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Abstract— The increasing penetration of wind generation has 

led to significant improvements in unit commitment models. 
However, long-term capacity planning methods have not been 
similarly modified to address the challenges of a system with a 
large fraction of generation from variable sources.  Designing 
future capacity mixes with adequate flexibility requires an 
embedded approximation of the unit commitment problem to 
capture operating constraints. Here we propose a method, based 
on clustering units, for a simplified unit commitment model with 
dramatic improvements in solution time that enable its use as a 
submodel within a capacity expansion framework.  
Heterogeneous clustering speeds computation by aggregating 
similar but non-identical units thereby replacing large numbers 
of binary commitment variables with fewer integers that still 
capture individual unit decisions and constraints. We 
demonstrate the trade-off between accuracy and run-time for 
different  levels of aggregation. A numeric example using an 
ERCOT-based 205-unit system illustrates that careful 
aggregation introduces errors of 0.05-0.9% across several metrics 
while providing several orders of magnitude faster solution times 
(400x) compared to traditional binary formulations and further 
aggregation increases errors slightly (~2x) with further speedup 
(2000x). We also compare other simplifications that can provide 
an additional order of magnitude speed-up for some problems.  

 
Index Terms—Integer programming, Power generation 

scheduling, Power system modeling, Unit commitment, 
Flexibility, Capacity Expansion. 

NOMENCLATURE 
A. Indices 
 
g, G  Generating unit, set of units 

𝑔�, 𝐺�  Generation cluster, set of clusters 

t, τ , T       Time period 

ρ         Reserve category {1,2,3} 

 
B. Variables 
 
𝐶𝑡𝑜𝑡𝑎𝑙  Total system cost [$] 
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𝐶𝑔,𝑡
𝑣𝑎𝑟          Variable costs [$] 

𝐶𝑔,𝑡
𝑠𝑡𝑎𝑟𝑡      Startup costs [$] 

𝑃𝑔,𝑡      Power output [MWh] 

𝐹𝑔       Fuel usage [mmbtu/MWh] 

𝑈𝑔,𝑡      0/1 unit commitment state 

𝑆𝑔,𝑡      0/1 startup indicator 

𝐷𝑔,𝑡       0/1 shutdown indicator 

𝑅𝑔,𝑡
1,𝑢𝑝      Primary (regulation) up reserves 

𝑅𝑔,𝑡
1,𝑑𝑜𝑤𝑛   Primary (regulation) down reserves 

𝑅𝑔,𝑡
2,𝑢𝑝   Secondary (load follow) up reserves 

𝑅𝑔,𝑡
2,𝑑𝑜𝑤𝑛   Secondary (load follow) down reserves 

𝑅𝑔,𝑡
3    Tertiary reserves (quick start) 

 
C. Parameters 
 
𝑐𝑔
𝑓𝑢𝑒𝑙       Fuel costs [$/mmbtu] 

𝑐𝑔𝑣𝑎𝑟𝑂&𝑀      Variable O&M costs [$/mmbtu] 

𝑓𝑔𝑠𝑡𝑎𝑟𝑡      Fuel usage at startup [mmbtu/MWh] 

𝑙𝑡       Load [MWh] 

𝑝𝑔𝑚𝑖𝑛       Minimum power output [MWh] 

𝑝𝑔𝑚𝑎𝑥       Maximum power output [MWh] 

∆𝑝𝑔𝑑𝑜𝑤𝑛      Maximum down-ramp rate [MWh/hr] 

∆𝑝𝑔
𝑢𝑝      Maximum up-ramp rate [MWh/hr] 

𝑟1,𝑢𝑝     Primary reserve requirement up [MWh] 

𝑟1,𝑑𝑜𝑤𝑛     Primary reserve requirement down [MWh] 

𝑟2,𝑢𝑝     Secondary reserve requirement up [MWh] 

𝑟2,𝑑𝑜𝑤𝑛      Secondary reserve req. down [MWh] 

𝑟𝑜𝑢𝑡𝑎𝑔𝑒      Contingency reserve requirement [MWh] 

𝑟𝑟𝑒𝑝𝑙𝑎𝑐𝑒     Tertiary reserve requirement [MWh] 

𝑥𝑛𝑜𝑠𝑦𝑛𝑐     Fraction of secondary reserves from offline 
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𝑎𝑔
𝜌       Unit capability by reserve class [MWh] 

𝑎𝑔
𝑞𝑢𝑖𝑐𝑘𝑠𝑡𝑎𝑟𝑡      0/1 quick start ability  

𝑚𝑔
𝑢𝑝/𝑑𝑜𝑤𝑛      Minimum up/downtime [hrs]  

I.  INTRODUCTION 
rowth in variable renewables and other advanced power 
system technologies has prompted a need for researchers 
to capture operational flexibility in a range of models.  

Operational flexibility requires a balance between 1) 
requirements due to uncertainty (e.g. forecast errors and 
outages) plus dynamics (e.g. demand and wind ramps) and 2) 
limitations, typically from thermal generator technical 
constraints (e.g. minimum output levels, startup/shutdown 
limits, maximum ramping, etc.). In flexibility studies, these 
dynamics and constraints are typically captured using unit 
commitment (UC) models [1–18].  

Since some of the early pioneering work in UC models [1-
2], there have been significant contributions in reformulating 
unit commitment models to appropriately represent variable 
generation and its impacts on reserve requirements and 
operations within an existing capacity mix [3-14].  Much of 
this work has been to develop improved algorithms for 
stochastic unit commitment, inclusion of transmission and 
security constraints, and the use of these models to develop 
optimal reserve allocation rules and to economically value the 
additional reserve requirements from renewables.  In addition, 
there have been initial attempts to consider long-term 
flexibility needs within capacity planning models [15-17].  

However, the unit commitment (UC) problem is by itself 
computationally intensive to solve because of the combination 
of the large number of discrete (binary) on/off decisions – one 
for each generator for each time period – and the number and 
complexity of the technical constraints.  To include the full 
UC problem within a long-term planning model would make 
the solution of these models infeasible because the UC 
subproblem has to be solved for many alternative capacity 
mixes considered, often over a long timeframe (e.g., one year). 
What is needed within capacity expansion models is a 
simplified approximation of the UC problem that captures its 
large scale features. 

Because the goal here is to study future potential systems 
that do not yet exist, the level of detail for required for current 
systems, such as transmission and security constraints and 
generator-specific characteristics, is not warranted.  The lack 
of detailed unit-specific data enables the aggregation or 
clustering of similar generation units, which transforms the 
large number of binary commitment variables to far fewer 
integer variables, and thereby drastically reducing problem 
size and corresponding run times [15], [18], [19]. 

The concept of aggregating identical units is not new. As 
early as 1966, pioneering studies in computer based unit 
commitment, grouped identical generators together to 
illustrate simple solution techniques with limited computer 
hardware [20]. More recently, examples of combining 
identical units has also appeared in the literature. For example, 
Gollmer, et al. [19] also use grouped integer commitment for 
identical thermal plants and Garcia-Gonzalez, et al. [21] use a 

grouped integer on/off state when modeling banks of identical 
hydro turbines for optimal combined bidding with wind. 
Likely other implementations using such homogeneous 
clustering remain unpublished, since the computational 
advantages of binary aggregation to integers is well 
recognized in the operations research community [22]. For 
example in his dissertation, Cerisola describes homogeneous 
aggregation into “generalized” units with integer commitment 
variables [23], yet this formulation is not described in related 
journal articles [24]. When clustering identical, co-located 
units, clustering can provide identical solutions in faster times. 

The concept of heterogeneous clustering extends this 
aggregation such that similar, but not identical, units are 
clustered together and assigned an integer commitment state. 
Conceptually, this approach is similar to that of Sen and 
Kothari [25], who also group units. However, their treatment 
assumes a binary commitment state for the entire group: all on 
or all off. This is computationally helpful, but is much less 
flexible than an integer formulation that allows some of the 
generators within a group to run while others are off. The all 
or none approach also prevents properly computing startup 
costs, minimum output levels, and reserve capability.  

Recent work on heterogeneous clustering has demonstrated 
efficient unit-commitment-based computations over long time 
horizons (e.g. full year as 8760 sequential hours) as part of 
price estimation [18] and planning studies [15]. However, in 
both efforts, heterogeneous clusters are simply used to make 
the study tractable, without considering different clustering 
approaches or comparing the results to a full binary 
formulation.  

