

centiles were used as the final total and spread. For the Aus-

tralian estimates data between 2002 and 2011 were used, for

the NW European estimates data between November 1994

and December 2013 were used.

3.4 High-resolution European emission estimates using

the FLEXPART model

A regional Bayesian inversion system using backward sim-

ulations of a Lagrangian particle dispersion model FLEX-

PART (Stohl et al., 2005) was applied to the HFC-152a ob-

servations from Mace Head, Jungfraujoch and Mt. Cimone

for the period 2006 to 2014. The inversion technique fol-

lows the description by Stohl et al. (2009) and was previ-

ously applied to regional halocarbon emissions from Europe

(Keller et al., 2012; Maione et al., 2014) and China (Vollmer

et al., 2009). For these emission estimates, the background

was determined by applying the Robust Extraction of Base-

line Signal (REBS) filter described in detail by Ruckstuhl

et al. (2012). The transport model FLEXPART was driven

with output from the operational analysis of the Integrated

Forecast System (IFS) of the European Centre for Medium

Range Weather Forecast (ECMWF) using a spatial resolu-

tion of 0.2◦× 0.2◦ for a nested domain covering the larger

area of the European Alps and a spatial resolution of 1◦× 1◦

elsewhere.

The FLEXPART model was applied to the HFC-152a ob-

servations from Mace Head, Jungfraujoch and Mt. Cimone

for the period 2006 to 2014. Prior to 2006, the model resolu-

tion of Integrated Forecast System (IFS) was not sufficiently

fine to realistically simulate the transport to the two high al-

titude sites Jungfraujoch and Mt. Cimone. Therefore, no at-

tempt was made here to apply the inversion system to years

before 2006. As prior information of the HFC-152a emis-

sions we used country totals as submitted to UNFCCC. These

were spatially disaggregated following the HFC-152a distri-

bution given in EDGAR (v4.2). For countries not reporting

HFC-152a emissions to UNFCCC we used the values given

in EDGAR. The EDGAR inventory was only available up to

the year 2008 beyond this year the EDGAR 2008 distribution

was used. The uncertainty of the prior emissions was set so

that the region total uncertainty equalled 20 % of the region

total emissions. The regional inversion grid covered a region

similar to that shown in Fig. 1.

3.5 Regional emissions estimates using the inter-species

correlation (ISC) methods

We also present regional emissions estimates using inter-

species correlation (ISC) methods (Yokouchi et al., 2005).

Emissions of a number of trace gases from the Mel-

bourne/Port Phillip region (CFCs, HCFCs, HFCs, carbon

tetrachloride: Dunse et al., 2001, 2002, 2005; O’Doherty et

al., 2009; Fraser et al., 2014a, b), including HFC-152a (Gre-

ally et al., 2007), have been estimated utilizing in situ high

frequency measurements from Cape Grim and ISC with co-

incident carbon monoxide (CO) measurements.

ISC works best for co-located sources – however exten-

sive modeling has shown that by the time the Melbourne/Port

Phillip plume reaches Cape Grim (300 km from the source)

it is well mixed and the likely inhomogeneity of the source

regions (for CO and HFC-152a in this case) does not have a

significant influence on the derived emissions. It should be

noted that in order to obtain a significant sampling of Port

Phillip pollution episodes at Cape Grim, data from 3 years

(for example 2011–2013) are used to derive annual emissions

(for 2012). (InTEM also uses data from 3 years to derive an-

nual emissions.) The ISC uncertainties given in the paper in-

clude (1) the uncertainties in the estimates of CO emissions

from Melbourne/Port Phillip (2) the uncertainties in the over-

all correlation between CO and HCFC-152a as seen in pol-

lution episodes at Cape Grim (3) the uncertainties in the ge-

ographic extent of the HFC-152a and CO source regions im-

pacting on Cape Grim and their entrained population.
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Using HCFC-22 as the reference tracer, Li et al. (2011) re-

ported that China is the dominant emitter of halocarbons in

East Asia. North American HFC-152a emissions have been

estimated from atmospheric data using interspecies correla-

tion based techniques with CO (Millet et al., 2009; Barletta

et al., 2011) and fossil fuel CO2 (Miller et al., 2012) as the

reference emissions.

4 Results and discussion

4.1 In situ observations

The time series of HFC-152a in situ observations recorded

at selected AGAGE and affiliated monitoring stations are

shown in Fig. 2a–c. Data have been filtered into baseline

(black) and above baseline (red) using the AGAGE pollu-

tion algorithm, as discussed in Sect. 2.3. Figure 2a shows

the mole fractions in ppt for the four stations that deployed

both ADS and Medusa GC-MS instruments (Mace Head,

Zeppelin, Jungfraujoch, and Cape Grim). Most notable are

the substantial above baseline events at Mace Head and

Jungfraujoch that are influenced primarily by emissions from

European sources. Conversely, the Zeppelin Arctic station

and the SH station at Cape Grim have relatively small above

baseline events implying smaller emissions from local or re-

gional sources.

Figure 2b shows measurements at the five other AGAGE

stations (Trinidad Head, Gosan, Ragged Point, Shangdianzi,

and Cape Matatula), which used only Medusa GC-MS in-

struments. The North American site at Trinidad Head and

the Asian sites at Shangdianzi and Gosan are the most

strongly influenced by regional emissions. The tropical sites

at Ragged Point, Barbados, and Cape Matatula, American

Samoa show very few enhancements above the baseline

and these are due mostly to local emissions occurring un-

der nighttime inversion conditions and occasional influences

from regional emission sources (note the different y axis

scales). Although the Shangdianzi station was operational

for only a short period, the enhancements above baseline are

significant due to the sensitivity of this site to Chinese emis-

sions, and comparable in magnitude to those at Gosan.

Figure 2c illustrates the time series from the two affiliated

AGAGE stations (Monte Cimone and Haturuma) that used

comparable GC-MS instruments but with different methods

of pre-concentration. Monte Cimone, like the Jungfraujoch,

is also influenced by substantial emissions from sources in

continental Europe. Hateruma is influenced by sources in

China, Korea, Taiwan, and Japan (Yokouchi et al., 2006).

4.2 Atmospheric trends and seasonal cycles

Figure 3 shows the in situ measurements of HFC-152a, as

baseline monthly means (excluding pollution events), ob-

tained from the two AGAGE stations Mace Head and Cape

Grim with the longest time series that deployed both ADS

and Medusa GC-MS instruments. Superimposed in Fig. 3 are

the NH and SH archived flask data extending back to 1978.

Annual average mole fractions at Mace Head increased from

1.2 ppt in 1994 to 10.2 ppt by 2014, Cape Grim annual aver-

age mole fractions increased from 0.84 ppt in 1998 when in

situ measurements first began to 4.5 ppt in 2014. However,

in the last few years the rates of growth at both sites have

slowed to almost zero.

The NH archived samples are more variable than the SH

archived samples. The SH archive is collected only under

strict baseline conditions (Southern Ocean air) and is far re-

moved from the major sources of HFC-152a. Conversely in

the NH, where most major sources of emissions are located,

sampling under strict baseline conditions is more difficult to

achieve.

Figure 4a illustrates HFC-152a baseline monthly means

obtained from the five other AGAGE observing sites (Ragged

Point, Gosan, Cape Matatula, Trinidad Head, and Shangdi-

anzi using only the more advanced Medusa GC-MS. There

is a large seasonal cycle at Gosan with a very deep minimum

due to summertime transport from the Southern Hemisphere

(Li et al., 2011). Barbados can also be influenced by South-

ern Hemispheric air during the hurricane season (Archibald

et al., 2015).

Figure 4b shows the baseline monthly mean mole fractions

for the three mountain stations. Ny-Ålesund and Jungfrau-

joch, using combined ADS and Medusa GC-MS measure-

ments and Monte Cimone, which used a commercial pre-

concentrator GC-MS. In most years Monte Cimone ex-

hibits enhanced mole fractions during the NH spring months

(March–May).

The HFC-152a seasonal cycles at Mace Head and Cape

Grim shown in Fig. 5a and b, are broadly representative of

the Northern Hemisphere and Southern Hemisphere, respec-

tively. The seasonal cycle at Mace Head shows a NH spring

maximum (April–May) and late summer minimum (August–

October), while the SH seasonal cycle at Cape Grim exhibits

a broad austral spring maximum (July–November) and a late

summer minimum (January–April). The summer minimum

at both locations is attributed to enhanced summertime loss

(OH) with possibly a contribution from seasonally varying

emissions in the NH that may be out-of-phase with the NH

sink. At Cape Grim an additional source of seasonality is

due to seasonally varying transport between the NH and SH,

which is generally in phase with the sink induced seasonal

cycle. This competition between OH summertime loss and

seasonally varying transport has been observed at many other

AGAGE locations (Prinn et al., 1992; Greally et al., 2007;

O’Doherty et al., 2009, 2014; Li et al., 2011).

