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Abstract 

Although anxiety disorders represent a major societal problem demanding new 

therapeutic targets, these efforts have languished in the absence of a mechanistic 

understanding of this subjective emotional state.  While it is impossible to know with absolute 

certainty the subjective experience of a rodent, rodent models hold promise in dissecting well-

conserved limbic circuits.  The application of modern approaches in neuroscience has already 

begun to unmask the neural circuit intricacies underlying anxiety by allowing direct examination 

of hypotheses drawn from existing psychological concepts.  This information points toward an 

updated conceptual model for what neural circuit perturbations could give rise to pathological 

anxiety, and thereby provides a roadmap for future therapeutic development. 

 
  



	 3	

Introduction 

 In health, the neural systems that underpin emotion dynamically integrate internal states 

and external stimuli to enable the rapid selection of situationally appropriate behaviors.  The 

function of highly reciprocal limbic circuits is to integrate the barrage of signals received by an 

individual, including motivational drives1, environmental context, and learned associations 

based upon past events, and to consolidate them into a singular gestalt experience which is 

emotional in quality and directs the behavioral response. 

 That emotions invigorate behaviors which aid in survival is an idea with a long history.  In 

The Expression of the Emotions in Man and Animals, Darwin conjectured that emotions evolved 

as a result of natural selection2, and consistent with this evolutionary provenance, emotional 

behaviors can be observed across species.  Whether animals experience emotions as humans 

do is a matter of controversy3,4; however, as Anderson and Adolphs argue in their 2014 review, 

“primitive emotion states are expressed by externally observable behaviors” across species, 

allowing the objective study of these states and the neural systems that drive them in model 

organisms5.  

 Here, we review the current state of our field and postulate that anxiety disorders arise 

from disruptions within the highly interconnected circuits normally serving to process the stream 

of stimuli detected by our brains from the outside world.  We propose that information 

processing within distributed, interlinked nodes results in the assignment of emotional value to 

environmental stimuli, operationalized here as “interpretation,” as well as the weighting of 

potential threats against previously learned associations and competing motivational needs, 

referred to here as “evaluation.”  Moreover, we suggest that computations within corticolimbic 

circuits resulting in the interpretation of environmental threat subsequently drive an observable 

anxiety-like response.  Finally, we posit that perturbations anywhere within these circuits 

disrupts balance within the entire system, resulting in a fundamental misinterpretation of neutral 

sensory information as threatening, and leading to inappropriate emotional – and thereby 

behavioral – responses seen in anxiety disorders as well as other psychiatric disease states.   
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Anxiety Disorders: Too Much of a Normal Thing 

 Anxiety represents a state of high arousal and negative valence6, and results in 

enhanced vigilance in the absence of an immediate threat7.  Occasional anxiety is a normal 

aspect of the emotional repertoire, and aids survival by increasing awareness and enabling 

rapid responses to possible hazards.  Anxiety is characterized by subjective experiences such 

as tension and worried thoughts, as well as physiological changes including sweating, 

dizziness, and increases in blood pressure and heart rate.  This emotional state can be 

triggered by stimuli that do not pose immediate danger, or can be internally generated. By 

contrast, the related emotional state of fear occurs acutely in response to a real or perceived 

imminent threat, and dissipates rapidly upon removal of the eliciting stimulus7.  

Although healthy individuals experience sporadic bouts of anxiety, anxiety that is 

persistent, disruptive, or disproportionate to actual danger can be debilitating and is considered 

pathological.  The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) 

divides pathological anxiety into three main categories of disorders, including obsessive –

compulsive and related disorders, trauma- and stressor-related disorders, and anxiety 

disorders8.  The precipitating stimuli differ among these diagnoses, however in all cases, the 

somatic, cognitive, and behavioral manifestations of anxiety interfere with normal functioning 

and lead to substantial economic and personal burdens9–11.   

The prevalence of anxiety disorders is estimated to be 18% among adults12 with a 

lifetime prevalence of more than 28%13 (see call-out box, below), however a considerable 

portion of pathologically anxious individuals do not receive adequate treatment14.  Despite the 

pervasiveness of anxiety disorders, relatively few novel therapeutic targets have been identified 

for the treatment of anxiety (for review of pharmacotherapeutic strategies for the treatment of 

anxiety, see15–17).  Since the 1950s, new molecular entities approved by the FDA with primary 

indications for anxiety have been limited to benzodiazepines (BZDs) and the atypical anxiolytics 

buspirone, meprobamate, and hydroxyzine pamoate18.  More recently, the label indications for 

antidepressants such as certain tricyclic antidepressants, selective serotonin reuptake inhibitors 

(SSRIs), and serotonin norepinephrine reuptake inhibitors (SNRIs) have been extended by the 

FDA to include anxiety19.  Despite these additions, the therapeutic arsenal for anxiety disorders 

remains inadequate; the available drugs do not successfully relieve anxiety in all patients, and 

unwanted side effects reduce compliance among those for whom they do.  By comparison, 

novel drug development for the treatment of hypertension has remained steady over the same 

time period18 (Figure 1). 
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In order to improve treatment strategies for anxiety, a thorough understanding of the 

neural circuits governing this emotional state in health and disorder is needed20.   

 

Measuring Anxiety-Related Behaviors in Rodents 

For a truly mechanistic understanding of the neural underpinnings of anxiety, the ability 

to manipulate specific circuit components is required, demanding the use of next-generation 

technologies in model organisms21.  In order to provide useful insights about the 

pathophysiology of anxiety disorders, measurements of anxiety-like behaviors in animals must 

meet the essential criterion of validity (see call-out box)22,23.  Despite the inherent challenges of 

using model organisms to study the neural substrates of anxiety disorders, a diverse array of 

strategies for assessing externally observable anxiety-related phenotypes in animals has been 

developed5. 