A key contribution of this paper is to explore the trade-offs 
among accuracy, run-time and level of aggregation used in 
heterogeneous clustering. To do so, we introduce a set of 
performance metrics applicable to a wide range of decision 
objectives. We also compare the performance of other 
simplifying long-term UC assumptions with and without 
clustering.  

In addition, this paper presents a streamlined 
implementation for clustered minimum up and down time, 
which uses only one integer variable per cluster. As described 
in [18] and [23], these dynamic, inter-period constraints 
require careful consideration since within the same cluster, 
some units may startup or shutdown while others continue to 
run. In the past, these constraints have been converted back to 
binary [23], not described fully [19], or are not relevant 
because non-thermal units are aggregated [21]. Langrene et al. 
describe heterogeneous clustered dynamic constraints in 
detail, but their minimum up/down formulation requires 
multiple integer variables per cluster per time period [18]. 
These separate integers explicitly represent startup/shutdown 
generator states: running but stoppable, must keep running, 
stopped but able to start, and must stay stopped. As described 
below, our formulation uses sums of existing continuous 
startup and shutdown variables to maintain only a single 
integer unit commitment variable per cluster, thereby further 
reducing the problem size. 

In Section II, we formulate a standard binary UC model 
that we use to compare against our clustered formulation.  We 
present the clustered formulation of the UC model in Section 
III.  Section IV describes alternative speedup strategies used in 
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the literature to which we compare our approach.  The 
experimental setup and error metrics are defined in Section V.  
Section VI presents the results for a 205 generator unit test 
system.   Section VII provides a concluding discussion. 

II.  TRADITIONAL UNIT COMMITMENT 

A.  Core model 
The generic unit commitment problem finds the minimum 

cost combination of generator commitment and power output 
to meet demand over time. Here we linearize the standard 
basic formulation [26], [27], for a thermal-only system. The 
resulting optimization problem is a large mixed-integer linear 
program (MILP) that can then be solved by powerful 
commercial solvers as is done by a growing number of power 
system operators [24]. For clarity, we use uppercase for 
variables, bold upper case for sets, and lowercase for 
parameters and set elements. 
    1)  The Objective Function minimizes total operations costs: 

𝐶𝑡𝑜𝑡𝑎𝑙 = min���𝐶𝑔,𝑡
𝑣𝑎𝑟 + 𝐶𝑔,𝑡

𝑠𝑡𝑎𝑟𝑡�
𝑡∈𝑻𝑔∈𝑮

 (1) 

computed as the sum of variable costs, 𝐶𝑔,𝑡
𝑣𝑎𝑟, and startup costs, 

𝐶𝑔,𝑡
𝑠𝑡𝑎𝑟𝑡, for all units, 𝑔, and time periods, 𝑡.  

    2)  The Variable Costs, 𝐶𝑔,𝑡
𝑣𝑎𝑟 include fuel costs, 𝑐𝑔

𝑓𝑢𝑒𝑙 , and 
variable operations and maintenance (O&M) costs, 𝑐𝑔𝑣𝑎𝑟𝑂&𝑀 , 
as a function of the instantaneous power output, 𝑃𝑔,𝑡: 

𝐶𝑔,𝑡
𝑣𝑎𝑟 = 𝐹𝑔𝑃𝑔,𝑡𝑐𝑔

𝑓𝑢𝑒𝑙 + 𝑃𝑔,𝑡𝑐𝑔𝑣𝑎𝑟𝑂&𝑀  
with   𝑃𝑔,𝑡 ≥ 0, 

(2) 

    3)  The Startup Costs, 𝐶𝑔,𝑡
𝑠𝑡𝑎𝑟𝑡, assume a constant fuel use per 

startup, 𝑓𝑔𝑠𝑡𝑎𝑟𝑡: 

𝐶𝑔,𝑡
𝑠𝑡𝑎𝑟𝑡 = 𝑆𝑔,𝑡𝑓𝑔𝑠𝑡𝑎𝑟𝑡𝑐𝑔

𝑓𝑢𝑒𝑙  (3) 
Startup events, 𝑆𝑔,𝑡, are computed using the state equation: 

𝑈𝑔,𝑡 = 𝑈𝑔,𝑡−1 + 𝑆𝑔,𝑡 − 𝐷𝑔,𝑡 (4) 

with      𝑈𝑔,𝑡 , 𝑆𝑔,𝑡 ,𝐷𝑔,𝑡 ∈ {0,1} (5a) 
Here 𝑈𝑔,𝑡 represents the commitment (on/off) state of each 
unit, 𝑆𝑔,𝑡 represents startup events, and 𝐷𝑔,𝑡  represents a unit 
shut down; all are 0/1 variables.  

We note that (3) deviates from startup formulations that 
distinguish warm and cold startup costs, e.g. [26]. This 
constant startup cost simplification is commonly used for this 
class of long-term unit commitment problem [14], [17], [28]. 
    4)  A Piecewise Linear Fuel Usage function, 𝐹𝑔(𝑃𝑔,𝑡), 
captures the non-linear relation between fuel usage and power 
output. We represent this using a unit-specific convex 
piecewise linear approximation with segments, 𝑩𝒈: 

𝐹𝑔,𝑡�𝑃𝑔,𝑡� ≥ ℎ𝑔,𝑏𝑃𝑔,𝑡 + 𝑈𝑔,𝑡𝑓𝑔,𝑏
𝑃=0          ∀𝑠 ∈ 𝑩𝒈 (6) 

For each piecewise linear segment, 𝑏, the slope, ℎ𝑔,𝑏, 
represents the incremental heat rate and the intercept, 𝑓𝑔,𝑏

𝑃=0, 
indicates the projected fuel use if hypothetically running at 
zero power. Since fuel has a positive cost, the optimizer will 
minimize fuel usage forcing the inequality in equation (6) to 
equality for the highest piecewise segment. When a unit is not 
running, the commitment variable, 𝑈𝑔,𝑡, brings fuel use to 
zero. 

    5)  The System Balance Constraint ensures that the sum of 
instantaneous power, 𝑃𝑔,𝑡, equals total load, 𝑙𝑡, at all times: 

�𝑃𝑔,𝑡
𝑔∈𝑮

=   𝑙𝑡                     ∀𝑡 ∈ 𝑻 (6) 

    6)  Unit Minimum and Maximum Output Constraints use the 
binary commitment variable to imply that each generating unit 
is either off and outputting zero power (𝑈𝑔,𝑡 = 0), or on and 
running within its operating limits, 𝑝𝑔𝑚𝑖𝑛  and 𝑝𝑔𝑚𝑎𝑥  (𝑈𝑔,𝑡 = 1): 

𝑈𝑔,𝑡𝑝𝑔𝑚𝑖𝑛 ≤ 𝑃𝑔,𝑡 ≤ 𝑈𝑔,𝑡𝑝𝑔𝑚𝑎𝑥   (7a) 

B.  Additional Constraints 
A more realistic model includes additional cost components 

and generator and system reliability imposed technical 
constraints [27]. We focus on the most common extensions: 
    1)  Ramping Limits capture limitations on how fast thermal 
units can adjust their output power: 

𝑃𝑔,𝑡−1 − 𝑃𝑔,𝑡 ≤ 𝛥𝑝𝑔𝑑𝑜𝑤𝑛𝑚𝑎𝑥  (8a) 

𝑃𝑔,𝑡+1 − 𝑃𝑔,𝑡 ≤ 𝛥𝑝𝑔
𝑢𝑝𝑚𝑎𝑥 (9a) 

where the ∆p’s are the ramp limits up or down.  
    2)  For Minimum Up and Down Times we adopt the most 
computationally efficient formulation from [29], [30] using, 
𝑚𝑔
𝑢𝑝 and 𝑚𝑔

𝑑𝑜𝑤𝑛 for minimum up and down times: 

𝑈𝑔,𝑡 ≥ � 𝑆𝑔,𝜏

𝑡

𝜏=𝑡−𝑚𝑔
𝑢𝑝

  (10) 

1 − 𝑈𝑔,𝑡 ≥ � 𝐷𝑔,𝜏

𝑡

𝜏=𝑡−𝑚𝑔
𝑑𝑜𝑤𝑛

  (11a) 

    3)  Operating Reserves: Because power generated on the 
grid must match demand instantaneously, a number of 
operating reserves are maintained by allowing room between 
generator output levels and corresponding limits to provide 
on-line capacity able to quickly increase (or decrease) and 
compensate for generation or transmission outages, forecast 
errors, etc.: 
          a)  Primary reserves, which operate on a timescale of a 
few seconds to compensate for rapid stochastic changes: 