Figure 6 shows the mole fractions output from the AGAGE

global 12-box model, along with the monthly mean semi-

hemispheric average observations used in the inversion. The

figure also shows the running mean growth rate, smoothed

using a Kolmogorov–Zurbenko filter with a window of ap-

proximately 12 months (Rigby et al., 2014). Most notable
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Figure 2. (a) Time series of HFC-152a mole fractions (ppt) recorded at the four monitoring stations with combined ADS and Medusa data.

(MHD, JFJ, ZEP and CGO), (note the different y axis scales). Data have been assigned as baseline (black) and non-baseline (red) using the

AGAGE pollution identification algorithm. (b) Time series of HFC-152a mole fractions (ppt), recorded with the Medusa GC-MS instruments

at the five AGAGE monitoring stations (THD, GSN, SDZ, RPB, and SMO). Data have been assigned as baseline (black) and non-baseline

(red) using the AGAGE pollution identification algorithm. (c) Time series of HFC-152a mole fractions (ppt) recorded with the GC-MS

instruments at the two affiliated AGAGE stations CMN and HAT. Data have been assigned as baseline (black) and non-baseline (red) using

the AGAGE pollution identification algorithm.

is the positive growth rate from 1995 reaching a maximum

of ∼ 0.84 ppt yr−1 in 2006, followed by a steady decline in

the growth rate with a minimum during the economic reces-

sion in 2008–2009. The positive growth rate then resumes in-

creasing to ∼ 0.4 ppt yr−1 in 2010 followed by a subsequent

decrease with an annual average growth rate in 2013–2014

of minus ∼ 0.06 ppt yr−1.

The strong inter-hemispheric gradient demonstrates that

emissions are predominantly in the NH, as has been illus-

trated for many other purely anthropogenic trace gases (Prinn

et al., 2000). The globally averaged mole fraction in the

lower troposphere in 2014 is estimated to be 6.84± 0.23 ppt

and the annual rate of increase is −0.06± 0.05 ppt yr−1. As

reported by Rigby et al. (2014) the major long lived synthetic

greenhouse gases (SGHGs) which include CFCs, HCFCs,

HFCs, and perfluorocarbons (SF6 and NF3), as well as

CH3CCl3 and CCl4 were responsible for 350± 10 mW m−2

of direct radiative forcing in 2012. The radiative forcing of

HFC-152a, determined from the AGAGE 12-box model in

this study, was 0.61± 0.02 mW m−2 in 2014, which repre-

sents only a tiny fraction (∼ 0.2 %) of the global radiative

forcing of the SGHG.

5 Top-down emission estimates

5.1 Global estimates

Estimated global emissions of HFC-152a using the 12-box

model and the reported UNFCCC and EDGAR emission in-

ventories are shown in Fig. 7 and Table 2. The blue solid line

represents our model-derived emissions, with the 1σ error

band shown by the shaded areas. Model derived emissions
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Figure 3. HFC-152a baseline monthly mean mole fraction (ppt)

recorded at Mace Head-MHD (ADS GC-MS, 1994–2003; Medusa

GC-MS, 2004–2014) and at Cape Grim-CGO (ADS GC-MS, 1998–

2003; Medusa GC-MS, 2004–2014) and from analysis of archived

NH and SH air samples extending back to 1975: in situ (black), air

archive NH (red) and SH (blue).

grew steadily from 1995 to 2007 with a non-statistically sig-

nificant decrease in emissions in 2009 to 48± 16.4 Gg yr−1,

during the economic downturn in 2008–2009. The mean

emission reached a maximum of 54.4± 17.1 Gg yr−1 in

2011, followed by a period of relatively stable emissions,

the mean showing a slight decline to 52.5± 20.1 Gg yr−1

(7.2± 2.8 Tg-CO2 eq yr−1) in 2014.

The data shown in column 3 of Table 2 are

the totals of submissions by the national govern-

ments to the UNFCCC (Rio Convention) as re-

ported in Table 2(II) s1 in the Common Reporting

Format (CRF), available on the UNFCCC website

(http://unfccc.int/nationalreports/annexighginventories/

nationalinventoriessubmissions/items/8108.php). The values

were taken from the 2014 database and cover years 1995

(the baseline year for submissions) to 2012. In addition to

reporting calculated emissions of HFCs 23, 32, 125, 134a,

143a, 152a, 227ea, 236fa, 245ca, and 43-10mee individually,

many countries also included “unspecified” emissions in this

database (as the sum of their CO2 equivalents). Where the

unspecified component was small in relation to the national

specified emissions, it was disaggregated by assuming that

it had the same fractional contribution of each HFC as

reported in the specified components (adjusted for their

CO2 equivalence). However, in the US, although values

of emissions of several HFCs are calculated specifically

for the individual substances, HFCs 152a, 227ea, 245ca

and 43-10mee are shown in the database as “commercially

confidential” and their emissions apparently constitute the

substantial aggregated “unspecified” emissions reported.

Hence, for the US, these unspecified annual emissions

were divided only between HFCs 152a, 227ea, 245ca and

43-10mee, assuming the same ratio as their reported global

emissions, all expressed as CO2 equivalents. The values

shown in column 4 of Table 2 are the global totals of

HFC-152a after adjusting in these ways for the quantities

included in “unspecified” emissions.

The additional component of US emissions makes a sub-

stantial contribution to the very large difference between the

UNFCCC data as reported and the adjusted values. This is

partly due to the low global warming potential of HFC-152a

(a factor of 10 lower than other HFCs) which magnifies its

mass component in the 8200 Gg CO2 equivalent of US “un-

specified” emissions.

The AGAGE observation based global emissions are sub-

stantially higher than the emissions calculated from the UN-

FCCC GHG reports (2014 submission). It is not unrea-

sonable that UNFCCC-reported emissions are lower than

the AGAGE global emission estimates, since countries and

regions in Asia (e.g., China, Indonesia, Korea, Malaysia,

the Philippines, Taiwan, Vietnam), the Indian sub-continent

(e.g., India, Pakistan), the Middle East, South Africa, and

Latin America do not report to the UNFCCC. Where we

include the HFC-152a component of unspecified emissions

(green line in Fig. 7) results are consistent within the er-

ror bars until approximately 2003 to 2005 when they start

to diverge (UNFCCC + “unspecified” lower). From 1996 to

2002, estimated emissions from EDGAR (v4.2) are generally

consistent with AGAGE emissions, but then begin to diverge

with EDGAR emissions 22 Gg below 2008 AGAGE emis-

sions, the last year for which EDGAR reports emissions.

5.2 Regional emissions of HFC-152a inferred for

Europe, United States, Asia, and Australia

Lunt et al. (2015) have reported global and regional emis-

sions estimates for the most abundant HFCs, based on in-

versions of atmospheric mole fraction data, aggregated into

two categories; those from Annex 1 countries and those from

non-Annex 1 countries. The inversion methodology used the

NAME model to simulate atmospheric transport close to

the monitoring sites, and the Model for Ozone and Related

chemical Tracers (MOZART, Emmons et al., 2010) to simul-

taneously calculate the effect of changes to the global emis-

sions field on each measurement site. The model sensitivi-

ties were combined with a prior estimate of emissions (based

on EDGAR) and the atmospheric measurements, in a hier-

archical Bayesian inversion (Ganesan et al., 2014), to infer

emissions.

Using this method we infer emissions estimates for the en-

tire world, Europe, North America, and East Asia. Table 3

lists our estimated regional emissions in Gg yr−1 averaged

across two time periods: 2007–2009 and 2010–2012, to-

gether with our global emission estimates averaged over the

same time periods from the 12-box model. It is apparent that

North American average annual emissions (∼ 30 Gg) are the

major contributor to the global total with Europe contributing

annual average emissions from about 5–6 Gg yr−1. East Asia
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Figure 4. (a) Medusa GC-MS baseline monthly mean mole fractions (ppt) recorded at Ragged Point, Gosan, Cape Matatula, Trinidad Head,

and Shangdianzi. Observations at Shangdianzi were discontinued in August 2012. (b) Combined ADS and Medusa GC-MS baseline monthly

mean mole fraction recorded at Ny-Ålesund, Jungfraujoch, and Monte Cimone.

