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Abstract

In this paper, we prove a conjecture published in 1989 and also partially address
an open problem announced at the Conference on Learning Theory (COLT) 2015.
For an expected loss function of a deep nonlinear neural network, we prove the fol-
lowing statements under the independence assumption adopted from recent work:
1) the function is non-convex and non-concave, 2) every local minimum is a global
minimum, 3) every critical point that is not a global minimum is a saddle point,
and 4) the property of saddle points differs for shallow networks (with three lay-
ers) and deeper networks (with more than three layers). Moreover, we prove that
the same four statements hold for deep linear neural networks with any depth,
any widths and no unrealistic assumptions. As a result, we present an instance,
for which we can answer to the following question: how difficult to directly train

a deep model in theory? It is more difficult than the classical machine learn-
ing models (because of the non-convexity), but not too difficult (because of the
nonexistence of poor local minima and the property of the saddle points). We note
that even though we have advanced the theoretical foundations of deep learning,
there is still a gap between theory and practice.

1 Introduction

Deep learning has been a great practical success in many fields, including the fields of computer
vision, machine learning, and artificial intelligence. In addition to its practical success, theoretical
results have shown that deep learning is attractive in terms of its generalization propavties (

et al, 2014 Mhaskaret al, 2016. That is, deep learning introduces good function classes that
may have a low capacity in the VC sense while being able to represent target functions of interest
well. However, deep learning requires us to deal with seemingly intractable optimization problems.
Typically, training of a deep model is conducted via non-convex optimization. Because finding a
global minimum of ageneralnon-convex function is an NP-complete problektuty & Kabadi,

1987, a hope is that a function induced by a deep model has some structure that makes the non-
convex optimization tractable. Unfortunately, it was shown in 1992 that training a very simple
neural network is indeed NP-harBIgm & Rivest 1992. In the past, such theoretical concerns in
optimization played a major role in shrinking the field of deep learning. That is, many researchers
instead favored classical machining learning models (with or without a kernel approach) that require
only convex optimization. While the recent great practical successes have revived the field, we do
not yet know what makes optimization in deep learning tractable in theory.

In this paper, as a step toward establishing the optimization theory for deep learning, we prove a
conjecture noted inGoodfellowet al, 2016 for deeplinear networks, and also address an open
problem announced irChoromanskat al., 20150 for deepnonlinear networks. Moreover, for

both the conjecture and the open problem, we prove more general and tighter statements than those
previously given.



2 Deep linear neural networks

Given the absence of a theoretical understanding of deep nonlinear neural net@ookisellow

et al. (2016 noted that it is beneficial to theoretically analyze the loss functions of simpler models,
i.e., linear neural networks. The function class of a linear neural network only contains functions
that are linear with respect to inputs. However, their loss functions are non-convex in the weight
parameters and thus nontrivi@axeet al. (2014 empirically showed that the optimization of deep
linear models exhibits similar properties to those of the optimization of dempinear models.
Ultimately, for theoretical development, it is natural to start with linear models before working with
nonlinear modelsRaldi & Lu, 2012, and yet even for linear models, the understanding is scarce
when the models become deep.

2.1 Model and notation

We begin by defining the notation. Léf be the number of hidden layers, and (&f, Y) be the
training data set, with” € R%*™ andX € R%>™ wherem is the number of data points. Here,

d, > 1 andd, > 1 are the number of components (or dimensions) of the outputs and inputs,
respectively. We denote the model (weight) parametefid’byhich consists of parameter matrices
corresponding to each layeWy,; € Ré%v>du W, € Ré&xde-1 W, ¢ R1*d=, Here,

dy represents the width of theth layer, where th@-th layer is the input layer and thgd + 1)-th

layer is the output layer (i.edy = d, anddyy1 = dy). Let I, be thed, x dj identity matrix.

Letp = min(dy,...,d;) be the smallest width of a hidden layer. We denote(ihé)-th entry of a
matrix M by M; ;. We also denote thgth row vector ofM by M; . and thei-th column vector of

We can then write the output of a feedforward deep limeadel,Y (W, X) € R%*™ as

YW, X) =Wy WegWg_1 - WolW X,
We consider one of the most widely used loss functions, squared error loss:

_ 1 1
L) = 5 DIV, X). = YVaall3 = SIV(W.X) - Y
=1

where|-|| 7 is the Frobenius norm. Note thgtZ(WW) is the usuaimeansquared error, for which all

of our theorems hold as well, since multiplyid{1¥) by a constant if¥ results in an equivalent
optimization problem.

2.2 Background

Recently,Goodfellowet al. (2016 remarked that wheBaldi & Hornik (1989 stated and proved
Propositior2.1for shallow linear networks, they also stated Conjecfupdor deep linear networks.

Proposition 2.1 (Baldi & Hornik, 1989 shallow linear network)Assume thatH = 1 (i.e,
Y(W,X) = WeW;X), assume thaf X7 and XY are invertible, and assume that < d,,
p < d, andd, = d, (e.g., an autoencoder). Then, the loss funct{i¥’) has the following
properties:

(i) Itis convex in each matrixi’; (or W>) when the otheiV, (or Wh) is fixed.

(ii) Every local minimum is a global minimum.
Conjecture 2.2 (Baldi & Hornik, 1989 deeplinear network)Assume the same set of conditions as
in Proposition2.1except ford = 1. Then, the loss functiof(1) has the following properties:

(i) Foranyk € {1,...,H + 1}, itis convex in each matri¥/;, when for allk’ # k, W} is
fixed.

(i) Every local minimum is a global minimum.

Baldi & Lu (2012 recently provided a proof for Conjectuge? (i), leaving the proof of Conjecture
2.2 (i) for future work. They also noted that the casepob d, = d, is of interest, but requires
further analysis, even for a shallow network with= 1. An informal discussion of Conjectu2
can be found inBaldi, 1989. In AppendixD in the supplementary material, we provide a more
detailed discussion of this subject.



2.3 Results

We now state our main theoretical results for deep linear networks, which imply Conj@cii¢
as well as obtain further information regarding the critical points with more generality.

Theorem 2.3 (Loss surface ofleeplinear networks wittmore generality Assume thak X and
XYT are full rank. Further, assume that, < d,. Then, for any depttt > 1 and for any layer
widths and any input-output dimensiofg dfr, dr—1, - - ., d1, d,, (the widths can arbitrarily differ

from each other and frond, andd,), the loss functiorC (W) has the following properties:
(i) Itis non-convex and non-concave.
(i) Every local minimum is a global minimum.
(iii) Every critical point that is not a global minimum is a saddle point.

(iv) If rank(Wy --- Ws) = p, then the Hessian at any saddle point has at least one (strictly)
negative eigenvalue.

Corollary 2.4 (Effect of deepness on the loss surfagesume the same set of conditions as in
Theorem2.3 and consider the loss functioi(1W). For three-layer networks (i.eH = 1), the
Hessian at any saddle point has at least one (strictly) negative eigenvalue. In contrast, for networks
deeper than three layers (i.e > 2), there exist saddle points at which the Hessian does not have
any negative eigenvalue.

The full rank assumptions oN X7 and XY in Theorem2.3 are realistic and practically easy to
satisfy, as discussed in previous work (eRBpldi & Hornik, 1989. In contrast to related previous
work (Baldi & Hornik, 1989 Baldi & Lu, 2012, we do not assume the invertibility 6f Y ”', p < d,,

p < dy nord, = d,. In Theorem2.3, p > d, is allowed, as well as many other relationships
among the widths of the layers. Therefore, Theo8&1ii) implies Conjectur.2 (ii) and is more
general than Conjectuiz2 (ii). Moreover, Theoren2.3 (iv) and Corollary2.4 provide additional
information regarding the important properties of saddle points.

Theorem?2.3 presents an instance of a deep model that is not too difficult to train with direct greedy
optimization, such as gradient-based methods. If there are “bad” local minima with large loss values
everywhere, we would have to search the entire spaue yolume of which increases exponentially

with the number of variables. This is a major cause of NP-hardness for non-convex optimization.
In contrast, if there are no poor local minima as Theo&&1(ii) states, then saddle points are the
remaining concern in terms of tractabilityBecause the Hessian 6{1V) is Lipschitz continuous, if

the Hessian at a saddle point has a negative eigenvalue, it starts appearing as we approach the saddle
point. Thus, Theorer2.3and Corollary2.4 suggest that for 1-hidden layer networks, training can

be done in polynomial time with a second order method or even with a modified stochastic gradient
decent method, as discussed Ge(et al, 2015. For deeper networks, Corollag./4 states that

there exist “bad” saddle points in the sense that the Hessian at the point has no negative eigenvalue.
However, from Theoren2.3 (iv), we know exactly when this can happen, and from the proof of
Theorem2.3, we see that some perturbation is sufficient to escape such bad saddle points.

3 Deep nonlinear neural networks

Given this understanding of the loss surface of diepar models, we discuss deamnlinear
models.

3.1 Model

We use the same notation as for the deep linear models, defined in the beginning of Sécfitie
output of deep nonlinear neural netwolk(\W, X) € R%>™ is defined as

YW, X) = qopi1(Wairoug(Waog—1(Wy—1 - - 02(Wao (W1 X)) - ),

Nf H = 1, to be succinct, we defindy - -- Wy = W, --- We 2 I, with a slight abuse of notation.
2Typically, we do this by assuming smoothness in the values of the loss function.
30ther problems such as the ill-conditioning can make it difficult to obtain a fast convergence rate.



whereq € R is simply a normalization factor, the value of which is specified later. Heye;
R&=xm _, Rdk*m s the element-wise rectified linear function:

b1 ... bim 5’([)11) - 5'(blm)
R I T
bdkl to bdkm 5(bdk1) T 5—(bdkm)

wherea (b;;) = max(0, b;;). In practice, we usually set; . to be an identity map in the last layer,
in which case all our theoretical results still hold true.

3.2 Background

Following the work byDauphinet al. (2014, Choromanskat al. (20153 investigated the connec-

tion between the loss functions of deep nonlinear networks and a function well-studied via random
matrix theory (i.e., the Hamiltonian of the spherical spin-glass model). They explained that their
theoretical results relied on seveuarealisticassumptions. LateGhoromanskat al. (2015h sug-

gested at the Conference on Learning Theory (COLT) 2015 that discarding these assumptions is an
important open problem. The assumptions were labeled Alp, A2p, A3p, Adp, ASu, A6u, and A7p.

