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Abstract

In this paper, we prove a conjecture published in 1989 and also partially address
an open problem announced at the Conference on Learning Theory (COLT) 2015.
For an expected loss function of a deep nonlinear neural network, we prove the fol-
lowing statements under the independence assumption adopted from recent work:
1) the function is non-convex and non-concave, 2) every local minimum is a global
minimum, 3) every critical point that is not a global minimum is a saddle point,
and 4) the property of saddle points differs for shallow networks (with three lay-
ers) and deeper networks (with more than three layers). Moreover, we prove that
the same four statements hold for deep linear neural networks with any depth,
any widths and no unrealistic assumptions. As a result, we present an instance,
for which we can answer to the following question: how difficult to directly train
a deep model in theory? It is more difficult than the classical machine learn-
ing models (because of the non-convexity), but not too difficult (because of the
nonexistence of poor local minima and the property of the saddle points). We note
that even though we have advanced the theoretical foundations of deep learning,
there is still a gap between theory and practice.

1 Introduction

Deep learning has been a great practical success in many fields, including the fields of computer
vision, machine learning, and artificial intelligence. In addition to its practical success, theoretical
results have shown that deep learning is attractive in terms of its generalization properties (Livni
et al., 2014; Mhaskaret al., 2016). That is, deep learning introduces good function classes that
may have a low capacity in the VC sense while being able to represent target functions of interest
well. However, deep learning requires us to deal with seemingly intractable optimization problems.
Typically, training of a deep model is conducted via non-convex optimization. Because finding a
global minimum of ageneralnon-convex function is an NP-complete problem (Murty & Kabadi,
1987), a hope is that a function induced by a deep model has some structure that makes the non-
convex optimization tractable. Unfortunately, it was shown in 1992 that training a very simple
neural network is indeed NP-hard (Blum & Rivest, 1992). In the past, such theoretical concerns in
optimization played a major role in shrinking the field of deep learning. That is, many researchers
instead favored classical machining learning models (with or without a kernel approach) that require
only convex optimization. While the recent great practical successes have revived the field, we do
not yet know what makes optimization in deep learning tractable in theory.

In this paper, as a step toward establishing the optimization theory for deep learning, we prove a
conjecture noted in (Goodfellowet al., 2016) for deeplinear networks, and also address an open
problem announced in (Choromanskaet al., 2015b) for deepnonlinear networks. Moreover, for
both the conjecture and the open problem, we prove more general and tighter statements than those
previously given.



2 Deep linear neural networks

Given the absence of a theoretical understanding of deep nonlinear neural networks,Goodfellow
et al. (2016) noted that it is beneficial to theoretically analyze the loss functions of simpler models,
i.e., linear neural networks. The function class of a linear neural network only contains functions
that are linear with respect to inputs. However, their loss functions are non-convex in the weight
parameters and thus nontrivial.Saxeet al. (2014) empirically showed that the optimization of deep
linear models exhibits similar properties to those of the optimization of deepnonlinear models.
Ultimately, for theoretical development, it is natural to start with linear models before working with
nonlinear models (Baldi & Lu, 2012), and yet even for linear models, the understanding is scarce
when the models become deep.

2.1 Model and notation

We begin by defining the notation. LetH be the number of hidden layers, and let(X, Y ) be the
training data set, withY ∈ Rdy×m andX ∈ Rdx×m, wherem is the number of data points. Here,
dy ≥ 1 and dx ≥ 1 are the number of components (or dimensions) of the outputs and inputs,
respectively. We denote the model (weight) parameters byW , which consists of parameter matrices
corresponding to each layer:WH+1 ∈ Rdy×dH , . . . ,Wk ∈ Rdk×dk−1 , . . . ,W1 ∈ Rd1×dx . Here,
dk represents the width of thek-th layer, where the0-th layer is the input layer and the(H + 1)-th
layer is the output layer (i.e.,d0 = dx anddH+1 = dy). Let Idk

be thedk × dk identity matrix.
Let p = min(dH , . . . , d1) be the smallest width of a hidden layer. We denote the(j, i)-th entry of a
matrix M by Mj,i. We also denote thej-th row vector ofM by Mj,∙ and thei-th column vector of
M by M∙,i.

We can then write the output of a feedforward deep linearmodel,Y (W, X) ∈ Rdy×m, as

Y (W,X) = WH+1WHWH−1 ∙ ∙ ∙ W2W1X.

We consider one of the most widely used loss functions, squared error loss:

L̄(W ) =
1
2

m∑

i=1

‖Y (W,X)∙,i − Y∙,i‖
2
2 =

1
2
‖Y (W, X) − Y ‖2

F ,

where‖∙‖F is the Frobenius norm. Note that2
m L̄(W ) is the usualmeansquared error, for which all

of our theorems hold as well, since multiplyinḡL(W ) by a constant inW results in an equivalent
optimization problem.

2.2 Background

Recently,Goodfellowet al. (2016) remarked that whenBaldi & Hornik (1989) stated and proved
Proposition2.1for shallow linear networks, they also stated Conjecture2.2for deep linear networks.

Proposition 2.1 (Baldi & Hornik, 1989: shallow linear network)Assume thatH = 1 (i.e.,
Y (W,X) = W2W1X), assume thatXXT and XY T are invertible, and assume thatp < dx,
p < dy and dy = dx (e.g., an autoencoder). Then, the loss functionL̄(W ) has the following
properties:

(i) It is convex in each matrixW1 (or W2) when the otherW2 (or W1) is fixed.

(ii) Every local minimum is a global minimum.

Conjecture 2.2 (Baldi & Hornik, 1989: deeplinear network)Assume the same set of conditions as
in Proposition2.1except forH = 1. Then, the loss function̄L(W ) has the following properties:

(i) For any k ∈ {1, . . . , H + 1}, it is convex in each matrixWk when for allk′ 6= k, Wk′ is
fixed.

(ii) Every local minimum is a global minimum.

Baldi & Lu (2012) recently provided a proof for Conjecture2.2 (i), leaving the proof of Conjecture
2.2 (ii) for future work. They also noted that the case ofp ≥ dx = dx is of interest, but requires
further analysis, even for a shallow network withH = 1. An informal discussion of Conjecture2.2
can be found in (Baldi, 1989). In AppendixD in the supplementary material, we provide a more
detailed discussion of this subject.
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2.3 Results

We now state our main theoretical results for deep linear networks, which imply Conjecture2.2 (ii)
as well as obtain further information regarding the critical points with more generality.

Theorem 2.3 (Loss surface ofdeeplinear networks withmore generality) Assume thatXXT and
XY T are full rank. Further, assume thatdy ≤ dx. Then, for any depthH ≥ 1 and for any layer
widths and any input-output dimensionsdy, dH , dH−1, . . . , d1, dx (the widths can arbitrarily differ
from each other and fromdy anddx), the loss function̄L(W ) has the following properties:

(i) It is non-convex and non-concave.

(ii) Every local minimum is a global minimum.

(iii) Every critical point that is not a global minimum is a saddle point.

(iv) If rank(WH ∙ ∙ ∙W2) = p, then the Hessian at any saddle point has at least one (strictly)
negative eigenvalue.1

Corollary 2.4 (Effect of deepness on the loss surface)Assume the same set of conditions as in
Theorem2.3 and consider the loss function̄L(W ). For three-layer networks (i.e.,H = 1), the
Hessian at any saddle point has at least one (strictly) negative eigenvalue. In contrast, for networks
deeper than three layers (i.e.,H ≥ 2), there exist saddle points at which the Hessian does not have
any negative eigenvalue.

The full rank assumptions onXXT andXY T in Theorem2.3 are realistic and practically easy to
satisfy, as discussed in previous work (e.g.,Baldi & Hornik, 1989). In contrast to related previous
work (Baldi & Hornik, 1989; Baldi & Lu, 2012), we do not assume the invertibility ofXY T , p < dx,
p < dy nor dy = dx. In Theorem2.3, p ≥ dx is allowed, as well as many other relationships
among the widths of the layers. Therefore, Theorem2.3 (ii) implies Conjecture2.2 (ii) and is more
general than Conjecture2.2 (ii) . Moreover, Theorem2.3 (iv) and Corollary2.4 provide additional
information regarding the important properties of saddle points.

Theorem2.3presents an instance of a deep model that is not too difficult to train with direct greedy
optimization, such as gradient-based methods. If there are “bad” local minima with large loss values
everywhere, we would have to search the entire space,2 the volume of which increases exponentially
with the number of variables. This is a major cause of NP-hardness for non-convex optimization.
In contrast, if there are no poor local minima as Theorem2.3 (ii) states, then saddle points are the
remaining concern in terms of tractability.3 Because the Hessian of̄L(W ) is Lipschitz continuous, if
the Hessian at a saddle point has a negative eigenvalue, it starts appearing as we approach the saddle
point. Thus, Theorem2.3 and Corollary2.4 suggest that for 1-hidden layer networks, training can
be done in polynomial time with a second order method or even with a modified stochastic gradient
decent method, as discussed in (Ge et al., 2015). For deeper networks, Corollary2.4 states that
there exist “bad” saddle points in the sense that the Hessian at the point has no negative eigenvalue.
However, from Theorem2.3 (iv), we know exactly when this can happen, and from the proof of
Theorem2.3, we see that some perturbation is sufficient to escape such bad saddle points.

3 Deep nonlinear neural networks

Given this understanding of the loss surface of deeplinear models, we discuss deepnonlinear
models.

3.1 Model

We use the same notation as for the deep linear models, defined in the beginning of Section2.1. The
output of deep nonlinear neural network,Ŷ (W,X) ∈ Rdy×m, is defined as

Ŷ(W,X) = qσH+1(WH+1σH(WHσH−1(WH−1 ∙ ∙ ∙ σ2(W2σ1(W1X)) ∙ ∙∙))),

1If H = 1, to be succinct, we defineWH ∙ ∙ ∙W2 = W1 ∙ ∙ ∙W2 , Id1 , with a slight abuse of notation.
2Typically, we do this by assuming smoothness in the values of the loss function.
3Other problems such as the ill-conditioning can make it difficult to obtain a fast convergence rate.

3



whereq ∈ R is simply a normalization factor, the value of which is specified later. Here,σk :
Rdk×m → Rdk×m is the element-wise rectified linear function:

σk











b11 . . . b1m

...
...

...
bdk1 ∙ ∙ ∙ bdkm









 =






σ̄(b11) . . . σ̄(b1m)

...
...

...
σ̄(bdk1) ∙ ∙ ∙ σ̄(bdkm)




 ,

whereσ̄(bij) = max(0, bij). In practice, we usually setσH+1 to be an identity map in the last layer,
in which case all our theoretical results still hold true.

3.2 Background

Following the work byDauphinet al. (2014), Choromanskaet al. (2015a) investigated the connec-
tion between the loss functions of deep nonlinear networks and a function well-studied via random
matrix theory (i.e., the Hamiltonian of the spherical spin-glass model). They explained that their
theoretical results relied on severalunrealisticassumptions. Later,Choromanskaet al.(2015b) sug-
gested at the Conference on Learning Theory (COLT) 2015 that discarding these assumptions is an
important open problem. The assumptions were labeled A1p, A2p, A3p, A4p, A5u, A6u, and A7p.

Here, we discuss the most relevant assumptions: A1p, A5u, and A6u. We refer to the part of as-
sumption A1p (resp. A5u) that corresponds only to themodelassumption as A1p-m (resp. A5u-m).
Note that assumptions A1p-m and A5u-m are explicitly used in the previous work (Choromanska
et al., 2015a) and included in A1p and A5u (i.e., we arenot making new assumptions here). As the
modelŶ (W,X) ∈ Rdy×m represents a directed acyclic graph, we can express an output from one
of the units in the output layer as

Ŷ (W,X)j,i = q

Ψj∑

p=1

[Xi](j,p)[Zi](j,p)

H+1∏

k=1

w
(k)
(j,p),

whereΨj is the total number of paths from the inputs to thej-th output in the directed acyclic graph.
In addition,[Xi](j,p) ∈ R represents the entry of thei-th sample input datum that is used in thep-th

path of thej-th output. For each layerk, w(k)
(j,p) ∈ R is the entry ofWk that is used in thep-th path of

thej-th output. Finally,[Zi](j,p) ∈ {0, 1} represents whether thep-th path of thej-th output is active
([Zi](j,p) = 1) or not ([Zi](j,p) = 0) for each samplei because of the rectified linear activation.

Assumption A1p-m assumes that theZ ’s are Bernoulli random variables with the same probability
of success,Pr([Zi](j,p) = 1) = ρ for all i and(j, p). Assumption A5u-m assumes that theZ ’s are
independent from the inputX ’s, parametersw’s, and each other (the independence was required,
for example, in the first equation of the proof of Theorem 3.3 in (Choromanskaet al., 2015a)). With
assumptions A1p-m and A5u-m, we can writeEZ [Ŷ (W, X)j,i] = q

∑Ψj

p=1[Xi](j,p)ρ
∏H

k=1 w
(k)
(j,p).

