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Abstract

The high levels of flight delays require the implementation of airport congestion mitigation

tools. In this paper, we optimize the utilization of airport capacity at the tactical level in the

face of operational uncertainty. We formulate an original Dynamic Programming model that

selects jointly and dynamically runway configurations and the balance of arrival and departure

service rates at a busy airport to minimize congestion costs, under stochastic queue dynamics

and stochastic operating conditions. The control is exercised as a function of flight schedules,

of arrival and departure queue lengths and of weather and wind conditions. We implement

the model in a realistic setting at JFK Airport. The exact Dynamic Programming algorithm

terminates within reasonable time frames. In addition, we implement an approximate one-

step look-ahead algorithm that considerably accelerates the execution of the model and results

in close-to-optimal policies. In combination, these solution algorithms enable the on-line im-

plementation of the model using real-time information on flight schedules and meteorological

conditions. The application of the model shows that the optimal policy is path-dependent, i.e.,

it depends on prior decisions and on the stochastic evolution of arrival and departure queues

during the day. This underscores the theoretical and practical need for integrating operating

stochasticity into the decision-making framework. From comparisons with an alternative model

based on deterministic queue dynamics, we estimate the benefit of considering queue stochas-

ticity at 5% to 20%. Finally, comparisons with advanced heuristics aimed to imitate actual

operating procedures suggest that the model can yield significant cost savings, estimated at

20% to 30%.

Key words Airport, Capacity, Delay, Runway Configuration, Dynamic Programming, Queuing Model

1 Introduction

Airport congestion is an increasingly important and costly phenomenon worldwide. In the United

States, air traffic delays reached an all-time peak in 2007 and their nationwide impact was estimated
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at over $30 billion for that calendar year [1]. Most of these delays are caused by mismatches between

demand and capacity resulting from airlines scheduling more flights than realized capacity at the

airports. In recent years, an estimated 50% to 75% of system-wide delays can be attributed to

heavy traffic volume, capacity shortages related to non-extreme weather conditions, inefficiencies

in airport operations and the propagation of schedule disturbances within the network of airline

operations [6].

Significant delay reductions in the United States can therefore be achieved by reducing the

imbalance between demand and capacity at the busiest airports. Medium-term and long-term

options include capacity expansion and demand management. Capacity expansion can be achieved

through infrastructure expansion, including the construction of new airports or new runways [7], or

through improvements in air traffic management technologies, such as the development of the Next

Generation Air Transportation System (NextGen) [11]. However, such projects require extensive

investments and many years to plan and implement. More importantly, they might be infeasible in

the most densely populated areas. Demand management aims to reduce peak-hour scheduling levels

through slot limits or congestion pricing. Such mechanisms could lead to significant delay reductions

[25] and could provide operational benefits to air carriers and passengers [31, 30]. However, the

implementation of these measures has been limited in the United States due to the opposition they

typically engender from air carriers, which are concerned about any constraints on flight schedules

such measures would impose.

This paper examines an alternative approach to reducing demand-capacity mismatches, consist-

ing of improvements in the utilization of airport capacity at the tactical level. Airport throughput

depends on the runway configuration in use, i.e., the set of active runways on which landings and

takeoffs are operated, and on the relative proportion of landings and takeoffs [28]. For any schedule

of flights on a given day, airport congestion can thus be mitigated through improvements in the

control of runway configurations and in balancing arrival and departure service rates. In practice,

these are two of the major decisions faced by air traffic controllers and they are primarily made on

the basis of experience. The main drivers of these decisions include inertia, wind speed and direc-

tions, arrival and departure schedules, noise abatement procedures, configuration switch proximity

and inter-airport coordination [27]. This paper develops a decision support tool to improve the se-

lection of runway configurations and the balancing of arrival and departure service rates including,

for the first time, the consideration of the stochasticity of airport operations in these decisions.

The optimization of airport capacity utilization is an important topic in Air Traffic Flow Man-

agement. Gilbo [12, 13] was the first to explicitly consider the problem of optimally allocating

airport capacity between arrivals and departures given the non-increasing relationship between ar-

rival capacity and departure capacity represented by means of a piecewise linear Capacity Envelope.

This framework was later extended to account for general Capacity Envelopes and nonlinear ob-

jective functions [8] and at the multi-airport level in the development of Ground Delay Programs
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[15, 14].

More recent studies addressed the problem of jointly selecting runway configurations and ar-

rival and departure service rates by introducing different Capacity Envelopes for different runway

configurations. Optimizing these decisions jointly is critical when different runway configurations

achieve different arrival and departure throughput. This may occur if, for instance, a particular

configuration allocates one runway to arrivals and two runways to departures, while an alternative

configuration allocates two runways to arrivals and one to departures. Bertsimas et al. [5] devel-

oped a Mixed Integer Program that determines the optimal schedule of runway configurations and

of arrival and departure service rates for an entire day of operations. This model was extended to

account for marginally decreasing penalties associated with runway configuration switches [32]. Li

and Clarke [20] developed an alternative formulation that dynamically controls runway configura-

tions under stochastic wind conditions. This literature has demonstrated that the optimal selection

of runway configurations and of the arrival/departure balance can lead to significant congestion cost

savings. All existing approaches consider deterministic queue dynamics.

In contrast, airport operations have been extensively described by means of stochastic queuing

models [19, 24, 23]. The stochasticity in these models aims to capture the uncertainty and variability

of the dynamics of formation and propagation of airport queues. Indeed, queues do not depend

solely on the schedule of flights and the availability of airport capacity, but are also shaped by the

exact sequencing of arrivals and departures, by the mix of aircraft, by human factors in aircraft

operations, etc. Dynamic and stochastic queuing models of airport congestion were shown to

approximate accurately the extent of congestion observed at the busiest US airports [22, 26, 17]

and to provide higher estimates of flight delays than deterministic models [16]. Moreover, exogenous

variables, such as weather and winds, are also stochastic and directly impact airport operations:

winds constrain the set of runways that can be used at any time, while cloud ceiling and visibility

influence the efficiency of airport operations.

In this paper, we formulate and solve the problem of selecting runway configurations and the

balance of arrival and departure service rates under stochastic queue dynamics and stochastic

operating conditions, including weather and winds. This paper thus intends to bridge the gap in

the literature between descriptive stochastic models of airport congestion and optimization models

of capacity utilization based on deterministic queue dynamics. Under stochastic airport operations,

the arrival and departure queues observed at later time periods are not known with certainty in

advance. We thus develop a dynamic decision-making framework. For instance, let us consider a

period of the day when more arrivals than departures are scheduled. Traditional approaches might

suggest the use of a runway configuration that gives priority to arrivals over departures during that

period. If, however, the departure queue is longer than expected at the beginning of the period,

while the arrival queue is shorter than expected, then it might be beneficial to choose an alternative

runway configuration to enhance the departure throughput and alleviate ground congestion. A
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dynamic approach might thus yield operational benefits in the face of queue uncertainty.

Any decision-making support tool must be applicable in real time. Indeed, airport operations

are subject to real-time disturbances that might impact operating procedures. This might include

schedule updates arising from the occurrence of upstream delays in previous flight legs, en-route

congestion or changes in scheduled departures at other airports when a Ground Delay Program

is initiated. This might also include changes in weather and wind forecasts. For this reason,

we develop a solution architecture that enables the dynamic revision of operating policies. Such

revisions are performed almost instantaneously as new real-time information becomes available and

are thus well suited to the actual problem faced by air traffic controllers.

The contributions of this paper fall into four categories presented in § 2 through § 5:

• In § 2, we formulate an original Dynamic Programming (DP) model that selects jointly and

dynamically runway configurations and the balance of arrival and departure service rates at

a busy airport to minimize congestion costs, under stochastic queue dynamics and stochastic

operating conditions. The model takes as inputs capacity estimates and the schedule of

flights. At each period of the day, decisions are based on (i) the arrival queue length, (ii)

the departure queue length, (iii) the runway configuration previously in use, (iv) weather

conditions and (v) wind conditions.

• In § 3, we present exact and approximate solution algorithms that, in combination, enable the

on-line implementation of a 2-step optimization approach that uses a priori as well as real-

time information. In the first step, the exact DP model of § 2 provides operating policies for an

entire day of operations, based on inputs available before the beginning of that day. However,

this policy might no longer be optimal in the face of such operating disturbances as schedule

updates and updated weather forecasts. We therefore implement, as a second step, a fast

approximate algorithm based on a one-step look-ahead that greatly accelerates the execution

of the DP model. Computational experiments show that this 2-step approximation scheme

yields congestion costs within 2% of the optimal solution and thus results in close-to-optimal

policies.

• In § 4, we describe a detailed application of our approach to the John F. Kennedy International

Airport (JFK). We show that the optimal policy is path dependent, i.e., depends on prior

decisions and on the prior stochastic evolution of the system over the day. This underscores

the theoretical and practical need for integrating operating stochasticity into the decision-

making framework.

• In § 5, we show that the model can result in significant congestion cost savings at busy airports,

as compared to current operating procedures and existing approaches in the literature. First,

we compare the model to two advanced heuristics that aim to imitate typical decisions made

in practice. We estimate the resulting congestion cost savings at 20% to 30%. Second, we
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compare the model to an alternative model based on deterministic queue dynamics and we

estimate the benefit of integrating queue stochasticity into the decision-making framework at

5% to 20%.