Here, we discuss the most relevant assumptions: Alp, A5u, and A6u. We refer to the part of as-
sumption Alp (resp. A5u) that corresponds only tortimdelassumption as Alp-m (resp. A5u-m).
Note that assumptions Alp-m and A5u-m are explicitly used in the previous @drrémanska

et al, 20153 and included in Alp and A5u (i.e., we amet making new assumptions here). As the
modeIY(W, X) € R¥*m represents a directed acyclic graph, we can express an output from one

of the units in the output layer as
\I/] H+1

(k)
i = qz il [ Zil G.p) H Wi py
k=1

whereV; is the total number of paths from the inputs to jheh output in the directed acyclic graph.
In addition,[X;](; ,) € R represents the entry of thiéh sample input datum that is used in fhéh

path of thej-th output. For each layé, w(J) ) € R is the entry ofiV;. that is used in the-th path of

thej-th output. Finally[Z;] ;. ) € {0, 1} represents whether theth path of thej-th output is active
([Zi]jpy = 1) or not (Zi]; ) = 0) for each samplé because of the rectified linear activation.

Assumption Alp-m assumes that tA& are Bernoulli random variables with the same probability
of successPr([Z;](; ) = 1) = p for all i and(j, p). Assumption ASu-m assumes that thés are
independent from the inpuX’’s, parametersv’s, and each other (the independence was required,
for example, in the first equation of the proof of Theorem 3.3dhdromanskat al., 20153). With

assumptions Alp-m and A5u-m, we can witg[V (W, X ) ;.| = ¢ Z;I’-;l [(XilGpyp e, wgf)p)

The previous work also assumes the use of “independent random” loss functions. Consider the hinge
0SS, Lhinge(W);.i = max(0, 1-Y; ;Y (W, X);.). By modeling the max operator as a Bernoulli ran-

dom variablet, we can then WriteChinge(W),.; = £ — ¢ Z;,P;l Vi Xil .m €L Zi) oy TR w(k,L)
Alp then assumes that for albnd (4, p), theg[ ](] ) are Bernoulli random variables with equal
probabilities of success. Furthermore, A5u assumes that the independéfi€g ¢, Y;,:[ X
andwy; . Finally, A6u assumes thaf; ;[ X;]; ) for all (5, p) andi are independent.

Jip)1

Proposition 3.1 (High-level description of a main result i@horomanskaet al., 20153 Assume
Alp (including Alp-m), A2p, A3p, Adp, A5u (including A5u-m), A6u, and Afpromanska

et al, 20158. Furthermore, assume thal, = 1. Then, the expected loss of each sample da-
tum,E¢ z[Lninge(1V):,1], has the following property: above a certain loss value, the number of local
minima diminishes exponentially as the loss value increases.

Choromanskat al. (20150 noted that A6u is unrealistic because it implies that the inputs are not
shared among the paths. In addition, A5u is unrealistic because it implies that the activation of any
path is independent of the input data.

3.3 Results

We now state our main theoretical results for deep nonlinear networks, which partially address
the aforementioned open problem and lead to more general and tighter results. Unlike the pre-



vious work, we do not assume that we can take the expectation over random v4rigdiilere-

over, we consider loss functions for all the data points and all possible output dimensionalities
(i.e., vectored-valued output). More concretely, we consider the expected squared error loss,
Ez[L(W)] = ]EZ[%HY(W, X) — Y||%]. We also consider the squared error loss of the expected

model,Ly (W) = 3| E[Y (W, X)] — Y|}

Theorem 3.2 (Loss surface of deep nonlinear networkgsume Alp-m and A5u-m. Further as-
sume thatl, < d, and thatX X7 and XY are full rank. Letg = p~'. Then, for any deptiif > 1
and for any layer widths and any input-output dimensiépsiy, dg—1, . . ., d1, d; (the widths can
arbitrarily differ from each other and from,, andd), both the expected loss functitiy [£(W)]
and the loss function of the expected moglgl m(W) have the following properties:

(i) They are non-convex and non-concave.
(i) Every local minimum is a global minimum.
(iii) Every critical point that is not a global minimum is a saddle point.

(iv) If rank(Wy --- Ws) = p, then the Hessian at any saddle point has at least one (strictly)
negative eigenvalue.

Corollary 3.3 (Effect of deepness on the loss surfaéssume the same set of conditions as in
TheorenB.2 Consider the loss functidiz [C(W)] or Ly v, (W) . Then, for three-layer networks
(i.e., H = 1), the Hessian at any saddle point has some (strictly) negative eigenvalue. In contrast,
for networks deeper than three layers (i.H.,> 2), there exist saddle points at which the Hessian
does not have a negative eigenvalue.

Comparing Theorer.2and Propositio3.1, we can see that we successfully discarded assumptions
A2p, A3p, Adp, A6u, and A7p while obtaining a tighter statement in general. Again, note that the
full rank assumptions oA X7 and XY™ in TheorenB.2are realistic and practically easy to satisfy,

as discussed in previous work (e.Baldi & Hornik, 1989. Furthermore, our modél is strictly

more general than the model analyzed @h¢romanskaet al, 2015ab) (i.e., this paper’s model
class contains the previous work’s model class but not vice versa).

4 Important lemmas

In this section, we provide additional theoretical results as lemmas that lead to further insights. The
proofs of the lemmas are in the appendix in the supplementary material.

Let M ® M’ be the Kronecker product off and M. Let D, .y f() = % be the partial
vee(W)

derivative off with respect torec(W;I') in the numerator layout. That is, jf : R%in — Rdeut, we
haveD,..qwr f(-) € Réourx(drdi—1) | et R(M) be the range (or the column space) of a matrix
M. Let M~ be any generalized inverse df. When we write a generalized inverse in a condition

or statement, we mean it for any generalized inverse (i.e., we omit the universal quantifier over
generalized inverses, as this is clear). ket (Y(W,X) — Y)T € R™*4 be an error matrix.

LetC = Wy - - - Wa € Ré>4 When we writely, - - - W/, we generally intend that > &’

and the expression denotes a product dVerfor integerk > j > k’. For notational compactness,

two additional cases can arise: whiea= k', the expression denotes simpkj,, and wherk < &/,

it denotesl,, . For example, in the statement of Lemmhd, if we setk := H + 1, we have that
WhiWey - Weyo 21,

In Lemma4.6and the proofs of Theoren2s3and3.2, we use the following additional notation. Let
Y = YXT(XxXT)~1XYT and its eigendecomposition BEAU” = 3, where the entries of the
eigenvalues are ordered As; > ... > Ay, 4, With corresponding orthogonal eigenvector matrix

U = [ui,...,uq,]. Foreachk € {1,...d,}, up € R%*!is a column eigenvector. AS is real
symmetric, we can always makeorthogonal. Lep = rank(C) € {1,. .., min(d,,p)}. We define
a matrix containing the subset of théargest eigenvectors &5 = [u, ..., up]. Given anyordered

“If H = 1, to be succinct, we defild - - - Wy = Wy --- Wa £ I, with a slight abuse of notation.



setZ; = {i1,...,i5 | 1 < iy <--- <iz < min(dy,p)}, we define a matrix containing the subset of
the corresponding eigenvectorsias, = [u,,, ..., u;,]. Note the difference betwedrn, andUz, .

Lemma 4.1 (Critical point necessary and sufficient conditid#i)is a critical point of £(W) if and
onlyifforall k € {1,..., H + 1},

i} T T
(DVQC(WE)E(W)) = (WasaWa - Wi @ Wiy - WaWi X)T) vec(r) = 0.

Lemma 4.2 (Representation at critical poirf) I is a critical point of £(1), then
WheiiWg - - WoW; = C(CTC)_CTYXT(XXT)_l.

Lemma 4.3 (Block Hessian with Kronecker produdfrite the entries o¥2£(W) in a block form
as

_ T _ T

Dvec(W§+l) (Dvec(W§+1)E(W)) T ,Dvec(WiT) (Dvec(W§+l)£(W))
. _ T . _ T

Dvec(Wg;Jrl) (Dvec(WlT)E(W)) T Dvec(WlT) (DveC(WlT)‘C(W)>

Then, forany € {1, ..., H + 1},

_ T
Dvec(W,?) (Dvec(WE)‘C(W>)
= ((Weg1 - W) T Whrga - Wi1) @ (Wimr - WiX)(Wy—r - W1 X)T)
and, foranyk € {2,...,H + 1},

_ T
Dvec(Wg) (Dvec(WlT)‘C(W))
= (CT"(Wps1 - W) @ X(Wi—y - W X)) +
(Wier - W) @ X gy, © tWagr -+ Wig1)on oo Ty, @ ((Wargr - Wiga) . a,] -

Lemma 4.4 (Hessian semidefinite necessary conditiériiy> £ (W) is positive semidefinite or neg-
ative semidefinite at a critical point, then for ahye {2, ..., H 4+ 1},

R((Wiy—1--- WsWo)T) C R(CTC) or XrWy Wy -+ Wiyq = 0.

Corollary 4.5 If V2L(W) is positive semidefinite or negative semidefinite at a critical point, then
foranyk € {2,..., H + 1},

rank(WH+1WH e Wk) > rank(Wk,l v W3W2) or XTWH+1WH oo Wk+1 =0.

Lemma 4.6 (Hessian positive semidefinite necessary conditibR)? £ (1) is positive semidefinite
at a critical point, then
ccte)y-ct =UUf or Xr=o.

5 Proof sketches of theorems

We now provide overviews of the proofs of Theoreth8 and3.2 We complete the proofs of the
theorems in the appendix in the supplementary material.

Our proof approach largely differs from those in previous w@&#l¢li & Hornik, 1989 Baldi & Lu,

2012 Choromanskat al,, 2015ab). In contrast to Baldi & Hornik, 1989 Baldi & Lu, 2012, we

need a different approach to deal with the “bad” saddle points that start appearing when the model
becomes deeper (see Sect8), as well as to obtain more comprehensive properties of the critical
points with more generality. While the previous proofs heavily rely on the first-order information,
the main parts of our proofs take advantage of the second order information. In co@trass;
manskaet al. (2015ab) used the seven assumptions to relate the loss functions of deep models to



a function previously analyzed with a tool of random matrix theory (i.e., Gaussian orthogonal en-
semble). With no reshaping assumptions (A3p, A4p, and A6u), we cannot relate our loss function
to such a function. Moreover, with no distributional assumptions (A2p and A6u) (except the acti-
vation), our Hessian is deterministic, and therefore, even random matrix theory itself is insufficient
for our purpose. Furthermore, with no spherical constraint assumption (A7p), the number of local
minima in our loss function can be uncountable.