The previous work also assumes the use of “independent random” loss functions. Consider the hinge
loss,Lhinge(W )j,i = max(0, 1−Yj,iŶ (W,X)j,i). By modeling the max operator as a Bernoulli ran-

dom variableξ, we can then writeLhinge(W )j,i = ξ − q
∑Ψj

p=1 Yj,i[Xi](j,p)ξ[Zi](j,p)

∏H+1
k=1 w

(k)
(j,p).

A1p then assumes that for alli and(j, p), theξ[Zi](j,p) are Bernoulli random variables with equal
probabilities of success. Furthermore, A5u assumes that the independence ofξ[Zi](j,p), Yj,i[Xi](j,p),
andw(j,p). Finally, A6u assumes thatYj,i[Xi](j,p) for all (j, p) andi are independent.

Proposition 3.1 (High-level description of a main result inChoromanskaet al., 2015a) Assume
A1p (including A1p-m), A2p, A3p, A4p, A5u (including A5u-m), A6u, and A7p (Choromanska
et al., 2015b). Furthermore, assume thatdy = 1. Then, the expected loss of each sample da-
tum,Eξ,Z [Lhinge(W )i,1], has the following property: above a certain loss value, the number of local
minima diminishes exponentially as the loss value increases.

Choromanskaet al. (2015b) noted that A6u is unrealistic because it implies that the inputs are not
shared among the paths. In addition, A5u is unrealistic because it implies that the activation of any
path is independent of the input data.

3.3 Results

We now state our main theoretical results for deep nonlinear networks, which partially address
the aforementioned open problem and lead to more general and tighter results. Unlike the pre-
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vious work, we do not assume that we can take the expectation over random variableξ. More-
over, we consider loss functions for all the data points and all possible output dimensionalities
(i.e., vectored-valued output). More concretely, we consider the expected squared error loss,
EZ [L(W )] = EZ [ 12‖Ŷ (W,X) − Y ‖2

F ]. We also consider the squared error loss of the expected
model,LEZ [Ŷ ](W ) = 1

2‖E[Ŷ (W,X)] − Y ‖2
F .

Theorem 3.2 (Loss surface of deep nonlinear networks)Assume A1p-m and A5u-m. Further as-
sume thatdy ≤ dx and thatXXT andXY T are full rank. Letq = ρ−1. Then, for any depthH ≥ 1
and for any layer widths and any input-output dimensionsdy, dH , dH−1, . . . , d1, dx (the widths can
arbitrarily differ from each other and fromdy anddx), both the expected loss functionEZ [L(W )]
and the loss function of the expected modelLEZ [Ŷ ](W ) have the following properties:

(i) They are non-convex and non-concave.

(ii) Every local minimum is a global minimum.

(iii) Every critical point that is not a global minimum is a saddle point.

(iv) If rank(WH ∙ ∙ ∙W2) = p, then the Hessian at any saddle point has at least one (strictly)
negative eigenvalue.4

Corollary 3.3 (Effect of deepness on the loss surface)Assume the same set of conditions as in
Theorem3.2. Consider the loss functionEZ [L(W )] or LEZ [Ŷ ](W ) . Then, for three-layer networks
(i.e.,H = 1), the Hessian at any saddle point has some (strictly) negative eigenvalue. In contrast,
for networks deeper than three layers (i.e.,H ≥ 2), there exist saddle points at which the Hessian
does not have a negative eigenvalue.

Comparing Theorem3.2and Proposition3.1, we can see that we successfully discarded assumptions
A2p, A3p, A4p, A6u, and A7p while obtaining a tighter statement in general. Again, note that the
full rank assumptions onXXT andXY T in Theorem3.2are realistic and practically easy to satisfy,
as discussed in previous work (e.g.,Baldi & Hornik, 1989). Furthermore, our model̂Y is strictly
more general than the model analyzed in (Choromanskaet al., 2015a,b) (i.e., this paper’s model
class contains the previous work’s model class but not vice versa).

4 Important lemmas

In this section, we provide additional theoretical results as lemmas that lead to further insights. The
proofs of the lemmas are in the appendix in the supplementary material.

Let M ⊗ M ′ be the Kronecker product ofM andM ′. LetDvec(W T
k )f(∙) = ∂f(∙)

∂vec(W T
k

)
be the partial

derivative off with respect tovec(WT
k ) in the numerator layout. That is, iff : Rdin → Rdout , we

haveDvec(W T
k )f(∙) ∈ Rdout×(dkdk−1). Let R(M) be the range (or the column space) of a matrix

M . Let M− be any generalized inverse ofM . When we write a generalized inverse in a condition
or statement, we mean it for any generalized inverse (i.e., we omit the universal quantifier over
generalized inverses, as this is clear). Letr = (Y (W,X) − Y )T ∈ Rm×dy be an error matrix.
Let C = WH+1 ∙ ∙ ∙ W2 ∈ Rdy×d1 . When we writeWk ∙ ∙ ∙W ′

k, we generally intend thatk > k′

and the expression denotes a product overWj for integerk ≥ j ≥ k′. For notational compactness,
two additional cases can arise: whenk = k′, the expression denotes simplyWk, and whenk < k′,
it denotesIdk

. For example, in the statement of Lemma4.1, if we setk := H + 1, we have that
WH+1WH ∙ ∙ ∙WH+2 , Idy .

In Lemma4.6and the proofs of Theorems2.3and3.2, we use the following additional notation. Let
Σ = Y XT (XXT )−1XY T and its eigendecomposition beUΛUT = Σ, where the entries of the
eigenvalues are ordered asΛ1,1 ≥ . . . ≥ Λdy,dy with corresponding orthogonal eigenvector matrix
U = [u1, . . . , udy

]. For eachk ∈ {1, . . . dy}, uk ∈ Rdy×1 is a column eigenvector. AsΣ is real
symmetric, we can always makeU orthogonal. Let̄p = rank(C) ∈ {1, . . . , min(dy, p)}. We define
a matrix containing the subset of thep̄ largest eigenvectors asUp̄ = [u1, . . . , up̄]. Given anyordered

4If H = 1, to be succinct, we defineWH ∙ ∙ ∙W2 = W1 ∙ ∙ ∙W2 , Id1 , with a slight abuse of notation.
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setIp̄ = {i1, . . . , ip̄ | 1 ≤ i1 < ∙ ∙ ∙ < ip̄ ≤ min(dy, p)}, we define a matrix containing the subset of
the corresponding eigenvectors asUIp̄

= [ui1 , . . . , uip̄
]. Note the difference betweenUp̄ andUIp̄

.

Lemma 4.1 (Critical point necessary and sufficient condition)W is a critical point ofL̄(W ) if and
only if for all k ∈ {1, ..., H + 1},

(
Dvec(W T

k )L̄(W )
)T

=
(
WH+1WH ∙ ∙ ∙Wk+1 ⊗ (Wk−1 ∙ ∙ ∙W2W1X)T

)T
vec(r) = 0.

Lemma 4.2 (Representation at critical point)If W is a critical point ofL̄(W ), then

WH+1WH ∙ ∙ ∙ W2W1 = C(CT C)−CT Y XT (XXT )−1.

Lemma 4.3 (Block Hessian with Kronecker product)Write the entries of∇2L̄(W ) in a block form
as

∇2L̄(W ) =








Dvec(W T
H+1)

(
Dvec(W T

H+1)
L̄(W )

)T

∙ ∙ ∙ Dvec(W T
1 )

(
Dvec(W T

H+1)
L̄(W )

)T

...
...

...

Dvec(W T
H+1)

(
Dvec(W T

1 )L̄(W )
)T

∙ ∙ ∙ Dvec(W T
1 )

(
Dvec(W T

1 )L̄(W )
)T








.

Then, for anyk ∈ {1, ..., H + 1},

Dvec(W T
k )

(
Dvec(W T

k )L̄(W )
)T

=
(
(WH+1 ∙ ∙ ∙Wk+1)

T (WH+1 ∙ ∙ ∙Wk+1) ⊗ (Wk−1 ∙ ∙ ∙W1X)(Wk−1 ∙ ∙ ∙W1X)T
)
,

and, for anyk ∈ {2, ..., H + 1},

Dvec(W T
k )

(
Dvec(W T

1 )L̄(W )
)T

=
(
CT (WH+1 ∙ ∙ ∙Wk+1) ⊗ X(Wk−1 ∙ ∙ ∙W1X)T

)
+

[(Wk−1 ∙ ∙ ∙W2)
T ⊗ X] [Idk−1 ⊗ (rWH+1 ∙ ∙ ∙Wk+1)∙,1 . . . Idk−1 ⊗ (rWH+1 ∙ ∙ ∙Wk+1)∙,dk ] .

Lemma 4.4 (Hessian semidefinite necessary condition)If ∇2L̄(W ) is positive semidefinite or neg-
ative semidefinite at a critical point, then for anyk ∈ {2, ..., H + 1},

R((Wk−1 ∙ ∙ ∙W3W2)
T ) ⊆ R(CT C) or XrWH+1WH ∙ ∙ ∙Wk+1 = 0.

Corollary 4.5 If ∇2L̄(W ) is positive semidefinite or negative semidefinite at a critical point, then
for anyk ∈ {2, ..., H + 1},

rank(WH+1WH ∙ ∙ ∙Wk) ≥ rank(Wk−1 ∙ ∙ ∙W3W2) or XrWH+1WH ∙ ∙ ∙Wk+1 = 0.

Lemma 4.6 (Hessian positive semidefinite necessary condition)If ∇2L̄(W ) is positive semidefinite
at a critical point, then

C(CT C)−CT = Up̄U
T
p̄ or Xr = 0.

5 Proof sketches of theorems

We now provide overviews of the proofs of Theorems2.3 and3.2. We complete the proofs of the
theorems in the appendix in the supplementary material.

Our proof approach largely differs from those in previous work (Baldi & Hornik, 1989; Baldi & Lu,
2012; Choromanskaet al., 2015a,b). In contrast to (Baldi & Hornik, 1989; Baldi & Lu, 2012), we
need a different approach to deal with the “bad” saddle points that start appearing when the model
becomes deeper (see Section2.3), as well as to obtain more comprehensive properties of the critical
points with more generality. While the previous proofs heavily rely on the first-order information,
the main parts of our proofs take advantage of the second order information. In contrast,Choro-
manskaet al. (2015a,b) used the seven assumptions to relate the loss functions of deep models to
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a function previously analyzed with a tool of random matrix theory (i.e., Gaussian orthogonal en-
semble). With no reshaping assumptions (A3p, A4p, and A6u), we cannot relate our loss function
to such a function. Moreover, with no distributional assumptions (A2p and A6u) (except the acti-
vation), our Hessian is deterministic, and therefore, even random matrix theory itself is insufficient
for our purpose. Furthermore, with no spherical constraint assumption (A7p), the number of local
minima in our loss function can be uncountable.

One natural strategy to proceed toward Theorems2.3 and3.2 would be to use the first order and
the second order necessary conditions of local minima (e.g., the gradient is zero and the Hessian is
positive semidefinite).5 However, are the first-order and second-order conditions sufficient to prove
Theorems2.3and3.2? Corollaries2.4and3.3show that the answer is negative fordeepmodels with
H ≥ 2, while it is affirmative for shallow models withH = 1. Thus, for deep models, a simple use
of the first-order and second-order information is insufficient to characterize the properties of each
critical point. In addition to the complexity of the Hessian of thedeepmodels, this suggests that
we must strategically extract the second order information. Accordingly, we obtained an organized
representation of the Hessian in Lemma4.3 and strategically extracted the information in Lemmas
4.4and4.6, with which we are ready to prove Theorems2.3and3.2.

5.1 Proof sketch of Theorem2.3 (ii)

By case analysis, we show that any point that satisfies the necessary conditions and the definition of
a local minimum is a globalminimum.

CaseI: rank(WH ∙ ∙ ∙W2) = p anddy ≤ p: Assume thatrank(WH ∙ ∙ ∙W2) = p. If dy < p, Corol-
lary 4.5with k = H + 1 implies the necessary condition thatXr = 0. If dy = p, Lemma4.6with
k = H + 1 andk = 2, combined with the fact thatR(C) ⊆ R(Y XT ), implies the necessary con-
dition thatXr = 0. Therefore, we have the necessary condition,Xr = 0 . Interpreting condition
Xr = 0, we conclude thatW achievingXr = 0 is indeed a globalminimum.

CaseII: rank(WH ∙ ∙ ∙W2) = p and dy > p: From Lemma4.6, we have the necessary condi-
tion that C(CT C)−CT = Up̄U

T
p̄ or Xr = 0. If Xr = 0, using the exact same proof as in

Case I, it is a global minimum. Suppose then thatC(CT C)−CT = Up̄Up̄. From Lemma4.4
with k = H + 1, we conclude that̄p , rank(C) = p. Then, from Lemma4.2, we write
WH+1 ∙ ∙ ∙W1 = UpUpY XT (XXT )−1, which is the orthogonal projection onto the subspace
spanned by thep eigenvectors corresponding to thep largest eigenvalues following the ordinary
least square regression matrix. This is indeed the expression of a globalminimum.