2 Model Formulation

We formulate the dynamic control of runway configurations and of arrival and departure service

rates as a finite-horizon Dynamic Programming (DP) model. A day of operations, between 6 a.m.

and midnight, is divided into T = 72 periods of length S = 15 minutes. We index these time periods

by t = 1, ..., T . Observations and decisions are made at the beginning of each period. Operations

between midnight and 6 a.m. are not considered since they are typically not capacity-constrained

and decisions are based on noise abatement procedures and other environmental concerns.

2.1 Problem Statement

The model takes as inputs (a) the schedule of landings and takeoffs on a given day and (b) estimates

of the capacity of each runway configuration. During each 15-minute period of the day, we denote

by xt (resp. yt) the number of aircraft scheduled to land (resp. to take off) at the considered airport.

We represent the capacity of each runway configuration by means of an Operational Throughput

Envelope, which characterizes the non-increasing relationship between the average arrival rate and

the average departure rate in the presence of continuous demand, for the runway configuration

considered [28]. This representation takes into account the variability of the traffic mix, including

different aircraft types, different sequencing of arrivals and departures, etc. Since airport operations

are substantially impacted by weather conditions, we specify one Operational Throughput Envelope

for each runway configuration in “Visual Meteorological Conditions” (VMC) and another one in

“Instrument Meteorological Conditions” (IMC)—we use VMC and IMC as surrogates of “good”

and “poor” weather conditions, respectively.

A schematic representation of the model’s inputs is provided in Figure 1. In this figure, each

dot represents a hypothetical count of scheduled arrivals and departures per time period (i.e., per

15 minutes). We also show the VMC and IMC Operational Throughput Envelopes associated

with two hypothetical runway configurations that achieve different trade-offs between arrival and

departure capacity—Configuration 1 can achieve the largest arrival throughput when few departures

are operated while Configuration 2 achieves the largest departure throughput. Two immediate

observations are noteworthy. First, a larger average throughput can be achieved in VMC than in

IMC. Second, the relationship between the arrival service rate and the departure service rate for a

given runway configuration is non-increasing.

The problem of jointly selecting a configuration and the arrival and departure service rates, un-

der dynamic and stochastic conditions, can be illustrated as follows. Let us consider a period of the
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Figure 1: Schematic representation of VMC and IMC Operational Throughput Envelopes

day with a large number of scheduled departures. It might be optimal to operate in Configuration

2 during this period, in order to achieve a large departure throughput (e.g., by operating with the

service rates corresponding to Point A in VMC or to Point B in IMC). If, at a later period, a large

number of arrivals are expected to be operated, then it might be optimal to enhance the arrival

throughput. This can be done by staying in Configuration 2 (e.g., by operating in Point C) or by

switching to Configuration 1 to increase the arrival throughput further (e.g., by operating in Point

D). The best choice is not obvious for at least two reasons. First, there is a trade-off between the

potential efficiency enhancements resulting from configuration switches and the costs of operational

inefficiency during the time it takes to switch configurations. Second, the stochasticity of airport

operations makes it challenging to anticipate the future evolution of the system.

2.2 State Variables

The decisions in each period depend on the observed extent of congestion, on the runway configu-

ration in use and on operating conditions. Operating conditions, including weather and winds, are

assumed to be observed at the beginning of each time window and not to change over one 15-minute

period. At the beginning of period t, the state is described by the following variables:

• Arrival Queue Length at−1: Number of arriving aircraft queuing in the air at the end of the

previous period

• Departure Queue Length dt−1: Number of departing aircraft queuing on the ground at the

end of the previous period

6



• The runway configuration in use at period t− 1, denoted by RCt−1

• Weather conditions for the next period, denoted by wct ∈ {VMC, IMC}

• The wind state wst, which determines the set of runway configurations that can be used at

any time. According to FAA-specified safety requirements, a runway can only be used if the

tailwind and crosswind do not exceed the thresholds of 5 knots and 20 knots, respectively

[9]. A wind state is defined as the set of wind vectors, i.e., the set of wind strengths and

wind directions, such that the same set of runways satisfies the corresponding threshold

requirements. In other words, a wind state is defined by the runways that meet the threshold

requirements and by the runways that do not. This approach follows the procedure developed

by Li and Clarke [20]. Table 1 defines the 13 wind states at JFK. For instance, State 1

corresponds to a situation of calm winds, so that flights can be operated on all runways.

In contrast, State 9 corresponds to the case of strong winds from the South, in which case

runways 4L, 4R, 31L and 31R face above-threshold tailwinds.

Table 1: Definition of wind states at JFK: Set of runways that can be used per wind state

Wind States 1 2 3 4 5 6 7 8 9 10 11 12 13

4L, 4R ! ! ! ! % ! ! % % ! % % %

22L, 22R ! ! ! % ! % % ! ! % ! % %

13L, 13R ! ! % ! ! ! % ! % % % ! %

31L, 31R ! % ! ! ! % ! % ! % % % !

Proportion 10.6% 7.6% 16.0% 8.9% 15.6% 2.5% 13.6% 8.1% 8.8% 10.3% 0.8% 0.5% 5.7%

2.3 Decision Variables

The decision in each period consists of two components:

• The runway configuration for the next period RCt. This choice is constrained by the wind

state: a runway configuration can only be used if each of its runways meets the threshold

requirements. The set of runway configurations that can be selected when the wind state is wst

is denoted byRC(wst). For each one of JFK’s 8 main runway configurations, Table 2 indicates

the set of wind states for which the configuration can be used. For instance, configuration

13L, 22L|13R can be used only in wind states that allow runways 13L, 13R and 22L to be used,

i.e., in Wind States 1, 2, 5 and 8 (see Table 1). The selection of the runway configuration

and the observation of the weather state determine, in turn, the Operational Throughput

Envelope for the next period.

7



Table 2: Set of JFK runway configurations that can be selected per wind state

Wind States 1 2 3 4 5 6 7 8 9 10 11 12 13

13L, 22L|13R ! ! % % ! % % ! % % % % %

31L, 31R|31L ! % ! ! ! % ! % ! % % % !

22L|22R, 31L ! % ! % ! % % % ! % % % %

4R|4L, 31L ! % ! ! % % ! % % % % % %

13L|13R ! ! % ! ! ! % ! % % % ! %

31R|31L ! % ! ! ! % ! % ! % % % !

22L|22R ! ! ! % ! % % ! ! % ! % %

4R|4L ! ! ! ! % ! ! % % ! % % %

• The rates at which arrivals and departures are served, respectively denoted by µat and µdt .

These service rates are controlled among the outermost set of achievable service rates for

the selected runway configuration and the observed weather conditions. For instance, in

Configuration 2 in Figure 1 and in VMC weather, the decision-maker can decide to operate

with the arrival and departure service rates corresponding to point A or C or any other point

on the VMC envelope. The decision-maker in fact selects the arrival service rate for the

next period µat ∈ {0, ..., ARCt,wct}. The upper bound of this choice ARCt,wct corresponds to

the largest arrival throughput that can be realized in the selected runway configuration and

observed weather conditions. In turn, the departure service rate µdt is determined by the

Operational Throughput Envelope corresponding to the selected runway configuration and

the observed weather conditions. Hence, we can write: µdt = ΦRCt,wct (µat ), where ΦRCt,wct

denotes the function that associates to the arrival service rate the value of the departure

service rate when the airport operates in runway configuration RCt and in weather conditions

wct.

2.4 Dynamics of the System

2.4.1 Queue Dynamics

Arrival and departure queues are modeled by means of two dynamic and stochastic M(t)/Ek(t)/1

queuing models. The demand processes are modeled as Poisson processes, whose rates are de-

termined by the number of landings and takeoffs scheduled per 15-minute period. The service

processes are modeled as Erlang processes of order k, whose rates are controlled by the decision-

maker. A value of k = 3 is used [17]. The model is non-stationary: the demand and service rates

are time-varying. These rates are modeled as constant over any 15-minute period t and are thus

denoted by λt and µt, respectively. Note that arrival and departure queues are not independent

from each other since the arrival and departure service rates are subject to the same weather-related

8



constraints and jointly determined by the Operational Throughput Envelope. However, we assume

that the stochastic evolution of the arrival queue is independent from that of the departure queue,

e.g., for given values of the arrival and departure service rates, the arrival queue might be longer

than expected, while the departure queue might be shorter than expected.

This queuing model offers the advantage of being Markovian—and thus analytically tractable.

Note, however, that it relies on specific assumptions on the demand and service processes. On the

demand side, the use of the Poisson process has been challenged because of its memoryless property

and alternative characterizations based on pre-scheduled flight times have been proposed [23]. On

the service side, the analysis of surveillance data suggests that alternative characterizations (e.g.,

a displaced exponential distribution) might provide a better fit of empirical inter-service times

than the Erlang distribution, but the Erlang distribution was shown to also provide a reasonable

approximation of the actual service process [29]. Moreover, the combination of the Poisson demand

process and the Erlang service process into a dynamic M(t)/Ek(t)/1 queuing model has been shown

to approximate well the magnitude and dynamics of airport queues observed in practice [22, 26, 17].