Rodents are well suited to this purpose and have historically been used in basic 

research and drug development to model fear learning, stress, and anxiety.  In this review, we 

focus on discussion of “state” anxiety, defined as a behavioral state of enhanced arousal and 

vigilance in response to uncertain situations24.  This classification refers to anxiety evoked by 

potentially hazardous situations25, rather than the pathological “trait” anxiety of the clinical 

literature, wherein anxiety is a persistent, non-adaptive attribute, which leads individuals to 

overestimate potential dangers in conditions of ambiguity24.  This contrast notwithstanding, the 

neural systems implicated in anxiety by rodent studies are consistent with those identified in 

human patients26–34, underscoring the utility and translatability of these rodent studies.  Tests of 

fear and anxiety in rodents have been reviewed extensively elsewhere22,23,25, however we offer 

here a brief description of commonly used strategies for measuring anxiety-like behaviors in 

mice (summarized in Figure 2). 

The majority of anxiety assays adapted for mice are ethologically based.  These tasks 

capitalize upon the innate, conflicting drives of rodents to explore novel spaces and to avoid 

open, exposed, and brightly illuminated areas where they might be more vulnerable to 

environmental threats.  Generally in these approach-avoidance conflict tasks, mice with an 

anxious phenotype tend to spend more time in enclosed or “safe” zones of the behavioral 

apparatus than controls.  In the elevated plus maze (EPM), anxious mice avoid the open arms 

of the maze in favor of the walled arms35.  The ambiguous center of the EPM is eliminated in the 

elevated zero-maze, however the task resembles the EPM otherwise in that anxious mice prefer 

the walled quadrants to the open ones36.  In the open field test (OFT), anxious animals remain 

along the edges of the enclosure37, whereas in the light-dark box, anxiety-related behavior is 
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measured as a propensity to remain in the darkened portion of the chamber38.  Other less 

commonly used ethological tests include the staircase task39, in which anxious mice tend to rear 

more and climb fewer steps, the elevated alley40, in which mice must traverse a partially 

illuminated rod, and the hole board41, in which animals can forage in holes along the floor of the 

otherwise exposed apparatus.  

These approach-avoidance assays are appealing for a number of reasons.  They have a 

high degree of face validity, in that most of the anxiety disorders include a component of 

avoidance of a potentially hazardous stimulus.  Furthermore, anxiety-like behaviors in these 

tasks are reduced by anxiolytic drugs, particularly BZDs42.  Finally, limited training is required for 

animals to perform them, rendering this group of anxiety assays high throughput.  An important 

caveat of these tasks, however, is that they are sensitive to overall changes in locomotion, so 

the use of control tests for motor deficits is necessary when employing these measures to 

assess anxiety-like behavior. 

A further confound of exploration-based tasks is that they cannot distinguish a reduced 

anxiety phenotype from increased novelty-seeking, exploration, or impulsive approach 

behavior23.  A number of alternative tasks for assessing anxiety-related behaviors in mice avoid 

this drawback; for instance, in active-avoidance tasks, mice direct their energies toward 

minimizing threatening stimuli.  Rodents will bury an electrified probe following conditioning in 

which they receive shocks from the probe43, and will even spontaneously bury novel marbles 

introduced into their home cages44.  This burying behavior is quantifiable and sensitive to 

anxiolytics45,46.  Hyponeophagia (novelty suppressed feeding) has also been used to assess 

anxiety-like behavior in rodents; in a novel environment, hungry mice exhibit an increased 

latency to feed that is sensitive to BZDs and SSRIs47,48.   

Anxiety phenotypes are also assessed using measures based upon rodent social 

interactions.  Rodents produce and detect ultrasonic vocalizations (USVs) as a means of 

communication, and the frequency of these vocalizations varies relative to the apparent 

emotional state of the animal49.  When removed from their mothers, pups emit USVs in the 

frequency range associated with fear and anxiety-like responses, and such stress-induced 

vocalizations are reduced by anxiolytics50.  In the social interaction task, social contacts 

between unfamiliar individuals in a brightly illuminated arena are quantified; anxiolytics have 

been found to increase social interaction in this task51. 

Complementary to the behavioral assays, physiological measures of vital signs and 

circulating levels of stress hormones provide an additional indicator of anxiety-like phenotypes 

in mice.  Although these types of measures are more commonly collected in order to quantify 
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stress, their use in the assessment of anxiety in rodents has its basis in the strong somatic 

components of clinical anxiety8.  Moreover, a thorough understanding of the neural circuits 

underlying anxiety must include a consideration of its somatic symptoms, as changes in heart 

rate, respiration, and glucocorticoid levels require the activation of distinct pathways from those 

that drive anxiety-like behaviors31,52.  Similarly, paradigms traditionally used to study fear, such 

as auditory fear conditioning – in which auditory cues (conditioned stimuli, CS) predict delivery 

of footshocks (unconditioned stimuli, US) – and the innate acoustic startle response to 

unexpected bursts of high decibel noise, are often used to interrogate anxiety circuits and to 

draw inferences about how fear learning may be disrupted in anxiety disorders53. 

Recent technological advances have been instrumental in advancing our understanding 

of the neural substrates of anxiety measured in these behavioral assays.  For example, the use 

of optogenetics to manipulate behaviors within these behavioral paradigms has been central in 

establishing causal relationships between the activity of neural circuits and anxiety.  Such 

nascent strategies have catapulted preclinical neuroscience research into a new era of circuit-

level investigations.  We focus here upon insights gained as a result of this circuit-level 

approach, which is rapidly becoming the mainstay of the current era of neuroscience research. 