�𝑅𝑔,𝑡
1,𝑢𝑝

𝑔∈𝑮

≥  𝑟1,𝑢𝑝𝑙𝑡 (12) 

�𝑅𝑔,𝑡
1,𝑑𝑜𝑤𝑛

𝑔∈𝑮

≥  𝑟1,𝑑𝑜𝑤𝑛𝑙𝑡  (13) 

where 𝑅𝑔,𝑡
1,𝑢𝑝 and 𝑅𝑔,𝑡

1,𝑑𝑜𝑤𝑛are the quantities of primary reserves 
supplied by unit g in time period t. The totals of which must 
exceed the exogenously determined system-level frequency 
reserve requirements, 𝑟1,𝑢𝑝 and 𝑟1,𝑑𝑜𝑤𝑛. 
          b)  Secondary reserves operate on the few minute 
timescale for both contingencies (spinning reserves) and load 
following. We allow a fraction of the reserve up supply, 
𝑥𝑛𝑜𝑠𝑦𝑛𝑐, to be supplied by non-synchronized resources such as 
offline quick starting units or demand response.: 

�𝑅𝑔,𝑡
2,𝑢𝑝

𝑔∈𝑮

≥ (𝑟2,𝑢𝑝𝑙𝑡 + 𝑟𝑜𝑢𝑡𝑎𝑔𝑒)(1 − 𝑥𝑛𝑜𝑠𝑦𝑛𝑐) (14) 
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�𝑅𝑔,𝑡
2,𝑑𝑜𝑤𝑛

𝑔∈𝑮

≥  𝑟2,𝑑𝑜𝑤𝑛𝑙𝑡 (15) 

The 𝑅𝑔,𝑡’s are the quantity of on-line secondary reserves 
supplied by each unit. 𝑟2,𝑢𝑝 and 𝑟2,𝑑𝑜𝑤𝑛 are the system load 
following requirements, a function of load/wind forecast error. 
𝑟𝑜𝑢𝑡𝑎𝑔𝑒 is the additional reserve required for contingencies, 
typically set to the largest unit or transmission tie capacity. 
          c)  Tertiary or quick start reserves are off-line but ready 
to run units that can be brought on-line quickly when needed:  

��𝑅𝑔,𝑡
3 + 𝑅𝑔,𝑡

2,𝑢𝑝�
𝑔∈𝑮

≥  𝑟2,𝑢𝑝𝐷𝑡 + 𝑟𝑜𝑢𝑡𝑎𝑔𝑒 + 𝑟𝑟𝑒𝑝𝑙𝑎𝑐𝑒  (16) 

The left-hand side includes both tertiary and secondary up 
reserves to both capture the fraction of the secondary reserve 
allowed by (15) from off-line units, and to enable tertiary 
reserves to be met by on-line units when appropriate. 
          d)  Unit reserve capabilities are dictated by the units 
ability to provide each type of reserve, 𝑎𝑔

𝜌: 

𝑅𝑔,𝑡
𝜌,[𝑢𝑝 𝑑𝑜𝑤𝑛⁄ ] ≤ 𝑎𝑔

𝜌,[𝑢𝑝 𝑑𝑜𝑤𝑛⁄ ]𝑝𝑔𝑚𝑎𝑥     ∀𝜌 ∈ {1,2} (17a) 
For tertiary reserves, quick start capable units can only be 

drawn from the pool of non-active units: 
𝑅𝑔,𝑡
3 ≤ (1 − 𝑈𝑔,𝑡)𝑎𝑔

𝑞𝑢𝑖𝑐𝑘𝑠𝑡𝑎𝑟𝑡𝑝𝑔𝑚𝑎𝑥   (18a) 

where 𝑎𝑔
𝑞𝑢𝑖𝑐𝑘𝑠𝑡𝑎𝑟𝑡 represents the fraction of the unit capacity, 

𝑝𝑔𝑚𝑎𝑥 , that can be deployed fast enough. 
          e)  Updated unit output constraints capture the need for 
a unit to run below maximum for upward and above minimum 
for downward reserves. This replaces (7a) with the pair: 

𝑃𝑔,𝑡 ≥ 𝑈𝑔,𝑡𝑝𝑔𝑚𝑖𝑛 + 𝑅𝑔,𝑡
1,𝑑𝑜𝑤𝑛 + 𝑅𝑔,𝑡

2,𝑑𝑜𝑤𝑛 
𝑈𝑔,𝑡𝑝𝑔𝑚𝑎𝑥 ≥ 𝑃𝑔,𝑡 + 𝑅𝑔,𝑡

1,𝑢𝑝 + 𝑅𝑔,𝑡
2,𝑢𝑝 

(7b) 

III.  CLUSTERED UNIT COMMITMENT 

A.  The Concept of Clustering 
As described in the introduction, for problems with 

simplified or ignored transmission constraints, it is possible to 
combine similar generating units into clusters. As seen in Fig. 
1, this replaces the large set of binary commitment decisions, 
one for each unit, with a smaller set of integer commitment 
states, one for each cluster. All of the other variables – such as 
power output level, reserves contribution, etc. – and 
constraints are then aggregated for the entire cluster. Within 
the cluster, however, the integer commitment variable still 
captures individual unit level relations. 

Computationally, the integer variables provide structure 
that both reduces the dimensionality of and guides the search 
through the combinatorial commitment state space by 
eliminating identical or very similar permutations of binary 
commitment decisions. The number of possible discrete 
combinations of commitment variables with the traditional 
formulation scales exponentially as 2N with the number of 
units N, while clustering scales as the product of the cluster 
sizes: ∏𝑛𝑔�. For example, a system with 100 units clustered 
into three groups of sizes {10, 70, 20} would reduce the 

 
(a) Traditional 

 
(b)  Clustered 

Fig. 1.  Conceptual comparison between traditional and clustered unit 
commitment for a single type of unit in a single time period. In the traditional 
formulation (a), each unit has a separate binary commitment variable, 𝑈𝑔,𝑡. 
With clustering (b), the entire cluster of 𝑛𝑔�  units has only a single integer 
commitment variable, 𝑈�𝑔�,𝑡.  

 
number of discrete combinations in each time period from 
~1030 to ~104.1 In addition, clustering reduces the number of 
continuous equations and variables since all relations now 
apply over the smaller number of clusters rather than the full 
set of individual units. 

 

B.  Clustering Formulation 
Mathematically, little of the traditional formulation changes 

with clustering. The key exceptions are replacing the 
individual unit index, 𝑔, with the cluster identifier, 𝑔�, and 
using a corresponding integer commitment variable, 𝑈�𝑔�: 

𝑈�𝑔� ∈ {0,1, … ,𝑛𝑔�} (5b) 
    1)  Relations With No Change Needed. Beyond this 
substitution no further changes are required for the objective 
(1), variable costs (2), startup costs (3), commitment state (4), 
system balance (6), unit output constraints (7b), minimum up 
time (10), and system reserve requirements (12) – (16).  
    2)  Ramping Limits require the most extensive changes 
since hour-to-hour output for the entire cluster must account 
for unit start up, 𝑆𝑔�,𝑡, and shut down, 𝐷𝑔�,𝑡. The ramp rates for 
on-line generators also scale by the number of plants actually 
on-line, Û𝑔�,𝑡. These modify (8a) & (9a) to:  
𝑃𝑔�,𝑡−1 − 𝑃𝑔�,𝑡 
      ≤ 𝑈�𝑔�,𝑡𝛥𝑝𝑔𝑑𝑜𝑤𝑛𝑚𝑎𝑥 + max (𝑝𝑔𝑚𝑖𝑛 ,𝛥𝑝𝑔𝑑𝑜𝑤𝑛𝑚𝑎𝑥)𝐷𝑔�,𝑡+1 (8b) 

𝑃𝑔�,𝑡+1 − 𝑃𝑔�,𝑡 
      ≤ 𝑈�𝑔�,𝑡𝛥𝑝𝑔

𝑢𝑝𝑚𝑎𝑥 + max (𝑝𝑔𝑚𝑖𝑛 ,𝛥𝑝𝑔
𝑢𝑝𝑚𝑎𝑥)𝑆𝑔�,𝑡+1 (9b) 

    3)  The Minimum Down Time requires finding the number 
of units currently off as the difference between 𝑛𝑔� (as opposed 
to one) and the current commitment state, 𝑈�𝑔�,𝑡: 