One natural strategy to proceed toward Theor@msand 3.2 would be to use the first order and

the second order necessary conditions of local minima (e.g., the gradient is zero and the Hessian is
positive semidefinite). However, are the first-order and second-order conditions sufficient to prove
Theorem®.3and3.2? Corollarie.4and3.3show that the answer is negative ét@epmodels with

H > 2, while it is affirmative for shallow models withf = 1. Thus, for deep models, a simple use

of the first-order and second-order information is insufficient to characterize the properties of each
critical point. In addition to the complexity of the Hessian of theepmodels, this suggests that

we must strategically extract the second order information. Accordingly, we obtained an organized
representation of the Hessian in Lemeh& and strategically extracted the information in Lemmas
4.4and4.6, with which we are ready to prove Theoreth8 and3.2

5.1 Proof sketch of Theoren®.3(ii)

By case analysis, we show that any point that satisfies the necessary conditions and the definition of
a local minimum is a globahinimum.

Casel: rank(Wpg --- W) = p andd, < p: Assume thatank(Wy --- Ws) = p. If d, < p, Corol-
lary 4.5with £ = H + 1 implies the necessary condition th&t = 0. If d, = p, Lemmad4.6with

k = H + 1 andk = 2, combined with the fact tha® (C) € R(Y XT), implies the necessary con-
dition that X = 0. Therefore, we have the necessary conditi@im, = 0 . Interpreting condition
Xr =0, we conclude thakV” achievingXr = 0 is indeed a globahinimum.

Casell; rank(Wg ---Ws) =p andd, > p: From Lemma4.6, we have the necessary condi-
tion that C(CTC)~CT = UzUT or Xr = 0. If Xr = 0, using the exact same proof as in
Case |, it is a global minimum. Suppose then th4C7C)~CT = U;U;. From Lemmad.4
with k = H + 1, we conclude thap = rank(C) = p. Then, from Lemmad.2, we write
Whit Wi = UpU, Y XT(XXT)~!, which is the orthogonal projection onto the subspace
spanned by the eigenvectors corresponding to thdargest eigenvalues following the ordinary
least square regression matrix. This is indeed the expression of a giohadum.

Caselll: rank(Wyg - -- W) < p: Suppose thatank(Wyg - -- W) < p. From Lemmad.4, we have
the following necessary condition for the Hessian to be (positive or negative) semidefinite at a critical
point: for anyk € {2,..., H + 1},

R(Wy—1---Wo)T) CR(CTC) or XrWiyyy- - Wii1 =0,

where the first condition is shown to implynk (Wi q - - - W) > rank(Wy_q - - - Wa) in Corol-

lary 4.5, We repeatedly apply these conditions for= 2,..., H + 1 to claim that with arbi-
trarily smalle > 0, we can perturb each parameter (i.e., each entri¥gf, ..., W>) such that
rank (W41 - - - Wa) > min(p, d,;) without changing the value af(17). We prove this by induc-
tion onk, using Lemmag.2, 4.4, and4.6.

We consider the base case—= 2. From the condition withk = 2 of Lemma4.4, we have that
rank(Wgiq---Wa) > dy > por XrWya --- W3 = 0 (note thatd; > p > p by their definitions).
The former condition is false sincank(Wy 11 --- Wa) < rank(Wpg - -- W) < p. From the latter
condition, for an arbitrary.,, with Ao = Wy - Ws,

0=XrWgyi--- W3

SWoWy = (AT Ay) ATYXT(XXT)™' + (I — (AT As)” AT A5) Ly

Wiy Wi = Ay (A7 4) ATy X" (xx™)™!
=C(CTC)y Y XN (XX =UUf Y XT(XXT) T,

®For a non-convex andon-differentiabléunction, we can still have a first-order and second-order necessary
condition (e.g.Rockafellar & Wets2009 theorem 13.24, p. 606).



where the last two equalities follow Lemmé& and4.6 (since if Xr = 0, we immediately obtain
the desired result). Sinc8Y 7 is full rank withd,, < d,, (i.e.,rank(XY7T) = d,),

Ay (AFAy) Ay =UpUT = Up(USUR)~'US .

From this, with extra steps, we can deduce that we caniangWs) > min(p, d,.) with arbitrarily
small perturbation of each entry @f; while retaining the loss value.

Thus, we conclude the proof for the base case With- 2. For the inductive step witlk <

{3,..., H + 1}, we essentially use the same proof procedure but with the inductive hypothesis
that we can haveank(Wj,_; - - - Wa) > min(p, d,;) with arbitrarily small perturbation of each entry

of Wi_1,..., Wy without changing the loss value. We need the inductive hypothesis to conclude
that the first condition ifR((Wy_1 --- Wa)T) C R(CTC) or XrWyy -+ Wiy = 0) is false,

and thus the second condition must be satisfied at a candidate point of a local minima.

We then conclude the induction, proving that we can hawk(Wg---Wy) >
rank(Wgiq---Wa) > min(p,d,) with arbitrarily small perturbation of each parameter
without changing the value af(W). If p < d,, this means that upon such a perturbation, we have
the case ofank(Wy - -- W3) = p. Thus, such a critical point is not a local minimum unless it is a
global minimum. Ifp > d,, upon such a perturbation, we havenk(Wg 11 - -- Wa) > d,. Thus,
Whir--- Wi = UpUT Y XT(XXT)™ = UUTY XT(XXT)~!, which is a global minimum.

Summarizing the above, any point that satisfies the definition (and necessary conditions) of a local
minimum is indeed a global minimum. Therefore, we conclude the proof sketch of Th@aB&i.

5.2 Proof sketch of Theoren®.3 (i), (iii) and (iv)

We can prove the non-convexity and non-concavity of this function simply from its Hessian (The-
orem2.3(i)). That is, we can show that in the domain of the function, there exist points at which
the Hessian becomes indefinite. Indeed, The domain contains uncountably many points at which the
Hessian is indefinite.

We now consider Theorel®.3 (iii): every critical point that is not a global minimum is a saddle
point. Combined with Theorer.3 (ii), which is proven independently, this is equivalent to the
statement that there are no local maxima. We first show tHatif- - - W, # 0, the loss function

is strictly convex in one of the coordinates. This means that there is always an increasing direction
and hence no local maximum. Wy --- W; = 0, we show that at a critical point, if the Hessian

is negative semidefinite, we can hali&; - - - W, # 0 with arbitrarily small perturbation without
changing the loss value. We can prove this by inductioken 1, ..., H, similar to the induction

in the proof of Theoren2.3(ii).

Theorem2.3 (iv) follows Theorem?2.3 (ii)-(iii) and the fact that wherank(Wg --- W) = p, if
V2L(W) = 0 at a critical point}¥ is a global minimum (this is the statement obtained in the proof
of Theorem2.3 (i) for the caserank(Wy - -- Wy) = p).

5.3 Proof sketch of Theoren3.2

Similarly to the previous work@horomanskaet al., 2015ab), we relate our loss function to an-
other function under the adopted assumptions. More concretely, we show that all the theoretical
results developed so far for the loss function of the deep linear ma@&iglg), hold true for the loss
functions of the deep nonlinear models; [£(W)] andLg | 3 (W).

6 Conclusion

In this paper, we addressed some open problems, pushing forward the theoretical foundations of
deep learning and non-convex optimization. For déggar neural networks, we proved the afore-
mentioned conjecture and more detailed statements with more generality. Forhdieparneural
networks with rectified linear activation, when compared with the previous work, we proved a tighter
statement with more generality,( can vary) and with strictly weaker model assumptions (only two
assumptions out of seven). However, our theory does not yet directly apply to the practical situation.
To fill the gap between theory and practice, future work would further discard the remaining two out
of the seven assumptions made in previous work.
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Supplementary Material
Appendix

A Proofs of lemmas and corollary in Sectiord4
We complete the proofs of the lemmas and corollary in Seetion

A.1 Proof of Lemma4.1

Proof SinceL(W) = L[|Y(W, X) — Y||%= 4 vec(r)T vec(r),

Dyee(wryL(W) = (Dyee(r) L(W ))( vec( WT)VeC(’”))

= vec(r ( vee(wry vee( XTIy, Wi - W 11, fDVEC(WkT)Vec(YT))
( vec(WT) Whgr- Wi @ Wiy -+ WlX)T)Vec(WkT))
= (WH+1~~~Wk+1®(Wk_1~'W1X)T).
T

By setting (DveC(W’;F)E(W)> =0forall k € {1, ..., H + 1}, we obtain the statement of Lemma

4.1 For the boundary conditions (i.ek, = H + 1 or k = 1), it can be seen from the second
to the third lines that we obtain the desired results with the definiigp; -- W1 = I, (i.e.,
Wit Whyo £ 1, andWy --- Wy £ 1,). U

A.2  Proof of Lemma4.2
Proof From the critical point condition with respect &, (Lemma4.1),
_ T T
0= (DveC(WkT)[,(W)) = (Whsr - Wa® X7 vee(r) = vee(XrWi 1 - Wa),
which is true if and only ifXr Wy, - -- Wo = 0. By expanding, 0 = XXTW{ICTC - XYTC.
By solving forW,
=Te)y oy xT(xxNH)t+ (1 - (cTey oo,

for an arbitrary matrixl.. Due to the property of any generalized invergagng 2006 p. 41), we
have thaC(CTC)~CTC = C. Thus,

cwr =cete)y c'yxT(xx")y '+ (c-cctcy ctoyL=ccto)y ctyxT(xx")!
O

A.3 Proof of Lemma4.3

Proof For the diagonal blocks: the entries of diagonal blocks are obtained simply using the result
of Lemma4.1las

_ T T
Dvec(Wg) (Dvec(W,T)‘C(W)) = (WH+1 te Wk+1 & (Wk—l e WlX)T) Dvec(W,?) VGC(T).
Using the formula ofD, .y ) vec(r) computed in the proof of of Lemmé 1 yields the desired
result. '
For the of-diagonalblockswith k = 2. ..., H:

Dvec(WE) [DveC(WlT)E(W)]T

T T
= (Wat1 - Wa @ X)T)" Dyeeqyr) vee(r) + (Dvec(WkT)WH—I-l Wi ® XT) vec(r)
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The first term above is reduced to the first term of the statement in the same way as the diagonal
blocks. For the second term,

T
(D‘,ec(m,kT)I/VHJrl W ® XT) vec(r)

i=1 j=1
m dy
722((Ak ®Bk ®X ) Ti,j
i= 1j*1
=ZZ (A1 (BT ®Xi) oo (Ad)jan (BT ® X0)] 7
i=1 j=1
=~ [(Br oS S v (A X)) ... (BTeXr, re i (An)sa Xi )] -
k 1,j\41k) 134 j= 21 7,5 (Ak)jdy
where A4, = WH+1---Wk+1 and B, = Wpy_1---W5. The third line follows the
fact that (WH+17jWH~'~Wg)T = vec(WQTngWEJrLj) = (WH+17j"'Wk+1 ®
Wl WL )vec(W]). In the last line, we have the desired result by rewriting