 

Neural Pathways of Fear and Anxiety 

   For more than a century following the original discovery that temporal lobe structures 

govern emotional behaviors54, our understanding of the neural substrates of anxiety was largely 

restricted to insights gleaned through lesion and inactivation studies.  While this early work 

importantly led to the identification of key loci controlling anxiety, notably including the 

amygdala, the bed nucleus of the stria terminals (BNST), the ventral hippocampus (vHPC), and 

the prefrontal cortex (PFC), progress in dissecting the contribution of regional microcircuits to 

this emotional state was limited.  Moreover, the impact of changes within individual structures 

upon activity in distal projection targets, or how such changes may functionally result in anxiety, 

remained elusive.  Novel approaches in animal research, especially targeted manipulations of 

neurons based on projection target or genetic identity via optogenetics, have opened these 

questions for causal testing and accelerated the pace of discovery.  The resulting paradigm shift 

in anxiety research has expanded the focus to broader circuit-level interactions in emotional 

processing, such that it is now clear that anxiety requires the recruitment of a distributed array of 

interlinked neural circuits.  Here, we discuss the contribution of individual nodes in the context of 

larger circuit relationships that have been unveiled as a result of recent technological advances, 

and reconcile region-specific studies of anxiety into a broader circuit-level network. 
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Interpreting Threats on the Macrocircuit Level  

 To assess a situation as threatening and render an anxiety-like response, an individual 

must first detect environmental stimuli through the sensory systems and then identify them as 

aversive or potentially dangerous.  Coordinated activity within the amygdala, BNST, vHPC, and 

PFC enables such interpretation of threat in the environment.  These structures are highly 

interconnected, with multiple reciprocal projections facilitating macrocircuit-level interactions, 

which subsequently initiate vigilance and defensive behaviors through the recruitment of 

brainstem and hypothalamic nuclei.  In this macrocircuit, sensory information regarding potential 

threats flows along circular loops in which it is transmitted both forward (from the amygdala 

onward to the BNST, vHPC, and mPFC, and consequently to downstream effector nuclei) and 

backward (from the mPFC and vHPC back to the amygdala and BNST).  Threats are detected 

and interpreted as worthy of enhanced vigilance in the former, and this initial interpretation is 

evaluated in the latter. 

A major determinant of whether environmental stimuli are interpreted as threatening 

occurs within the amygdala, wherein sensory stimuli are imbued with emotional value.  As the 

major input nucleus in the amygdala, the BLA (containing the lateral (LA), basal (BA), and 

basomedial (BM) sections) receives excitatory afferents regarding sensory stimuli from the 

thalamus and sensory cortices55.  Processing of this sensory information within the BLA results 

in the formation of associations between neutral predictive stimuli and outcomes of positive or 

negative valence56 via Hebbian mechanisms57–59.  In this way, cues predicting threat are 

themselves recognized as threatening60, and likewise, those predicting reward themselves 

become rewarding61,62.   

The emotional valence of these cues then determines whether canonical fear or reward 

pathways are recruited downstream of the BLA63; in fear or anxiety provoking circumstances, 

projections from the BLA targeting the central amygdala (CeA, containing the lateral (CeL) and 

medial (CeM) subdivisions)53,64 and the BNST31,65 are activated.  The activity of BLA neurons is 

not exclusively shaped by sensory input, however; principal neurons and interneurons in the 

BLA have been shown to receive monosynaptic input from mPFC and vHPC, and send 

reciprocal projections to both of these regions66–68.  Activity within these pathways can both 

directly invigorate the anxiety response (e.g., through projections of the vHPC to the lateral 

septum and hypothalamic nuclei; see below), as well as influence the likelihood of a threat 
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appraisal (e.g., through fear memory retrieval via mPFC projections to the amygdala; see below, 

and69).  

 

Microcircuits and Interactions among Nodes 

Within this larger macrocircuit, individual nodes process information via local pathways.  

The advent of optogenetics is allowing in-depth interrogation of these microcircuits, to enhance 

our understanding of the mechanisms whereby genetically- or projection target- defined 

populations of cells shape the processing within and among the amygdala, BNST, vHPC, and 

mPFC.    

These modern technologies have enabled detailed elaboration upon the canonical 

amygdala microcircuit mediating fear learning.  Briefly, activation of LA neurons induces 

unconditioned freezing70. These cells develop robust responses to shock-predictive cues, 

corresponding to freezing behavior when the cues are presented71. The presence of an 

unambiguous threat such as footshock results in rapid fear responses by engaging microcircuits 

within the CeA.  Within this circuit, glutamatergic signals from the BLA are conducted onward to 

the CeL, where they impinge upon two populations of mutually inhibitory GABAergic neurons, 

the protein kinase C delta (PKCδ)-negative/CeLON cells and the PKCδ-positive/CeLOFF cells72,73.  

Inhibition of the latter population by the former results in the disinhibition of CeM output neurons, 

consequently driving freezing behavior and changes in heart rate via CeM projections to the 

periaqueductal gray (PAG) and dorsal vagal complex (DVC), respectively52 (Figure 3).  

Consistent with the apparent role of PKCδ-positive neurons in gating fear responses, direct 

activation of these cells produces an anxiolytic effect on the EPM, OFT and light-dark box74.  

Activation of somatostatin (SOM) positive CeL neurons by the LA75 and paraventricular nucleus 

of the thalamus (PVT)76,77 has also been shown to drive fear learning through an overall 

increase in inhibition within the CeL.  Furthermore, a population of cells within the BLA 

projecting directly to the CeM shows evidence of potentiation following fear conditioning, and 

photoinhibition of these neurons inhibits the acquisition of the fear association63.  For more 

detailed consideration of the microcircuits driving fear learning, see53,78. 