𝑛𝑔� − 𝑈�𝑔�,𝑡 ≥ � 𝐷𝑔�,𝜏

𝑡

τ=t−mg�
𝑚𝑖𝑛𝑑𝑜𝑤𝑛

  (11b) 

    4)  Reserve capabilities change similarly to: 
                                                           
1 Modern MILP solvers use sophisticated branch-and-cut algorithms to 

explore only a tiny fraction of this combinatorial space. Still, the speedup with 
reduced dimensionality can be dramatic. 
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Rg� ,t
𝜌 ≤ 𝑈�𝑔�,𝑡𝑎𝑔

𝜌𝑝𝑔𝑚𝑎𝑥   ∀𝜌 ∈ {1,𝑑𝑜𝑤𝑛; 2, 𝑑𝑜𝑤𝑛; 
1, 𝑢𝑝;  2,𝑢𝑝}  (17b) 

𝑅𝑔�,𝑡
𝑡𝑒𝑟𝑡𝑖𝑎𝑟𝑦 ≤ (𝑛𝑔� − 𝑈�𝑔�,𝑡)𝑎𝑔

𝑞𝑢𝑖𝑐𝑘𝑠𝑡𝑎𝑟𝑡𝑝𝑔𝑚𝑎𝑥   (18b) 

C.  Clustering Methodology 
With the heterogeneity of generation units in real systems, 

the exact basis for clustering is a decision with important 
tradeoffs. Here we compare the results from four different 
approaches to aggregation: 
    1)  Separate units – no clustering. This is the traditional 
formulation with binary commitment decisions for each unit. 
    2)  Full clustering by unit type only – In this case all units 
with the same combination of fuel type and prime mover (e.g., 
coal steam, open cycle gas turbine, natural gas combined 
cycle) are combined into clusters.  
    3)  Clustering by type and additional characteristics. This 
clustering approach sub-divides full clusters using an 
additional characteristic. For example, in this study we 
separately compare sub-dividing by size, age, or efficiency 
(heat rate). Cluster membership can be determined manually 
(as was done here) to provide roughly equal distributions of 
units between sub-clusters, or by using a formal clustering 
algorithm, such as k-means [31]. 
    4)  Clustering by plant. This approach clusters all units of 
the same type at the facility or plant level. Often, but not 
always, such units are identical. 

For all clustering approaches, the representative unit for 
each cluster is assumed to have a size (nameplate capacity) 
equal to the average of cluster members. Technical 
characteristics such as heatrate, ramp rates, minimum output, 
etc., are taken as the size-weighted average. This 
representative plant is effectively duplicated such that the 
number of units in the cluster, 𝑛𝑔�, matches the original 
number of individual units. 

D.  Key Assumptions 
In general, clustering assumes homogeneity of units within 

clusters. When clusters consist of identical units with constant 
incremental heat rates – i.e., only a single piecewise linear 
segment – the clustered solution exactly matches the 
traditional solution. For similar, but not identical, generators in 
the same cluster, they are assumed to have uniform technical 
characteristics such as minimum and maximum output levels, 
ramp rates, etc.  

IV.  OTHER SPEEDUP STRATEGIES 
In addition to clustering, we explore other strategies for 

speeding up long-term unit commitment computations. As 
described in more detail below, these strategies fall into two 
categories: generic MILP heuristics and problem-specific 
simplifications. Both categories can be used with either 
traditional or clustered formulations and therefore offer 
comparisons of clustering with other strategies and methods to 
further speed up very large problems. 

A.  Mixed Integer Heuristics 
As an alternative to clustering, it is also possible to use 

generic MILP solution tuning approaches to address the 
challenge of distinguishing very similar solutions that result 

from using binary variables to describe units with similar (or 
identical) operating characteristics. MILP branch-and-cut (and 
other combinatorial optimization), can waste considerable 
time finding and attempting to improve on such (nearly) 
equivalent solutions. Specific approaches include: 

• The ϵ-optimal heuristic, informally known as “cheat,” that 
can improve solution times during the branch-and-bound 
phase of branch-and-cut by only considering branches of 
the node tree that have the potential to improve the 
solution by more than ϵ. [24], 

• Perturbing key parameters (variable cost) for truly 
identical units, to introduce small artificial differences and 

• Imposing a merit order to help structure the problem by 
ensuring certain units always start before others, unless 
minimum up/down time constraints would be violated [5]. 

B.  Problem-specific simplifications 
In addition, simplifying assumptions to long-term unit 

commitment can reduce the solution time. These include: 
• Constant incremental heat rate with offset: replace 

piecewise fuel-use with a single linear segment [11]; 
• Relaxed integer constraints for units with low min 

outputs: use relaxed commitment states for small units 
or units with small minimum output levels [25]; 

• Combined Reserves: aggregate reserve classes into 
three – off-line (tertiary), flexibility up, and flexibility 
down, similar to [26]; and  

• Limited start-ups per time: replace minimum 
up/downtime with constraint on total startups per unit. 

V.  EXPERIMENTAL SETUP 

A.  Overview 
We solve the unit commitment problem for an example 

power system to compare the computation time and results of 
clustering versus a traditional, binary formulation. Further 
comparisons are made for both formulations in conjunction 
with speedup strategies described in Section IV. 

B.  Metrics of comparison 
To provide results relevant to a range of applications, we 

compute multiple comparison metrics. In all cases, we 
compare experimental runs to the full traditional binary unit 
commitment formulation, indicated with subscript “baseline”: 
    1)  Total Cost is the objective function value for the 
optimization and includes all operations costs. For 
comparison, we report the percent difference computed as: 

𝛥𝐶𝑡𝑜𝑡𝑎𝑙 = (𝐶𝑡𝑜𝑡𝑎𝑙 − 𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑡𝑜𝑡𝑎𝑙 )/𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑡𝑜𝑡𝑎𝑙  (19) 
    2)  CO2e Emissions are computed system-wide based on fuel 
usage for both operations and startup. A scalar percent 
difference is computed in the same manner as total cost. 
    3)  Energy Mix is based on total annual production by 
generator class divided in the same way as for clustering. The 
energy mix for each class is computed by summing the 
product of power output and duration for all time periods and 
dividing by the total system energy production: 
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𝐸𝑔�
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = ��𝑃𝑔�,𝑡

𝑡∈𝑻

∙ 1ℎ𝑟� ��𝐷𝑡
𝑡∈𝑻

∙ 1ℎ𝑟��  (20) 

The mean absolute difference of this vector gives: 

𝛥𝐸𝑚𝑖𝑥 = Mean
𝑔�∈𝑮

�𝐸𝑔�
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − 𝐸𝑔�,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 � (21) 

    4)  Commitment Plan differences are first computed as an 
array of differences with one element for each time period for 
each group of units aggregated to the cluster level. Two scalar 
comparisons are then made: a) The total count of differences 
between plans, computed as the number of non-zero elements 
in this array and b) the normalized mean absolute difference 
where commitment difference values for each time are 
normalized based on the total number of units committed for 
that time period in the baseline: 

𝛥𝑈 = Mean
𝑡∈𝑻,𝑔�∈𝑮

�
𝑈𝑔�,𝑡 − 𝑈𝑔�,𝑡�𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
∑ �𝑈𝑔�,𝑡�𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒�𝑔�∈𝑮

 � (22) 

    5)  Hourly Power Output differences are computed 
identically to commitment, except that for the count of 
differences, power levels are first rounded to the nearest 
0.5MW. 
    6)  Computation Time is reported as total solver (CPLEX) 
run time and excludes GAMS setup and output processing. 

C.  Implementation 
All runs share a common model written in GAMS [35] that 

uses pre-compile flags for different data, model 
simplifications and solver configurations. The resulting 
problems were then solved using the state-of-the-art CPLEX 
12.2 mixed-integer solver [36]. The solver was instructed to 
conserve memory when possible (memoryemphasis=1) to 
prevent out-of-memory errors for larger problems. The linear 
programming (LP) tolerance (epopt) was tightened to 1e-9 to 
ensure that the final LP solve matches the MILP branch-and-
cut solution. The solver time limit (reslim) was set to 10 hours. 

All model runs were conducted as a single thread running 
on a single 64-bit core (Intel Nehalem) at 2.67GHz clock 
speed. Up to 6 runs were run in parallel as sub-tasks of 
exclusive jobs on identical 8-core machines (2+ cores idle) 
with 24GB of shared RAM. Although run on a high 
performance cluster, the resulting resources allocated to each 
run are roughly equivalent to a modern personal computer.  