> Z?L i (Ar)j e Xi = X(rWhg1 - Wiga) -

For the of-diagonalblockswith £ = H 4+ 1: The first term in the statement is obtained in the
same way as above (for the off-diagonal blocks vkith 2, ..., H). For the second term, notice that

veeWhyy) = [(Way)l. .. (Wap)] “_]T where(Wp1);,. is thej-th row vector oV 4

or the vector correspondmg to theh output component. That s, it is conveniently organized as the
blocks, each of which corresponds to each output component (or rather weveh(8g’ ) instead

of vec(W},) for this reason, among others). Also,

T
(Dvec(W§+1)WH+1 e W2 & XT) VQC(T’) =

T T
= |:Z:’il ((D(WH+1 T Cl ) ) 7’7;71 e Z:il ((’D(WH+1)§yY,Cdyv') ®X;T> Ti,dy:| 9
where we also used the fact that

S5 (Pt ) & X7) 105 = 3 (P €0 ) X7

i=1 j=1 i=1

For each block entry =1, ..., d,, in the above, similarly to the case bf= 2, ..., H,

m T m
Z ((Dvec((WH_H 740}, ) ) Tit = (Bgl-iq b2 ZM,t(AHH)j,tXi) .
i=1 i=1

Here, we have the desired result by rewrithy” | 7; +(Ap+1);,1X; = X(rlg,).: = Xr. s O
A.4 Proof of Lemma4.4

Proof Note that a similarity transformation preserves the eigenvalues of a matrix. Fokeach
{2,...,H + 1}, we take a similarity transform o¥72£(W) (whose entries are organized as in
Lemma4.3) as

_ T T
,Dvec(WlT) (Dvec(W]T)E(W)) ,Dvec(WkT) (Dvec(WlT)E(W))

—12 7 _ - T _ T
Pk v E(W>Pk o leec(WlT) (DveC(W,?)‘C(W)) ’Dvec(WE) (Dvec(WkT)‘C(W))

Here,P, = [eH+1 ek Pk] is the permutation matrix whetg is thei-th element of the standard
basis (i.e., a column vector with 1 in thieh entry and O in every other entries), afd is any
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arbitrarily matrix that make#; to be a permutation matrix. Lét/,. be the principal submatrix of
P,C*IVQL(W)P,C that consists of the first four blocks appearing in the above equation. Then,
V2L(W) =0

=Vke{2,...., H+1},M; =0

= Vk € {2a BN H + 1}7 R(Dvec(WE)(’Dvec(WlT)E(W))T) < R(’Dvec(WlT)(’Dvec(WlT)E(W))T)v
Here, the first implication follows the necessary condition with any principal submatrix and the sec-

ond implication follows the necessary condition with the Schur complenzéyatr(g 2006 theorem
1.20, p. 44).

Note thatR(M') C R(M) < (I — MM~ )M’ = 0 (Zhang 2006 p. 41). Thus, by plugging in
the formulas 0D,y 1) (Dyecwr) L(W))" @ndDyee(wr) (Dyecqwiry £(W))™ that are derived in
Lemmad.3 V2L(W) = 0=Vk € {2,...,H + 1},
0= (1 —(Tece xxTHCTce (XXT))—) (CT A, ® BL,W1X)
+ (1= (CToe XXTNCTC® (XXT)T) (BT 9 X] [l ® (A1 oo Lo, © (PAD). ]
whereA, = Wy Wiy andBy = Wy_1 - -- Wa. Here, we can replacg®? C @ (X X7T))~
by (CTC)~®@(XXT)™1) (see AppendiA.7). Thus,l — (CTC®(XXT))(CTC®(XXT)) can

be replaced byl,, ® I,) — (CTC(CTC)~ @ 14,) = (I3, — CTC(CTC)™) @ 14,. Accordingly,
the first term is reduced to zero as

((Idl —c"ecTo)y ) e Idy) (CTAk ® BkW1X) = (14, — CTOWCTC))CT A) ® BiWi X =0,

sinceCTC(CTC)~CT = CT (Zhang 2006 p. 41). Thus, with the second term remained, the
condition is reduced to

Vke{2,...,H+1},vte{l,...,d,}, (Bf —CTC(CTC)"B})® X(rAy)., =0.
This implies
Vk € {2,...,H +1}, (R(B]) CR(CTC) or XrAj=0),

which concludes the proof for the positive semidefinite case. For the necessary condition of the
negative semidefinite, we obtain the same condition since

VEL(W) =< 0
=Vke{2,...,H+1}, M <0
=Vke{2,...,H+ 1},R(—DV6C(W}3)(D

vec

(WlT)E(W))T) g R(ipvec(Wir)(Dvec(WiT)‘c_(W))T)
= Vk € {27 ) H+ 1}7 R(Dvec(W];r)(DVEC(WIT)‘C_(W))T) - R(Dvec(WlT)(Dvec(WlT)Z(W))T)'

A.5 Proof of Corollary 4.5

Proof From the first condition in the statement of Lem#h4,
RWE - W) CRWEL - Wh Wiy - W)
= rank(Wg e W§+l) > rank(WQT e WkT_l) = rank(Wyy1 - - W) > rank(Wy_y - - - Wa).

The first implication follows the fact that the rank of a product of matrices is at most the minimum
of the ranks of the matrices, and the fact that the column spaldé/of- - W, is subspace of the

column space ofVy --- W/ ,. a

A.6 Proof of Lemma4.6

Proof Forthe (Xr = 0) condition: LetM g, be the principal submatrix as defined in the proof of
Lemmad4.4 (the principal submatrix oPIQLV?E(W)PHH that consists of the first four blocks of
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it). Let By = Wi_y -+ Wa. Let F = By Wi XXTW{ B}, ,,. Using Lemmad.3for the blocks
corresponding téV; andWy 44,

Morsn — CTCo XXT (CTo XXT(ByaW)")+E
AL = 1(C @ By Wi XXT) + ET I, ® F
whereE = [B};,, ® Xr.1 ... B}, ®Xr. 4, ]. Then, by the necessary condition with the

Schur complemenZhang 2006 theorem 1.20, p. 44\ 1 = 0 implies

0=((Ig, ® Lay;) — (g, ® F)(Ia, ® F)")((C @ Bg41 W1 XXT) + ET)
= 0= (g, ® gy, — FF)(C® By Wi XX") + (14, ® Iay — FF7)ET
= (4, ® g, — FF)ET
(I, —FF~®1I 0 Bpyi @ (Xr.)T

L 0 IdH_FF_®Il BH+1®(XT.,dy)T
I (IdH — FF_)BH_H ® (X’I".J)T

_(IdH — FFi)BH+1 X (XT.’dy)T

where the second line follows the fact thidg, ® F')~ can be replaced byf;, ® F~) (see Appendix
A.7). The third line follows the fact that/ — FFFF~)By+1 W1 X = 0 becauséR(By 1 W1 X) =
R(Bua W1 XXTW{I B]; ) = R(F). In the fourth line, we expandefl and used the definition
of the Kronecker product. It implies

FF~Byy1 =Bpy, or Xr=0.

Here, if Xr = 0, we obtained the statement of the lemma. Thus, from now on, we focus on the case
whereFF~Bpy1 = Bp41 andXr # 0 to obtain the other conditio}(C*C)~CT = UzUs.

Forthe(C(C*C)~CT = U,U,) condition: By using another necessary condition of a matrix being
positive semidefinite with the Schur complemezbh@ng 2006 theorem 1.20, p. 4441 = 0
implies that

(I, ® F) — (C ® By WiXX" + ET) (©TC o xxT)" (CT @ XXT (B W)™ + E) >0 (1)

Since we can replad®?C @ X XT)~ by (CTC)~ @ (XXT)~! (see Appendi.7), the second
term in the left hand side is simplified as

(C@BumWiXXT + ET) (€"C o XXT)” (CT @ XX (BusW1)" + E)

- ((C(CTC)* ® BHHWl) +ET ((CTC’)’ ® (XXT)’I)) ((CT ® XXT(BHHWl)T) + E)
- (O(CTC)’CT ® F) +E” ((CTC)’ ® (XXT)’I) E

= (c@™o)y c"@F) + (F"XT(XX") " X7 © Biu4r (CTC) Bu ) )

In the third line, the crossed terms(€(C*C)~ @ By41W1) E and its transpose — are vanished

to 0 because of the following. From Lemndal, (I, ® (WH~--W1X)T)Tvec(r) =0 <
Wy - W1 Xr = By Wi Xr = 0 at any critical point. Thus(C(CTC)‘®BH+1W1)E =
[C(CTC) Bfiyy ® BupaWaiXr.y ... C(CTC) Bfy, ® BuaWiXr.q,] = 0. The forth line
follows

ET ((¢T0)” o (xx") ) B =

Bu(CTC)"BL @ (r )" XT(XXT)"'Xr. 1 -+ Baa(CTC)"BR 1 ® (r )T XT(XXT) " X7 4,

Bu1(CTC) " BE 1 ® (r,a,) T XT(XXT) " ' Xr. 1+ Buy1(CTC) " Bf 1 ® (r.,a,) T XT(XXT)" X7 4,

=r"XT(XXT)"'Xr ® Bus1(CTC)” Buy1,
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where the last line is due to the fact thét (. ;)7 X7 (X XT)~1 Xr., is a scaler and the fact that
(ro)TLr q - (T.,l)TLr.,dy

for any matrixL, v Lr = _ _
(r.,dy )-TL7',71~ . ~(T'.,dy)TL7'.,dy

From equationd and2, My = 0 =

((Ia, —C(CTC)"C") @ F) = (r"X"(XXT) "' Xr ® By11(CTC) " Byy1) = 0. (3)
In the following, we simplify equatiol by first showing thaR (C) C R(X) and then simplifying
cEeTe)=CT, PTXT(XXT)"1Xr, F andBy 11 (CTC)~ By41.
Shaving thatR(C) C R(X): Again, using Lemmd.1with k = H + 1,
0=ByWiXr & FWh, = BuyWiXY" & Wi, = F By WiXY" +(I-F F)L,
for any arbitrary matrix.. Then,
C=Wg1Brs
=YX"W!B}, \F Byy1+L"(I — FF")Bp
=YX"W{ B 1F By,

where the second equality follows the fact that we are conducting the case analysis with the case of
FF~Bgy1 = By here. Using Lemmd.1with k£ = 1,

0=XrWgy1---Woes W, =(CTO)"CTYXT(XXT)" ' (I - (CTC)~CTO)L,
for any arbitrary matrix_.. Pugging this formula of¥/; into the above,
c=vx"(cTc)y ctyxT(xxT)y"t+ (1 - (cTC)"CcTO) L)' B} F By
=XC(CTC) By 1 F Buya
where the second line follows Lemndad with k = H + 1 (i.e., CTC(CTC)~ B}, = Bj.y).
Thus, we have the desired res(C) C R(X).