Figure 5. (a) Average seasonal cycle at Mace Head, Ireland (2004–2014). Black line represents the average for each month of these individual

years and the error bars represent the min to max range. (b) Average seasonal cycle at Cape Grim, Tasmania (2004–2014). Black line

represents the average for each month of these individual years and the error bars represent the min to max range.

and Europe contribute emissions of ∼ 7 and ∼ 6 Gg yr−1, re-

spectively to the global total. The 2007–2009 North Ameri-

can emission estimate of 28 Gg yr−1 agrees within the uncer-

tainties of HFC-152a emission estimates reported in Barletta

et al. (2011) and Simmonds et al. (2015). The North Ameri-

can estimate indicates one reason why the UNFCCC reported

amount appears to be so low; more than half the global emis-

sions appear to come from this continental region, yet the

UNFCCC reports do not include specific HFC-152a emis-

sions from the US.

5.2.1 InTEM northwestern Europe (NWEU) estimated

emissions from Mace Head observations

The HFC-152a perturbations above baseline, observed at

Mace Head, are driven by emissions on regional scales that

have yet to be fully mixed on the hemisphere scale. The Mace

Head observations are coupled with NAME model air his-

tory maps using the inversion system InTEM to estimate sur-

face emissions across NWEU (Manning et al., 2011). NWEU

is defined as United Kingdom, Ireland, Germany, France,

Benelux, and Denmark.

As shown in Fig. 8, the NWEU emission estimates for

HFC-152a from InTEM (rolling 3-yr averages) agree to

within inversion uncertainties with the UNFCCC data (2013

submission) for most years. The estimates of NWEU emis-

sions grew steadily from 1995 reaching a maximum emission

of 1.6± 0.21 Gg yr−1 in 2003 with a subsequent decline to

0.98± 0.34 Gg yr−1 in 2013.

5.2.2 European estimated emissions from European

observations at Mace Head Jungfraujoch and Mt.

Cimone

The temporal evolution of emission estimates for different

European regions are given in Fig. 9. In contrast to the In-

TEM estimates the Bayesian inversion derived emissions in

NWEU were slightly smaller than the UNFCCC estimate and

showed a continued decrease until 2014. Total emissions in

the inversion domain ranged from 4± 0.5 Gg yr−1 (2σ con-

fidence range) for 2006 to only 2.5± 0.2 Gg yr−1 in 2014.

This is considerably smaller than the European Annex I es-

timate given in Sect. 5.2, but covers a significantly smaller

geographical region. The estimate given in Sect. 5.2 encom-

passed all countries in Europe extending beyond the bounds
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Table 3. Annex 1 and non-Annex 1 global and regional emissions in Gg yr−1 averaged over two 3-year periods. Values in the final column

are from the 12-box model, all other values are from the combined Eulerian and Lagrangian model of Lunt et al. (2015). The global estimates

from the 12-box model are not in exact agreement with the combined Annex I and non-Annex I emissions reported in Lunt et al. 2015.

However, this is not unexpected, given the vastly different transport and inversion models used to estimate these terms. We note that the

uncertainty range of the combined Annex I and non-Annex I estimates does overlap with the uncertainty range from the 12-box model, and

a similar growth in emissions is seen across the two averaging periods.

3-year Averages Europe North America East Asia East Asia GLOBAL GLOBAL GLOBAL

Annex 1 Annex 1 Annex 1 Non-Annex 1 Annex 1 Non-Annex 1 12-box model

2007–2009 6.4

(5.2–7.5)

28.0

(22.5–33.4)

0.4

(0.2–1.2)

5.8

(4.5–7.5)

35.2

(27.7–42.6)

6.6

(4.3–9.2)

48.5

(37.0–60.6)

2010–2012 5.2

(4.1–6.4)

31.6

(24.5–38.6)

1.0

(0.5–1.6)

6.0

(4.3–8.2)

40.2

(31.3–49.3)

6.6

(3.9–9.8)

53.9

(43.0–67.3)
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Figure 6. Top panel: AGAGE 12-box model mole fractions (solid

line) for the two NH (30–90◦ N, MHD, and THD and 00–30◦ N,

RGP) and the two SH (30–00◦ S, SMO and 90–30◦ S, CGO) latitu-

dinal bands The points show the semi-hemispheric monthly mean

observations from the five AGAGE stations used in the inversion

(MHD, THD, RPB, SMO, CGO). Lower panel: HFC-152a semi-

hemisphere annualized growth rates are shown as dashed lines (see

Rigby et al., 2014 for smoothing method), with the solid blue line

and shading showing the global mean and its uncertainty.

of the area indicated in Fig. 1 (red box). The steady decline in

emissions was interrupted by a local maximum in the years

2010–2012, when emissions reached 3.6± 0.5 (Gg yr−1). A

minimum in the posterior emissions can be seen in 2009 and

was most pronounced for the Iberian Peninsula, Italy, France

and Germany, which might indicate the influence of the Eu-

ropean recession in 2008–2009. For NWEU the emission es-

timate remains slightly below the UNFCCC estimates and

those estimated by InTEM, but support the declining trend

in European emissions. Despite the fact that Italy does not

report HFC-152a emissions to the UNFCCC, the largest by

country emissions were estimated for Italy (up to 1 Gg yr−1

in 2007). However, a strong decline in these emissions after

2011 was established here. Similar values for Italian HFC-

Figure 7. HFC-152a emissions estimates derived from observations

(blue line and shading, 1σ uncertainty) and inventories. The purple

line shows the global emissions estimates from EDGAR (v4.2), the

red line shows the emissions reported to the UNFCCC and the green

line shows emissions calculated from all data reported to UNFCCC,

including allowance for the HFC-152a component of unspecified

emissions.

152a emissions were reported by Brunner et al. (2012) using

observations from Jungfraujoch and Mace Head (but not Mt.

Cimone) in an extended Kalman Filter inversion.

5.2.3 US estimated emissions

Estimates of North American emissions have been reported

by several groups (see also estimates from this study in Ta-

ble 3). Millet et al. (2009) report average US emissions for

2004–2006 of 7.6 Gg (4.8–10 Gg) compared with the UN-

FCCC average 2005–2006 estimate of 12.3 Gg calculated

from UNFCCC data. Miller et al. (2012) provided HFC-

152a emissions estimates averaged from 2004–2009 of 25 Gg

(11–50 Gg). Barletta et al. (2011) reported a 2008 HFC-152a

emission estimate of 32± 4 Gg. In a recent investigation of

the surface-to-surface transport of HFC-152a from North

America to Mace Head, Ireland, an interspecies correlation

method with HFC-125 as the reference gas was also used to
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Figure 8. Emission (Gg yr−1) estimates for HFC-152a from north-

western Europe. The blue uncertainty bars represent the 5th and

95th percentiles of the InTEM estimates (rolling 3-yr averages). The

orange bars and associated uncertainty are the UNFCCC inventory

estimates for the NWEU region. (25 % uncertainty is estimated by

the UK in their National Inventory Report (NIR) submission to the

UNFCCC, the same uncertainty was assumed for northwestern Eu-

rope given the lack of additional information).

estimate North American emissions primarily from the east-

ern seaboard region. The average 2008 HFC-152a emission

estimate was 31.3± 5.9 Gg (Simmonds et al., 2015); in very

close agreement with the estimate from Barletta et al. (2011).

HFC-152a emission estimates for 2005 (10.1 Gg) and 2006

(12.5 Gg) reported by Stohl et al. (2009) are close to the (re-

calculated) UNFCCC estimates in those years.

If the sources of emissions from the US were solely tech-

nical aerosols and construction foam, emissions would be ex-

pected to be far lower. These were the historic uses in Europe

and Japan and resulted in emissions 10 times less than those

estimated for the US. However, in the US, do-it-yourself

(DIY) refilling of car air conditioners is not only permitted

but thriving (Zhan et al., 2014), with an estimated 24 million

DIY refilling operations attempted each year. The practice is

banned in Europe (OJ, 2014).

Furthermore, there is ample evidence online that HFC-

152a is extensively used in DIY refilling on account of its

lower cost. It is a technically suitable replacement for HFC-

134a, although there are safety concerns of importance to

vehicle manufacturers (Hill, 2003). If the quantities esti-

mated by Zhan et al. (2014) were met using HFC-152a di-

verted from the retail trade in technical aerosols, some 10

to 20 Gg yr−1 of HFC-152a could be released into the atmo-

sphere from this source alone.