In the absence of immediate threat, anxiety-like behaviors can arise from recruitment of 

these same amygdala pathways.  For instance, activity within certain populations of BLA 

neurons promotes anxiety phenotypes in ethological assays.  Tonic activity in a subset of BLA 

neurons has been shown to track with anxiety-like behavior in the EPM and OFT79.   Moreover, 

photoactivation of BLA somata increases measures of innate anxiety33 as well as learned 

inhibitory avoidance80.  Targeted photostimulation of BLA inputs to CeL, by contrast, is 
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anxiolytic, presumably via enhanced inhibition over CeM projection neurons33.  This work 

demonstrates the importance of projection-defined interrogation of these circuits, as individual 

projection neurons within the same region can enact opposing behavioral effects depending on 

their efferent targets.   

Initiation of fear and sustained anxiety responses requires the recruitment of the BNST7, 

which occurs partly as a result of direct innervation by BLA afferents, as well as through dense 

glutamatergic input from the HPC81,82, the mPFC, the entorhinal cortex, and insular cortex55,83.  

Some redundancy of amygdala and BNST function ensures that fear learning remains intact in 

the face of localized damage or dysfunction.  For example, in the absence of a functional BLA, 

the BNST acts as a compensatory site in the acquisition of fear memories, although this BLA-

independent fear learning requires additional training84.  Moreover, individual subregions of the 

BNST have been shown to differentially regulate separable features of the anxiety 

phenotype31,85 (Figure 3).  BLA inputs to the anterodorsal BNST (adBNST) promote behavioral 

and physiological anxiolysis, however local inhibition of adBNST by the oval nucleus of the 

BNST (ovBNST) is anxiogenic31.  These effects upon the innate anxiety state are mediated via 

adBNST projections to the ventral tegmental area (VTA), lateral hypothalamus (LH), and the 

parabrachial nucleus (PB), which independently regulate subjective preference, risk avoidance 

in the EPM and OFT, and respiration rate, respectively31.  BLA inputs to the ventrolateral BNST 

(vlBNST) promote freezing during uncontrollable stress and subsequent reduction in social 

interaction, both of which responses are reduced by inhibition of vlBNST86.  The ventral BNST 

(vBNST) also regulates anxiety through its innervation of the VTA; activity in glutamatergic 

vBNST neurons projecting to the VTA produces anxiety-like behaviors, whereas GABAergic 

neurons in the vBNST exert anxiolysis via a parallel pathway85. 

Reciprocal interactions between the BLA and the vHPC have also been shown to 

regulate fear learning and anxiety-like behaviors.  The HPC is a highly structured brain region, 

with an elaborated internal microcircuit, which has been reviewed in detail elsewhere87,88 89.  

BLA inputs to the vHPC promote anxiety-like behavior; for example, BLA projections to the 

hippocampal formation through the entorhinal cortex are necessary for the acquisition of 

contextual fear memories, as photoinhibition of these terminals during learning blocks freezing 

during context re-exposure90.  Furthermore, glutamatergic terminals of BLA fibers onto CA1 

pyramidal neurons in the vHPC bidirectionally control innate anxiety-related behaviors in the 

EPM and OFT66, such that increased activity in this projection enhances anxiety-like behavior 

and inactivation of this pathway reduces anxiety-like behavior 27,66. These targeted 

investigations of BLA input to vHPC suggest that increased activation of cells in this region 
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produce anxiety-like behavior, however direct photostimulation of ventral DG granule cells has 

been found to suppress anxiety-like behaviors in the EPM and OFT91.  Although these findings 

appear to conflict with those obtained through manipulation of BLA inputs to the vHPC, they can 

potentially be reconciled, as the low frequency stimulation of ventral DG used by Kheirbek and 

colleagues has been previously demonstrated to result in feed-forward inhibition of CA3 

pyramidal cells92.   

The effects of vHPC activation upon anxiety-related behaviors occur partially through its 

connections to the lateral septum (LS)93, which in turn is reciprocally connected to the 

hypothalamus94.  Ipsilateral projections from vHPC to LS convey an anxiety signal; bilateral 

blockade of activity in either structure using muscimol increases open arm exploration in the 

EPM, as does disconnection of the two using pharmacological inactivation of vHPC in one 

hemisphere and concurrent inactivation of the contralateral LS95.  Corticotropin releasing factor 

receptor (CRFR) activation in the LS increases anxiety-related phenotypes96 by way of 

activation of CRFR type 2 expressing GABAergic projection neurons residing there97.  Activation 

of these neurons results in inhibition of cells in the anterior hypothalamic area (AHA), which 

themselves inhibit the paraventricular nucleus of the hypothalamus (PVH) and PAG.  The 

resultant disinhibition of these regions promotes neuroendocrine and behavioral aspects of the 

persistent anxiety state97, which redouble the complimentary actions of CeA and BNST 

activation. 

In addition to producing anxiety-like behaviors via projections to the LS, the vHPC 

supports the interpretation of a given situation as threatening through its reciprocal connection 

with the BLA as well as its efferent projections to the mPFC.  The vHPC importantly serves as a 

source of synchrony between the amygdala and mPFC during threatening situations (discussed 

in detail below).  Furthermore, the vHPC specifically targets fear-encoding neurons within the 

BA (which themselves project to the mPFC), and the activation of these cells is necessary for 

fear renewal after extinction67.  Neighboring cells in the BA that are innervated by PFC afferents 

fire in response to conditioned stimuli that have been extinguished, and project reciprocally to 

the PFC67.   

 

Evaluation of Threat: Regulation of Interpretation 

Naturalistic environments are often characterized by ambiguity, and the absolute 

absence of potential danger is rarely assured.  In psychology, it has been proposed that there is 

an evaluative system that guides subsequent modulation of emotion in a regulatory fashion98. 