Simplifying C(CTC)~CT: Remember thap is the rank ofC. To simplify the notation, we rear-
range the entries ab andU such that the eigenvalues and eigenvectors selected by the index set

T, comes first. That isl/ = [Uz, U_Iﬁ] andA = Agﬁ AOI whereU_z, consists of all

the eigenvectors that are not contained’iry, and accordingly\z, fresp.A_Iﬁ) consists of all the
eigenvalues that correspond (resp. do not correspond) to the indgx SihceR (C) C R(X), we
can writeC' in the following form: for some index s&;, C' = [Uz,, 0]G1, where0 ¢ Ry x(d1—p)
andG; € GLg4, (R) (ad; x d; invertible matrix) (notice that; > p > p by their definitions). Then,

(CcTC)™ = (GT[Uz,,017[Uz,,01G1)~ = (GlT [16’ g} G1>_

Note that the set of all generalized inversefC = GT {% g} @ is as follows Zhang 2006
p. 41):

1[Iy Ly - .
{Gl ' [LZ; L;] Gy | Ly, Lo, Ly arbltrary} :

Thus, for any arbitrary.,, L, and L3,

_ [ Ly - I, Li|[UE
cctey-ct =oay! [LZ; Lj GyTeT = Uz, 0] [L’; Lﬂ { g] = Uz, U7

Simplifying P XT(XXT) 1 X7:
T XT(XXT) " Xr = (W, X - V) XT (XX ' x(XT(cw)T —vT)
=W XXT(ow)T —cw XYT —yXxT(ew)T +%
= PcXPc — PcX — %P+ %
=% - UpAz, UL

PP
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wherePc = C(CTC)~C" = Uz, U7 and the last line follows the facts:

PcXPe = Ug, U7 UNUT UL, UL = U, [I; 0] [Ag A?z} ﬁ;’] Uz, = Ur,Az,U7 ,

PeX = Uz, UL UANUT = Uy, [I; 0] Az, 0 Uz, =ULAL U
Cc~ =UI; Is — VI;ltp 0 A—I;; UfII—, =Yz IpY Ty

and similarly,> Pc = U}ZA% Uz,.

Simplifying F: In the proof of Lemmad4.2, by using Lemma4.1 with £ = 1, we obtained that
Wy = (CTO)y"CTYXT(XXT)~1 + (I — (CTC)~CTC)L. Also, from Lemma4.4, we have that
Xr = 0or By (CTC)~CTC = (CTC(CTC)"Bf ;)" = Busi1. If Xr = 0, we got the
statement of the lemma, and so we consider the cagg;of (CTC)~CTC = By 1. Therefore,

BpaWi =By (CTC)-CcTy xT(xxT)~1.
SinceF = BH+1W1XXTWFB{I+1,
F =By (CTC)~Cc"sC(CTC)" By
From Lemmad.4with k = H + 1, R(B};,,) € R(CTC) = R(Bf Wi 1 Wr1Br11)
R(B};,1), Which implies thatR(B},,) = R(CTC). Therefore,R(C(CTC)~B},4)
R(C(CTC)™) = R(C) € R(X). Accordingly, we can write it in the form(C*C)~ B}, | =
[Uz,,0]Ga, where0 € R *(4177) andG, € GLq4, (R) (we can write it in the form ofUz ,, 0]G-

for someZ; because of the inclusio R(X) andZy = Z; because of the equality R(C)).
Thus,

1N

T
Uz,

0

T
FG2{ 0o oMo o 0

] UAUT[Uz,,0]Gy = GT {[P 0] A [IP 0} Gy =G [AIP g] G,
Simplifying Bg11(CTC)~ Bg1: From Lemmad.4, CTC(CTC)~Byy1 = By (again since
we are done ifXr = 0). Thus,By1(CTC)”By11 = Bg+1(CTC)~CTC(CTC)" B} . As
discussed above, we wri&(C?C)~ B}, | = [Uz,,0]Gs. Thus,

T
vt

BH+1(CTC)_BH+1 = Gg |: 0

] Uz,,0]Gs = G¥ ﬁf; 8] G,

Puttingresults together: We use the simplified formulagigt®? C)~CT, r T XT(XXT)~ 1 Xr, F
and By 1 (CTC)~ By 41 in equation, obtaining

Az, O I; 0
((Idy—UzﬁU'j:)@Gg[gp 0} G2)—<(2—UPA15U§)®G2TL§’ 0] Gg) = 0.

Due to the Sylvester’s law of inerti&liang 2006 theorem 1.5, p. 27), with a nonsingular matrix
U ® G5! (it is nonsingular because eachidfandG,, ! is nonsingular), the necessary condition is

reduced to
AIﬁO G2>> (U®G2—l>

00

53

150

—1 T T T
(U®G2 ) <<(L1y—UIpUzp)®GQ 00

(s

Gz> - ((2 —UpAz,UT) ® GF

)[23)

Az 0
0 o

(o o | [am o]\ _(lo o | ][5 o
o I, _» 0 o 0 Az, 0 0
0| 0
Az, — (A—z)111p 0
= >
0 =0
0 Az, = (A-z;) (@, —p),(dy—5) I
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which implies that for all(i, j) € {(4,7) | ¢ € {1,...,p}, 7 € {1,...,(dy — p)}}, (Az,)ii >
(A_z,);j;- In other words, the index séf, must select the largegt eigenvalues whatever is.
SinceC(C"C)~C" = Uz, U7, (which is obtained above), we have tliatC” C)~C" = U,Uy in
this case.

Summarizing the above case analysisy&L(W) = 0 at a critical point,C(CTC)~CT = UyU;
or Xr =0. O

A.7 Generalized inverse of Kronecker product
(A~ ® B7) is ageneralized inverse ef @ B.

Proof For a matrixM, the definition of a generalized inversk]—, is MM~ M = M. Setting
M := A® B, we check if(A~ ® B™) satisfies the definitionfA ® B)(A~ ® B~ )(A® B) =
(AA"A® BB~ B) = (A® B) as desired. O

We avoid discussing the other direction as it is unnecessary in this paper (i.e., we avoid discussing
if (A~ ® B7) is the only generalized inverse ¢f ® B). Notice that the necessary condition

that we have in our proof (where we need a generalized invergecfB) is for any generalized
inverse ofA ® B. Thus, replacing it by one of any generalized inverse suffices to obtain a necessary
condition. Indeed, choosing Moor®&enrose pseudoinverse suffices here, with which we know
(A® B)! = (AT ® BT). But, to give a simpler argument later, we keep more generality by choosing
(A~ ® B™) as a generalized inverse 4f® B.

B Proof of Theorems2.3and 3.2
We complete the proofs of Theore@8and3.2

B.1 Proof of Theorem2.3(ii)

Proof By case analysis, we show that any point that satisfies the necessary conditions and the defi-
nition of a local minimum is a global minimum. When we write a statement in the proof, we often
mean that a necessary condition of local minima implies the statement as it should be clear (i.e., we
are not claiming that the statement must hold true unless the point is the candidate wiiloce.).

Thecasewhererank(Wy - - - Ws) = p andd,, < p: Assume thatank(Wy --- Ws) = p. We first
obtain a necessary condition of the Hessian being positive semidefinite at a criticalpoisat,0,
and then interpret the condition.df, < p, Corollary4.5with k¥ = H + 1 implies the necessary con-
dition thatXr = 0. This is because the other conditipn> rank(Wg 1) > rank(Wy --- Wa) =p

is false.

If dy = p, Lemma4.6 with k = H + 1 implies the necessary condition thatr = 0 or
R(Wy ---Wa) C R(CTC). Suppose thaR(Wy ---Wa) C R(CTC). Then, we have that
p = rank(Wy - -- Ws) < rank(CTC) = rank(C). Thatis,rank(C) > p.

From Corollary4.5with & = 2 implies the necessary condition that
rank(C') > rank(Zg,) or XrWgiq--- W3 =0.

Suppose the lattetXrWg oy - - - W3 = 0. Sincerank(Wg 41 - - - W3) > rank(C) > panddy; =
d, = p, the left null space oWz, - - - W5 contains only zero. Thus,

X’I“WHJrl'-'Wg:OiX?":O.

Suppose the formettank(C) > rank(ly4, ). Becausel, = p < d;, rank(C) > p, andR(C) C
R(Y XT) as shown in the proof of Lemm&6, we have thaR (C) = R(Y XT).

rank(C) > rank(Iy,) = CTCisfullrank = Xr = XyZ7c(cTc)='c” - xyT =0,

where the last equality follows the fact thaXr)? = C(CTC)"1CTYXT — YXT = 0 since
R(C) = R(Y XT) and thereby the projection &f X onto the range of is Y X*. Therefore, we
have the conditionXr = 0 whend, < p.
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To interpret the conditioX » = 0, consider a loss function with a linear model without any hidden
layer, f(W') = [[W'X —Y||% whereW’ € R% 4=, Then, any point satisfyingr’ = 0 is a global
minimum of f, wherer’ = (W’'X — Y)T is an error matri¥. For any values oiVy ., --- W1,
there existdV’ such thatW’ = Wy, --- W, (the opposite is also true whely < p although
we don't need it in our proof). That isR(£) C R(f) andR(r) € R(r') (as functions ofi/’
and W’ respectively) (the equality is also true whép < p although we don't need it in our
proof). Summarizing the above, whenevgr = 0, there existdV’ = W4 --- Wi such that
Xr = Xr' = 0, which achieves the global minimum value ff f* and f* < £* (i.e., the global
minimum value off is at most the global minimum value a@f since R(L) C R(f)). In other
words, W41 - - - Wi achievingXr = 0 attains a global minimum value ¢f that is at most the
global minimum value of.. This means that/;; . - - - Wy achievingXr = 0 is a global minimum.

Thus, we have proved that whemnk(Wy - -- Ws) = p andd, < p, if VZL(W) = 0 at a critical
point, it is a globaminimum.

The casewhererank(Wy --- Ws) = p andd, > p: We first obtain a necessary condition of the
Hessian being positive semidefinite at a critical point and then interpret the condition. From Lemma
4.6, we have thaC(CTC)~C" = UpU! or Xr = 0. If Xr = 0, with the exact same proof as in

the case ofl, < p, itis a global minimum. Suppose tha{C”* C)~C" = UzU;. Combined with
Lemmad4.2, we have a necessary condition:

Wiy Wy =C0CTO)"CTY XT(XXT)! = U, Y XT (X XT) 1.