5.2.4 East Asian emissions

Emissions of HFC-152a from China were estimated to be

4.3± 2.3 Gg yr−1 in 2004–2005 (Yokouchi et al., 2006),

3.4± 0.5 Gg yr−1 in 2008 (Stohl et al., 2010) and 5.7 (4.3–

7.6) Gg yr−1 in 2008 (Kim et al., 2010). Li et al. (2011) using

an interspecies correlation method also reported emission es-

timates for East Asia (China, South Korea, and Taiwan, with

HCFC-22 as the reference tracer) and Japan (reference tracer

HFC-134a) for the period between November 2007 and De-

cember 2008. For China, emissions were estimated to be 5.4

(4–7.4) Gg yr−1. In contrast, the Taiwan region, Korea, and

Japan had lower estimated emissions totalling 1.39 Gg yr−1.

These estimates are within the uncertainties of our East Asia

emissions reported in Sect. 5.2 and Table 3.

Yao et al. (2012), using the interspecies correlation method

with carbon monoxide as the reference tracer, reported more

recent Chinese emissions of 2± 1.8 Gg yr−1 in 2010–2011.

This would imply some reduction in Chinese emissions com-

pared with earlier years.

5.2.5 Australian HFC-152a emissions from Cape Grim

data

SE Australian emissions of HFC-152a are estimated using

the positive enhancements above baseline or background

concentrations observed at Cape Grim using interspecies cor-

relation with CO as the reference species (ISC: Dunse et

al., 2005; Greally et al., 2007) and inverse modeling (In-

TEM: Manning et al., 2003, 2011). Figure 2a (CGO) shows

an overall increase in the magnitude of HFC-152a pollution

episodes, presumably due to increasing regional emissions.

Detailed analysis of these pollution episodes using air mass

back trajectories shows clearly that the HFC-152a pollution

seen at Cape Grim originates largely from Melbourne and the

surrounding Port Phillip region.

Australian HFC-152a emissions of 5–10 Mg yr−1 via in-

terspecies correlation (ISC) have been reported for the period

1998–2004, although it was noted that these emission esti-

mates were near the detection limit of the ISC method (Gre-

ally et al., 2007). Recently, significant improvements have

been made to this ISC method, including a revised (upward)

CO emissions inventory for the Melbourne/Port Phillip re-

gion, exclusion of high CO events in the Cape Grim in situ

CO record, resulting from CO emissions from biomass burn-

ing and coal combustion in the Latrobe Valley (east of Port

Phillip) and a revised (upward) population-based scaling fac-

tor (5.4), used to convert Melbourne/Port Phillip emissions

to Australian emissions (Fraser et al., 2014a, b). Each of

these changes to the ISC method resulted in higher trace gas

emission estimates. The revised (compared to Greally et al.,

2007) Australian HFC-152a emission estimates from the ISC

method are shown in the 2nd column of Table 4 and in Fig. 10

as 3-year running averages.

The InTEM model (Manning et al., 2003, 2011) has been

used to derive HFC-152a emissions from Victoria/Tasmania

(Fraser et al., 2014a). Annual Australian emissions are cal-

culated from Victoria/Tasmania emissions using a popula-

tion based scale factor of 3.7 and are shown in Fig. 10 and

the 3rd column of Table 4, interpolated from rolling 3-year

emission estimates. Over the period 2002–2011, the average

Australian HFC-152a emissions from ISC and InTEM agree

to within 2 %. The method for estimating the InTEM uncer-

tainties are discussed above. No additional uncertainty was
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Figure 9. HFC-152a emission estimates for different European regions using the Bayesian regional inversion (orange bars) and prior esti-

mates as reported to UNFCCC (green bars). Error bars indicate 2σ confidence levels. Total prior uncertainties were set to 20 % of the total

domain emissions, which may result in different levels of relative uncertainty for each country/region. Note that prior estimates for Italy were

taken from EDGAR instead. Prior values for 2012 were repeated for each region after 2012.

Table 4. Australian HFC-152a emissions (Mg yr−1, 3-year running averages) calculated from Cape Grim in situ observations via ISC (ADS

and Medusa data, uncertainty:±1 SD) and inverse modeling using InTEM (Medusa data, range: 25th–75th percentiles); ISC, NAME averages

weighted by uncertainties, ISC InTEM average for 2004 is based only on InTEM data.

YEAR ISC InTEM ISC and InTEM ISC / InTEM

average ratio

1999 24± 7

2000 25± 8

2001 27± 9

2002 28± 10 32 (31–34) 31± 2

2003 28± 10 32 (29–33) 31± 4 0.88

2004 29± 10 31 (29–33) 31± 2 0.94

2005 32± 10 31(30–33) 31± 4 1.03

2006 38± 10 35 (32–38) 35± 6 1.09

2007 51± 15 41 (37–43) 42± 6 1.24

2008 49± 15 43 (41–47) 44± 5 1.14

2009 52± 15 68 (64–72) 65± 8 0.76

2010 59± 20 69 (64–74) 67± 10 0.86

2011 56± 15 72 (68–76) 69± 7 0.78

2012 77± 25

2013 69± 24
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Figure 10. Australian HFC-152a emissions (Mg yr−1) calculated

from Cape Grim in situ observations via ISC, using ADS and

Medusa data, and inverse modeling using InTEM (Medusa data).

Australian emissions are derived from SE Australian emissions,

scaled by population (see text). Uncertainties are 25th–75th per-

centiles (InTEM) and 1 SD (ISC).

applied to the estimates through the process of up-scaling

from Victoria/Tasmania to Australian totals. The assumption

was made that the use of HFC-152a per head of population

was identical across Australia as we have no more detailed

information.

Australian HFC-152a emissions have increased steadily

from 25 Mg yr−1 in the late-1990s to over 60 Mg yr−1 in the

late-2000s. The 2012 and 2013 emissions have been esti-

mated from Cape Grim data by ISC at 77 and 69 Mg, respec-

tively. Australian HFC-152a emissions (1998–2004) are 25–

30 Mg, significantly higher than estimated (5–10 Mg yr−1) in

Greally et al. (2007), resulting from improvements in the ISC

method (see above).

Compared to the global values derived above, Aus-

tralian emissions are 0.1 % of global emissions based on

ISC/InTEM data. It is unusual for Australian emissions of

an industrial chemical to be as low as 0.1 % of global emis-

sions. For other HFCs, CFCs and HCFCs (for example HFC-

134a, CFC-12, HCFC-22), Australian emissions as fraction

of global emissions are typically 1–2 %, similar to Australia’s

fraction of global gross domestic product (GDP, 1.9 %, 2014)

but significantly larger than Australia’s fraction of global

population (0.33 %, 2014) (Fraser et al., 2014b).

The possible reasons for the low Australian HFC-152a

emissions (relatively low use in Australia compared to rest

of world) are being investigated. One suggestion (M. Ben-

nett, Refrigerant Reclaim Australia, personal communica-

tion, 2013) is that a significant major-volume use in other

parts of the world for HFC-152a is as an aerosol propellant,

a use not taken up to any significant degree in Australia.

6 Conclusions

Atmospheric abundances and temporal trends of HFC-152a

have been estimated from data collected at the network of 11

globally distributed monitoring sites. The longest continuous

in situ record at Mace Head, Ireland covers a 20-year pe-

riod from 1994–2014. Other stations within the network have

observational records from 9 to 16 years, with only a short

record (2010–2012) at Shangdianzi, China. From selected

baseline in situ measurements and measurements of archived

air samples dating back to 1978 the long-term growth rate of

HFC-152a has been deduced. Analyzing the enhancements

above baseline coupled with atmospheric transport models

permitted us to estimate both regional and global HFC-152a

emissions. However, it should be noted that the various mod-

els use different domains to obtain regional emissions esti-

mates.

The annual average NH (Mace Head + Trinidad Head)

baseline mole fraction in 1994 was 1.2 ppt reaching an an-

nual average mole fraction of 10.1 ppt in 2014. In the SH

(Cape Grim) the annual average mole fraction increased from

0.84 ppt in 1998 to 4.5 ppt in 2014. Using the global aver-

age mole fraction obtained from the AGAGE 12-box model

we estimate that the HFC-152a contribution to radiative forc-

ing was 0.61± 0.02 mW m−2 in 2014. Since the first in situ

measurements in 1994 the global annual growth rate of HFC-

152a has increased to a maximum annual growth rate in 2006

of 0.84± 0.05 ppt yr−1. More recently the average annual

growth rate has slowed to 0.38± 0.04 ppt yr−1 in 2010, and

become negative, with a growth rate in 2013–2014 of minus

0.06± 0.05 ppt yr−1.