CaseIII: rank(WH ∙ ∙ ∙W2) < p: Suppose thatrank(WH ∙ ∙ ∙W2) < p. From Lemma4.4, we have
the following necessary condition for the Hessian to be (positive or negative) semidefinite at a critical
point: for anyk ∈ {2, . . . , H + 1},

R((Wk−1 ∙ ∙ ∙W2)
T ) ⊆ R(CT C) or XrWH+1 ∙ ∙ ∙Wk+1 = 0,

where the first condition is shown to implyrank(WH+1 ∙ ∙ ∙Wk) ≥ rank(Wk−1 ∙ ∙ ∙W2) in Corol-
lary 4.5. We repeatedly apply these conditions fork = 2, . . . , H + 1 to claim that with arbi-
trarily small ε > 0, we can perturb each parameter (i.e., each entry ofWH , . . . ,W2) such that
rank(WH+1 ∙ ∙ ∙W2) ≥ min(p, dx) without changing the value of̄L(W ). We prove this by induc-
tion onk, using Lemmas4.2, 4.4, and4.6.

We consider the base case,k = 2. From the condition withk = 2 of Lemma4.4, we have that
rank(WH+1 ∙ ∙ ∙W2) ≥ d1 ≥ p or XrWH+1 ∙ ∙ ∙W3 = 0 (note thatd1 ≥ p ≥ p̄ by their definitions).
The former condition is false sincerank(WH+1 ∙ ∙ ∙W2) ≤ rank(WH ∙ ∙ ∙W2) < p. From the latter
condition, for an arbitraryL2, with A2 = WH+1 ∙ ∙ ∙W3,

0 = XrWH+1 ∙ ∙ ∙W3

⇔W2W1 =
(
AT

2 A2

)−
AT

2 Y XT (XXT )−1 + (I − (AT
2 A2)

−AT
2 A2)L2

⇔WH+1 ∙ ∙ ∙W1 = A2

(
AT

2 A2

)−
AT

2 Y XT (XXT )−1

= C(CT C)−CT Y XT (XXT )−1 = Up̄U
T
p̄ Y XT (XXT )−1,

5For a non-convex andnon-differentiablefunction, we can still have a first-order and second-order necessary
condition (e.g.,Rockafellar & Wets, 2009, theorem 13.24, p. 606).
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where the last two equalities follow Lemmas4.2and4.6 (since ifXr = 0, we immediately obtain
the desired result). SinceXY T is full rank withdy ≤ dx (i.e.,rank(XY T ) = dy),

A2

(
AT

2 A2

)−
A2 = Up̄U

T
p̄ = Up̄(U

T
p̄ Up̄)

−1UT
p̄ .

From this, with extra steps, we can deduce that we can haverank(W2) ≥ min(p, dx) with arbitrarily
small perturbation of each entry ofW2 while retaining the loss value.

Thus, we conclude the proof for the base case withk = 2. For the inductive step withk ∈
{3, . . . , H + 1}, we essentially use the same proof procedure but with the inductive hypothesis
that we can haverank(Wk−1 ∙ ∙ ∙W2) ≥ min(p, dx) with arbitrarily small perturbation of each entry
of Wk−1, . . . ,W2 without changing the loss value. We need the inductive hypothesis to conclude
that the first condition in(R((Wk−1 ∙ ∙ ∙W2)T ) ⊆ R(CT C) or XrWH+1 ∙ ∙ ∙Wk+1 = 0) is false,
and thus the second condition must be satisfied at a candidate point of a local minima.

We then conclude the induction, proving that we can haverank(WH ∙ ∙ ∙W2) ≥
rank(WH+1 ∙ ∙ ∙W2) ≥ min(p, dx) with arbitrarily small perturbation of each parameter
without changing the value of̄L(W ). If p ≤ dx, this means that upon such a perturbation, we have
the case ofrank(WH ∙ ∙ ∙W2) = p. Thus, such a critical point is not a local minimum unless it is a
global minimum. Ifp > dx, upon such a perturbation, we haverank(WH+1 ∙ ∙ ∙W2) ≥ dx. Thus,
WH+1 ∙ ∙ ∙W1 = Up̄U

T
p̄ Y XT (XXT )−1 = UUT Y XT (XXT )−1, which is a global minimum.

Summarizing the above, any point that satisfies the definition (and necessary conditions) of a local
minimum is indeed a global minimum. Therefore, we conclude the proof sketch of Theorem2.3(ii) .

5.2 Proof sketch of Theorem2.3 (i), (iii) and (iv)

We can prove the non-convexity and non-concavity of this function simply from its Hessian (The-
orem2.3 (i)). That is, we can show that in the domain of the function, there exist points at which
the Hessian becomes indefinite. Indeed, The domain contains uncountably many points at which the
Hessian is indefinite.

We now consider Theorem2.3 (iii ): every critical point that is not a global minimum is a saddle
point. Combined with Theorem2.3 (ii) , which is proven independently, this is equivalent to the
statement that there are no local maxima. We first show that ifWH ∙ ∙ ∙W1 6= 0, the loss function
is strictly convex in one of the coordinates. This means that there is always an increasing direction
and hence no local maximum. IfWH ∙ ∙ ∙W1 = 0, we show that at a critical point, if the Hessian
is negative semidefinite, we can haveWH ∙ ∙ ∙W1 6= 0 with arbitrarily small perturbation without
changing the loss value. We can prove this by induction onk = 1, . . . , H , similar to the induction
in the proof of Theorem2.3 (ii) .

Theorem2.3 (iv) follows Theorem2.3 (ii)-(iii) and the fact that whenrank(WH ∙ ∙ ∙W2) = p, if
∇2L̄(W ) � 0 at a critical point,W is a global minimum (this is the statement obtained in the proof
of Theorem2.3 (ii) for the case,rank(WH ∙ ∙ ∙W2) = p).

5.3 Proof sketch of Theorem3.2

Similarly to the previous work (Choromanskaet al., 2015a,b), we relate our loss function to an-
other function under the adopted assumptions. More concretely, we show that all the theoretical
results developed so far for the loss function of the deep linear models,L̄(W ), hold true for the loss
functions of the deep nonlinear models,EZ [L(W )] andLEZ [Ŷ ](W ).

6 Conclusion

In this paper, we addressed some open problems, pushing forward the theoretical foundations of
deep learning and non-convex optimization. For deeplinear neural networks, we proved the afore-
mentioned conjecture and more detailed statements with more generality. For deepnonlinearneural
networks with rectified linear activation, when compared with the previous work, we proved a tighter
statement with more generality (dy can vary) and with strictly weaker model assumptions (only two
assumptions out of seven). However, our theory does not yet directly apply to the practical situation.
To fill the gap between theory and practice, future work would further discard the remaining two out
of the seven assumptions made in previous work.
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Appendix

A Proofs of lemmas and corollary in Section4

We complete the proofs of the lemmas and corollary in Section4.

A.1 Proof of Lemma 4.1

Proof SinceL̄(W ) = 1
2‖Y (W,X) − Y ‖2

F = 1
2 vec(r)T vec(r),

Dvec(W T
k )L̄(W ) =

(
Dvec(r)L̄(W )

) (
Dvec(W T

k ) vec(r)
)

= vec(r)T
(
Dvec(W T

k ) vec(XT IdxWT
1 ∙ ∙ ∙WT

H+1Idy ) −Dvec(W T
k ) vec(Y T )

)

= vec(r)T
(
Dvec(W T

k )(WH+1 ∙ ∙ ∙Wk+1 ⊗ (Wk−1 ∙ ∙ ∙W1X)T ) vec(WT
k )
)

= vec(r)T
(
WH+1 ∙ ∙ ∙Wk+1 ⊗ (Wk−1 ∙ ∙ ∙W1X)T

)
.

By setting
(
Dvec(W T

k )L̄(W )
)T

= 0 for all k ∈ {1, ..., H + 1}, we obtain the statement of Lemma

4.1. For the boundary conditions (i.e.,k = H + 1 or k = 1), it can be seen from the second
to the third lines that we obtain the desired results with the definition,Wk ∙ ∙ ∙Wk+1 , Idk

(i.e.,
WH+1 ∙ ∙ ∙WH+2 , Idy andW0 ∙ ∙ ∙W1 , Idx ). �

A.2 Proof of Lemma 4.2

Proof From the critical point condition with respect toW1 (Lemma4.1),

0 =
(
Dvec(W T

k )L̄(W )
)T

=
(
WH+1 ∙ ∙ ∙W2 ⊗ XT

)T
vec(r) = vec(XrWH+1 ∙ ∙ ∙W2),

which is true if and only ifXrWH+1 ∙ ∙ ∙W2 = 0. By expandingr, 0 = XXT W T
1 CT C −XY T C.

By solving forW1,

W1 = (CT C)−CT Y XT (XXT )−1 + (I − (CT C)−CT C)L,

for an arbitrary matrixL. Due to the property of any generalized inverse (Zhang, 2006, p. 41), we
have thatC(CT C)−CT C = C. Thus,

CW1 = C(CT C)−CT Y XT (XXT )−1 + (C − C(CT C)−CT C)L = C(CT C)−CT Y XT (XXT )−1.

�

A.3 Proof of Lemma 4.3

Proof For thediagonal blocks: the entries of diagonal blocks are obtained simply using the result
of Lemma4.1as

Dvec(W T
k )

(
Dvec(W T

k )L̄(W )
)T

=
(
WH+1 ∙ ∙ ∙Wk+1 ⊗ (Wk−1 ∙ ∙ ∙W1X)T

)T
Dvec(W T

k ) vec(r).

Using the formula ofDvec(W T
k ) vec(r) computed in the proof of of Lemma4.1 yields the desired

result.

For the off-diagonalblockswith k = 2, ..., H :

Dvec(W T
k )[Dvec(W T

1 )L̄(W )]T

=
(
WH+1 ∙ ∙ ∙W2 ⊗ X)T

)T
Dvec(W T

k ) vec(r) +
(
Dvec(W T

k )WH+1 ∙ ∙ ∙Wk+1 ⊗ XT
)T

vec(r)
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The first term above is reduced to the first term of the statement in the same way as the diagonal
blocks. For the second term,

(
Dvec(W T

k )WH+1 ∙ ∙ ∙W2 ⊗ XT
)T

vec(r)

=
m∑

i=1

dy∑

j=1

((
Dvec(W T

k )WH+1,jWH ∙ ∙ ∙W2

)
⊗ XT

i

)T

ri,j

=
m∑

i=1

dy∑

j=1

(
(Ak)j,∙ ⊗ BT

k ⊗ XT
i

)T
ri,j

=
m∑

i=1

dy∑

j=1

[
(Ak)j,1

(
BT

k ⊗ Xi

)
. . . (Ak)j,dk

(
BT

k ⊗ Xi

)]
ri,j

=
[(

BT
k ⊗

∑m
i=1

∑dy

j=1 ri,j(Ak)j,1Xi

)
. . .

(
BT

k ⊗
∑m

i=1

∑dy

j=1 ri,j(Ak)j,dk
Xi

)]
.

where Ak = WH+1 ∙ ∙ ∙Wk+1 and Bk = Wk−1 ∙ ∙ ∙W2. The third line follows the
fact that (WH+1,jWH ∙ ∙ ∙W2)T = vec(WT

2 ∙ ∙ ∙WT
HWT

H+1,j) = (WH+1,j ∙ ∙ ∙Wk+1 ⊗
WT

2 ∙ ∙ ∙WT
k−1) vec(W T

k ). In the last line, we have the desired result by rewriting
∑m

i=1

∑dy

j=1 ri,j(Ak)j,tXi = X(rWH+1 ∙ ∙ ∙Wk+1)∙,t.

For the off-diagonalblocks with k = H + 1: The first term in the statement is obtained in the
same way as above (for the off-diagonal blocks withk = 2, ..., H). For the second term, notice that

vec(WT
H+1) =

[
(WH+1)T

1,∙ . . . (WH+1)T
dy,∙

]T
where(WH+1)j,∙ is thej-th row vector ofWH+1

or the vector corresponding to thej-th output component. That is, it is conveniently organized as the
blocks, each of which corresponds to each output component (or rather we chosevec(W T

k ) instead
of vec(Wk) for this reason, among others). Also,
(
Dvec(W T

H+1)
WH+1 ∙ ∙ ∙W2 ⊗ XT

)T

vec(r) =

=

[
∑m

i=1

((
D(WH+1)T

1,∙
C1,∙

)
⊗ XT

i

)T

ri,1 . . .
∑m

i=1

((
D(WH+1)T

dy,∙
Cdy,∙

)
⊗ XT

i

)T

ri,dy

]

,

where we also used the fact that
m∑

i=1

dy∑

j=1

((
Dvec((WH+1)T

t,∙)
Cj,∙

)
⊗ XT

i

)T

ri,j =
m∑

i=1

((
Dvec((WH+1)T

t,∙)
Ct,∙

)
⊗ XT

i

)T

ri,t.

For each block entryt = 1, . . . , dy in the above, similarly to the case ofk = 2, ..., H ,

m∑

i=1

((
Dvec((WH+1)T

t,∙)
Cj,∙

)
⊗ XT

i

)T

ri,t =

(

BT
H+1 ⊗

m∑

i=1

ri,t(AH+1)j,tXi

)

.