From Lemmad.4with k = H + 1, R(WT .- W}) € R(CTC) = R(CT), which implies that

p = rank(C) = p (sincerank(Wg --- W) = p). Thus, we can rewrite the above equation as

Wiyt Wi =U,U,Y XT(XXT)~1, which is the orthogonal projection on to subspace spanned
by thep eigenvectors corresponding to théargest eigenvalues following the ordinary least square
regression matrix. This is indeed the expression of a global mininBaid{ & Hornik, 1989 Baldi

& Lu, 2012.

Thus, we have proved that whemnk(Wy; - -- W) = p, if VZL(W) = 0 at a critical point, it is a
globalminimum.

The casewhererank(Wy - - - Ws) < p: Suppose thatank(Wy --- W) < p. From Lemma4.4,
we have a following necessary condition for the Hessian to be (positive or negative) semidefinite at
a critical point: foranyk € {2,..., H + 1},

R(Wy_1---Wo)T) CR(CTC) or XrWyyy - Wii1 =0,

where the first condition is shown to implynk (Wi q - - - W) > rank(Wy_q - - - Wa) in Corol-
lary 4.5, We repeatedly apply these conditions for= 2,..., H + 1 to claim that with arbi-
trarily smalle > 0, we can perturb each parameter (i.e., each entri¥gf, ..., W>) such that
rank (W41 - - - Wa) > min(p, d,;) without changing the value ai(1V).

Let Ay, = Wy - Wiy From Corollary4d.5with k£ = 2, we have thatank(Wy4q - - - Wa) >
dy > por XrWpgy,--- W3 = 0 (note thatd; > p > p by their definitions). The former condition
is false sincerank(Wgyq---Wy) < rank(Wy ---Ws) < p. From the latter condition, for an
arbitrary Lo,

0=XrWgyi---Ws
SWalWi = (A7 Az) AZYXT(XXT)™! + (I - (A7 A2)” A7 Az) Lo 4)
Wiy Wi =4y (A7 4) AJYXT(xx™)™!

=C(CTC) Y XN (XX =UUf Y XT(XXT) T,

where the last two equalities follow Lemmadasg and4.6 (since if Xr = 0, we immediately obtain
the desired result as discussed above). Taking transpose,

(XXT)TIXYT Ay (AT A) AT = (XXT)'XYTUU],

®Proof: Any point satisfyingX+’ = 0 is a critical point off, which directly follows the proof of Lemma
4.1 Also, f is convex since its Hessian is positive semidefinite for all ifput,1, and thus any critical point
of f is a global minimum. Combining the pervious two statements results in the desired claim.

17



which implies that
XYT A4y (ATAs) Ay = XYTURU,.
SinceX YT is full rank withd, < d, (i.e.,rank(XY7T) = d,), there exists a left inverse and the
solution of the above linear system is uniqué @Y ") XYT) "1 (XYT)TXYT = I, yielding,
Ay (AT Ay) Ay =UpUL (= Up(ULUR)'UD).
In other wordsR(As) = R(C) = R(Up).

Suppose thatAZ A;) € R92*4 is nonsingular. Then, sincB(A4;) = R(C), we have that
rank(Wyy - - - W3) > rank(C) = rank(As) = d2 > p, which is false in the case being analyzed
(the case ofank(Wpg - -- W) < p). Thus, Al A, is singular.

If AT A, is singular, from equatiod, it is inferred that we can pertufy’; to haverank(W,W;) >
min(p, d;). To see this in a concrete algebraic way, first note that skicé,) = R(U;), we can

write Ay = [U, 0]G for someGy € G Lg,(R) where0 € R4 *(42=P) Thus,
I; 0
AT Ay =GT [5’ 0] G,.

Again, note that the set of all generalized inverse-gf [Ié’ 8} G, is as follows Zhang 2006
p. 41):

~ /
{G;l [éﬁ; éé] Gy T | LY, Ly, L} arbitrary} :

Since equatiod must hold for any generalized inverse, we choose a generalized inversgjwith
L, = L = 0 for simplicity. That is,

_ 1 |IL; O ~—
(AT As) :—Ggl[é’ o} Gy

Then, plugging this into equatioh for an arbitraryLs,

1 [UF T Ty—1 1|y O
WoWi =Gyt |78 | YXT(XXT) ™+ (Lo, =Gy ' |§ | G2) L2

_ A [URYXT(XXT)! {00
Uy XxT(XxxT)~1
| [0 Tap)Gas |-

Here, [0 I(4,—p))G2Ls € R@-Pxd s the last §; — p) rows of GoL,.  Since
rank(YXT(XXT)~1) = d, (because the multiplication with the invertible matrix preserves the
rank), the firstp rows in the above have rank Thus,W,W; has rank at leagt, and the possi-
ble rank deficiency comes from the lagt (— p) rows, [0 I(q,—5]|G2Lo. SinceWg 1 --- Wy =

A WoWy = [Us 0]GoWo Wy,

:| G2L2

2—P)

=Gyt

T T Ty—1
UTYXT(xxT)

Wiy Wh = [Up 0] [0 104,-)|Ga Lo

=UUl Y XT(XxXT)~.
This means that changing the values of the ldst-{ p) rows of GoLo (i.e., [0 I(q,—p)]G2L2)

does not change the value 6f1V). Therefore, the original necessary condition implies a necessary
condition that without changing the loss value, we can ni&k&/; to have full rank with arbitrarily
small perturbation of the lasti{ —p) rows a0 (4, 5)]Ga L2 +eMpp Wheree My is a perturbation

matrix with arbitrarily smalk > 0.7

"We have only proved that the submatrix of the figsiows has ranks and that changing the value of the
lastds — p rows does not change the loss value. That is, we have not proven the exitafidgyhat makes
Wy W, full rank. Although this is trivial since the set of full matrices is dense, we show a proof in the following
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Now, we show that such a perturbation can be done via a perturbation of the entiiés &fom

the above equation fd#’5 1/, all the possible solutions 6%, can be written as: for an arbitrary,

andLo,

Uy XT(xxT)—!
[0 Iy -p))GaLe

whereM T is the the Moore—Penrose pseudoinvers@/fofThus, we perturlV, as

0 + 1 UTYXT(XXT)fl
w!' =G p
Mptb] L |:[0 I(dz_p)]GgLQ + GMptb

%G;l[ }WHLOT(IWle),

Wy = W2+6G2_1{ }Wlu—Lg(I—Wle).

Note that upon such a perturbation, equatianay not hold anymore; i.e.,

o[ UryxT(xxT)! [ UryxT(xxT)!
Gyt p wiw, # G5t P .
2 [[o Itay—p))GLo + €Mpp| 171 7 G [0 I(4,—p)]GLa + eMp

This means that the original necessary condition that implies equétianlionger holds. In this

case, we immediately conclude that the Hessian is no longer positive semidefinite and thus the point
is a saddle point. We thereby consider the remaining case: equhsitihholds. Then, with the
perturbation on the entries &f,

T T T\—1
W2W1G2_1[ UpyX (XX7) Ja

[0 J(a,—p)|G2 L2 + eMpy
as desired.

Thus, we showed that we can hawek (W) > rank(W,2W;) > min(p, d,,), with arbitrarily small
perturbation of each entry d¥; with the loss value being remained. To prove the corresponding
results forlVy, - - - W5 foranyk = 2, ..., H + 1, we conduct induction oh = 2, ..., H 4+ 1 with the
same proof procedure. The propositiBiik) to be proven is as follows: the necessary conditions
with 7 < k imply that we can haveank(Wy, - - - W5) > min(p, d,.) with arbitrarily small perturba-
tion of each entry o/, . . . W5 without changing the loss value. For the base dase2, we have
already proved the proposition in the above.

For the inductive step witk € {3,..., H + 1}, we have the inductive hypothesis that we can have
rank(Wy_1 - - - Ws) > min(p, d,.) with arbitrarily small perturbation of each entry®df;,_1,... Ws
without changing the loss value. Accordingly, suppose thak(Wy_; ---W;) > min(p,d,).
Again, from Lemmad.4, for anyk € {3,..., H + 1},

R(Wi_1---W)T) CR(CTC) or XrWiyyy---Wiy1 = 0.

If the former is truerank(Wyy - - - Wy) > rank(C) > rank(Wy_1 - - - W3) > min(p, d, ), which is
the desired statement (it imnmediately implies the proposiftdh) for any k). If the latter is true,
for an arbitraryL,,,

0=XrWeyir- Wit
Wy Wi = (AT AR AFYXT(XXT) ™ + (I — (AT Ay)~ AL Ay) Ly, (5)
Wiy Wi = A (AL A,) ALY XT (X XT)7!
=cCcTC)y Y XN (XX =UUf Y XT(XXT) T,
where the last two equalities follow Lemmé&g and4.6. Taking transpose,

(XXT) ' XY T A, (AL AR) AL = (XX XYTURUL,

Uy xT(xx™—t

[0 I(4,-5)]G2L2
independent row vectors including the figstow vectors, denoted by, ..., by € R'*4= Then, we denote
the rest of row vectors by, vs, ... ,v4, 5 € R, Letc = min(de — p',d. — p'). There exist linearly
independent vector , vz, . . ., . such that the se{p, ..., by, 01, U2, . .., U}, is linearly independent. Set-
ting v; 1= v; + ev; forall ¢ € {1,...,c} makesW>W; full rank sincee; cannot be expressed as a linear
combination of other vectors. Thus, a desired perturbation mattix, can be obtained by setting/,w to
consists okv1, €vs, . . ., €0, row vectors for the corresponding rows ahtbw vectors for other rows.

to be complete. Lep’ > p be the rank of/2W;. That is, in , there existy’ linearly
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which implies thatXY T A;, (AT Ay,)~ A, = XYTU,U,. SinceXY7T is full rank withd, < d,
(i.e., rank(XYT) = d,), there exists a left inverse and the solution of the above linear system is
unique ag(XYTXY )L (XYT)TXYT = I, yielding,

A (AL AL) Ay =UpUL (= Up(ULUR)'UT).
In other wordsR(Ay) = R(C) = R(Up).

Suppose thatd? A;) € Ré*dx is nonsingular. Then, sind@(Ay) = R(C), rank(Wp - - - Wa) >
rank(C) = rank(Ax) = dr > p, which is false in the case being analyzed (the case of
rank(Wy - - - Wa) < p). Thus,AT Ay is singular. Notice that for the boundary case wite H +1,

AT A, = I4,, which is always nonsingular and thus the proof ends here (i.e., For the case with
k = H + 1, since the latter conditionXrWg 1 --- Wy, = 0, implies a false statement, the for-
mer conditionrank(Wy - - - Wy) > rank(C) > min(p, d,.), which is the desired statement, must
be true).