Global HFC-152a emissions increased from

7.3± 5.6 Gg yr−1 in 1994 to 52.5± 20.15 Gg yr−1 in

2014. Global emissions are dominated by emissions from

North America with this region being responsible for∼ 67 %

of global emissions in our estimates. Estimates of northwest

European emissions of ∼ 0.9 Gg yr−1, (2010–2012 average)

agree within the uncertainties for the two regional models

(see Sect. 3.3 and 3.4) and overlap with the UNFCCC in-

ventory. For the combined Eulerian and Lagrangian models

(see Sect. 3.2 and Table 3) that encompass all European

countries, we derive a 2010–2012 average emission of

5.2 Gg yr−1. East Asian countries contribute 1 Gg yr−1

(Annex 1) and 6 Gg yr−1 (Non-Annex 1) to the global total

(2010–2012 averages). All of the models studies indicate a

current declining trend in European and Asian emissions.

Substantial differences in emission estimates of HFC-152a

were found between this study and those reported to the UN-

FCCC which we suggest arises from underestimated North

American emissions and undeclared Asian emissions; re-

flecting the incomplete global reporting of GHG emissions

to the UNFCCC and/or biases in the accounting methodol-

ogy. Ongoing, continuous, and accurate globally and region-

ally distributed atmospheric measurements of GHGs, such

as HFC-152a, are required for “top-down” quantification of

global and regional emissions of these gases, thereby en-

abling improvements in national emissions inventories, or

“bottom-up” emissions data collected and reported to the

UNFCCC (Weiss and Prinn, 2011).
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Data availability

The entire ALE/GAGE/AGAGE data base comprising ev-

ery calibrated measurement including pollution events is

archived on the Carbon Dioxide Information and Analysis

Center (CDIAC) at the US Department of Energy, Oak Ridge

National Laboratory.

Acknowledgements. We specifically acknowledge the cooperation

and efforts of the station operators (G. Spain, MHD; R. Dickau,

THD; P. Sealy, RPB; NOAA officer-in-charge, SMO) at the

AGAGE stations and all other station managers and support

staff at the different monitoring sites used in this study. We

particularly thank NOAA and NILU for supplying some of

the archived air samples shown, allowing us to fill important

gaps. The operation of the AGAGE stations was supported by

the National Aeronautic and Space Administration (NASA,

USA) (grants NAG5-12669, NNX07AE89G and NNX11AF17G

to MIT; grants NAG5-4023, NNX07AE87G, NNX07AF09G,

NNX11AF15G and NNX11AF16G to SIO); the Department of the

Energy and Climate Change (DECC, UK) (contract GA0201 to

the University of Bristol); the National Oceanic and Atmospheric

Administration (NOAA, USA) (contract RA133R09CN0062 in

addition to the operations of American Samoa station); and the

Commonwealth Scientific and Industrial Research Organisation

(CSIRO, Australia), Bureau of Meteorology (Australia). Financial

support for the Jungfraujoch measurements is acknowledged

from the Swiss national programme HALCLIM (Swiss Federal

Office for the Environment (FOEN)). Support for the Jungfraujoch

station was provided by International Foundation High Altitude

Research Stations Jungfraujoch and Gornergrat (HFSJG). The

measurements at Gosan, South Korea were supported by the

Basic Science Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Science, ICT

& Future Planning (2014R1A1A3051944). Financial support for

the Zeppelin measurements is acknowledged from the Norwegian

Environment Agency. Financial support for the Shangdianzi

measurements is acknowledged from the National Nature Science

Foundation of China (41030107, 41205094). The CSIRO and the

Australian Government Bureau of Meteorology are thanked for

their ongoing long-term support of the Cape Grim station and the

Cape Grim science program. M. Rigby is supported by a NERC

Advanced Fellowship NE/I021365/1.

Edited by: E. Harris

References

Archibald, A. T., Witham, C. S., Ashfold, M. J., Manning, A. J.,

O’Doherty, S., Greally, B. R., Young, D., and Shallcross D.

E.: Long-term high frequency measurements of ethane, benzene

and methyl chloride at Ragged Point, Barbados: Identification

of long-range transport events, Elementa: Science of the An-

thropocene, 3, 000068, doi:10.12952/journal.elementa.000068,

2015.

Arnold, T., Mühle, J., Salameh, P. K., Harth, C. M., Ivy, D. J., and

Weiss, R. F.: Automated measurement of nitrogen trifluoride in

ambient air, Anal. Chem., 84, 4798–4804, 2012.

Ashford, P., Clodic, D., McCulloch, A., and Kuijpers, L.: Emission

profiles from the foam and refrigeration sectors comparison with

atmospheric concentrations. Part 2: Results and discussion, Int.

J. Refrigeration, 27, 701–716, 2004.

Barletta, B., Nissenson, P., Meinardi, S., Dabdub, D., Sherwood

Rowland, F., VanCuren, R. A., Pederson, J., Diskin, G. S., and

Blake, D. R.: HFC-152a and HFC-134a emission estimates and

characterization of CFCs, CFC replacements, and other halo-

genated solvents measured during the 2008 ARCTAS campaign

(CARB phase) over the South Coast Air Basin of California,

Atmos. Chem. Phys., 11, 2655–2669, doi:10.5194/acp-11-2655-

2011, 2011.

Brunner, D., Henne, S., Keller, C. A., Reimann, S., Vollmer, M. K.,

O’Doherty, S., and Maione, M.: An extended Kalman-filter for

regional scale inverse emission estimation, Atmos. Chem. Phys.,

12, 3455–3478, doi:10.5194/acp-12-3455-2012, 2012.

Cunnold, D. M., Prinn, R. G., Rasmussen, R., Simmonds, P. G.,

Alyea, F. N., Cardlino, C., Crawford, A. J., Fraser, P. J., and

Rosen, R.: The lifetime atmospheric experiment, III: lifetime

methodology and application to three years of CFCl3 data, J.

Geophys. Res., 88, 8379–8400, 1983.

Cunnold, D. M., Fraser, P. J., Weiss, R. F., Prinn, R. G., Simmonds,

P. G., Miller, B. R., Alyea, F. N., Crawford, A. J., and Rosen,

R.: Global trends and annual releases of CCl3F and CCl2F2 esti-

mated from ALE/GAGE and other measurements from July 1978

to June 1991, J. Geophys. Res., 99, 1107–1126, 1994.

DoE: National Inventory Report 2012, Volume 1, Australian Gov-

ernment Department of the Environment, April 2014, 351 pp.,

2014.

Dunse, B.: Investigation of urban emissions of trace gases by use

of atmospheric measurements and a high-resolution atmospheric

transport model. PhD thesis, Wollongong University, Wollon-

gong, NSW, Australia, 2002.

Dunse, B., Steele, P., Fraser, P., and Wilson, S.: An analysis of Mel-

bourne pollution episodes observed at Cape Grim from 1995–

1998, in: Baseline Atmospheric Program (Australia) 1997–98,

edited by: Tindale, N., Francey, R., and Derek, N., Bureau of Me-

teorology and CSIRO Atmospheric Research, Melbourne, Aus-

tralia, 34–42, 2001.

Dunse, B., Steele, P., Wilson, S., Fraser, P., and Krummel, P.: Trace

gas emissions from Melbourne Australia, based on AGAGE ob-

servations at Cape Grim, Tasmania, 1995–2000, Atmos. Envi-

ron., 39, 6334–6344, 2005.

EC-JRC/PBL.: Emission Database for Global Atmospheric Re-

search (EDGAR), version 4.2, European Commission, Joint

Research Centre (JRC)/Netherlands Environmental Assessment

Agency (PBL), available at: http://edgar.jrc.ec.europa.eu (last ac-

cess: 1 March 2015), 2011.

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister,

G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D.,

Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C.,

Baughcum, S. L., and Kloster, S.: Description and evaluation of

the Model for Ozone and Related chemical Tracers, version 4

(MOZART-4), Geosci. Model Dev., 3, 43–67, doi:10.5194/gmd-

3-43-2010, 2010.

www.atmos-chem-phys.net/16/365/2016/ Atmos. Chem. Phys., 16, 365–382, 2016

http://dx.doi.org/10.12952/journal.elementa.000068
http://dx.doi.org/10.5194/acp-11-2655-2011
http://dx.doi.org/10.5194/acp-11-2655-2011
http://dx.doi.org/10.5194/acp-12-3455-2012
http://edgar.jrc.ec.europa.eu
http://dx.doi.org/10.5194/gmd-3-43-2010
http://dx.doi.org/10.5194/gmd-3-43-2010


380 P. G. Simmonds et al.: Global and regional emissions estimates of HFC-152a

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fa-

hey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G.,

Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland,

R.: Changes in atmospheric constituents and in radiative forcing,

in: Climate Change (2007): The Physical Science Basis. Con-

tribution of Working Group I to the Fourth Assessment Report

of the Intergovernmental Panel on Climate Change, edited by:

Solomon, S., 2007.