Here, we have the desired result by rewriting
∑m

i=1 ri,t(AH+1)j,1Xi = X(rIdy )∙,t = Xr∙,t. �

A.4 Proof of Lemma 4.4

Proof Note that a similarity transformation preserves the eigenvalues of a matrix. For eachk ∈
{2, . . . , H + 1}, we take a similarity transform of∇2L̄(W ) (whose entries are organized as in
Lemma4.3) as

P−1
k ∇2L̄(W )Pk =








Dvec(W T
1 )

(
Dvec(W T

1 )L̄(W )
)T

Dvec(W T
k )

(
Dvec(W T

1 )L̄(W )
)T

∙ ∙ ∙

Dvec(W T
1 )

(
Dvec(W T

k )L̄(W )
)T

Dvec(W T
k )

(
Dvec(W T

k )L̄(W )
)T

∙ ∙ ∙
...

...
...








Here,Pk =
[
eH+1 ek P̃k

]
is the permutation matrix whereei is thei-th element of the standard

basis (i.e., a column vector with 1 in thei-th entry and 0 in every other entries), and̃Pk is any
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arbitrarily matrix that makesPk to be a permutation matrix. LetMk be the principal submatrix of
P−1

k ∇2L̄(W )Pk that consists of the first four blocks appearing in the above equation. Then,

∇2L̄(W ) � 0
⇒ ∀k ∈ {2, . . . , H + 1},Mk � 0

⇒ ∀k ∈ {2, . . . , H + 1},R(Dvec(W T
k )(Dvec(W T

1 )L̄(W ))T ) ⊆ R(Dvec(W T
1 )(Dvec(W T

1 )L̄(W ))T ),

Here, the first implication follows the necessary condition with any principal submatrix and the sec-
ond implication follows the necessary condition with the Schur complement (Zhang, 2006, theorem
1.20, p. 44).

Note thatR(M ′) ⊆ R(M) ⇔ (I − MM−)M ′ = 0 (Zhang, 2006, p. 41). Thus, by plugging in
the formulas ofDvec(W T

k )(Dvec(W T
1 )L̄(W ))T andDvec(W T

1 )(Dvec(W T
1 )L̄(W ))T that are derived in

Lemma4.3, ∇2L̄(W ) � 0 ⇒ ∀k ∈ {2, . . . , H + 1},

0 =
(
I − (CT C ⊗ (XXT ))(CT C ⊗ (XXT ))−

)
(CT Ak ⊗ BkW1X)

+
(
I − (CT C ⊗ (XXT ))(CT C ⊗ (XXT ))−

)
[BT

k ⊗ X]
[
Idk−1

⊗ (rAk)∙,1 . . . Idk−1
⊗ (rAk)∙,dk

]

whereAk = WH+1 ∙ ∙ ∙Wk+1 andBk = Wk−1 ∙ ∙ ∙W2. Here, we can replace(CT C ⊗ (XXT ))−

by ((CT C)−⊗(XXT )−1) (see AppendixA.7). Thus,I−(CT C⊗(XXT ))(CT C⊗(XXT ))−can
be replaced by(Id1 ⊗ Idy

)− (CT C(CT C)− ⊗ Idy
) = (Id1 −CT C(CT C)−)⊗ Idy

. Accordingly,
the first term is reduced to zero as
(
(Id1 − CT C(CT C)−) ⊗ Idy

)(
CT Ak ⊗ BkW1X

)
= ((Id1 − CT C(CT C)−)CT Ak) ⊗ BkW1X = 0,

sinceCT C(CT C)−CT = CT (Zhang, 2006, p. 41). Thus, with the second term remained, the
condition is reduced to

∀k ∈ {2, . . . , H + 1}, ∀t ∈ {1, . . . , dy}, (BT
k − CT C(CT C)−BT

k ) ⊗ X(rAk)∙,t = 0.

This implies
∀k ∈ {2, . . . , H + 1}, (R(BT

k ) ⊆ R(CT C) or XrAk = 0),

which concludes the proof for the positive semidefinite case. For the necessary condition of the
negative semidefinite, we obtain the same condition since

∇2L̄(W ) � 0

⇒ ∀k ∈ {2, . . . , H + 1}, Mk � 0

⇒ ∀k ∈ {2, . . . , H + 1},R(−Dvec(W T
k

)(Dvec(W T
1 )L̄(W ))T ) ⊆ R(−Dvec(W T

1 )(Dvec(W T
1 )L̄(W ))T )

⇒ ∀k ∈ {2, . . . , H + 1},R(Dvec(W T
k

)(Dvec(W T
1 )L̄(W ))T ) ⊆ R(Dvec(W T

1 )(Dvec(W T
1 )L̄(W ))T ).

�

A.5 Proof of Corollary 4.5

Proof From the first condition in the statement of Lemma4.4,

R(WT
2 ∙ ∙ ∙WT

k−1) ⊆ R(WT
2 ∙ ∙ ∙WT

H+1WH+1 ∙ ∙ ∙W2)

⇒ rank(WT
k ∙ ∙ ∙WT

H+1) ≥ rank(WT
2 ∙ ∙ ∙WT

k−1) ⇒ rank(WH+1 ∙ ∙ ∙Wk) ≥ rank(Wk−1 ∙ ∙ ∙W2).

The first implication follows the fact that the rank of a product of matrices is at most the minimum
of the ranks of the matrices, and the fact that the column space ofWT

2 ∙ ∙ ∙WT
H+1 is subspace of the

column space ofWT
2 ∙ ∙ ∙WT

k−1. �

A.6 Proof of Lemma 4.6

Proof For the(Xr = 0) condition: LetMH+1 be the principal submatrix as defined in the proof of
Lemma4.4(the principal submatrix ofP−1

H+1∇
2L̄(W )PH+1 that consists of the first four blocks of
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it). Let Bk = Wk−1 ∙ ∙ ∙W2. Let F = BH+1W1XXT WT
1 BT

H+1. Using Lemma4.3 for the blocks
corresponding toW1 andWH+1,

MH+1 =

[
CT C ⊗ XXT (CT ⊗ XXT (BH+1W1)T ) + E

(C ⊗ BH+1W1XXT ) + ET Idy
⊗ F

]

whereE =
[
BT

H+1 ⊗ Xr∙,1 . . . BT
H+1 ⊗ Xr∙,dy

]
. Then, by the necessary condition with the

Schur complement (Zhang, 2006, theorem 1.20, p. 44),MH+1 � 0 implies

0 = ((Idy
⊗ IdH

) − (Idy
⊗ F )(Idy

⊗ F )−)((C ⊗ BH+1W1XXT ) + ET )

⇒ 0 = (Idy
⊗ IdH

− FF−)(C ⊗ BH+1W1XXT ) + (Idy
⊗ IdH

− FF−)ET

= (Idy ⊗ IdH − FF−)ET

=






IdH
− FF− ⊗ I1 0

...
0 IdH

− FF− ⊗ I1











BH+1 ⊗ (Xr∙,1)T

...
BH+1 ⊗ (Xr∙,dy

)T






=






(IdH − FF−)BH+1 ⊗ (Xr∙,1)T

...
(IdH

− FF−)BH+1 ⊗ (Xr∙,dy )T






where the second line follows the fact that(Idy
⊗F )− can be replaced by(Idy

⊗F−) (see Appendix
A.7). The third line follows the fact that(I − FF−)BH+1W1X = 0 becauseR(BH+1W1X) =
R(BH+1W1XXT WT

1 BT
H+1) = R(F ). In the fourth line, we expandedE and used the definition

of the Kronecker product. It implies

FF−BH+1 = BH+1 or Xr = 0.

Here, ifXr = 0, we obtained the statement of the lemma. Thus, from now on, we focus on the case
whereFF−BH+1 = BH+1 andXr 6= 0 to obtain the other condition,C(CT C)−CT = Up̄Up̄.

For the(C(CT C)−CT = Up̄Up̄) condition: By using another necessary condition of a matrix being
positive semidefinite with the Schur complement (Zhang, 2006, theorem 1.20, p. 44),MH+1 � 0
implies that

(Idy ⊗ F ) −
(
C ⊗ BH+1W1XXT + ET

)
(CT C ⊗ XXT )−

(
CT ⊗ XXT (BH+1W1)

T + E
)
� 0 (1)

Since we can replace(CT C ⊗ XXT )− by (CT C)− ⊗ (XXT )−1 (see AppendixA.7), the second
term in the left hand side is simplified as
(
C ⊗ BH+1W1XXT + ET

)
(CT C ⊗ XXT )−

(
CT ⊗ XXT (BH+1W1)

T + E
)

=
((

C(CT C)− ⊗ BH+1W1

)
+ ET

(
(CT C)− ⊗ (XXT )−1

))((
CT ⊗ XXT (BH+1W1)

T
)

+ E
)

=
(
C(CT C)−CT ⊗ F

)
+ ET

(
(CT C)− ⊗ (XXT )−1

)
E

=
(
C(CT C)−CT ⊗ F

)
+
(
rT XT (XXT )−1Xr ⊗ BH+1(C

T C)−BH+1

)
(2)

In the third line, the crossed terms –
(
C(CT C)− ⊗ BH+1W1

)
E and its transpose – are vanished

to 0 because of the following. From Lemma4.1,
(
Idy

⊗ (WH ∙ ∙ ∙W1X)T
)T

vec(r) = 0 ⇔
WH ∙ ∙ ∙W1Xr = BH+1W1Xr = 0 at any critical point. Thus,

(
C(CT C)− ⊗ BH+1W1

)
E =[

C(CT C)−BT
H+1 ⊗ BH+1W1Xr∙,1 . . . C(CT C)−BT

H+1 ⊗ BH+1W1Xr∙,dy

]
= 0. The forth line

follows

E
T
(
(C

T
C)

− ⊗ (XX
T

)
−1
)

E =








BH+1(C
T C)−BT

H+1 ⊗ (r∙,1)
T XT (XXT )−1Xr∙,1 ∙ ∙ ∙ BH+1(C

T C)−BT
H+1 ⊗ (r∙,1)

T XT (XXT )−1Xr∙,dy

...
...

...
BH+1(C

T C)−BT
H+1 ⊗ (r∙,dy )T XT (XXT )−1Xr∙,1 ∙ ∙ ∙BH+1(C

T C)−BT
H+1 ⊗ (r∙,dy )T XT (XXT )−1Xr∙,dy








= r
T

X
T

(XX
T

)
−1

Xr ⊗ BH+1(C
T

C)
−

BH+1,
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where the last line is due to the fact that∀t, (r∙,t)T XT (XXT )−1Xr∙,t is a scaler and the fact that

for any matrixL, rT Lr =







(r∙,1)
T Lr∙,1 ∙ ∙ ∙ (r∙,1)

T Lr∙,dy

.

.

.
. . .

.

.

.
(r∙,dy )T Lr∙,1 ∙ ∙ ∙(r∙,dy )T Lr∙,dy





.

From equations1 and2, MH+1 � 0 ⇒

((Idy
− C(CT C)−CT ) ⊗ F ) −

(
rT XT (XXT )−1Xr ⊗ BH+1(C

T C)−BH+1

)
� 0. (3)

In the following, we simplify equation3 by first showing thatR(C) ⊆ R(Σ) and then simplifying
C(CT C)−CT , rT XT (XXT )−1Xr, F andBH+1(CT C)−BH+1.

Showing thatR(C) ⊆ R(Σ): Again, using Lemma4.1with k = H + 1,

0 = BH+1W1Xr ⇔ FW T
H+1 = BH+1W1XY T ⇔ WT

H+1 = F−BH+1W1XY T +(I−F−F )L,

for any arbitrary matrixL. Then,

C = WH+1BH+1

= Y XT WT
1 BT

H+1F
−BH+1 + LT (I − FF−)BH+1

= Y XT WT
1 BT

H+1F
−BH+1,

where the second equality follows the fact that we are conducting the case analysis with the case of
FF−BH+1 = BH+1 here. Using Lemma4.1with k = 1,

0 = XrWH+1 ∙ ∙ ∙W2 ⇔ W1 = (CT C)−CT Y XT (XXT )−1 + (I − (CT C)−CT C)L,

for any arbitrary matrixL. Pugging this formula ofW1 into the above,

C = Y XT ((CT C)−CT Y XT (XXT )−1 + (I − (CT C)−CT C)L)T BT
H+1F

−BH+1

= ΣC(CT C)−BT
H+1F

−BH+1

where the second line follows Lemma4.4 with k = H + 1 (i.e., CT C(CT C)−BT
H+1 = BT

H+1).
Thus, we have the desired result,R(C) ⊆ R(Σ).

Simplifying C(CT C)−CT : Remember that̄p is the rank ofC. To simplify the notation, we rear-
range the entries ofD andU such that the eigenvalues and eigenvectors selected by the index set

Ip̄ comes first. That is,U = [UIp̄ U−Ip̄
] andΛ =

[
ΛIp̄ 0
0 Λ−Ip̄

]

whereU−Ip̄ consists of all

the eigenvectors that are not contained inUIp̄
, and accordinglyΛIp̄

(resp.Λ−Ip̄
) consists of all the

eigenvalues that correspond (resp. do not correspond) to the index setIp̄. SinceR(C) ⊆ R(Σ), we
can writeC in the following form: for some index setIp̄, C = [UIp̄ ,0]G1, where0 ∈ Rdy×(d1−p̄)

andG1 ∈ GLd1(R) (ad1×d1 invertible matrix) (notice thatd1 ≥ p ≥ p̄ by their definitions). Then,

(CT C)− = (GT
1 [UIp̄

,0]T [UIp̄
,0]G1)

− =

(

GT
1

[
Ip̄ 0
0 0

]

G1

)−

.