If A7 A is singular, from equatior, it is inferred that we can perturbV, to have
rank(Wy ---W1y) > min(p,d,). To see this in a concrete algebraic way, first note that since
R(Ax) = R(Up), we can writed,, = [U, 0]G, for someG), € G Ly, (R) where0 € R > (de=p),
Then, similarly to the base case with= 2, plugging this into the condition in equatidn for an
arbitrary Ly,

Wk"'Wl — G—l |:UEYXT(XXT)1:| .

[0 Lty —5)|GrLr

Sincerank(Y XT(X XT)~1) = d,, the firstp rows in the above have rak Thus,W;, - - - W; has
rank at leasp. On the other hand, sind& ;1 --- Wy = AWy, --- Wy = [Us O|GWy, --- W7,

UTYXT(XXT)
0 T, IGrLs

which means that changing the values of the lagt{ p) rows of W, ---W; does not change

the value of£(W). Therefore, the original necessary condition implies a necessary condition that
without changing the loss value, we can makg - - - W to have full rank with arbitrarily small
perturbation on the lastif — p) rows as[0 (4, —5)|Gr L + eMpw Wheree My, is a perturbation
matrix with arbitrarily smalk > 0 (a proof of the existence of a corresponding perturbation matrix
is exactly the same as the proof in the base casemti2, which is in footnoter).

Whir--- W1 =1[U; 0O { ]zU,,UpTYXT(XXT)l

Similarly to the base case with = 2, we can conclude that this perturbation can be down via a
perturbation on each entry &f;. From the above equation fo¥y, - - - W7, all the possible solutions
of W}, can be written as: for an arbitrafy, and Ly,

 [UFY XT(XXT)!
k= |: ﬁ)I(dk p)]GkLk‘ ( k-1 1) + 0( ( k—1 1)( k—1 1))
Thus, we perturbV;, as

Wi = Wi + €G! [Mopm} (Wi --- W)

_ - Uy xt(xx™! t T 5
=G {[0 I(Z,rﬁ)]GkLk + eMpin (Wiemg - W)t 4 Lo (I = (Wie—y -+ Wi) (Wi -+ WA)1).
Note that upon such a perturbation, equatanay not hold anymore; i.e.,

Uiy XT(xx™)™! ot | UfyxXT(xxT)!
G {[0 Iy —p]GrLi + eMpw (Wi W) (Weor - W) £ G g Hay—p))GL2 + eMpw| *

This means that the original necessary condition that implies equatimnlonger holds. In this
case, we immediately conclude that the Hessian is no longer positive semidefinite and thus the point

is a saddle point. We thereby consider the remaining case: equmsitihholds. Then, with the
perturbation on the entries ¥y,

_ Ur'y xT(xxT)-!
WH+1"'W1:G’€1[[ : : ! ]

0 I(dk_ﬁ)}GkLk + eMpw |’
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as desired. Therefore, we have thatk(W,, - - - W3) > rank(W}, - - - Wy) > min(p, d,) upon such
a perturbation.

Thus, we conclude the induction, proving that we can hawk(Wy---Wy) >
rank(Wg4q - - Wa) > min(p, d,;) with arbitrarily small perturbation of each parameter without
changing the value of(W). If p < d,, this means that upon such a perturbation, we have the case
of rank(Wy - - - Ws) = p (since we have that > rank(Wy --- W5) > p where the first inequal-

ity follows the definition ofp), with which we have already proved the existence of some negative
eigenvalue of the Hessian unless it is a global minimum. Thus, such a critical point is not a local
minimum unless it is a global minimum. On the other hangs i¥ d,, upon such a perturbation,

we havep £ rank(Wyyq - Wa) > dy > dy. Thus,Wyyq--- Wy = UI;UI?YXT(XXT)*1 =
UUTYXT7QXXT —1, which is a global minimum. We can see this in various ways. For example,
Xr=XYTuuT - XYT = 0, which means that it is a global minimum as discussed above.

Summarizing the above, any point that satisfies the definition (and necessary conditions) of a local
minimum is a global minimum, concluding the prooftfieorem 2.3 ii). O

B.2 Proof of Theorem2.3(i)

Proof We can prove the non-convexity and non-concavity from its Hessian (Theh ). First,
considerL(WW). For example, from Corollarg.5with £k = H + 1, it is necessary for the Hessian
to be positive or negative semidefinite at a critical point thak (W 1) > rank(Wy --- Ws) or

Xr = 0. The instances off” unsatisfying this condition at critical points form some uncountable
set. For example, consider a uncountable set that consists of the pointdwith = W; = 0 and
with any Wy, ..., Ws. Then, every point in the set defines a critical point from Lendiia Also,

Xr = XYT # 0 asrank(XY7T) > 1. So, it does not satisfies the first semidefinite condition.
On the other hand, with any instanceldy - - - W5 such thatank(Wy - - - W5) > 1, we have that

0 = rank(Wg41) # rank(Wy --- Wa). So, it does not satisfy the second semidefinite condition
as well. Thus, we have proved that in the domain of the loss function, there exist points, at which
the Hessian becomes indefinifhis implies Theorem2.3(i): the functions are non-convex and
non-concave.

O

B.3 Proof of Theorem2.3(iii)

Proof We now prove Theoren2.3 (iii): every critical point that is not a global minimum is a
saddle point. Here, we want to show that if the Hessian is negative semidefinite at a critical

point, then there is a increasing direction so that there is no local maximum. 5iite =
d1
% er;l Zj;1((WH+1)jy- WX — Yj,i)Qv

_ 1
Dwpy i, L(W) = 5 ZD(WH+1)1,t((WH+1)1.,» WX = Yia)?

m dp
D((Wagn)r o WiXos = Vi) ( (Wiph ZW;M L(Wa ), -W1XA,1~>

.
1
=

Il
.MS

@
Il
-

((Wagi)r, - WX = Y1) (Wa)e,. - W1 X))

Similarly,

2
D(WH+1)1 fD(WH+1)1f Z WlXﬂ) eR.
i=1

Therefore, with other variables being fixed, is strictly convex iN(Wg41):1 € R coordinate
for somet unIess(WH) W1 X.;, =0foralli =1,...,mandforallt = 1,...dyg. Since
rank(X) = d,, in order to hanWH) -WhX.;=0foralli =1,...,m, the dimension of the

null space of Wy );.. - - - Wi must be at least, for eacht. Since(Wy),.. - -- W; € RY*4 for each
eacht, this means tha(tWH)t,. --- W7 = 0 for all t. Therefore, with other variables being fixed,
is strictly convex in(Wg 1)1+ € R coordinate for someif Wy --- Wy # 0.
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If Wy --- W1 = 0, we claim that at a critical point, if the Hessian is negative semidefinite, we can
makeWy --- W1 # 0 with arbitrarily small perturbation of each parameter without changing the
loss value. We can prove this by using the similar proof procedure to that used for TH28r@n
in the case ofank(Wy - -- W) < p. Suppose thali'y - -- W1 = 0 and thusrank(Wy --- W1) =
0. From Lemma4.4, we have a following necessary condition for the Hessian to be (positive or
negative) semidefinite at a critical point: for abye {2,..., H + 1},

R(Wy_1---Wo)T) CR(CTC) or XrWiyy1--Wii1 =0,

where the first condition is shown to implynk(Wg 11 - - - Wy) > rank(Wy_1 - - - Wa) in Corollary
4.5,

Let A, = Wgyq -+ Wiq1. From the condition withk = 2, we have thatank(Wg 1 --- Wa) >
dy > 1or XrWpyyq --- W3 = 0. The former condition is false sinecenk(Wy - - - Ws) < 1. From
the latter condition, for an arbitrats,,

0=XrWgyi- W

SWolly = (AT As) AJYXT(XXT) ™'+ (I — (AT A2)~ AT As) Lo (6)

Wiyt Wi =4y (AT A) AAYXT(xxT)™!
=ccTe)y oty xT(xxT)!

where the last follow the critical point condition (Lemrda?). Then, similarly to the proof of
Theorem2.3 (i),

Ay (AJA2) Ay =c(CTC)~C".
In other wordsR(Az) = R(C).

Suppose thatank(AZ A5) > 1. Then, sinceR(Az) = R(C), we have thatank(Wy - -- W) >
rank(C) > 1, which is false (or else the desired statement). Thusk(AZ A;) = 0, which implies
thatA; = 0. Then, sincéVy 1 --- Wy = A, Wo W, with A, = 0, we can havél, W, # 0 without
changing the loss value with arbitrarily small perturbatioaf andV; .

Thus, we showed that we can ha¥g@ 1/, # 0, with arbitrarily small perturbation of each parameter
with the loss value being unchanged. To prove the corresponding resuits for W, for anyk =

2, ..., H, we conduct induction ok = 2,..., H with the same proof procedure. The proposition
P(k) to be proven is as follows: the necessary conditions witd %k implies that we can have
Wy -+~ Wy # 0 with arbitrarily small perturbation of each parameter without changing the loss
value. For the base cage= 2, we have already proved the proposition in the above.

For the inductive step with > 3, we have the inductive hypothesis that we can Hé&ye - - - W5 #
0 with arbitrarily small perturbation of each parameter without changing the loss value. Accordingly,
suppose thatVy,_; - -- W3 # 0. Again, from Lemma&.4, for anyk € {2,..., H + 1},

R(Wy_1---Wo)T) CR(CTC) or XrWiyyy - Wip1 = 0.

If the former is true, rank(Wy---Ws2) > rank(C) > rank(Wj_1---Wa) >
rank(Wy_q --- WoW7) > 1, which is false (or the desired statement). If the latter is true, for
an arbitraryL,

0=XrWgy1- Wi
Wy Wi = (AL AR) ATYXT(XXT) ™+ (I — (AT Ar) " AL Ay) Ly
Wiy Wi = A (ALAR) ALY XT(XXT)™!
=C(CTC) CTY XN (XX T =UUf Y XT(XXT) T,
where the last follow the critical point condition (Lemm&). Then, similarly to the above,
Ap (AL Ay) Ap=c(CTe)y-C™.
In other wordsR(Ay) = R(C).

Suppose thatank(AT Ay) > 1. Then, sinceR(Ay) = R(C), we have thatank(Wy - - - Wa) >
rank(C) = rank(Ax) > 1, which is false (or the desired statement). Thusik(A7 A;) = 0,
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which implies thatd;, = 0. Then, sincéWyq--- Wy = AWy --- W, with 4, = 0, we can
have W, ---W; # 0 without changing the loss value with arbitrarily small perturbation of each
parameter.