Fraser, P., Dunse, B., Krummel, P., Steele, P., and Derek, N., Aus-

tralian HFC, PFC, Sulphur Hexafluoride & Sulphuryl Fluoride

Emissions, Australian Government Department of the Environ-

ment, 28 pp., 2014a.

Fraser, P., Dunse, B., Manning, A. J., Wang, R., Krummel, P.,

Steele, P., Porter, L., Allison, C., O’Doherty, S., Simmonds, P.,

Mühle, J., and Prinn, R.: Australian carbon tetrachloride (CCl4)

emissions in a global context, Environ. Chem., 11, 77–88, 2014b.

Ganesan, A. L., Rigby, M., Zammit-Mangion, A., Manning, A. J.,

Prinn, R. G., Fraser, P. J., Harth, C. M., Kim, K.-R., Krummel, P.

B., Li, S., Mühle, J., O’Doherty, S. J., Park, S., Salameh, P. K.,

Steele, L. P., and Weiss, R. F.: Characterization of uncertainties

in atmospheric trace gas inversions using hierarchical Bayesian

methods, Atmos. Chem. Phys., 14, 3855–3864, doi:10.5194/acp-

14-3855-2014, 2014.

Greally, B. R., Manning, A. J., Reimann, S., McCulloch, A., Huang,

J., Dunse, B. L., Simmonds, P. G., Prinn, R. G., Fraser, P. J., Cun-

nold, D. M., O’Doherty, S., Porter, L. W., Stemmler, K., Vollmer,

M. K., Lunder, C. R., Schmidbauer, N., Hermansen, O., Arduini,

J., Salameh, P. K., Krummel, P. B., Wang, R. H. J., Folini, D.,

Weiss, R. F., Maione, M., Nickless, G., Stordal, F., and Der-

went, R. G.: Observations of 1,1-difluoroethane (HFC-152a) at

AGAGE and SOGE monitoring stations in 1994–2004 and de-

rived global and regional emission estimates, J. Geophys. Res.,

112, D06308, doi:10.1029/2006JD007527, 2007.

Hill, W. R.: HFC152a as the alternative refrigerant, avail-

able at: http://ec.europa.eu/environment/archives/mac2003/pdf/

hill.pdf (last access: 1 March 2015), 2003.

IPCC/TEAP: Progress Report-Volume-1-May 2011. Technology

and Assessment Panel. United Nations Environment Programme,

Ozone Secretariat, P.O. Box 30552, Nairobi, Kenya, 2011.

Keller, C. A., Hill, M., Vollmer, M. K., Henne, S., Brunner, D.,

Reimann, S., O’Doherty, S., Arduini, J., Maione, M., Ferenczi,

Z., Haszpra, L., Manning, A. J., and Peter, T.: European Emis-

sions of Halogenated Greenhouse Gases Inferred from Atmo-

spheric Measurements, Environ. Sci. Technol., 46, 217–225,

doi:10.1021/es202453j, 2012.

Kim, J., Li, S., Kim, K.-R., Stohl, A., Mühle, J., Kim, S.-K., Park,

M.-K., Kang, D.-J., Lee, G., Harth, C. M., Salameh, P. K., and

Weiss, R. F.: Regional emissions determined from measurements

at Jeju Island, Korea: Halogenated compounds from China. Geo-

phys. Res. Lett, 37, L12801, doi:10.1029/2010GL043263, 2010.

Krummel, P. B., Langenfelds, R. L., Fraser, P. J., Steele, L. P., and

Porter, L. W.: Archiving of Cape Grim air, in Baseline Atmo-

spheric Program, Australia 2005–2006, edited by: Cainey, J. M.,

Derek, N., and Krummel, P. B., Australian Bureau of Meteorol-

ogy and CSIRO Marine and Atmospheric Research, Melbourne,

Australia, 55–57, 2007.

Krummel, P. B., Fraser, P. Steele, P., Derek, N., Rickard, C., Ward,

J., Somerville, N., Cleland, S., Dunse, B., Langenfelds, R., Baly

S., and Leist, M.: The AGAGE in situ program for non-CO2

greenhouse gases at Cape Grim, 2009–2010, Baseline Atmo-

spheric Program (Australia) 2009–2010, edited by: Krummel,

N. D. P. and Cleland, S., Australian Bureau of Meteorology

and CSIRO Marine and Atmospheric Research, Melbourne, Aus-

tralia, 55–70, 2014.

Langenfelds, R. L., Fraser, P. J., Francey, R. J., Steele, L. P., Porter,

L. W., and Allison, C. E.: The Cape Grim Air Archive; the first

seventeen years, 1978–1995, in: Baseline Atmospheric Program,

Australia 1994–1995, edited by: Francey, R. J., Dick, A. L., and

Derek, N., Bureau of Meteorology and CSIRO Division of At-

mospheric Research, Melbourne, 53–70, 1996.

Li, S., Kim, J., Kim, K.-R., Mühle, J., Kim, S.-K., Park, M.-K.,

Stohl, A., Kang, D.-J., Arnold, T., Harth, C. M., Salameh, P.

K., and Weiss, R. F.: Emissions of halogenated compounds in

East Asia determined from measurements at Jeju Island, Korea,

Environ. Sci. Technol., 45, 5668–5675, doi:10.1021/es104124k,

2011.

Lunt, M. F., Rigby, M., Ganesan, A. L., Manning, A. J., Prinn,

R. G., O’Doherty, S., Mühle, J., Harth, C. M., Salameh, P.

K., Arnold, T., Weiss, R. F., Saito, T., Yokouchi. Y., Krum-

mel, P. B., Steele, L. P., Fraser, P. J., Li, S., Park, S., Reimann,

S., Vollmer, M. K., Lunder, C., Hermansen, O., Schmidbauer,

N., Maione, M., Young, D., and Simmonds, P. G.: Recon-

ciling reported and unreported HFC emissions with atmo-

spheric observations, Proc. Natl. Acad. Sci., 112, 5927–5931,

doi:10.1073/pnas.1420247112, 2015.

Maione, M., Graziosi, F., Arduini, J., Furlani, F., Giostra, U., Blake,

D. R., Bonasoni, P., Fang, X., Montzka, S. A., O’Doherty, S. J.,

Reimann, S., Stohl, A., and Vollmer, M. K.: Estimates of Euro-

pean emissions of methyl chloroform using a Bayesian inversion

method, Atmos. Chem. Phys., 14, 9755–9770, doi:10.5194/acp-

14-9755-2014, 2014.

Manning, A. J. and Weiss, R. F.: Quantifying Regional GHG

Emissions from Atmospheric Measurements: HFC-134a at

Trinidad Head, 50th anniversary of the Global Carbon Diox-

ide Record Symposium and Celebration, Kona, Hawaii, avail-

able at: http:///www.esrl.noaa.gov/gmd/co_2_conference/pdfs/

quantifying_abstract.pdf (last access: July 2010), 2007.

Manning, A. J., Ryall, D., Derwent, R., Simmonds, P., and

O’Doherty, S.: Estimating European ozone depleting and green-

house gases using observations and a modelling attribution tech-

nique, J. Geophys. Res., 108, 4405, doi:10.1029/2002JD002312,

2003.

Manning, A. J., O’Doherty, S., Jones, A. R., Simmonds, P. G., and

Derwent, R. G.: Estimating UK methane and nitrous oxide emis-

sions from 1990 to 2007 using an inversion modelling approach,

J. Geophys. Res., 116, D02305, doi:1029/2010JD014763, 2011.

McCulloch, A.: Evidence for improvements in containment

of fluorinated hydrocarbons during use: an analysis of re-

ported European emissions, Environ. Sci. Policy., 12, 149–156,

doi:10.1016/j.envsci.2008.12.003, 2009.

Miller, B., Weiss, R., Salameh, P., Tanhua, T., Greally, B., Muhle,

J., and Simmonds, P.: Medusa: a sample pre-concentration and

GC-MS detector system for in situ measurements of atmospheric

trace halocarbons, hydrocarbons and sulphur compounds, Anal.

Chem., 80, 1536–1545, 2008.

Miller, B. R., Rigby, M., Kuijpers, L. J. M., Krummel, P. B.,

Steele, L. P., Leist, M., Fraser, P. J., McCulloch, A., Harth, C.,

Salameh, P., Mühle, J., Weiss, R. F., Prinn, R. G., Wang, R. H.