VI.  TEST SYSTEM #1: IEEE RELIABILITY TEST SYSTEM 

A.   System Description 
The basic IEEE Reliability Test System (RTS) was initially 

defined in 1979 [37], updated in 1986 [38], and again in 1996 
[39]. It includes detailed unit data for ten types of generators, 
with between one and six units of each type, to describe a 
basic system with 32 total units. The dataset includes tables 
for demand dynamics up to a full year at an hourly resolution.  

For our analysis, we use the 1996 revision [39] for demand 
data and most unit data including heat rates, minimum 
up/down times, cycling, ramping, emissions, and startup fuel 
usage. For each unit, our baseline formulation uses a three 
segment piecewise linear fuel use function with intersections 
at each of the provided net heat rate data points. Unit cost data 

is only reported in the 1979 definition [29]. System reserve 
requirements were taken as 1% of the load for regulation up 
and down, and 2% of load for load following up and down 
plus spinning reserves equal to the largest single unit, 
400MW. Quick start reserves are not used. 

We simplified the system by ignoring transmission and 
assuming all units are located a single node. We also removed 
the six hydro units leaving 26 units of eight different types. To 
compensate for the removed hydro, demand data was scaled 
uniformly by 92%, the annual ratio of hydro energy to total 
demand. Runs were conducted using data for the peak week. 

B.  Clustering Approach 
The inherent duplication of identical units in the IEEE RTS 

system provides straightforward clustering by grouping 
identical units. For perturbed runs, each unit’s variable 
operations and maintenance costs are adjusted slightly (up to 
0.01%). 

C.  Results 
Mixed Integer Heuristics As seen in Fig. 2, most of the 

heuristics for streamlining similar MIP results can provide 
some computational speedup, but only clustering provides 
speed up in all cases. Clustering is also significantly more 
effective than the other techniques, providing 100-10,000 
times faster performance than the next closest heuristic. In all 
cases, the aggregate errors are minimal: below 0.1% for most 
metrics, with the only exception of approximately 0.3% errors 
for separate units with a 0.1% relative cheat.  

 
Fig. 2: MIP heuristic comparison for IEEE Reliability Test System 1996 

showing solver run times for different heuristic combinations (note 
logarithmic time axis). In all cases, the “Separate, 0% MIP gap, No Cheat” 
configuration was used as a baseline. 

    1)  Unit Commitment Simplifications: As seen in Fig. 3, 
most of the unit commitment simplifications also provide 
some speed up to the problem, with reasonably small 
aggregate errors, but none are as effective as clustering alone, 
which is about 20 times faster than any other approximation. 
Furthermore, the combination of clustering with the other 
simplifications provided additional speed-ups of 20 to over 
250 times, while still maintaining small errors. With all 
simplifications, the aggregate errors are all less than 1.5%, and 
most are below 0.25% with the exception of normalized 
commitment errors from 0.75% to 1.5% for combined reserves 
and runs without minimum up and down times. And total cost 
errors around 0.6% for runs without minimum up/down times. 
Complete result tables for these and other figures, as well as 
additional run configurations are provided in the appendix. 
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Fig. 3: Unit Commitment simplification comparison for IEEE Reliability 

Test System 1996 showing solver run times for different simplifications. Note 
logarithmic time axis. All runs used a MIP gap of 0.1% and no cheat. 

 

VII.  TEST SYSTEM #2: ERCOT 

A.   System Description 
To test the impact of clustering on a system of realistic 

size, we modeled the entire Electric Reliability Council of 
Texas (ERCOT) balancing area using hourly historic demand 
and wind data from 2007. This system includes the entire 
Texas Interconnect, which covers the majority of the state of 
Texas and has negligible power exchange with other systems. 
ERCOT had a 2007 peak load of 62GW [37] supplied by a 
total of 92.5GW of generation capacity from 672 units [38]. 

To simplify the problem, we ignored the non-dispatchable 
combined heat and power facilities (15GW in 204 units), 
hydro (an additional 0.5GW in 41 units), units with 
uncommon fuel types (an additional 0.1GW in 72 units), and 
units with less than 50MW nameplate capacity (1GW in 
56units). In addition, we model combined cycle facilities as 36 
groups instead of 115 individual combustion and steam 
turbines. This resulted in a total of 205 units in our model 
system. We also ignore wind expansion during the year and 
assume a fixed wind capacity equal to the final 2007 capacity 
of 3.7GW. Hourly wind production was taken as this capacity 
times the actual percent production based on the installed 
capacity in each time period. Historic hourly wind production 
and demand data from 2007 was obtained from ERCOT [37].  

The week of Saturday Mar 17, 2007 was used for 1-week 
(168hr) analysis. This week contains both the peak wind and 
minimum demand. Thirteen week data include this peak wind 
week plus one week for each month. 

Plant-level heat rate and unit nameplate (maximum) 
capacity data was taken from eGrid 2010 v1.1, which contains 
2007 emission and plant data. Additional generator technical 
parameters were taken from the Sixth Northwest Power Plan 
appendix I [39] for corresponding plant types. Fuel costs were 
based on EIA 2007 data for south central west electric power 
sector use [40]. Reserve requirements were taken as 1% of 
load for regulation up and down, 1350MW for spinning 
reserves, and 2% of load for load following up and down. As a 
simple proxy for additional reserves required for wind 
uncertainty, load following requirements were increased as a 
function of both installed capacity and wind production using 
the factors in [33]. Up to 50% of the spinning reserve and load 

following up requirements can be met by quick start open 
cycle natural gas units. 

Complete generator data tables are provided in [34]. Hourly 
demand and wind profile data is available by request from 
ERCOT. Based on the results in [34], we used no cheat with a 
0.1% MIP gap for all runs. 

B.  Clustering Approach 
We compared the four clustering approaches described in 

Section III-B. The resulting number of clusters and example 
problem sizes are included in Table I. 

 
TABLE I: 

SIZE AND TIMES FOR 1-WEEK (168 HR) ERCOT CASE. 

 
C.  Results 

Unit Commitment simplifications. As seen in Fig. , the unit 
commitment simplifications provide some performance 
improvement. With separate units, combined reserves and 
constraining the number of startups, rather than using the 
minimum up and down time, provided the most significant 
speed-up of around 10 times faster calculation. But, as before, 
none of the simplifications were as effective as clustering 
alone, which was 200 times faster than any other 
simplification. In all cases, clustering further reduced 
computation time by a factor of between 350 to more than 
2000. Errors for the various metrics were minimal, below 
0.5% for separate units and near or below 1% for clusters.2 
The only exception was with separate units and combined 
reserves where normalized commitment error rose to 2.3%. 
The heterogeneity in generator characteristics results in 
relatively large (~1.25%) errors in CO2 emissions with full 
clustering. The CO2 errors are notably reduced with less 
aggregated clustering (next section) and longer model periods 
(not shown).  In capacity expansion applications, future 
hypothetical units would be more homogenous by technology, 
and these errors would likely be smaller. 
    1)  Cluster Comparison. Fig. 4 shows how most sub-
clustering schemes result in small errors (around or below 1%) 
with the exception of clustering by age, with larger errors (2.3-
4.5%) for all metrics except CO2 emissions. Clustering by  
 

                                                           
2 Unlike operational unit commitment where a 1% cost savings represents 

a major advance, here a few percent error is in line with other expected errors. 
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Fig. 4: Unit Commitment comparison of solver run times for different 

simplifications for ERCOT 2007. Note logarithmic time axis. The full 
problem with separate units was used as a baseline.  

 
Fig. 3: Unit Commitment comparison of key error metrics for ERCOT 

2007 The full problem with separate units was used as a baseline.  

efficiency resulted in the lowest errors among the 17-cluster 
runs, for all other metrics, often close to or slightly better than 
the larger clustering by plant formulation (90 units). 
    2)  Cluster Scaling. Fig. 5 shows how the total solver time 
is greatly reduced by clustering, enabling tractable 
computation of a full year, 8760 hour, optimal unit 
commitment for both 17 clusters (less than 3 hours) and 7 
clusters (130 seconds). The primary driver for these speed-ups 
is a drastic reduction in the numbers of variables and 
equations which both scale roughly proportionally to the 
number of clusters. 

 

Clustering Error Comparison (ERCOT 1week) 

 
Fig. 4: Error comparison for different clustering approaches for ERCOT 

2007. In all cases, the full problem with separate units was used as a baseline. 
All runs used a MIP gap of 0.1% and no cheat. 