The state-transition diagram of the M(t)/Ek(t)/1 queuing system is shown in Figure 2. It

relies on the characterization of an Erlang process of order k and rate µ as the succession of k

independent and Markovian “stages of work” that are completed at rate kµ. The state of the

system is defined by the number of remaining stages of work, denoted by i. We introduce a time

index s that varies continuously over the day and we denote by PSi (s) the probability of being in

state i at time s. Equation (1) shows the system of Chapman-Kolmogorov first-order differential

equations describing the evolution of the state probabilities PSi (s) over time period t, i.e., between

(t−1)S and tS (where S = 15 min denotes the length of each period). The practical queue capacity

is denoted by N . The system is assumed to be empty at the beginning of the day.
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Figure 2: State-transition diagram of the M(t)/Ek(t)/1 queuing system
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dPS
0 (s)
ds = −λtPS0 (s) + kµtP

S
1 (s)

dPS
i (s)
ds = −(λt + kµt)P

S
i (s) + kµtP

S
i+1(s) ∀i ∈ {1, ..., k}

dPS
i (s)
ds = λtP

S
i−k(s)− (λt + kµt)P

S
i (s) + kµtPi+1(s) ∀i ∈ {k + 1, ..., (N − 1)k}

dPS
i (s)
ds = λtP

S
i−k(s)− kµtPSi (s) + kµtP

S
i+1(s) ∀i ∈ {(N − 1)k + 1, ..., kN − 1}

dPS
kN (s)
ds = λtP

S
k(N−1)(s)− kµtP

S
kN (s)

(1)

Since decision-makers cannot observe the fine-grain state of the queues, i.e., the number of

remaining “stages of work”, but observe the queue lengths instead, we proceed by aggregation. In

other words, we map the state transition probabilities into queue length transition probabilities

(Figure 3). This reduces the number of states of the arrival and departure queuing systems from

kN + 1 to N + 1. In turn, this reduces the size of the state space of the DP model by a factor of

k2 and thus improves its tractability.
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Figure 3: Mapping between queue states and queue lengths

In order to compute the queue length transition probabilities from the state transition proba-

bilities, we assume that no aircraft is being served at the beginning of any period, i.e., the system

is in one of the states {mk, 0 ≤ m ≤ N}. The motivation for this choice is that the arrival and

departure service rates are typically much greater than 1 per period. We denote the queue length

transition probabilities over period t by Qtm,n, i.e., if qt denotes the queue length at the end of

period t, then Qtm,n = P (qt = n|qt−1 = m). The probabilities Qtm,n obviously depend on the

demand and service rates λt and µt over period t and they are derived from the continuous state

probabilities PS according to the following relationship:

Qtm,0 = PS0 (tS)

Qtm,n =
∑k

l=1 P
S
(n−1)k+l(tS), ∀n = 1, ..., N

(2)

10



where the state probabilities PS are obtained by solving the system of differential equations (1),

with the initial conditions:

PSi
(
(t− 1)S

)
=

{
1, if i = mk

0, otherwise
(3)

We solve the system (1) using the built-in differential equation solver ode45 in MATLAB 8.1.

We store in a look-up table the queue length transition probabilities Qtm,n, for all m,n, λt, µt. In

this way, we do not have to re-solve this system of equations at each iteration of the DP algorithm.

2.4.2 Runway Configuration Changes

A challenge in the development of any decision-making support tool to improve the control of

runway configurations is to represent the costs of switching runway configurations. Switching con-

figurations is, in fact, a challenging operational procedure that requires extensive coordination

among several airport stakeholders, including airlines and air traffic controllers. Most importantly,

queuing aircraft need to be re-routed, which may lead to operational inefficiencies and to the inter-

ruption of runway operations for some time. This creates a trade-off between potential operating

enhancements resulting from configuration changes, on the one hand, and the costs of operating

the configuration changes, on the other.

Several different ways to represent the costs associated with runway configuration changes have

been used in the literature. The most straightforward way is to introduce a penalty cost c that is

incurred each time a switch is implemented [20]. A second option is to introduce a time period of

idleness during which the configuration switch is operated [5]. Finally, one could model configu-

ration switches through reduced airport capacity (instead of zero capacity) during a longer period

[32].

In this paper, we choose to represent this cost by a time period of idleness of the runway system,

of length denoted by τI , during which arriving and departing aircraft may join the queue at an

unchanged rate—determined by scheduling levels—but no flight is serviced. In other words, we

assume that, if the decision-maker decides to change runway configurations at the beginning of

the tth period and chooses arrival and departure service rates µ(a) and µ(d) from the Operational

Throughput Envelope of the new configuration, then the arrival and departure service rates are

both equal to 0 during τI . After this, the arrival and departure service rates are, respectively, equal

to µ(a) and µ(d) until the end of the 15-minute period. This situation is depicted in Figure 4.

Modeling runway configuration changes through a time period of idleness offers several advan-

tages. First, it is a simple and transparent way to capture the trade-off between potential operating

enhancements and the operating costs of configuration changes. If efficiency can be improved by

changing configurations at a given time, this comes at the cost of temporary idleness and consequent

initial build-up of the arrival and departure queues. The attractiveness of runway configuration
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Figure 4: Schematic representation of a runway configuration change at the beginning of period t

changes depends on the duration of idleness τI . Second, it models the effects of configuration

changes as increases in arrival and departure queue lengths and does not require the introduction

of an artificial penalty cost c. Third, it enables the quantification of the sensitivity of optimal oper-

ating policies and arrival and departure queue lengths to the costs of configuration changes. Last,

it can be efficiently integrated into our DP decision-making model, by modifying the queue length

transition probabilities Qtm,n (§ 2.4.1) to reflect the period of idleness following any configuration

switch. Our DP framework, in fact, enables fine-grain calibration of the parameter τI , which can

take any specified value—while previous approaches considered a duration of idleness equal to (or

proportional to) the length of the decision-making period (e.g., S = 15 min) [5].

Finally, this model of configuration changes enables the consideration of additional complexities

at no computational cost. For instance, the duration of idleness resulting from a configuration

change may vary as a function of the “proximity” of the two consecutive configurations [27]. Indeed,

simply activating an additional runway for arrivals or departures (e.g., activating Runway 4R when

4L is already in use) might be less disruptive than a move to a very different configuration that

requires a change in the entire flow of arriving and departing aircraft. For this reason, we denote by

τRC1,RC2

I the duration of idleness following the change from runway configuration RC1 to runway

configuration RC2.

Note that, in practice, the operational cost of configuration changes might also depend on other

system characteristics. For instance, it might increase with the extent of congestion at the time

of the change, i.e., with the number of arriving and departing queuing aircraft. As well, it might

be larger under IMC than under VMC. These additional complexities can also be captured in our

model at no computational cost by making the duration of the idleness τI a function of additional

state components, e.g., at−1, dt−1 and wct. The framework presented in this paper could also be

extended to capture alternative characterizations of the operating costs of runway configuration

changes, e.g., with a marginally decreasing impact on capacity [32].

2.4.3 Weather and Wind Dynamics

Weather and wind dynamics are modeled by means of Markov chains. Weather variations are

modeled as a time-varying two-state Markov chain. We denote by pt (resp. qt) the transition
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probability from state VMC to state IMC (resp. from IMC to VMC) over period t. The time-

dependence of pt and qt is intended to capture potential variations in weather dynamics over the

course of the day and to incorporate weather forecasts. The transition matrix of the weather

Markov chain, denoted by Pwct , is given by:

Pwct =

(VMC IMC

VMC 1− pt pt

IMC qt 1− qt

)

Note that additional weather states could be considered [21]. This would enable more fine-

grain characterization of the weather dynamics at the airport. However, this would increase the

complexity of the decision-making problem. Moreover, it would make the corresponding estimates

of the Operational Throughput Envelopes of the different runway configurations (see Figure 1) less

statistically reliable as each would be based on a smaller data sample. We therefore restrict our

attention to this two-state model.

A similar Markov chain is introduced to characterize the wind dynamics. It is defined by the

transition probability from State i to State j, for all pairs of wind states (i, j) (see Table 1).

We describe how the transition probabilities of these two Markov chains are estimated in § 3.1.

2.5 Cost Function

The control strategy aims to minimize congestion costs, which are typically modeled as a non-

decreasing function of the queue length with non-decreasing marginal costs. In this paper, we

consider a quadratic cost function of the arrival and departure queue lengths, since the expected

total delay scales quadratically with the number of queuing aircraft. Moreover, the costs associated

with arrival queues are weighted by a factor α ≥ 1. This is to capture the fact that arrival delays

and departure delays may have different costs, as arriving aircraft can be more challenging and

expensive to hold in queue than departing aircraft.