To prevent unchecked activation of pro-anxiety circuits, an additional layer of processing is 
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required to evaluate whether interpretations of environmental threats are accurate and weighted 

appropriately given internal (e.g. homeostatic, hormonal) or external (e.g. support of the 

conspecific group, extent of perceived danger) conditions.  Such an evaluative system could 

provide permissive or restrictive feedback to interpretation circuits in order to promote or 

suppress the expression of anxiety-like behaviors. 

An integral source of evaluation of threat interpretations is the mPFC, which regulates 

subcortical responses to threatening stimuli.  As a neocortical structure, the mPFC is organized 

into six layers (I – VI) containing a majority of excitatory pyramidal neurons and a diverse array 

of inhibitory interneurons99.  The mPFC can be parsed into distinct subregions based upon their 

cytoarchitecture, which are consistent with divergent functions among these regions100.  The 

primary subdivisions of the mPFC in rodents include the prelimbic (PL) and infralimbic (IL) 

cortices.  These receive inputs from midline thalamic nuclei, the BLA, and the HPC, and send 

reciprocal projections to BLA, as well as efferent projections to the striatum101.   

Reciprocal connections between the mPFC and the amygdala have been extensively 

studied in the learned fear response as well as in anxiety disorders in both humans102,103 and 

rodents, which we explore in depth below.  The evaluative role of the PFC is demonstrated in 

this exemplar circuit, as PFC interactions with the BLA differ depending upon the degree of 

environmental threat.  Correlated activity between the dorsal anterior cingulate region of the 

PFC and BLA underlies acquisition of aversive memories, and maintenance of such cross-

regional correlations promotes resistance to extinction of fear memories104.  During auditory fear 

conditioning, activity in BA neurons projecting to the PL is increased105, and PL responses to 

shock-predicting cues are increased after learning106.  This increase in PL activation is likely due 

in part to phasic inhibition of local parvalbumin positive interneurons, which is necessary for 

cue-induced freezing behavior107.  By contrast, extinction of the learned fear association 

increases activity in BA neurons targeting the IL105.  Fittingly, increased activity in the IL is 

associated with fear extinction108 (but see also109–111), and electrical stimulation of IL reduces 

freezing to the CS, even in animals that are resistant to extinction training108,112.  In naïve mice, 

both of these subdivisions of mPFC exert similar levels of excitation and feed-forward inhibition 

upon BLA principal neurons.  Following auditory fear conditioning, however, excitatory 

responses evoked by PL inputs in the BLA are increased as a result of enhanced AMPA 

receptor function113.  Furthermore, PL activation of amygdalar subregions is necessary for 

retrieval of fear memories.  Direct activation of the BLA by PL inputs mediates freezing 

responses to CS presentations within six hours of auditory fear conditioning, however, fear 

memory retrieval greater than 24 hours following conditioning necessitates PL recruitment of 
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PVT inputs to CeL114.  For a more in-depth consideration of how interactions between the 

amygdala and mPFC impact fear learning, readers are directed to115.  Taken together, these 

findings indicate that PL inputs to the amygdala facilitate responses to threatening stimuli, 

whereas IL inputs to the amygdala suppress them. 

The distinct pathways engaged by the mPFC in conditions of high and low threat 

represent a mechanism whereby this region may dynamically permit or prevent anxiogenic 

activity in interpretation circuits.  Additionally, the mPFC has been demonstrated to exert 

powerful feed-forward inhibition over the baseline activity of BLA principal neurons in vivo (116, 

but see117), and also to suppress LA responses to conditioned aversive stimuli118.  Such 

inhibitory control enables the mPFC to trump threat interpretations in conditions of acceptably 

low risk in favor of engaging in appetitive behaviors.  Moreover, the mPFC is ideally poised to 

orchestrate shifts between anxiety-like and reward-motivated behaviors, as it sends projections 

both to the amygdala and nucleus accumbens (NAc).  mPFC efferents to the latter affect 

information processing within striatal projection neurons119, and stimulation of this pathway is 

reinforcing120.   

Habituation can also suppress threat interpretations.  As opposed to extinction, in which 

responses to a learned CS are diminished over time as a result of multiple unpaired 

presentations, habituation occurs when evoked behavioral responses are diminished following 

repeated presentations of a neutral or unconditioned stimulus121.  This process is especially 

relevant to anxiolysis in the case of stimuli which are ambiguously threatening, such as police 

sirens in a busy neighborhood; although these stimuli may portend danger initially, over multiple 

exposures, they no longer evoke an anxiety response.  The neural mechanisms of habituation 

have long been suggested to involve reduced transmission in stimulus-response pathways 

following repeated presentation of the stimulus122. 

Energy homeostasis and motivation signals also shape the degree to which threat 

interpretations govern behavioral responses.  Given sufficient motivation to seek food, to drink, 

or to mate, an animal will engage in these appetitive behaviors despite the presence of potential 

dangers.  The comparison of apparent risks or costs to possible reward is a computation 

performed by circuits supporting motivated behavior, critically including the NAc and the 

mesocorticolimbic dopamine system (reviewed in depth elsewhere123–125).  In cases in which 

expected benefits outweigh perceived costs, the impact of threat interpretations upon behavior 

is diminished.  Hypothalamic drives to maintain homeostasis (i.e., to seek and consume food or 

water126,127) can also overwhelm threat avoidance and anxiety-like behaviors.  Stimulation of 

lateral hypothalamic terminals in the VTA, for example, promotes sucrose seeking, even when 
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mice must cross an electrified floor to obtain the sucrose reward128.  Thus, subcortical 

motivational systems contribute to the evaluation of threat interpretations by shifting the balance 

toward appetitive behaviors and away from anxiety-like behaviors. 