Note that the set of all generalized inverse ofCT C = GT
1

[
Ip̄ 0
0 0

]

G1 is as follows (Zhang, 2006,

p. 41): {

G−1
1

[
Ip̄ L1

L2 L3

]

G−T
1 | L1, L2, L3 arbitrary

}

.

Thus, for any arbitraryL1, L2 andL3,

C(CT C)−CT = CG−1
1

[
Ip̄ L1

L2 L3

]

G−T
1 CT = [UIp̄ 0]

[
Ip̄ L1

L2 L3

] [
UT
Ip̄

0

]

= UIp̄UT
Ip̄

.

Simplifying rT XT (XXT )−1Xr:

rT XT (XXT )−1Xr = (CW1X − Y )XT (XXT )−1X(XT (CW1)
T − Y T )

= CW1XXT (CW1)
T − CW1XY T − Y XT (CW1)

T + Σ
= PCΣPC − PCΣ − ΣPC + Σ

= Σ − Up̄ΛIp̄UT
p̄
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wherePC = C(CT C)−CT = UIp̄
UT
Ip̄

and the last line follows the facts:

PCΣPC = UIp̄UT
Ip̄

UΛUT UIp̄UT
Ip̄

= UIp̄ [Ip̄ 0]

[
ΛIp̄

0
0 Λ−Ip̄

] [
Ip̄

0

]

UT
Ip̄

= UIp̄ΛIp̄UT
Ip̄

,

PCΣ = UIp̄UT
Ip̄

UΛUT = UIp̄ [Ip̄ 0]

[
ΛIp̄

0
0 Λ−Ip̄

] [
UT
Ip̄

U−Ip̄

]

= UT
Ip̄

ΛIp̄UIp̄ ,

and similarly,ΣPC = UT
Ip̄

ΛIp̄
UIp̄

.

Simplifying F : In the proof of Lemma4.2, by using Lemma4.1 with k = 1, we obtained that
W1 = (CT C)−CT Y XT (XXT )−1 + (I − (CT C)−CT C)L. Also, from Lemma4.4, we have that
Xr = 0 or BH+1(CT C)−CT C = (CT C(CT C)−BT

H+1)
T = BH+1. If Xr = 0, we got the

statement of the lemma, and so we consider the case ofBH+1(CT C)−CT C = BH+1. Therefore,

BH+1W1 = BH+1(C
T C)−CT Y XT (XXT )−1.

SinceF = BH+1W1XXT WT
1 BT

H+1,

F = BH+1(C
T C)−CT ΣC(CT C)−BT

H+1.

From Lemma4.4 with k = H + 1, R(BT
H+1) ⊆ R(CT C) = R(BT

H+1W
T
H+1WH+1BH+1) ⊆

R(BT
H+1), which implies thatR(BT

H+1) = R(CT C). Therefore,R(C(CT C)−BT
H+1) =

R(C(CT C)−) = R(C) ⊆ R(Σ). Accordingly, we can write it in the form,C(CT C)−BT
H+1 =

[UIp̄ ,0]G2, where0 ∈ Rdy×(d1−p̄) andG2 ∈ GLd1(R) (we can write it in the form of[UIp̄′ ,0]G2

for someIp̄′ because of the inclusion⊆ R(Σ) andIp̄′ = Ip̄ because of the equality= R(C)).
Thus,

F = GT
2

[
UT
Ip̄

0

]

UΛUT [UIp̄ ,0]G2 = GT
2

[
Ip̄ 0
0 0

]

Λ

[
Ip̄ 0
0 0

]

G2 = GT
2

[
ΛIp̄ 0
0 0

]

G2.

Simplifying BH+1(CT C)−BH+1: From Lemma4.4, CT C(CT C)−BH+1 = BH+1 (again since
we are done ifXr = 0). Thus,BH+1(CT C)−BH+1 = BH+1(CT C)−CT C(CT C)−BT

H+1. As
discussed above, we writeC(CT C)−BT

H+1 = [UIp̄
,0]G2. Thus,

BH+1(C
T C)−BH+1 = GT

2

[
UT
Ip̄

0

]

[UIp̄
,0]G2 = GT

2

[
Ip̄ 0
0 0

]

G2.

Puttingresults together: We use the simplified formulas ofC(CT C)−CT , rT XT (XXT )−1Xr, F
andBH+1(CT C)−BH+1 in equation3, obtaining

((Idy
− UIp̄

UT
Ip̄

) ⊗ GT
2

[
ΛIp̄

0
0 0

]

G2) −

(

(Σ − Up̄ΛIp̄
UT

p̄ ) ⊗ GT
2

[
Ip̄ 0
0 0

]

G2

)

� 0.

Due to the Sylvester’s law of inertia (Zhang, 2006, theorem 1.5, p. 27), with a nonsingular matrix
U ⊗ G−1

2 (it is nonsingular because each ofU andG−1
2 is nonsingular), the necessary condition is

reduced to
(
U ⊗ G−1

2

)T
((

(Idy − UIp̄UT
Ip̄

) ⊗ GT
2

[
ΛIp̄ 0

0 0

]

G2

)

−

(

(Σ − Up̄ΛIp̄UT
p̄ ) ⊗ GT

2

[
Ip̄0

0 0

]

G2

))
(
U ⊗ G−1

2

)

=

((

Idy −

[
Ip̄ 0

0 0

])

⊗

[
ΛIp̄ 0

0 0

])

−

((

Λ −

[
ΛĪ‘p

0

0 0

])

⊗

[
Ip̄ 0

0 0

])

=

([
0 0

0 I(dy−p̄)

]

⊗

[
ΛIp̄ 0

0 0

])

−

([
0 0

0 Λ−Ip̄

]

⊗

[
Ip̄ 0

0 0

])

=









0 0

0
ΛIp̄ − (Λ−Ip̄ )1,1Ip̄ 0

...
0 ΛIp̄ − (Λ−Ip̄ )(dy−p̄),(dy−p̄)Ip̄









� 0,

15



which implies that for all(i, j) ∈ {(i, j) | i ∈ {1, . . . , p̄}, j ∈ {1, . . . , (dy − p̄)}}, (ΛIp̄
)i,i ≥

(Λ−Ip̄)j,j . In other words, the index setIp̄ must select the largest̄p eigenvalues whatever̄p is.
SinceC(CT C)−CT = UIp̄UT

Ip̄
(which is obtained above), we have thatC(CT C)−CT = Up̄Up̄ in

this case.

Summarizing the above case analysis, if∇2L̄(W ) � 0 at a critical point,C(CT C)−CT = Up̄Up̄

or Xr = 0. �

A.7 Generalized inverse of Kronecker product

(A− ⊗ B−) is a generalized inverse ofA ⊗ B.

Proof For a matrixM , the definition of a generalized inverse,M−, is MM−M = M . Setting
M := A ⊗ B, we check if(A− ⊗ B−) satisfies the definition:(A ⊗ B)(A− ⊗ B−)(A ⊗ B) =
(AA−A ⊗ BB−B) = (A ⊗ B) as desired. �

We avoid discussing the other direction as it is unnecessary in this paper (i.e., we avoid discussing
if (A− ⊗ B−) is the only generalized inverse ofA ⊗ B). Notice that the necessary condition
that we have in our proof (where we need a generalized inverse ofA ⊗ B) is for any generalized
inverse ofA⊗B. Thus, replacing it by one of any generalized inverse suffices to obtain a necessary
condition. Indeed, choosing Moore−Penrose pseudoinverse suffices here, with which we know
(A⊗B)† = (A†⊗B†). But, to give a simpler argument later, we keep more generality by choosing
(A− ⊗ B−) as a generalized inverse ofA ⊗ B.

B Proof of Theorems2.3and 3.2

We complete the proofs of Theorems2.3and3.2.

B.1 Proof of Theorem2.3 (ii)

Proof By case analysis, we show that any point that satisfies the necessary conditions and the defi-
nition of a local minimum is a global minimum. When we write a statement in the proof, we often
mean that a necessary condition of local minima implies the statement as it should be clear (i.e., we
are not claiming that the statement must hold true unless the point is the candidate of localminima.).

Thecasewhererank(WH ∙ ∙ ∙W2) = p anddy ≤ p: Assume thatrank(WH ∙ ∙ ∙W2) = p. We first
obtain a necessary condition of the Hessian being positive semidefinite at a critical point,Xr = 0,
and then interpret the condition. Ifdy < p, Corollary4.5with k = H +1 implies the necessary con-
dition thatXr = 0. This is because the other conditionp > rank(WH+1) ≥ rank(WH ∙ ∙ ∙W2) = p
is false.

If dy = p, Lemma 4.6 with k = H + 1 implies the necessary condition thatXr = 0 or
R(WH ∙ ∙ ∙W2) ⊆ R(CT C). Suppose thatR(WH ∙ ∙ ∙W2) ⊆ R(CT C). Then, we have that
p = rank(WH ∙ ∙ ∙W2) ≤ rank(CT C) = rank(C). That is,rank(C) ≥ p.

From Corollary4.5with k = 2 implies the necessary condition that

rank(C) ≥ rank(Id1) or XrWH+1 ∙ ∙ ∙W3 = 0.

Suppose the latter:XrWH+1 ∙ ∙ ∙W3 = 0. Sincerank(WH+1 ∙ ∙ ∙W3) ≥ rank(C) ≥ p anddH+1 =
dy = p, the left null space ofWH+1 ∙ ∙ ∙W3 contains only zero. Thus,

XrWH+1 ∙ ∙ ∙W3 = 0 ⇒ Xr = 0.

Suppose the former:rank(C) ≥ rank(Id1). Becausedy = p ≤ d1, rank(C) ≥ p, andR(C) ⊆
R(Y XT ) as shown in the proof of Lemma4.6, we have thatR(C) = R(Y XT ).

rank(C) ≥ rank(Id1) ⇒ CT C is full rank ⇒ Xr = XY T C(CT C)−1CT − XY T = 0,

where the last equality follows the fact that(Xr)T = C(CT C)−1CT Y XT − Y XT = 0 since
R(C) = R(Y XT ) and thereby the projection ofY XT onto the range ofC is Y XT . Therefore, we
have the condition,Xr = 0 whendy ≤ p.
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To interpret the conditionXr = 0, consider a loss function with a linear model without any hidden
layer,f(W ′) = ‖W ′X−Y ‖2

F whereW ′ ∈ Rdy×dx . Then, any point satisfyingXr′ = 0 is a global
minimum of f , wherer′ = (W ′X − Y )T is an error matrix.6 For any values ofWH+1 ∙ ∙ ∙W1,
there existsW ′ such thatW ′ = WH+1 ∙ ∙ ∙W1 (the opposite is also true whendy ≤ p although
we don’t need it in our proof). That is,R(L̄) ⊆ R(f) andR(r) ⊆ R(r′) (as functions ofW
and W ′ respectively) (the equality is also true whendy ≤ p although we don’t need it in our
proof). Summarizing the above, wheneverXr = 0, there existsW ′ = WH+1 ∙ ∙ ∙W1 such that
Xr = Xr′ = 0, which achieves the global minimum value off , f∗ andf∗ ≤ L̄∗ (i.e., the global
minimum value off is at most the global minimum value of̄L sinceR(L̄) ⊆ R(f)). In other
words,WH+1 ∙ ∙ ∙W1 achievingXr = 0 attains a global minimum value off that is at most the
global minimum value of̄L. This means thatWH+1 ∙ ∙ ∙W1 achievingXr = 0 is a global minimum.

Thus, we have proved that whenrank(WH ∙ ∙ ∙W2) = p anddy ≤ p, if ∇2L̄(W ) � 0 at a critical
point, it is a globalminimum.

The casewhererank(WH ∙ ∙ ∙W2) = p anddy > p: We first obtain a necessary condition of the
Hessian being positive semidefinite at a critical point and then interpret the condition. From Lemma
4.6, we have thatC(CT C)−CT = Up̄U

T
p̄ or Xr = 0. If Xr = 0, with the exact same proof as in

the case ofdy ≤ p, it is a global minimum. Suppose thatC(CT C)−CT = Up̄Up̄. Combined with
Lemma4.2, we have a necessary condition:

WH+1 ∙ ∙ ∙W1 = C(CT C)−CT Y XT (XXT )−1 = Up̄Up̄Y XT (XXT )−1.

From Lemma4.4 with k = H + 1, R(WT
2 ∙ ∙ ∙WT

H) ⊆ R(CT C) = R(CT ), which implies that
p̄ , rank(C) = p (sincerank(WH ∙ ∙ ∙W2) = p). Thus, we can rewrite the above equation as
WH+1 ∙ ∙ ∙W1 = UpUpY XT (XXT )−1, which is the orthogonal projection on to subspace spanned
by thep eigenvectors corresponding to thep largest eigenvalues following the ordinary least square
regression matrix. This is indeed the expression of a global minimum (Baldi & Hornik, 1989; Baldi
& Lu, 2012).