The cost function is written as follows:

α

T∑
t=1

a2t +

T∑
t=1

d2t . (4)

2.6 Dynamic Programming Formulation

As described in § 2.3, we denote by RC(ws) the set of runway configurations that can be se-

lected in wind state ws and by ARC,wc the maximal arrival rate that can be handled in runway

configuration RC and in weather conditions wc ∈ {VMC, IMC}. We denote the cost-to-go func-

tion by Jt(at−1, dt−1, RCt−1, wct, wst), which represents the expected total cost of being in state

(at−1, dt−1, RCt−1, wct, wst) at the beginning of period t. The decision-maker minimizes the sum
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of the expected congestion costs experienced at the end of period t (i.e., αE
[
a2t
]

+ E
[
d2t
]
) and

the future congestion costs from period t+ 1 onward (i.e., E [Jt+1 (at, dt, RCt, wct+1, wst+1)]). The

Bellman equation is written as follows:

Jt(at−1, dt−1, RCt−1, wct, wst) = min
RCt∈RC(wst)
µat∈[0,ARCt,wct ]

(
αE

[
a2t
]

+ E
[
d2t
]

+ E [Jt+1 (at, dt, RCt, wct+1, wst+1)]
)
, ∀t = 1, ..., T (5)

JT+1(aT , dT , RCT , wcT+1, wsT+1) = 0 (6)

The arrival queue at at the end of period t depends on the number of scheduled arrivals xt

during period t, on the duration of idleness τ
RCt−1,RCt

I , if any, on the arrival rate µat during period

t and on the previous period’s arrival queue length at−1. Similarly, the departure queue dt depends

on the variables yt, τ
RCt−1,RCt

I , µdt and dt−1. A summary of the dependencies described in § 2.4

is provided below—solid lines denote system evolution and dashed lines denote constraints on the

decisions.
wst 99K RCt

RCt−1, RCt −→ τ
RCt−1,RCt

I

RCt, wct 99K µat , µ
d
t = ΦRCt,wct (µat )

xt, τ
RCt−1,RCt

I , wct, µ
a
t , at−1 −→ at

yt, τ
RCt−1,RCt

I , wct, µ
d
t , dt−1 −→ dt

3 Solution Algorithm

3.1 Experimental Setup

We apply the model at JFK Airport. We consider the schedule of flights on the 9 days which

correspond to the 9 deciles of the distribution of the number of daily flights at JFK in 2007. These

days capture the variability of flight schedules over the year. Unless otherwise specified, we present

results obtained with the schedule of flights on 05/25/2007, which corresponds to the 9th decile of

this distribution. The schedule of landings and takeoffs for each day is obtained from the Aviation

Performance Metrics (APM) database [10]. Figure 5 shows the schedule at JFK on 05/25/2007.

Note that the proportion of arrivals and departures varies over the course of the day: significantly

more departures than arrivals are scheduled in the morning, while the reverse is true in early

afternoon.

We categorize the 8 major runway configurations at JFK into 4 sets of two configurations each:

• Configurations with two arrival runways and one departure runway: 13L, 22L|13R and 31L, 31R|31L.

They can achieve the largest arrival rates.
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Figure 5: Arrival and departure schedules at JFK on 05/25/2007

• Configurations with one arrival runway and two departure runways: 22L|22R, 31L and 4R|4L, 31L.

They achieve the largest departure rates when few landings are operated.

• Configurations with two independent parallel runways: 13L|13R and 31R|31L. They achieve a

larger departure rate than configurations with two arrival runways and one departure runway

when few landings are operated, since departures are less constrained by aircraft landing and

taxiing in. However, they achieve a lower throughput than configurations with two arrival

runways and one departure runway when a large number of landings are operated.

• Configurations with two more closely spaced runways: 22L|22R and 4R|4L. They achieve

the lowest service rates. This is mainly due to the location of the runways relative to the

terminal complex, since aircraft taxiing in have to cross the departure runway.

The Operational Throughput Envelopes of these runway configurations are obtained from Sima-

iakis [28] and shown in Figure 6. For each of the 4 sets described above, we plot the envelope of

the configuration that achieves the largest service rates with a solid line and, in the same color,

the envelope of the other configuration in the same set with a dashed line. In addition, each dot

represents the number of scheduled landings and takeoffs per 15-minute period on 05/25/2007.

Note that the scheduling levels exceed airport capacity during a large number of periods even in

VMC (Figure 6a). These imbalances are even larger in IMC (Figure 6b). This is likely to lead to

significant flight delays. Note, moreover, that the relative capacity of the different configurations

is similar under VMC and IMC. For instance, the configurations that achieve the largest departure

throughput under VMC also achieve the largest departure throughput under IMC.

We calibrate our Markovian weather model as follows. We, first, compute the optimal policy

assuming that the airport operates in VMC throughout the day, i.e., we set the weather transition

probabilities equal to pt = 0 and qt = 1 for all periods t. Note that, by doing so, we do derive the
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(a) VMC Envelopes (b) IMC Envelopes

Figure 6: Operational Throughput Envelopes of the main runway configurations at JFK [28]

optimal policy if the system is in State IMC at any period t, but this decision is made under the

assumption that the airport will operate in VMC from period t+ 1 to period T . We then update

the policies if a weather forecast predicts that the airport will operate under IMC at some periods

of the day. This procedure is detailed in § 3.3 and tested in § 3.4.

Wind transition probabilities are estimated by their maximum likelihood estimator using his-

torical records of operations [10]. In other words, we estimate the transition probability from State

i to State j by the ratio
nij

ni
, where nij (resp. ni) designates the number of transitions from State

i to State j (resp. the number of periods in State i). This follows the procedure developed by Li

and Clarke [20]. Note that the model can easily be extended to incorporate wind forecasts.

Unless otherwise specified, we use the same duration of idleness τRC1,RC2

I for all pairs of runway

configurations RC1 6= RC2. To simplify notation, we denote it by τI in the remainder of the paper.

This assumption can be easily modified to introduce differing values of this parameter for different

configuration pairs. We provide an example in § 4.1. The purpose of our experimental tests is to

capture the trade-off between potential operating enhancements and the operating costs of configu-

ration changes, for different values of τI—as described in § 2.4.2. Sensitivity analyses will quantify

the impact of τI on optimal policies and expected queue lengths. In practice, the parameters τI

can be calibrated by airport operators on a case-by-case basis. As previously mentioned, additional

complexities (e.g., dependencies on the extent of congestion, on weather conditions, etc.) can be

easily integrated into the decision-making model.

We consider a value of α = 1, i.e., we assume that arrival and departure delays have identical

costs. We investigate the sensitivity of optimal policies and expected queue lengths to α in § 4.3.
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Finally, we set the value of the practical queue capacity at N = 30. Note that a small value of

N may lead to underestimation of the expected arrival and departure queues. On the other hand,

a large N will increase computational times, as the number of states scales quadratically with N .

We have, in fact, tested a JFK scenario with a larger value of N = 40, which implies an almost

75 percent increase in the number of queuing system states from 961 (=312) to 1681 (=412) and,

consequently, greatly increases computational times. Only marginal differences were observed in

the optimal policies, compared to N = 30. A capacity of N = 30 for (each of) the arrival queue

and the departure queue therefore appears to be sufficiently large to minimize the effects of the

finite queue size for the JFK application.

3.2 Exact Dynamic Programming Algorithm

First, an exact DP algorithm is implemented using the solution concept of backward induction

[2, 3]. The optimal policy in the final period (i.e., between 23:45 and 24:00) is computed for all

possible states, i.e., for all possible arrival and departure queue lengths that can be observed at

23:45, for all possible runway configurations that can be used in the previous period (i.e., between

23:30 and 23:45) and for all possible weather and wind conditions. This provides optimal costs in

the final period as a function of the state of the system at the beginning of the final period. This

cost is then used to compute optimal policies in the second-to-last period, as a function of the state

of the system at 23:30. This process is repeated until the optimal policies for all periods have been

derived.

The exact DP algorithm is executed in approximately 90 minutes on a laptop computer. The

optimal policy for the entire day of operations can thus be easily obtained off-line, i.e., before the

beginning of the day. This policy is based on the original model parameters, including the original

schedule of flights and the original weather forecast (e.g., assuming that the airport will operate

under VMC).

However, the policy determined off-line might no longer be optimal in the face of dynamic

disturbances that may occur during the day of operations. For instance, the airport might be

subject to schedule updates (e.g., upstream delays, en-route congestion, the initiation of Ground

Delay Programs, surface congestion, etc.) or changes in weather forecasts. In these instances, the

policy might need to be dynamically revised over the course of the day using real-time information.

But given its computational requirements, the exact DP algorithm is likely to exceed the time frame

of actual decision-making by air traffic controllers. For this reason, we implement an approximate

algorithm, described below, to perform the dynamic revisions. This greatly accelerates execution

and consequently enables the policies to be updated in real time.
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3.3 One-Step Look-Ahead Algorithm

In this section, we develop an approximate solution algorithm based on a one-step look-ahead. The

solution architecture is shown in Figure 7. In the upper part, we consider the policy obtained

off-line with the exact DP algorithm (§ 3.2), based on the original model parameters (e.g., the

original schedule of flights and the original weather forecast). We denote this policy by
(
R̂Ct, µ̂at

)
and its associated expected cost-to-go function by Ĵ .

In the lower part, we consider an operational disturbance (e.g., a schedule update, a new weather

forecast, etc.) which leads to a change in the model’s inputs and parameters (e.g., xt, yt, pt, qt).

Ideally, one would apply the exact DP algorithm with the updated model parameters. This would

yield the optimal revised policy, which we denote by
(
RCt, µat

)
.