 

Synchrony between Interpretation and Evaluation Circuits 

The combined actions of distributed neural circuits emerging from the amygdala, BNST, 

vHPC, and mPFC result in the interpretation and evaluation of the emotional value of 

environmental stimuli. If such stimuli are identified as threatening based upon this assessment, 

anxiety-like behaviors may result.  However, coordinated processing of potentially threatening 

stimuli must occur in order to elicit a well-defined behavioral response.  Synchronization of local 

field potentials provides a mechanism whereby the timing of activity within these distributed 

regions could be orchestrated.  

 Interactions among the “emotional triad” (a term coined by Dr. Joshua Gordon, Columbia 

University), including BLA, mPFC, and HPC, are shaped by dynamic changes in the degree of 

synchrony in the local field potential (LFP) oscillations of these regions.  Theta activity (4 – 12 

Hz) in the vHPC is associated with anxiety-like behavior in rodents129.  This rhythm is thought to 

be driven by brainstem nuclei via projections through the medial septum130, and is universally 

reduced by anxiolytic drugs131.  This HPC theta rhythm has been shown to entrain both single 

unit activity in pyramidal cells and interneurons of the PFC, as well as PFC gamma band 

activity132.  Synchronization of PFC activity to the HPC theta rhythm has been observed within 

anxiety assays; in the threatening zones of the EPM and OFT (open arms and center, 

respectively), theta activity has been observed in the mPFC which is entrained to vHPC theta129.  

Theta rhythm synchrony between HPC and amygdala may underlie anxiety behaviors, as well, 

as crosscorrelation of activity in the theta frequency in LA and CA1 increase in response to the 

CS following fear conditioning133.  Following extinction of fear conditioning, spontaneous 

freezing to the extinguished CS, representing an inappropriate assessment of threat, is 

associated with synchronized theta rhythms among IL, CA1 of HPC, and LA134.  Moreover, there 

is a greater degree of theta coherence between these regions in serotonin receptor 1A knock 

out mice, which serve as a genetic mouse model of trait anxiety, relative to wild type controls129.  

Disruption of the vHPC theta rhythm using pharmacological blockade of gap junctions reduces 

anxiety-like behaviors in the EPM and OFT, and disconnection of LFP coherence by unilateral 

administration of gap junction blockers in contralateral vHPC and mPFC reduces theta activity in 

both regions as well as innate anxiety-like behaviors in ethological tasks135.  vHPC-originating 

theta rhythms potentially enable the mPFC to construct representations of aversive features in 
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the environment, as mPFC neurons with strong task-related responses are strongly coupled to 

the vHPC theta rhythm136. Together, these data suggest that the vHPC theta rhythm conveys an 

anxiogenic signal to the mPFC and BLA. 

 Theta rhythms originating in the mPFC, however, provide a “safety” signal to BLA 

neurons.  These theta rhythms originate in the mPFC as a result of phasic inhibition of 

parvalbumin interneurons residing there, which mediates local theta rhythm phase resetting107.  

Following successful extinction of fear learning, IL spike firing has been observed to lead the 

theta rhythm in HPC and LA during presentations of the CS134.  Conversely, artificial theta 

synchronization of LA and HPC during extinction recall (such that PFC firing no longer leads 

these rhythms) increases freezing to the CS137.  BLA field potentials and spike activity are 

entrained to the mPFC theta rhythm during periods of perceived safety (e.g., when mice enter 

the relative safety of the periphery of the open field32).  This synchronization of BLA oscillations 

to mPFC during safety also extends to other LFP frequency bands in the BLA, including theta-

coupled-gamma (40-120 Hz), particularly in the fast gamma (70-120 Hz) range138.  Uncoupling 

of PFC theta oscillations from the HPC theta could in part be mediated by reciprocal inputs from 

the BLA to the PFC, which heterosynaptically suppress the influence of HPC inputs there139.  

Based upon the opposing contributions of PL and IL to fear learning and anxiety, the PFC safety 

signal likely originates in the IL.  Thus, oscillatory activity among vHPC, mPFC, and BLA 

appears to reflect the internal anxiety state.  The dominant source of theta activity may 

dynamically shift between the vHPC and mPFC in periods of relative threat and security in order 

to aid in the interpretation and evaluation of environmental events and support circuit level 

activity promoting defensive or exploratory behaviors. 

 

Perspective on the Neural Circuitry of Anxiety  

 We emphasize that limbic circuits are loops, rather than one-way streams of information 

flow.  Anxiety arises from activity within these circuits when ambiguous environmental stimuli 

are interpreted as threatening.  For this interpretation to occur, an organism must first detect 

that the stimuli exist through its sensory systems.  Once potential threats are detected, the 

highly interconnected circuits described here interpret the meaning of those stimuli, and 

determine whether they portend danger.  This interpretation is in part dictated by the individual’s 

previous experience, and includes the assignment of valence to the stimulus via BLA circuits56.  

Following the interpretation of an ambiguous event, additional circuits including the PFC and 

nuclei at the intersection of the limbic system and motor effectors140 must evaluate whether the 

external events reflect expectations and if they meet or contradict the animal’s needs in order to 
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engage the appropriate behavioral response.  Consequently, that response is initiated through 

downstream motor pathways, brainstem nuclei in control of autonomic responses, and the 

neuroendocrine system.  Activation of these effectors results in the observable responses that 

we identify as anxiety or lack thereof.   

 Based upon this model (schematized in Figure 4), we conceive of anxiety as occurring 

between the stimulus and response, at the level of internal processing.  Two individuals may 

equivalently detect a particular stimulus, but different interpretation of that stimulus may result in 

the selection of opposing behavioral responses.  For example, a sudden, loud noise might be 

interpreted as fireworks by one person and as a gunshot by another, leading the first to 

curiously look to the sky and the second to duck and cover.  The selected response also 

depends upon the evaluation of potential threat compared against actual threat (as determined 

by previous learning), as well as the individual’s drive state.  For instance, if an animal is thirsty, 

it will risk visiting the watering hole despite interpreting the setting as threatening.  In fact, this 

approach-avoidance conflict resulting from the incongruity between the animal’s needs and the 

interpretation of threat promotes vigilance and apprehension which serve a protective function 

for the animal and produce behaviors we can measure as anxiety (see “Measuring Anxiety-Like 

Behavior in Rodents,” above).  Although we cannot measure the internal state or emotional 

experience of an animal, we can determine which circuits govern the interpretation and 

evaluation of environmental stimuli and result in the selection of such anxiety-like behaviors.    