VIII.  CONCLUSIONS  
In this paper, we demonstrated the tradeoff between accuracy 
and runtime resulting from different levels of aggregation for 
heterogeneous clusters and other heuristic simplifications in 
unit commitment. In comparison to traditional binary 
formulations, clustering provides orders of magnitude faster 
computation – from 10 to over 1000 times faster depending on 
the configuration – by grouping similar units into clusters and 
assigning an integer, rather than binary, commitment decision 
to the group. This assumption builds on the existing concept of 
aggregating identical units. Clustering  allows capturing full 
unit commitment constraints – including ramping, startup 
costs, minimum output levels, and minimum up and down 
times – at an individual unit level under the key assumption 
that all units with in a cluster are identical. Despite this 
assumption, we show that errors are small for a wide range of 
metrics. 

 
Fig. 5: Impact of clustering and model time horizon on solution time. Note 

both axes are logarithmic. All runs conducted with a 0.1% MIP gap and no 
cheat. Due to data limitations, constant heat rates are assumed. No other 
simplifications were used. 

A numeric example using an ERCOT-based 205-unit 
system shows that careful aggregation (17 clusters) introduces 
errors of 0.05-0.2% for total cost, CO2 emissions, energy mix, 
and dispatch schedule while providing several orders of 
magnitude faster solution times (400x) compared to traditional 
binary formulations. The unit commitment metric exhibits 
errors of around 0.9%. More aggressive aggregation (seven 
clusters) increases errors somewhat roughly double) but 
achieves further speedup (2000x). We also demonstrate a full 
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year (8760 hour) unit commitment for a 205-unit system in 
less than three minutes with personal computer hardware.  

We also compare other unit commitment simplifications – 
notably combining reserves and relaxing integer constraints 
for units with small minimum output levels – that can provide 
an additional order of magnitude speed-up for some problems. 
The clustering approach demonstrated here provides the 
ability to capture unit-level commitment decisions with 
intertemporal (hourly) constraints within a single optimization 
problem, which can be embedded within longer term 
operational and strategic analyses such as hydro-thermal 
coordination or capacity expansion under emissions or other 
policy constraints, especially when the long-term problem is 
stochastic.  The application of clustering to capacity expansion 
and other long-term strategic decisions are left for future 
research.  
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I.  APPENDIX 

A.  IEEE RTS Piecewise Linear Fuel Use 
Based on data provided by IEEE RTS 1996 [31] 
 

                seg1.slope  seg1.intercept   seg2.slope  seg2.intercept  seg3.slope  seg3.intercept   
*              [MMBTU/MWh]      [MMBTU]     [MMBTU/MWh]      [MMBTU]    [MMBTU/MWh]      [MMBTU] 
Oil_St_12MW        10.155        14.068          10.900         9.600        12.400        -4.800 
Oil_CT_20MW        10.023        79.632          12.395        41.684        14.400         1.980 
Coal_St_76MW        9.657       113.240          10.672        74.683        12.400       -30.400 
Oil_St_100MW        8.401       114.950           9.065        81.733         9.652        34.800 
Coal_St_155MW       8.386       155.068           8.713       124.620         9.128        73.160 
Oil_St_197MW        8.590       148.932           9.026        97.397         9.424        34.672 
Coal_St_350MW       8.640       218.400           9.067       121.333         9.500         0 
Nuke_400MW          8.899       385.200           9.078       349.333         9.320       272.000 
 

B.  ERCOT 2007 (Simplified) Unit Data 
Adapted from eGrid 2010 v1.1 [33] 

 
type Capacity fuel  heat rate  

Unit Name [code] [MW] [name] [MBTU/MWh] 
Arthur_Von_Rosenberg_Combined ng_cc 550 ng 7.499 
Barney_M_Davis_1 ng_st 352 ng 11.415 
Barney_M_Davis_2 ng_st 351 ng 11.415 
Bastrop_Combined ng_cc 727.8 ng 7.845 
Big_Brown_1 coal_lig_st 593.4 coal_lig 10.698 
Big_Brown_2 coal_lig_st 593.4 coal_lig 10.698 
Bosque_County_Peaking_GT_1 ng_gt 154 ng 7.639 
Bosque_County_Peaking_GT_2 ng_gt 154 ng 7.639 
Bosque_County_Peaking_Units3to5_Combined ng_cc 499 ng 7.639 
Brazoz_Valley_Generating_Facility_Combined ng_cc 675.6 ng 7.462 
Bryan_6 ng_st 54 ng 21.683 
Cedar_Bayou_1 ng_st 765 ng 10.729 
Cedar_Bayou_2 ng_st 765 ng 10.729 
Coleto_Creek_1 coal_sub_st 600.4 coal_sub 10.133 
Colorado_Bend_Energy_Center_Combined_1 ng_cc 278.1 ng 7.386 
Colorado_Bend_Energy_Center_Combined_2 ng_cc 278.1 ng 7.386 
Comanche_Peak_1 u235_st 1215 u235 10.400 
Comanche_Peak_2 u235_st 1215 u235 10.400 
Dansby_1 ng_st 105 ng 11.288 
Decker_Creek_1 ng_st 321 ng 11.002 
Decker_Creek_2 ng_st 405 ng 11.002 
Decker_Creek_GT1 ng_gt 51.5 ng 11.002 
Decker_Creek_GT2 ng_gt 51.5 ng 11.002 
Decker_Creek_GT3 ng_gt 51.5 ng 11.002 
Decker_Creek_GT4 ng_gt 51.5 ng 11.002 
DeCordova_Steam_Electric_Station_1 ng_st 799.2 ng 12.147 
DeCordova_Steam_Electric_Station_CT1 ng_gt 89.4 ng 12.147 
DeCordova_Steam_Electric_Station_CT2 ng_gt 89.4 ng 12.147 
DeCordova_Steam_Electric_Station_CT3 ng_gt 89.4 ng 12.147 
DeCordova_Steam_Electric_Station_CT4 ng_gt 89.4 ng 12.147 
Ennis_Power_Company_Combined ng_cc 418 ng 7.361 
Exelon_LaPorte_Generating_Station_GT1 ng_gt 59 ng 12.676 
Exelon_LaPorte_Generating_Station_GT2 ng_gt 59 ng 12.676 
Exelon_LaPorte_Generating_Station_GT3 ng_gt 59 ng 12.676 
Exelon_LaPorte_Generating_Station_GT4 ng_gt 59 ng 12.676 
Fayette_Power_Project_1 coal_sub_st 615 coal_sub 10.679 
Fayette_Power_Project_2 coal_sub_st 615 coal_sub 10.679 
Fayette_Power_Project_3 coal_sub_st 460 coal_sub 10.679 
Forney_Energy_Center_Combined_1 ng_cc 891.9 ng 7.351 
Forney_Energy_Center_Combined_2 ng_cc 891.9 ng 7.351 
Freestone_Power_Generation_LP_Combined_1 ng_cc 518 ng 7.522 
Freestone_Power_Generation_LP_Combined_2 ng_cc 518 ng 7.522 
Frontera_Energy_Center_Combined ng_cc 529 ng 7.535 

                                                           
This work was supported in part by the U.S. National Science Foundation under Grants 1128147 and 0835414. 
B. S. Palmintier (e-mail: b_p@mit.edu) and M. D. Webster (e-mail: mort@mit.edu) are with the Engineering Systems Division, Massachusetts Institute of 