However, the computational times of the exact DP algorithm prevents this policy from being

obtainable in real time. We therefore derive a revised policy with a one-step look-ahead algorithm

based on the cost-to-go function Ĵ . In other words, we choose, at the beginning of period t, the

policy that minimizes expected total costs, assuming that costs from period t+ 1 onward are given

by Ĵ . The policy for period t, denoted by
(
R̃Ct, µ̃at

)
, is determined as follows [4]:

(
R̃Ct, µ̃at

)
= arg min

RCt∈RC(wst)
µat∈[0,ARCt,wct ]

(
αE

[
a2t
]

+ E
[
d2t
]

+ E
[
Ĵt+1 (at, dt, RCt, wct+1, wst+1)

] )
(7)

The execution of this algorithm is almost instantaneous and thus well suited to the actual

problem faced by air traffic controllers. In turn, this fast approximation scheme can be implemented

in real time when new information becomes available. The performance of this approach depends

on how well the look-ahead policy,
(
R̃Ct, µ̃at

)
, approximates the optimal revised policy,

(
RCt, µat

)
.

We evaluate this performance in the next section.

3.4 Evaluation of Performance

In order to test the performance of our approach, we first simulate schedule disturbances and we

then simulate weather forecasts. We can simulate wind forecasts similarly. In each instance, we

compare the expected congestion costs resulting from the application of (a) the optimal policy with

the updated model parameters,
(
RCt, µat

)
, which might be too computationally time-consuming to

be determined in real time, (b) the optimal policy with the original model parameters,
(
R̂Ct, µ̂at

)
,

and (c) the approximate policy produced by the one-step look-ahead algorithm with the updated

model parameters (Equation (7)),
(
R̃Ct, µ̃at

)
. We report the average error of policies

(
R̂Ct, µ̂at

)
and

(
R̃Ct, µ̃at

)
, defined as the relative increase in congestion costs as compared to policy

(
RCt, µat

)
.

The purpose of this comparison is to show that we obtain close-to-optimal policies under var-

ious demand and weather scenarios that might arise in practice at the airports. Note that the
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Figure 7: Representation of the solution architecture

goal here is not to develop an accurate model of schedule disturbances or weather variations. In-

stead, we simulate realistic examples of such disturbances and we evaluate the performance of the

approximation scheme developed in § 3.3.

We simulate a schedule disturbance as follows: at each period, we introduce a schedule pertur-

bation randomly sampled from the integers within ε of the original number of scheduled arrivals

and departures. For instance, if 10 arrivals and 15 departures are originally scheduled during a

given period, then we uniformly sample, for a value of ε = 20%, the updated number of arrivals

(resp. departures) from the five integers between 8 and 12 (resp. from the seven integers between

12 and 18). Note that the expected total number of flights in the updated schedule is identical to

that of the original schedule. For each value of ε considered, we simulate 10 schedules of flights

according to this procedure and we report in Table 3 the average relative error of each policy.

First, note that the optimal policy computed off-line with the original schedule,
(
R̂Ct, µ̂at

)
,

performs reasonably well, even after schedule updates. Even for the largest schedule perturbations,

this policy still results in expected congestion costs within 5% to 10% of the optimal congestion

costs. Moreover, the one-step look-ahead algorithm significantly improves the performance over

the original policy. Indeed, policy
(
R̃Ct, µ̃at

)
results in expected congestion costs that exceed

optimal costs by only 1% to 2%, for different levels of schedule perturbations. In addition, results

suggest that the look-ahead algorithm performs consistently well for different schedule updates.

For instance, for the 20 simulated schedules corresponding to ε = 40% and ε = 50%, the error of

policy
(
R̃Ct, µ̃at

)
ranges from 0.63% to 2.76%.

We proceed similarly to test the performance of the policies
(
R̂Ct, µ̂at

)
and

(
R̃Ct, µ̃at

)
in the

case of a change in the weather forecast. As described in § 3.1, the original policy
(
RCt, µat

)
was
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Table 3: Total expected congestion costs with the three policies under a schedule update, for
different values of ε

Optimal Policy Available Policies(
RCt, µat

) (
R̂Ct, µ̂at

) (
R̃Ct, µ̃at

)
Schedule Considered Updated Original Updated
Algorithm Exact Exact Look-Ahead
Available on-line? No Yes Yes

ε = 10% Baseline +0.44% +0.12%
ε = 20% Baseline +1.33% +0.38%
ε = 30% Baseline +2.70% +0.82%
ε = 40% Baseline +4.09% +1.16%
ε = 50% Baseline +6.45% +1.96%

obtained for an “all-VMC” day, i.e., with weather transition probabilities equal to pt = 0 and

qt = 1 for all periods t. We now introduce weather variations. First, we simulate 20 deterministic

weather scenarios for the entire day of operations and define the corresponding values of pt and

qt—note that, in the case of a deterministic forecast, pt and qt take only the values 0 and 1. Then,

we simulate 20 deterministic weather forecasts for half the day of operations (i.e., between 6 a.m.

and 3 p.m.). We set the corresponding values of pt and qt for the half-day—again, equal to 0 or 1.

For the remainder of the day (i.e., between 3 p.m. and midnight), we estimate the values of pt and

qt by their maximum likelihood estimator using historical records of operations, i.e. pt = 0.0440

and qt = 0.0557 [17]. This aims to capture situations where weather forecasts are available for

a limited time only and later forecasts exhibit uncertainty. In both cases, we add a 21st scenario

corresponding to an “all-IMC” day (or half-day). This represents the largest weather forecast error.

Since expected arrival and departure queue lengths are larger under deteriorated weather, the

practical queue capacity N = 30 might be insufficient for an “all-IMC” day with very heavy traffic.

We therefore consider, for this particular set of tests, the schedule of flights on 09/18/2007, which

corresponds to the median of the distribution of the number of daily flights at JFK in 2007. We

sort the two sets of 20 weather forecasts by increasing error of the look-ahead algorithm and report

the results in Figure 8.

Note, first and foremost, that the error of the two available policies, i.e.,
(
R̂Ct, µ̂at

)
and(

R̃Ct, µ̃at

)
is extremely small. The error of the original policy

(
R̂Ct, µ̂at

)
is within 1% to 3%

under all weather scenarios. Again, the one-step look-ahead algorithm results in a significant per-

formance improvement and the cost of the updated policy
(
R̃Ct, µ̃at

)
is within 2% of the optimal

congestion costs in all scenarios considered. Moreover, the error of the two policies seems much

smaller in this case than in the case of a schedule update. This might be explained by the fact that
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(a) Full-day forecasts (b) Half-day forecasts

Figure 8: Total expected congestion costs with the three policies, under different weather scenarios

the VMC and IMC Operational Throughput Envelopes (Figure 6) are relatively similar to each

other, so optimal policies are similar in VMC and IMC. Finally, note that the “all-IMC” scenario

does not yield the largest error, which might suggest that changes in weather conditions might

cause larger policy updates than errors in weather forecasts.

In conclusion, the solution architecture shown in Figure 7, combining an exact DP algorithm

and one-step look-ahead algorithm provides a fast and accurate approximation of optimal policies.

It therefore provides a flexible on-line decision-making tool to help minimize congestion costs by

dynamically controlling runway configurations and arrival and departure service rates using real-

time information on flight schedules and meteorological conditions.

4 Computational Results

In this section we present the results of the application of the exact DP algorithm to JFK. § 4.1

characterizes the optimal policies. § 4.2 shows the frequency of use of different runway configurations

and of arrival/departure balances over the course of the day when the optimal policy is applied.

§ 4.3 discusses the sensitivity of expected queue lengths to several model parameters. In order to

isolate the effects of the schedule of flights and of queue stochasticity on optimal policies and queue

lengths, we restrict the presentation of our computational results to an all-VMC day (i.e., pt = 0

and qt = 1, ∀t), but similar results are obtained when different weather forecasts are considered.

All results shown are obtained with the schedule on 05/25/2007, unless otherwise specified.

4.1 Optimal Policies

The optimal policy derived from the exact DP algorithm is a function that determines the runway

configuration and the arrival and departure service rates at each period of the day and in any state
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of the system. Figure 9 plots the contours of the optimal arrival rate µat and the optimal runway

configuration RCt for the period t that begins at 12:00, for a value of τI = 5 minutes, when the

airport operates in Wind State 1 (i.e., all runway configurations can be used), as a function of the

arrival and departure queue lengths that are observed at the beginning of the period (i.e., at 12:00).

Note that the departure rate is not shown explicitly in the figure, but it is uniquely determined

through the VMC Operational Throughput Envelope of the selected runway configuration. During

the period considered, 8 landings and 4 takeoffs were scheduled, and, more generally, more arrivals

than departures were scheduled between 11:45 and 13:00 (see Figure 5). Two cases are considered:

Figure 9a (resp. Figure 9b) shows the optimal policy at 12:00 when the airport operated in the

previous period (i.e., between 11:45 and 12:00) in runway configuration 13L, 22L|13R (resp. in

runway configuration 22L|22R, 31L).