Thus, we have proved that whenrank(WH ∙ ∙ ∙W2) = p, if ∇2L̄(W ) � 0 at a critical point, it is a
globalminimum.

The casewhererank(WH ∙ ∙ ∙W2) < p: Suppose thatrank(WH ∙ ∙ ∙W2) < p. From Lemma4.4,
we have a following necessary condition for the Hessian to be (positive or negative) semidefinite at
a critical point: for anyk ∈ {2, . . . , H + 1},

R((Wk−1 ∙ ∙ ∙W2)
T ) ⊆ R(CT C) or XrWH+1 ∙ ∙ ∙Wk+1 = 0,

where the first condition is shown to implyrank(WH+1 ∙ ∙ ∙Wk) ≥ rank(Wk−1 ∙ ∙ ∙W2) in Corol-
lary 4.5. We repeatedly apply these conditions fork = 2, . . . , H + 1 to claim that with arbi-
trarily small ε > 0, we can perturb each parameter (i.e., each entry ofWH , . . . ,W2) such that
rank(WH+1 ∙ ∙ ∙W2) ≥ min(p, dx) without changing the value of̄L(W ).

Let Ak = WH+1 ∙ ∙ ∙Wk+1. From Corollary4.5 with k = 2, we have thatrank(WH+1 ∙ ∙ ∙W2) ≥
d1 ≥ p or XrWH+1 ∙ ∙ ∙W3 = 0 (note thatd1 ≥ p ≥ p̄ by their definitions). The former condition
is false sincerank(WH+1 ∙ ∙ ∙W2) ≤ rank(WH ∙ ∙ ∙W2) < p. From the latter condition, for an
arbitraryL2,

0 = XrWH+1 ∙ ∙ ∙W3

⇔W2W1 =
(
AT

2 A2

)−
AT

2 Y XT (XXT )−1 + (I − (AT
2 A2)

−AT
2 A2)L2 (4)

⇔WH+1 ∙ ∙ ∙W1 = A2

(
AT

2 A2

)−
AT

2 Y XT (XXT )−1

= C(CT C)−CT Y XT (XXT )−1 = Up̄U
T
p̄ Y XT (XXT )−1,

where the last two equalities follow Lemmas4.2and4.6 (since ifXr = 0, we immediately obtain
the desired result as discussed above). Taking transpose,

(XXT )−1XY T A2

(
AT

2 A2

)−
AT

2 = (XXT )−1XY T Up̄U
T
p̄ ,

6Proof: Any point satisfyingXr′ = 0 is a critical point off , which directly follows the proof of Lemma
4.1. Also,f is convex since its Hessian is positive semidefinite for all inputWH+1, and thus any critical point
of f is a global minimum. Combining the pervious two statements results in the desired claim.

17



which implies that

XY T A2

(
AT

2 A2

)−
A2 = XY T Up̄Up̄.

SinceXY T is full rank with dy ≤ dx (i.e., rank(XY T ) = dy), there exists a left inverse and the
solution of the above linear system is unique as((XY T )T XY T )−1(XY T )T XY T = I, yielding,

A2

(
AT

2 A2

)−
A2 = Up̄U

T
p̄ (= Up̄(U

T
p̄ Up̄)

−1UT
p̄ ).

In other words,R(A2) = R(C) = R(Up̄).

Suppose that(AT
2 A2) ∈ Rd2×d2 is nonsingular. Then, sinceR(A2) = R(C), we have that

rank(WH ∙ ∙ ∙W2) ≥ rank(C) = rank(A2) = d2 ≥ p, which is false in the case being analyzed
(the case ofrank(WH ∙ ∙ ∙W2) < p). Thus,AT

2 A2 is singular.

If AT
2 A2 is singular, from equation4, it is inferred that we can perturbW2 to haverank(W2W1) ≥

min(p, dx). To see this in a concrete algebraic way, first note that sinceR(A2) = R(Up̄), we can
write A2 = [Up̄ 0]G2 for someG2 ∈ GLd2(R) where0 ∈ Rdy×(d2−p̄). Thus,

AT
2 A2 = GT

2

[
Ip̄ 0
0 0

]

G2.

Again, note that the set of all generalized inverse ofGT
2

[
Ip̄ 0
0 0

]

G2 is as follows (Zhang, 2006,

p. 41): {

G−1
2

[
Ip̄ L′

1
L′

2 L′
3

]

G−T
2 | L′

1, L
′
2, L

′
3 arbitrary

}

.

Since equation4 must hold for any generalized inverse, we choose a generalized inverse withL′
1 =

L′
2 = L′

3 = 0 for simplicity. That is,

(AT
2 A2)

− := G−1
2

[
Ip̄ 0
0 0

]

G−T
2 .

Then, plugging this into equation4, for an arbitraryL2,

W2W1 = G−1
2

[
UT

p̄

0

]

Y XT (XXT )−1 + (Id2 − G−1
2

[
Ip̄ 0
0 0

]

G2)L2

= G−1
2

[
UT

p̄ Y XT (XXT )−1

0

]

+ G−1
2

[
0 0
0 I(d2−p̄)

]

G2L2

= G−1
2

[
UT

p̄ Y XT (XXT )−1

[0 I(d2−p̄)]G2L2

]

.

Here, [0 I(d2−p̄)]G2L2 ∈ R(d2−p̄)×dx is the last (d2 − p̄) rows of G2L2. Since
rank(Y XT (XXT )−1) = dy (because the multiplication with the invertible matrix preserves the
rank), the firstp̄ rows in the above have rank̄p. Thus,W2W1 has rank at least̄p, and the possi-
ble rank deficiency comes from the last (d2 − p̄) rows, [0 I(d2−p̄)]G2L2. SinceWH+1 ∙ ∙ ∙W1 =
A2W2W1 = [Up̄ 0]G2W2W1,

WH+1 ∙ ∙ ∙W1 = [Up̄ 0]

[
UT

p̄ Y XT (XXT )−1

[0 I(d2−p̄)]G2L2

]

= Up̄U
T
p̄ Y XT (XXT )−1.

This means that changing the values of the last (d2 − p̄) rows of G2L2 (i.e., [0 I(d2−p̄)]G2L2)
does not change the value ofL̄(W ). Therefore, the original necessary condition implies a necessary
condition that without changing the loss value, we can makeW2W1 to have full rank with arbitrarily
small perturbation of the last (d2−p̄) rows as[0 I(d2−p̄)]G2L2+εMptb whereεMptb is a perturbation
matrix with arbitrarily smallε > 0.7

7We have only proved that the submatrix of the firstp̄ rows has rank̄p and that changing the value of the
lastd2 − p̄ rows does not change the loss value. That is, we have not proven the exitance ofεMptb that makes
W2W1 full rank. Although this is trivial since the set of full matrices is dense, we show a proof in the following
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Now, we show that such a perturbation can be done via a perturbation of the entries ofW2. From
the above equation forW2W1, all the possible solutions ofW2 can be written as: for an arbitraryL0

andL2,

W2 = G−1
2

[
UT

p̄ Y XT (XXT )−1

[0 I(d2−p̄)]G2L2

]

W †
1 + LT

0 (I − W1W
†
1 ),

whereM † is the the Moore—Penrose pseudoinverse ofM . Thus, we perturbW2 as

W2 := W2 + εG−1
2

[
0

Mptb

]

W †
1 = G−1

[
UT

p̄ Y XT (XXT )−1

[0 I(d2−p̄)]G2L2 + εMptb

]

W †
1 + LT

0 (I − W1W
†
1 ).

Note that upon such a perturbation, equation4 may not hold anymore; i.e.,

G−1
2

[
UT

p̄ Y XT (XXT )−1

[0 I(d2−p̄)]GL2 + εMptb

]

W †
1 W1 6= G−1

2

[
UT

p̄ Y XT (XXT )−1

[0 I(d2−p̄)]GL2 + εMptb

]

.

This means that the original necessary condition that implies equation4 no longer holds. In this
case, we immediately conclude that the Hessian is no longer positive semidefinite and thus the point
is a saddle point. We thereby consider the remaining case: equation4 still holds. Then, with the
perturbation on the entries ofW1,

W2W1 = G−1
2

[
UT

p̄ Y XT (XXT )−1

[0 I(d2−p̄)]G2L2 + εMptb

]

,

as desired.

Thus, we showed that we can haverank(W2) ≥ rank(W2W1) ≥ min(p, dx), with arbitrarily small
perturbation of each entry ofW2 with the loss value being remained. To prove the corresponding
results forWk ∙ ∙ ∙W2 for anyk = 2, ..., H + 1, we conduct induction onk = 2, . . . , H + 1 with the
same proof procedure. The propositionP (k) to be proven is as follows: the necessary conditions
with j ≤ k imply that we can haverank(Wk ∙ ∙ ∙W2) ≥ min(p, dx) with arbitrarily small perturba-
tion of each entry ofWk, . . .W2 without changing the loss value. For the base casek = 2, we have
already proved the proposition in the above.

For the inductive step withk ∈ {3, . . . , H + 1}, we have the inductive hypothesis that we can have
rank(Wk−1 ∙ ∙ ∙W2) ≥ min(p, dx) with arbitrarily small perturbation of each entry ofWk−1, . . . W2

without changing the loss value. Accordingly, suppose thatrank(Wk−1 ∙ ∙ ∙W1) ≥ min(p, dx).
Again, from Lemma4.4, for anyk ∈ {3, . . . , H + 1},

R((Wk−1 ∙ ∙ ∙W2)
T ) ⊆ R(CT C) or XrWH+1 ∙ ∙ ∙Wk+1 = 0.

If the former is true,rank(WH ∙ ∙ ∙W2) ≥ rank(C) ≥ rank(Wk−1 ∙ ∙ ∙W2) ≥ min(p, dx), which is
the desired statement (it immediately implies the propositionP (k) for anyk). If the latter is true,
for an arbitraryLk,

0 = XrWH+1 ∙ ∙ ∙Wk+1

⇔Wk ∙ ∙ ∙W1 =
(
AT

k Ak

)−
AT

k Y XT (XXT )−1 + (I − (AT
k Ak)−AT

k Ak)Lk (5)

⇔WH+1 ∙ ∙ ∙W1 = Ak

(
AT

k Ak

)−
AT

k Y XT (XXT )−1

= C(CT C)−CT Y XT (XXT )−1 = Up̄U
T
p̄ Y XT (XXT )−1,

where the last two equalities follow Lemmas4.2and4.6. Taking transpose,

(XXT )−1XY T Ak

(
AT

k Ak

)−
AT

k = (XXT )−1XY T Up̄U
T
p̄ ,

to be complete. Let̄p′ ≥ p̄ be the rank ofW2W1. That is, in

[
UT

p̄ Y XT (XXT )−1

[0 I(d2−p̄)]G2L2

]

, there exist̄p′ linearly

independent row vectors including the firstp̄ row vectors, denoted byb1, . . . , bp̄′ ∈ R1×dx . Then, we denote
the rest of row vectors byv1, v2, . . . , vd2−p̄′ ∈ R1×dx . Let c = min(d2 − p̄′, dx − p̄′). There exist linearly
independent vectors̄v1, v̄2, . . . , v̄c such that the set,{b1, . . . , bp̄′ , v̄1, v̄2, . . . , v̄c}, is linearly independent. Set-
ting vi := vi + εv̄i for all i ∈ {1, . . . , c} makesW2W1 full rank sinceεv̄i cannot be expressed as a linear
combination of other vectors. Thus, a desired perturbation matrixεMptb can be obtained by settingεMptb to
consists ofεv̄1, εv̄2, . . . , εv̄c row vectors for the corresponding rows and0 row vectors for other rows.
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which implies thatXY T Ak

(
AT

k Ak

)−
Ak = XY T Up̄Up̄. SinceXY T is full rank with dy ≤ dx

(i.e., rank(XY T ) = dy), there exists a left inverse and the solution of the above linear system is
unique as((XY T )T XY T )−1(XY T )T XY T = I, yielding,

Ak

(
AT

k Ak

)−
Ak = Up̄U

T
p̄ (= Up̄(U

T
p̄ Up̄)

−1UT
p̄ ).

In other words,R(Ak) = R(C) = R(Up̄).

Suppose that(AT
k Ak) ∈ Rdk×dk is nonsingular. Then, sinceR(Ak) = R(C), rank(WH ∙ ∙ ∙W2) ≥

rank(C) = rank(Ak) = dk ≥ p, which is false in the case being analyzed (the case of
rank(WH ∙ ∙ ∙W2) < p). Thus,AT

k Ak is singular. Notice that for the boundary case withk = H +1,
AT

k Ak = Idy
, which is always nonsingular and thus the proof ends here (i.e., For the case with

k = H + 1, since the latter condition,XrWH+1 ∙ ∙ ∙Wk+1 = 0, implies a false statement, the for-
mer condition,rank(WH ∙ ∙ ∙W2) ≥ rank(C) ≥ min(p, dx), which is the desired statement, must
be true).