Atmos. Chem. Phys., 16, 365–382, 2016 www.atmos-chem-phys.net/16/365/2016/

http://dx.doi.org/10.5194/acp-14-3855-2014
http://dx.doi.org/10.5194/acp-14-3855-2014
http://dx.doi.org/10.1029/2006JD007527
http://ec.europa.eu/environment/archives/mac2003/pdf/hill.pdf
http://ec.europa.eu/environment/archives/mac2003/pdf/hill.pdf
http://dx.doi.org/10.1021/es202453j
http://dx.doi.org/10.1029/2010GL043263
http://dx.doi.org/10.1021/es104124k
http://dx.doi.org/10.1073/pnas.1420247112
http://dx.doi.org/10.5194/acp-14-9755-2014
http://dx.doi.org/10.5194/acp-14-9755-2014
http:///www.esrl.noaa.gov/gmd/co_2_conference/pdfs/quantifying_abstract.pdf
http:///www.esrl.noaa.gov/gmd/co_2_conference/pdfs/quantifying_abstract.pdf
http://dx.doi.org/10.1029/2002JD002312
http://dx.doi.org/1029/2010JD014763
http://dx.doi.org/10.1016/j.envsci.2008.12.003


P. G. Simmonds et al.: Global and regional emissions estimates of HFC-152a 381

J., O’Doherty, S., Greally, B. R., and Simmonds, P. G.: HFC-

23 (CHF3) emission trend response to HCFC-22 (CHClF2) pro-

duction and recent HFC-23 emission abatement measures, At-

mos. Chem. Phys., 10, 7875–7890, doi:10.5194/acp-10-7875-

2010, 2010.

Miller, J. B., Lehman, S. J., Montzka, S. A., Sweeney, C., Miller, B.

R., Karion, A., Wolak, C., Dlugokencky, E. J., Southon, J., Turn-

bull, J. C., and Tans, P. P.: Linking emissions of fossil fuel CO2

and other anthropogenic trace gases using atmospheric 14 CO2, J.

Geophys. Res., 117, D08302, doi:10.1029/2011JD017048, 2012.

Millet, D. B., Atlas, L. E., Blake, D. R., Blake, N. J., Diskin, C. S.,

Holloway, J. D., Hudman, R. C., Meinardi, S., Ryerson, T. B.,

and Sachse, G. W.: Halocarbon emissions from the United States

and Mexico and their Global warming potential. Environ. Sci.

Technol., 43, 1055–1060, doi:10.1021/Es802146j, 2009.

Mühle, J., Ganesan, A. L., Miller, B. R., Salameh, P. K., Harth,

C. M., Greally, B. R., Rigby, M., Porter, L. W., Steele, L. P.,

Trudinger, C. M., Krummel, P. B., O’Doherty, S., Fraser, P. J.,

Simmonds, P. G., Prinn, R. G., and Weiss, R. F.: Perfluorocarbons

in the global atmosphere: tetrafluoromethane, hexafluoroethane,

and octafluoropropane, Atmos. Chem. Phys., 10, 5145–5164,

doi:10.5194/acp-10-5145-2010, 2010.

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt,

J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza,

B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and

Zhang, H.: Anthropogenic and Natural Radiative Forcing. In:

Climate Change 2013: The Physical Science Basis. Contribution

of Working Group I to the Fifth Assessment Report of the Inter-

governmental Panel on Climate Change, edited by: Stocker, T. F.,

Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J.,

Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. Cambridge Uni-

versity Press, Cambridge, United Kingdom and New York, NY,

USA, 2013.

O’Doherty, S., Cunnold, D., Sturrock, G. A., Ryall, D., Derwent,

R. G., Wang, R. H. J., Simmonds, P., Fraser, P. J., Weiss, R. F.,

Salameh, P., Miller, B. R., and Prinn, R. G.: In-Situ Chloroform

Measurements at AGAGE Atmospheric Research Stations from

1994–1998, J. Geophys. Res., 106, 20429–20444, 2001.

O’Doherty, S., Cunnold, D. M., Miller, B. R., Mühle, J., McCul-

loch, A., Simmonds, P. G., Mühle, J., McCulloch, A., Simmonds,

P. G., Manning, A. J., Reimann, S., Vollmer, M. K., Greally,

B. R., Prinn, R. G., Fraser, P. J., Steele, L. P., Krummel, P. B.,

Dunse, B. L., Porter, L. W., Lunder, C. R., Schmidbauer, N.,

Hermansen, O., Salameh, P. K., Harth, C. M., Wang, R. H. J.,

and Weiss, R. F.: Global and regional emissions of HFC-125

(CHF2CF3) from in situ and air archive atmospheric observa-

tions at AGAGE and SOGE observatories, J. Geophys. Res., 114,

D23304, doi:10.1029/2009jd012184, 2009.

O’Doherty, S., Rigby, M., Mühle, J., Ivy, D. J., Miller, B. R., Young,

D., Simmonds, P. G., Reimann, S., Vollmer, M. K., Krummel, P.

B., Fraser, P. J., Steele, L. P., Dunse, B., Salameh, P. K., Harth,

C. M., Arnold, T., Weiss, R. F., Kim, J., Park, S., Li, S., Lun-

der, C., Hermansen, O., Schmidbauer, N., Zhou, L. X., Yao, B.,

Wang, R. H. J., Manning, A. J., and Prinn, R. G.: Global emis-

sions of HFC-143a (CH3CF3) and HFC-32 (CH2F2) from in situ

and air archive atmospheric observations, Atmos. Chem. Phys.,

14, 9249–9258, doi:10.5194/acp-14-9249-2014, 2014.

OJ (Official Journal of the European Union): Regulation (EU) No

517/2014 of the European Parliament and of the Council of 16

April 2014 on fluorinated greenhouse gases and repealing Regu-

lation (EC) No 842/2006, Official Journal L 150/195, 2014.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B.

P.: Numerical Recipes in Fortran: The art of scientific computing,

2nd Edn., Cambridge University Press, UK, 1992.

Prinn, R., Cunnold, D., Simmonds, P., Alyea, F., Boldi, R., Craw-

ford, A., Fraser, P., Gutzler, D., Hartlet, D., Rose, R., and Ras-

mussen, R.: Global average concentration and trend for hydroxyl

radicals deduced from ALE/GAGE trichloroethane (methyl chlo-

roform) data for 1978–1990, J. Geophys. Res., 97, 2445–2461,

1992.

Prinn, R., Weiss, R. F., Fraser, P., Simmonds, P., Cunnold, D., Alyea,

F., O’Doherty, S., Salameh, P., Miller, B., Huang, J., Wang, R.,

Hartley, D., Harth, C., Steele, P., Sturrock, G., Midgley, P., and

McCulloch, A.: A history of chemically and radiatively impor-

tant gases in air deduced from ALE/GAGE/AGAGE, J. Geophys.

Res., 105, 17751–17792, 2000.

Reimann, S., Schaub, D., Stemmler, K., Folini, D., Hill, M.,

Hofer, P., Buchmann, B., Simmonds, P. G., Greally, B. R., and

O’Doherty, S.: Halogenated greenhouse gases at the Swiss High

Alpine Site of Jungfraujoch (3580 m asl): Continuous measure-

ments and their use for regional European source allocation, J.

Geophys. Res., 109, D05307, doi:10.1029/2003JD003923, 2004.

Rigby, M., Ganesan, A. L., and Prinn, R. G.: Deriving emissions

time series from sparse atmospheric mole fractions, J. Geophys.

Res., 116, D08306, doi:10.1029/2010JD015401, 2011a.

Rigby, M., Manning, A. J., and Prinn, R. G.: Inversion of long-lived

trace gas emissions using combined Eulerian and Lagrangian

chemical transport models, Atmos. Chem. Phys., 11, 9887–9898,

doi:10.5194/acp-11-9887-2011, 2011b.

Rigby, M., Prinn, R. G., O’Doherty, S., Montzka, S. A., McCul-

loch, A., Harth, C. M., Mühle, J., Salameh, P. K., Weiss, R. F.,

Young, D., Simmonds, P. G., Hall, B. D., Dutton, G. S., Nance,

D., Mondeel, D. J., Elkins, J. W., Krummel, P. B., Steele, L. P.,

and Fraser, P. J.: Re-evaluation of the lifetimes of the major CFCs

and CH3CCl3 using atmospheric trends, Atmos. Chem. Phys.,

13, 2691–2702, doi:10.5194/acp-13-2691-2013, 2013.

Rigby, M., Prinn, R., O’Doherty, S., Miller, B., Ivy, D., Muhle,

J., Harth, C., Salameh, P., Arnold, T., Weiss, R., Krummel, P.,

Steele, P., Fraser, P., Young, D., and Simmonds, P.: Recent and

future trends in synthetic greenhouse gas radiative forcing, Geo-

phys. Res. Lett., 41, 2623–2630, 2014.