(a) RCt−1 = 13L, 22L|13R (b) RCt−1 = 22L|22R, 31L

Figure 9: Optimal runway configuration and arrival rate at 12:00 (τI = 5 min, wst = 1)

Several observations can be made about the optimal policy. First, the optimal arrival rate

is non-decreasing as a function of the arrival queue length and non-increasing as a function of

the departure queue length, with the exception of some “boundary effects” when queue lengths

approach the practical queue capacity N . In other words, the longer the arrival queue, the more

available capacity should be allocated to arriving aircraft. Moreover, the optimal policy depends

on the runway configuration in use. For example, when the airport operates in configuration

13L, 22L|13R, the optimal policy is to stay in this configuration, which allocates two runways to

arrivals and one runway to departures, in order to serve a larger number of arriving aircraft during

the considered period (Figure 9a). In contrast, if the airport operates in configuration 22L|22R, 31L,

which allocates two runways to departures and one runway to arrivals, it may be optimal to switch
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to configuration 13L, 22L|13R if the departure queue is small enough or, equivalently, if the arrival

queue is large enough, or to stay in configuration 22L|22R, 31L otherwise (Figure 9b). In addition,

whereas the selected arrival rate increases quite smoothly as a function of the arrival queue length

in the case where RCt−1 = 13L, 22L|13R (Figure 9a), it increases discontinuously from 13 to 16

when RCt−1 = 22L|22R, 31L (Figure 9b).

In order to illustrate these points, let us consider the evolution of the optimal arrival rate as a

function of the arrival queue observed at the beginning of period t, when the departure queue length

is equal to 10 aircraft. If configuration 13L, 22L|13R was in use in period t − 1 (Figure 9a), then

the decision-maker operates in the same configuration in period t. The longer the arrival queue

observed at the beginning of the period, the larger the selected arrival rate. When 12 or more

arriving aircraft are queuing, then the decision-maker selects the largest arrival rate available (16

in this case). In contrast, if configuration 22L|22R, 31L was in use in period t−1 (Figure 9b), then

the decision-maker stays in configuration 22L|22R, 31L if the arrival queue length is sufficiently

small. The optimal arrival service rate increases quite smoothly from 9 when no arriving aircraft

are queuing to 13 when 7 arriving aircraft are queuing. As the arrival queue length increases from

7 to 21, the optimal policy remains invariant: the decision-maker selects the largest arrival rate

that can be achieved under the runway configuration in use (13 in this case). If, however, 22 or

more arriving aircraft are queuing, then the decision-maker switches to configuration 13L, 22L|13R

in order to increase the arrival rate (to 16 in this case). In other words, when the arrival queue

exceeds a certain threshold, then it might become beneficial to switch to another configuration

that enhances the arrival throughput, in this case to configuration 13L, 22L|13R, if the operational

benefits associated with the switch become large enough to offset the costs associated with the time

period of idleness following the runway configuration change.

4.2 Frequency of Decisions

In this section, we compute the state probabilities of the system over the day when the optimal

policy is applied and we report the frequency of decisions at each period. Figure 10 shows the

frequency of use for each of the four sets of runway configurations defined in § 3.1 at each period of

the day, for different values of τI . As expected, the frequency of use for these different configurations

depends on the throughput they achieve (Figure 6). Since the three-runway configurations achieve

the largest service rates, they are the most frequently used ones. In contrast, the two-runway

configurations are mostly used in adverse wind conditions when the airport can only operate on a

small subset of runways. Configurations including the two widely-spaced parallel runways, 13/31,

are used more frequently than configurations with the two more closely-spaced parallel runways,

4/22, because of the significant difference in the capacity of the corresponding configurations.

Moreover, the exact timing of use of the different configurations depends on the arrival and

departure schedules, as well as the evolution of the operations through the day. Importantly, note
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that no runway configuration is used 100% of the time at any period of the day. This indicates that

the stochasticity of the system has an impact on the optimal control, as suggested by Figure 9.

Finally, the use of different runway configurations depends on the value of the parameter τI . Indeed,

in the case where τI = 0 min, runway configuration changes are very frequent to make the best

possible use of available capacity. For larger values of τI , however, the cost associated with the

idleness of the runway system is more likely to exceed the operational benefits associated with

switching from one configuration to another and consequently runway configuration changes become

less frequent. For instance, if τI = 0, the decision-maker should operate, whenever possible, in a

configuration with two departure runways between 13:00 and 14:00 to best serve the departure peak

at that time (see Figure 5). As τI increases, decisions trade off congestion costs with increasing

switching costs, depending on the observed number of queuing aircraft on the ground and in the

air. As a result, the frequency of a switch between 13:00 and 14:00 becomes smaller. When τI = 10

min, then it is almost always optimal to stay in a configuration with two arrival runways and one

departure runway for the entire period between 11:00 and 17:00.

As mentioned in § 2.4.2, the modeling framework developed in this paper enables us to introduce

differentiated costs of runway configuration changes as a function of the proximity of configurations.

We compare in Figure 11 the use of runway configurations when the duration of idleness following

a runway configuration change, τI , is uniform across runway configuration changes (Figure 11a) to

the case where the values of τI vary with the runway configuration change considered (Figure 11b).

Specifically, we assume in Figure 11b values of τI equal to (a) 1 minute if the switch merely

disturbs operations by simply adding or removing a third runway (e.g., when switching between

31L, 31R|31L and 31R|31L), (b) 5 minutes if the switch involves a 90-degree reorientation of the

flow of aircraft (e.g., from 22L|22R, 31L to 31R|31L) and (c) 10 minutes if the switch involves a

180-degree reorientation of the flow of aircraft (e.g., from 31L, 31R|31L to 13L|13R). In contrast,

we assume in Figure 11a a single value of τI equal to 3 minutes, which is approximately the average

value of τI in the differentiated case. Any differences between Figures 11a and 11b can thus be

attributed essentially to the differences in the distribution of τI across configuration changes.

As expected, differentiated costs of configuration changes can impact significantly the optimal

policies. For instance, it may be optimal to switch from a configuration with two arrival runways

and one departure runway at 13:00 to a configuration that enables the selection of a larger departure

rate in order to best serve the large number of takeoffs between 13:00 and 14:00. Even though the

departure throughput could be maximized by using a configuration with two departure runways,

it may be optimal to operate during this period in a configuration with two independent parallel

runways (i.e., 13L|13R or 31R|31L). This is because the costs of switching from configuration

13L, 22L|13R to 13L|13R or from 31L, 31R|31L to 31R|31L may be lower than the costs of switching

to 22L|22R, 31L or to 4R|4L, 31L. In this case, it may be optimal to increase moderately the

departure throughput by using a “closer” configuration than to increase the departure throughput
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(a) τI = 0 min (b) τI = 2 min

(c) τI = 4 min (d) τI = 10 min

Figure 10: Frequency of use of each runway configuration for different values of τI

to a greater extent at a larger operational cost. In turn, the distribution of τI across configuration

changes can affect congestion costs. We estimate that the application of the optimal policy obtained

with the same value of τI for all configuration changes in the case where the values of τI vary with

configuration changes leads to an increase in total expected congestion costs by 5.19%, as compared

to the application of the optimal policy obtained with differentiated values of τI . Results from these

tests suggest that the fine-grain and flexible calibration by airport operators of the operational costs

associated with runway configuration changes enabled by our DP model can result in significant

improvements in the efficiency of operating policies.
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(a) τI = 3 min (b) Differentiated τRC1,RC2
I

Figure 11: Frequency of use of runway configurations with uniform versus differentiated values of
τI

In addition to selecting runway configurations, as shown in Figures 10 and 11, the model

introduced in this paper controls the arrival and departure service rates at each period of the day.

The frequency of these decisions is shown in Table 4 for seven different periods and the six most

frequently used configurations. Note that, after a particular runway configuration has been selected,

any variations in selected arrival and departure service rates are solely motivated by differences in

prior stochastic queue evolution, and depend neither on the runway configuration previously in

use nor on wind conditions. As seen in the table, for some periods of the day (e.g., at 6:45 and

15:15) the choice of arrival and departure service rates depends only weakly on the prior evolution

of arrival and departure queues. In these cases, the main control exercised is the selection of the

runway configuration, primarily determined by previous runway configurations and wind-related

constraints, but the optimal balance of arrivals and departures does not vary substantially from

one sample to another. For instance, the decision-maker selects most frequently the largest arrival

rate available at 15:15 and an arrival rate equal to 8 or 9 landings per 15-minute period at 6:45. In

contrast, in many other cases, the optimal balance of arrivals and departure is highly variable and

depends on the observed extent of congestion at the time of the decision (e.g., at 7:45, 10:30, 11:45,

17:00 and 22:15). In such cases, both the optimal runway configuration and the optimal arrival

and departure service rates might depend on the prior evolution of the system.