Technology, Cambridge, MA 02139 USA. 
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Gibbons_Creek_1 coal_sub_st 453.5 coal_sub 9.977 
Graham_1 ng_st 247.7 ng 11.947 
Graham_2 ng_st 387 ng 11.947 
Greens_Bayou_5 ng_st 446.4 ng 14.681 
Greens_Bayou_73 ng_gt 72 ng 14.681 
Greens_Bayou_74 ng_gt 72 ng 14.681 
Greens_Bayou_81 ng_gt 72 ng 14.681 
Greens_Bayou_82 ng_gt 72 ng 14.681 
Greens_Bayou_83 ng_gt 72 ng 14.681 
Greens_Bayou_84 ng_gt 72 ng 14.681 
Guadalupe_Generating_Station_Combined_1 ng_cc 571.1 ng 7.423 
Guadalupe_Generating_Station_Combined_2 ng_cc 571.1 ng 7.423 
Handley_2 ng_st 74.8 ng 13.823 
Handley_3 ng_st 404.8 ng 13.823 
Handley_4 ng_st 455 ng 13.823 
Handley_5 ng_st 455 ng 13.823 
Hays_Energy_Project_U1 ng_cc 241.7 ng 7.158 
Hays_Energy_Project_U2 ng_cc 241.7 ng 7.158 
Hays_Energy_Project_U3 ng_cc 252.8 ng 7.158 
Hays_Energy_Project_U4 ng_cc 252.8 ng 7.158 
Hidalgo_Energy_Center_Combined ng_cc 551.3 ng 7.219 
J_K_Spruce_1 coal_sub_st 566 coal_sub 10.822 
J_K_Spruce_2 coal_sub_st 820 coal_sub 10.822 
J_T_Deely_1 coal_sub_st 486 coal_sub 14.073 
J_T_Deely_2 coal_sub_st 446 coal_sub 14.073 
Jack_County_Combined ng_cc 640 ng 7.284 
Kiamichi_Energy_Facility_Combined_1 ng_cc 685 ng 7.397 
Kiamichi_Energy_Facility_Combined_2 ng_cc 685 ng 7.397 
Lake_Creek_ST1 ng_st 79.6 ng 14.369 
Lake_Creek_ST2 ng_st 236 ng 14.369 
Lake_Hubbard_1 ng_st 396.5 ng 12.159 
Lake_Hubbard_2 ng_st 531 ng 12.159 
Lamar_Power_Project_Combined_1 ng_cc 545.4 ng 7.768 
Lamar_Power_Project_Combined_2 ng_cc 545.4 ng 7.768 
Laredo_3 ng_st 115.2 ng 11.592 
Leon_Creek_3 ng_st 75 ng 11.834 
Leon_Creek_4 ng_st 113.7 ng 11.834 
Leon_Creek_CGT1 ng_gt 57.4 ng 11.834 
Leon_Creek_CGT2 ng_gt 57.4 ng 11.834 
Leon_Creek_CGT3 ng_gt 57.4 ng 11.834 
Leon_Creek_CGT4 ng_gt 57.4 ng 11.834 
Limestone_1 coal_lig_st 893 coal_lig 9.612 
Limestone_2 coal_lig_st 956.8 coal_lig 9.612 
Lost_Pines_1_Power_Project_Combined ng_cc 595 ng 7.217 
Magic_Valley_Generating_Station_Combined ng_cc 801 ng 7.275 
Martin_Lake_1 coal_lig_st 793.2 coal_lig 11.090 
Martin_Lake_2 coal_lig_st 793.2 coal_lig 11.090 
Martin_Lake_3 coal_lig_st 793.2 coal_lig 11.090 
Midlothian_Energy_Facility_STK1 ng_cc 289 ng 7.460 
Midlothian_Energy_Facility_STK2 ng_cc 289 ng 7.460 
Midlothian_Energy_Facility_STK3 ng_cc 289 ng 7.460 
Midlothian_Energy_Facility_STK4 ng_cc 289 ng 7.460 
Midlothian_Energy_Facility_STK5 ng_cc 289 ng 7.460 
Midlothian_Energy_Facility_STK6 ng_cc 289 ng 7.460 
Monticello_1 coal_lig_st 593.4 coal_lig 10.916 
Monticello_2 coal_lig_st 593.4 coal_lig 10.916 
Monticello_3 coal_lig_st 793.2 coal_lig 10.916 
Morgan_Creek_5 ng_st 170.4 ng 13.844 
Morgan_Creek_6 ng_st 517.5 ng 13.844 
Morgan_Creek_CT1 ng_gt 89.4 ng 13.844 
Morgan_Creek_CT2 ng_gt 89.4 ng 13.844 
Morgan_Creek_CT3 ng_gt 89.4 ng 13.844 
Morgan_Creek_CT4 ng_gt 89.4 ng 13.844 
Morgan_Creek_CT5 ng_gt 89.4 ng 13.844 
Morgan_Creek_CT6 ng_gt 89.4 ng 13.844 
Mountain_Creek_3 ng_st 74.9 ng 12.481 
Mountain_Creek_6 ng_st 135.7 ng 12.481 
Mountain_Creek_7 ng_st 136 ng 12.481 
Mountain_Creek_8 ng_st 580.5 ng 12.481 
Newgulf_Cogen_GEN1 ng_gt 78.7 ng 13.784 
North_Lake_1 ng_st 176.8 ng 11.651 
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North_Lake_2 ng_st 170.4 ng 11.651 
North_Lake_3 ng_st 361.3 ng 11.651 
O_W_Sommers_1 ng_st 446 ng 12.109 
O_W_Sommers_2 ng_st 446 ng 12.109 
Odessa_Ector_Generating_Station_Combined_1 ng_cc 567.6 ng 7.604 
Odessa_Ector_Generating_Station_Combined_2 ng_cc 567.6 ng 7.604 
Oklaunion_1 coal_sub_st 720 coal_sub 10.582 
P_H_Robinson_1 ng_st 484.5 ng 13.008 
P_H_Robinson_2 ng_st 484.5 ng 13.008 
P_H_Robinson_3 ng_st 580.5 ng 13.008 
P_H_Robinson_4 ng_st 765 ng 13.008 
Permian_Basin_5 ng_st 114.9 ng 13.750 
Permian_Basin_6 ng_st 535.5 ng 13.750 
Permian_Basin_CT1 ng_gt 89.4 ng 13.750 
Permian_Basin_CT2 ng_gt 89.4 ng 13.750 
Permian_Basin_CT3 ng_gt 89.4 ng 13.750 
Permian_Basin_CT4 ng_gt 89.4 ng 13.750 
Permian_Basin_CT5 ng_gt 89.4 ng 13.750 
Quail_Run_Energy_Center_Combined_1 ng_cc 298 ng 8.540 
Quail_Run_Energy_Center_Combined_2 ng_cc 275 ng 8.540 
R_W_Miller_1 ng_st 66 ng 12.666 
R_W_Miller_2 ng_st 100 ng 12.666 
R_W_Miller_3 ng_st 200 ng 12.666 
R_W_Miller_4 ng_gt 118.8 ng 12.666 
R_W_Miller_5 ng_gt 118.8 ng 12.666 
Ray_Olinger_1 ng_st 75 ng 12.326 
Ray_Olinger_2 ng_st 113.4 ng 12.326 
Ray_Olinger_3 ng_st 156.6 ng 12.326 
Ray_Olinger_4 ng_gt 82.7 ng 12.326 
Rio_Nogales_Power_Project_Combined ng_cc 898.2 ng 7.298 
Sam_Bertron_3 ng_st 225.3 ng 11.572 
Sam_Bertron_4 ng_st 225.3 ng 11.572 
Sam_Bertron_ST1 ng_st 187.8 ng 11.572 
Sam_Bertron_ST2 ng_st 187.8 ng 11.572 
Sam_Rayburn_Units7to10_Combined ng_cc 189.6 ng 9.147 
San_Jacinto_Steam_Electric_Station_1 ng_gt 88.2 ng 13.516 
San_Jacinto_Steam_Electric_Station_2 ng_gt 88.2 ng 13.516 
San_Miguel_1 coal_lig_st 410 coal_lig 12.148 
Sand_Hill_5Combined ng_cc 388 ng 7.328 
Sand_Hill_SH1 ng_gt 51.4 ng 7.328 
Sand_Hill_SH2 ng_gt 51.4 ng 7.328 
Sand_Hill_SH3 ng_gt 51.4 ng 7.328 
Sand_Hill_SH4 ng_gt 51.4 ng 7.328 
Sandow_No_4_4 coal_lig_st 590.6 coal_lig 11.163 
Silas_Ray_10 ng_gt 61 ng 11.083 
Silas_Ray_Units6and9_Combined ng_cc 86 ng 11.083 
Sim_Gideon_1 ng_st 144 ng 11.456 
Sim_Gideon_2 ng_st 144 ng 11.456 
Sim_Gideon_3 ng_st 351 ng 11.456 
South_Texas_Project_1 u235_st 1354.3 u235 10.400 
South_Texas_Project_2 u235_st 1354.3 u235 10.400 
Spencer_4 ng_st 61.1 ng 16.622 
Spencer_5 ng_st 65.4 ng 16.622 
Stryker_Creek_ST1 ng_st 176.8 ng 11.375 
Stryker_Creek_ST2 ng_st 526.6 ng 11.375 
T_H_Wharton_3Combined ng_cc 318.3 ng 9.529 
T_H_Wharton_4Combined ng_cc 329.1 ng 9.529 
T_H_Wharton_51 ng_gt 85 ng 9.529 
T_H_Wharton_52 ng_gt 85 ng 9.529 
T_H_Wharton_53 ng_gt 85 ng 9.529 
T_H_Wharton_54 ng_gt 85 ng 9.529 
T_H_Wharton_55 ng_gt 85 ng 9.529 
T_H_Wharton_56 ng_gt 85 ng 9.529 
Tenaska_Frontier_Generation_Station_Combined ng_cc 939.7 ng 6.901 
Tenaska_Gateway_Generation_Station_Combined ng_cc 939.6 ng 7.475 
Thomas_C_Ferguson_1 ng_st 446 ng 10.994 
Tradinghouse_1 ng_st 580.5 ng 11.838 
Tradinghouse_2 ng_st 799.2 ng 11.838 
Trinidad_6 ng_st 239.3 ng 13.508 
Twin_Oaks_Power_One_1 coal_lig_st 174.6 coal_lig 10.860 
Twin_Oaks_Power_One_2 coal_lig_st 174.6 coal_lig 10.860 
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V_H_Braunig_1 ng_st 225 ng 11.161 
V_H_Braunig_2 ng_st 252 ng 11.161 
V_H_Braunig_3 ng_st 417 ng 11.161 
Valley_1 ng_st 198.9 ng 13.664 
Valley_2 ng_st 580.5 ng 13.664 
Valley_3 ng_st 396 ng 13.664 
W_A_Parish_1 ng_st 187.8 ng 10.382 
W_A_Parish_2 ng_st 187.8 ng 10.382 
W_A_Parish_3 ng_st 299.2 ng 10.382 
W_A_Parish_4 ng_st 580.5 ng 10.382 
W_A_Parish_5 coal_sub_st 734.1 coal_sub 10.382 
W_A_Parish_6 coal_sub_st 734.1 coal_sub 10.382 
W_A_Parish_7 coal_sub_st 614.6 coal_sub 10.382 
W_A_Parish_8 coal_sub_st 614.6 coal_sub 10.382 
W_B_Tuttle_1 ng_st 75 ng 17.474 
W_B_Tuttle_3 ng_st 113.6 ng 17.474 
W_B_Tuttle_4 ng_st 191.7 ng 17.474 
Wind wind 3710.5 wind 1.000 
Wise_County_Power_LP_Combined ng_cc 746 ng 7.609 
Wolf_Hollow_I_LP_Combined ng_cc 809.6 ng 7.882 
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C.  ERCOT 2007 Clustering Parameters 