Ruckstuhl, A. F., Henne, S., Reimann, S., Steinbacher, M., Vollmer,

M. K., O’Doherty, S., Buchmann, B., and Hueglin, C.: Ro-

bust extraction of baseline signal of atmospheric trace species

using local regression, Atmos. Meas. Tech., 5, 2613–2624,

doi:10.5194/amt-5-2613-2012, 2012.

Ryall, D. B., Derwent, R. G., Simmonds, P. G., and O’Doherty, S.:

Estimating source regions of European emissions of trace gases

from observations at Mace Head, Atmos. Environ., 35, 2507–

2523, 2001.

Simmonds, P. G., O’Doherty, S., Nickless, G., Sturrock, G. A.,

Swaby, R., Knight, P., Ricketts, J., Woffenden, G., and Smith, R.:

Automated gas chromatographic/mass spectrometer for routine

atmospheric field measurements of the CFC replacement com-

pounds, the hydrofluorocarbons and hydrochlorofluorocarbons,

Anal. Chem., 67, 717–723, 1995.

Simmonds, P. G., Derwent, R.G., Manning, A. J., McCulloch,

A., and O’Doherty, S.: USA emissions estimates of CH3CHF2,

www.atmos-chem-phys.net/16/365/2016/ Atmos. Chem. Phys., 16, 365–382, 2016

http://dx.doi.org/10.5194/acp-10-7875-2010
http://dx.doi.org/10.5194/acp-10-7875-2010
http://dx.doi.org/10.1029/2011JD017048
http://dx.doi.org/10.1021/Es802146j
http://dx.doi.org/10.5194/acp-10-5145-2010
http://dx.doi.org/10.1029/2009jd012184
http://dx.doi.org/10.5194/acp-14-9249-2014
http://dx.doi.org/10.1029/2003JD003923
http://dx.doi.org/10.1029/2010JD015401
http://dx.doi.org/10.5194/acp-11-9887-2011
http://dx.doi.org/10.5194/acp-13-2691-2013
http://dx.doi.org/10.5194/amt-5-2613-2012


382 P. G. Simmonds et al.: Global and regional emissions estimates of HFC-152a

CH2FCF3 and CH2F2 based on in situ observations at Mace

Head, Atmos. Environ., 104, 27–38, 2015.

SPARC Report on the Lifetimes of Stratospheric Ozone-Depleting

Substances, Their Replacements and Related Species, SPARC

Report No. 6, edited by: Ko, M. K. W., Newman, P. A., Reimann,

S., and Strahan, S. E., WCRP-15/2013, December 2013.

Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.:

Technical note: The Lagrangian particle dispersion model

FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474,

doi:10.5194/acp-5-2461-2005, 2005.

Stohl, A., Seibert, P., Arduini, J., Eckhardt, S., Fraser, P., Greally,

B. R., Lunder, C., Maione, M., Mühle, J., O’Doherty, S., Prinn,

R. G., Reimann, S., Saito, T., Schmidbauer, N., Simmonds, P. G.,

Vollmer, M. K., Weiss, R. F., and Yokouchi, Y.: An analytical

inversion method for determining regional and global emissions

of greenhouse gases: Sensitivity studies and application to halo-

carbons, Atmos. Chem. Phys., 9, 1597–1620, doi:10.5194/acp-9-

1597-2009, 2009.

Stohl, A., Kim, J., Li, S., O’Doherty, S., Mühle, J., Salameh,

P. K., Saito, T., Vollmer, M. K., Wan, D., Weiss, R. F.,

Yao, B., Yokouchi, Y., and Zhou, L. X.: Hydrochlorofluoro-

carbon and hydrofluorocarbon emissions in East Asia deter-

mined by inverse modeling, Atmos. Chem. Phys., 10, 3545–

3560, doi:10.5194/acp-10-3545-2010, 2010.

Sturrock, G. A., Porter, L. W., Fraser, P. J., Derek, N., and Krummel,

P. B.: HCFCs, HFCs, halons, minor CFCs and halomethanes-

The AGAGE in situ GC-MS program, 1997–1998, and related

measurements on flask air samples collected at Cape Grim, in

Baseline Program, Australia 1997–1998, edited by: Tindale, N.

W., Derek, N., and Francey, R. J., 97–107, Bureau Of Meteorol.,

Melbourne, 2001.

Vollmer, M. K., Miller, B. R., Rigby, M., Reimann, S., Mühle,

J., Krummel, P. B., O’Doherty, S., Jim, J., Rhee, T. S., Weiss,

R. F., Fraser, P. J., Simmonds, P. G., Salameh, P. K., Harth,

C. M., Wang, R. H. J., Steele, L. P., Young, D., Lunder,

C. R., Hermansen, O., Ivy, D., Arnold, T., Schmidbauer, N.,

Kim, K.-R., Greally, B. G., Hill, M., Leist, M., Wenger, A.,

and Prinn, R. G.: Atmospheric histories and global emissions

of the anthropogenic hydrofluorocarbons HFC-365mfc, HFC-

245fa, HFC-227ea, and HFC-236fa, J. Geophys. Res., 116,

D08304, doi:10.1029/2010jd015309, 2011.

Weiss, R. F. and Prinn, R. G.: Quantifying greenhouse-gas emis-

sions from atmospheric measurements: a critical reality check

for climate legislation, Phil. Trans. R. Soc. A, 369, 1925–1942,

doi:10.1098/rsta.2011.0006, 2011.

Yao, B., Vollmer, M. K., Zhou, L. X., Henne, S., Reimann, S.,

Li, P. C., Wenger, A., and Hill, M.: In-situ measurements of

atmospheric hydrofluorocarbons (HFCs) and perfluorocarbons

(PFCs) at the Shangdianzi regional background station, China,

Atmos. Chem. Phys., 12, 10181–10193, doi:10.5194/acp-12-

10181-2012, 2012.

Yokouchi, Y., Inagki T., Yazawa, K., Tamaru, T., Enomoto, T.,

and Izumi, K.: Estimates of ratios of anthropogenic halo-

carbon emissions from Japan based on aircraft monitoring

over Sagami Bay, Japan, J. Geophys. Res., 110, D06301,

doi:10.1029/2004JD005320, 2005.

Yokouchi, Y., Taguchi, S., Saito, T., Tohjima, Y., Tanimoto, H., and

Mukai, H.: High frequency measurements of HFCs at a remote

site in East Asia and their implications for Chinese emissions.

Geophys. Res. Lett., 33, L21814, doi:10.1029/2006GL026403,

2006.

Zhan T., Potts, W., Collins, J. F., and Austin, J.: Inventory and mit-

igation opportunities for HFC-134a emissions from nonprofes-

sional automotive service, Atmos. Environ., 99, 17–23, 2014.

Atmos. Chem. Phys., 16, 365–382, 2016 www.atmos-chem-phys.net/16/365/2016/

http://dx.doi.org/10.5194/acp-5-2461-2005
http://dx.doi.org/10.5194/acp-9-1597-2009
http://dx.doi.org/10.5194/acp-9-1597-2009
http://dx.doi.org/10.5194/acp-10-3545-2010
http://dx.doi.org/10.1029/2010jd015309
http://dx.doi.org/10.1098/rsta.2011.0006
http://dx.doi.org/10.5194/acp-12-10181-2012
http://dx.doi.org/10.5194/acp-12-10181-2012
http://dx.doi.org/10.1029/2004JD005320
http://dx.doi.org/10.1029/2006GL026403

	Abstract
	Introduction
	Experimental methods
	Instrumentation and calibration
	Northern and Southern Hemisphere archived air samples
	Selection of baseline data

	Modeling studies
	Global emissions estimates using the AGAGE two-dimensional 12-box model
	Global and continental emissions estimates using a combined Eulerian and Lagrangian model
	High-resolution regional emissions estimates using InTEM
	High-resolution European emission estimates using the FLEXPART model
	Regional emissions estimates using the inter-species correlation (ISC) methods

	Results and discussion
	In situ observations
	Atmospheric trends and seasonal cycles 

	Top-down emission estimates
	Global estimates
	Regional emissions of HFC-152a inferred for Europe, United States, Asia, and Australia
	InTEM northwestern Europe (NWEU) estimated emissions from Mace Head observations
	European estimated emissions from European observations at Mace Head Jungfraujoch and Mt. Cimone
	US estimated emissions
	East Asian emissions
	Australian HFC-152a emissions from Cape Grim data


	Conclusions
	Acknowledgements
	References