These results show the path-dependency of the optimal policy. At each period, the optimal

runway configuration and service rates depend on the state of the system at the time of the de-

cision (Figure 9), which itself depends on previous decisions and on the prior evolution of the

system. This includes, first, some deterministic components, such as the runway configuration in
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Table 4: Policy frequency for six different periods of the day

Policy Period t

RCt µat µdt 6:45 7:45 10:30 11:45 15:15 17:00 22:15

13L, 22L|13R

16 8.0 – – 2% 4% 42% 3% –
15 8.5 – – – 5% – – –
14 9.0 – – – 8% – 4% 1%
13 9.3 – – – 4% – 1% –
11 9.9 – – – 5% – 7% 1%
10 10.1 – – – 4% – 9% 2%
9 10.2 – – – 2% – 3% 3%

31L, 31R|31L

16 5.2 – – – 2% 52% 8% –
12 7.7 – – – 3% – – –
11 8.3 – – – 3% – – –
7 10.7 – – – 1% – 3% –

22L|22R, 31L

13 8.8 – 8% 5% 8% – 9% 4%
12 9.4 – 5% 1% 3% – 4% 7%
10 10.5 – 7% 2% 3% – 5% 4%
9 11.0 49% 10% 7% 2% – 11% 8%
8 11.3 – 3% – – – – –
7 11.7 1% 7% 7% 1% – 3% 5%
6 12.0 – 3% 3% – – 1% 2%
5 12.3 – 1% 3% – – – 1%
4 12.6 – 1% 6% – – – 1%

4R|4L, 31L

13 8.2 – 4% 2% 4% – 6% 2%
10 10.0 – 5% 4% 4% – 7% 6%
8 10.8 20% 2% 3% 1% – 1% 3%
7 11.2 2% 3% 3% 1% – 1% 2%
6 11.6 – 2% 3% – – 1% 2%
4 12.4 – 1% 4% – – – 2%

31R|31L
13 8.3 – 3% 1% 2% 3% 2% 1%
10 10.0 – 3% 1% 1% – 1% 2%
9 10.5 4% 5% 4% 1% – 1% 5%
8 10.8 13% – 1% – – – –
7 11.2 2% 3% 5% 1% – – 3%
4 12.1 – 1% 5% – – – 1%

13L|13R
7 11.1 6% 2% 1% – – – 3%
6 11.4 – 1% 6% – – – 2%

use. It also includes exogenous stochastic components, such as the evolution of weather and wind

conditions. For instance, configuration 4L|4L, 31L achieves a slightly lower departure throughput
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than configuration 22L|22R, 31L. Nonetheless, it may be used when the balance of arrivals and

departures requires the use of a configuration with two arrival runways and one departure runway

and when strong winds from the North prevent runways 22L and 22R from being used. Last, and

perhaps most important, optimal policies depend on endogenous stochastic components, such as

the length of the arrival and departure queues. These lengths depend on previous decisions, as well

as on the stochastic evolution of the system. This stochasticity gives rise to some variability in the

optimal control at any period of the day (see Figures 10 and 11 and Table 4): both the runway

configurations and the arrival and departure service rates depend on prior system evolution. This

underscores the importance of considering queue stochasticity and its endogeneity to operating

decisions within our decision-making framework, because of the impact this may have on optimal

decisions. We further estimate the benefits of accounting for queue stochasticity in § 5.2.

4.3 Sensitivity of Arrival and Departure Queues to Model Parameters

We have performed several sensitivity analyses to evaluate how the optimal policies and the op-

timal arrival and departure queue lengths vary with several model parameters. First, increases

in the relative cost of arrival queuing, α, lead to the selection of policies that increase the arrival

throughput at the expense of the departure throughput and therefore to shorter expected arrival

queues and longer expected departure queues. Variations in α from 1 to 2 induce changes in peak

expected arrival queue length on the order of 2 to 3 aircraft in queue (i.e., over 30%) and changes

in peak expected departure queue length on the order of 1 to 2 aircraft in queue (i.e., 5% to 10%).

This difference might be due to the slope of the Operational Throughput Envelope at JFK being

lower than 1 (Figure 6), so variations in arrival rates induce smaller variations in departure rates.

As well, variations in the duration of idleness following a runway configuration change, τI ,

induce changes in the efficiency of operations and in the optimal policy (see § 4.2), thus in optimal

arrival and departure queues. As τI increases from 0 to 15 minutes, the expected arrival queue

length might increase by 1 to 2 aircraft and the expected departure queue length might increase

by 2 to 3 aircraft. This translates into increases in the optimal expected congestion costs. Table 5

reports the optimal total congestion costs for the 9 days considered and for τI = 0, 5, 10 and 15

min. Note that the total expected costs increase by 25% to 40% when τI increases from 0 to 15

minutes. Therefore, the efficiency with which airports can switch between runway configurations

has a significant impact on expected airport congestion costs.

5 Performance Evaluation

We now quantify the benefits resulting from the control of runway configurations and of arrival

and departure service rates developed in this paper. We first compare the optimal policy to two

advanced heuristics that aim to imitate typical operating decisions made in practice. We then
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Table 5: Expected total congestion costs for different values of τI

Expected total cost

Day Flights τI = 0 min τI = 5 min τI = 10 min τI = 15 min

02/04 1,027 Baseline +18.15% +28.37% +37.16%
01/10 1,059 Baseline +17.57% +29.13% +39.35%
02/08 1,085 Baseline +18.31% +29.93% +39.23%
01/25 1,097 Baseline +17.38% +27.79% +36.38%
09/18 1,113 Baseline +13.67% +23.52% +32.17%
10/15 1,125 Baseline +15.93% +25.45% +33.81%
06/01 1,133 Baseline +14.43% +24.19% +34.18%
07/07 1,160 Baseline +10.58% +17.38% +24.89%
05/25 1,172 Baseline +12.19% +19.22% +26.23%

compare it to an alternative model based on deterministic queue dynamics to quantify the benefits

of integrating queue stochasticity into the decision-making framework.

5.1 Comparison of the Optimal Policy to Heuristics

In this section, we compare the optimal policies obtained with the DP model to two heuristic

policies. The heuristics can be viewed as representative of the kind of “reasonably smart” operating

policies one might apply in practice, in the absence of an advanced model such as the DP model

presented here. If our model can outperform the heuristics by a significant margin, this would

suggest that large congestion cost savings might result from the model’s implementation as a tool

for tactical decision-making. Comparisons of the associated congestion costs provide estimates of

the potential savings that may result from such implementation.

Note that, ideally, one would compare the policies recommended by the model to actual decisions

made in practice. However, such comparison is complicated by several factors. First, identifying ar-

rival and departure queue lengths and service rates from available databases is subject to significant

uncertainty. Second, little data on real-time information available to decision-makers in practice

(e.g., dynamic schedule updates) is reported. Third, establishing statistically reliable comparisons

and isolating the benefits of our DP model requires the consideration of many days of operations,

which is complicated by the stochasticity of the system and variations in the schedules of flights and

operating conditions from one day to another. For these reasons, we approximate actual decisions

through the two heuristics described below. This approach is similar to the one adopted in the

literature [8, 5]. Note, however, that some differences with actual decisions might also arise from

practical factors that were not included in the model. Discussions with air traffic managers are

therefore required to design iterative improvements of our model and of its implementation.

The two heuristics we consider were developed from discussions with air traffic managers at JFK.
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Both adjust the arrival rate as a function of arrival demand, which seems to be common practice

at the busiest airports. This might be motivated by the fact that, at JFK, the departure rate is

not very sensitive to the arrival rate. Indeed, as previously discussed, the departure rates shown

by the Operational Throughput Envelopes of the main runway configurations at JFK decrease by

less than 1 for every unit increase in the arrival rates (Figure 6). Therefore, increasing the arrival

rate to match arrival demand induces a relatively small loss in departure throughput. Moreover,

this might be motivated by practical reasons as well, since it is more challenging operationally to

hold arriving aircraft in queue in the air than to hold departing aircraft in queue on the ground.

We describe briefly the two heuristics below and in more detail in the Appendix.

The first heuristic assumes no cost of changing runway configurations. At the beginning of each

period, the decision-maker computes the effective arrival demand, defined as the expected number

of aircraft that will request to land in the period. It is simply equal to the sum of the arrival queue

at the beginning of period t, i.e., at−1, and the expected number of aircraft that will join the arrival

queue in period t, i.e., xt. He then attempts to satisfy arrival demand by selecting an arrival rate

equal to the effective arrival demand, if possible. If the maximal arrival rate of each of the runway

configurations that can be used under observed wind conditions is smaller than the effective arrival

demand, then he selects the largest arrival rate that can be possibly chosen. He then operates in

the runway configuration that maximizes the departure service rate for the selected arrival rate.

The second heuristic relies on a similar approach except that a large cost of switching runway

configurations is assumed. The decision-maker does not change runway configurations unless he

is forced to do so, because of changing wind conditions. If the current runway configuration can

still be used for the next period, then he chooses the arrival rate that matches the effective arrival

demand as closely as possible and the departure rate is subsequently determined by the Operational

Throughput Envelope of the runway configuration. If, however, the current runway configuration

can no longer be used, then he follows the policy determined according to the first heuristic.