Whether or not events are interpreted as threatening depends upon balance between 

circuits supporting exploratory versus defensive behaviors.  An important mechanism that may 

allow one system to overcome the other is the recruitment of projection defined populations of 

neurons within the BLA.  Positive and negative valence are oppositely encoded by BLA neurons 

projecting to canonical reward and fear systems (NAc and CeM, respectively;63), and specific 

activation of CeM-projecting BLA neurons might bias the interpretation system toward a “threat” 

appraisal.  The relative strengths of these competing circuits may also contribute to 

interpretations of danger in the environment; for instance, repeated exposure to stressors or 

threatening stimuli may cause specific potentiation of circuits promoting anxiety-related 

behavior, such that in ambiguous situations, anxiety circuits prevail.  Natural variations in the 

expression of certain genes may also impact the function of the interpretation system.  For 

instance, the release of monoamines such as serotonin at different nuclei within the 

corticolimbic network impacts anxiety (i.e., innate anxiety-like behaviors in the EPM are 

associated with decreased levels of serotonin in the mPFC, amygdala, and HPC141), and 

polymorphisms in the serotonin transporter gene have been found to influence trait anxiety in 
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rodents and humans142,143.  These findings are particularly interesting in light of the efficacy of 

SSRIs and SNRIs in the treatment of anxiety.   

Here, we reframe corticolimbic circuitry from the perspective of anxiety.  The model that 

we propose builds upon existing models, within the framework of detection, interpretation, 

evaluation, and response initiation.  For example, both bottom-up and top-down processes 

determine which external events will be detected144; top-down suppression of attention to 

ambiguous stimuli may reduce the anxiety response.  Furthermore, the valence detection 

function of BLA projection neurons56 fits within the interpretation circuits described here, helping 

to determine whether a given stimulus is threatening or appetitive.  Actor-critic models145–147 

operate within the evaluation system; dopamine inputs to the striatum push the animal toward 

obtaining maximum reward, a process which must take into account possible dangers.  These 

dangers are recognized by interpretation circuits, and fed into the actor-critic interplay occurring 

within evaluation circuits, subsequently determining what course of action must be taken.  This 

action is taken as a result of increased activity within the basal ganglia, which serve as the 

limbic-motor interface140, and facilitate the initiation of motor responses following upstream 

processing in the interpretation system. 

To select appropriate behavioral responses within a given environmental context, an 

animal must weigh potential rewards against potential risks.  To use a balance metaphor, 

interpretation circuits may determine the relative weight of various environmental stimuli on 

either end of the balance while evaluation circuits govern the location of the fulcrum that 

influences the balance point. 

 

Circuit-based Intervention: The Future of Anxiety Therapy 

 In cases of pathological anxiety, excessive apprehension occurs in response to 

minimally threatening stimuli or even in the absence of provocation, implying dysfunction at the 

level of interpretation.  Bias of the system toward rendering a “threat” interpretation in the 

absence of probable danger may result from undue Hebbian plasticity in limbic pathways 

(particularly in “cued” anxiety disorders, such as social anxiety disorder and specific phobias), or 

may be the outcome of a disruption to homeostatic mechanisms that normally maintain balance 

between circuits supporting defensive versus exploratory behaviors (particularly in persistent 

anxiety, such as generalized anxiety disorder). 

Because disruption to any one part of a highly interconnected system results in changes 

to the whole, effective solutions necessitate interventions which consider the dynamics of the 

entire system.  Likewise, future therapies for anxiety disorders must take a circuit-level 
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approach.  We have previously extolled neural circuit reprogramming, in which the brain’s own 

plasticity mechanisms are directed toward resolving the symptoms of psychiatric illnesses, as a 

promising future therapeutic strategy to work toward20.  Targeted plasticity, perhaps via 

transcranial magnetic stimulation (TMS) or focal ultrasound, directed at certain nodes within the 

circular loops described in this review could elicit positive downstream changes ameliorating 

undesirable anxiety.  For example, potentiation of inputs from IL to the BLA could enhance so 

called “safety” signals, and depotentiation of BLA inputs to the CeM could reduce the 

expression of learned fear associations.  There is reason to believe that neural circuit 

reprogramming is a viable future strategy for the treatment of anxiety disorders; already it has 

been shown that fear memories can be turned “on” and “off” via induction of LTP and LTD in 

amygdalar microcircuits148.  Moreover, the best intervention currently available for the treatment 

of anxiety disorders is cognitive-behavioral therapy (CBT)149, which aims to replace maladaptive 

interpretations of events with more helpful ones, a process which almost certainly occurs 

through plastic changes within the interpretation circuits described here. 

 Before this innovative strategy can become reality, however, a comprehensive 

understanding of the dynamic interactions occurring within the distributed networks underlying 

anxiety is needed.  Although this prospect seems somewhat daunting, inroads are rapidly being 

made that advance the current state of knowledge toward this goal.  Optogenetic studies of 

individual pathways within circuits subserving interpretation and evaluation of external stimuli 

provide valuable insights into how individual components of the system function.  Work toward 

mapping the neural connectome could potentially identify novel pathways among genetically 

defined populations of cells that will supply avenues for future discovery150.   