 
D.  ERCOT Clusters 
    1)  Cluster by Type only 

cluster_name # units 
weighted aver-
age heat rate 

Average Capac-
ity (MW) 

Total Capaci-
ty (MW) 

coal_lig_st 14 10.730 624.71 8745.94 
coal_sub_st 14 10.897 605.66 8479.24 
ng_cc 46 7.551 500.89 23040.94 
ng_gt 52 11.969 78.93 4104.36 
ng_st 74 12.340 309.34 22891.16 
u235_st 4 10.400 1284.65 5138.60 
wind 1 1.000 3710.50 3710.50 

 
    2)  Cluster by Age 

 

cluster_name # units 
weighted aver-
age heat rate 

Average Capac-
ity (MW) 

Total Capaci-
ty (MW) 

coal_lig_st_old 3 10.770 593.40 1780.20 
coal_lig_st_midAge 7 11.139 680.97 4766.79 
coal_lig_st_new 4 9.810 549.75 2199.00 
coal_sub_st_old 5 11.584 603.04 3015.20 
coal_sub_st_midAge 5 10.330 579.62 2898.10 
coal_sub_st_new 4 10.729 641.50 2566.00 
ng_cc_old 3 9.711 244.47 733.41 
ng_cc_midAge 38 7.459 540.48 20538.24 
ng_cc_new 5 7.723 353.84 1769.20 
ng_gt_old 12 11.891 78.50 942.00 
ng_gt_midAge 24 13.071 84.99 2039.76 
ng_gt_new 16 10.031 70.18 1122.88 
ng_st_old 18 12.347 145.34 2616.12 
ng_st_midAge 27 12.624 303.53 8195.31 
ng_st_new 29 12.146 416.55 12079.95 
u235_st 4 10.400 1284.65 5138.60 
wind 1 1.000 3710.50 3710.50 
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    3)  Cluster by Size 

 

cluster_name # units 

weighted av-
erage heat 

rate 
Average Ca-
pacity (MW) 

Total Ca-
pacity 
(MW) 

coal_lig_st_small 3 11.556 253.07 759.21 
coal_lig_st_med 5 10.878 592.84 2964.20 
coal_lig_st_large 6 10.518 837.10 5022.60 
coal_sub_st_small 4 12.221 461.38 1845.52 
coal_sub_st_med 6 10.510 604.27 3625.62 
coal_sub_st_large 4 10.550 752.05 3008.20 
ng_cc_small 16 7.681 257.99 4127.84 
ng_cc_med 17 7.651 504.82 8581.94 
ng_cc_large 13 7.415 794.72 10331.36 
ng_gt_small 23 12.042 59.57 1370.11 
ng_gt_med 25 12.456 87.55 2188.75 
ng_gt_large 4 9.828 136.40 545.60 
ng_st_small 21 13.323 96.97 2036.37 
ng_st_med 20 12.171 207.13 4142.60 
ng_st_large 33 12.262 506.44 16712.52 
u235_st 4 10.400 1284.65 5138.60 
wind 1 1.000 3710.50 3710.50 

 
    4)  Cluster by Efficiency (Heat rate) 
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cluster_name # units 

weighted av-
erage heat 

rate 
Average Ca-
pacity (MW) 

Total Ca-
pacity 
(MW) 

coal_lig_st_hiEff 2 9.612 924.90 1849.80 
coal_lig_st_avgEff 11 10.959 589.65 6486.15 
coal_lig_st_loEff 1 12.148 410.00 410.00 
coal_sub_st_hiEff 2 10.066 526.95 1053.90 
coal_sub_st_avgEff 10 10.575 649.34 6493.40 
coal_sub_st_loEff 2 14.073 466.00 932.00 
ng_cc_hiEff 29 7.331 516.26 14971.54 
ng_cc_avgEff 13 7.746 549.72 7146.36 
ng_cc_loEff 4 9.595 230.75 923.00 
ng_gt_hiEff 12 8.518 85.30 1023.60 
ng_gt_avgEff 20 12.069 70.53 1410.60 
ng_gt_loEff 20 13.998 83.53 1670.60 
ng_st_hiEff 20 10.976 350.09 7001.80 
ng_st_avgEff 29 12.028 279.65 8109.85 
ng_st_loEff 25 13.892 311.20 7780.00 
u235_st 4 10.400 1284.65 5138.60 
wind 1 1.000 3710.50 3710.50 

 

E.  Assumed ERCOT Unit Technical Constraints 
Based on Northwest Power Plan v6 [34] 

type c_var_om c_fix_om ramp_max unit_min_pu fuel_start c_start_fix max_start quick_start reg_up reg_down spin_rsv min_up min_down 
[code] [$/MWh] [$/MW-yr] [p.u./hr] [fract of max] [MBTU/start] [$/start] [start/yr] [p.u.] [p.u.] [p.u.] [p.u.] [hr] [hr] 

coal_lig_st 2.75 60000 0.3 0.50 2602.36 3580.95 50 0 0.006 0.006 0.05 24 12 
coal_sub_st 2.75 60000 0.3 0.50 2602.36 3580.95 50 0 0.006 0.006 0.05 24 12 

ng_cc 1.7 14000 1 0.30 589.47 9250.91 300 0 0.02 0.02 0.17 6 12 
ng_gt 1 11000 6 0.10 187.72 7811.23 Inf 1 0.12 0.12 1 0 0 
ng_st 1.7 14000 1 0.70 1172.48 1971.16 50 0 0.02 0.02 0.17 12 12 

u235_st 1 90000 0.1 0.80 0 100000 1 0 0 0 0 0 24 
wind 2 40000 1 0.00 0 0 Inf 0 0 0 0 0 0 
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F.  Full IEEE RTS MIP Heuristics Results Table 
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G.  IEEE RTS Unit Commitment Simplifications Results 
 

 
H.  ERCOT 2007 Unit Commitment Simplifications Results 
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I.  ERCOT 2007 Cluster Comparison 

 
J.  ERCOT Scaling Comparison 
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