Table 6 reports the relative difference between the optimal expected congestion costs and the

expected congestion costs resulting from the application of each of these two heuristics, for different

values of the duration of idleness τI . As expected, Heuristic 2 performs better for the larger values

of τI (e.g., τI = 10 min), while Heuristic 1 performs better for the smaller values of τI (e.g., τI = 0

min). This is consistent with the design of these heuristics. But in all the cases considered (τI = 0

min, τI = 5 min and τI = 10 min), the better of the two heuristics results in significantly greater

congestion costs than the optimal policy, by an estimated 20% to 30%. These results suggest

that the optimal control might result in substantial cost savings. Finally, the estimated 20% to

30% reduction in congestion costs is substantially larger than the 1% to 2% error of the one-

step look-ahead algorithm implemented in § 3.3. This suggests that, when real-time disturbances

are considered, the approximate scheme developed in this paper would still result in significant

operational improvements compared to the two advanced heuristics considered in this section.
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Table 6: Relative error of heuristics

Heuristic 1 Heuristic 2

Day Flights Exact τI = 0 min τI = 5 min τI = 5 min τI = 10 min

02/04 1,027 Baseline +35.18% +56.61% +45.28% +36.88%
01/10 1,059 Baseline +35.34% +75.58% +51.48% +41.82%
02/08 1,085 Baseline +37.60% +68.60% +46.84% +37.17%
01/25 1,097 Baseline +34.60% +63.13% +44.37% +35.79%
09/18 1,113 Baseline +28.23% +57.18% +37.86% +29.76%
10/15 1,125 Baseline +30.19% +57.29% +38.13% +30.70%
06/01 1,133 Baseline +29.65% +65.19% +45.97% +37.75%
07/07 1,160 Baseline +19.07% +41.27% +29.95% +25.01%
05/25 1,172 Baseline +25.02% +43.70% +31.48% +26.08%

The comparison of the optimal control to heuristics suggests that the joint control of runway

configurations and of arrival and departure service rates can improve the efficiency of airport

operations substantially. As mentioned in the introduction, the annual costs of air traffic delays in

the United States were estimated at over $30 billion for the year 2007 [1], 50% to 75% of which are

attributed to mismatches between demand and capacity [6]. Given the disproportionate distribution

of delays across airports and the propagation of these delays through the National Aviation System,

the implementation of the control developed in this paper at a few of the busiest airports in the

United States could generate very significant cost savings for airlines, passengers and society.

5.2 Benefits of the Integration of Queue Stochasticity

Finally, we quantify the benefits of integrating the stochasticity of queue dynamics into the decision-

making framework. To this purpose, we implement an alternative version of the model developed in

this paper, but with deterministic queue dynamics. In this case, the queue transition probabilities

(see § 2.4.1) are simply defined as follows:

Qtm,n =

{
1, if n = m+ λt − µt
0, otherwise

(8)

Using (8), we derive the optimal policy under deterministic queue dynamics and we compare it

to the optimal policy based on stochastic queue dynamics that we obtained previously. Note that

both policies consider the same model of weather and wind dynamics. Any difference is therefore

due to the consideration, or not, of queue stochasticity. We then simulate the evolution of the

system resulting from the application of the optimal deterministic and stochastic policies, under

stochastic queue dynamics.

We compare in Table 7 the congestion costs obtained with each of the two policies, for different
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values of τI . These results suggest that accounting for the stochasticity of queue dynamics in the

design of the operating policy might yield significant congestion cost savings, which we estimate

from our tests at 5% to 20%. Note that the benefits of integrating queue stochasticity seem larger

with the larger values of τI (e.g., τI = 5 min and τI = 10 min) than with τI = 0 min. This might be

explained by the fact that, with τI = 0, the deterministic model is able to atone, to some extent, for

its lack of consideration of stochasticity. It does this by making more frequent changes (at no cost)

to runway configurations in response to unexpected changes in the arrival and departure queues.

Table 7: Relative performance of the optimal deterministic and stochastic policies

τI = 0 min τI = 5 min τI = 10 min

Day Flights Stochastic Determ. Stochastic Determ. Stochastic Determ.

02/04 1,027 Baseline +9.06% Baseline +16.70% Baseline +14.31%
01/10 1,059 Baseline +8.24% Baseline +14.25% Baseline +11.92%
02/08 1,085 Baseline +8.05% Baseline +16.30% Baseline +12.51%
01/25 1,097 Baseline +7.91% Baseline +16.45% Baseline +13.22%
09/18 1,113 Baseline +6.70% Baseline +13.77% Baseline +11.48%
10/15 1,125 Baseline +7.76% Baseline +17.16% Baseline +14.92%
06/01 1,133 Baseline +7.73% Baseline +18.19% Baseline +16.27%
07/07 1,160 Baseline +5.60% Baseline +11.50% Baseline +11.42%
05/25 1,172 Baseline +6.58% Baseline +13.49% Baseline +12.84%

In conclusion, the stochasticity of queue dynamics has a significant impact on the optimal policy.

Ignoring this stochasticity can result in significant operating inefficiencies, estimated at 5% to 20%.

This is consistent with the path-dependency of the optimal policy shown in § 4.1.

6 Conclusion

In this paper, we presented an original decision-making framework that dynamically controls runway

configurations and the arrival and departure service rates at a major airport while taking into

account the stochasticity of arrival and departure queue dynamics and of operating conditions. This

addresses the problem of dynamically allocating airport capacity to arriving and departing aircraft

under operating uncertainty. We developed an efficient Dynamic Programming (DP) formulation

that minimizes airport congestion costs and embeds a realistic stochastic model of queue dynamics

and of weather and wind-related uncertainty.

We applied the exact DP algorithm to a realistic setting at JFK Airport and showed that, based

on information available before a particular day of operations, the optimal a priori operating policy

for that day can be obtained within reasonable computational times. However, during the day in

question, the policy thus obtained may no longer be optimal due to unforeseen disturbances, such
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as schedule updates or changes in the weather forecast. To address this issue, we implemented a

one-step look-ahead approximate algorithm that greatly speeds up execution of the DP. Results

suggest that this two-step approximation scheme yields near-optimal policies. The fast approximate

algorithm therefore enables the on-line implementation of our model using real-time information.

The application of the model at JFK yielded several insights. First, optimal policies are path-

dependent in the sense that they depend on the prior evolution of the system, including prior

decisions and the stochastic evolution of arrival and departure queues over the day. This underscores

the impact of system stochasticity on optimal policies. As a result, we showed that integrating the

stochasticity of queue dynamics into the decision-making framework can yield significant congestion

cost savings, estimated at 5% to 20%. Moreover, comparisons of optimal policies to two advanced

heuristics, aimed to imitate actual operating procedures, suggest that congestion costs might be

significantly reduced through the control of runway configurations and of service rates developed

in this paper. Our results at JFK indicate the potential for congestion cost savings of as much as

20% to 30% at the busiest airports.

The model and the algorithms presented provide an effective decision-making tool to mitigate

airport congestion at the tactical level. Its implementation may provide substantial operational

benefits to airport stakeholders. Moreover, the model provides a better understanding of how

airport capacity utilization procedures depend on the schedule of flights and on the stochastic

evolution of the arrival and departure queues at the airport. This can be used to integrate the

interdependencies between flight schedules, airport delays and airport operating procedures into

macroscopic models of airport congestion at the strategic level. Such integration could, in turn,

improve the predictive abilities of these models. In ongoing work, we are using these tools to develop

an integrated approach to airport congestion mitigation that jointly optimizes the rescheduling of

flights through schedule coordination at the strategic level and the utilization of airport capacity

at the tactical level [18].
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7 Appendix: Algorithmic Description of the Heuristics

The algorithmic implementation of the two heuristics used in § 5.1 is presented below. They consist

of computing, at the beginning of each time period t, the effective arrival demand, denoted by adt

and defined as the expected number of aircraft that will request to land in period t. In other words,
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adt = at−1 + xt. In the first heuristic (Algorithm 1), we determine the set of configurations that

can match arrival demand as well as possible and, among all the configurations that satisfy this

requirement, we select the one that maximizes the departure service rate. In the second algorithm

(Algorithm 2), we assume that the configuration does not change unless it is no longer feasible

to use it—because of a change in wind conditions. Again, the arrival rate is selected to match as

closely as possible arrival demand.

Algorithm 1 Heuristic 1: Arrival priority and no cost of runway configuration changes

for t = 1, ..., T do
for at−1 do

• Compute effective arrival demand: adt = at−1 + xt

for wct, wst do
for rc ∈ RC(wst) do

• Define candidate arrival rate with rc: art(rc) = min (Arc,wct , adt)

end for

• Determine the set of candidate runway configurations RCart(wst) ⊂ RC(wst) that minimize the quantity
|adt − art(rc)| and define new arrival rate µa

t as the corresponding value of art(rc), rc ∈ RCart(wst)
• Choose runway configuration RCt = arg maxrc∈RCart (wst)

{Φrc,wct (µa
t )}

• Define new departure rate: µd
t = ΦRCt,wct (µa

t )

end for
end for

end for

Algorithm 2 Heuristic 2: Arrival priority and large cost of runway configuration changes

for t = 1, ..., T do
for RCt−1 do

• Determine the set of wind states WSRCt−1 in which RCt−1 can be feasibly used

for wst ∈ WSRCt−1 do

• Choose same runway configuration: RCt = RCt−1

for at−1, wct do

• Compute effective arrival demand: adt = at−1 + xt

• Define new arrival rate: µa
t = min (ARCt,wct , adt)

• Define new departure rate: µd
t = ΦRCt,wct (µa

t )

end for
end for
for wst /∈ WSRCt−1 do

• Choose policy from Heuristic 1 in all states

end for
end for

end for
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