If AT
k Ak is singular, from equation5, it is inferred that we can perturbWk to have

rank(Wk ∙ ∙ ∙W1) ≥ min(p, dx). To see this in a concrete algebraic way, first note that since
R(Ak) = R(Up̄), we can writeAk = [Up̄ 0]Gk for someGk ∈ GLdk

(R) where0 ∈ Rdy×(dk−p̄).
Then, similarly to the base case withk = 2, plugging this into the condition in equation5: for an
arbitraryLk,

Wk ∙ ∙ ∙W1 = G−1
k

[
UT

p̄ Y XT (XXT )−1

[0 I(dk−p̄)]GkLk

]

.

Sincerank(Y XT (XXT )−1) = dy, the firstp̄ rows in the above have rank̄p. Thus,Wk ∙ ∙ ∙W1 has
rank at least̄p. On the other hand, sinceWH+1 ∙ ∙ ∙W1 = AkWk ∙ ∙ ∙W1 = [Up̄ 0]GWk ∙ ∙ ∙W1,

WH+1 ∙ ∙ ∙W1 = [Up̄ 0]

[
UT

p̄ Y XT (XXT )−1

[0 I(dk−p̄)]GkLk

]

= Up̄U
T
p̄ Y XT (XXT )−1,

which means that changing the values of the last (dk − p̄) rows of Wk ∙ ∙ ∙W1 does not change
the value ofL̄(W ). Therefore, the original necessary condition implies a necessary condition that
without changing the loss value, we can makeWk ∙ ∙ ∙W1 to have full rank with arbitrarily small
perturbation on the last (dk − p̄) rows as[0 I(dk−p̄)]GkLk + εMptb whereεMptb is a perturbation
matrix with arbitrarily smallε > 0 (a proof of the existence of a corresponding perturbation matrix
is exactly the same as the proof in the base case withk = 2, which is in footnote7).

Similarly to the base case withk = 2, we can conclude that this perturbation can be down via a
perturbation on each entry ofWk. From the above equation forWk ∙ ∙ ∙W1, all the possible solutions
of Wk can be written as: for an arbitraryL0 andLk,

Wk = G−1
k

[
UT

p̄ Y XT (XXT )−1

[0 I(dk−p̄)]GkLk

]

(Wk−1 ∙ ∙ ∙W1)
† + LT

0 (I − (Wk−1 ∙ ∙ ∙W1)(Wk−1 ∙ ∙ ∙W1)
†).

Thus, we perturbWk as

Wk := Wk + εG−1
k

[
0

Mptb

]

(Wk−1 ∙ ∙ ∙W1)
†

= G−1
k

[
UT

p̄ Y XT (XXT )−1

[0 I(dk−p̄)]GkLk + εMptb

]

(Wk−1 ∙ ∙ ∙W1)
† + LT

0 (I − (Wk−1 ∙ ∙ ∙W1)(Wk−1 ∙ ∙ ∙W1)
†).

Note that upon such a perturbation, equation5 may not hold anymore; i.e.,

G−1
k

[
UT

p̄ Y XT (XXT )−1

[0 I(dk−p̄)]GkLk + εMptb

]

(Wk−1 ∙ ∙ ∙W1)
†(Wk−1 ∙ ∙ ∙W1) 6= G−1

[
UT

p̄ Y XT (XXT )−1

[0 I(dk−p̄)]GL2 + εMptb

]

.

This means that the original necessary condition that implies equation5 no longer holds. In this
case, we immediately conclude that the Hessian is no longer positive semidefinite and thus the point
is a saddle point. We thereby consider the remaining case: equation5 still holds. Then, with the
perturbation on the entries ofWk,

WH+1 ∙ ∙ ∙W1 = G−1
k

[
UT

p̄ Y XT (XXT )−1

[0 I(dk−p̄)]GkLk + εMptb

]

,
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as desired. Therefore, we have thatrank(Wk ∙ ∙ ∙W2) ≥ rank(Wk ∙ ∙ ∙W1) ≥ min(p, dx) upon such
a perturbation.

Thus, we conclude the induction, proving that we can haverank(WH ∙ ∙ ∙W2) ≥
rank(WH+1 ∙ ∙ ∙W2) ≥ min(p, dx) with arbitrarily small perturbation of each parameter without
changing the value of̄L(W ). If p ≤ dx, this means that upon such a perturbation, we have the case
of rank(WH ∙ ∙ ∙W2) = p (since we have thatp ≥ rank(WH ∙ ∙ ∙W2) ≥ p where the first inequal-
ity follows the definition ofp), with which we have already proved the existence of some negative
eigenvalue of the Hessian unless it is a global minimum. Thus, such a critical point is not a local
minimum unless it is a global minimum. On the other hand, ifp > dx, upon such a perturbation,
we havep̄ , rank(WH+1 ∙ ∙ ∙W2) ≥ dx ≥ dy. Thus,WH+1 ∙ ∙ ∙W1 = Up̄U

T
p̄ Y XT (XXT )−1 =

UUT Y XT (XXT )−1, which is a global minimum. We can see this in various ways. For example,
Xr = XY T UUT − XY T = 0, which means that it is a global minimum as discussed above.

Summarizing the above, any point that satisfies the definition (and necessary conditions) of a local
minimum is a global minimum, concluding the proof ofTheorem2.3 (ii) . �

B.2 Proof of Theorem2.3 (i)

Proof We can prove the non-convexity and non-concavity from its Hessian (Theorem2.3(i)). First,
considerL̄(W ). For example, from Corollary4.5 with k = H + 1, it is necessary for the Hessian
to be positive or negative semidefinite at a critical point thatrank(WH+1) ≥ rank(WH ∙ ∙ ∙W2) or
Xr = 0. The instances ofW unsatisfying this condition at critical points form some uncountable
set. For example, consider a uncountable set that consists of the points withWH+1 = W1 = 0 and
with anyWH , . . . ,W2. Then, every point in the set defines a critical point from Lemma4.1. Also,
Xr = XY T 6= 0 as rank(XY T ) ≥ 1. So, it does not satisfies the first semidefinite condition.
On the other hand, with any instance ofWH ∙ ∙ ∙W2 such thatrank(WH ∙ ∙ ∙W2) ≥ 1, we have that
0 = rank(WH+1) � rank(WH ∙ ∙ ∙W2). So, it does not satisfy the second semidefinite condition
as well. Thus, we have proved that in the domain of the loss function, there exist points, at which
the Hessian becomes indefinite.This implies Theorem2.3 (i): the functions are non-convex and
non-concave.

�

B.3 Proof of Theorem2.3 (iii)

Proof We now prove Theorem2.3 (iii) : every critical point that is not a global minimum is a
saddle point. Here, we want to show that if the Hessian is negative semidefinite at a critical
point, then there is a increasing direction so that there is no local maximum. SinceL̄(W ) =
1
2

∑m
i=1

∑dy

j=1((WH+1)j,∙ ∙ ∙ ∙W1X∙,i − Yj,i)2,

D(WH+1)1,t
L̄(W ) =

1

2

m∑

i=1

D(WH+1)1,t
((WH+1)1,∙ ∙ ∙ ∙W1X∙,i − Y1,i)

2

=
m∑

i=1

((WH+1)1,∙ ∙ ∙ ∙W1X∙,i − Y1,i)

(

D(WH+1)1,t

dH∑

l=1

(WH+1)1,l(WH)l,∙ ∙ ∙ ∙W1X∙,i

)

=
m∑

i=1

((WH+1)1,∙ ∙ ∙ ∙W1X∙,i − Y1,i) ((WH)t,∙ ∙ ∙ ∙W1X∙,i) .

Similarly,

D(WH+1)1,t
D(WH+1)1,t

L̄(W ) =
m∑

i=1

((WH)t,∙ ∙ ∙ ∙W1X∙,i)
2 ∈ R.

Therefore, with other variables being fixed,L̄ is strictly convex in(WH+1)t,1 ∈ R coordinate
for somet unless(WH)t,∙ ∙ ∙ ∙W1X∙,i = 0 for all i = 1, . . . , m and for all t = 1, . . . dH . Since
rank(X) = dx, in order to have(WH)t,∙ ∙ ∙ ∙W1X∙,i = 0 for all i = 1, . . . ,m, the dimension of the
null space of(WH)t,∙ ∙ ∙ ∙W1 must be at leastdx for eacht. Since(WH)t,∙ ∙ ∙ ∙W1 ∈ R1×dx for each
eacht, this means that(WH)t,∙ ∙ ∙ ∙W1 = 0 for all t. Therefore, with other variables being fixed,L̄
is strictly convex in(WH+1)1,t ∈ R coordinate for somet if WH ∙ ∙ ∙W1 6= 0.
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If WH ∙ ∙ ∙W1 = 0, we claim that at a critical point, if the Hessian is negative semidefinite, we can
makeWH ∙ ∙ ∙W1 6= 0 with arbitrarily small perturbation of each parameter without changing the
loss value. We can prove this by using the similar proof procedure to that used for Theorem2.3 (ii)
in the case ofrank(WH ∙ ∙ ∙W2) < p. Suppose thatWH ∙ ∙ ∙W1 = 0 and thusrank(WH ∙ ∙ ∙W1) =
0. From Lemma4.4, we have a following necessary condition for the Hessian to be (positive or
negative) semidefinite at a critical point: for anyk ∈ {2, . . . , H + 1},

R((Wk−1 ∙ ∙ ∙W2)
T ) ⊆ R(CT C) or XrWH+1 ∙ ∙ ∙Wk+1 = 0,

where the first condition is shown to implyrank(WH+1 ∙ ∙ ∙Wk) ≥ rank(Wk−1 ∙ ∙ ∙W2) in Corollary
4.5.

Let Ak = WH+1 ∙ ∙ ∙Wk+1. From the condition withk = 2, we have thatrank(WH+1 ∙ ∙ ∙W2) ≥
d1 ≥ 1 or XrWH+1 ∙ ∙ ∙W3 = 0. The former condition is false sincerank(WH ∙ ∙ ∙W2) < 1. From
the latter condition, for an arbitraryL2,

0 = XrWH+1 ∙ ∙ ∙W3

⇔W2W1 =
(
AT

2 A2

)−
AT

2 Y XT (XXT )−1 + (I − (AT
2 A2)

−AT
2 A2)L2 (6)

⇔WH+1 ∙ ∙ ∙W1 = A2

(
AT

2 A2

)−
AT

2 Y XT (XXT )−1

= C(CT C)−CT Y XT (XXT )−1

where the last follow the critical point condition (Lemma4.2). Then, similarly to the proof of
Theorem2.3 (ii) ,

A2

(
AT

2 A2

)−
A2 = C(CT C)−CT .

In other words,R(A2) = R(C).

Suppose thatrank(AT
2 A2) ≥ 1. Then, sinceR(A2) = R(C), we have thatrank(WH ∙ ∙ ∙W2) ≥

rank(C) ≥ 1, which is false (or else the desired statement). Thus,rank(AT
2 A2) = 0, which implies

thatA2 = 0. Then, sinceWH+1 ∙ ∙ ∙W1 = A2W2W1 with A2 = 0, we can haveW2W1 6= 0 without
changing the loss value with arbitrarily small perturbation ofW2 andW1.

Thus, we showed that we can haveW2W1 6= 0, with arbitrarily small perturbation of each parameter
with the loss value being unchanged. To prove the corresponding results forWk ∙ ∙ ∙W2 for anyk =
2, ..., H , we conduct induction onk = 2, . . . , H with the same proof procedure. The proposition
P (k) to be proven is as follows: the necessary conditions withj ≤ k implies that we can have
Wk ∙ ∙ ∙W2 6= 0 with arbitrarily small perturbation of each parameter without changing the loss
value. For the base casek = 2, we have already proved the proposition in the above.

For the inductive step withk ≥ 3, we have the inductive hypothesis that we can haveWk−1 ∙ ∙ ∙W2 6=
0 with arbitrarily small perturbation of each parameter without changing the loss value. Accordingly,
suppose thatWk−1 ∙ ∙ ∙W1 6= 0. Again, from Lemma4.4, for anyk ∈ {2, . . . , H + 1},

R((Wk−1 ∙ ∙ ∙W2)
T ) ⊆ R(CT C) or XrWH+1 ∙ ∙ ∙Wk+1 = 0.

If the former is true, rank(WH ∙ ∙ ∙W2) ≥ rank(C) ≥ rank(Wk−1 ∙ ∙ ∙W2) ≥
rank(Wk−1 ∙ ∙ ∙W2W1) ≥ 1, which is false (or the desired statement). If the latter is true, for
an arbitraryL1,

0 = XrWH+1 ∙ ∙ ∙Wk+1

⇔Wk ∙ ∙ ∙W1 =
(
AT

k Ak

)−
AT

k Y XT (XXT )−1 + (I − (AT
k Ak)−AT

k Ak)L1

⇔WH+1 ∙ ∙ ∙W1 = Ak

(
AT

k Ak

)−
AT

k Y XT (XXT )−1

= C(CT C)−CT Y XT (XXT )−1 = Up̄U
T
p̄ Y XT (XXT )−1,

where the last follow the critical point condition (Lemma4.2). Then, similarly to the above,

Ak

(
AT

k Ak

)−
Ak = C(CT C)−CT .

In other words,R(Ak) = R(C).