Thus, we conclude the induction, proving thallif; - - - W1 = 0, with arbitrarily small perturbation

of each parameter without changing the valu& i), we can havéVy - - - W, # 0. Thus, upon

such a perturbation at any critical point with the negative semidefinite Hessian, the loss function is
strictly convex in(Wg+1)1,+ € R coordinate for some. That is, at any candidate point for a local
maximum, there exists a strictly increasing direction in an arbitrarily small neighbourhood. This
means that there is no local maximumhus, we obtained the statement of Theorer2.3(i).

O

B.4 Proof of Theorem?2.3(iv)

Proof In the proof of Theoren?.3 (ii), the case analysis with the casenk(Wy --- Ws5) = p,
revealed that whemank(Wy --- W) = p, if V2£( ) > 0 at a critical point,lW is a global
minimum. Thus, whemank(Wy - -- W5) = p, if W is not a global minimum at a critical point, its
Hessian is not positive semidefinite, containing some negative eigenvalue. From T8 @m

if it is not a global minimum, it is not a local minimum. From Theoré& (iii) , it is a saddle point.
Thus, ifrank(Wy --- Ws) = p, the Hessian at any saddle point has some negative eigenvalue,
which is the statement of Theoren?.3(iv).

O
B.5 Proof of Theorem3.2and discussion of the assumptions
Proof
SHEUSEEA LD 3 IS
i=1 j=1
1 e . R
95 Z Z Ez[Y (W, X)?z] =2Y;Ez[Y (W, X);:] + Yfl
i=1 j=1
1 m  dy \F H 2 w;
D) Z Z P’ Z[Xi}(j,p) H Wiip) |~ 209Y5 Z iG.p) H wip | + Y
i=1gj=1 p=1 k=1 p=1

The first line follows the definition of the Frobenius norm. In the second line, we used the linearity of
the expectation. The third line follows the independence assumption (Alp-m and ASLGrm\dm(

manskaet al, 2015ha)). That is, we have thd ;[Y (W, X), ;] = pg Zp 11Xl G Hk 1 W(p)-
Also, smce(zp Lap)? = ij yar + 23 apay for any a and k, by denotinga; j, =
[Xil(G.p) Hk:l W(j,p)s

2

Az
Ez [Y(I/V, X)?z] =Ez Z i,j,p Zi](j.p)
p=1

v
> a7 BaZiF )] + 2 aipaipEz([Zi) G iG]
p=1 p<p’

W

— 2N 2
=p up+2p Zampamp
p=1 p<p’

<!

\Z 2

Z iG.p) ijp)

p=1
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All the assumptions used above are subset of assumptions that were used, for example, in the first
equation of the proof of theorem 3.3 i€ljoromanskat al, 20153. Finally, sinceq = p—! and

Z;I';’l[Xi](j,p) I, wipy = We WaWg_q - WaW1X);,; = Y4, the last line of the above
equation forEz [L(W)] is equal tog Y — Y|[%= L(W). Also, Ly p\(W) = LIBlY (W, X)] —
Y= Il EY (W, X)] = Y|3= 3|Y — Y|3= L(W).

Therefore, what we have proved to be true £4#V) is also true forEz[L(W)] and Ly y1(W).
We conclude the proof of Theore®i2

O

Note that we could reduce the loss functidis[£(W)] and Ly, v (W) to L(W) only with a strict
subset of the assumptions used in the previous work. Accordingly, a question might arise as to
how much we can reshape the loss function with all the assumptions used in the previous work.
To answer this question, we note ti@toromanskat al. (2015ha) reduced their loss functions of
nonlinear neural networks to:

A A
1 L 5 1 -
E¢,z[LhingeW)1.1] = =572 Yo Xivin Wiy Wiy Wy S <Y @] =1,
i=1

11,82, 0 g =1

> |

whereA € R is some constant related to the size of the network (@t the matrix containing

the eigenvalues). While we refer t€ljoromanskaet al., 2015ha) for the detailed definitions of

the symbols,X andw are defined in the same way as ours are, @nd a modified version due

to other assumptions that we did not adopt. Here, we observe that not only the model but also the
loss function is linear in the inputs (the nonlinear activation function has disappeared—The inputs
are simply multiplied by some coefficients and then summed). Moreover, the target furidhias
disappeared (i.e., the loss value does not depend on the target function). That is, whatever the data
points ofY" are, their loss values are the same. Thus, we see that the loss functions can be reduced
to much different functions with all the assumptions used in the previous work (i.e, Alp, A2p, A3p,
Adp, A5u, A6u, and A7p). We adopted a strict subset of the assumptions, with which we reduced
our loss function to a more realistic loss function of a deep neural network.

C Proofs of Corollaries2.4and 3.3

We complete the proofs of Corollari@sAand3.3.

Proof If H = 1, the condition in TheorerB.3(iv) reads "ifrank(W; - - - W) = rank(lg,) = d; =
p", which is always true. This is becausés the smallest width of hidden layers and there is only one
hidden layer, the width of which ig;. Thus, Theoren2.3 (iv) immediately implies the statement
of Corollary2.4. For the statement of Corolla®4with H > 2, it is suffice to show the existence
of a simple set containing saddle points with the Hessian having no negative eigenvalue. Suppose
thatWy = Wy_1 = --- = Wo = W; = 0. Then, from Lemma.1, it defines a uncountable set of
critical points, in whichiV,; can vary inR% >4 Sincer = Y7 # 0 due torank(Y) > 1, itis
not a global minimum. To see this, we write

£OW) = IV W, X) = VI[F= (s )

1 1 1
= 5tr(YYT) - itr(WHH S WXYT) - 5tr((WH+1 W XYTHT)
1
+3 tr(Wry1 - WiXXT Wy ---W)T).
For example, withVp 41 --- Wy = £ U, UL Y XT (X X)L,

. 1
LW) =< (x(YYT") = tx(UpU, ) — t2(SULUY) ) + tr(UpU, SULU))

2
1 T T 1 T -
:i(tr(YY ) — tr(UpA1, U )) = 5 (VY )i;AM ,
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where we can see that there exists a strictly lower valug(®F) than the loss value with = Y7,
whichis$ tr(YY'T) (sinceX # 0 andrank(X) # 0).

Thus, these are not global minima, and thereby these are saddle points by TRebfignand(iii) .

On the other hand, from the proof of Lemm&3, every diagonal and off-diagonal element of the
Hessianis zero iWy = Wy_1 = --- = Wy = W; = 0. Thus, the Hessian is simply a zero matrix,
which has no negative eigenvalue. Using the argument in the proof of Thé2eme can deduce
that the same results hold féi; [£(W)] and Ly, i (W).

O

D Discussion of the 1989 conjecture

The 1989 conjecture is based on the result for a 1-hidden layer network with, = d, (e.g., an
autoencoder). That is, the previous wedasidered” = W, W, with the same loss function as ours
with the additional assumptign< d,, = d,. The previous work denote$ £ W, andB £ W;.

The conjecture was expressedBgldi & Hornik (1989 as

Our results, and in particular the main features of the landscapk lobld true in
the case of linear networks with several hidden layers.

Here, the “main features of the landscape&frefers to the following features, among other minor
technical facts: 1) the function is convex in each mattifor B) when fixing otherB (or A), and 2)
every local minimum is a global minimum. No proof was provided in this work for this conjecture.

In 2012, the proof for the conjecture corresponding to the first feature (convexity in each matrix
A (or B) when fixing otherB (or A)) was provided in Baldi & Lu, 2012 for both real-valued

and complex-valued cases, while the proof for the conjecture for the second feature (every local
minimum being a global minimum) was left for future work.

In (Baldi, 1989, there is an informal discussion regarding the conjecture: kefl,---, H} be an
index of a layer with the smallest widih That is,d; = p. We write

A=Wyir-- Wi

B:=W,- - Wj.

Then, whatA and B can represent is the same as what the origiha= W, and B := Wh,
respectively, can represent in the 1-hidden layer case, assuming<hdy = d, (i.e., any element

in R%*? and any element iiRP*%). Thus, wewould conclude that all the local minima in the
deeper models always correspond to the local minima of the collapsed 1-hidden layer version with
A= WH+1 vee Wi+1 andB := W;---Why.

However, the above reasoning turns out to be incomplete. Let us prove the incompleteness of the
reasoning by contradiction in a way in which we can clearly see what goes wrong. Suppose that the
reasoning is complete (i.e., the following statement is true: if we can collapse the model with the
same expressiveness with the same rank restriction, then the local minima of the model correspond
to the local minima of the collapsed model). Consigi¢w) = WsWoW; = 2w? + w3, where

Wi =[w w w], Wo =[1 1 w]¥ andW3 = w. Then, let us collapse the model@as= W3W,W;

andg(a) = a. As a result, whaff(w) can represent is the same as wih@t) can represent (i.e.,

any element irR) with the same rank restriction (with a rank of at most one). Thus, with the same
reasoning, we can conclude that every local minimunf @#) corresponds to a local minimum of

g(a). However, this is clearly false, gqw) is a non-convex function with a local minimum at

w = 0 that is not a global minimum, whilg(a) is linear (convex and concave) without any local
minima. The convexity fog(a) is preserved after the composition with any norm. Thus, we have a
contradiction, proving the incompleteness of the reasoning. What is missed in the reasoning is that
even if what a model can represent is the same, the different parameterization creates different local
structure in the loss surface, and thus different properties of the critical points (global minima, local
minima, saddle points, and local maxima).

Now that we have proved the incompleteness of this reasoning, we discuss where the reasoning
actually breaks down in a more concrete example. From Lemfimizand4.2, if H = 1, we have

25



the following representation at critical points:
AB = A(ATA) - ATy xT(xxT)~1.

whereA := W5 and B := W;. In contrast, from Lemmag.1and4.2, if H is arbitrary,
AB=c(Cto)y-cTyxT(xxT)-1

where A := Wy --- W, andB := W, ---W; as discussed above, attl= Wy --- Wa.

Note that by using other critical point conditions from Lemmak we cannot obtain an expression
such that” = A in the above expression unless- 1. Therefore, even though whadtand B can
represent is the same, the critical condition becomes different (and similarly, the conditions from
the Hessian). Because the proof in the previous work ith= 1 heavily relies on the fact that

AB = A(ATA)~ATY XT(XXT)~1, the same proof does not apply for deeper models (we may
continue providing more evidence as to why the same proof does not work for deeper models, but
one such example suffices for the purpose here).

In this respect, we have completed the proof of the conjecture and also provided a complete analyt-
ical proof for more general and detailed statements; that is, we did not assumpe<hé = d,,
and we also proved saddle point properties with negative eigenvalue information.
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