One important clue as to how these highly interconnected pathways might interact and 

impact each other’s activity may be derived from investigating the comorbidity among 

psychiatric disorders.  Although comorbidities are systematically eliminated in pharmaceutical 

drug development, the overlapping constellations of symptoms might shed light upon which 

aspects of the neural substrates of these symptoms co-vary.  For instance, substance abuse 

and addiction are often coincident with anxiety disorders, however the symptoms of anxiety or 

depression in an addicted person may not be observable until the addictive substance is 

withdrawn.   Studying a comorbid individual in both states might unveil how the interconnected 

loops shift dominance during different emotional and behavioral states, and provide novel 

targets for future treatment strategies. 

Treating complex psychiatric disorders that arise from disruption to complex, highly 

interconnected neural systems requires a broad, circuit-level approach.  A paradigm shift in how 



	 19	

we consider the neural substrates underpinning anxiety – such that individual nodes of larger 

circuits are not interrogated in a vacuum, independent of the larger circuits – promises to 

transform how these most common of mental illnesses are treated. 



	 20	

Call-out Boxes: 

Prevalence 

Prevalence – the proportion of a population with a condition  

Lifetime prevalence – the proportion of a population that will experience the condition at some 

point during their lives 

 

Validity 

Face validity – the extent to which observable phenotypes in the animal reproduce the human 

condition; the anxiety response of the animal should be behaviorally and physiologically similar 

to the anxiety response in humans. 

Predictive validity – the extent to which pharmacological agents that reduce anxiety in model 

organisms also reduce anxiety in humans; anxiety in animals should be sensitive to clinically 

effective anxiolytics. 

Construct validity – the extent to which the underlying causes of the human condition and 

phenotypes in the animal are equivalent; an animal model of anxiety should result from the 

same neurobiological processes as anxiety in humans.  



	 21	

Figure Legends 

Figure 1. Few novel pharmacotherapies for the treatment of anxiety have been developed 

since the 1940s.  The cumulative FDA approvals of medications with an indication for anxiety 

(blue line) are compared to those for medications with an indication for hypertension (gray line), 

a more thoroughly understood condition.  In addition to the comparatively slow rate of overall 

approvals of anxiolytics, a lesser number of mechanistically novel targets have been identified 

for the treatment of anxiety than hypertension during the past 75 years (inset).  The relative 

paucity of pharmacological strategies for the treatment of anxiety disorders and the imperfect 

efficacy of these drugs belies a need for a more thorough understanding of the neural 

substrates of anxiety. 

 

Figure 2. Validated tests to assay anxiety and related emotional states in mice.  State 

anxiety in mice is measured behaviorally through a variety of tests, highlighted in orange.  

Exemplars of fear and physiological stress assays are also illustrated in red and yellow, 

respectively.   

 

Figure 3. Neural circuits implicated in anxiety-related behaviors in the rodent brain.  

Recent work using optogenetics, behavioral neuroscience, and electrophysiology has begun to 

establish causal relationships between anxiety behaviors and activity in specific neural circuits.  

a, Cartoon of sagittal view of rodent brain including distal circuits implicated in anxiety-related 

behaviors.  b, Septohippocampal microcircuitry linked to anxiety. c and d, Extended amygdala 

microcircuits involved in anxiety-related behaviors, including BLA projections to the BNST (c) 

and BLA projections to CeA (d).  Abbreviations: ad, anterodorsal nucleus of the BNST; AHA, 

anterior hypothalamic area; BLA, basolateral amygdala; BNST, bed nucleus of the stria 

terminalis; CeA, central amygdala; CeL, lateral subdivision of the central amygdala; CeM, 

centromedial subdivision of the amygdala; CrFr2α, type 2 CRF receptor; DR, dorsal raphe 

nucleus; DVC, dorsal vagal complex; HPC, hippocampus; Hyp, hypothalamus; IL, infralimbic 

division of the mPFC; LC, locus coeruleus; LH, lateral hypothalamus; LS, lateral septum; mPFC, 

medial prefrontal cortex; NAc, nucleus accumbens; ov, oval BNST; PAG, periaqueductal gray; 

PB, parabrachial nucleus; PKCδ+, protein kinase c delta positive; PKCδ-, protein kinase c delta 

negative; PL, prelimbic division of the mPFC; PVH, paraventricular nucleus of the 

hypothalamus; PVT, paraventricular thalamus; SI, substantia innominata; Thal, thalamus; 

vHPC, ventral hippocampus; VTA, ventral tegmental area. 
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Figure 4. Circuit organization in anxiety: A problem with Interpretation.  We propose a 

model wherein external events are detected, interpreted, evaluated, and responded to by 

succeeding levels of highly interconnected neural circuits.  Whether events are interpreted as 

threatening or non-threatening depends upon balance between opposing circuits among the 

amygdala, vHPC, mPFC, and BNST.  In anxiety, balance is shifted toward projections 

interpreting events as threatening.  Red, anxiogenic pathway; blue, anxiolytic pathway.  

Abbreviations: ad, anterodorsal nucleus of the BNST; AHA, anterior hypothalamic area; BLA, 

basolateral amygdala; BNST, bed nucleus of the stria terminalis; CeA, central amygdala; CeL, 

lateral subdivision of the central amygdala; CeM, centromedial subdivision of the amygdala; 

DVC, dorsal vagal complex; IL, infralimbic division of the mPFC; LH, lateral hypothalamus; LS, 

lateral septum; mPFC, medial prefrontal cortex; NAc, nucleus accumbens; ov, oval BNST; PAG, 

periaqueductal gray; PB, parabrachial nucleus; PL, prelimbic division of the mPFC; PVH, 

paraventricular nucleus of the hypothalamus; v, ventral BNST; vHPC, ventral hippocampus; 

vPallidum, ventral pallidum; VTA, ventral tegmental area   
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