Suppose thatrank(AT
k Ak) ≥ 1. Then, sinceR(Ak) = R(C), we have thatrank(WH ∙ ∙ ∙W2) ≥

rank(C) = rank(Ak) ≥ 1, which is false (or the desired statement). Thus,rank(AT
k Ak) = 0,
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which implies thatAk = 0. Then, sinceWH+1 ∙ ∙ ∙W1 = AkWk ∙ ∙ ∙W1 with Ak = 0, we can
haveWk ∙ ∙ ∙W1 6= 0 without changing the loss value with arbitrarily small perturbation of each
parameter.

Thus, we conclude the induction, proving that ifWH ∙ ∙ ∙W1 = 0, with arbitrarily small perturbation
of each parameter without changing the value ofL̄(W ), we can haveWH ∙ ∙ ∙W2 6= 0. Thus, upon
such a perturbation at any critical point with the negative semidefinite Hessian, the loss function is
strictly convex in(WH+1)1,t ∈ R coordinate for somet. That is, at any candidate point for a local
maximum, there exists a strictly increasing direction in an arbitrarily small neighbourhood. This
means that there is no local maximum.Thus, we obtained the statement of Theorem2.3 (i).

�

B.4 Proof of Theorem2.3 (iv)

Proof In the proof of Theorem2.3 (ii) , the case analysis with the case,rank(WH ∙ ∙ ∙W2) = p,
revealed that whenrank(WH ∙ ∙ ∙W2) = p, if ∇2L̄(W ) � 0 at a critical point,W is a global
minimum. Thus, whenrank(WH ∙ ∙ ∙W2) = p, if W is not a global minimum at a critical point, its
Hessian is not positive semidefinite, containing some negative eigenvalue. From Theorem2.3 (ii) ,
if it is not a global minimum, it is not a local minimum. From Theorem2.3 (iii) , it is a saddle point.
Thus, if rank(WH ∙ ∙ ∙W2) = p, the Hessian at any saddle point has some negative eigenvalue,
which is the statement of Theorem2.3 (iv).

�

B.5 Proof of Theorem3.2and discussion of the assumptions

Proof

EZ [L(W )] = EZ



1
2

m∑

i=1

dy∑

j=1

(Ŷ (W,X)j,i − Yj,i)
2





=
1
2

m∑

i=1

dy∑

j=1

EZ [Ŷ (W,X)2j,i] − 2Yj,iEZ [Ŷ (W, X)j,i] + Y 2
j,i

=
1
2

m∑

i=1

dy∑

j=1

ρ2q2




Ψj∑

p=1

[Xi](j,p)

H∏

k=1

w(j,p)





2

− 2ρqYj,i




Ψj∑

p=1

[Xi](j,p)

H∏

k=1

w(j,p)



+ Y 2
j,i

The first line follows the definition of the Frobenius norm. In the second line, we used the linearity of
the expectation. The third line follows the independence assumption (A1p-m and A5u-m in (Choro-
manskaet al., 2015b,a)). That is, we have thatEZ [Ŷ (W, X)j,i] = ρq

∑Ψj

p=1[Xi](j,p)

∏H
k=1 w(j,p).

Also, since(
∑k

p=1 ap)2 =
∑k

p=1 a2
p + 2

∑
p<p′ apap′ for any a and k, by denotingai,j,p =

[Xi](j,p)

∏H
k=1 w(j,p),

EZ [Ŷ (W,X)2j,i] = EZ









Ψj∑

p=1

ai,j,p[Zi](j,p)





2





=
Ψj∑

p=1

a2
i,j,pEZ [[Zi]

2
(j,p)] + 2

∑

p<p′

ai,j,pai,j,p′EZ [[Zi](j,p)[Zi](j,p′)]

= ρ2

Ψj∑

p=1

a2
i,j,p + 2ρ2

∑

p<p′

ai,j,pai,j,p′

= ρ2




Ψj∑

p=1

[Xi](j,p)

H∏

k=1

w(j,p)





2
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All the assumptions used above are subset of assumptions that were used, for example, in the first
equation of the proof of theorem 3.3 in (Choromanskaet al., 2015a). Finally, sinceq = ρ−1 and
∑Ψj

p=1[Xi](j,p)

∏H
k=1 w(j,p) = (WH+1WHWH−1 ∙ ∙ ∙W2W1X)j,i = Y j,i, the last line of the above

equation forEZ [L(W )] is equal to1
2‖Y − Y ‖2

F = L̄(W ). Also,LEZ [Ŷ ](W ) = 1
2‖E[Ŷ (W,X)] −

Y ‖2
F = 1

2‖E[Ŷ (W,X)] − Y ‖2
F = 1

2‖Y − Y ‖2
F = L̄(W ).

Therefore, what we have proved to be true forL̄(W ) is also true forEZ [L(W )] andLEZ [Ŷ ](W ).
We conclude the proof of Theorem3.2.

�

Note that we could reduce the loss functionsEZ [L(W )] andLEZ [Ŷ ](W ) to L̄(W ) only with a strict
subset of the assumptions used in the previous work. Accordingly, a question might arise as to
how much we can reshape the loss function with all the assumptions used in the previous work.
To answer this question, we note thatChoromanskaet al. (2015b,a) reduced their loss functions of
nonlinear neural networks to:

Eξ,Z [Lhinge(W )1,1] =
1

Λ(H−1)/2

Λ∑

i1,i2,...,iH=1

Xi1,i2,...,iH
w̃i1w̃i2 . . . w̃iH

s.t.
1
Λ

Λ∑

i=1

w̃2
i = 1,

whereΛ ∈ R is some constant related to the size of the network (i.e.,not the matrix containing
the eigenvalues). While we refer to (Choromanskaet al., 2015b,a) for the detailed definitions of
the symbols,X andw are defined in the same way as ours are, andw̃ is a modified version due
to other assumptions that we did not adopt. Here, we observe that not only the model but also the
loss function is linear in the inputs (the nonlinear activation function has disappeared—The inputs
are simply multiplied by some coefficients and then summed). Moreover, the target functionY has
disappeared (i.e., the loss value does not depend on the target function). That is, whatever the data
points ofY are, their loss values are the same. Thus, we see that the loss functions can be reduced
to much different functions with all the assumptions used in the previous work (i.e, A1p, A2p, A3p,
A4p, A5u, A6u, and A7p). We adopted a strict subset of the assumptions, with which we reduced
our loss function to a more realistic loss function of a deep neural network.

C Proofs of Corollaries2.4and 3.3

We complete the proofs of Corollaries2.4and3.3.

Proof If H = 1, the condition in Theorem2.3(iv) reads "ifrank(W1 ∙ ∙ ∙W2) = rank(Id1) = d1 =
p", which is always true. This is becausep is the smallest width of hidden layers and there is only one
hidden layer, the width of which isd1. Thus, Theorem2.3 (iv) immediately implies the statement
of Corollary2.4. For the statement of Corollary2.4with H ≥ 2, it is suffice to show the existence
of a simple set containing saddle points with the Hessian having no negative eigenvalue. Suppose
thatWH = WH−1 = ∙ ∙ ∙ = W2 = W1 = 0. Then, from Lemma4.1, it defines a uncountable set of
critical points, in whichWH+1 can vary inRdy×dH . Sincer = Y T 6= 0 due torank(Y ) ≥ 1, it is
not a global minimum. To see this, we write

L̄(W ) =
1
2
‖Y (W,X) − Y ‖2

F =
1
2

tr(rT r)

=
1
2

tr(Y Y T ) −
1
2

tr(WH+1 ∙ ∙ ∙W1XY T ) −
1
2

tr((WH+1 ∙ ∙ ∙W1XY T )T )

+
1
2

tr(WH+1 ∙ ∙ ∙W1XXT (WH+1 ∙ ∙ ∙W1)
T ).

For example, withWH+1 ∙ ∙ ∙W1 = ± UpU
T
p Y XT (XX)−1,

L̄(W ) =
1
2

(
tr(Y Y T ) − tr(UpU

T
p Σ) − tr(ΣUpU

T
p ) + tr(UpU

T
p ΣUpU

T
p )
)

=
1
2

(
tr(Y Y T ) − tr(UpΛ1:pU

T
p )
)

=
1
2

(

tr(Y Y T ) ±
p∑

k=1

Λk,k

)

,
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where we can see that there exists a strictly lower value ofL̄(W ) than the loss value withr = Y T ,
which is 1

2 tr(Y Y T ) (sinceX 6= 0 andrank(Σ) 6= 0).

Thus, these are not global minima, and thereby these are saddle points by Theorem2.3 (ii) and(iii) .
On the other hand, from the proof of Lemma4.3, every diagonal and off-diagonal element of the
Hessian is zero ifWH = WH−1 = ∙ ∙ ∙ = W2 = W1 = 0. Thus, the Hessian is simply a zero matrix,
which has no negative eigenvalue. Using the argument in the proof of Theorem3.2, we can deduce
that the same results hold forEZ [L(W )] andLEZ [Ŷ ](W ).

�

D Discussion of the 1989 conjecture

The 1989 conjecture is based on the result for a 1-hidden layer network withp < dy = dx (e.g., an
autoencoder). That is, the previous workconsideredY = W2W1 with the same loss function as ours
with the additional assumptionp < dy = dx. The previous work denotesA ,W2 andB ,W1.

The conjecture was expressed byBaldi & Hornik (1989) as

Our results, and in particular the main features of the landscape ofE, hold true in
the case of linear networks with several hidden layers.

Here, the “main features of the landscape ofE” refers to the following features, among other minor
technical facts: 1) the function is convex in each matrixA (or B) when fixing otherB (or A), and 2)
every local minimum is a global minimum. No proof was provided in this work for this conjecture.

In 2012, the proof for the conjecture corresponding to the first feature (convexity in each matrix
A (or B) when fixing otherB (or A)) was provided in (Baldi & Lu, 2012) for both real-valued
and complex-valued cases, while the proof for the conjecture for the second feature (every local
minimum being a global minimum) was left for future work.

In (Baldi, 1989), there is an informal discussion regarding the conjecture. Leti ∈ {1, ∙ ∙ ∙ , H} be an
index of a layer with the smallest widthp. That is,di = p. We write

A := WH+1 ∙ ∙ ∙Wi+1

B := Wi ∙ ∙ ∙W1.

Then, whatA and B can represent is the same as what the originalA := W2 and B := W1,
respectively, can represent in the 1-hidden layer case, assuming thatp < dy = dx (i.e., any element
in Rdy×p and any element inRp×dx ). Thus, wewould conclude that all the local minima in the
deeper models always correspond to the local minima of the collapsed 1-hidden layer version with
A := WH+1 ∙ ∙ ∙Wi+1 andB := Wi ∙ ∙ ∙W1.

However, the above reasoning turns out to be incomplete. Let us prove the incompleteness of the
reasoning by contradiction in a way in which we can clearly see what goes wrong. Suppose that the
reasoning is complete (i.e., the following statement is true: if we can collapse the model with the
same expressiveness with the same rank restriction, then the local minima of the model correspond
to the local minima of the collapsed model). Considerf(w) = W3W2W1 = 2w2 + w3, where
W1 = [w w w], W2 = [1 1 w]T andW3 = w. Then, let us collapse the model asa := W3W2W1

andg(a) = a. As a result, whatf(w) can represent is the same as whatg(a) can represent (i.e.,
any element inR) with the same rank restriction (with a rank of at most one). Thus, with the same
reasoning, we can conclude that every local minimum off(w) corresponds to a local minimum of
g(a). However, this is clearly false, asf(w) is a non-convex function with a local minimum at
w = 0 that is not a global minimum, whileg(a) is linear (convex and concave) without any local
minima. The convexity forg(a) is preserved after the composition with any norm. Thus, we have a
contradiction, proving the incompleteness of the reasoning. What is missed in the reasoning is that
even if what a model can represent is the same, the different parameterization creates different local
structure in the loss surface, and thus different properties of the critical points (global minima, local
minima, saddle points, and local maxima).

Now that we have proved the incompleteness of this reasoning, we discuss where the reasoning
actually breaks down in a more concrete example. From Lemmas4.1 and4.2, if H = 1, we have
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the following representation at critical points:

AB = A(AT A)−AT Y XT (XXT )−1.

whereA := W2 andB := W1. In contrast, from Lemmas4.1and4.2, if H is arbitrary,

AB = C(CT C)−CT Y XT (XXT )−1.

whereA := WH+1 ∙ ∙ ∙Wi+1 andB := Wi ∙ ∙ ∙W1 as discussed above, andC = WH+1 ∙ ∙ ∙W2.
Note that by using other critical point conditions from Lemmas4.1, we cannot obtain an expression
such thatC = A in the above expression unlessi = 1. Therefore, even though whatA andB can
represent is the same, the critical condition becomes different (and similarly, the conditions from
the Hessian). Because the proof in the previous work withH = 1 heavily relies on the fact that
AB = A(AT A)−AT Y XT (XXT )−1, the same proof does not apply for deeper models (we may
continue providing more evidence as to why the same proof does not work for deeper models, but
one such example suffices for the purpose here).

In this respect, we have completed the proof of the conjecture and also provided a complete analyt-
ical proof for more general and detailed statements; that is, we did not assume thatp < dy = dx,
and we also proved saddle point properties with negative eigenvalue information.

26




